WO2019208303A1 - 排出スラグのフォーミング鎮静方法およびこれに用いる精錬設備 - Google Patents
排出スラグのフォーミング鎮静方法およびこれに用いる精錬設備 Download PDFInfo
- Publication number
- WO2019208303A1 WO2019208303A1 PCT/JP2019/016140 JP2019016140W WO2019208303A1 WO 2019208303 A1 WO2019208303 A1 WO 2019208303A1 JP 2019016140 W JP2019016140 W JP 2019016140W WO 2019208303 A1 WO2019208303 A1 WO 2019208303A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- slag
- substance
- viscosity reducing
- calming
- discharged
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21C—PROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
- C21C5/00—Manufacture of carbon-steel, e.g. plain mild steel, medium carbon steel or cast steel or stainless steel
- C21C5/28—Manufacture of steel in the converter
- C21C5/30—Regulating or controlling the blowing
- C21C5/32—Blowing from above
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21C—PROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
- C21C5/00—Manufacture of carbon-steel, e.g. plain mild steel, medium carbon steel or cast steel or stainless steel
- C21C5/28—Manufacture of steel in the converter
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21C—PROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
- C21C5/00—Manufacture of carbon-steel, e.g. plain mild steel, medium carbon steel or cast steel or stainless steel
- C21C5/28—Manufacture of steel in the converter
- C21C5/42—Constructional features of converters
- C21C5/46—Details or accessories
- C21C5/4606—Lances or injectors
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21C—PROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
- C21C5/00—Manufacture of carbon-steel, e.g. plain mild steel, medium carbon steel or cast steel or stainless steel
- C21C5/28—Manufacture of steel in the converter
- C21C5/36—Processes yielding slags of special composition
- C21C2005/366—Foam slags
Definitions
- the present disclosure relates to a method for calming discharge slag forming, that is, a method for calming discharge slag forming during discharge from a refining reaction vessel such as a converter to a receiving vessel.
- the converter After desiliconization or dephosphorization of the hot metal in the converter, the converter is tilted so that a portion of the slag flows down from the furnace port to the discharge pan placed below while leaving the molten iron in the converter. After that, there is a method in which the converter is erected again after that and a secondary raw material such as quick lime (CaO is the main component) is added, followed by refining.
- a secondary raw material such as quick lime (CaO is the main component) is added, followed by refining.
- slag is formed (foamed) in the converter to increase the bulk volume of the slag, thereby making it easy to discharge and securing the amount of discharge.
- slag forming is caused by the reaction of carbon (C) in the molten iron and iron oxide (FeO) in the slag to generate carbon monoxide (CO) gas, and the CO gas is held in the slag. appear.
- the formed slag may overflow beyond the capacity of the waste pan on the receiving pan. If the slag overflows, it will cause troubles such as equipment damage and operational troubles. Therefore, the slag will wait for forming sedation in the slag pan so that the slag does not overflow. It will be.
- productivity is reduced due to the prolonged evacuation time.
- the slag forming in the converter is calmed down and the bulk volume is reduced during that time, the evacuation property is deteriorated, thereby increasing the amount of slag brought into the dephosphorization or decarburization process in the subsequent process. , Recovery, and slapping (molten liquid of molten iron or slag jumps out of the furnace opening of the converter).
- Patent Documents 1, 2, and 3 disclose a method in which a foaming sedative is introduced into the squeezing pan to soothe the foaming.
- Forming sedatives are made of pyrolytic substances (pulp koji, organic substances such as plastics, oils such as engine oil, moisture, etc.) and specific gravity adjusters (slags etc.). And the compounding ratio, sedative size, specific gravity, injection method, etc. are defined. Since these are substances that rapidly generate gas by intruding into the formed slag, it is considered that the impact of the gas generation contributes to bubble breakage, that is, sedation.
- Patent Documents 4, 5 and 6 disclose methods of calming by blowing or blowing carbonaceous material (coke or the like) as a forming soothing agent in a refining reaction vessel such as a torpedo car. Since the carbonaceous material has poor wettability with slag, it has the effect of breaking the liquid film between the bubbles and causing the bubbles to agglomerate and coalesce, contributing to calming. However, on the other hand, the carbonaceous material and iron oxide in the slag react to generate CO gas that causes foaming, so the effect may not be seen depending on conditions.
- Patent Document 7 discloses a method of adjusting the viscosity of slag within a specified range by adding a viscosity modifier (fluorite etc.) in a converter
- Patent Document 8 describes a blast furnace.
- a method is disclosed in which an alkali metal and / or alkaline earth metal compound is added when desiliconization while receiving hot metal produced from the steel. These are said to contribute to sedation by adjusting the viscosity of the slag, thereby facilitating the breakage of bubbles and the rising of bubbles.
- any of the methods disclosed in Patent Documents 4 to 8 is a method of adding a sedative into the refining reaction vessel.
- the refining reaction vessel bulk molten iron and slag coexist, and the stirring is stronger than in the receiving vessel, so the situation is significantly different from that in the receiving vessel. It cannot be applied as it is.
- stirring since stirring is strong in the refining reaction vessel, dispersion of the added sedative proceeds rapidly and the sedation rate is fast.
- the bulk molten iron and slag are stirred in contact with each other, even if the sedation is once subsided, the carbon in the molten iron and iron oxide in the slag reacted when the addition of the sedative was stopped. The situation is greatly different, such as forming again due to CO gas.
- the present disclosure suppresses slag overflow from a receiving container by quickly and stably calming the formation of discharged slag when discharging from a refining reaction container such as a converter to a receiving container.
- the purpose of this is to avoid troubles such as equipment damage and operational troubles, and to prevent a decrease in productivity and a decrease in the evacuation efficiency due to a decrease in the evacuation speed, thereby realizing an efficient evacuation.
- the inventors of the present application have intensively studied a method for quickly and stably calming the formed slag when discharging from a refining reaction vessel such as a converter to a receiving vessel.
- a refining reaction vessel such as a converter
- a receiving vessel such as a converter
- a substance having a viscosity reducing effect as a foaming sedative so as to stay in the upper surface layer portion of the slag discharged to the receiving container, it is possible to quickly calm down the foaming, Appropriate conditions were found to implement it and the present disclosure was completed.
- the gist of the present disclosure is as follows.
- a method of calming the forming of discharged slag when discharging from a refining reaction container to a receiving container A method for calming discharged slag, comprising adding a substance having a viscosity reducing effect as a foaming sedative so as to stay in the upper surface layer of the slag discharged to the receiving container.
- the height at which the viscosity-reducing substance is added is 60% or less based on the height from the upper end of the receiving vessel of the work floor provided on the side of the refining reaction vessel.
- a guide having a sliding slope is used when adding a substance having a viscosity reducing effect.
- a height of a lower end of the guide is 3 m or less from an upper end of the receiving container.
- a guide having a sliding slope is used. The height of the lower end of the guide is 60% or less based on the height from the upper end of the receiving vessel of the work floor provided on the side of the refining reaction vessel.
- a refining facility comprising a refining reaction vessel and a receiving vessel for discharging slag from the refining reaction vessel, A guide for adding a forming sedative so as to stay in the upper surface layer portion of the slag discharged to the receptacle;
- the refining facility wherein the guide has a sliding slope.
- the height of the lower end of the guide is 60% or less based on the height from the upper end of the receiving vessel of the work floor provided on the side of the refining reaction vessel.
- the present disclosure when discharging from the refining reaction vessel to the receiving vessel, forming of the discharged slag can be quickly and stably subdued, and slag overflow from the receiving vessel can be prevented. Along with that, troubles such as equipment damage and operational troubles due to overflowing slag can be avoided, and the reduction of the evacuation speed can be prevented, and the evacuation at high speed can be performed, thereby improving the productivity. In addition, since the exhaustability is improved, the amount of slag brought into the dephosphorization or decarburization process in the subsequent process is reduced, and the auxiliary raw materials added for preventing dephosphorization and slopping and the amount of slag generated can be reduced. . With the above effects, it is possible to improve productivity and reduce costs (reduction of the amount of secondary raw materials used, reduction of generated slag, suppression of heat loss, and improvement of iron yield).
- viscosity reducing substance a substance having a viscosity reducing effect
- viscosity reducing substance a substance having a viscosity reducing effect
- the formed slag is an aggregate of bubbles 1 (foam layer 2) having a high gas phase fraction.
- the liquid film between the bubbles 1 is discharged and thinned to break the foam and form soothing.
- the discharge speed of the liquid film is slow. Therefore, the forming sedation speed decreases. Therefore, it is effective to reduce the viscosity of the slag in order to improve the forming sedation speed.
- the extremely low-viscosity region 6 descends sequentially from the upper layer side of the formed slag, so that chained and rapid bubble breaking proceeds. That is, even when a small amount of a viscosity reducing substance is added, a sufficient forming sedation effect is obtained.
- stirring in the receiving vessel is weaker than in the refining reaction vessel.
- the stirring since the stirring is strong, even if the viscosity reducing substance is added so as to stay in the upper surface layer portion of the slag, the viscosity reducing substance is diluted by stirring, or enters the forming slag, Less effective.
- the stirring since the stirring is weak, it is relatively easy to make the viscosity reducing substance stay in the upper surface layer portion of the slag if the addition method of the viscosity reducing substance is appropriately adjusted.
- FIG. 2 As shown in FIG. 2, a converter 7 will be described as an example of a refining reaction vessel, and a waste pan 8 used when discharging from the converter 7 as a receiving vessel will be described as an example.
- the viscosity reducing substance 12 used as a sedative it is desirable to use an alkali metal compound, an alkaline earth metal compound, or a mixture thereof.
- the slag that is easy to form contains a large amount of acidic oxide such as SiO 2, but in the molten slag, the acidic oxide has a function of forming a network structure and increasing the viscosity.
- an alkali metal compound or an alkaline earth metal compound has an action of cutting the network structure and lowers the viscosity.
- the alkali metal compound and the alkaline earth metal compound include CaF 2 , CaCO 3 , CaO, Ca (OH) 2 , Na 2 CO 3 , K 2 CO 3, and the like.
- the viscosity reducing substance 12 used as a sedative is an alkali metal, alkaline earth metal fluoride or oxide since gas is not generated at a high temperature, so that foaming is calmed.
- CaF 2 and CaO correspond to this.
- gas is generated at a high temperature.
- CaCO 3 , Ca (OH) 2 , Na 2 CO 3 , and K 2 CO 3 correspond to this.
- the height at which the viscosity reducing substance is added is preferably 3 m or less, more preferably 2 m or less from the upper end of the waste pan.
- the normal work floor 14 exists in the side of a converter, and the height of the work floor 14 (the upper surface) is about 5 m from the upper end of a waste pan.
- the height at which the viscosity reducing substance is added may be set on the basis of the work floor 14, and the height from the top of the waste pan of the work floor 14 is 100% (the top of the waste pan) The height is preferably 40% or less.
- a guide having a sliding slope such as a nozzle or a pipe (that is, a member having a function of sliding off an object, chute) may be used. Add by natural fall through the guide. As the viscosity reducing substance slides on the sliding slope, the vertical speed of the viscosity reducing substance at the lower end of the guide (the height at which the viscosity reducing substance is added) can be reduced. From the viewpoint of reducing the vertical velocity of the viscosity reducing substance, the guide angle at the lower end of the guide (that is, the angle defining the velocity direction of the viscosity reducing substance at the lower end of the guide and the angle with respect to the horizontal direction) is 30 °. The following is preferred.
- the guide 11 of this embodiment will be described in detail with reference to FIG.
- the guide 11 of this embodiment is provided below the work floor 14, and the lower end and the upper end of the guide 11 are both located below the work floor 14. Further, the inclination of the guide 11 (the average inclination of the slope on which the viscosity reducing substance slides) is less than 45 degrees with respect to the horizontal direction, specifically, less than 30 degrees.
- the height of the lower end of the guide 11 (the height at which the viscosity reducing substance is added) is a height within 3 m from the upper end of the discharge pan 8, and is specifically set within 2 m.
- the height of the lower end of the guide 11 is 60% or less, where 100% is the height from the upper end of the waste pan of the work floor 14 (5 m in this example). Specifically, it is set to 40% or less.
- the guide is made movable or swivel, a plurality of guides are used, or the particles of the viscosity reducing substance are conveyed with a carrier gas, and the upper surface layer part You may spray on.
- the method of spraying the upper surface layer portion with the carrier gas is a method of spraying the viscosity reducing substance in a direction along the upper surface layer portion (a direction close to the horizontal direction) using a hose or the like. According to this method, it is easy to reduce the vertical speed when the viscosity reducing substance reaches the surface portion of the slag upper layer, and the viscosity reducing substance can be effectively retained in the surface layer portion of the slag upper surface. .
- the vicinity of the slag falling position is the inside of a virtual circle on the surface of the slag upper layer centering on the central part of the portion where the slag falling flow collides with the surface of the slag upper layer in the receiving container.
- the diameter of the imaginary circle varies depending on the potential energy of the slag drop, so it cannot be defined unconditionally, but the equipment from the bottom of the tilted converter (see Fig. 2) to the top of the drain pan is 5-10m In this case, the range is 1 to 2 m as a guide.
- the addition timing of the viscosity-reducing substance for example, the slag surface height at which the addition of the viscosity-reducing substance is started and the slag surface height at which the viscosity-reducing substance is added are defined in advance as a guideline. While monitoring the slag surface, when the slag surface reaches each specified height, the addition or the stop of the addition of the viscosity reducing substance may be repeated intermittently.
- the amount of the viscosity-reducing substance added was found to be 2 kg or more because a sufficient sedative effect could not be obtained if it was less than 2 kg with respect to 1 t of discharged slag.
- the optimum addition amount in the above range varies depending on the capacity of the receiving vessel, slag composition, temperature, forming conditions, etc., but the appropriate addition amount in the general operating condition range is investigated by a preliminary test. It is desirable to keep it.
- the lower limit of the particle size is not particularly defined, but if the particle size is too small, scattering to the outside of the receiving container will increase due to the rising airflow or gas generated from the slag in the receiving container. It is desirable to decide as follows.
- a particle size is defined by the mesh
- the embodiments of the present disclosure have been described on the assumption that a converter is used as a refining reaction vessel, and a waste pan used when waste is discharged from the converter as a receiving vessel.
- the scope of application of the present disclosure is not limited to these containers, and also when discharging from other refining reaction containers (for example, torpedo cars) to other receiving containers (for example, discharge pits).
- the application of the present disclosure is possible.
- a part of the sedative is added by the method of the present disclosure, and the rest of the sedative is added by the same method as before. Even if added, a corresponding effect can be obtained.
- the guide of this indication is not limited to this.
- the upper end of the guide may be positioned above the work floor, or a guide whose angle changes stepwise or continuously with a refracted pipe or the like may be used.
- examples of the present disclosure (hereinafter simply referred to as examples) and comparative examples will be described.
- the conditions of the examples are examples of conditions adopted for confirming the feasibility and effects of the present disclosure, and the present disclosure is not limited to these examples. As long as the purpose of the present disclosure is achieved without departing from the gist of the present disclosure, various conditions can be adopted.
- Non-common condition When the converter is tilted and exhausted after dephosphorization, the method of adding sedative (including addition conditions and position), sedation retention at the top surface of the slag, type of sedative, amount added, The particle size was changed, and the amount of waste, the waste time, and the final tilt angle of the converter were evaluated.
- the end of spillage is due to the time limit, when the spillage time reaches 3.0 min (the longest time for spillage) or when the molten iron begins to flow out of the furnace port, whichever comes first did.
- the final tilt angle of the converter is the tilt angle at the end of the discharge when the vertical state of the converter is 0 °.
- the remaining volume in the furnace and the volume of the molten iron become substantially equal when the tilt angle is around 83 °, and the molten iron begins to flow out of the furnace port, so the final tilt angle is 83 °. Almost the upper limit. In this case, the removal is completed when the molten iron begins to flow out of the furnace port (tilt angle 83 °).
- a condition for adding sedatives “a method of storing sedatives in units of 10 kg from the top of the draining pan 5 m from the top of the draining pan” and “a method of putting the sedative in 10 kg units from the top of the draining pan and granular from the top of the draining pan 2 m Is compared. Compared to the latter, the former is easier to infiltrate into the slag formed with a sedative. Furthermore, as a sedative addition position, “near the slag drop position” and “outside the slag drop position” are compared. Similarly, the former is easier to infiltrate into the slag formed with the sedative than the latter.
- levels 1 to 4 are comparative examples, and at least one of the sedative addition method or the sedative species is different from the method of the present disclosure.
- the reason why Level 1 is superior to Level 2 is that the “pulp slag and slag molding” used as a sedative infiltrates into the formed slag in the first place, and generates gas suddenly. It is thought that it was intended to calm down.
- levels 5 to 12 are examples, and a high foaming sedative effect was confirmed at any level compared to the comparative example.
- Level 5 is a comparative example of Level 4, but the method of adding sedatives has been changed to the method of the present disclosure, but the amount of sedative added significantly decreased while obtaining an equivalent average elimination rate.
- Level 6 changes the type of sedative (viscosity reducing substance) to level 5, but the effect is almost the same as level 5.
- Levels 7 to 9 are different from level 5 in that the amount of sedative (viscosity-reducing substance) added (sedative basic unit) is changed. The average evacuation speed was improved by setting the addition amount of the viscosity reducing substance to 2 kg or more with respect to the slag amount of 1 t.
- Levels 10 to 12 are different from level 8 in the particle size (ratio of particle size of 10 mm or less) of the sedative (viscosity reducing substance).
- the average rejection speed was improved by setting the ratio of the viscosity-reducing substance having a particle size in the range of 10 mm or less to 70% by mass or more.
- the amount of sedative added and the average elimination rate were superior to those of the comparative examples. Therefore, in the Example of this indication, it turns out that forming sedation is good compared with a comparative example. Furthermore, it turns out that forming sedation can be carried out more efficiently by setting the addition amount and particle size of the sedative to appropriate conditions.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Manufacturing & Machinery (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Carbon Steel Or Casting Steel Manufacturing (AREA)
- Refinement Of Pig-Iron, Manufacture Of Cast Iron, And Steel Manufacture Other Than In Revolving Furnaces (AREA)
- Curing Cements, Concrete, And Artificial Stone (AREA)
Abstract
Description
精錬反応容器から受滓容器への排滓に際して排出スラグのフォーミングを鎮静する方法であって、
フォーミング鎮静剤として粘度低減効果を有する物質を前記受滓容器に排出したスラグの上面表層部に滞留するように添加する
ことを特徴とする排出スラグのフォーミング鎮静方法。
(2)
粘度低減効果を有する物質として、アルカリ金属の化合物もしくはアルカリ土類金属の化合物、またはこれらの混合物を使用する
ことを特徴とする(1)に記載の排出スラグのフォーミング鎮静方法。
(3)
粘度低減効果を有する物質の添加量を排出スラグ量1tに対し、2kg以上とする
ことを特徴とする(1)または(2)に記載の排出スラグのフォーミング鎮静方法。
(4)
粘度低減効果を有する物質の粒度が10mm以下の範囲にあるもの比率を70質量%以上とする
ことを特徴とする(1)~(3)の何れか一項に記載の排出スラグのフォーミング鎮静方法。
(5)
粘度低減物質を添加する高さは、前記受滓容器の上端から3m以下の高さである
ことを特徴とする(1)~(4)の何れか一項に記載の排出スラグのフォーミング鎮静方法。
(6)
粘度低減物質を添加する高さは、前記精錬反応容器の側方に設けられた作業床の前記受滓容器の上端からの高さを基準にして60%以下の高さである
ことを特徴とする(1)~(4)の何れか一項に記載の排出スラグのフォーミング鎮静方法。
(7)
粘度低減効果を有する物質を添加するに際し、滑走斜面を有するガイドを用いる
ことを特徴とする(1)~(4)の何れか一項に記載の排出スラグのフォーミング鎮静方法。
(8)
粘度低減効果を有する物質を添加するに際し、滑走斜面を有するガイドを用い、
前記ガイドの下端の高さは、前記受滓容器の上端から3m以下の高さである
ことを特徴とする(1)~(4)の何れか一項に記載の排出スラグのフォーミング鎮静方法。
(9)
粘度低減効果を有する物質を添加するに際し、滑走斜面を有するガイドを用い、
前記ガイドの下端の高さは、前記精錬反応容器の側方に設けられた作業床の前記受滓容器の上端からの高さを基準にして60%以下の高さである
ことを特徴とする(1)~(4)の何れか一項に記載の排出スラグのフォーミング鎮静方法。
(10)
粘度低減効果を有する物質を添加するに際し、添加する粘度低減物質の80質量%以上がスラグ落下位置近傍以外に添加されるように、スラグ落下位置近傍を避けて添加する
ことを特徴とする(1)~(9)の何れか一項に記載の排出スラグのフォーミング鎮静方法。
(11)
粘度低減効果を有する物質を添加するに際し、キャリアガスで粘度低減物質を上面表層部に沿う方向に吹き付ける
ことを特徴とする(1)~(4)の何れか一項に記載の排出スラグのフォーミング鎮静方法。
(12)
精錬反応容器と、前記精錬反応容器からスラグを排出する受滓容器と、を備える精錬設備であって、
前記受滓容器に排出されたスラグの上面表層部に滞留するようにフォーミング鎮静剤を添加するためのガイドを更に備え、
前記ガイドは、滑走斜面を有する
ことを特徴とする精錬設備。
(13)
前記ガイドの下端の高さは、前記精錬反応容器の側方に設けられた作業床の前記受滓容器の上端からの高さを基準にして60%以下の高さである
ことを特徴とする(12)に記載の精錬設備。
以上の効果により、生産性向上、コスト削減(副原料使用量の削減、発生スラグの削減、熱損失の抑制、鉄分歩留の向上)が可能となる。
まず、図1を用いて、本開示において、粘度低減効果を有する物質(以降、「粘度低減物質」と称する。)を受滓容器に排出したスラグの上面表層部に滞留するように添加することにより、フォーミングが鎮静する機構を説明する。
さらに、転炉等の精錬反応容器内と排滓鍋等の受滓容器内のフォーミング状況との違いから、本開示の方法が受滓容器内のフォーミング鎮静に適している理由を説明する。
上述した機構に基づき、図2を用いて、本開示の実施の形態について説明する。図2に示すように、精錬反応容器としては転炉7を、受滓容器としては転炉7から排滓する際に使用する排滓鍋8を例として説明する。
まず、鎮静剤として使用する粘度低減物質12としては、アルカリ金属の化合物もしくはアルカリ土類金属の化合物、またはこれらの混合物を使用することが望ましい。
フォーミングしやすいスラグはSiO2等の酸性酸化物を多く含有しているが、溶融スラグにおいて酸性酸化物はネットワーク構造を形成し、粘度を増加させる作用を持つ。これに対し、アルカリ金属の化合物やアルカリ土類金属の化合物はネットワーク構造を切断する作用を持ち、粘度を低下させるためである。
アルカリ金属の化合物、アルカリ土類金属の化合物の具体例としては、CaF2、CaCO3、CaO、Ca(OH)2、Na2CO3、K2CO3等が挙げられる。
更に、鎮静剤として使用する粘度低減物質12が、アルカリ金属、アルカリ土類金属のフッ化物または酸化物であると、高温でガスを発生しないので、フォーミングを鎮静する観点から更に好ましい。上記具体例のうち、CaF2、CaOがこれに当たる。
なお、鎮静剤として使用する粘度低減物質12がアルカリ金属、アルカリ土類金属の炭酸塩または水酸化物であると、高温でガスを発生する。上記具体例のうち、CaCO3、Ca(OH)2、Na2CO3、K2CO3がこれに当たる。
そのためには、粘度低減物質を低い位置から添加することが望ましい。具体的には、粘度低減物質を添加する高さは、排滓鍋上端から3m以下が望ましく、更に望ましくは2m以下である。
尚、転炉の側方には、通常作業床14が存在し、作業床14(の上面)の高さは、排滓鍋上端から約5mである。粘度低減物質を添加する高さは、作業床14を基準に設定してもよく、作業床14の排滓鍋上端からの高さを100%として、60%以下の高さ(排滓鍋上端からの高さ)が望ましく、更に望ましくは40%以下である。
添加に用いる設備として、樋(gutter)やパイプ(pipe)等の滑走斜面を有するガイド(すなわち、物を滑り落とす機能を有する部材、chute)を用いてもよい。ガイドを通じて自然落下により添加する。粘度低減物質が滑走斜面を滑走することで、ガイドの下端(粘度低減物質を添加する高さ)における粘度低減物質の鉛直方向の速度を小さくすることができる。粘度低減物質の鉛直方向の速度を小さくする観点から、ガイドの下端におけるガイドの角度(すなわちガイドの下端における粘度低減物質の速度方向を規定する角度であって、水平方向に対する角度)は、30°以下が好ましい。
キャリアガスで上面表層部に吹き付ける方法とは、ホースなどを用いて粘度低減物質を上面表層部に沿う方向(水平方向に近い方向)に吹き付ける方法である。この方法によれば、スラグ上層表面部に粘度低減物質が達した時点での鉛直方向の速度を小さくすることが容易であり、粘度低減物質を効果的にスラグ上面表層部に滞留させることができる。
また、受滓容器内において、スラグ落下位置近傍はスラグ落下の位置エネルギーにより局所的に撹拌が強くなっている。したがって、スラグ落下位置近傍に粘度低減物質を添加した場合、そのスラグ落下位置近傍に添加された粘度低減物質がスラグ上層表面部の滞留するようにすることは困難である。
よって、スラグ落下位置近傍を避けて添加することが望ましい。但し、添加する粘度低減物質のうちの一部がスラグ落下位置近傍に添加されてしまうことを除外する趣旨ではない。つまり、スラグ落下位置近傍を避けて添加することにより、添加する粘度低減物質の80質量%以上がスラグ落下位置以外に添加されることが望ましく、更に望ましくは95質量%以上である。
ここで、スラグ落下位置近傍とは、受滓容器内のスラグ上層表面とスラグ落下流が衝突する部分の中心部を中心としたスラグ上層表面上の仮想円の内部である。その仮想円の直径は、スラグ落下の位置エネルギーによって変動するため、一概には定義できないが、傾転した転炉(図2参照)の炉口下端から排滓鍋上端までが5~10mの設備の場合、目安として1~2mの範囲である。
次に、粘度低減物質の添加量としては、排出スラグ量1tに対し、2kg未満では十分な鎮静効果が得られず、2kg以上とすることが望ましいことを見出した。
尚、上記の範囲での最適添加量については、受滓容器の容量、スラグ組成、温度、フォーミングの状況等によって変化するが、一般的な操業条件範囲における適正な添加量を事前の試験によって調査しておくことが望ましい。
さらに、粘度低減物質の粒度については、粒度が大きいと、粘度低減物質がフォーミングスラグの上面表層部に留まらずに内部に潜入しやすく、さらに、溶融に時間を要し、極低粘度領域の形成が遅れるという問題がある。そこで、検討を行った結果、10mm以下の範囲にあるものの鎮静効果が高いこと、また、必ずしもすべての粒度が上記の範囲である必要はなく、上記の範囲の粒度の比率が70質量%以上含まれていれば十分な効果が得られることを見出した。また、粒度の下限については、特に定めないが、粒度が小さすぎると、受滓容器内のスラグから発生する上昇気流やガス等により、受滓容器外への飛散が増加するため、それらを勘案して決定することが望ましい。
尚、粒度は、粒子が通過できる篩の網目で定義し、粒度が10mm以下とは、10mmの篩を通過できるものとする。
さらに、設備や操業の制約により必要な鎮静剤の全量を本開示の方法で添加できない場合は、一部の鎮静剤を本開示の方法で添加し、残りの鎮静剤を従来と同様の方法で添加しても、相応の効果が得られる。
また、上記では図2を用いて具体的なガイド11について説明したが、本開示のガイドはこれに限定されない。例えば、ガイドの上端が作業床の上方に位置していてもよいし、屈折したパイプ等で角度が段階的あるいは連続的に変化しているガイドにしてもよい。
なお、実施例の条件は、本開示の実施可能性および効果を確認するために採用した条件の一例であり、本開示はこの例に限定されるものではない。本開示の要旨を逸脱せず、本開示の目的を達成する限りにおいては、種々の条件を採用し得るものである。
試験は350t規模の上底吹き転炉において、脱燐処理後の排滓中に実施した。尚、条件のばらつきによる評価への影響をほぼ無視できる程度に条件を揃えるようにしており、脱燐処理後の炉内スラグ量は約20tであった。
脱燐処理後に転炉を傾転させて排滓する際、鎮静剤の添加方法(添加条件および添加位置を含む)、スラグ上面表層部での鎮静剤の滞留、鎮静剤の種類、添加量、粒度を変更し、排滓量、排滓時間、転炉の最終傾転角度を評価した。
各水準の条件および結果を図3の表に示す。
さらに、鎮静剤の添加位置として、「スラグ落下位置近傍」と「スラグ落下位置近傍外」を比較している。同様に、前者は後者に比べ、鎮静剤がフォーミングしたスラグの内部に潜入しやすい。
また、スラグ上面表層部での鎮静剤の滞留については、目視により判定した。「なし」とはスラグ内に瞬時に巻き込まれる状況、「あり」とはスラグ上層表面にしばらく(数秒程度)滞留する状況を指す。尚、「排滓鍋上端から2m上方より、パイプを通じて粒状で添加する方法」で「スラグ落下位置近傍外」に添加した場合は、目視判定が困難な場合を除き、スラグ上面表層部での鎮静剤の滞留は目視で確認できた。
フォーミング鎮静の評価指標としては、少量の鎮静剤でフォーミングを迅速に鎮静し、短時間で大量に排滓することが重要であるため、鎮静剤の添加量、平均排滓速度(排滓量/排滓時間)で評価を行った。
尚、水準2に比べて、水準1が優位である理由は、鎮静剤として使用した「パルプ滓とスラグの成型物」が、そもそもフォーミングしたスラグの内部に潜入することにより急激にガスを発生させて鎮静することを企図したものであるためと考えられる。
水準5は、比較例である水準4に対して、鎮静剤の添加方法を本開示の方法に変更しているが、同等の平均排滓速度を得つつ、鎮静剤添加量が大幅に低減した。
水準6は、水準5に対して、鎮静剤(粘度低減物質)の種類を変更しているが、水準5と効果はほぼ同等であった。
水準7~9は、水準5に対して、鎮静剤(粘度低減物質)の添加量(鎮静剤添加量原単位)を変更している。粘度低減物質の添加量を排出スラグ量1tに対し、2kg以上とすることで平均排滓速度が向上した。一方、水準9の結果からわかるように、鎮静剤添加量を増やしても効果が飽和する領域があった。
水準10~12は、水準8に対して、鎮静剤(粘度低減物質)の粒度(10mm以下粒度の比率)を変更している。粘度低減物質の粒度が10mm以下の範囲にあるもの比率を70質量%以上とすることで平均排滓速度が向上した。一方、水準12の結果からわかるように、10mm以下の粒度の比率を増やしても効果が飽和する領域があった。
2 泡沫層
3 バルクスラグ層
4 液膜排出
5 粘度低減物質(フォーミング鎮静剤)
6 極低粘度領域
7 転炉(精錬反応容器)
8 排滓鍋(受滓容器)
9 溶鉄
10 スラグ
11 ガイド
12 粘度低減物質(フォーミング鎮静剤)
13 極低粘度領域
14 作業床
Claims (13)
- 精錬反応容器から受滓容器への排滓に際して排出スラグのフォーミングを鎮静する方法であって、
フォーミング鎮静剤として粘度低減効果を有する物質を前記受滓容器に排出したスラグの上面表層部に滞留するように添加する
ことを特徴とする排出スラグのフォーミング鎮静方法。 - 粘度低減効果を有する物質として、アルカリ金属の化合物もしくはアルカリ土類金属の化合物、またはこれらの混合物を使用する
ことを特徴とする請求項1に記載の排出スラグのフォーミング鎮静方法。 - 粘度低減効果を有する物質の添加量を排出スラグ量1tに対し、2kg以上とする
ことを特徴とする請求項1または請求項2に記載の排出スラグのフォーミング鎮静方法。 - 粘度低減効果を有する物質の粒度が10mm以下の範囲にあるもの比率を70質量%以上とする
ことを特徴とする請求項1~請求項3の何れか一項に記載の排出スラグのフォーミング鎮静方法。 - 粘度低減物質を添加する高さは、前記受滓容器の上端から3m以下の高さである
ことを特徴とする請求項1~請求項4の何れか一項に記載の排出スラグのフォーミング鎮静方法。 - 粘度低減物質を添加する高さは、前記精錬反応容器の側方に設けられた作業床の前記受滓容器の上端からの高さを基準にして60%以下の高さである
ことを特徴とする請求項1~請求項4の何れか一項に記載の排出スラグのフォーミング鎮静方法。 - 粘度低減効果を有する物質を添加するに際し、滑走斜面を有するガイドを用いる
ことを特徴とする請求項1~請求項4の何れか一項に記載の排出スラグのフォーミング鎮静方法。 - 粘度低減効果を有する物質を添加するに際し、滑走斜面を有するガイドを用い、
前記ガイドの下端の高さは、前記受滓容器の上端から3m以下の高さである
ことを特徴とする請求項1~請求項4の何れか一項に記載の排出スラグのフォーミング鎮静方法。 - 粘度低減効果を有する物質を添加するに際し、滑走斜面を有するガイドを用い、
前記ガイドの下端の高さは、前記精錬反応容器の側方に設けられた作業床の前記受滓容器の上端からの高さを基準にして60%以下の高さである
ことを特徴とする請求項1~請求項4の何れか一項に記載の排出スラグのフォーミング鎮静方法。 - 粘度低減効果を有する物質を添加するに際し、キャリアガスで粘度低減物質を上面表層部に沿う方向に吹き付ける
ことを特徴とする請求項1~請求項4の何れか一項に記載の排出スラグのフォーミング鎮静方法。 - 粘度低減効果を有する物質を添加するに際し、スラグ落下位置近傍を避けて添加する
ことを特徴とする請求項1~請求項10の何れか一項に記載の排出スラグのフォーミング鎮静方法。 - 精錬反応容器と、前記精錬反応容器からスラグを排出する受滓容器と、を備える精錬設備であって、
前記受滓容器に排出されたスラグの上面表層部に滞留するようにフォーミング鎮静剤を添加するためのガイドを更に備え、
前記ガイドは、滑走斜面を有する
ことを特徴とする精錬設備。 - 前記ガイドの下端の高さは、前記精錬反応容器の側方に設けられた作業床の前記受滓容器の上端からの高さを基準にして60%以下の高さである
ことを特徴とする請求項12に記載の精錬設備。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020207023014A KR102444944B1 (ko) | 2018-04-24 | 2019-04-15 | 배출 슬래그의 포밍 진정 방법 및 이것에 이용되는 정련 설비 |
JP2020516242A JP6935845B2 (ja) | 2018-04-24 | 2019-04-15 | 排出スラグのフォーミング鎮静方法およびこれに用いる精錬設備 |
CN201980012874.XA CN111712585B (zh) | 2018-04-24 | 2019-04-15 | 排出熔渣的起泡镇静方法及用于其的精炼设备 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018-083208 | 2018-04-24 | ||
JP2018083208 | 2018-04-24 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2019208303A1 true WO2019208303A1 (ja) | 2019-10-31 |
Family
ID=68294609
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2019/016140 WO2019208303A1 (ja) | 2018-04-24 | 2019-04-15 | 排出スラグのフォーミング鎮静方法およびこれに用いる精錬設備 |
Country Status (5)
Country | Link |
---|---|
JP (1) | JP6935845B2 (ja) |
KR (1) | KR102444944B1 (ja) |
CN (1) | CN111712585B (ja) |
TW (1) | TW201945550A (ja) |
WO (1) | WO2019208303A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2021095593A (ja) * | 2019-12-13 | 2021-06-24 | 日本製鉄株式会社 | スラグのフォーミング鎮静方法 |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2022163156A1 (ja) * | 2021-02-01 | 2022-08-04 | Jfeスチール株式会社 | 溶鉄の精錬方法およびそれを用いた溶鋼の製造方法 |
JP2023066147A (ja) * | 2021-10-28 | 2023-05-15 | Jfeスチール株式会社 | 炉内スラグ量推定装置、炉内スラグ量推定方法及び溶鋼製造方法 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2016169436A (ja) * | 2015-03-16 | 2016-09-23 | Jfeスチール株式会社 | スラグのフォーミング鎮静剤の投入方法および投入装置 |
JP2017031446A (ja) * | 2015-07-29 | 2017-02-09 | 新日鐵住金株式会社 | スラグのフォーミング抑制方法 |
WO2017130837A1 (ja) * | 2016-01-28 | 2017-08-03 | 新日鐵住金株式会社 | 排滓方法、スラグの製造方法及び流下スラグのエネルギー減衰構造 |
Family Cites Families (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS62278213A (ja) | 1986-05-23 | 1987-12-03 | Nippon Kokan Kk <Nkk> | 転炉スロツピング防止方法 |
JP2596470B2 (ja) | 1990-11-14 | 1997-04-02 | 新日本製鐵株式会社 | スロッピング抑制方法 |
JP2654587B2 (ja) | 1992-04-10 | 1997-09-17 | 新日本製鐵株式会社 | スラグフォーミング抑制のための炭材吹込み方法 |
JPH0849004A (ja) * | 1994-08-03 | 1996-02-20 | Nippon Steel Corp | 溶銑予備処理法 |
JP3242300B2 (ja) | 1995-09-26 | 2001-12-25 | 川崎製鉄株式会社 | 溶銑処理におけるスラグフォーミング抑止方法 |
JPH1150121A (ja) * | 1997-07-29 | 1999-02-23 | Kawasaki Steel Corp | スラグフォーミングの抑止方法 |
JP2000034511A (ja) * | 1998-07-15 | 2000-02-02 | Kawasaki Steel Corp | 溶銑予備処理方法 |
JP2000160220A (ja) * | 1998-11-24 | 2000-06-13 | Kawasaki Steel Corp | スラグ・フォーミングの抑制方法 |
LU90509B1 (fr) * | 2000-01-21 | 2001-07-23 | Wurth Paul Sa | Proc-d- de traitement de laitiers d'aci-eries electriques |
JP3750588B2 (ja) | 2001-11-12 | 2006-03-01 | 住友金属工業株式会社 | 溶銑の脱珪方法 |
JP4907411B2 (ja) | 2007-04-06 | 2012-03-28 | 新日本製鐵株式会社 | スラグの鎮静方法 |
JP4580434B2 (ja) | 2008-05-09 | 2010-11-10 | 新日本製鐵株式会社 | スラグのフォーミング鎮静材及びその鎮静方法 |
JP4580435B2 (ja) * | 2008-05-27 | 2010-11-10 | 新日本製鐵株式会社 | 排滓鍋スラグのフォーミング鎮静材及びその鎮静方法 |
JP5888445B1 (ja) * | 2015-02-10 | 2016-03-22 | Jfeスチール株式会社 | 溶融スラグのフォーミング鎮静方法及びスラグ製品の製造方法 |
-
2019
- 2019-04-15 CN CN201980012874.XA patent/CN111712585B/zh active Active
- 2019-04-15 KR KR1020207023014A patent/KR102444944B1/ko active IP Right Grant
- 2019-04-15 JP JP2020516242A patent/JP6935845B2/ja active Active
- 2019-04-15 WO PCT/JP2019/016140 patent/WO2019208303A1/ja active Application Filing
- 2019-04-18 TW TW108113646A patent/TW201945550A/zh unknown
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2016169436A (ja) * | 2015-03-16 | 2016-09-23 | Jfeスチール株式会社 | スラグのフォーミング鎮静剤の投入方法および投入装置 |
JP2017031446A (ja) * | 2015-07-29 | 2017-02-09 | 新日鐵住金株式会社 | スラグのフォーミング抑制方法 |
WO2017130837A1 (ja) * | 2016-01-28 | 2017-08-03 | 新日鐵住金株式会社 | 排滓方法、スラグの製造方法及び流下スラグのエネルギー減衰構造 |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2021095593A (ja) * | 2019-12-13 | 2021-06-24 | 日本製鉄株式会社 | スラグのフォーミング鎮静方法 |
JP7393634B2 (ja) | 2019-12-13 | 2023-12-07 | 日本製鉄株式会社 | スラグのフォーミング鎮静方法 |
Also Published As
Publication number | Publication date |
---|---|
JPWO2019208303A1 (ja) | 2020-12-10 |
JP6935845B2 (ja) | 2021-09-15 |
CN111712585B (zh) | 2022-07-26 |
CN111712585A (zh) | 2020-09-25 |
KR102444944B1 (ko) | 2022-09-20 |
KR20200105923A (ko) | 2020-09-09 |
TW201945550A (zh) | 2019-12-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2019208303A1 (ja) | 排出スラグのフォーミング鎮静方法およびこれに用いる精錬設備 | |
JP4580435B2 (ja) | 排滓鍋スラグのフォーミング鎮静材及びその鎮静方法 | |
JP5888445B1 (ja) | 溶融スラグのフォーミング鎮静方法及びスラグ製品の製造方法 | |
KR20030040463A (ko) | 정련제 및 정련 방법 | |
TWI595096B (zh) | 脫硫熔渣的再使用方法 | |
JP6477333B2 (ja) | スラグのフォーミング抑制方法 | |
TWI656219B (zh) | 爐渣起泡鎮靜材及爐渣起泡鎮靜方法以及轉爐吹煉方法 | |
TWI663258B (zh) | 抑制爐渣起泡的方法及轉爐精煉方法 | |
JP5494687B2 (ja) | 溶銑の脱硫処理方法 | |
JP6468084B2 (ja) | 転炉排滓方法 | |
JP4580434B2 (ja) | スラグのフォーミング鎮静材及びその鎮静方法 | |
JP5689024B2 (ja) | ダストを使用した溶銑の脱りん方法 | |
TWI616402B (zh) | Desulfurizing agent, molten iron desulfurization method and manufacturing method of molten iron | |
JP6402762B2 (ja) | 脱硫剤、機械攪拌式溶銑脱硫方法及び脱硫溶銑の製造方法 | |
JPWO2019039326A1 (ja) | スラグのフォーミング抑制方法および転炉精錬方法 | |
JP7147550B2 (ja) | スラグのフォーミング抑制方法および転炉精錬方法 | |
JP7495615B2 (ja) | フォーミング鎮静材 | |
JP2018172719A (ja) | 溶銑の脱硫方法 | |
JP2018109213A (ja) | 溶鋼の脱硫方法および脱硫装置 | |
WO2018146754A1 (ja) | スラグのフォーミング抑制方法 | |
TWI638895B (zh) | Method for suppressing slag foaming | |
JP2003147425A (ja) | 溶銑の脱珪方法 | |
JP2001131626A (ja) | 溶銑の脱珪処理方法 | |
JP2011038156A (ja) | 転炉を用いる製鋼精錬プロセスおよび低燐鋼の製造方法 | |
JP2007119814A (ja) | 溶銑の精錬方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19793797 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2020516242 Country of ref document: JP Kind code of ref document: A |
|
ENP | Entry into the national phase |
Ref document number: 20207023014 Country of ref document: KR Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 19793797 Country of ref document: EP Kind code of ref document: A1 |