WO2019188756A1 - はんだペースト - Google Patents
はんだペースト Download PDFInfo
- Publication number
- WO2019188756A1 WO2019188756A1 PCT/JP2019/012009 JP2019012009W WO2019188756A1 WO 2019188756 A1 WO2019188756 A1 WO 2019188756A1 JP 2019012009 W JP2019012009 W JP 2019012009W WO 2019188756 A1 WO2019188756 A1 WO 2019188756A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- solder
- solder paste
- powder
- mass
- alloy composition
- Prior art date
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K35/00—Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
- B23K35/22—Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
- B23K35/24—Selection of soldering or welding materials proper
- B23K35/26—Selection of soldering or welding materials proper with the principal constituent melting at less than 400 degrees C
- B23K35/262—Sn as the principal constituent
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K35/00—Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
- B23K35/02—Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by mechanical features, e.g. shape
- B23K35/0222—Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by mechanical features, e.g. shape for use in soldering, brazing
- B23K35/0244—Powders, particles or spheres; Preforms made therefrom
- B23K35/025—Pastes, creams, slurries
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K35/00—Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
- B23K35/22—Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
- B23K35/36—Selection of non-metallic compositions, e.g. coatings, fluxes; Selection of soldering or welding materials, conjoint with selection of non-metallic compositions, both selections being of interest
- B23K35/3601—Selection of non-metallic compositions, e.g. coatings, fluxes; Selection of soldering or welding materials, conjoint with selection of non-metallic compositions, both selections being of interest with inorganic compounds as principal constituents
- B23K35/3602—Carbonates, basic oxides or hydroxides
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K35/00—Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
- B23K35/22—Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
- B23K35/36—Selection of non-metallic compositions, e.g. coatings, fluxes; Selection of soldering or welding materials, conjoint with selection of non-metallic compositions, both selections being of interest
- B23K35/362—Selection of compositions of fluxes
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C12/00—Alloys based on antimony or bismuth
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C13/00—Alloys based on tin
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C13/00—Alloys based on tin
- C22C13/02—Alloys based on tin with antimony or bismuth as the next major constituent
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C28/00—Alloys based on a metal not provided for in groups C22C5/00 - C22C27/00
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K2101/00—Articles made by soldering, welding or cutting
- B23K2101/36—Electric or electronic devices
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K2101/00—Articles made by soldering, welding or cutting
- B23K2101/36—Electric or electronic devices
- B23K2101/42—Printed circuits
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K2103/00—Materials to be soldered, welded or cut
- B23K2103/08—Non-ferrous metals or alloys
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K35/00—Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
- B23K35/22—Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
- B23K35/24—Selection of soldering or welding materials proper
- B23K35/26—Selection of soldering or welding materials proper with the principal constituent melting at less than 400 degrees C
- B23K35/264—Bi as the principal constituent
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K35/00—Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
- B23K35/22—Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
- B23K35/24—Selection of soldering or welding materials proper
- B23K35/28—Selection of soldering or welding materials proper with the principal constituent melting at less than 950 degrees C
- B23K35/282—Zn as the principal constituent
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C18/00—Alloys based on zinc
- C22C18/04—Alloys based on zinc with aluminium as the next major constituent
Definitions
- the present invention relates to a solder paste that can be stored for a long period of time and can realize an easy storage method.
- solder paste is used for joining an electronic component and a printed board.
- the solder paste is composed of solder powder and a flux such as a base resin, an activator, and a solvent.
- a highly active activator is used to remove the oxide film formed on the surface of the solder powder and ensure wettability.
- the highly active activator reacts with the solder particles over time when the solder paste is stored, the viscosity of the solder paste increases. Since the solder paste is applied to the electrodes of the printed circuit board via a metal mask by screen printing or the like, when the viscosity increases, the printing performance on the electrodes is remarkably deteriorated. In recent years, there has been a demand for downsizing electronic components used in electronic devices as electronic devices become smaller and higher performance. Since miniaturized electronic components are mounted on a printed board with high density, the electrodes of the printed board are also required to be miniaturized. When the printing performance of the solder paste deteriorates, it becomes difficult to print on fine electrodes. For this reason, the outstanding storage stability of solder paste is further required.
- Patent Document 1 discloses a solder paste having a flux in which a predetermined base resin and a brominated activator component having a specific structure are combined in order to improve storage stability.
- a base resin containing a polymerized rosin is used as the predetermined base resin, and a brominated activator comprising a diol and a quaternary carbon-containing diol is disclosed as a brominated activator component having a specific structure.
- a solder powder having an alloy composition of Sn-3Ag-0.5Cu is used, and the viscosity immediately after adjustment and the viscosity after being kept in a constant temperature bath at 40 ° C. for 24 hours are measured to increase the solder paste. Viscosity has been evaluated.
- the storage stability is improved by combining a predetermined base resin and a brominated activator component having a specific structure. That is, the invention described in the document focuses on the component of the flux. However, since changing the flux component may cause various problems such as residues after joining, changing the flux component can cause various problems.
- the subject of this invention is providing the solder paste which can implement
- the present inventors do not pay attention to the flux component as in the past, but by reexamining the cause of the thickening of the solder paste, The means to exert the inhibitory effect was examined.
- the activator contained in the flux is highly reactive and reacts with the solder powder over time when the solder paste is stored, leading to thickening of the paste. Therefore, as a result of further detailed investigation, the solder powder is covered with an oxide film from the beginning.
- the oxide film becomes thin due to an acid-base reaction with the activator, and the organic acid Sn salt. It was found that a large amount of was generated and the viscosity increased. Further, it was found that the SnO 2 film thickness on the surface of the solder powder was reduced by the oxidation-reduction reaction in the solder powder flux, and the viscosity of the solder paste was increased.
- the present inventors put the film thickness of the oxide film on the surface of the solder powder in the solder paste into the flux if the above redox reaction and acid-base reaction can be suppressed simultaneously. Attention was paid to the suppression of the formation of the organic acid Sn salt while being maintained later. That is, the inventors focused on the necessity of suppressing various reactions in the flux so that the surface state of the initial solder powder charged into the flux is maintained for a long time in the flux.
- the present inventors have conducted intensive studies focusing on metal oxides as substances that exist stably in the flux in order to suppress the reaction between the solder powder and the activator.
- Various metal oxides and their contents were adjusted to measure the change in viscosity of the solder paste over time.
- zirconium oxide was not used as a reaction inhibitor because of its catalytic action, but unexpectedly, when a predetermined amount of zirconium oxide powder is added, an increase in the viscosity of the solder paste can be suppressed. Knowledge was obtained and the present invention was completed.
- the present invention obtained from these findings is as follows. (1) A solder paste containing 42 mass% or more of Sn, a zirconium oxide powder, and a flux, the zirconium oxide powder containing 0.05 to 20.0 mass% with respect to the total mass of the solder paste A solder paste in which a change in viscosity with time is suppressed.
- the alloy composition of the solder powder further contains, in mass%, one or more of Co, Mn, Fe, Ge, Ga, Au, and Pt in total exceeding 0% and 10.0% or less ( 1) The solder paste according to any one of (6) above.
- the alloy composition of the solder powder is, by mass, Ag: 3.2 to 3.8%, Cu: 0.6 to 0.8%, Sb: 2 to 5%, Ni: 0.01 to 0 Solder paste according to (1) above, consisting of .2%, Bi: 1.5 to 5.5%, and remaining Sn.
- FIG. 1 is a view showing a change with time in the viscosity of a solder paste.
- FIG. 2 is a diagram showing the results of measuring the surface oxide film thickness of the solder powder.
- solder paste includes a solder powder, a solder composition composed of zirconium oxide powder, and a flux, and the zirconium oxide powder is 0.05 to 20.0 mass with respect to the total mass of the solder paste. %, Viscosity change with time is suppressed. Below, each component is explained in full detail.
- Zirconium oxide powder (1-1) Viscosity change with time is suppressed Since the solder paste according to the present invention contains zirconium oxide powder, an increase in the viscosity of the paste accompanying the change with time can be suppressed. . This is presumably because the oxide film thickness on the surface of the solder powder is maintained even after being introduced into the flux by containing zirconium oxide. Although details are unknown, it is guessed as follows. Usually, since the active component of the flux has a slight activity even at room temperature, the surface oxide film of the solder powder becomes thin by reduction, causing the powders to aggregate.
- the active component of the flux reacts preferentially with the zirconium oxide powder, and the oxide film on the surface of the solder powder is maintained so as not to aggregate.
- Viscosity in the present invention is a result of measurement in the atmosphere at a rotation speed of 10 rpm, 25 ° C. using a PCU-205 manufactured by Malcolm Corporation.
- the rate of change between the viscosity immediately after mixing the solder powder, zirconium oxide, and the flux and the viscosity after 24 hours after continuously measuring the viscosity under the above conditions for 24 hours is ⁇ 30. It is within%.
- (1-2) Zirconium oxide content 0.05-20.0%
- the content of zirconium oxide is preferably 0.05 to 10.0%, and more preferably 0.1 to 3%.
- the particle size of the zirconium oxide powder in the solder paste is preferably 5 ⁇ m or less. When the particle size is 5 ⁇ m or less, the printability of the paste can be maintained.
- the lower limit is not particularly limited, but may be 0.5 ⁇ m or more.
- the particle diameter of zirconium oxide is obtained by taking an SEM photograph of zirconium oxide powder, obtaining the projected circle equivalent diameter by image analysis for each particle present in the field of view, and the projected circle equivalent diameter is 0.1 ⁇ m or more.
- the average value of the equivalent circle diameter of the object is used.
- the shape of zirconium oxide is not particularly limited. However, if the shape is different, the contact area with the flux is large, and an effect of suppressing thickening is obtained. In the case of a spherical shape, good fluidity can be obtained, so that excellent printability as a paste can be obtained. What is necessary is just to select a shape suitably according to a desired characteristic.
- solder powder of the present invention examples include Sn—Cu solder alloy, Sn—Ag solder alloy, Sn—Sb solder alloy, Sn—Bi solder alloy, Sn—Zn solder alloy, Sn -Pb solder alloy, Sn-In solder alloy, Bi-Cu solder alloy, Zn-Al solder alloy, Bi-Ag solder alloy can be used. Moreover, you may have the alloy composition which combined these solder alloys. When the solder powder of the present invention contains Ag, Cu, Bi, Sb, and Ni, the respective contents are as follows.
- the Ag content is preferably more than 0% and not more than 10.0%.
- the Ag content is in this range, the wettability improvement effect of the solder alloy and the network compound of the intermetallic compound of Ag 3 Sn are precipitated in the solder matrix to form a precipitation dispersion strengthened type alloy. The effect of improving the cycle characteristics is exhibited.
- the Cu content is preferably Cu: more than 0% and 10.0% or less.
- the Cu erosion preventing effect on the Cu land and the effect of improving the temperature cycle characteristics by precipitating a fine Cu 6 Sn 5 compound in the solder matrix is preferably Cu: more than 0% and 10.0% or less.
- the Bi content is preferably more than 0% and not more than 58%.
- the temperature cycle characteristics can be improved.
- Sb not only precipitates SnSb intermetallic compounds to form precipitation dispersion strengthened alloys, but also penetrates into the atomic arrangement lattice and displaces Sn to strengthen the Sn matrix by distorting the atomic arrangement lattice. Thus, it also has the effect of improving the temperature cycle characteristics.
- Bi is contained in the solder, Bi is replaced with Sb, so that the temperature cycle characteristics can be further improved. This is because Bi has a larger atomic weight than Sb and has a great effect of distorting the lattice of the atomic arrangement. Further, Bi does not hinder the formation of fine SnSb intermetallic compounds, and a precipitation dispersion strengthened solder alloy is maintained.
- the Sb content is preferably more than 0% and 20.0% or less.
- the Sb content is within this range, a form in which Sb is dispersed in the Sn matrix appears, and the effect of solid solution strengthening appears.
- the shear strength of the solder joint is also increased.
- the rise in the liquidus temperature is suppressed, the coarsening of the SnSb intermetallic compound is suppressed, and the propagation of cracks in the solder can be suppressed.
- the Ni content is preferably more than 0% and 20.0% or less.
- the intermetallic compound in the intermetallic compound layer generated in the vicinity of the soldering interface is refined to suppress the generation of cracks and to suppress the propagation of cracks once generated. In addition, it is possible to suppress the generation and propagation of cracks from the bonding interface.
- the alloy composition of the solder powder of the present invention is preferably Ag: 3.2 to 3.8%, Cu: 0.6 to 0.8%, Sb: 2 to 5%, Ni: 0.01 to 0.00. 2%, Bi: 1.5 to 5.5%, and remaining Sn. If it is this range, the said effect can be exhibited simultaneously.
- At least one of Co, Mn, Fe, Al, Ge, Ga, P, Au, Pt, and Zr may be included in a total exceeding 0% and 10.0% or less. Even if these are contained, the paste does not thicken.
- the structure of the solder powder can be made fine.
- the lower limit of the Co content is preferably more than 0.01%, more preferably 0.03% or more.
- the upper limit of the Co content is preferably 0.1% or less, more preferably 0.05% or less.
- Sn The balance of the solder powder composition according to the present invention is Sn.
- inevitable impurities may be contained. Even when inevitable impurities are contained, the above-mentioned effects are not affected.
- solder paste according to the present invention preferably contains 35 to 95% of the solder powder with respect to the total mass of the solder paste. If the amount is within this range, the amount of other components is sufficient to exert the respective additive effects, and the solder paste has various characteristics such as printability.
- the solder powder of the present invention has a size (particle size distribution) corresponding to symbols 1 to 8 in the powder size classification (Table 2) in JIS Z 3284-1: 2014. If so, soldering to fine parts becomes possible.
- the size of the particulate solder material is more preferably a size corresponding to symbols 4 to 8, and more preferably a size corresponding to symbols 5 to 8.
- the shape of the solder powder is not particularly limited, but if it is spherical, good fluidity can be obtained, so that excellent printability as a paste can be obtained. In that case, the sphericity is preferably 0.90 or more, more preferably 0.95 or more, and most preferably 0.99 or more.
- Flux (3-1) Flux composition The solder paste according to the present invention contains a flux composition.
- the flux composition is one of organic acid, amine, amine hydrohalide, organic halogen compound, thixotropic agent, rosin, solvent, surfactant, base agent, polymer compound, silane coupling agent, colorant, Or a combination of two or more.
- Organic acids include succinic acid, glutaric acid, adipic acid, pimelic acid, suberic acid, azelaic acid, sebacic acid, dimer acid, propionic acid, 2,2-bishydroxymethylpropionic acid, tartaric acid, malic acid, glycolic acid, Examples include diglycolic acid, thioglycolic acid, dithioglycolic acid, stearic acid, 12-hydroxystearic acid, palmitic acid, and oleic acid.
- amines ethylamine, triethylamine, ethylenediamine, triethylenetetramine, 2-methylimidazole, 2-undecylimidazole, 2-heptadecylimidazole, 1,2-dimethylimidazole, 2-ethyl-4-methylimidazole, 2-phenyl Imidazole, 2-phenyl-4-methylimidazole, 1-benzyl-2-methylimidazole, 1-benzyl-2-phenylimidazole, 1-cyanoethyl-2-methylimidazole, 1-cyanoethyl-2-undecylimidazole, 1- Cyanoethyl-2-ethyl-4-methylimidazole, 1-cyanoethyl-2-phenylimidazole, 1-cyanoethyl-2-undecylimidazolium trimellitate, 1-cyanoethyl-2-phenylimidazole Lithium trimellitate, 2,4-
- An amine hydrohalide is a compound obtained by reacting an amine with a hydrogen halide.
- the amine include ethylamine, ethylenediamine, triethylamine, methylimidazole, 2-ethyl-4-methylimidazole, and the like.
- the hydride include chlorine, bromine and iodine hydrides.
- organic halogen compounds examples include 1-bromo-2-butanol, 1-bromo-2-propanol, 3-bromo-1-propanol, 3-bromo-1,2-propanediol, and 1,4-dibromo-2-butanol 1,3-dibromo-2-propanol, 2,3-dibromo-1-propanol, 2,3-dibromo-1,4-butanediol, 2,3-dibromo-2-butene-1,4-diol, etc. Is mentioned.
- thixotropic agents include wax-based thixotropic agents and amide-based thixotropic agents.
- wax-based thixotropic agent examples include castor oil.
- amide thixotropic agents include lauric acid amide, palmitic acid amide, stearic acid amide, behenic acid amide, hydroxystearic acid amide, saturated fatty acid amide, oleic acid amide, erucic acid amide, unsaturated fatty acid amide, p-toluene methane amide, Aromatic amide, methylene bis stearic acid amide, ethylene bis lauric acid amide, ethylene bis hydroxystearic acid amide, saturated fatty acid bis amide, methylene bis oleic acid amide, unsaturated fatty acid bis amide, m-xylylene bis stearic acid amide, aromatic bis amide , Saturated fatty acid polyamide, unsaturated fatty acid polyamide, aromatic polyamide,
- Examples of the base agent include rosin, polymer resin, polyethylene glycol and the like.
- Examples of the rosin include raw material rosins such as gum rosin, wood rosin and tall oil rosin, and derivatives obtained from the raw rosin.
- Examples of the derivatives include purified rosin, hydrogenated rosin, disproportionated rosin, polymerized rosin, and ⁇ , ⁇ -unsaturated carboxylic acid-modified products (such as acrylated rosin, maleated rosin, and fumarated rosin), and the polymerized rosin.
- the polymer resin is at least selected from acrylic resin, terpene resin, modified terpene resin, terpene phenol resin, modified terpene phenol resin, styrene resin, modified styrene resin, xylene resin, and modified xylene resin.
- One or more resins may further be included. Further, only a polymer resin may be used in place of rosin.
- modified terpene resin aromatic modified terpene resin, hydrogenated terpene resin, hydrogenated aromatic modified terpene resin and the like can be used.
- modified terpene phenol resin a hydrogenated terpene phenol resin or the like can be used.
- modified styrene resin a styrene acrylic resin, a styrene maleic acid resin, or the like can be used.
- modified xylene resin include phenol-modified xylene resin, alkylphenol-modified xylene resin, phenol-modified resole-type xylene resin, polyol-modified xylene resin, polyoxyethylene-added xylene resin, and the like.
- Examples of the solvent include water, alcohol solvents, glycol ether solvents, terpineols and the like.
- alcohol solvents include isopropyl alcohol, 1,2-butanediol, isobornylcyclohexanol, 2,4-diethyl-1,5-pentanediol, 2,2-dimethyl-1,3-propanediol, 2,5 -Dimethyl-2,5-hexanediol, 2,5-dimethyl-3-hexyne-2,5-diol, 2,3-dimethyl-2,3-butanediol, 1,1,1-tris (hydroxymethyl) Ethane, 2-ethyl-2-hydroxymethyl-1,3-propanediol, 2,2'-oxybis (methylene) bis (2-ethyl-1,3-propanediol), 2,2-bis (hydroxymethyl) -1,3-propanediol, 1,2,6-trihydroxyhex
- glycol ether solvents include diethylene glycol mono-2-ethylhexyl ether, ethylene glycol monophenyl ether, 2-methylpentane-2,4-diol, diethylene glycol monohexyl ether, diethylene glycol dibutyl ether, and triethylene glycol monobutyl ether.
- surfactant examples include polyoxyalkylene acetylene glycols, polyoxyalkylene glyceryl ether, polyoxyalkylene alkyl ether, polyoxyalkylene ester, polyoxyalkylene alkylamine, and polyoxyalkylene alkylamide.
- the content of flux is preferably 5 to 60% with respect to the total mass of the solder paste. Within this range, the effect of suppressing thickening due to the solder powder is sufficiently exhibited.
- solder paste was prepared by mixing each part by mass of the flux shown in Tables 2 to 6, powder (solder powder), and ZrO 2 (zirconium oxide powder).
- the particle diameters of the powders shown in Tables 2 to 6 are sizes (particle size distributions) satisfying the symbol 4 in the powder size classification (Table 2) in JIS Z 32844-1: 2014.
- the viscosities shown in Tables 2 to 6 were measured in the atmosphere at a rotational speed of 10 rpm and 25 ° C. using PCU-205 manufactured by Malcolm Corporation. If the rate of change between the viscosity immediately after mixing and the viscosity after 24 hours has been measured continuously for 24 hours under the above conditions is within ⁇ 30%, the change in viscosity over time is practically acceptable. Because it is a level, it was set to “ ⁇ ”. When it was not within the range of ⁇ 30%, “x” was given.
- Comparative Examples 1 and 4 having too much ZrO 2 could not form a solder paste and could not measure the viscosity.
- Tables 2 to 6 will be described in detail with reference to the drawings.
- FIG. 1 is a view showing a change with time in the viscosity of a solder paste.
- solder paste is Comparative Example 3
- soldder paste + 0.1% ZrO 2 is Example 5.
- Example 5 containing ZrO 2
- Comparative Example 3 not containing ZrO 2
- the viscosity rapidly increases. The reason for this result is presumed to be that the oxide film thickness on the powder surface becomes thin and the powder aggregates, so the oxide film thickness on the powder surface was measured.
- FIG. 2 is a diagram showing the results of measuring the surface oxide film thickness of the solder powder.
- “Solder powder + 1% ZrO 2 ” is Example 4
- “Solder powder + 0.1% ZrO 2 ” is Example 5
- “Solder powder” is Comparative Example 3.
- the oxide film thickness shown in FIG. 2 was measured by using AES (model number: PHI-700) manufactured by ULVAC-PHI, with an acceleration voltage of 10 kV and a current value of 10 A.
- the obtained film thickness is the SiO 2 equivalent thickness.
- the measured powder of the oxide film thickness is obtained by extracting the powder from the solder paste after measuring the viscosity after 24 hours after the viscosity is continuously measured for 24 hours.
- the oxide film thickness of the solder powder before mixing with the flux was 3.4 nm on an average of 10 samples.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Chemical & Material Sciences (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Electric Connection Of Electric Components To Printed Circuits (AREA)
Abstract
Description
(1)Snを42質量%以上含有するはんだ粉末、酸化ジルコニウム粉末、及びフラックスを有するはんだペーストであって、酸化ジルコニウム粉末をはんだペーストの全質量に対して0.05~20.0質量%含有することを特徴とする、粘性の経時変化が抑制されたはんだペースト。
本発明に係るはんだペーストは、はんだ粉末と、酸化ジルコニウム粉末からなるはんだ組成物と、フラックスとを有するとともに、酸化ジルコニウム粉末をはんだペーストの全質量に対して0.05~20.0質量%含有し、粘性の経時変化が抑制されている。以下に、各成分について詳述する。
(1-1)粘性の経時変化が抑制されている
本発明に係るはんだペーストは、酸化ジルコニウム粉末を含有するため、経時変化に伴うペーストの粘度上昇を抑制することができる。これは、酸化ジルコニウムを含有することにより、はんだ粉末表面の酸化膜厚がフラックス中に投入した後でも維持するためと考えられる。詳細は不明であるが、以下のように推察される。通常、フラックスの活性成分は常温でもわずかに活性を有するため、はんだ粉末の表面酸化膜が還元により薄くなり、粉末同士が凝集する原因になっている。そこで、はんだペーストに酸化ジルコニウム粉末を所定量添加することで、フラックスの活性成分が酸化ジルコニウム粉末と優先的に反応し、はんだ粉末表面の酸化膜が凝集しない程度に維持されると推察される。
このような作用効果を十分に発揮するためには、はんだペースト中の酸化ジルコニウム粉末の含有量を0.05~20.0%にする必要がある。0.05%未満では上記作用効果を発揮することができない。20.0%を超えると金属粉末の含有量を確保することができず、増粘防止効果を発揮することができない。酸化ジルコニウムの含有量は好ましくは0.05~10.0%であり、より好ましい含有量は0.1~3%である。
はんだペースト中の酸化ジルコニウム粉末の粒径は5μm以下であることが好ましい。粒径が5μm以下であるとペーストの印刷性を維持することができる。下限は特に限定されることはないが0.5μm以上であればよい。
酸化ジルコニウムの形状は特に限定されないが、異形状であればフラックスとの接触面積が大きく増粘抑制効果がある。球形であると良好な流動性が得られるためにペーストとしての優れた印刷性が得られる。所望の特性に応じて適宜形状を選択すればよい。
(2-1)合金組成
本発明のはんだ粉末としては、例えば、Sn-Cuはんだ合金、Sn-Agはんだ合金、Sn-Sbはんだ合金、Sn-Biはんだ合金、Sn-Znはんだ合金、Sn-Pbはんだ合金、Sn-Inはんだ合金、Bi-Cuはんだ合金、Zn-Alはんだ合金、Bi-Agはんだ合金を用いることができる。また、これらのはんだ合金を組み合わせた合金組成を有していてもよい。本発明のはんだ粉末がAg、Cu、Bi、Sb、Niを含有する場合には、各々の含有量は以下の通りである。
本発明に係るはんだ粉末組成の残部はSnである。前述の元素の他に不可避的不純物を含有してもよい。不可避的不純物を含有する場合であっても、前述の効果に影響することはない。
本発明に係るはんだペーストは、はんだ粉末をはんだペーストの全質量に対して35~95%含有することが好ましい。この範囲であると他の成分が各々の添加効果を発揮するために十分な量になるため、はんだペーストが印刷性などの種々の特性を有することになる。
本発明のはんだ粉末は、JIS Z 3284-1:2014における粉末サイズの分類(表2)において記号1~8に該当するサイズ(粒度分布)を有していると、微細な部品へのはんだ付けが可能となる。粒子状はんだ材料のサイズは、記号4~8に該当するサイズであることがより好ましく、記号5~8に該当するサイズであることがより好ましい。また、はんだ粉末の形状は特に限定されないが、球形であると良好な流動性が得られるためにペーストとしての優れた印刷性が得られる。その場合、真球度は0.90以上が好ましく、0.95以上がより好ましく、0.99以上が最も好ましい。
(3-1)フラックス組成物
本発明に係るはんだペーストは、フラックス組成物を含む。フラックス組成物は、有機酸、アミン、アミンハロゲン化水素酸塩、有機ハロゲン化合物、チキソ剤、ロジン、溶剤、界面活性剤、ベース剤、高分子化合物、シランカップリング剤、着色剤の何れか、または2つ以上の組み合わせである。
-1,3-プロパンジオール、1,2,6-トリヒドロキシヘキサン、ビス[2,2,2-トリス(ヒドロキシメチル)エチル]エーテル、1-エチニル-1-シクロヘキサノール、1,4-シクロヘキサンジオール、1,4-シクロヘキサンジメタノール、エリトリトール、トレイトール、グアヤコールグリセロールエーテル、3,6-ジメチル-4-オクチン-3,6-ジオール、2,4,7,9-テトラメチル-5-デシン-4,7-ジオール等が挙げられる。グリコールエーテル系溶剤としては、ジエチレングリコールモノ-2-エチルヘキシルエーテル、エチレングリコールモノフェニルエーテル、2-メチルペンタン-2,4-ジオール、ジエチレングリコールモノヘキシルエーテル、ジエチレングリコールジブチルエーテル、トリエチレングリコールモノブチルエーテル等が挙げられる。
(2)フラックスの含有量
フラックスの含有量は、はんだペーストの全質量に対して5~60%であることが好ましい。この範囲であると、はんだ粉末に起因する増粘抑制効果が十分に発揮される。
合金組成A;Cu:0.7%、残部:Sn
合金組成B;Ag:3.0%、Cu:0.5%、残部:Sn
合金組成C;Ag:3.4%、Cu:0.7%、Sb:3.0%、Bi:3.2%、Ni:0.04%、Co:0.01%、残部:Sn
合金組成D;Ag:3.5%、残部:Sn
合金組成E;Ag:3.5%、Cu:0.5%、Sb:3.0%、残部:Sn
合金組成F;Ag:3.0%、Cu:0.5%、Ge:0.03%、残部:Sn
合金組成G;Ag:3.0%、Cu:0.5%、Fe:0.04%、残部:Sn
合金組成H;Ag:3.0%、Cu:0.5%、Co:0.08%、残部:Sn
合金組成I;Ag:3.5%、Cu:0.5%、Bi:3.0%、Ni:0.02%、残部:Sn
合金組成J;Sb:5.0%、残部:Sn
合金組成K;Bi:58%、残部:Sn
合金組成L;In:52%、残部:Sn
合金組成M;Al:2.0%、残部:Zn
Claims (10)
- Snを42質量%以上含有するはんだ粉末、酸化ジルコニウム粉末、及びフラックスを有するはんだペーストであって、
前記酸化ジルコニウム粉末を前記はんだペーストの全質量に対して0.05~20.0質量%含有することを特徴とする、粘性の経時変化が抑制されたはんだペースト。 - 前記はんだ粉末の合金組成は、質量%で、Ag:0%超え10.0%以下を含有する、請求項1に記載のはんだペースト。
- 前記はんだ粉末の合金組成は、質量%で、Cu:0%超え10.0%以下を含有する、請求項1または2に記載のはんだペースト。
- 前記はんだ粉末の合金組成は、質量%で、Bi:0%超え58%以下を含有する、請求項1~3のいずれか1項に記載のはんだペースト。
- 前記はんだ粉末の合金組成は、質量%で、Sb:0%超え20.0%以下を含有する、請求項1~4のいずれか1項に記載のはんだペースト。
- 前記はんだ粉末の合金組成は、質量%で、Ni:0%超え20.0%以下を含有する、請求項1~5のいずれか1項に記載のはんだペースト。
- 前記はんだ粉末の合金組成は、更に、質量%で、Co、Mn、Fe、Ge、Ga、Au、およびPtの1種以上を合計で0%超え10.0%以下含有する、請求項1~6のいずれか1項に記載のはんだペースト。
- 前記はんだ粉末の合金組成は、質量%で、Ag:3.2~3.8%、Cu:0.6~0.8%、Sb:2~5%、Ni:0.01~0.2%、Bi:1.5~5.5%、残部Snからなる、請求項1に記載のはんだペースト。
- 前記はんだ粉末の合金組成は、質量%で、Co:0.01~0.1%を含有する、請求項8に記載のはんだペースト。
- 前記酸化ジルコニウム粉末の粒径は5μm以下である、請求項1~9のいずれか1項に記載のはんだペースト。
Priority Applications (10)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
MX2020010246A MX2020010246A (es) | 2018-03-30 | 2019-03-22 | Pasta de soldadura. |
CN201980022343.9A CN111902238A (zh) | 2018-03-30 | 2019-03-22 | 焊膏 |
EP19776738.7A EP3778107B1 (en) | 2018-03-30 | 2019-03-22 | Solder paste |
ES19776738T ES2981354T3 (es) | 2018-03-30 | 2019-03-22 | Pasta de soldadura |
KR1020207027924A KR102307804B1 (ko) | 2018-03-30 | 2019-03-22 | 납땜 페이스트 |
SG11202009069YA SG11202009069YA (en) | 2018-03-30 | 2019-03-22 | Solder paste |
BR112020019110-8A BR112020019110B1 (pt) | 2018-03-30 | 2019-03-22 | Pasta de solda |
MYPI2020004988A MY185339A (en) | 2018-03-30 | 2019-03-22 | Solder paste |
US17/042,551 US11633815B2 (en) | 2018-03-30 | 2019-03-22 | Solder paste |
PH12020551553A PH12020551553A1 (en) | 2018-03-30 | 2020-09-24 | Solder paste |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018070271 | 2018-03-30 | ||
JP2018-070271 | 2018-03-30 | ||
JP2018-184823 | 2018-09-28 | ||
JP2018184823A JP6540869B1 (ja) | 2018-03-30 | 2018-09-28 | はんだペースト |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2019188756A1 true WO2019188756A1 (ja) | 2019-10-03 |
Family
ID=67212091
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2019/012009 WO2019188756A1 (ja) | 2018-03-30 | 2019-03-22 | はんだペースト |
Country Status (15)
Country | Link |
---|---|
US (1) | US11633815B2 (ja) |
EP (1) | EP3778107B1 (ja) |
JP (1) | JP6540869B1 (ja) |
KR (1) | KR102307804B1 (ja) |
CN (1) | CN111902238A (ja) |
BR (1) | BR112020019110B1 (ja) |
ES (1) | ES2981354T3 (ja) |
HU (1) | HUE066962T2 (ja) |
MX (1) | MX2020010246A (ja) |
MY (1) | MY185339A (ja) |
PH (1) | PH12020551553A1 (ja) |
PT (1) | PT3778107T (ja) |
SG (1) | SG11202009069YA (ja) |
TW (1) | TWI677396B (ja) |
WO (1) | WO2019188756A1 (ja) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP7079889B1 (ja) * | 2021-11-30 | 2022-06-02 | 株式会社タムラ製作所 | はんだ合金、はんだ接合材、ソルダペースト及び半導体パッケージ |
JP7133739B1 (ja) | 2021-11-30 | 2022-09-08 | 株式会社タムラ製作所 | 接合部、電子回路基板及び半導体パッケージ |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI814081B (zh) * | 2019-09-02 | 2023-09-01 | 美商阿爾發金屬化工公司 | 高溫超高可靠性合金、其製造方法及其應用 |
JP6836091B1 (ja) * | 2020-04-10 | 2021-02-24 | 千住金属工業株式会社 | はんだ合金、はんだ粉末、ソルダペースト、はんだボール、ソルダプリフォーム及びはんだ継手 |
CN115768591A (zh) * | 2020-04-10 | 2023-03-07 | 千住金属工业株式会社 | 软钎料合金、软钎料粉末、焊膏、焊料球、预成型软钎料和钎焊接头 |
TWI789165B (zh) * | 2021-12-14 | 2023-01-01 | 昇貿科技股份有限公司 | 無鉛無銅錫合金與用於球柵陣列封裝的錫球 |
JP7161140B1 (ja) | 2022-07-22 | 2022-10-26 | 千住金属工業株式会社 | はんだ合金、はんだボール、はんだペーストおよびはんだ継手 |
CN115156756B (zh) * | 2022-08-25 | 2023-08-15 | 深圳市鑫富锦新材料有限公司 | 一种环保的低温无残留锡膏 |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH05261586A (ja) * | 1992-03-23 | 1993-10-12 | Matsushita Electric Ind Co Ltd | クリーム半田 |
JPH10180483A (ja) * | 1996-12-03 | 1998-07-07 | Lucent Technol Inc | はんだ組成物からなる物品 |
JP2013046929A (ja) | 2011-07-26 | 2013-03-07 | Arakawa Chem Ind Co Ltd | 鉛フリーはんだペースト用フラックス及び鉛フリーはんだペースト |
JP2013258254A (ja) * | 2012-06-12 | 2013-12-26 | Koki:Kk | レーザー加熱工法による電子デバイスの製造方法 |
JP2015020182A (ja) * | 2013-07-17 | 2015-02-02 | ハリマ化成株式会社 | はんだ組成物、ソルダペーストおよび電子回路基板 |
JP2017073448A (ja) * | 2015-10-06 | 2017-04-13 | 住友電気工業株式会社 | 半田ペースト、接続シート、電気的接続体の製造方法及び電気的接続体 |
JP2017528327A (ja) * | 2014-08-18 | 2017-09-28 | キュン ドン ワン コーポレーションKyung Dong One Corporation | 無鉛ソルダー合金組成物及び無鉛ソルダー合金の製造方法 |
Family Cites Families (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6061180A (ja) | 1983-09-14 | 1985-04-08 | Toshiba Corp | 溶接用チップカバ− |
JPS61115683A (ja) | 1984-11-07 | 1986-06-03 | Toyota Motor Corp | ア−ク溶接用コンタクトチツプ |
JPH05237662A (ja) | 1992-03-03 | 1993-09-17 | Babcock Hitachi Kk | 溶接トーチ |
JP2003275892A (ja) * | 2002-03-20 | 2003-09-30 | Tamura Kaken Co Ltd | 無鉛はんだ合金及びソルダペースト組成物 |
CN1330455C (zh) * | 2005-05-09 | 2007-08-08 | 天津大学 | 氧化锆纳米颗粒增强型锡银复合焊料及其制备方法 |
CN102513720B (zh) * | 2011-12-23 | 2014-05-07 | 哈尔滨工业大学深圳研究生院 | 一种高性能锡基钎料合金及其制备方法 |
JP2015077601A (ja) * | 2013-04-02 | 2015-04-23 | 千住金属工業株式会社 | 鉛フリーはんだ合金 |
JP5730353B2 (ja) * | 2013-07-17 | 2015-06-10 | ハリマ化成株式会社 | はんだ組成物、ソルダペーストおよび電子回路基板 |
CN103551756A (zh) * | 2013-11-12 | 2014-02-05 | 宁波市鄞州恒迅电子材料有限公司 | Sn-Ag-Cu系无铅焊锡膏 |
EP2979807B1 (en) * | 2014-06-24 | 2018-04-11 | Harima Chemicals, Inc. | Solder alloy, solder composition, solder paste and electronic circuit board |
WO2016178000A1 (en) * | 2015-05-02 | 2016-11-10 | Alpha Metals, Inc. | Lead-free solder alloy with low melting point |
CN105033496B (zh) * | 2015-07-03 | 2018-01-09 | 北京康普锡威科技有限公司 | 一种高强高导复合型无铅高温焊料及其制备方法 |
WO2017164194A1 (ja) * | 2016-03-22 | 2017-09-28 | 株式会社タムラ製作所 | 鉛フリーはんだ合金、フラックス組成物、ソルダペースト組成物、電子回路基板および電子制御装置 |
-
2018
- 2018-09-28 JP JP2018184823A patent/JP6540869B1/ja active Active
-
2019
- 2019-03-22 ES ES19776738T patent/ES2981354T3/es active Active
- 2019-03-22 WO PCT/JP2019/012009 patent/WO2019188756A1/ja active Application Filing
- 2019-03-22 SG SG11202009069YA patent/SG11202009069YA/en unknown
- 2019-03-22 CN CN201980022343.9A patent/CN111902238A/zh active Pending
- 2019-03-22 HU HUE19776738A patent/HUE066962T2/hu unknown
- 2019-03-22 MY MYPI2020004988A patent/MY185339A/en unknown
- 2019-03-22 PT PT197767387T patent/PT3778107T/pt unknown
- 2019-03-22 BR BR112020019110-8A patent/BR112020019110B1/pt active IP Right Grant
- 2019-03-22 US US17/042,551 patent/US11633815B2/en active Active
- 2019-03-22 MX MX2020010246A patent/MX2020010246A/es unknown
- 2019-03-22 EP EP19776738.7A patent/EP3778107B1/en active Active
- 2019-03-22 KR KR1020207027924A patent/KR102307804B1/ko active IP Right Grant
- 2019-03-29 TW TW108111128A patent/TWI677396B/zh active
-
2020
- 2020-09-24 PH PH12020551553A patent/PH12020551553A1/en unknown
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH05261586A (ja) * | 1992-03-23 | 1993-10-12 | Matsushita Electric Ind Co Ltd | クリーム半田 |
JPH10180483A (ja) * | 1996-12-03 | 1998-07-07 | Lucent Technol Inc | はんだ組成物からなる物品 |
JP2013046929A (ja) | 2011-07-26 | 2013-03-07 | Arakawa Chem Ind Co Ltd | 鉛フリーはんだペースト用フラックス及び鉛フリーはんだペースト |
JP2013258254A (ja) * | 2012-06-12 | 2013-12-26 | Koki:Kk | レーザー加熱工法による電子デバイスの製造方法 |
JP2015020182A (ja) * | 2013-07-17 | 2015-02-02 | ハリマ化成株式会社 | はんだ組成物、ソルダペーストおよび電子回路基板 |
JP2017528327A (ja) * | 2014-08-18 | 2017-09-28 | キュン ドン ワン コーポレーションKyung Dong One Corporation | 無鉛ソルダー合金組成物及び無鉛ソルダー合金の製造方法 |
JP2017073448A (ja) * | 2015-10-06 | 2017-04-13 | 住友電気工業株式会社 | 半田ペースト、接続シート、電気的接続体の製造方法及び電気的接続体 |
Non-Patent Citations (1)
Title |
---|
See also references of EP3778107A4 |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP7079889B1 (ja) * | 2021-11-30 | 2022-06-02 | 株式会社タムラ製作所 | はんだ合金、はんだ接合材、ソルダペースト及び半導体パッケージ |
JP7133739B1 (ja) | 2021-11-30 | 2022-09-08 | 株式会社タムラ製作所 | 接合部、電子回路基板及び半導体パッケージ |
WO2023100383A1 (ja) * | 2021-11-30 | 2023-06-08 | 株式会社タムラ製作所 | はんだ合金、はんだ接合材、ソルダペースト及び半導体パッケージ |
JP2023081268A (ja) * | 2021-11-30 | 2023-06-09 | 株式会社タムラ製作所 | 接合部、電子回路基板及び半導体パッケージ |
Also Published As
Publication number | Publication date |
---|---|
KR102307804B1 (ko) | 2021-10-05 |
US11633815B2 (en) | 2023-04-25 |
BR112020019110A2 (pt) | 2020-12-29 |
PH12020551553A1 (en) | 2021-06-07 |
MX2020010246A (es) | 2021-05-10 |
JP2019181561A (ja) | 2019-10-24 |
PT3778107T (pt) | 2024-07-02 |
KR20200117042A (ko) | 2020-10-13 |
MY185339A (en) | 2021-05-06 |
US20210114143A1 (en) | 2021-04-22 |
SG11202009069YA (en) | 2020-10-29 |
BR112020019110B1 (pt) | 2021-08-03 |
ES2981354T3 (es) | 2024-10-08 |
EP3778107B1 (en) | 2024-05-08 |
EP3778107A4 (en) | 2021-12-15 |
TWI677396B (zh) | 2019-11-21 |
JP6540869B1 (ja) | 2019-07-10 |
CN111902238A (zh) | 2020-11-06 |
HUE066962T2 (hu) | 2024-09-28 |
EP3778107A1 (en) | 2021-02-17 |
TW201941862A (zh) | 2019-11-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2019188756A1 (ja) | はんだペースト | |
CN112384326B (zh) | 软钎料合金、软钎料粉末、焊膏和使用它们的钎焊接头 | |
CN112384325B (zh) | 软钎料合金、软钎料粉末、焊膏和使用它们的钎焊接头 | |
JP6643744B1 (ja) | はんだペースト及びはんだペースト用フラックス | |
JP6649597B1 (ja) | はんだ合金、はんだ粉末、およびはんだ継手 | |
JP6810374B1 (ja) | はんだ合金、ソルダペースト、はんだボール、ソルダプリフォーム、およびはんだ継手 | |
JP6649596B1 (ja) | はんだ合金、はんだ粉末、およびはんだ継手 | |
JP6676243B1 (ja) | フラックス及びはんだペースト | |
JP2020192599A (ja) | はんだ合金、はんだ粉末、およびはんだ継手 | |
JP2020192600A (ja) | はんだ合金、はんだ粉末、はんだペースト、およびこれらを用いたはんだ継手 | |
JP2020011293A (ja) | はんだ合金、はんだ粉末、はんだペースト、およびこれらを用いたはんだ継手 | |
JP2020192558A (ja) | フラックス及びはんだペースト | |
JP6674120B1 (ja) | はんだペースト及びはんだペースト用フラックス | |
JP6849934B1 (ja) | フラックス及びソルダペースト | |
JP6649595B1 (ja) | はんだ合金、はんだ粉末、はんだペースト、およびこれらを用いたはんだ継手 | |
JP2020011294A (ja) | はんだ合金、はんだ粉末、はんだペースト、およびこれらを用いたはんだ継手 | |
JP2020192601A (ja) | はんだ合金、はんだ粉末、およびはんだ継手 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19776738 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 20207027924 Country of ref document: KR Kind code of ref document: A |
|
REG | Reference to national code |
Ref country code: BR Ref legal event code: B01A Ref document number: 112020019110 Country of ref document: BR |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2019776738 Country of ref document: EP |
|
ENP | Entry into the national phase |
Ref document number: 112020019110 Country of ref document: BR Kind code of ref document: A2 Effective date: 20200923 |