WO2019181445A1 - ヒンジ構造を有する振動型アクチュエータ及び装置 - Google Patents

ヒンジ構造を有する振動型アクチュエータ及び装置 Download PDF

Info

Publication number
WO2019181445A1
WO2019181445A1 PCT/JP2019/008256 JP2019008256W WO2019181445A1 WO 2019181445 A1 WO2019181445 A1 WO 2019181445A1 JP 2019008256 W JP2019008256 W JP 2019008256W WO 2019181445 A1 WO2019181445 A1 WO 2019181445A1
Authority
WO
WIPO (PCT)
Prior art keywords
type actuator
vibration
support member
vibration type
drive unit
Prior art date
Application number
PCT/JP2019/008256
Other languages
English (en)
French (fr)
Inventor
四方 誠
悠貴 小田
Original Assignee
キヤノン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by キヤノン株式会社 filed Critical キヤノン株式会社
Publication of WO2019181445A1 publication Critical patent/WO2019181445A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02NELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
    • H02N2/00Electric machines in general using piezoelectric effect, electrostriction or magnetostriction
    • H02N2/02Electric machines in general using piezoelectric effect, electrostriction or magnetostriction producing linear motion, e.g. actuators; Linear positioners ; Linear motors
    • H02N2/04Constructional details

Definitions

  • the present invention relates to a vibration type actuator having a hinge structure and a device including the vibration type actuator.
  • a vibration type actuator having features such as silent operation, possibility of driving from low speed to high speed, and high torque is used as a driving source of a camera lens, for example.
  • a vibration type actuator that uses excited vibration in a piezoelectric element a frictional force is generated between a vibrating body including the piezoelectric element and a driven body (contact body). Therefore, even when the piezoelectric element is not energized, the force (holding force) for holding the contact body at the stopped position is large. Therefore, a large driving force and holding force can be obtained by using a plurality of vibration type actuators.
  • Patent Document 1 discloses a drive device that makes use of the characteristics of such a vibration type actuator.
  • the drive device disclosed in Patent Document 1 includes a rod-shaped contact body, two vibration bodies arranged so as to sandwich the contact body in the vertical direction, two vibration body units that move together with the vibration body, And an elastic member that pressurizes the body against the contact body.
  • Two guide holes are formed in each of the two vibrator units, and a transmission pin of a transmission member located between the two vibrator units is fitted into the guide holes to form a guide mechanism. Yes. With this guide mechanism, the two vibrating body units can move only in the vertical direction, and the vibrating body comes into pressure contact with the contact body by the biasing force of the elastic member.
  • tilt posture a posture that presses the vibrating body unit against the contact body not only in the pressing direction but also in the moving direction of the vibrating body unit. The play due to the gap is suppressed.
  • FIG. 11 is a cross-sectional view of a vibration type actuator having a hinge structure.
  • the vibration type actuator shown in FIG. 11 is a comparative example with respect to a vibration type actuator according to an embodiment of the present invention described later.
  • the vibration type actuator includes a drive unit 201 on which a vibrating body is mounted and a guide shaft 206.
  • the drive unit 201 is movably guided by guide shafts 206 fixed at both ends to a housing (not shown).
  • FIG. 11 shows a cross section obtained by cutting the drive unit 201 along a plane (YZ plane) perpendicular to the moving direction (X direction) of the drive unit 201.
  • the drive unit 201 includes an upper base 202, a lower base 203, two vibrator units 205a and 205b, and a tension spring 207.
  • the lower base 203 is formed with a round hole into which the guide shaft 206 is inserted.
  • the upper base 202 is provided with a rotation shaft 202a for rotatably supporting the upper base 202, and the lower base 203 is formed with a round hole (not shown) into which the rotation shaft 202a is fitted. .
  • the upper base 202 is supported so as to be rotatable about the rotation shaft 202a with respect to the lower base 203.
  • a vibrating body unit 205a is supported on the upper base 202 so as to be movable only in the vertical direction (z direction), and a vibrating body unit 205b is supported on the lower base 203 so as to be movable only in the vertical direction.
  • a tension spring 207 to the tip of the upper base 202 and the lower base 203 having a hook shape, the vibrating body units 205a and 205b can be urged against the contact body 204 with a predetermined pressing force.
  • the drive unit 201 moves a predetermined distance in the x direction. According to such a configuration, since the hinge structure having a small sliding resistance is used, the vibrating body units 205a and 205b can be brought into contact with the contact body 204 with a constant pressure to maintain a stable contact state. it can.
  • the distance in the Y direction between the point where the vibrating body units 205a and 205b come into contact with the contact body 204 and the rotating shaft 202a is assumed to be “a”.
  • the distance in the Y direction between the tension position of the tension spring 207 and the rotating shaft 202a is “b”.
  • the applied pressure of the vibrating body units 205a and 205b is “Fp” and the tension of the tension spring 207 is “T”
  • the magnitude of the tension T may be smaller than the magnitude of the applied pressure Fp. That is, by adopting the hinge structure, a tension spring having a tension smaller than the applied pressure can be used.
  • the present invention provides a vibration type actuator having a hinge structure using a plurality of vibration bodies and capable of suppressing rattling between bases (support members) that support the vibration bodies.
  • the vibration-type actuator according to the present invention is a vibration-type actuator having a contact body and a drive unit having a plurality of vibration bodies and sandwiching the contact body by the plurality of vibration bodies, wherein the drive unit includes: A first support member that has a shaft portion and supports at least one of the plurality of vibrating bodies; and a bearing portion that fits the shaft portion so as to be movable in the axial direction of the shaft portion. A second support member that supports at least one of the plurality of vibrators, a vibrator supported by the first support member, and a vibrator supported by the second support member; The first support member or the second support member in the axial direction of the shaft portion in the first biasing means that pressurizes the contact body and pressurizes the contact body. And a second urging means for urging To.
  • rattling between the bases (support members) that support the vibrating body can be suppressed, thereby enabling highly accurate positioning and improving the response of the vibration actuator. be able to.
  • FIG. 1 is a perspective view of a vibration type actuator according to an embodiment of the present invention.
  • FIG. 2 is an exploded perspective view of a vibration type actuator.
  • FIG. 3 is a perspective view of a drive unit according to the first embodiment.
  • FIG. 4 is a partial exploded perspective view of a drive unit.
  • FIGS. 5A to 5C are schematic views for explaining vibrations excited by the vibrating body.
  • 6A and 6B are an exploded perspective view and a top view of the drive unit.
  • FIG. 7 is a perspective view of a drive unit according to a second embodiment.
  • FIG. 8 is a perspective view of a drive unit according to a third embodiment.
  • FIG. 9 is a top view illustrating a schematic configuration of an imaging apparatus including a vibration type actuator.
  • FIG. 10 is a diagram showing a schematic configuration of a manipulator including a vibration type actuator.
  • FIG. 11 is a cross-sectional view showing the structure of a vibration type actuator according to a comparative example.
  • FIG. 1 is a perspective view of a linear drive type vibration actuator 100 according to an embodiment of the present invention.
  • FIG. 2 is an exploded perspective view of the vibration type actuator 100.
  • the vibration type actuator 100 includes a drive unit 6 according to the first embodiment, a driven body (contact body) 10, an upper plate 20, a lower plate 21, a guide shaft 22, and fixing members 23 and 24.
  • the drive unit 6 includes two vibrating body units 1, an upper base (first support member) 7, a lower base (second support member) 8, and two pressure springs (first biasing means). 25.
  • Both ends of the contact body 10 and both ends of the guide shaft 22 are fixed to fixing members 23 and 24.
  • the guide shaft 22 is disposed in parallel with the relative movement direction of the contact body 10 and the drive unit 6.
  • the fixing members 23 and 24 are sandwiched between and connected to the upper plate 20 and the lower plate 21, and thus the casing portion of the vibration type actuator 100 is configured by these members.
  • the drive unit 6 is supported so as to be movable along the guide shaft 22 (in the axial direction of the guide shaft 22), and the contact body 10 includes two vibrating bodies supported by the upper base 7 and the lower base 8. It is sandwiched between units 1.
  • the X direction is the length direction of the vibration type actuator 100 and the moving direction of the drive unit 6.
  • the Z direction is the thickness direction of the vibration type actuator 100 and is the direction in which the two vibration body units 1 sandwich the contact body 10.
  • the Y direction is the width direction (short direction) of the vibration type actuator 100.
  • FIG. 3 is a perspective view of the drive unit 6.
  • the lower base 8 is provided with two fitting holes 8c into which the guide shaft 22 is slidably inserted (one portion is hidden by the vibrator unit 1 and is not shown). Accordingly, the lower base 8 (drive unit 6) is guided by the guide shaft 22 and can move in the axial direction (length direction) of the guide shaft 22, and can rotate about the guide shaft 22.
  • Shaft portions 7a and 7b are formed on one end portion side of the upper base 7 in the Y direction, and bearing portions 8a and 8b are formed on one end portion side of the lower base 8 in the Y direction.
  • the shaft portions 7 a and 7 b provided on the upper base 7 are fitted to the bearing portions 8 a and 8 b provided on the lower base 8 to form a shaft fitting portion.
  • the hinge structure which the upper base 7 can rotate centering on the shaft parts 7a and 7b with respect to the lower base 8 is comprised.
  • the shaft portions 7a and 7b have a shape in which two portions on the side surface of the cylinder are cut so as to be parallel to each other.
  • the upper base 7 After the two cut surfaces of the shaft portions 7a and 7b are parallel to the XY plane and inserted into the bearing portions 8a and 8b from the Y direction, the upper base 7 so that the two cut surfaces are parallel to the ZX plane. Is rotated 90 ° to stretch the pressure spring 25.
  • the shaft portions 7a and 7b can be easily fitted to the bearing portions 8a and 8b, and the shaft portions 7a and 7b can be prevented from coming off from the bearing portions 8a and 8b.
  • the shaft portion 7a, 7b is provided on the upper base 7 and the shaft fitting portion is formed by providing the bearing portions 8a, 8b on the lower base 8, but the bearing portion is provided on the upper base, and the lower base is provided.
  • a shaft portion may be provided on the table to form the shaft fitting portion.
  • the upper base becomes a second support member (a support member having a bearing portion)
  • the lower base becomes a first support member (a support member having a shaft portion).
  • the shaft portion 7b and the bearing portion 8b are not shown because they are hidden by the upper base 7.
  • Spring hooks 7d and 7e are formed on the other end side of the upper base 7 in the Y direction, and spring hooks 8d and 8e are formed on the other end side of the lower base 8 in the Y direction.
  • the pressure spring 25 is stretched between spring hooks 7 d, 7 e provided on the upper base 7 and spring hooks 8 d, 8 e provided on the lower base 8, and pulling force is applied to the upper base 7 and the lower base 8. Is given. Accordingly, the two vibrating body units 1 pressurize the contact body 10 via the upper base 7 and the lower base 8.
  • a tension coil spring is used as the pressure spring 25.
  • the present invention is not limited to this, and a tensile force is applied to the upper base 7 and the lower base 8 using an elastic body such as a rubber member. May be. Further, here, when viewed from the direction in which the contact body 10 is pressurized, the pressure spring 25 is on the opposite side of the shaft fitting portion (the shaft portion and the bearing portion) via the vibrating body 2.
  • the vibration type actuator 100 has a structure in which, by driving the two vibration body units 1, the drive unit 6 moves relative to the contact body 10 in the X direction while being guided by the guide shaft 22. A method for driving the vibrator unit 1 will be described later with reference to FIG.
  • FIG. 4 is an exploded perspective view for explaining the structures of the lower base 8 and the vibrator unit 1 constituting the drive unit 6.
  • the lower base 8 is a support member (second support member) that supports the vibrating body unit 1.
  • the vibrating body unit 1 includes a vibrating body 2, a buffer member 11, a pressure block 13, and a vibrating body holding unit 9.
  • the vibrating body 2 includes a vibration plate 3 on which two protrusions 5 are formed, and a piezoelectric element 4 that is an electro-mechanical energy conversion element bonded to the vibration plate 3.
  • the diaphragm 3 is made of an iron-based metal (for example, SUS420J2), and the protrusion 5 is integrally formed on the diaphragm 3 by press working or the like. Note that the protruding portion 5 may be provided on the diaphragm 3 by attaching a protruding member prepared as a separate member from the diaphragm 3 to the diaphragm 3 using means such as welding or adhesion.
  • FIG. 5A is a perspective view showing the vibrating body 2 in a simplified manner.
  • FIG. 5B is a diagram illustrating a first vibration mode (hereinafter referred to as “A mode”) of the two bending vibration modes excited by the vibrating body 2.
  • the A mode is a secondary bending vibration in the longitudinal direction (X direction) of the vibrating body 2 and has three nodal lines substantially parallel to the short direction (Y direction (width direction)) of the vibrating body 2.
  • the protrusion 5 is disposed in the vicinity of a position that becomes a node by the vibration of the A mode, and reciprocates in the X direction when the vibration of the A mode is excited in the vibrating body 2.
  • FIG. 5C is a diagram illustrating a second vibration mode (hereinafter referred to as “B mode”) of the two bending vibration modes excited by the vibrating body 2.
  • the B mode is a primary bending vibration in the short direction (Y direction) of the vibrating body 2 and has two nodal lines substantially parallel to the long direction (X direction).
  • the protrusion 5 is disposed in the vicinity of the position where the antinode is caused by the vibration of the B mode, and when the vibration of the B mode is excited on the vibrating body 2, the protrusion 5 reciprocates in the axial direction (Z direction).
  • the vibrating body 2 is configured such that the node line in the A mode and the node line in the B mode are substantially orthogonal to each other in the XY plane. Therefore, when the vibrations in the A mode and the B mode are excited in the vibrating body 2 with a predetermined phase difference, an elliptical motion in the ZX plane occurs at the tip of the protrusion 5. As a result, a driving force in the X direction can be applied to the contact body 10 (not shown in FIG. 5, see FIGS. 1 and 2). A flexible substrate (not shown) is bonded to the piezoelectric element 4. By supplying an alternating current to the piezoelectric element 4 through the flexible substrate, vibrations in the A mode and the B mode can be simultaneously excited in the vibrating body 2.
  • the vibration body unit 1 is incorporated in the vibration type actuator 100 so that the X direction of the vibration body 2 matches the X direction of the vibration type actuator 100.
  • the vibrating body 2 is fixed to the vibrating body holding portion 9 by means such as adhesion or welding.
  • the vibrating body holding portion 9 is provided with holes 9a at two locations, and the lower base 8 is provided with columnar convex portions 8f at two locations.
  • the hole portion 9a and the convex portion 8f are slidably fitted.
  • the convex portion 8f may be formed integrally with the lower base 8 or formed by fixing a pin prepared as a separate member from the lower base 8 to the lower base 8 by press-fitting or the like. May be.
  • the surface of the piezoelectric element 4 opposite to the surface to be bonded to the diaphragm 3 is in contact with the buffer member 11 for dispersing the applied pressure.
  • the pressure block 13 to which the buffer member 11 is attached is supported so as to be movable only in the Z direction with respect to the lower base 8.
  • the buffer member 11 is attached to the pressure block 13 by means such as adhesion.
  • Projections 13a are provided at two locations on the surface of the pressure block 13 opposite to the surface on which the buffer member 11 is attached.
  • the lower base 8 is provided with holes 8g at two locations.
  • the pressurizing block 13 is positioned with respect to the lower base 8 by fitting the protrusion 13a into the hole 8g.
  • the pressing force that pressurizes and contacts the protrusion 5 of the vibrating body 2 with the contact body 10 is given by the pressurizing spring 25.
  • a surface of the pressure block 13 opposite to the surface to which the buffer member 11 is attached is in contact with the convex portion 8 h provided on the lower base 8. Thereby, a gap is formed between the vibrating body holding portion 9 and the lower base 8, and it is possible to apply pressure only to the vibrating body 2.
  • the upper base 7 is a support member (first support member) that supports the vibrating body unit 1 in the same manner as the lower base 8. Since the form of installation of the vibrator 2, the vibrator holding part 9, the buffer member 11, and the pressure block 13 with respect to the upper base 7 is the same as the form of each member with respect to the lower base 8 described above, the description Omitted. With the above configuration, the pressure applied to the upper base 7 and the lower base 8 by the pressure spring 25 is directly transmitted to the vibrating body 2. That is, a pressing force acts between each of the two vibrating bodies 2 and the contact body 10 in the Z direction.
  • FIG. 6A is an exploded perspective view of the drive unit 6.
  • FIG. 6B is a top view (plan view) of the drive unit 6.
  • a connecting portion 8i for connecting the drive unit 6 to a drive component (not shown) is provided below the lower base 8.
  • the drive component is an object to be moved, and is, for example, a lens or the like in the imaging apparatus.
  • a cylindrical spring guide portion 7c that is slightly thicker than the shaft portion 7a is formed on the inner side (base portion) of the shaft portion 7a of the upper base 7.
  • the upper base 7 and the lower base 8 need to rotate smoothly around the shaft portions 7a and 7b.
  • an appropriate gap is provided between the inner end surface 7f of the shaft portion 7a of the upper base 7 (the end surface of the spring guide portion 7c on the shaft portion 7a side) and the inner end surface 8j of the bearing portion 8a of the lower base 8. Is required. In consideration of processing errors between the upper base 7 and the lower base 8, this gap needs to be at least several tens of microns or more.
  • a compression coil spring (second urging means) 14 is provided in a compressed state so as to wrap the spring guide portion 7c.
  • the urging force of the compression coil spring 14 always exerts a force on the upper base 7 in the direction of the arrow K (the direction of the center of the spring guide portion 7c and the shaft portions 7a and 7b) as shown in FIG. 6B. Due to the force in the direction of the arrow K, the upper base 7 is shifted toward the lower base 8, and the compression coil spring 14 is always arranged in the gap in the X direction between the upper base 7 and the lower base 8. It occurs only on the shaft 7a side.
  • the urging force of the compression coil spring 14 generates a frictional force (hereinafter referred to as “inter-base frictional force”) around the shaft portion 7 b of the upper base 7 and the lower base 8.
  • inter-base frictional force a frictional force
  • the moment due to the biasing force of the pressure spring 25 is much larger than the moment due to the friction force between the bases. It doesn't matter.
  • the moment by the frictional force between bases can be minimized by arranging the compression coil spring 14 coaxially with the shaft portions 7a and 7b.
  • the compression coil spring 14 is an example of an urging member that moves the upper base 7 to the lower base 8.
  • a cylindrical rubber member compressed in the axial direction is provided so as to wrap the spring guide portion 7 c, and the upper base 7 is biased toward the lower base 8 by the biasing force of the rubber member. It is good also as a structure.
  • the response of the vibration type actuator 100 will be described.
  • the case where the drive unit 6 is moved in the direction opposite to the arrow K without arranging the compression coil spring 14 will be considered.
  • the thrust F of the vibrating body 2 held by the lower base 8 is a driving force for moving a driving component (not shown) immediately. work.
  • the thrust F of the vibrating body 2 held by the upper base 7 is initially used to move the upper base 7 so as to eliminate the gap in the X direction between the upper base 7 and the lower base 8. Since it is used, it is not immediately transmitted to the lower base 8 connected to the driving component.
  • the driving force for moving the driving components is substantially only the thrust F by one vibrating body 2. Therefore, there is a possibility that the drive component cannot be moved at the required acceleration. That is, the required responsiveness cannot be obtained, and in some cases, the driving component may remain stopped until the thrust F of the vibrating body 2 held on the upper base 7 is transmitted to the lower base 8. .
  • the vibration type actuator 100 having the structure in which the compression coil spring 14 is disposed in the drive unit 6, the thrust F of the vibrating body 2 of the upper base 7 is immediately applied to the lower base 8 via the compression coil spring 14. Since it is transmitted, it has high responsiveness. It is desirable that the urging force of the compression coil spring 14 be equal to or greater than the thrust F of the single vibrating body 2. This is because if there is an urging force equal to or greater than the thrust F, the amount of deformation of the compression coil spring 14 that occurs when the vibrating body 2 is activated is small, and thus the effect of improving the responsiveness becomes significant.
  • the urging force is always applied between the upper base 7 and the lower base 8 by the compression coil spring 14.
  • a biasing force that moves the upper base to the lower base using a plate-like spring always works. It has a configuration.
  • FIG. 7 is a perspective view of the drive unit 30 according to the second embodiment.
  • shaft portions 37 a and 37 b are provided on the upper base 37
  • bearing portions 38 a and 38 b are provided on the lower base 38 to form a shaft fitting portion.
  • the upper base 37 and the lower base 38 form a hinge structure. Since the arrangement of the pressure spring 25 and the support structure of the vibrating body 2 are common to the drive unit 30 and the drive unit 6 according to the first embodiment, description thereof is omitted.
  • a hemispherical convex portion 37 c is formed at the tip of the shaft portion 37 a of the upper base 37.
  • An urging plate spring (second urging means) 31 is screwed to the lower base 38.
  • the urging plate spring 31 has an L-shaped deformed portion 31a provided so as to extend from a fixed portion screwed.
  • the end of the deforming portion 31a is in contact with the convex portion 37c.
  • the convex portion 37c protrudes in the ⁇ X direction, and thereby the end of the deformable portion 31a is deformed outward ( ⁇ X direction).
  • the urging force in the + X direction from the urging plate spring 31 always acts on the upper base 37, and the backlash in the X direction between the upper base 37 and the lower base 38 on the shaft portion 37b side is eliminated.
  • the urging plate spring 31 may be screwed at the end of the assembly process. Therefore, the drive unit 30 is easier to assemble than the drive unit 6 according to the first embodiment, and the productivity can be improved.
  • the shaft fitting portion may be formed by providing a bearing portion on the upper base 37 and providing a shaft portion on the lower base 38. In that case, the urging plate spring 31 needs to be fixed to the upper base 37.
  • FIG. 8 is a perspective view of the drive unit 40 according to the third embodiment.
  • shaft portions 47a and 47b are provided on the upper base 47, and bearing portions 48a and 48b are provided on the lower base 48 to form shaft fitting portions.
  • the upper base 47 and the lower base 48 form a hinge structure. Since the arrangement of the pressure spring 25 and the support structure of the vibrating body 2 are common to the drive unit 40 and the drive unit 6 according to the first embodiment, description thereof is omitted.
  • a spring hook 47c is formed on the upper base 47, and a spring hook 48c is formed on the lower base 48.
  • a tension coil spring (second biasing means) 41 is stretched between the spring hook 47c and the spring hook 48c, so that a biasing force in the X direction always acts between the upper base 47 and the lower base 48. Thereby, the play of the X direction of the upper base 47 and the lower base 48 in the axial part 47a side can be eliminated.
  • the urging force of the tension coil spring 41 works at a position away from the shaft portions 47a and 47b. However, if the spring hooks 47c and 48c and the shaft portions 47a and 47b are close to each other, The same effect as the second embodiment can be obtained.
  • the component of the urging force is a component of the moving direction of the drive unit 40 (the axial direction of the shaft portions 47a and 47b).
  • the moving direction component should be larger (if it is dominant). Thereby, the effect similar to 1st Embodiment and 2nd Embodiment is acquired.
  • the tension coil spring 41 may be stretched at the end of the assembly process.
  • the drive unit 40 is easier to assemble than the drive unit 6 according to the first embodiment, and the productivity can be improved.
  • the case in which the moving direction of the drive unit and the axial direction of the shaft portion are the same is described.
  • the moving direction of the drive unit and the axial direction of the shaft portion are different directions unless they are orthogonal to each other. There may be.
  • FIG. 9 is a top view illustrating a schematic configuration of the imaging apparatus 50 including the vibration type actuator 100.
  • the imaging device 50 includes an imaging device main body 51 having an imaging element (not shown) and a lens barrel 52 that is detachable from the imaging device main body 51.
  • the lens barrel 52 includes a plurality of lens groups 53, a focus adjustment lens 54, and a vibration type actuator 100.
  • a lens holding frame (not shown) that holds the focus adjustment lens 54 is connected to the connecting portion 8 i of the lower base 8 of the drive unit 6 in the vibration type actuator 100.
  • the vibration type actuator 100 can also be used as a drive source for moving the zoom lens in the optical axis direction when a zoom lens is disposed in the lens barrel 52. Further, when an image blur correction lens is disposed in the lens barrel 52, the vibration type actuator 100 can be used as a drive source for driving the image blur correction lens in a plane orthogonal to the optical axis.
  • FIG. 10 is a diagram illustrating a schematic configuration of a manipulator 70 including the vibration type actuator 100.
  • the manipulator 70 includes a support unit 71, a vibration type actuator 100 disposed on the support unit 71, and a hand unit 72 disposed to be slidable in the arrow S direction with respect to the support unit 71.
  • the hand portion 72 is connected to the connecting portion 8 i of the lower base 8 of the drive unit 6 in the vibration type actuator 100.
  • the vibration type actuator 100 is used as a drive source for driving the hand portion 72 in the arrow S direction (extending and contracting in the arrow S direction).
  • the vibration type actuator 100 using the two vibrating bodies 2 has been described.
  • the number of the vibrating bodies 2 is not limited to two, and may be three or more.
  • a structure in which the vibrating body 2 is held may be used.
  • a plurality of vibrating bodies 2 are arranged on one base, they may be arranged along the moving direction of the drive unit, or may be arranged along a direction orthogonal to the moving direction.
  • the second support member is fitted to the guide shaft so as to be movable in the axial direction of the guide shaft.
  • the first support member or the second support member may be fitted to the guide shaft so as to be movable in the axial direction of the guide shaft.
  • the drive unit 6 at least one of the 1st support member or the 2nd support member
  • the guide member guides the contact body 10 so as to be movable in the relative movement direction between the contact body 10 and the drive unit 6.
  • vibration type actuator 100 can be applied not only to a stage moving mechanism in an automatic stage, but also to various devices (electronic equipment, precision equipment, machine tools, etc.) that need to move and position predetermined drive components with high accuracy. it can.

Landscapes

  • General Electrical Machinery Utilizing Piezoelectricity, Electrostriction Or Magnetostriction (AREA)

Abstract

ヒンジ構造を有する振動型アクチュエータ100に関し、振動体を支持する基台(支持部材)間のガタつきを抑制することが可能な振動型アクチュエータを提供する。複数の振動体を有し、接触体10を挟む駆動ユニット6を有する振動型アクチュエータ100であって、駆動ユニット6は、軸部又は軸部が嵌合する軸受け部を有し、複数の振動体2のうち少なくとも1つの振動体を支持する上基台7及び下基台8と、上基台7に支持された振動体2と下基台8に支持された振動体2とを付勢して、接触体10に加圧する加圧バネ25と、上基台7又は下基台8を、軸部の軸方向に付勢する圧縮コイルバネ14を備える。

Description

ヒンジ構造を有する振動型アクチュエータ及び装置
 本発明は、ヒンジ構造を有する振動型アクチュエータと、振動型アクチュエータを備える装置に関する。
 無音動作、低速から高速までの駆動の可能性、高トルク、等の特徴を有する振動型アクチュエータは、例えば、カメラのレンズの駆動源として用いられている。圧電素子に、励起した振動を利用する振動型アクチュエータにおいては、圧電素子を備える振動体と被駆動体(接触体)との間に摩擦力が生じる。よって、圧電素子へ無通電の状態であっても接触体を停止させた位置で保持する力(保持力)が大きいという特徴を有している。よって、複数の振動型アクチュエータを用いることで大きな駆動力と保持力を得ることができる。
 このような振動型アクチュエータの特徴を活かした駆動装置が、例えば、特許文献1に開示されている。特許文献1に開示された駆動装置は、棒状の接触体と、接触体を上下方向で挟むように配置された2個の振動体と、振動体と共に移動する2個の振動体ユニットと、振動体を接触体に加圧する弾性部材とを備える。2個の振動体ユニットにはそれぞれ2個ずつのガイド穴が形成され、2個の振動体ユニットの間に位置する伝達部材の伝達ピンが該ガイド穴に嵌合されてガイド機構を形成している。このガイド機構により、2個の振動体ユニットは上下方向にのみ移動可能になり、弾性部材の付勢力により振動体は接触体に対して加圧接触する。この状態で振動体に振動が励起されると、接触体に対して振動体ユニットが直進移動を行う。このとき、弾性部材を、加圧方向だけでなく振動体ユニットの移動方向においても振動体ユニットを接触体に押圧させる姿勢(以下「傾斜姿勢」という)で配置することにより、ガイド機構に内在する隙間に起因するガタつきを抑制している。
特開2013−198264号公報
 しかしながら、特許文献1に開示された駆動装置では、2箇所のガイド機構を通る直線の延長線上近傍に弾性部材を配置しなければ、ガイド機構のスムーズな動きを保障することができない。しかし、このような位置に弾性部材を配置した場合、振動体の位置から離れた位置で付勢力を働かせることになる。この場合、接触体に対する振動体の加圧状態が安定せず、よって、駆動特性が安定しないという問題が生じる。また、弾性部材を傾斜姿勢で配置すると、2個の振動体ユニットの移動方向でのサイズが大きくなるため、ガイド機構に内在する隙間をなくす効果に限界がある。これらの問題を解決する手段として、2個の振動体ユニットをヒンジ構造によって連結し、ヒンジ部の反対側に弾性部材を張架するユニット構造を採用することが考えられる。
 図11は、ヒンジ構造を有する振動型アクチュエータの断面図である。なお、図11に示す振動型アクチュエータは、後述する本発明の実施形態に係る振動型アクチュエータに対する比較例である。振動型アクチュエータは、振動体が搭載された駆動ユニット201とガイド軸206を有する。駆動ユニット201は、筐体(不図示)に両端を固定されたガイド軸206によって移動可能に案内されている。図11には、駆動ユニット201を駆動ユニット201の移動方向(X方向)と直交する平面(YZ面)で切った断面が表されている。
 駆動ユニット201は、上基台202、下基台203、2個の振動体ユニット205a,205b、引っ張りバネ207を有する。下基台203には、ガイド軸206が嵌挿される丸穴が形成されている。上基台202には、上基台202を回転可能に支持するための回転軸202aが設けられ、下基台203には回転軸202aが嵌挿される丸穴(不図示)が形成されている。これによって、上基台202は下基台203に対して回転軸202aを中心に回転可能に支持されている。上基台202には振動体ユニット205aが上下方向(z方向)にのみ移動可能に支持され、下基台203には振動体ユニット205bが上下方向にのみ移動可能に支持されている。上基台202と下基台203のフック形状を有する先端に引っ張りバネ207を架けることにより、所定の押圧力で振動体ユニット205a,205bを接触体204に対して付勢することができる。制御手段(不図示)の移動命令(駆動信号)に従って、駆動ユニット201はx方向に所定距離を移動する。このような構成によれば、摺動抵抗の小さいヒンジ構造を用いるため、接触体204に対して振動体ユニット205a,205bを一定の加圧力で接触させて、安定した接触状態を維持することができる。
 ここで、振動体ユニット205a,205bが接触体204と接触する点と回転軸202aとのY方向距離を“a”とする。引っ張りバネ207の張架位置と回転軸202aとのY方向距離を“b”とする。振動体ユニット205a,205bの加圧力を“Fp”とし、引っ張りバネ207の張力を“T”とすると、Fp=T×b/a、の関係が成り立つ。ここで、b>aであるから、張力Tの大きさは加圧力Fpの大きさよりも小さくてよい。つまり、ヒンジ構造を採用することで、加圧力よりも小さな張力の引っ張りバネを使用することができる。
 しかしながら、回転軸202aを中心にして上基台202をスムーズに回転させるためには、上基台202と下基台203の間に移動方向(x方向)で隙間が必要になる。したがって、この隙間によるガタつきを抑制する手段が必要になる。例えば、上記特許文献1に開示されている技術に倣って引っ張りバネ207を移動方向に傾けて張架しても、このガタつきを抑制することはできない。これは、引っ張りバネ207が回転軸202aから離れた位置にあるため、移動方向の付勢力が加えられても、回転軸202aの中央付近を中心としたZ軸まわりのモーメントが大きく働くために、この隙間を詰める効果は期待できないからである。
 本発明は、複数の振動体を用いたヒンジ構造を有する振動型アクチュエータにおいて、振動体を支持する基台(支持部材)間のガタつきを抑制することが可能な振動型アクチュエータを提供する。
 本発明に係る振動型アクチュエータは、接触体と、複数の振動体を有し、前記複数の振動体によって前記接触体を挟む駆動ユニットと、を有する振動型アクチュエータであって、前記駆動ユニットは、軸部を有し、前記複数の振動体のうち少なくとも1つの振動体を支持する第1の支持部材と、前記軸部が、前記軸部の軸方向に移動可能に嵌合する軸受け部を有し、前記複数の振動体のうち少なくとも1つの振動体を支持する第2の支持部材と、前記第1の支持部材に支持された振動体と前記第2の支持部材に支持された振動体とを付勢して、前記接触体に加圧する第1の付勢手段と、前記軸部又は前記軸受け部において、前記第1の支持部材又は前記第2の支持部材を、前記軸部の軸方向に付勢する第2の付勢手段と、を備えることを特徴とする。
 本発明によれば、振動体を支持する基台(支持部材)間のガタつきを抑制することができ、これにより、高精度の位置決めが可能となり、また、振動型アクチュエータの応答性を向上させることができる。
 [図1]本発明の実施形態に係る振動型アクチュエータの斜視図である。
 [図2]振動型アクチュエータの分解斜視図である。
 [図3]第1実施形態に係る駆動ユニットの斜視図である。
 [図4]駆動ユニットの部分的な分解斜視図である。
 [図5A~図5C]振動体に励起される振動を説明する模式図である。
 [図6A及び図6B]駆動ユニットの分解斜視図及び上面図である。
 [図7]第2実施形態に係る駆動ユニットの斜視図である。
 [図8]第3実施形態に係る駆動ユニットの斜視図である。
 [図9]振動型アクチュエータを備える撮像装置の概略構成を示す上面図である。
 [図10]振動型アクチュエータを備えるマニピュレータの概略構成を示す図である。
 [図11]比較例に係る振動型アクチュエータの構造を示す断面図である。
 以下、本発明の実施形態について、添付図面を参照して詳細に説明する。
 <第1実施形態>
 図1は、本発明の実施形態に係るリニア駆動型の振動型アクチュエータ100の斜視図である。図2は、振動型アクチュエータ100の分解斜視図である。振動型アクチュエータ100は、第1実施形態に係る駆動ユニット6、被駆動体(接触体)10、上プレート20、下プレート21、ガイド軸22及び固定部材23,24を有する。駆動ユニット6は、2つの振動体ユニット1、上基台(第1の支持部材)7、下基台(第2の支持部材)8、2本の加圧バネ(第1の付勢手段)25を有する。
 接触体10の両端とガイド軸22の両端は、固定部材23,24に固定されている。ガイド軸22は、接触体10と駆動ユニット6との相対移動方向と平行に配置されている。固定部材23,24は上プレート20と下プレート21とに挟まれてこれらと連結されており、このようにして、これらの部材によって振動型アクチュエータ100の筐体部が構成されている。駆動ユニット6は、ガイド軸22に沿って(ガイド軸22の軸方向に)移動可能に支持されており、接触体10は、上基台7と下基台8に支持された2つの振動体ユニット1に挟まれている。
 説明の便宜上、図1に示すようにX方向、Y方向、Z方向を規定する。X方向は、振動型アクチュエータ100の長さ方向であり、また、駆動ユニット6の移動方向である。Z方向は、振動型アクチュエータ100の厚み方向であり、2つの振動体ユニット1が接触体10を挟み込む方向である。Y方向は、振動型アクチュエータ100の幅方向(短手方向)である。
 図3は、駆動ユニット6の斜視図である。下基台8にはガイド軸22が摺動自在に挿入される嵌合穴8cが2か所(1箇所は振動体ユニット1に隠れて不図示)に設けられている。これにより、下基台8(駆動ユニット6)はガイド軸22に案内されてガイド軸22の軸方向(長さ方向)に移動可能であり、また、ガイド軸22を中心として回転可能である。
 上基台7のY方向の一方の端部側には軸部7a,7bが形成され、下基台8のY方向の一方の端部側には軸受け部8a,8bが形成されている。上基台7に設けられた軸部7a,7bが下基台8に設けられた軸受け部8a,8bに嵌合して軸嵌合部が形成される。これにより、上基台7が下基台8に対して軸部7a,7bを中心として回動可能なヒンジ構造が構成されている。軸部7a,7bは、円柱の側面の2箇所を互いに平行になるようにカットされた形状を有している。軸部7a,7bの2つのカット面をXY平面と平行になるようにしてY方向から軸受け部8a,8bへ挿入した後、2つのカット面がZX平面と平行になるように上基台7を90°回転させて加圧バネ25を張架する。こうして、簡単に軸部7a,7bを軸受け部8a,8bに嵌合させることができ、また、軸受け部8a,8bから軸部7a,7bが抜けるのを防止することができる。なお、ここでは上基台7に軸部7a,7bを設け、下基台8に軸受け部8a,8bを設けて軸嵌合部を形成したが、上基台に軸受け部を設け、下基台に軸部を設けて軸嵌合部を形成してもよい。このとき、上基台が第2の支持部材(軸受け部を有する支持部材)となり、下基台が第1の支持部材(軸部を有する支持部材)となる。なお、軸部7bと軸受け部8bは、上基台7に隠れて不図示となっている。
 上基台7のY方向の他方の端部側にはバネフック7d,7eが形成されており、下基台8のY方向の他方の端部側にはバネフック8d,8eが形成されている。加圧バネ25は、上基台7に設けられたバネフック7d,7eと下基台8に設けられたバネフック8d,8eとに張架されて、上基台7と下基台8に引っ張り力を与えている。これにより、上基台7と下基台8を介して2つの振動体ユニット1が接触体10に加圧する。なお、ここでは、加圧バネ25として、引っ張りコイルばねを用いているが、これに限られず、ゴム製部材等の弾性体を用いて上基台7と下基台8とに引っ張り力を与えてもよい。また、ここでは、接触体10に加圧する方向から見た場合に、加圧バネ25は、振動体2を介して、軸嵌合部(軸部及び軸受け部)の反対側にある。振動型アクチュエータ100では、2つの振動体ユニット1を駆動することにより、駆動ユニット6がガイド軸22に案内されながら、接触体10に対してX方向に相対移動する構造となっている。振動体ユニット1の駆動方法については、図5を参照して後述する。
 図4は、駆動ユニット6を構成する下基台8と振動体ユニット1の構造を説明する分解斜視図である。下基台8は、振動体ユニット1を支持する支持部材(第2の支持部材)である。振動体ユニット1は、振動体2、緩衝部材11、加圧ブロック13及び振動体保持部9を有する。振動体2は、2つの突起部5が形成された振動板3と、振動板3に接着された電気−機械エネルギ変換素子である圧電素子4とを有する。振動板3は鉄系の金属(例えば、SUS420J2)からなり、突起部5はプレス加工等により振動板3に一体的に成形されている。なお、振動板3とは別部材として準備された突起部材を溶接、接着等の手段を用いて振動板3に取り付けることで、振動板3に突起部5を設けてもよい。
 ここで、振動体2の駆動原理について説明する。図5Aは、振動体2を簡略化して示す斜視図である。図5Bは、振動体2に励起される2つの屈曲振動モードのうちの第1振動モード(以下「Aモード」という)を説明する図である。Aモードは、振動体2の長手方向(X方向)における二次の屈曲振動であり、振動体2の短手方向(Y方向(幅方向))と略平行な3本の節線を有している。突起部5は、Aモードの振動で節となる位置の近傍に配置されており、振動体2にAモードの振動が励起されることによりX方向に往復運動を行う。図5Cは、振動体2に励起される2つの屈曲振動モードのうちの第2振動モード(以下「Bモード」という)を説明する図である。Bモードは、振動体2の短手方向(Y方向)における一次の屈曲振動であり、長手方向(X方向)と略平行な2本の節線を有している。突起部5は、Bモードの振動で腹となる位置の近傍に配置されており、振動体2にBモードの振動が励起されることにより突起部5の軸方向(Z方向)に往復運動を行う。
 ここで、振動体2は、Aモードでの節線とBモードでの節線がXY平面内において互いに略直交するように構成されている。よって、AモードとBモードの振動を所定の位相差で振動体2に励起すると、突起部5の先端にZX面内での楕円運動が発生する。これによって接触体10(図5に不図示、図1及び図2参照)にX方向の駆動力を与えることができる。なお、圧電素子4にはフレキシブル基板(不図示)が接着されている。フレキシブル基板を通じて圧電素子4に交流電流を供給することにより、振動体2にAモードとBモードの振動を同時に励起することができる。振動体ユニット1は、振動体2のX方向が振動型アクチュエータ100のX方向と一致するように、振動型アクチュエータ100に組み込まれている。
 図3及び図4を参照した説明に戻る。振動体2は、振動体保持部9に接着、溶接等の手段により固定されている。振動体保持部9には2カ所に穴部9aが設けられ、下基台8には2カ所に円柱状の凸部8fが設けられている。穴部9aと凸部8fは摺動自在に嵌合している。なお、凸部8fは、下基台8と一体的に形成されていてもよいし、下基台8とは別部材として準備されたピンを圧入等により下基台8に固定することにより形成されていてもよい。
 圧電素子4において振動板3と接着される面の反対側の面は、加圧力を分散させるための緩衝部材11と接触している。緩衝部材11が取り付けられた加圧ブロック13は、下基台8に対してZ方向にのみ移動可能に支持されている。緩衝部材11として、例えば、フェルトを用いることができる。緩衝部材11は、接着等の手段により加圧ブロック13に取り付けられている。加圧ブロック13において緩衝部材11が取り付けられている面と反対の面には2カ所に突起13aが設けられる。下基台8には2カ所に穴部8gが設けられている。突起13aが穴部8gに嵌合することにより、加圧ブロック13は下基台8に対して位置決めされている。
 振動体2の突起部5を接触体10に対して加圧接触させる加圧力は、加圧バネ25によって与えられる。加圧ブロック13において緩衝部材11が取り付けられた面の反対側の面は、下基台8に設けられた凸部8hと接触する。これにより、振動体保持部9と下基台8との間に隙間が形成され、振動体2のみに加圧力を与えることができる。
 上基台7は、下基台8と同様に振動体ユニット1を支持する支持部材(第1の支持部材)である。上基台7に対する振動体2、振動体保持部9、緩衝部材11及び加圧ブロック13の設置の形態は、上述した下基台8に対する各部材の設置の形態と同様であるため、説明を省略する。上記構成により、上基台7と下基台8に加圧バネ25によって与えられた加圧力が、直接、振動体2に伝わる。すなわち、Z方向において2つの振動体2のそれぞれと接触体10との間に加圧力が作用する。
 次に、駆動ユニット6の構成について、より詳細に説明する。図6Aは、駆動ユニット6の分解斜視図である。図6Bは、駆動ユニット6の上面図(平面図)である。下基台8の下部には、駆動ユニット6を駆動部品(不図示)と連結するための連結部8iが設けられている。駆動部品は、移動させたい物体であって、例えば、撮像装置におけるレンズ等である。
 上基台7の軸部7aの内側(根元部分)には、軸部7aより若干太い円柱状のバネガイド部7cが形成されている。振動体2の接触体10への加圧力を安定させるためには、上基台7と下基台8が軸部7a,7bを中心としてスムーズに回転する必要がある。そのためには、上基台7の軸部7aの内側の端面7f(バネガイド部7cの軸部7a側の端面)と下基台8の軸受け部8aの内側の端面8jとの間に適当な隙間が必要となる。上基台7と下基台8の加工誤差を考慮すると、この隙間は少なくとも数十ミクロン以上は必要である。
 しかし、このような隙間が存在すると、従来技術に関して前述した通り、駆動部品の位置決め精度や、アクチュエータの応答性が低下してしまい、所望の性能が得られない。そこで、バネガイド部7cを包むように、圧縮コイルバネ(第2の付勢手段)14を、予め圧縮した状態で設けている。これにより、圧縮コイルバネ14の付勢力により、図6Bに示すように、上基台7には常に矢印K方向(バネガイド部7cや軸部7a,7bの中心軸方向)に力が働く。この矢印K方向の力により、上基台7は下基台8に対して片寄せられ、上基台7と下基台8の間のX方向の隙間は、常に圧縮コイルバネ14が配置された軸部7a側にのみ生じる。
 この場合、圧縮コイルバネ14の付勢力によって、上基台7と下基台8における軸部7bの周囲に摩擦力(以下「基台間摩擦力」という)が発生する。しかし、軸部7a,7bの中心軸まわりのモーメントを考えると、基台間摩擦力によるモーメントよりも加圧バネ25の付勢力によるモーメントの方が遙かに大きいため、基台間摩擦力は問題とならない。なお、圧縮コイルバネ14を軸部7a,7bと同軸に配置することで、基台間摩擦力によるモーメントを最小限に抑えることができる。なお、圧縮コイルバネ14は、上基台7を下基台8に片寄せする付勢部材の一例である。圧縮コイルバネ14に代えて、軸方向に圧縮された円筒形状のゴム製部材をバネガイド部7cを包むように設け、ゴム製部材の付勢力により上基台7を下基台8に対して片寄せする構成としてもよい。
 次に、振動型アクチュエータ100の応答性について説明する。先ず、圧縮コイルバネ14を配置せずに駆動ユニット6を矢印Kの反対方向へ移動させる場合について考察する。その場合、連結部8iが下基台8と一体に形成されているため、下基台8が保持する振動体2の推力Fは、直ぐに駆動部品(不図示)を移動させるための駆動力として働く。一方、上基台7が保持する振動体2の推力Fは、最初は、上基台7と下基台8の間にあるX方向の隙間を無くすように上基台7を移動させるために用いられるため、駆動部品に連結された下基台8に直ぐには伝わらない。つまり、上基台7が下基台8に当接するまでは、駆動部品を移動させるための駆動力は、実質的に1つの振動体2による推力Fだけになる。したがって、駆動部品を、必要とされる加速度で移動させることができないおそれがある。つまり、必要な応答性が得られず、場合によっては上基台7に保持されている振動体2の推力Fが下基台8に伝わるまでは、駆動部品が停止したままとなるおそれもある。
 これに対して、圧縮コイルバネ14が駆動ユニット6に配置された構造を有する振動型アクチュエータ100は、上基台7の振動体2の推力Fが圧縮コイルバネ14を介して即座に下基台8に伝達されるため、高い応答性を有する。圧縮コイルバネ14の付勢力は、1個の振動体2の推力F以上とすることが望ましい。これは、推力F以上の付勢力があれば、振動体2の起動時に発生する圧縮コイルバネ14の変形量は小さく、よって、応答性改善の効果が顕著になるからである。
 <第2実施形態>
 第1実施形態に係る駆動ユニット6では、圧縮コイルバネ14により上基台7と下基台8の間に常に付勢力が働いている構成とした。これに対して、第2実施形態に係る駆動ユニットでは、以下に詳細に説明するように、板状のバネを用いて上基台を下基台に対して片寄せする付勢力が常に働いている構成としている。
 図7は、第2実施形態に係る駆動ユニット30の斜視図である。駆動ユニット30では、上基台37に軸部37a,37bが設けられ、下基台38に軸受け部38a,38bが設けられて軸嵌合部が形成される。上基台37と下基台38とはヒンジ構造を形成している。加圧バネ25の配設形態や振動体2の支持構造は、駆動ユニット30と第1実施形態に係る駆動ユニット6とで共通するため、説明を省略する。
 上基台37の軸部37aの先端には、半球状の凸部37cが形成されている。下基台38には、付勢板バネ(第2の付勢手段)31がねじ止めされている。付勢板バネ31は、ねじ止めされた固定部から延在して設けられたL字状の変形部31aを有する。変形部31aの端部は凸部37cに接している。凸部37cは−X方向に突出しており、これにより変形部31aの端部が外向き(−X向き)に変形する。これにより、付勢板バネ31からの+X方向の付勢力が常に上基台37に働き、軸部37b側における上基台37と下基台38との間のX方向のガタつきをなくすことができる。駆動ユニット30では、組立工程の最後に付勢板バネ31をねじ止めすればよい。よって駆動ユニット30は、第1実施形態に係る駆動ユニット6よりも、組立が容易であり、生産性を高めることができる。なお、軸嵌合部は、上基台37に軸受け部を設け、下基台38に軸部を設けて形成してもよい。その場合、付勢板バネ31は上基台37に固定する必要がある。
 <第3実施形態>
 第3実施形態では、引っ張りコイルバネを用いて上基台を下基台に対して片寄せする付勢力が常に働いている構成としている。図8は、第3実施形態に係る駆動ユニット40の斜視図である。駆動ユニット40では、上基台47に軸部47a,47bが設けられ、下基台48に軸受け部48a,48bが設けられて軸嵌合部が形成されている。上基台47と下基台48とはヒンジ構造を形成している。加圧バネ25の配設形態や振動体2の支持構造は、駆動ユニット40と第1実施形態に係る駆動ユニット6とで共通するため、説明を省略する。
 上基台47にはバネフック47cが形成されており、下基台48にはバネフック48cが形成されている。バネフック47cとバネフック48cとの間に引っ張りコイルバネ(第2の付勢手段)41を張架することにより、上基台47と下基台48の間に常にX方向の付勢力が働く。これにより、軸部47a側における上基台47と下基台48のX方向のガタつきをなくすことができる。引っ張りコイルバネ41の付勢力は、第1及び第2実施形態とは異なり、軸部47a,47bから離れた位置で働くが、バネフック47c,48cと軸部47a,47bとが近ければ、第1及び第2実施形態と同様の効果が得られる。また、引っ張りコイルバネ41の付勢力の方向が軸部47a,47bの中心軸方向と平行でなくても、付勢力の成分を駆動ユニット40の移動方向(軸部47a,47bの軸方向)成分と、移動方向(軸部47a,47bの軸方向)と直交する方向の成分とに分解したときに、移動方向成分の方が大きければ(支配的であれば)よい。これにより、第1実施形態及び第2実施形態と同様の効果が得られる。駆動ユニット40では、組立工程の最後に引っ張りコイルバネ41を張架すればよい。よって駆動ユニット40は、第1実施形態に係る駆動ユニット6よりも、組立が容易であり、生産性を高めることができる。なお、本実施形態では、駆動ユニットの移動方向と軸部の軸方向を同じ方向にした場合について説明したが、駆動ユニットの移動方向と軸部の軸方向は、直交しない限りにおいて、異なる方向であってもよい。
 <第4実施形態>
 次に、振動型アクチュエータ100を適用した各種の装置について説明する。図9は、振動型アクチュエータ100を備える撮像装置50の概略構成を示す上面図である。撮像装置50は、撮像素子(不図示)を有する撮像装置本体51と、撮像装置本体51に対して着脱自在なレンズ鏡筒52を有する。レンズ鏡筒52は、複数のレンズ群53と、フォーカス調整用レンズ54と、振動型アクチュエータ100を含む。フォーカス調整用レンズ54を保持する不図示のレンズ保持枠は、振動型アクチュエータ100における駆動ユニット6の下基台8の連結部8iに連結されている。振動型アクチュエータ100を駆動することにより、フォーカス調整用レンズ54を光軸方向に駆動して、被写体にピントを合わせることができる。
 なお、振動型アクチュエータ100は、レンズ鏡筒52にズーム用レンズが配置されている場合に、ズーム用レンズを光軸方向に移動させる駆動源として用いることもできる。更に、レンズ鏡筒52に像ブレ補正レンズが配置されている場合に、振動型アクチュエータ100は、像ブレ補正レンズを光軸と直交する平面内で駆動する駆動源として用いることができる。
 図10は、振動型アクチュエータ100を備えるマニピュレータ70の概略構成を示す図である。マニピュレータ70は、支持部71、支持部71に配置された振動型アクチュエータ100、支持部71に対して矢印S方向にスライド可能に配置されたハンド部72を備える。ハンド部72は、振動型アクチュエータ100における駆動ユニット6の下基台8の連結部8iに連結されている。振動型アクチュエータ100は、ハンド部72を矢印S方向に駆動する(矢印S方向で伸縮させる)ための駆動源として用いられる。
 以上、本発明をその好適な実施形態に基づいて詳述してきたが、本発明はこれら特定の実施形態に限られるものではなく、この発明の要旨を逸脱しない範囲の様々な形態も本発明に含まれる。更に、上述した各実施形態は本発明の一実施形態を示すものにすぎず、各実施形態を適宜組み合わせることも可能である。
 例えば、上記実施形態では、2個の振動体2を用いた振動型アクチュエータ100について説明したが、振動体2の数は2個に限られるものではなく、3個以上であってもよい。例えば、上基台7が1個の振動体2を保持し、下基台8が2個の振動体2を保持した構造や、上基台7と下基台8のそれぞれが2個ずつの振動体2を保持した構造としてもよい。1の基台に複数の振動体2を配置する場合には、それらを駆動ユニットの移動方向に沿って並べてもよいし、移動方向と直交する方向に沿って並べてもよい。また、上記実施形態では、第2の支持部材が、ガイド軸に、ガイド軸の軸方向に移動可能に嵌合している。しかし、第1の支持部材又は第2の支持部材のうち少なくとも一方が、ガイド軸に、ガイド軸の軸方向に移動可能に嵌合していればよい。また、上記実施形態では、接触体10が固定されて駆動ユニット6が移動する構成について説明したが、逆に、駆動ユニット6(第1の支持部材又は第2の支持部材のうち少なくとも一方)が固定されて接触体10を、ガイド部材に沿って移動させる構成とすることも可能である。このとき、ガイド部材は、接触体10を、接触体10と駆動ユニット6との相対移動方向に移動可能にガイドする。更に、上記実施形態では、振動型アクチュエータ100を撮像装置及びマニピュレータに適用した例について説明したが、振動型アクチュエータ100の適用例はこれらに限られるものでない。振動型アクチュエータ100は、自動ステージにおけるステージ移動機構の他、所定の駆動部品の移動と位置決めを高精度に行う必要のある各種の装置(電子機器、精密機器、工作機械等)に適用することができる。
 本願は、2018年3月23日提出の日本国特許出願特願2018−056359を基礎として優先権を主張するものであり、その記載内容の全てをここに援用する。
 1  振動体ユニット
 2  振動体
 6,30,40  駆動ユニット
 7  上基台(第1の支持部材)
 7a,7b  軸部
 8  下基台(第2の支持部材)
 8a,8b 軸受け部
 10  被駆動体(接触体)
 14  圧縮コイルバネ(第2の付勢手段)
 25 加圧バネ(第1の付勢手段)
 31 付勢板バネ(第2の付勢手段)
 41 引っ張りコイルバネ(第2の付勢手段)
 100  振動型アクチュエータ

Claims (10)

  1.  接触体と、
     複数の振動体を有し、前記複数の振動体によって前記接触体を挟む駆動ユニットと、を有する振動型アクチュエータであって、
     前記駆動ユニットは、
     軸部を有し、前記複数の振動体のうち少なくとも1つの振動体を支持する第1の支持部材と、
     前記軸部が、前記軸部の軸方向に移動可能に嵌合する軸受け部を有し、前記複数の振動体のうち少なくとも1つの振動体を支持する第2の支持部材と、
     前記第1の支持部材に支持された振動体と前記第2の支持部材に支持された振動体とを付勢して、前記接触体に加圧する第1の付勢手段と、
     前記軸部又は前記軸受け部において、前記第1の支持部材又は前記第2の支持部材を、前記軸部の軸方向に付勢する第2の付勢手段と、を備えることを特徴とする振動型アクチュエータ。
  2.  前記第2の付勢手段の付勢力を、前記軸方向の成分と前記軸方向と直交する方向の成分とに分けたときに、前記軸方向の成分が前記直交する方向の成分よりも大きいことを特徴とする請求項1に記載の振動型アクチュエータ。
  3.  前記第2の付勢手段の付勢力における前記軸方向の成分の大きさが、前記第1の支持部材又は第2の支持部材に支持された振動体の推力よりも大きいことを特徴とする請求項2に記載の振動型アクチュエータ。
  4.  前記第2の付勢手段は、圧縮コイルバネまたはゴム製部材であることを特徴とする請求項1乃至3のいずれか1項に記載の振動型アクチュエータ。
  5.  前記圧縮コイルバネまたは前記ゴム製部材は、前記軸嵌合部と同軸に配置されていることを特徴とする請求項4に記載の振動型アクチュエータ。
  6.  前記第2の付勢手段は板バネであり、
     前記板バネは、前記第2の支持部材に取り付けられると共に、前記軸部の端部に当接して前記軸方向に前記軸部を付勢することを特徴とする請求項1乃至3のいずれか1項に記載の振動型アクチュエータ。
  7.  前記第2の付勢手段は引っ張りコイルバネであり、
     前記引っ張りコイルバネは、前記第1の支持部材と前記第2の支持部材のそれぞれに設けられたバネフックに張架されていることを特徴とする請求項1乃至3のいずれか1項に記載の振動型アクチュエータ。
  8.  前記接触体を固定する固定部材と、
     前記接触体と前記駆動ユニットとの相対移動方向と平行に配置されるガイド軸と、を備え、
     前記第1の支持部材と前記第2の支持部材のうち少なくとも一方が、前記ガイド軸に、前記ガイド軸の軸方向に移動可能に嵌合していることを特徴とする請求項1乃至7のいずれか1項に記載の振動型アクチュエータ。
  9.  前記第1の支持部材と前記第2の支持部材のうち少なくとも一方を固定する固定部材と、
     前記接触体を、前記接触体と前記駆動ユニットとの相対移動方向に移動可能にガイドするガイド部材と、を備えることを特徴とする請求項1乃至7のいずれか1項に記載の振動型アクチュエータ。
  10.  請求項1乃至8のいずれか1項に記載の振動型アクチュエータと、
     前記振動型アクチュエータにより駆動される駆動部品と、を備えることを特徴とする装置。
PCT/JP2019/008256 2018-03-23 2019-02-26 ヒンジ構造を有する振動型アクチュエータ及び装置 WO2019181445A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018056359A JP2019170079A (ja) 2018-03-23 2018-03-23 振動型アクチュエータ及び装置
JP2018-056359 2018-03-23

Publications (1)

Publication Number Publication Date
WO2019181445A1 true WO2019181445A1 (ja) 2019-09-26

Family

ID=67986484

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/008256 WO2019181445A1 (ja) 2018-03-23 2019-02-26 ヒンジ構造を有する振動型アクチュエータ及び装置

Country Status (2)

Country Link
JP (1) JP2019170079A (ja)
WO (1) WO2019181445A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6852033B2 (ja) 2018-10-03 2021-03-31 キヤノン株式会社 振動型アクチュエータ及び装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008167594A (ja) * 2006-12-28 2008-07-17 Canon Inc 多自由度駆動装置および撮像装置
JP2013121197A (ja) * 2011-12-06 2013-06-17 Seiko Epson Corp 圧電モーター、駆動装置、電子部品検査装置、電子部品搬送装置、印刷装置、ロボットハンド、およびロボット
JP2013198264A (ja) * 2012-03-19 2013-09-30 Canon Inc 振動型駆動装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008167594A (ja) * 2006-12-28 2008-07-17 Canon Inc 多自由度駆動装置および撮像装置
JP2013121197A (ja) * 2011-12-06 2013-06-17 Seiko Epson Corp 圧電モーター、駆動装置、電子部品検査装置、電子部品搬送装置、印刷装置、ロボットハンド、およびロボット
JP2013198264A (ja) * 2012-03-19 2013-09-30 Canon Inc 振動型駆動装置

Also Published As

Publication number Publication date
JP2019170079A (ja) 2019-10-03

Similar Documents

Publication Publication Date Title
JP5955347B2 (ja) リニア超音波モータ及びそれを用いた光学装置
JP6188366B2 (ja) アクチュエータ及び光学機器
JP6329372B2 (ja) 駆動装置、レンズ保持装置、及びモータ付き装置
JP4395052B2 (ja) 駆動装置
JP6366674B2 (ja) 振動波モータ
JP5818707B2 (ja) 振動波駆動装置、二次元駆動装置及び画像振れ補正装置
PH12017000138A1 (en) Motor and electronic apparatus including motor
JP2017034900A (ja) 振動型アクチュエータ、装置および光学機器
JP7046614B2 (ja) 振動型アクチュエータ及び電子機器
JP6806472B2 (ja) 振動波モータ及び振動波モータを適用した光学機器
WO2019181445A1 (ja) ヒンジ構造を有する振動型アクチュエータ及び装置
US10951135B2 (en) Linear driving mechanism for driving driven object, image pickup apparatus, lens barrel, and stage moving apparatus
WO2010016502A1 (ja) 駆動装置、およびこれを備えた撮像装置、電子機器
JP2017173502A (ja) レンズ鏡筒及び撮像装置
JP6852033B2 (ja) 振動型アクチュエータ及び装置
JP2018088821A (ja) 振動型アクチュエータ、装置および光学機器
JP7182980B2 (ja) 振動型アクチュエータ及び装置
JP6949905B2 (ja) アクチュエータ、装置
JP6929165B2 (ja) 振動波モータおよび駆動装置
JP6968677B2 (ja) 駆動装置及び光学機器
US11502625B2 (en) Vibration wave motor, and driving apparatus having the same
US11843279B2 (en) Vibration wave driving apparatus and image pickup apparatus
JP2018174618A (ja) 振動波モータを用いたリニア駆動装置及び光学装置
JP2023135439A (ja) 振動波モータ、駆動装置、レンズ装置、および撮像装置
JP2022028254A (ja) 振動型アクチュエータ及び機器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19771839

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19771839

Country of ref document: EP

Kind code of ref document: A1