WO2019208476A1 - 樹脂組成物、樹脂フィルム、樹脂付き金属箔、プリプレグ、金属張積層板及びプリント配線板 - Google Patents

樹脂組成物、樹脂フィルム、樹脂付き金属箔、プリプレグ、金属張積層板及びプリント配線板 Download PDF

Info

Publication number
WO2019208476A1
WO2019208476A1 PCT/JP2019/016958 JP2019016958W WO2019208476A1 WO 2019208476 A1 WO2019208476 A1 WO 2019208476A1 JP 2019016958 W JP2019016958 W JP 2019016958W WO 2019208476 A1 WO2019208476 A1 WO 2019208476A1
Authority
WO
WIPO (PCT)
Prior art keywords
component
resin
resin composition
volume
composition according
Prior art date
Application number
PCT/JP2019/016958
Other languages
English (en)
French (fr)
Inventor
章裕 山内
斉藤 英一郎
幸一 青木
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Priority to DE112019002192.3T priority Critical patent/DE112019002192T5/de
Priority to US17/050,624 priority patent/US11617261B2/en
Priority to ATA9125/2019A priority patent/AT522851B1/de
Priority to CN201980027090.4A priority patent/CN112004888A/zh
Priority to JP2020516332A priority patent/JP7209267B2/ja
Publication of WO2019208476A1 publication Critical patent/WO2019208476A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/0313Organic insulating material
    • H05K1/0353Organic insulating material consisting of two or more materials, e.g. two or more polymers, polymer + filler, + reinforcement
    • H05K1/0373Organic insulating material consisting of two or more materials, e.g. two or more polymers, polymer + filler, + reinforcement containing additives, e.g. fillers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/14Layered products comprising a layer of metal next to a fibrous or filamentary layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/20Layered products comprising a layer of metal comprising aluminium or copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/02Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by structural features of a fibrous or filamentary layer
    • B32B5/022Non-woven fabric
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/24Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/24Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs
    • C08J5/241Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs using inorganic fibres
    • C08J5/244Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs using inorganic fibres using glass fibres
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/24Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs
    • C08J5/249Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs characterised by the additives used in the prepolymer mixture
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • C08J7/0427Coating with only one layer of a composition containing a polymer binder
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/24Acids; Salts thereof
    • C08K3/26Carbonates; Bicarbonates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/02Ingredients treated with inorganic substances
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L63/00Compositions of epoxy resins; Compositions of derivatives of epoxy resins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/373Cooling facilitated by selection of materials for the device or materials for thermal expansion adaptation, e.g. carbon
    • H01L23/3737Organic materials with or without a thermoconductive filler
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • H05K7/2039Modifications to facilitate cooling, ventilating, or heating characterised by the heat transfer by conduction from the heat generating element to a dissipating body
    • H05K7/20436Inner thermal coupling elements in heat dissipating housings, e.g. protrusions or depressions integrally formed in the housing
    • H05K7/20445Inner thermal coupling elements in heat dissipating housings, e.g. protrusions or depressions integrally formed in the housing the coupling element being an additional piece, e.g. thermal standoff
    • H05K7/20472Sheet interfaces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2260/00Layered product comprising an impregnated, embedded, or bonded layer wherein the layer comprises an impregnation, embedding, or binder material
    • B32B2260/02Composition of the impregnated, bonded or embedded layer
    • B32B2260/021Fibrous or filamentary layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2260/00Layered product comprising an impregnated, embedded, or bonded layer wherein the layer comprises an impregnation, embedding, or binder material
    • B32B2260/04Impregnation, embedding, or binder material
    • B32B2260/046Synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/10Inorganic fibres
    • B32B2262/101Glass fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/20Properties of the layers or laminate having particular electrical or magnetic properties, e.g. piezoelectric
    • B32B2307/206Insulating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/50Properties of the layers or laminate having particular mechanical properties
    • B32B2307/538Roughness
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/732Dimensional properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • B32B2457/08PCBs, i.e. printed circuit boards
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2363/00Characterised by the use of epoxy resins; Derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2463/00Characterised by the use of epoxy resins; Derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2227Oxides; Hydroxides of metals of aluminium
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/24Acids; Salts thereof
    • C08K3/26Carbonates; Bicarbonates
    • C08K2003/267Magnesium carbonate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/002Physical properties
    • C08K2201/005Additives being defined by their particle size in general
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/02Fillers; Particles; Fibers; Reinforcement materials
    • H05K2201/0203Fillers and particles
    • H05K2201/0206Materials
    • H05K2201/0209Inorganic, non-metallic particles
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/02Apparatus or processes for manufacturing printed circuits in which the conductive material is applied to the surface of the insulating support and is thereafter removed from such areas of the surface which are not intended for current conducting or shielding
    • H05K3/022Processes for manufacturing precursors of printed circuits, i.e. copper-clad substrates

Definitions

  • the present disclosure generally relates to a resin composition, a resin film, a metal foil with a resin, a prepreg, a metal-clad laminate, and a printed wiring board, and more specifically, a resin composition, a resin film, and a metal with a resin containing a resin and an inorganic filler
  • the present invention relates to a foil, a prepreg, a metal-clad laminate, and a printed wiring board.
  • Patent Document 1 discloses a heat conductive resin composition.
  • This thermally conductive resin composition contains 60 to 95% by mass of two or more inorganic fillers in total. Further, the Mohs hardness of the first inorganic filler is 4 or more, and the Mohs hardness of the second inorganic filler is 3 or less. Further, the ratio of the first inorganic filler to the second inorganic filler is 1: 1 to 0.01.
  • the thermal conductive resin composition of Patent Document 1 has improved thermal conductivity, but there is room for further improvement in properties other than thermal conductivity.
  • An object of the present disclosure is to provide a resin composition, a resin film, a metal foil with resin, a prepreg, a metal-clad laminate, and a printed wiring board that have both thermal conductivity, drill workability, heat resistance, and moldability. .
  • the resin composition according to one embodiment of the present disclosure contains (A) a resin and (B) an inorganic filler.
  • the component (B) includes (b1) anhydrous magnesium carbonate and (b2) aluminum oxide.
  • Content of the said (b1) component exists in the range of 35 volume% or more and 65 volume% or less with respect to a total of 100 volume% of the said (b1) component and the said (b2) component.
  • Content of the said (B) component exists in the range of 60 volume% or more and 75 volume% or less with respect to 100 volume% of said resin compositions.
  • the resin film according to one embodiment of the present disclosure includes a film containing the resin composition or a semi-cured product thereof.
  • a metal foil with a resin includes a resin layer containing the resin composition or a semi-cured product thereof, and a metal foil adhered to the resin layer.
  • a prepreg according to one embodiment of the present disclosure includes a resin layer containing the resin composition or a semi-cured product thereof, and a base material embedded in the resin layer.
  • a metal-clad laminate according to one embodiment of the present disclosure includes an insulating layer including a cured product of the resin composition, and a metal foil bonded to the insulating layer.
  • a printed wiring board includes an insulating layer containing a cured product of the resin composition, and a conductor layer bonded to the insulating layer.
  • FIG. 1 is a schematic cross-sectional view of a resin film according to an embodiment of the present disclosure.
  • FIG. 2 is a schematic cross-sectional view of a resin-coated metal foil according to an embodiment of the present disclosure.
  • FIG. 3 is a schematic cross-sectional view of a prepreg according to an embodiment of the present disclosure.
  • FIG. 4 is a schematic cross-sectional view of a metal-clad laminate according to an embodiment of the present disclosure.
  • FIG. 5 is a schematic cross-sectional view of a printed wiring board according to an embodiment of the present disclosure.
  • FIG. 6A is a photograph of the tip of the drill bit before drilling.
  • FIG. 6B is a photograph (an example) of the tip of the drill bit after drilling.
  • the resin composition according to the present embodiment contains (A) a resin and (B) an inorganic filler.
  • a component contains (b1) anhydrous magnesium carbonate and (b2) aluminum oxide.
  • the component (b1) has high heat resistance because it does not have crystal water.
  • the component (b2) has higher heat resistance than the component (b1). Therefore, heat resistance can be provided to a resin composition because (B) component contains (b1) component and (b2) component.
  • the content of the component (b1) is in the range of 35% by volume or more and 65% by volume or less with respect to the total of 100% by volume of the component (b1) and the component (b2).
  • the component (b1) is softer than the component (b2).
  • the component (b2) is closer to a sphere than the component (b1). Therefore, drill workability and moldability can be imparted to the resin composition by adjusting the content of the component (b1) as described above.
  • the content of the component (B) is in the range of 60% by volume to 75% by volume with respect to 100% by volume of the resin composition.
  • the component (B) has higher thermal conductivity than the component (A).
  • the component (A) has higher fluidity than the component (B). Therefore, thermal conductivity and moldability can be imparted to the resin composition by adjusting the content of the component (B) as described above.
  • the resin composition according to the present embodiment has thermal conductivity, drill workability, heat resistance, and moldability.
  • the resin composition according to this embodiment contains (A) a resin and (B) an inorganic filler.
  • the resin composition may further contain at least one of a curing agent, a catalyst, a flame retardant, a coupling agent, and a dispersant as long as the effects of the present embodiment are not impaired.
  • the resin composition may be liquid or solid at room temperature. However, in any case, when it is heated, it finally becomes a cured product. The cured product is an insoluble and infusible substance. Due to heat or light, the resin composition may go from the A-stage to the C-stage through the B-stage to the C-stage, or from the A-stage to the C-stage immediately without passing through the B-stage. Sometimes it becomes a cured product.
  • A-stage, B-stage and C-stage are based on JIS K6900-1944.
  • the B-stage material is referred to as a semi-cured material
  • the C-stage material is referred to as a cured material.
  • the resin as component (A) contains at least one of a monomer and a prepolymer. Prepolymers include oligomers.
  • the component (A) may be a thermosetting resin or a photocurable resin.
  • the polymerization reaction of component (A) is not particularly limited. Specific examples of the polymerization reaction include chain polymerization and sequential polymerization. A representative example of chain polymerization is radical polymerization. A typical example of sequential polymerization is polyaddition.
  • component (A) examples include epoxy resin, phenoxy resin, polyimide resin, polyester resin, triazine resin, maleimide resin, polyphenylene ether resin, and polyphenylene having a functional group containing a C—C unsaturated bond in one molecule.
  • examples include ether resins. These resins include derivatives.
  • the resin as component (A) includes at least one of an epoxy resin and a phenoxy resin.
  • the epoxy resin preferably contains a resin containing two or more epoxy rings (oxirane rings) in one molecule.
  • the epoxy resin may be liquid or solid.
  • the epoxy resin examples include bisphenol type epoxy resin, novolac type epoxy resin, arylalkylene type epoxy resin, naphthalene skeleton modified epoxy resin, trifunctional epoxy resin, phenoxy resin, triphenylmethane type epoxy resin, anthracene type epoxy resin, Cyclopentadiene type epoxy resin, norbornene type epoxy resin, fluorene type epoxy resin, flame retardant epoxy resin obtained by halogenating any of the above epoxy resins, epoxy resin modified with phosphorus compound, pre-reaction between epoxy resin and polyphenylene ether resin Products and pre-reaction products of epoxy resins and acid anhydrides. Derivatives of these resins are also included.
  • the bisphenol type epoxy resin includes bisphenol A type epoxy resin, bisphenol F type epoxy resin and bisphenol S type epoxy resin. Derivatives of these resins are also included.
  • the novolac type epoxy resin includes phenol novolac type epoxy resin and cresol novolac type epoxy resin. Derivatives of these resins are also included.
  • Arylalkylene type epoxy resins include biphenyl type epoxy resins, xylylene type epoxy resins, phenol aralkyl type epoxy resins, biphenyl aralkyl type epoxy resins, biphenyl novolac type epoxy resins, biphenyl dimethylene type epoxy resins, trisphenol methane novolak type epoxy resins. And tetramethylbiphenyl type epoxy resin. Derivatives of these resins are also included.
  • Naphthalene skeleton modified epoxy resin includes naphthalene type epoxy resin, naphthalene skeleton modified cresol novolak type epoxy resin, naphthalene all aralkyl type epoxy resin, naphthol aralkyl type epoxy resin, methoxynaphthalene modified cresol novolak type epoxy resin and methoxynaphthalene dimethylene type epoxy resin. Resin is included. Derivatives of these resins are also included.
  • the phenoxy resin is a resin obtained by polymerizing a bisphenol A type epoxy resin in a linear form.
  • the component (A) contains a phenoxy resin, the flexibility of the resin film 1 can be improved.
  • a component contains liquid resin (for example, liquid epoxy resin).
  • the content of the liquid resin is preferably 4 parts by mass or more, more preferably 10 parts by mass or more with respect to 100 parts by mass of the total organic components.
  • a total organic component means the remaining component remove
  • the upper limit of content of liquid resin is not specifically limited, Preferably it is 90 mass parts or less with respect to 100 mass parts of all the organic components, More preferably, it is 80 mass parts or less.
  • the inorganic filler which is (B) component contains (b1) anhydrous magnesium carbonate and (b2) aluminum oxide.
  • the component (B) further includes (b3) an inorganic material on which a molybdenum compound is supported.
  • the anhydrous magnesium carbonate which is a component is magnesium carbonate (anhydride) which does not have crystal water.
  • the component (b1) is an aggregate of anhydrous magnesium carbonate particles.
  • the shape of the anhydrous magnesium carbonate particles is, for example, a polyhedral shape, but is preferably a rounded shape.
  • magnesium carbonate takes anhydrous, dihydrate, trihydrate, or pentahydrate, but anhydrous magnesium carbonate, which is an anhydride, has no water of crystallization, and thus has excellent thermal stability. . Therefore, the heat resistance of a resin composition can be improved because (B) component contains (b1) component.
  • the component (B) is preferably substantially free of magnesium carbonate hydrate. “Substantially free” means intentionally free of hydrate. If inevitable, a trace amount of hydrate may be contained as an impurity in the component (B).
  • Anhydrous magnesium carbonate as the component (b1) has a relatively high thermal conductivity as an inorganic substance. Therefore, the thermal conductivity of the resin composition can be improved because the component (B) includes the component (b1).
  • the anhydrous magnesium carbonate which is a component is a soft crystal
  • crystallization it can suppress the wear of the drill accompanying a drill process. That is, the drill workability of the resin composition can be improved because the component (B) includes the component (b1).
  • the Mohs hardness can be used as an index of the hardness of the component (B).
  • anhydrous magnesium carbonate as component (b1) is surface-treated with a coupling agent.
  • a coupling agent for example, the adhesion between the component (A) that is an organic material and the component (B) that is an inorganic material (in this case, particularly the component (b1)) Can be improved. Specific examples of the coupling agent will be described later.
  • the average particle diameter of anhydrous magnesium carbonate as component (b1) is in the range of 8 ⁇ m to 20 ⁇ m.
  • the average particle diameter means a particle diameter when the cumulative distribution is 50% by volume, that is, a median diameter (D50).
  • the average particle diameter can be measured based on a laser diffraction / scattering method.
  • B1 When the average particle diameter of a component is 8 micrometers or more, a contact area with resin which is (A) component reduces, and a heat conductive fall can be suppressed.
  • the average particle diameter of a component is 20 micrometers or less, the insulation fall of the hardened
  • the component (b2) Aluminum oxide, which is a component, is also industrially referred to as alumina.
  • the component (b2) is an aggregate of aluminum oxide particles. Since the component (b2) has higher thermal conductivity and heat resistance than the component (b1), the thermal conductivity and heat resistance of the resin composition can be improved.
  • the shape of the aluminum oxide as the component (b2) is a rounded shape.
  • the rounded shape means a shape that does not have a protruding portion.
  • the rounded shape includes a spherical shape and a spheroid shape, but does not include a plate shape, a polyhedron shape, a rectangular parallelepiped shape, a rod shape, a needle shape, and a scale shape.
  • the circuit filling property means the ease of filling the resin composition when the gap between adjacent conductor wirings is filled with the resin composition.
  • (B2) Aluminum oxide, which is a component, has a high hardness, so the average particle size is preferably as small as possible. Specifically, the average particle diameter of the component (b2) is preferably 1 ⁇ m or less. Thus, the fall of the drill workability of a resin composition can be suppressed because the average particle diameter of (b2) component is 1 micrometer or less. In addition, the lower limit of the average particle diameter of the component (b2) is 0.1 ⁇ m.
  • the aluminum oxide as the component (b2) is surface-treated with a coupling agent.
  • a coupling agent When the component (b2) is thus surface-treated with a coupling agent, the adhesion between the component (A), which is an organic material, and the component (B), which is an inorganic material (in this case, in particular, the component (b2)). Can be improved. Specific examples of the coupling agent will be described later.
  • the content of anhydrous magnesium carbonate as the component (b1) is in the range of 35% by volume to 65% by volume with respect to 100% by volume as the total of the component (b1) and the component (b2).
  • the volume of the component (b1) is the total volume of the particles themselves constituting the component (b1).
  • the volume of the component (b2) is the total volume of the particles themselves constituting the component (b2).
  • the content of anhydrous magnesium carbonate as the component (b1) is less than 35% by volume, the content of aluminum oxide as the component (b2) is relatively increased. Since the component (b2) has a high hardness, the drillability of the resin composition tends to decrease when the content of the component (b2) increases.
  • the content of anhydrous magnesium carbonate as the component (b1) exceeds 65% by volume, the content of aluminum oxide as the component (b2) is relatively decreased. If the shape of the component (b1) (particle shape) is not rounded (for example, a polyhedral shape), the content of the component (b2) increases even if the content of the component (b2) (particle shape) is increased. Even if it has a rounded shape, the moldability of the resin composition tends to decrease.
  • the content of the inorganic filler as the component (B) is in the range of 60% by volume to 75% by volume with respect to 100% by volume of the resin composition (excluding the solvent).
  • the volume of (B) component means the sum total volume of each particle
  • the inorganic filler as the component (B) has higher thermal conductivity and heat resistance than the resin as the component (A). However, if the content of the component (B) is less than 60% by volume, the thermal conductivity is increased. And content of (A) component with low heat resistance becomes relatively large. Therefore, there exists a possibility that the heat conductivity and heat resistance of a resin composition may fall.
  • the resin which is the component (A) at room temperature or heating has higher fluidity than the inorganic filler which is the component (B). However, if the content of the component (B) exceeds 75% by volume, the resin is fluid. The content of the high (A) component is relatively reduced. Therefore, the moldability of the resin composition may be reduced.
  • the average particle size of anhydrous magnesium carbonate as component (b1) is larger than the average particle size of aluminum oxide as component (b2).
  • (b1) component and (b2) component can be filled densely. If it does so, since the particle
  • the average particle size of the component (b1) is in the range of 8 ⁇ m to 20 ⁇ m, and the average particle size of the component (b2) is 1 ⁇ m or less. In this case, the thermal conductivity of the resin composition can be further improved.
  • the inorganic filler as the component (B) further includes (b3) an inorganic material on which a molybdenum compound is supported.
  • the inorganic substance that is a carrier is an aggregate of inorganic particles.
  • a molybdenum compound is supported on the surface of each inorganic particle.
  • the molybdenum compound adheres to all or a part of the surface of each inorganic particle. More specifically, as an example in which the molybdenum compound adheres to the entire surface of each inorganic particle, the entire surface of each inorganic particle is covered with a molybdenum compound layer. Moreover, as an example in which the molybdenum compound adheres to a part of the surface of each inorganic particle, it can be mentioned that the molybdenum compound is scattered on the surface of each inorganic particle.
  • the inorganic substance that is the carrier is not particularly limited.
  • Inorganic substances include carbonates, metal oxides, silicates and metal hydroxides.
  • a specific example of the carbonate is calcium carbonate.
  • Specific examples of the metal oxide include zinc oxide.
  • a specific example of the silicate is talc.
  • Specific examples of the metal hydroxide include magnesium hydroxide.
  • the molybdenum compound is not particularly limited.
  • specific examples of molybdenum compounds include zinc molybdate, calcium molybdate, magnesium molybdate, molybdenum trioxide, ammonium molybdate, barium molybdate, sodium molybdate, potassium molybdate, phosphomolybdic acid, ammonium phosphomolybdate, and phosphomolybdenum.
  • Examples include sodium silicate, silicomolybdic acid, molybdenum boride, molybdenum disilicide, molybdenum nitride, and molybdenum carbide.
  • zinc molybdate, calcium molybdate and magnesium molybdate are preferable from the viewpoints of chemical stability, moisture resistance and insulation.
  • the inorganic filler which is the component (B) further includes the component (b3)
  • the molybdenum compound is supported on the inorganic material, so that the drillability of the resin composition can be further improved.
  • the talc is the softest among the inorganic substances as the carrier, the drillability of the resin composition can be further improved if the component (b3) is talc carrying a molybdenum compound.
  • the content of the component (b3) is preferably 100% by volume in total of the component (b1), the component (b2) and the component (b3). And 10% by volume or less.
  • the heat resistance of the component (b3) may be lower than that of the component (b1) and the component (b2). Therefore, when the content of the component (b3) is 10% by volume or less, a decrease in heat resistance of the resin composition can be suppressed.
  • the volume of the component (b3) is the total volume of the individual particles constituting the component (b3).
  • the resin composition preferably further contains a curing agent.
  • the curing agent is not particularly limited, and examples thereof include dicyandiamide, phenol resin, phosphorus-containing phenol resin, acid anhydride, and cyanate ester. Among these, dicyandiamide is preferable from the viewpoint of the flexibility of the resin film 1.
  • the phenol resin is not particularly limited as long as it is a resin containing two or more hydroxy groups in one molecule.
  • the phosphorus-containing phenol resin is not particularly limited as long as it is a resin containing two or more hydroxy groups and one or more phosphorus atoms in one molecule.
  • the flame retardance of a resin composition can be improved because the resin composition further contains a phosphorus-containing phenol resin as a curing agent.
  • the total content of the phenol resin and the phosphorus-containing phenol resin is preferably 40 parts by mass or less, more preferably 30 parts by mass or less, with respect to 100 parts by mass of all organic components.
  • a catalyst can accelerate
  • the catalyst is not particularly limited, and examples thereof include organic acid metal salts (such as metal soaps), tertiary amines, and imidazoles.
  • Metal salts of organic acids include metal salts such as Zn, Cu, and Fe of organic acids such as octanoic acid, stearic acid, acetylacetonate, naphthenic acid, salicylic acid, and octylic acid.
  • An example of a metal salt of an organic acid is zinc octylate (bis (2-ethylhexanoic acid) zinc).
  • Tertiary amine includes triethylamine and triethanolamine.
  • the imidazoles include 2-ethyl-4-methylimidazole and 4-methylimidazole.
  • a metal salt of an organic acid is preferable from the viewpoint that higher heat resistance can be imparted to the resin composition.
  • the flame retardant is not particularly limited. Organic flame retardants or inorganic flame retardants may be used.
  • organic flame retardants include halogen compounds and phosphorus compounds.
  • the phosphorus compound includes a phosphate ester flame retardant, a phosphazene flame retardant, a bisdiphenylphosphine oxide flame retardant, and a phosphinate flame retardant.
  • the phosphate ester flame retardant includes a condensed phosphate ester of dixylenyl phosphate.
  • the phosphazene flame retardant includes phenoxyphosphazene.
  • the bisdiphenylphosphine oxide flame retardant includes xylylene bisdiphenylphosphine oxide.
  • the phosphinate flame retardant includes a phosphinic acid metal salt of a dialkylphosphinic acid aluminum salt.
  • a specific example of the inorganic flame retardant is a metal hydroxide.
  • the flame retardancy of the resin composition can be improved.
  • the coupling agent is not particularly limited as long as it has a reactive group chemically bonded to an inorganic material and a reactive group chemically bonded to an organic material in one molecule.
  • Specific examples of the reactive group chemically bonded to the inorganic material include an ethoxy group and a methoxy group.
  • Specific examples of the reactive group chemically bonded to the organic material include an epoxy group, an amino group, an isocyanate group, a hydroxy group, a phenolic hydroxy group, and an acid anhydride group.
  • the coupling agent includes a silane coupling agent.
  • the silane coupling agent includes, for example, epoxy silane, amino silane, isocyanate silane, and acid anhydride silane.
  • Specific examples of the epoxy silane include 3-glycidoxypropyltrimethoxysilane and 3-glycidoxypropyltriethoxysilane.
  • Specific examples of aminosilane include 3-aminopropyltriethoxysilane.
  • Specific examples of the isocyanate silane include 3-isocyanatopropyltriethoxysilane.
  • the adhesion between the organic material and the inorganic material can be improved.
  • the dispersant is a kind of surfactant and is not particularly limited.
  • the component (B) can be uniformly dispersed.
  • the resin composition according to the present embodiment contains (A) a resin and (B) an inorganic filler, and if necessary, a curing agent, a flame retardant, a catalyst, and a coupling agent. And at least one of the dispersants can be further blended.
  • Component (B) may be surface-treated with a coupling agent before compounding resin (A) and inorganic filler (B).
  • the surface treatment may be a wet treatment method or a dry treatment method.
  • a coupling agent When coupling (A) component and (B) component, a coupling agent may be blended. This is called the integral blend method.
  • a resin composition is prepared using the integral blend method and the metal foil 2 with resin, the metal-clad laminate 4 and the printed wiring board 5 are produced using this resin composition, there are the following advantages. That is, the adhesiveness between the resin layer 20 and the metal foil 21 in the metal foil 2 with resin, the adhesiveness between the insulating layer 40 and the metal foil 41 in the metal-clad laminate 4, and the insulating layer 50 and the conductor in the printed wiring board 5 Adhesiveness with the layer 51 can also be improved.
  • the resin composition prepared as described above has thermal conductivity, drill workability, heat resistance, and moldability.
  • the resin film 1 includes a film 10 including a resin composition or a semi-cured product thereof.
  • the film 10 containing the resin composition means a film in which the component (A) contained in the resin composition undergoes chain polymerization (for example, radical polymerization). That is, the resin film 1 in this case is not originally in the B-stage state, but reaches the C-stage by heat or light and becomes a cured product.
  • chain polymerization for example, radical polymerization
  • the film 10 containing a semi-cured product of the resin composition means a film in which the component (A) contained in the resin composition undergoes sequential polymerization (for example, polyaddition). That is, the resin film 1 in this case is originally in a B-stage state, and reaches the C-stage by heat and becomes a cured product.
  • the resin film 1 is, for example, a liquid resin composition applied to a support film (not shown) and then dried to remove the solvent in the resin composition, or heated to make the resin composition semi-cured Or can be manufactured.
  • the resin film 1 is used by being peeled from the support film.
  • a specific example of the support film is a polyethylene terephthalate (PET) film.
  • the cured product of the resin film 1 can form, for example, the insulating layer 40 of the metal-clad laminate 4 and the insulating layer 50 of the printed wiring board 5.
  • the thickness of the resin film 1 is not particularly limited, but is, for example, in the range of 50 ⁇ m to 200 ⁇ m.
  • the resin film 1 contains the resin composition according to this embodiment, the resin film 1 has both thermal conductivity, drill workability, heat resistance, and moldability.
  • the metal foil with resin 2 includes a resin layer 20 and a metal foil 21 as shown in FIG.
  • the resin layer 20 includes a resin composition or a semi-cured product thereof.
  • the metal foil 21 is bonded to the resin layer 20.
  • the case where the resin layer 20 includes a resin composition means a case where the component (A) undergoes chain polymerization (for example, radical polymerization). That is, the resin layer 20 in this case is not originally in the B-stage state, but reaches the C-stage by heat or light and becomes a cured product.
  • chain polymerization for example, radical polymerization
  • the case where the resin layer 20 contains a semi-cured product of the resin composition means a case where the component (A) undergoes sequential polymerization (for example, polyaddition). That is, the resin layer 20 in this case is originally in a B-stage state, and reaches the C-stage by heat and becomes a cured product.
  • the metal foil with resin 2 is, for example, after applying a liquid resin composition to the metal foil 21 and then drying to remove the solvent in the resin composition, or heating to make the resin composition semi-cured. Can be manufactured.
  • the cured product of the resin layer 20 of the metal foil 2 with resin can form, for example, the insulating layer 40 of the metal-clad laminate 4 and the insulating layer 50 of the printed wiring board 5.
  • the resin-attached metal foil 2 includes the resin composition according to the present embodiment, it has both thermal conductivity, drill workability, heat resistance, and moldability.
  • the prepreg 3 includes a resin layer 30 and a base material 31 as shown in FIG. 3.
  • the resin layer 30 includes a resin composition or a semi-cured product thereof.
  • the base material 31 is embedded in the resin layer 30. At least a part of the substrate 31 may be exposed from the resin layer 30.
  • the case where the resin layer 30 includes a resin composition means a case where the component (A) undergoes chain polymerization (for example, radical polymerization). That is, the prepreg 3 in this case is not originally in the B-stage state, but reaches the C-stage by heat or light and becomes a cured product.
  • chain polymerization for example, radical polymerization
  • the case where the resin layer 30 contains a semi-cured product of the resin composition means a case where the component (A) undergoes sequential polymerization (for example, polyaddition). That is, the prepreg 3 in this case is originally in a B-stage state, and reaches the C-stage by heat and becomes a cured product.
  • the prepreg 3 is impregnated with a liquid resin composition in the base material 31 and then dried to remove the solvent in the resin composition, or is heated to make the resin composition semi-cured.
  • a specific example of the base material 31 is a glass cloth.
  • the cured product of the prepreg 3 can form, for example, the insulating layer 40 of the metal-clad laminate 4 and the insulating layer 50 of the printed wiring board 5.
  • the prepreg 3 includes the resin composition according to this embodiment, the prepreg 3 has both thermal conductivity, drill workability, heat resistance, and moldability.
  • the metal-clad laminate 4 includes an insulating layer 40 and a metal foil 41.
  • the insulating layer 40 includes a cured product of the resin composition.
  • the metal foil 41 is bonded to the insulating layer 40.
  • the metal foil 41 include copper foil.
  • the thickness of the metal foil 41 is not particularly limited, but is preferably in the range of 12 ⁇ m to 420 ⁇ m, more preferably in the range of 18 ⁇ m to 210 ⁇ m.
  • the ten-point average roughness Rzjis of the metal foil 41 is not particularly limited, but is preferably 3 ⁇ m or more, and more preferably 5 ⁇ m or more. If the ten-point average roughness Rzjis of the metal foil 41 is 3 ⁇ m or more, the adhesion between the insulating layer 40 and the metal foil 41 can be further improved.
  • the metal-clad laminate 4 can be manufactured, for example, by heating and pressurizing the metal foil 41 on one side or both sides of a single prepreg 3 or a laminate composed of two or more prepregs 3.
  • the surface of the metal foil 41 (at least the surface overlapping the prepreg 3) is treated with a coupling agent.
  • the coupling agent bonds the organic material in the prepreg 3 and the metal foil 41 so that the insulating layer 40 and the metal foil 41 are in close contact with each other.
  • the property can be further improved.
  • the coupling agent those described above can be used.
  • the conditions for heating and pressing are not particularly limited.
  • FIG. 4 shows the metal-clad laminate 4 having two base materials 31 in the insulating layer 40.
  • the metal-clad laminate 4 includes the resin composition according to this embodiment, the metal-clad laminate 4 has both thermal conductivity, drill workability, and heat resistance.
  • the printed wiring board 5 includes an insulating layer 50 and a conductor layer 51.
  • the insulating layer 50 includes a cured product of the resin composition.
  • the conductor layer 51 is bonded to the insulating layer 50.
  • the conductor layer 51 refers to a conductive layer such as a signal layer, a power supply layer, and a ground layer.
  • the printed wiring board 5 is a concept including a multilayer printed wiring board including three or more conductor layers 51. In particular, FIG. 5 shows a multilayer printed wiring board having four conductor layers 51.
  • the printed wiring board 5 can be manufactured, for example, by using the above-described metal-clad laminate 4 as a material and using a subtractive method.
  • the printed wiring board 5 may be multilayered using a build-up method.
  • the printed wiring board 5 includes the resin composition according to the present embodiment, the printed wiring board 5 has both thermal conductivity, drill workability, and heat resistance.
  • Prepreg A glass cloth (“# 7628” manufactured by Nanya) was used as a base material.
  • the glass cloth was impregnated with the above varnish at room temperature, and then heated at about 150 ° C. for 4 to 5 minutes by a non-contact type heating unit.
  • the solvent in the varnish was removed by drying, and the prepreg was produced by making the resin composition a semi-hard material.
  • the resin content of the prepreg was adjusted to 50% by mass.
  • [Copper laminate] Insulation is performed by sandwiching the four prepregs described above between two roughened surfaces of copper foil (thickness 35 ⁇ m) and heating and pressing at 195 ° C. and 2.94 MPa (30 kgf / cm 2 ) for 90 minutes.
  • thermo conductivity The thermal diffusivity ( ⁇ ) of the copper foil-clad laminate was measured by a laser flash method.
  • the specific heat (Cp) of the copper foil-clad laminate was measured by DSC (Differential Scanning Calorimetry) method. Further, the density ( ⁇ ) of the copper foil-clad laminate was measured by an underwater substitution method. Using these measured values, the thermal conductivity ( ⁇ ) was calculated by the following formula.
  • FIG. 6A is a photograph of the tip of the drill bit before drilling.
  • S1 is an area of a portion surrounded by a solid line in FIG. 6A.
  • FIG. 6B is a photograph of the tip of the drill bit after drilling.
  • S2 is an area of a portion surrounded by a solid line in FIG. 6B.
  • the copper-clad laminate was cut into a 5 cm square and used as a sample. This sample was placed in an oven at 250 ° C. and 270 ° C. for 1 hour, respectively, and the presence or absence of swelling was visually confirmed. Swelling means a partially raised peeling that occurs between insulating layers in a sample or between an insulating layer and a copper foil, and is a form of delamination. Evaluation was made according to the following criteria.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Materials Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Thermal Sciences (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Textile Engineering (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Laminated Bodies (AREA)
  • Reinforced Plastic Materials (AREA)

Abstract

樹脂組成物は、(A)樹脂と、(B)無機フィラーと、を含有する。(B)成分は、(b1)無水炭酸マグネシウム及び(b2)酸化アルミニウムを含む。(b1)成分の含有量は、(b1)成分及び(b2)成分の合計100体積%に対して、35体積%以上65体積%以下の範囲内である。(B)成分の含有量は、樹脂組成物100体積%に対して、60体積%以上75体積%以下の範囲内である。

Description

樹脂組成物、樹脂フィルム、樹脂付き金属箔、プリプレグ、金属張積層板及びプリント配線板
 本開示は、一般に樹脂組成物、樹脂フィルム、樹脂付き金属箔、プリプレグ、金属張積層板及びプリント配線板に関し、より詳細には樹脂及び無機フィラーを含有する樹脂組成物、樹脂フィルム、樹脂付き金属箔、プリプレグ、金属張積層板及びプリント配線板に関する。
 特許文献1は、熱伝導性樹脂組成物を開示する。この熱伝導性樹脂組成物は、2種以上の無機フィラーを合計で60~95質量%含んでいる。また、第1の無機フィラーのモース硬度が4以上であり、かつ第2の無機フィラーのモース硬度が3以下である。さらに、第1の無機フィラーと第2の無機フィラーの割合が1:1~0.01である。
 特許文献1の熱伝導性樹脂組成物は、熱伝導性が向上しているが、熱伝導性以外の特性については、更なる改良の余地がある。
特開2012-087250号公報
 本開示の目的は、熱伝導性、ドリル加工性、耐熱性及び成形性を兼備する樹脂組成物、樹脂フィルム、樹脂付き金属箔、プリプレグ、金属張積層板及びプリント配線板を提供することにある。
 本開示の一態様に係る樹脂組成物は、(A)樹脂と、(B)無機フィラーと、を含有する。前記(B)成分は、(b1)無水炭酸マグネシウム及び(b2)酸化アルミニウムを含む。前記(b1)成分の含有量は、前記(b1)成分及び前記(b2)成分の合計100体積%に対して、35体積%以上65体積%以下の範囲内である。前記(B)成分の含有量は、前記樹脂組成物100体積%に対して、60体積%以上75体積%以下の範囲内である。
 本開示の一態様に係る樹脂フィルムは、前記樹脂組成物又はその半硬化物を含むフィルムを備える。
 本開示の一態様に係る樹脂付き金属箔は、前記樹脂組成物又はその半硬化物を含む樹脂層と、前記樹脂層に接着された金属箔と、を備える。
 本開示の一態様に係るプリプレグは、前記樹脂組成物又はその半硬化物を含む樹脂層と、前記樹脂層に埋設された基材と、を備える。
 本開示の一態様に係る金属張積層板は、前記樹脂組成物の硬化物を含む絶縁層と、前記絶縁層に接着された金属箔と、を備える。
 本開示の一態様に係るプリント配線板は、前記樹脂組成物の硬化物を含む絶縁層と、前記絶縁層に接着された導体層と、を備える。
図1は、本開示の一実施形態に係る樹脂フィルムの概略断面図である。 図2は、本開示の一実施形態に係る樹脂付き金属箔の概略断面図である。 図3は、本開示の一実施形態に係るプリプレグの概略断面図である。 図4は、本開示の一実施形態に係る金属張積層板の概略断面図である。 図5は、本開示の一実施形態に係るプリント配線板の概略断面図である。 図6Aは、ドリル加工前のドリルビットの先端の写真である。図6Bは、ドリル加工後のドリルビットの先端の写真(一例)である。
 1.概要
 本実施形態に係る樹脂組成物は、(A)樹脂と、(B)無機フィラーと、を含有する。
 (B)成分は、(b1)無水炭酸マグネシウム及び(b2)酸化アルミニウムを含む。(b1)成分は、結晶水を持たないので耐熱性が高い。(b2)成分は、(b1)成分に比べて耐熱性が更に高い。そのため、(B)成分が(b1)成分及び(b2)成分を含むことで、樹脂組成物に耐熱性を付与することができる。
 (b1)成分の含有量は、(b1)成分及び(b2)成分の合計100体積%に対して、35体積%以上65体積%以下の範囲内である。(b1)成分は、(b2)成分に比べて軟らかい。(b2)成分は、(b1)成分に比べて球形に近い。そのため、(b1)成分の含有量を上記のように調整することで、樹脂組成物にドリル加工性及び成形性を付与することができる。
 (B)成分の含有量は、樹脂組成物100体積%に対して、60体積%以上75体積%以下の範囲内である。(B)成分は、(A)成分に比べて熱伝導性が高い。(A)成分は、(B)成分に比べて流動性が高い。そのため、(B)成分の含有量を上記のように調整することで、熱伝導性及び成形性を樹脂組成物に付与することができる。
 このように、本実施形態に係る樹脂組成物は、熱伝導性、ドリル加工性、耐熱性及び成形性を兼備する。
 2.詳細
 2.1 樹脂組成物
 本実施形態に係る樹脂組成物は、(A)樹脂と、(B)無機フィラーと、を含有する。本実施形態の効果を損なわない範囲で、樹脂組成物は、硬化剤、触媒、難燃剤、カップリング剤及び分散剤のうちの少なくともいずれかを更に含有してもよい。樹脂組成物は、常温で液状でも固形でもよい。ただし、いずれの場合であっても、加熱すると、最終的には硬化物となる。硬化物は、不溶不融の物質である。熱又は光により、樹脂組成物は、A-ステージからB-ステージを経てC-ステージに至って硬化物となる場合もあれば、B-ステージを経ないで、A-ステージから直ちにC-ステージに至って硬化物となる場合もある。なお、A-ステージ、B-ステージ及びC-ステージの定義は、JIS K6900-1944に基づく。本明細書では、B-ステージの物質を半硬化物といい、C-ステージの物質を硬化物という。
 2.1.1 (A)樹脂
 (A)成分である樹脂は、モノマー及びプレポリマーのうちの少なくともいずれかを含む。プレポリマーにはオリゴマーが含まれる。(A)成分は、熱硬化性樹脂でも光硬化性樹脂でもよい。(A)成分の重合反応は特に限定されない。重合反応の具体例として、連鎖重合及び逐次重合が挙げられる。連鎖重合の代表例として、ラジカル重合が挙げられる。逐次重合の代表例として、重付加が挙げられる。
 (A)成分の具体例として、エポキシ樹脂、フェノキシ樹脂、ポリイミド樹脂、ポリエステル樹脂、トリアジン樹脂、マレイミド樹脂、ポリフェニレンエーテル樹脂、及び、1分子中にC-C不飽和結合を含む官能基を有するポリフェニレンエーテル樹脂が挙げられる。これらの樹脂には誘導体も含まれる。
 好ましくは、(A)成分である樹脂は、エポキシ樹脂及びフェノキシ樹脂のうちの少なくともいずれかを含む。エポキシ樹脂は、1分子中に2個以上のエポキシ環(オキシラン環)を含有する樹脂を含むことが好ましい。エポキシ樹脂は、液状でも固形でもよい。
 エポキシ樹脂の具体例として、ビスフェノール型エポキシ樹脂、ノボラック型エポキシ樹脂、アリールアルキレン型エポキシ樹脂、ナフタレン骨格変性エポキシ樹脂、3官能エポキシ樹脂、フェノキシ樹脂、トリフェニルメタン型エポキシ樹脂、アントラセン型エポキシ樹脂、ジシクロペンタジエン型エポキシ樹脂、ノルボルネン型エポキシ樹脂、フルオレン型エポキシ樹脂、上記いずれかのエポキシ樹脂をハロゲン化した難燃化エポキシ樹脂、リン化合物で変性したエポキシ樹脂、エポキシ樹脂とポリフェニレンエーテル樹脂との予備反応生成物、及び、エポキシ樹脂と酸無水物との予備反応生成物が挙げられる。これらの樹脂の誘導体も含まれる。
 ビスフェノール型エポキシ樹脂には、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂及びビスフェノールS型エポキシ樹脂が含まれる。これらの樹脂の誘導体も含まれる。
 ノボラック型エポキシ樹脂には、フェノールノボラック型エポキシ樹脂及びクレゾールノボラック型エポキシ樹脂が含まれる。これらの樹脂の誘導体も含まれる。
 アリールアルキレン型エポキシ樹脂には、ビフェニル型エポキシ樹脂、キシリレン型エポキシ樹脂、フェノールアラルキル型エポキシ樹脂、ビフェニルアラルキル型エポキシ樹脂、ビフェニルノボラック型エポキシ樹脂、ビフェニルジメチレン型エポキシ樹脂、トリスフェノールメタンノボラック型エポキシ樹脂及びテトラメチルビフェニル型エポキシ樹脂が挙げられる。これらの樹脂の誘導体も含まれる。
 ナフタレン骨格変性エポキシ樹脂には、ナフタレン型エポキシ樹脂、ナフタレン骨格変性クレゾールノボラック型エポキシ樹脂、ナフタレンジオールアラルキル型エポキシ樹脂、ナフトールアラルキル型エポキシ樹脂、メトキシナフタレン変性クレゾールノボラック型エポキシ樹脂及びメトキシナフタレンジメチレン型エポキシ樹脂が含まれる。これらの樹脂の誘導体も含まれる。
 フェノキシ樹脂は、ビスフェノールA型エポキシ樹脂を直鎖状に高分子化した樹脂である。(A)成分がフェノキシ樹脂を含むと、樹脂フィルム1の屈曲性を向上させることができる。
 (A)成分は、液状樹脂(例えば液状のエポキシ樹脂)を含むことが好ましい。この場合、液状樹脂の含有量は、全有機成分100質量部に対して、好ましくは4質量部以上、より好ましくは10質量部以上である。液状樹脂の含有量が4質量部以上であることで、樹脂フィルム1の屈曲性を向上させることができる。なお、全有機成分とは、樹脂組成物から(B)成分である無機フィラーを除いた残りの成分を意味する。液状樹脂の含有量の上限値は特に限定されないが、全有機成分100質量部に対して、好ましくは90質量部以下であり、より好ましくは80質量部以下である。
 2.1.2 (B)無機フィラー
 (B)成分である無機フィラーは、(b1)無水炭酸マグネシウム及び(b2)酸化アルミニウムを含む。好ましくは、(B)成分は、(b3)モリブデン化合物が担持された無機物を更に含む。
 (b1)成分である無水炭酸マグネシウムは、結晶水を持たない炭酸マグネシウム(無水物)である。(b1)成分は、無水炭酸マグネシウムの粒子の集合体である。無水炭酸マグネシウムの粒子の形状は、例えば、多面体状であるが、好ましくは丸みを帯びた形状である。一般に炭酸マグネシウムは、無水和物、二水和物、三水和物又は五水和物をとるが、無水物である無水炭酸マグネシウムは、結晶水を持たないため、熱安定性に優れている。そのため、(B)成分が(b1)成分を含むことで、樹脂組成物の耐熱性を向上させることができる。
 逆に言えば、炭酸マグネシウムの水和物は、耐熱性低下の原因となり得るので、好ましくは(B)成分は、炭酸マグネシウムの水和物を実質的に含まない。実質的に含まないとは、意図的に水和物を含ませないことを意味する。不可避的であれば微量の水和物が不純物として(B)成分に含まれていてもよい。
 (b1)成分である無水炭酸マグネシウムは、無機物としては比較的高い熱伝導率を有する。したがって、(B)成分が(b1)成分を含むことで、樹脂組成物の熱伝導性を向上させることができる。
 (b1)成分である無水炭酸マグネシウムは、軟らかい結晶であるため、ドリル加工に伴うドリルの摩耗を抑制することができる。つまり、(B)成分が(b1)成分を含むことで、樹脂組成物のドリル加工性を向上させることができる。なお、(B)成分の硬度の指標としてモース硬度を用いることができる。
 好ましくは、(b1)成分である無水炭酸マグネシウムは、カップリング剤で表面処理されている。このように(b1)成分がカップリング剤で表面処理されていると、有機材料である(A)成分と、無機材料である(B)成分(この場合は特に(b1)成分)との密着性を向上させることができる。カップリング剤の具体例については後述する。
 好ましくは、(b1)成分である無水炭酸マグネシウムの平均粒子径は、8μm以上20μm以下の範囲内である。平均粒子径とは、累積分布50体積%のときの粒径、つまりメジアン径(D50)を意味する。平均粒子径は、レーザー回折・散乱法に基づいて測定可能である。(b1)成分の平均粒子径が8μm以上であることで、(A)成分である樹脂との接触面積が減少し、熱伝導性の低下を抑制することができる。(b1)成分の平均粒子径が20μm以下であることで、樹脂組成物の硬化物の絶縁性の低下を抑制することができる。
 (b2)成分である酸化アルミニウムは、工業的にはアルミナともいう。(b2)成分は、酸化アルミニウムの粒子の集合体である。(b2)成分は、(b1)成分に比べて高い熱伝導率及び耐熱性を有するので、樹脂組成物の熱伝導性及び耐熱性を向上させることができる。
 好ましくは、(b2)成分である酸化アルミニウムの形状、すなわち(b2)成分を構成する粒子の形状は、丸みを帯びた形状である。丸みを帯びた形状とは、とがって突出した部分を有しない形状を意味する。例えば、丸みを帯びた形状には、球状及び回転楕円体状が含まれるが、板状、多面体状、直方体状、棒状、針状及び鱗片状は含まれない。(b2)成分を構成する粒子が丸みを帯びていると、常温で液状の樹脂組成物、又は、加熱して液状となる樹脂組成物の流動性が向上するので、成形性(特に回路充填性)を向上させることができる。ここで、回路充填性とは、隣り合う導体配線間の隙間を樹脂組成物で充填する場合の、樹脂組成物の充填しやすさを意味する。
 (b2)成分である酸化アルミニウムは硬度が大きいので、平均粒子径は小さいほど好ましい。具体的には、(b2)成分の平均粒子径は、1μm以下であることが好ましい。このように(b2)成分の平均粒子径が1μm以下であることで、樹脂組成物のドリル加工性の低下を抑制することができる。なお、(b2)成分の平均粒子径の下限値は0.1μmである。
 好ましくは、(b2)成分である酸化アルミニウムは、カップリング剤で表面処理されている。このように(b2)成分がカップリング剤で表面処理されていると、有機材料である(A)成分と、無機材料である(B)成分(この場合は特に(b2)成分)との密着性を向上させることができる。カップリング剤の具体例については後述する。
 (b1)成分である無水炭酸マグネシウムの含有量は、(b1)成分及び(b2)成分の合計100体積%に対して、35体積%以上65体積%以下の範囲内である。なお、(b1)成分の体積は、(b1)成分を構成する各粒子自身の体積の合計体積である。同様に(b2)成分の体積は、(b2)成分を構成する各粒子自身の体積の合計体積である。
 (b1)成分である無水炭酸マグネシウムの含有量が35体積%未満であると、相対的に(b2)成分である酸化アルミニウムの含有量が多くなる。(b2)成分は硬度が大きいので、(b2)成分の含有量が多くなると、樹脂組成物のドリル加工性が低下しやすくなる。
 (b1)成分である無水炭酸マグネシウムの含有量が65体積%を超えると、相対的に(b2)成分である酸化アルミニウムの含有量が少なくなる。(b1)成分の形状(粒子の形状)が丸みを帯びていない形状(例えば多面体状)であれば、(b1)成分の含有量が多くなると、たとえ(b2)成分の形状(粒子の形状)が丸みを帯びた形状であったとしても、樹脂組成物の成形性が低下しやすくなる。
 (B)成分である無機フィラーの含有量は、樹脂組成物(溶剤を除く)100体積%に対して、60体積%以上75体積%以下の範囲内である。なお、(B)成分の体積は、(B)成分を構成する各粒子自身の体積の合計体積を意味する。
 (B)成分である無機フィラーは、(A)成分である樹脂に比べて高い熱伝導性及び耐熱性を有するが、(B)成分の含有量が60体積%未満であると、熱伝導性及び耐熱性の低い(A)成分の含有量が相対的に多くなる。したがって、樹脂組成物の熱伝導性及び耐熱性が低下するおそれがある。
 常温又は加熱時において(A)成分である樹脂は、(B)成分である無機フィラーに比べて高い流動性を有するが、(B)成分の含有量が75体積%を超えると、流動性の高い(A)成分の含有量が相対的に少なくなる。したがって、樹脂組成物の成形性が低下するおそれがある。
 好ましくは、(b1)成分である無水炭酸マグネシウムの平均粒子径は、(b2)成分である酸化アルミニウムの平均粒子径よりも大きい。このように、(b1)成分及び(b2)成分の平均粒子径が異なっていることで、同じ場合に比べて、(b1)成分及び(b2)成分を密に充填することができる。そうすると、(b1)成分及び(b2)成分を構成する粒子同士が近接して熱伝導パスが形成されやすくなるので、樹脂組成物の熱伝導性を向上させることができる。特に好ましくは、(b1)成分の平均粒子径が8μm以上20μm以下の範囲内であり、かつ、(b2)成分の平均粒子径が1μm以下である。この場合、樹脂組成物の熱伝導性を更に向上させることができる。
 好ましくは、(B)成分である無機フィラーは、(b3)モリブデン化合物が担持された無機物を更に含む。担体である無機物は、無機物粒子の集合体である。各無機物粒子の表面にモリブデン化合物が担持されている。言い換えると、各無機物粒子の表面の全部又は一部にモリブデン化合物が付着している。より詳しくは、各無機物粒子の表面の全部にモリブデン化合物が付着している一例として、各無機物粒子の表面全体がモリブデン化合物の層で被覆されていることが挙げられる。また、各無機物粒子の表面の一部にモリブデン化合物が付着している一例として、各無機物粒子の表面にモリブデン化合物が点在していることが挙げられる。
 担体である無機物は、特に限定されない。無機物には、炭酸塩、金属酸化物、ケイ酸塩及び金属水酸化物が含まれる。炭酸塩の具体例として、炭酸カルシウムが挙げられる。金属酸化物の具体例として、酸化亜鉛が挙げられる。ケイ酸塩の具体例として、タルクが挙げられる。金属水酸化物の具体例として、水酸化マグネシウムが挙げられる。
 モリブデン化合物は、特に限定されない。モリブデン化合物の具体例として、モリブデン酸亜鉛、モリブデン酸カルシウム、モリブデン酸マグネシウム、三酸化モリブデン、モリブデン酸アンモニウム、モリブデン酸バリウム、モリブデン酸ナトリウム、モリブデン酸カリウム、リンモリブデン酸、リンモリブデン酸アンモニウム、リンモリブデン酸ナトリウム、ケイモリブデン酸、ホウ化モリブデン、ニケイ化モリブデン、窒化モリブデン及び炭化モリブデンが挙げられる。これらの中では、化学的安定性、耐湿性及び絶縁性の観点から、モリブデン酸亜鉛、モリブデン酸カルシウム及びモリブデン酸マグネシウムが好ましい。
 (B)成分である無機フィラーが(b3)成分を更に含む場合、無機物にモリブデン化合物が担持されているので、樹脂組成物のドリル加工性を更に向上させることができる。特に、担体である無機物の中ではタルクが最も軟らかいので、(b3)成分が、モリブデン化合物が担持されたタルクであれば、樹脂組成物のドリル加工性を更に向上させることができる。
 (B)成分である無機フィラーが(b3)成分を更に含む場合、好ましくは(b3)成分の含有量は、(b1)成分、(b2)成分及び(b3)成分の合計100体積%に対して、10体積%以下である。(b1)成分及び(b2)成分に比べて(b3)成分の耐熱性が低い場合があり得る。そのため、(b3)成分の含有量が10体積%以下であることで、樹脂組成物の耐熱性の低下を抑制することができる。なお、(b3)成分の体積は、(b3)成分を構成する各粒子自身の体積の合計体積である。
 2.1.3 硬化剤
 (A)成分である樹脂がエポキシ樹脂及びフェノキシ樹脂のうちの少なくともいずれかを含む場合、樹脂組成物は硬化剤を更に含有することが好ましい。硬化剤は、特に限定されないが、例えば、ジシアンジアミド、フェノール樹脂、リン含有フェノール樹脂、酸無水物及びシアン酸エステルが挙げられる。これらの中では、樹脂フィルム1の屈曲性の観点から、ジシアンジアミドが好ましい。
 フェノール樹脂は、1分子中に2個以上のヒドロキシ基を含有する樹脂であれば、特に限定されない。
 リン含有フェノール樹脂は、1分子中に2個以上のヒドロキシ基及び1個以上のリン原子を含有する樹脂であれば、特に限定されない。樹脂組成物が硬化剤としてリン含有フェノール樹脂を更に含有することで、樹脂組成物の難燃性を向上させることができる。
 フェノール樹脂及びリン含有フェノール樹脂の合計含有量は、屈曲性の観点から、全有機成分100質量部に対して、好ましくは40質量部以下であり、より好ましくは30質量部以下である。
 2.1.4 触媒
 樹脂組成物が硬化剤を含有する場合、触媒を更に含有することが好ましい。触媒は、(A)成分と硬化剤との反応を促進し得る。触媒は、特に限定されないが、例えば、有機酸の金属塩(金属石鹸など)、第三級アミン及びイミダゾール類が挙げられる。
 有機酸の金属塩には、オクタン酸、ステアリン酸、アセチルアセトネート、ナフテン酸、サリチル酸及びオクチル酸等の有機酸の、Zn,Cu,Fe等の金属塩が含まれる。有機酸の金属塩の一例として、オクチル酸亜鉛(ビス(2-エチルヘキサン酸)亜鉛)が挙げられる。
 第三級アミンには、トリエチルアミン及びトリエタノールアミンが含まれる。
 イミダゾール類には、2-エチル-4-メチルイミダゾール及び4-メチルイミダゾールが含まれる。
 上記の中では、より高い耐熱性を樹脂組成物に付与し得るとの観点から、有機酸の金属塩(特にオクチル酸亜鉛)が好ましい。
 2.1.5 難燃剤
 難燃剤は、特に限定されない。有機系難燃剤でも無機系難燃剤でもよい。
 有機系難燃剤の具体例として、ハロゲン化合物及びリン化合物が挙げられる。リン化合物には、リン酸エステル系難燃剤、ホスファゼン系難燃剤、ビスジフェニルホスフィンオキサイド系難燃剤及びホスフィン酸塩系難燃剤が含まれる。リン酸エステル系難燃剤には、ジキシレニルホスフェートの縮合リン酸エステルが含まれる。ホスファゼン系難燃剤には、フェノキシホスファゼンが含まれる。ビスジフェニルホスフィンオキサイド系難燃剤には、キシリレンビスジフェニルホスフィンオキサイドが含まれる。ホスフィン酸塩系難燃剤には、ジアルキルホスフィン酸アルミニウム塩のホスフィン酸金属塩が含まれる。
 無機系難燃剤の具体例として、金属水酸化物が挙げられる。
 樹脂組成物が難燃剤を更に含有することで、樹脂組成物の難燃性を向上させることができる。
 2.1.6 カップリング剤
 カップリング剤は、1分子内に、無機材料と化学結合する反応基と、有機材料と化学結合する反応基と、を有するものであれば、特に限定されない。無機材料と化学結合する反応基の具体例として、エトキシ基及びメトキシ基が挙げられる。有機材料と化学結合する反応基の具体例として、エポキシ基、アミノ基、イソシアネート基、ヒドロキシ基、フェノール性ヒドロキシ基及び酸無水物基が挙げられる。
 カップリング剤には、シランカップリング剤が含まれる。シランカップリング剤は、例えば、エポキシシラン、アミノシラン、イソシアネートシラン及び酸無水物シランを含む。エポキシシランの具体例として、3-グリシドキシプロピルトリメトキシシラン及び3-グリシドキシプロピルトリエトキシシランが挙げられる。アミノシランの具体例として、3-アミノプロピルトリエトキシシランが挙げられる。イソシアネートシランの具体例として、3-イソシアネートプロピルトリエトキシシランが挙げられる。
 樹脂組成物がカップリング剤を更に含有することで、有機材料と無機材料との密着性を向上させることができる。
 2.1.7 分散剤
 分散剤は、界面活性剤の一種であり、特に限定されない。樹脂組成物が分散剤を更に含有することで、(B)成分を均一な分散状態にすることができる。
 2.1.8 樹脂組成物の調製方法
 本実施形態に係る樹脂組成物は、(A)樹脂及び(B)無機フィラーを配合し、必要に応じて硬化剤、難燃剤、触媒、カップリング剤及び分散剤のうちの少なくともいずれかを更に配合することによって調製することができる。(A)成分が常温で固形である場合には溶媒を更に配合することが好ましい。溶媒は、少なくとも(A)成分を溶解できるものであれば特に限定されないが、例えば、メチルエチルケトンが挙げられる。(A)成分が常温で液状である場合には溶媒を更に配合しなくてもよい。
 (A)成分である樹脂と(B)成分である無機フィラーとを配合する前に、カップリング剤で(B)成分を表面処理してもよい。表面処理は、湿式処理法でも乾式処理法でもよい。
 (A)成分と(B)成分とを配合する際に、カップリング剤を配合してもよい。これはインテグラルブレンド法と呼ばれている。インテグラルブレンド法を使用して樹脂組成物を調製し、この樹脂組成物を用いて樹脂付き金属箔2、金属張積層板4及びプリント配線板5を製造すると、次のような利点もある。すなわち、樹脂付き金属箔2における樹脂層20と金属箔21との密着性、金属張積層板4における絶縁層40と金属箔41との密着性、及び、プリント配線板5における絶縁層50と導体層51との密着性も向上させることができる。
 上記のように調製して得られた樹脂組成物は、熱伝導性、ドリル加工性、耐熱性及び成形性を兼備する。
 2.2 樹脂フィルム
 本実施形態に係る樹脂フィルム1は、図1に示すように、樹脂組成物又はその半硬化物を含むフィルム10を備える。
 ここで、樹脂組成物を含むフィルム10とは、樹脂組成物に含有されている(A)成分が連鎖重合(例えばラジカル重合)するようなフィルムを意味する。すなわち、この場合の樹脂フィルム1は、もともとB-ステージの状態にはなく、熱又は光により、C-ステージに至って硬化物となる。
 一方、樹脂組成物の半硬化物を含むフィルム10とは、樹脂組成物に含有されている(A)成分が逐次重合(例えば重付加)するようなフィルムを意味する。すなわち、この場合の樹脂フィルム1は、もともとB-ステージの状態にあり、熱により、C-ステージに至って硬化物となる。
 樹脂フィルム1は、例えば、支持フィルム(不図示)に液状の樹脂組成物を塗布した後、乾燥させて樹脂組成物中の溶媒を除去したり、又は、加熱して樹脂組成物を半硬化物にしたりすることによって製造することができる。樹脂フィルム1は、支持フィルムから剥離して使用される。支持フィルムの具体例として、ポリエチレンテレフタレート(PET)フィルムが挙げられる。
 樹脂フィルム1の硬化物は、例えば、金属張積層板4の絶縁層40、及び、プリント配線板5の絶縁層50を形成し得る。
 樹脂フィルム1の厚さは特に限定されないが、例えば50μm以上200μm以下の範囲内である。
 樹脂フィルム1は、本実施形態に係る樹脂組成物を含んでいるので、熱伝導性、ドリル加工性、耐熱性及び成形性を兼備する。
 2.3 樹脂付き金属箔
 本実施形態に係る樹脂付き金属箔2は、図2に示すように、樹脂層20と、金属箔21と、を備える。樹脂層20は、樹脂組成物又はその半硬化物を含む。金属箔21は、樹脂層20に接着されている。
 ここで、樹脂層20が樹脂組成物を含む場合とは、(A)成分が連鎖重合(例えばラジカル重合)する場合を意味する。すなわち、この場合の樹脂層20は、もともとB-ステージの状態にはなく、熱又は光により、C-ステージに至って硬化物となる。
 一方、樹脂層20が樹脂組成物の半硬化物を含む場合とは、(A)成分が逐次重合(例えば重付加)する場合を意味する。すなわち、この場合の樹脂層20は、もともとB-ステージの状態にあり、熱により、C-ステージに至って硬化物となる。
 樹脂付き金属箔2は、例えば、金属箔21に液状の樹脂組成物を塗布した後、乾燥させて樹脂組成物中の溶媒を除去したり、又は、加熱して樹脂組成物を半硬化物にしたりすることによって製造することができる。
 樹脂付き金属箔2の樹脂層20の硬化物は、例えば、金属張積層板4の絶縁層40、及び、プリント配線板5の絶縁層50を形成し得る。
 樹脂付き金属箔2は、本実施形態に係る樹脂組成物を含んでいるので、熱伝導性、ドリル加工性、耐熱性及び成形性を兼備する。
 2.4 プリプレグ
 本実施形態に係るプリプレグ3は、図3に示すように、樹脂層30と、基材31と、を備える。樹脂層30は、樹脂組成物又はその半硬化物を含む。基材31は、樹脂層30に埋設されている。基材31の少なくとも一部が樹脂層30から露出していてもよい。
 ここで、樹脂層30が樹脂組成物を含む場合とは、(A)成分が連鎖重合(例えばラジカル重合)する場合を意味する。すなわち、この場合のプリプレグ3は、もともとB-ステージの状態にはなく、熱又は光により、C-ステージに至って硬化物となる。
 一方、樹脂層30が樹脂組成物の半硬化物を含む場合とは、(A)成分が逐次重合(例えば重付加)する場合を意味する。すなわち、この場合のプリプレグ3は、もともとB-ステージの状態にあり、熱により、C-ステージに至って硬化物となる。
 プリプレグ3は、例えば、基材31に液状の樹脂組成物を含浸させた後、乾燥させて樹脂組成物中の溶媒を除去したり、又は、加熱して樹脂組成物を半硬化物にしたりすることによって製造することができる。基材31の具体例として、ガラスクロスが挙げられる。
 プリプレグ3の硬化物は、例えば、金属張積層板4の絶縁層40、及び、プリント配線板5の絶縁層50を形成し得る。
 プリプレグ3は、本実施形態に係る樹脂組成物を含んでいるので、熱伝導性、ドリル加工性、耐熱性及び成形性を兼備する。
 2.5 金属張積層板
 本実施形態に係る金属張積層板4は、図4に示すように、絶縁層40と、金属箔41と、を備える。絶縁層40は、樹脂組成物の硬化物を含む。金属箔41は、絶縁層40に接着されている。
 金属箔41の具体例として銅箔が挙げられる。金属箔41の厚さは特に限定されないが、好ましくは12μm以上420μm以下の範囲内であり、より好ましくは18μm以上210μm以下の範囲内である。金属箔41の十点平均粗さRzjisも特に限定されないが、好ましくは3μm以上であり、より好ましくは5μm以上である。金属箔41の十点平均粗さRzjisが3μm以上であれば、絶縁層40と金属箔41との密着性を更に向上させることができる。
 金属張積層板4は、例えば、1枚のプリプレグ3又は2枚以上のプリプレグ3からなる積層体の片面又は両面に金属箔41を重ねて加熱加圧することによって製造することができる。好ましくは、積層体に金属箔41を重ねる前に、金属箔41の表面(少なくともプリプレグ3に重なる面)をカップリング剤で処理する。このように金属箔41がカップリング剤で表面処理されていると、カップリング剤が、プリプレグ3中の有機材料と金属箔41とを結合することで、絶縁層40と金属箔41との密着性を更に向上させることができる。カップリング剤は、上述のものが使用可能である。加熱加圧の条件は特に限定されない。図4は、絶縁層40中に2枚の基材31を有する金属張積層板4を示している。
 金属張積層板4は、本実施形態に係る樹脂組成物を含んでいるので、熱伝導性、ドリル加工性及び耐熱性を兼備する。
 2.6 プリント配線板
 本実施形態に係るプリント配線板5は、図5に示すように、絶縁層50と、導体層51と、を備える。絶縁層50は、樹脂組成物の硬化物を含む。導体層51は、絶縁層50に接着されている。導体層51とは、信号層、電源層及びグラウンド層などの導電性がある層をいう。なお、プリント配線板5は、3層以上の導体層51を備える多層プリント配線板を含む概念である。特に図5は、4層の導体層51を備える多層プリント配線板を示している。
 プリント配線板5は、例えば、上述の金属張積層板4を材料としてサブトラクティブ法を使用することにより製造することができる。ビルドアップ法を使用してプリント配線板5を多層化してもよい。
 プリント配線板5は、本実施形態に係る樹脂組成物を含んでいるので、熱伝導性、ドリル加工性及び耐熱性を兼備する。
 以下、本開示を実施例によって具体的に説明するが、本開示は実施例に限定されない。
 [原材料]
 各実施例及び比較例の樹脂組成物の原材料として以下のものを用いた。
 (A)樹脂
 ・DIC株式会社製、ビスフェノールA型液状エポキシ樹脂、品名「850-S」
 ・DIC株式会社製、ナフタレン型エポキシ樹脂、品名「HP-4710」
 ・DIC株式会社製、ナフタレン型液状エポキシ樹脂、品名「HP-4032D」
 ・株式会社プリンテック製、3官能エポキシ樹脂、品名「VG3101L」
 ・新日鉄住金化学株式会社製、フェノキシ樹脂、品名「YP-50」
 (B)無機フィラー
 (b1)無水炭酸マグネシウム
 ・神島化学工業株式会社製、合成マグネサイト、品名「MSL」、平均粒子径8μm、多面体状
 (b2)酸化アルミニウム
 ・株式会社アドマテックス製、高純度合成球状「アルミナ」、品名「AO-502」、平均粒子径0.7μm、球状
 ・住友化学株式会社製、アルミナ、品名「AES-11C」、平均粒子径0.39μm、丸みを帯びた形状
 ・Huber社製、モリブデン酸カルシウム亜鉛化合物、品名「Kemgard 911A」、平均粒子径2.7μm
 (その他の無機フィラー)
 ・神島化学工業株式会社製、炭酸マグネシウム(水和物)、品名「GP-30」、平均粒子径6μm
 (硬化剤)
 ・ジシアンジアミド、別名「DICY」
 ・ダウケミカルカンパニー製、リン含有フェノール樹脂、品名「XZ-92741」
 ・明和化成株式会社製、フェノール樹脂、品名「MEH-7600-4H」
 (難燃剤)
 ・大八化学工業株式会社製、リン酸エステル、品名「PX-200」
 (触媒)
 ・DIC株式会社製、オクチル酸亜鉛(ビス(2-エチルヘキサン酸)亜鉛)、品名「Zn-OCTOATE 20%T」
 (カップリング剤)
 ・モメンティブ・パフォーマンス・マテリアルズ製、3-グリシドキシプロピルトリメトキシシラン、品名「A-187」
 ・モメンティブ・パフォーマンス・マテリアルズ製、3-グリシドキシプロピルトリエトキシシラン、品名「A-1871」
 (分散剤)
 ・ビックケミー・ジャパン株式会社製、湿潤分散剤、品名「BYK-W903」
 [樹脂組成物]
 上記の原材料を表1及び表2に示す組成で配合し、この配合物を、固形分が80~95質量%となるように、溶媒であるメチルエチルケトン及びジメチルホルムアミドに溶解又は分散させ、プラネタリーミキサーで攪拌することによって、各実施例及び比較例の樹脂組成物を含むワニスを調製した。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 [樹脂フィルム]
 支持フィルムであるPETフィルムに上記のワニスを塗布した後、約150℃で4~5分加熱して樹脂組成物を半硬化物にすることによって樹脂フィルムを製造した。
 [プリプレグ]
 基材として、ガラスクロス(南亜製「#7628」)を用い、このガラスクロスに上記のワニスを室温で含浸させ、その後、非接触タイプの加熱ユニットにより、約150℃で4~5分加熱することにより、ワニス中の溶媒を乾燥除去し、樹脂組成物を半硬物にすることによってプリプレグを製造した。プリプレグの樹脂含有量は、50質量%となるように調整した。
 [銅張積層板]
 4枚の上記のプリプレグを2枚の銅箔(厚さ35μm)の粗化面の間に挟んで195℃、2.94MPa(30kgf/cm)で90分間加熱加圧成形することで、絶縁層全体の厚さが800μmの銅張積層板(CCL)を製造した。
 [評価試験]
 (屈曲性)
 上記の樹脂フィルムを直径10mm及び直径100mmのSUS棒にそれぞれ巻き付けたときのクラックの発生状況を目視により確認した。樹脂フィルムを巻き付けるときの屈曲角度は180°とした。以下の基準で評価した。
 A:直径10mm及び直径100mm共にクラックなし
 B:直径10mmではクラックあり、直径100mmではクラックなし
 C:直径10mm及び直径100mm共にクラックあり
 (成形性)
 銅張積層板(パナソニック株式会社製、品番「R-1566」)の両面の銅箔に対して、それぞれ残銅率が20%、50%、80%となるように格子状パターンの導体配線を形成することによって、プリント配線板を得た。このプリント配線板の両面の導体配線上の各々に、上記の樹脂フィルムを1枚積層し、200℃、2.94MPa(30kgf/cm)の圧力下で60分間加熱加圧することによって、積層体を得た。この積層体中のボイドの有無を目視により確認した。各残銅率について、以下の基準で評価した。
 A:ボイドなし
 B:ボイドあり
 (熱伝導性)
 上記の銅箔張積層板の熱拡散率(α)をレーザーフラッシュ法によりを測定した。また銅箔張積層板の比熱(Cp)をDSC(示差走査熱量測定)法により測定した。さらに銅箔張積層板の密度(ρ)を水中置換法により測定した。これらの測定値を用いて下記式により熱伝導率(λ)を算出した。
 λ(W/m・K)=α(m/s)×Cp(J/kg・K)×ρ(kg/m
 (ドリル加工性)
 上記の銅張積層板を2枚重ね、これをエントリーボードとバックアップボードとの間に挟んだ後、ドリル加工機に取り付けられたドリルビットによって穴あけを行った。ドリル加工の条件は、以下のとおりである。
 エントリーボード:アルミニウム板(厚さ0.15mm)
 バックアップボード:ベークライト板(厚さ1.6mm)
 ドリルビット:ユニオンツール株式会社製「NHU-L020」(刃径0.3mm、刃長5.5mm)
 回転数:160000rpm
 送り速度:3.2m/min
 チップロード:20μm/rev
 ヒット数:3000
 そして、以下の式により、ドリル摩耗率(W)を算出した。
 W=(S1-S2)×100/S1
 S1:ドリル加工前の刃部の面積
 S2:ドリル加工後の刃部の面積
 なお、刃部は、切削に直接あずかる部分である。刃部の面積は、ドリルビットを先端から撮影して得られた画像における刃部の面積である。図6Aは、ドリル加工前のドリルビットの先端の写真である。S1は、図6A中、実線で囲まれた部分の面積である。図6Bは、ドリル加工後のドリルビットの先端の写真である。S2は、図6B中、実線で囲まれた部分の面積である。
 (耐熱性)
 上記の銅張積層板を5cm角の大きさに切り出して試料とした。この試料を250℃及び270℃のオーブンにそれぞれ1時間ずつ入れて、膨れの有無を目視により確認した。膨れとは、試料における絶縁層同士の間又は絶縁層と銅箔との間に生じる部分的に隆起した剥がれを意味し、層間剥離の一形態である。以下の基準で評価した。
 A:250℃及び270℃で膨れなし
 B:250℃で膨れなし、かつ、270℃で膨れあり
 C:250℃及び270℃で膨れあり
 以上の試験結果を表3及び表4に示す。
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
 1 樹脂フィルム
 10 フィルム
 2 樹脂付き金属箔
 20 樹脂層
 21 金属箔
 3 プリプレグ
 30 樹脂層
 31 基材
 4 金属張積層板
 40 絶縁層
 41 金属箔
 5 プリント配線板
 50 絶縁層
 51 導体層

Claims (12)

  1.  (A)樹脂と、(B)無機フィラーと、を含有する樹脂組成物であって、
     前記(B)成分は、(b1)無水炭酸マグネシウム及び(b2)酸化アルミニウムを含み、
     前記(b1)成分の含有量は、前記(b1)成分及び前記(b2)成分の合計100体積%に対して、35体積%以上65体積%以下の範囲内であり、
     前記(B)成分の含有量は、前記樹脂組成物100体積%に対して、60体積%以上75体積%以下の範囲内である、
     樹脂組成物。
  2.  前記(B)成分は、(b3)モリブデン化合物が担持された無機物を更に含む、
     請求項1に記載の樹脂組成物。
  3.  前記(b3)成分の含有量は、前記(b1)成分、前記(b2)成分及び前記(b3)成分の合計100体積%に対して、10体積%以下である、
     請求項2に記載の樹脂組成物。
  4.  前記(b1)成分の平均粒子径は、前記(b2)成分の平均粒子径よりも大きい、
     請求項1~3のいずれか1項に記載の樹脂組成物。
  5.  前記(b1)成分の平均粒子径は、8μm以上20μm以下の範囲内である、
     請求項1~4のいずれか1項に記載の樹脂組成物。
  6.  前記(b2)成分の平均粒子径は、1μm以下である、
     請求項1~5のいずれか1項に記載の樹脂組成物。
  7.  前記(b2)成分の形状は、丸みを帯びた形状である、
     請求項1~6のいずれか1項に記載の樹脂組成物。
  8.  請求項1~7のいずれか1項に記載の樹脂組成物又はその半硬化物を含むフィルムを備える、
     樹脂フィルム。
  9.  請求項1~7のいずれか1項に記載の樹脂組成物又はその半硬化物を含む樹脂層と、前記樹脂層に接着された金属箔と、を備える、
     樹脂付き金属箔。
  10.  請求項1~7のいずれか1項に記載の樹脂組成物又はその半硬化物を含む樹脂層と、前記樹脂層に埋設された基材と、を備える、
     プリプレグ。
  11.  請求項1~7のいずれか1項に記載の樹脂組成物の硬化物を含む絶縁層と、前記絶縁層に接着された金属箔と、を備える、
     金属張積層板。
  12.  請求項1~7のいずれか1項に記載の樹脂組成物の硬化物を含む絶縁層と、前記絶縁層に接着された導体層と、を備える、
     プリント配線板。
PCT/JP2019/016958 2018-04-27 2019-04-22 樹脂組成物、樹脂フィルム、樹脂付き金属箔、プリプレグ、金属張積層板及びプリント配線板 WO2019208476A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
DE112019002192.3T DE112019002192T5 (de) 2018-04-27 2019-04-22 Harzzusammensetzung, harzfilm, metallfolie mit harz, prepreg, metallkaschiertes laminat und gedruckte leiterplatte
US17/050,624 US11617261B2 (en) 2018-04-27 2019-04-22 Resin composition, resin film, metal foil with resin, prepreg, metal-clad laminate, and printed wiring board
ATA9125/2019A AT522851B1 (de) 2018-04-27 2019-04-22 Harzzusammensetzung, Harzfilm, Metallfolie mit Harz, Prepreg, Metallkaschiertes Laminat und gedruckte Leiterplatte
CN201980027090.4A CN112004888A (zh) 2018-04-27 2019-04-22 树脂组合物、树脂膜、具有树脂的金属箔、预浸料、覆金属层压体和印刷线路板
JP2020516332A JP7209267B2 (ja) 2018-04-27 2019-04-22 樹脂組成物、樹脂フィルム、樹脂付き金属箔、プリプレグ、金属張積層板及びプリント配線板

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018087727 2018-04-27
JP2018-087727 2018-04-27

Publications (1)

Publication Number Publication Date
WO2019208476A1 true WO2019208476A1 (ja) 2019-10-31

Family

ID=68293594

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/016958 WO2019208476A1 (ja) 2018-04-27 2019-04-22 樹脂組成物、樹脂フィルム、樹脂付き金属箔、プリプレグ、金属張積層板及びプリント配線板

Country Status (6)

Country Link
US (1) US11617261B2 (ja)
JP (1) JP7209267B2 (ja)
CN (1) CN112004888A (ja)
AT (1) AT522851B1 (ja)
DE (1) DE112019002192T5 (ja)
WO (1) WO2019208476A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117222686A (zh) * 2021-03-31 2023-12-12 住友电木株式会社 密封用树脂组合物和使用其的电子装置

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021079900A1 (ja) * 2019-10-25 2021-04-29 パナソニックIpマネジメント株式会社 樹脂組成物、樹脂フィルム、樹脂付き金属箔、プリプレグ、金属張積層板及びプリント配線板

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010016480A1 (ja) * 2008-08-07 2010-02-11 積水化学工業株式会社 絶縁シート及び積層構造体
JP2011016962A (ja) * 2009-07-10 2011-01-27 Sekisui Chem Co Ltd 熱伝導性樹脂組成物及び電子回路用基板
WO2011155482A1 (ja) * 2010-06-08 2011-12-15 積水化学工業株式会社 光半導体装置用ダイボンド材及びそれを用いた光半導体装置
JP2015199625A (ja) * 2014-04-08 2015-11-12 Dic株式会社 コア−シェル型構造体、その製造方法および熱伝導性樹脂組成物
JP2015207753A (ja) * 2014-04-08 2015-11-19 パナソニックIpマネジメント株式会社 プリント配線板用樹脂組成物、プリプレグ、金属張積層板、プリント配線板

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3590297B2 (ja) * 1999-04-30 2004-11-17 タキロン株式会社 難燃性塩化ビニル系樹脂成形体
JP2006274361A (ja) * 2005-03-29 2006-10-12 Mitsui Mining & Smelting Co Ltd 電解銅箔及びその電解銅箔の製造方法
JP2011021131A (ja) * 2009-07-17 2011-02-03 Sumitomo Chemical Co Ltd 液晶ポリエステルプリプレグの製造方法および液晶ポリエステルプリプレグ
WO2011118584A1 (ja) * 2010-03-26 2011-09-29 パナソニック電工株式会社 プリプレグ用エポキシ樹脂組成物、プリプレグ、及び多層プリント配線板
JP5547032B2 (ja) 2010-10-21 2014-07-09 パナソニック株式会社 熱伝導性樹脂組成物、樹脂シート、プリプレグ、金属積層板およびプリント配線板
JP5830718B2 (ja) * 2011-05-02 2015-12-09 パナソニックIpマネジメント株式会社 熱硬化性樹脂組成物、プリプレグ、積層板、金属箔張積層板、及び回路基板
CN106134296B (zh) * 2014-04-08 2020-01-17 松下知识产权经营株式会社 印刷电路板用树脂组合物、预浸料、覆金属层压板、印刷电路板

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010016480A1 (ja) * 2008-08-07 2010-02-11 積水化学工業株式会社 絶縁シート及び積層構造体
JP2011016962A (ja) * 2009-07-10 2011-01-27 Sekisui Chem Co Ltd 熱伝導性樹脂組成物及び電子回路用基板
WO2011155482A1 (ja) * 2010-06-08 2011-12-15 積水化学工業株式会社 光半導体装置用ダイボンド材及びそれを用いた光半導体装置
JP2015199625A (ja) * 2014-04-08 2015-11-12 Dic株式会社 コア−シェル型構造体、その製造方法および熱伝導性樹脂組成物
JP2015207753A (ja) * 2014-04-08 2015-11-19 パナソニックIpマネジメント株式会社 プリント配線板用樹脂組成物、プリプレグ、金属張積層板、プリント配線板

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117222686A (zh) * 2021-03-31 2023-12-12 住友电木株式会社 密封用树脂组合物和使用其的电子装置
CN117222686B (zh) * 2021-03-31 2024-04-12 住友电木株式会社 密封用树脂组合物和使用其的电子装置

Also Published As

Publication number Publication date
JPWO2019208476A1 (ja) 2021-05-20
AT522851B1 (de) 2022-08-15
JP7209267B2 (ja) 2023-01-20
DE112019002192T5 (de) 2021-02-11
CN112004888A (zh) 2020-11-27
AT522851A5 (de) 2022-08-15
US20210235580A1 (en) 2021-07-29
US11617261B2 (en) 2023-03-28
AT522851A2 (de) 2021-02-15

Similar Documents

Publication Publication Date Title
JP6414799B2 (ja) 樹脂組成物、プリプレグ、積層板、金属箔張積層板及びプリント配線板
WO2021079900A1 (ja) 樹脂組成物、樹脂フィルム、樹脂付き金属箔、プリプレグ、金属張積層板及びプリント配線板
JP2013001807A (ja) 電子回路基板材料用樹脂組成物、プリプレグ及び積層板
KR20130141449A (ko) 수지 조성물, 프리프레그, 및 적층판
KR20150037685A (ko) 반도체 패키지용 열경화성 수지 조성물과 이를 이용한 프리프레그 및 금속박 적층판
WO2007063947A1 (ja) フェノール樹脂組成物、その硬化物、銅張積層板用樹脂組成物、銅張積層板、及び新規フェノール樹脂
KR20140007819A (ko) 수지 조성물, 프리프레그, 및 적층판
WO2014040262A1 (zh) 环氧树脂组合物以及使用其制作的半固化片与覆铜箔层压板
TW202142621A (zh) 樹脂組成物、預浸體、樹脂片、疊層板、覆金屬箔疊層板、及印刷配線板
WO2019208476A1 (ja) 樹脂組成物、樹脂フィルム、樹脂付き金属箔、プリプレグ、金属張積層板及びプリント配線板
JP2003253018A (ja) プリプレグ及びそれを用いたプリント配線板
JP2003268136A (ja) プリプレグおよび積層板
JP7426629B2 (ja) 樹脂組成物、プリプレグ、樹脂付きフィルム、樹脂付き金属箔、金属張積層板及びプリント配線板
TWI309606B (en) Resin composition, prepreg and laminate using the composition
JP2015099907A (ja) プリント回路基板用絶縁樹脂組成物およびこれを用いた製品
JP2003213019A (ja) プリプレグ及びそれを用いたプリント配線板
JP2007182544A (ja) ハロゲンフリー樹脂組成物及びそれを用いたプリプレグ並びにプリント配線板
TWI617614B (zh) Epoxy resin composition and prepreg and copper clad laminate prepared using same
JP2019199562A (ja) プリプレグ、金属張積層板及びプリント配線板
JP6817529B2 (ja) 樹脂組成物、プリプレグ、金属箔張積層板、樹脂シート、樹脂複合シート及びプリント配線板
TWI838452B (zh) 環氧樹脂組成物及其硬化物、預浸料、黏接片材、積層板
JP2016065250A (ja) プリプレグ、積層板及び金属張積層板
JP6664092B2 (ja) 樹脂組成物、樹脂ワニス、プリプレグ、金属張積層板及びプリント配線板
JP6136058B2 (ja) 電子回路基板材料用樹脂組成物、プリプレグ、積層板及び金属張積層板
JP2009298981A (ja) 樹脂組成物、プリプレグおよびそれを用いたプリント配線板

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19791847

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020516332

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: A 9125/2019

Country of ref document: AT

122 Ep: pct application non-entry in european phase

Ref document number: 19791847

Country of ref document: EP

Kind code of ref document: A1