WO2019177016A1 - 電線導体、被覆電線、ワイヤーハーネス、および電線導体の製造方法 - Google Patents

電線導体、被覆電線、ワイヤーハーネス、および電線導体の製造方法 Download PDF

Info

Publication number
WO2019177016A1
WO2019177016A1 PCT/JP2019/010248 JP2019010248W WO2019177016A1 WO 2019177016 A1 WO2019177016 A1 WO 2019177016A1 JP 2019010248 W JP2019010248 W JP 2019010248W WO 2019177016 A1 WO2019177016 A1 WO 2019177016A1
Authority
WO
WIPO (PCT)
Prior art keywords
wire
cross
electric wire
section
conductor
Prior art date
Application number
PCT/JP2019/010248
Other languages
English (en)
French (fr)
Inventor
響真 佐橋
勇人 大井
豊貴 古川
大塚 保之
田口 欣司
Original Assignee
株式会社オートネットワーク技術研究所
住友電装株式会社
住友電気工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社オートネットワーク技術研究所, 住友電装株式会社, 住友電気工業株式会社 filed Critical 株式会社オートネットワーク技術研究所
Priority to DE112019001284.3T priority Critical patent/DE112019001284T5/de
Priority to US16/977,635 priority patent/US11189394B2/en
Priority to JP2020506601A priority patent/JP7024855B2/ja
Priority to CN201980016151.7A priority patent/CN112005320B/zh
Publication of WO2019177016A1 publication Critical patent/WO2019177016A1/ja
Priority to JP2022018548A priority patent/JP7290184B2/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B5/00Non-insulated conductors or conductive bodies characterised by their form
    • H01B5/08Several wires or the like stranded in the form of a rope
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B17/00Insulators or insulating bodies characterised by their form
    • H01B17/14Supporting insulators
    • H01B17/16Fastening of insulators to support, to conductor, or to adjoining insulator
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B13/00Apparatus or processes specially adapted for manufacturing conductors or cables
    • H01B13/0006Apparatus or processes specially adapted for manufacturing conductors or cables for reducing the size of conductors or cables
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B13/00Apparatus or processes specially adapted for manufacturing conductors or cables
    • H01B13/02Stranding-up
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B13/00Apparatus or processes specially adapted for manufacturing conductors or cables
    • H01B13/02Stranding-up
    • H01B13/0207Details; Auxiliary devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B13/00Apparatus or processes specially adapted for manufacturing conductors or cables
    • H01B13/02Stranding-up
    • H01B13/0292After-treatment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B7/00Insulated conductors or cables characterised by their form
    • H01B7/0009Details relating to the conductive cores
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B7/00Insulated conductors or cables characterised by their form
    • H01B7/0045Cable-harnesses
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B7/00Insulated conductors or cables characterised by their form
    • H01B7/17Protection against damage caused by external factors, e.g. sheaths or armouring
    • H01B7/28Protection against damage caused by moisture, corrosion, chemical attack or weather
    • H01B7/282Preventing penetration of fluid, e.g. water or humidity, into conductor or cable
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B7/00Insulated conductors or cables characterised by their form
    • H01B7/17Protection against damage caused by external factors, e.g. sheaths or armouring
    • H01B7/29Protection against damage caused by extremes of temperature or by flame
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B7/00Insulated conductors or cables characterised by their form
    • H01B7/42Insulated conductors or cables characterised by their form with arrangements for heat dissipation or conduction
    • H01B7/421Insulated conductors or cables characterised by their form with arrangements for heat dissipation or conduction for heat dissipation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/02Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of metals or alloys
    • H01B1/023Alloys based on aluminium
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/14Extreme weather resilient electric power supply systems, e.g. strengthening power lines or underground power cables

Definitions

  • the wire harness may be used by bundling multiple wires with pipes for the purpose of preventing interference with electromagnetic shields and foreign objects.
  • Patent Document 1 describes that the cross section of the electric wire conductor made of a single core conductor is made into a semicircular shape.
  • JP 2016-054030 A JP 2006-269201 A Japanese Utility Model Publication No. 5-62917 JP 2017-45523 A JP 2006-260898 A JP 63-158710 A JP 2011-134667 A International Publication No. 2017/056278 JP-A-8-249926
  • a wire conductor similar to that of Patent Document 1 is configured using a stranded wire composed of a plurality of strands, flexibility can be improved.
  • a processing method such as a drawing process in which a force is applied to pull the wire conductor in the axial direction using, for example, a compression die has been used.
  • a processing method such as a drawing process in which a force is applied to pull the wire conductor in the axial direction using, for example, a compression die has been used.
  • a processing method such as a drawing process in which a force is applied to pull the wire conductor in the axial direction using, for example, a compression die has been used.
  • burr sharp protrusion structure
  • the present disclosure is an electric wire conductor that is excellent in space saving and flexibility, and in which a load is not easily concentrated on a specific wire, a covered electric wire and a wire harness including the electric wire conductor, and such an electric wire conductor. It is an object to provide a manufacturing method.
  • the electric wire conductor according to the present disclosure is formed of a stranded wire obtained by twisting a plurality of strands, and the cross section intersecting the axial direction of the stranded wire has a flat shape in which the width of the cross section is larger than the height, or one Deformation from the circular shape of the wire in the cross section of the deformed portion, having a fan-shaped deformed portion having two sides that are in contact with each other at the sides or vertices and an outwardly convex curve connecting the end portions of the sides
  • the rate is 70% or less of the deformation rate of the central part located inside the outer peripheral part in the outer peripheral part facing the outer periphery of the deforming part.
  • the electric wire conductor according to the present disclosure is not a single-core conductor but a stranded wire obtained by twisting a plurality of strands, and thus has high flexibility.
  • the electric wire conductor according to the present disclosure has a deformed portion whose cross-sectional shape is a flat shape or a fan shape, by arranging or bundling a plurality of covered electric wires made of the electric wire conductor, When used in an integrated manner, the gaps between the covered electric wires can be reduced to perform the integration, and the space saving property is excellent.
  • the deformation rate from the circular shape of the outer peripheral strand is 70% or less of the deformation rate of the central strand, so that the outer peripheral strand
  • the effect of fully forming and compressing the wire conductor is obtained while preventing the load from being concentrated on the outer periphery and causing the wire breakage and material modification to the outer periphery, and the formation of uneven structures such as sharp protrusions on the outer periphery. It is done.
  • FIG. 9A is a raw material stranded wire before compression
  • FIG. 9B is a sample A1 compressed at a low compression rate
  • FIG. 9B shows a sample A2 compressed at a high compression rate
  • 10A to 10C are photographs obtained by photographing a cross section of a covered electric wire when a cross section of a conductor having a cross sectional area of 15 mm 2 is deformed into a flat shape.
  • FIG. 10A is a raw material stranded wire before compression
  • FIG. 10C shows a sample B2 compressed at a high compression rate.
  • FIG. 11A to 11C are photographs obtained by photographing a cross section of a covered electric wire when a cross section of an electric wire conductor having a conductor cross sectional area of 60 mm 2 is deformed into a flat shape
  • FIG. 11A is a raw material stranded wire before compression
  • FIG. 11C shows a sample C2 compressed at a high compression rate.
  • FIG. 12 is a side view for explaining the three-point bending test.
  • FIG. 13 is a photograph of the cross section of the wire conductor taken when the cross section of the wire conductor is deformed into a hexagon.
  • the electric wire conductor according to the present disclosure is not a single-core conductor but a stranded wire obtained by twisting a plurality of strands, and thus has high flexibility. Moreover, the electric wire conductor according to the present disclosure has a deformed portion whose cross-sectional shape is deformed from a circle. In the deformed portion, the shape of the cross section intersecting with the axial direction of the electric wire conductor is a flat shape whose width is smaller than the height, or two sides that are in contact with each other at one side or a vertex and the end of the side. When it is used in an integrated manner by arranging or bundling a plurality of covered wires made of the wire conductors, the plurality of covered wires are mutually connected.
  • the ratio of the wire having a circular cross section is preferably 10% or more, and more preferably 15% or more.
  • the presence of the wire that is not deformed from the circle in the cross section of the deformed portion is ensured at the above ratio, so that the electric wire conductor as a whole suppresses the application of a large load accompanying the deformation of the wire. Will be.
  • the deformation rate from the circular shape of the strands in the cross section intersecting the axial direction of the deformed portion is preferably 15% or less, and more preferably 10% or less in the outer peripheral portion.
  • a porosity which is a ratio of voids not occupied by the strands, is 10% or more.
  • the electric wire conductor has a continuous gap that can accommodate one or more of the strands in a cross section that intersects the axial direction of the deformed portion. Then, the wire conductor can bend flexibly by utilizing such movement of the wire into the gap, and the effect of keeping the flexibility of the wire conductor high is particularly excellent.
  • the wire constituting the wire conductor is made of aluminum or an aluminum alloy.
  • the conductor cross-sectional area tends to increase due to the low conductivity of aluminum, but the deformed portion has a flat or fan-shaped cross section. Thus, the effect of saving space can be obtained.
  • the wire harness according to the present disclosure includes the above covered electric wire. Since the wire harness according to the present disclosure has the above-described covered electric wire, the wire harness is excellent in space saving and has high flexibility. In particular, in a form in which the cross section of the deformed portion of the electric wire conductor has a flat shape, when a plurality of covered electric wires are arranged side by side or stacked, the gap generated between the respective covered electric wires is kept small. Can do. Moreover, according to the shape and size of the space in which the wire harness can be arranged, the mutual arrangement of the covered electric wires can be selected with a high degree of freedom. Therefore, a particularly high space saving property can be obtained.
  • the cross section of the deformed portion of the electric wire conductor is in a fan shape
  • a plurality of covered electric wires are arranged to face each other on the fan-shaped side portion, so that a high space-saving property can be obtained.
  • the entire assembly of the covered electric wires can be made into a bundle of covered electric wires having a curved shape such as a circle on the outer periphery of the cross section.
  • the wire harness includes a plurality of covered electric wires having a wire conductor in which the shape of the cross section in the deformed portion is the flat shape and an end edge extending in the width direction is an outwardly convex curve. It is preferable that the plurality of covered electric wires are arranged with the edges extending in the width direction facing each other through the insulator. In this case, a plurality of covered electric wires having a cross-sectional shape whose end edges extending in the width direction are outwardly convex curves are arranged along the height direction.
  • the plurality of covered electric wires are arranged without a heat dissipation sheet interposed therebetween.
  • the high heat radiation property is ensured in the portion between the covered electric wires by the cross-sectional shape of the covered electric wire, it is not necessary to interpose the heat radiating sheet between the covered electric wires. Therefore, the number of members constituting the wire harness can be suppressed and the structure of the wire harness can be simplified.
  • the covered electric wire includes the deformed portion at an end, the shape of the cross section of the deformed portion is the flat shape, and an end edge extending in the width direction has an outwardly convex curve. It is preferable that the covered electric wire is accommodated in the connector housing in a state in which a water stop cock is disposed on the outer periphery of the end portion.
  • the water stop cock plays a role of preventing water from entering the connector housing from a portion between the covered electric wire and the connector housing.
  • the wire conductor constituting the covered electric wire has an outwardly convex curved portion as an edge extending in the width direction in the cross section, so that the water stop cock is wide on the outer periphery of the covered electric wire having a moderately convex shape. It can be adhered by area. As a result, a high water stop performance is exhibited between the covered electric wire and the connector housing by the water stop cock.
  • the wire harness includes a plurality of the covered electric wires in which the shape of the cross section in the deformed portion is the sector shape, and the plurality of the covered electric wires make the fan-shaped sides face each other through the insulator. Are preferably arranged. Then, the cross section obtained by combining a plurality of covered electric wires has a substantially circular shape in which curved portions that connect the side portions are continuous, and can easily fit in a pipe or the like, and is particularly excellent in space saving.
  • a heat radiation sheet is interposed between the plurality of covered electric wires.
  • a plurality of covered electric wires are arranged in a state where the fan-shaped sides are opposed to each other, it is less likely to release heat between the opposed sides than a curved portion or the like opened to the outside.
  • a heat-dissipating sheet on the side, even if a plurality of covered electric wires are bundled with a pipe or the like, the influence of heat generation during energization can be suppressed.
  • the covered electric wires are bundled by a pipe having high heat conductivity such as aluminum, heat can be efficiently radiated from both the side portion and the curved portion of the sector shape.
  • a method of manufacturing an electric wire conductor according to the present disclosure includes: a roller from a first direction and a second direction that intersect the axial direction of a raw material stranded wire and are opposed to each other with respect to the raw material stranded wire in which strands are twisted together;
  • the above-described electric wire conductor is manufactured by performing a compression step of pressurizing with the use of.
  • the manufacturing method of the electric wire conductor according to the present disclosure by applying force from two directions intersecting the axial direction of the raw material stranded wire, for example, the load is concentrated on the outer peripheral wire as compared with the conventional drawing process. This can be suppressed, and the wire conductor can be deformed while reducing the deformation rate of the outer peripheral wire.
  • At least one of the rollers has a groove in the circumferential direction at least partially in contact with the raw material stranded wire, and the roller is in contact with the other roller at the end of the groove, and the end of the groove Is preferably provided with a notch for preventing the strands constituting the raw material stranded wire from being sandwiched between the rollers.
  • the escape part which can accommodate a strand is made in the clearance gap formed by the groove part of the roller which opposes.
  • the relief portion makes it difficult for the strands constituting the raw material stranded wire to be sandwiched between the rollers, and can prevent disconnection and burr formation due to the sandwiching of the strands.
  • the wire conductor according to the embodiment of the present disclosure is configured as a stranded wire in which a plurality of strands 1 are twisted together.
  • the electric wire conductor according to the embodiment of the present disclosure has a deformed portion that occupies at least a part of the region along the axial direction (longitudinal direction) and the cross-sectional shape intersecting the axial direction is deformed from a circle. .
  • the cross-sectional shape of the deformed portion is different.
  • the cross-sectional shape of the deforming portion is a fan shape
  • the cross-sectional shape of the deforming portion is a flat shape.
  • region of an electric wire conductor shows the deformation
  • FIG. 1 is a perspective view showing an appearance of a wire conductor 10 according to a first embodiment of the present disclosure.
  • FIG. 2 shows a cross section orthogonal to the axial direction of the wire conductor 10.
  • the number of the strands 1 constituting the wire conductors 10 and 10A is reduced for easy understanding.
  • the electric wire conductor 10 has a fan-shaped cross section that intersects the axial direction. That is, the cross section that intersects the axial direction has a sector shape having one side or two sides that are in contact with each other at the apex, and an outwardly convex curve that connects the ends of the sides. In addition, when there is one side, it becomes a semicircular shape.
  • the fan-shaped central angle in the cross section of the wire conductor 10 is not particularly limited. When the central angle is 180 degrees, a semicircular shape with one side is obtained.
  • the central angle may be appropriately determined according to the form in which the electric wire including the electric wire conductor 10 is arranged. For example, as shown in FIG. 4A described later, when arranging three electric wires having the same thickness together, The central angle of all the electric wires may be about 120 degrees, and when arranging a plurality of electric wires having different thicknesses, the central angle may be changed according to the thickness.
  • a cross section that intersects the axial direction has a flat shape. That is, the width W of the cross section intersecting the axial direction is larger than the height H.
  • the width W of the cross section is the longest of the straight lines that cross the cross section parallel to the side and include the entire cross section. If the cross section does not have a straight side at the outer edge as shown in FIG. 3B, the longest straight line that crosses the cross section and includes the entire cross section is included. It is.
  • the height H of the cross section is the length of a straight line that is orthogonal to the straight line that defines the width W and includes the entire cross section.
  • the cross section of the wire conductor 10A may take any specific shape as long as it has a flat shape.
  • FIG. 3A shows a case where the cross section is rectangular
  • FIG. 3B shows a case where the cross section is elliptical.
  • the width W is greater than the height H.
  • Other flat shapes include quadrangles other than rectangles, such as oval shapes (shapes having semicircles at both ends of the rectangle), trapezoids, and parallelograms.
  • the aspect ratio of the flat shape is not particularly limited, and a form in which the ratio of height H: width W is about 1: 2 to 1: 8 can be exemplified.
  • the aspect ratio is particularly preferably about 1: 3 to 1: 5. Then, it becomes easy to avoid the excessive deformation
  • the deformation rate of the strand 1 is equal to or less than the deformation rate of the strand 1 at the center located inside the outer peripheral portion. Furthermore, the deformation rate of the strand 1 at the outer peripheral portion is smaller than the deformation rate of the strand 1 at the center. 1, 2, 3 ⁇ / b> A, and 3 ⁇ / b> B schematically show a form in which the deformation rate of the wire 1 is equal to or less than the deformation rate of the wire 1 at the center.
  • the deformation rate of the element wire 1 is an index indicating how much a certain element wire 1 has a cross section deviating from a circle.
  • the length of the longest straight line that crosses the cross section is defined as the major axis A
  • the diameter of a circle having the same area as the sectional area of the strand 1 is defined as the circle diameter R.
  • the deformation rate of the outer peripheral element wire 1 is equal to or lower than the deformation ratio of the central element wire 1, and if it is smaller than the deformation ratio of the central element wire 1,
  • the conductors 10 and 10A are sufficiently connected while preventing the load from being concentrated on the strand 1 and preventing the material from being denatured or disconnected at the outer periphery, and the formation of uneven structures (burrs) such as sharp protrusions. Can be molded and compressed.
  • the electric wire conductors 10 and 10A according to the present embodiment by deforming a conventional general electric wire conductor 10 'having a substantially circular cross section by compression or the like, the outer peripheral portion of the outer peripheral portion due to the force applied for compression is produced. Concentration of load on the strand 1 can be suppressed.
  • the deformation rate of the strand 1 at the outer peripheral portion of the cross section is equal to or less than the deformation rate of the strand 1 at the central portion
  • the deformation rate of the strand 1 at the outer peripheral portion is 70% or less of the deformation rate of the strand 1 at the center.
  • the deformation rate from the circular shape of the wire 1 at the outer peripheral portion of the cross section is preferably 15% or less, more preferably 10% or less, and further preferably 5% or less. If the deformation rate of the strand 1 at the outer peripheral portion of the cross section is 15% or less, the load is concentrated on the strand 1 at the outer peripheral portion, the material may be denatured or disconnected at the outer peripheral portion, and sharp protrusions, etc. The effect of preventing the formation of the concavo-convex structure is particularly high.
  • the outer peripheral portion is in contact with the fan-shaped side portion, the curved portion, the corner portion where the side portion and the curved portion contact, and the side portion and the side portion. It can be classified into four locations with the apex. It is preferable that the magnitude of the deformation rate of the strands 1 at these four locations is generally in the order of edge> curve> corner> vertex.
  • the deformation rate of the strand 1 is equal to or less than the deformation rate of the strand 1 in the central portion at least at the corner portion and the apex portion among the above four locations on the outer peripheral portion, and the deformation rate of the strand 1 in the central portion. It is preferable that it is 70% or less.
  • the wire 1 is prevented from being greatly deformed at the top or corner of the fan shape for the purpose of bringing the cross-sectional shape close to an ideal fan shape. is there.
  • the midway part refers to a region excluding the above-mentioned end part among end edges extending in the width direction of the flat shape, that is, a region in the middle of the end edge extending in the width direction. It is preferable that the deformation rate of the strand 1 in the flat outer periphery is in the order of midway> end.
  • the deformation rate of the strand 1 is equal to or less than the deformation rate of the central wire 1 at least at the end of the two locations on the outer peripheral portion, and is 70% of the deformation rate of the central strand 1. The following is preferable.
  • the wire conductor 10A when the cross-sectional shape is formed into a flat shape, the wire 1 is prevented from being greatly deformed at the end portion of the flat shape for the purpose of bringing the cross-sectional shape close to an ideal rectangle or the like. It is.
  • the cross section is a fan shape or a flat shape as the outer shape of the entire electric wire conductors 10 and 10A
  • the cross-sectional shape of each strand 1 constituting the electric wire conductors 10 and 10A is Any thing is acceptable.
  • a general metal strand has a substantially circular cross section, and such a strand 1 can be applied also in this embodiment. It is preferable that at least a part of the wire 1 of the wire conductors 10 and 10A is not deformed when the entire shape of the wire conductors 10 and 10A is formed into a fan shape or a flat shape, and remains in a substantially circular state.
  • the wire 1 that is not deformed on the outer peripheral portion tends to remain.
  • the proportion of the strands 1 having a circular cross section is 5% or more.
  • the strand 1 having a circular cross section is a strand 1 having a deformation rate of 5% or less defined by the formula (1), and the circular strand ratio is the number of all the strands 1 in the cross section.
  • it is estimated as a ratio of the number of strands 1 having a circular cross section (number of strands having a circular cross section / number of all strands ⁇ 100%).
  • the ratio of the circular strands is preferably 10% or more, 15% or more, 20% or more, or 40% or more.
  • the circular wire ratio is preferably 80% or less and 70% or less.
  • the electric wire conductors 10 and 10A according to the present embodiment are made of stranded wires in which a plurality of strands 1 are twisted together. Therefore, the electric wire conductors 10 and 10A have higher flexibility than a single core conductor having the same conductor cross-sectional area.
  • the wire 1 constituting the wire conductors 10 and 10A may be made of any conductive material including a metal material.
  • a metal material As typical materials constituting the strand 1, copper and copper alloy, and aluminum and aluminum alloy can be cited. These metal materials are easy to form a desired shape by deformation when forming a stranded wire, and are easy to maintain the shape once formed, and the wire conductors 10 and 10A according to the present embodiment. It is suitable for constituting. Aluminum or an aluminum alloy is preferable from the viewpoints of reducing the weight of the wire conductors 10 and 10A, cost reduction, and the significance of reducing the conductor diameter by compression.
  • the strands 1 constituting the electric wire conductors 10 and 10A those made of the same material may be used, or plural types of strands 1 made of different materials may be mixed and used.
  • the electric wire conductors 10 and 10A are composed of a plurality of types of strands 1 made of different materials, the deformation ratios of the outer peripheral portion and the central portion are the strands 1 made of the same material or a plurality of types of strands 1. It is preferable to compare with the average value of the deformation rate.
  • the conductor cross-sectional area of the wire conductors 10 and 10A may be arbitrarily selected according to a desired resistance value and the like, but a preferable range of the conductor cross-sectional area of the wire conductors 10 and 10A is 3 mm 2 or more. More preferably, it is 50 mm 2 or more. When the conductor cross-sectional area is 3 mm 2 or more, the effect of space saving by making the cross-sectional shape of the electric wire conductors 10 and 10A into a fan shape or a flat shape is great. In these cases, the preferred diameter of the wire 1 constituting the wire conductors 10 and 10A is 0.3 to 1.0 mm.
  • the wire conductors 10 and 10A preferably have a void ratio of 10% or more, more preferably 15% or more in the cross section, which is a ratio of voids not occupied by the strands 1. Then, since the strands 1 can take various relative arrangements using the gaps between the strands 1, the relative arrangement of the strands 1 can be used without greatly changing the shape of each strand 1 itself. And it becomes easy to shape
  • the upper limit of the porosity is not particularly limited, but is preferably 30% or less from the viewpoint of easy formation into a sector shape or a flat shape and easy maintenance of the formed sector shape or flat shape.
  • the porosity is a ratio of the area occupied by the total area of the large and small gaps in the cross section of the electric wire conductors 10 and 10A, and the total area of the voids is predetermined in the cross section of the electric wire conductors 10 and 10A.
  • the flexibility of the wire conductors 10 and 10A is enhanced, but in addition, the presence of a gap having a certain size as a continuous region means that the flexibility of the wire conductors 10 and 10A. It is effective for improving the performance.
  • the cross-sections of the wire conductors 10 and 10A have a continuous gap that can accommodate one or more strands 1 or even two or more strands.
  • the strand 1 for determining whether or not it can be accommodated in the gap has the same cross-sectional area as the strand 1 surrounding the gap of interest or the arbitrary strand 1 constituting the wire conductors 10 and 10A.
  • a wire having a circular cross section may be assumed and used.
  • the covered electric wire 30 in which the outer periphery of the wire conductors 10 and 10A is covered with the insulator 20 can also be regarded as a fan-shaped or flat shape. Take shape.
  • the plurality of covered electric wires 30 with high density using these cross-sectional shapes. That is, when the plurality of covered electric wires 30 are bundled or arranged to be integrated, the gaps generated between the covered electric wires 30 can be reduced and the covered electric wires 30 can be integrated. Further, by selecting the mutual arrangement of the covered electric wires 30 in accordance with the size and shape of the space in which the covered electric wires 30 are to be arranged, the covered electric wires 30 can be arranged in various spaces.
  • the electric wire conductors 10 and 10A according to the present embodiment have both space saving and flexibility, and have a high degree of freedom in arrangement.
  • the number of electric wires and parts to be installed is increasing due to recent high functionality.
  • currents have increased and individual wire diameters have also increased. Thereby, the space which can route each electric wire has decreased.
  • the electric wire conductors 10 and 10A according to the present disclosure are used, it is excellent in space saving performance and flexibility, and therefore, electric wires can be arranged by effectively using a small space. The effect is particularly great when a large number of electric wires are integrated or when an electric wire having a large conductor cross-sectional area is used.
  • the production method of the electric wire conductors 10 and 10A according to the present embodiment is not particularly limited.
  • a raw material stranded wire 10 ′ obtained by twisting a plurality of strands 1 is compressed. By doing so, it can be molded.
  • force F1, F2 is applied from the 1st direction and 2nd direction which are orthogonal to the axial direction of raw material strand wire 10 'and mutually oppose.
  • forces F3 and F4 are applied to the raw material stranded wire 10 'from the third direction and the fourth direction that intersect the first direction and the second direction and face each other. May be.
  • the raw material stranded wire 10 ' By applying force from at least two opposing directions, the raw material stranded wire 10 'can be efficiently deformed. Moreover, by applying force in a plurality of times from a plurality of different directions, it is possible to prevent pressure from being biased to the strand 1 of the outer peripheral portion of the raw material stranded wire 10 ′, and the strand 1 of the outer peripheral portion is denatured.
  • the deformed wire conductors 10 and 10A can be molded without causing wire breakage or forming burrs.
  • the electric conductor 10A having a flat cross section
  • the forces F1 and F2 from the first direction and the second direction
  • the forces F3 and F4 to the raw material stranded wire 10 ′ from the direction and the fourth direction.
  • the forces F1 'and F2' are applied again from the same direction, and the forces F3 and F4 are simultaneously applied.
  • the places where the forces F1, F2, F1 ', and F2' are applied become the long sides along the width direction of the rectangle.
  • Application of force to the raw material stranded wire 10 ′ may be performed by, for example, providing rollers 60 facing each other and passing the raw material stranded wire 10 ′ between the rollers 60 as shown in FIGS. 8A and 8B.
  • a pair of rollers 60 facing each other rotate in opposite directions, and a force can be applied to the raw material stranded wire 10 ′ while the raw material stranded wire 10 ′ is sent out by the rotation of the roller 60.
  • a force can be applied to the raw material stranded wire 10 ′ from the outside in the radial direction to the inside without applying a pulling force in the axial direction as in the case of compression using a die.
  • the gap between the rollers is largely open on the front side of the raw material stranded wire 10 ′, a large force is not applied, and the force applied toward the contact point of the two rollers 60 gradually increases. Thereby, it is possible to prevent the applied force from being applied to the entire raw material stranded wire 10 ′ and the load from being concentrated on the outer peripheral portion. Moreover, when the roller 60 is used, it can process continuously, sending out the elongate raw material strand 10 ', and is excellent in productivity.
  • the roller 60 has a groove 61 in its circumferential direction, and the groove 61 is in contact with the raw material stranded wire 10 ′ at least in part.
  • the cross-sectional shape of the wire conductors 10 and 10A compressed by the roller 60 reflects the shape of the groove 61 that contacts the raw material stranded wire 10 '.
  • one of the pair of rollers 60a is provided with an arc-shaped groove and the other roller 60b is provided with a V-shaped groove to obtain the electric fan 10 having a sectoral cross section. Can do.
  • the groove 61 provided on the roller may be formed in a shape corresponding to a desired flat shape.
  • the groove portion 61 is preferably provided with a notch 62 at a portion where the roller 60 is opposed to each other at an end portion thereof so as not to sandwich the wire 1 between the rollers.
  • a structure in which the roller 60 inclines away from the raw material stranded wire 10 ′ in the axial direction can be exemplified.
  • the deformation rate of the outer peripheral portion is increased.
  • the wire conductors 10 and 10A having a deformation rate equal to or lower than the central portion can be manufactured.
  • the manufacturing method according to the present embodiment is particularly suitable for a large cross-sectional area that has been difficult to manufacture in the past or a case where there are many strands 1 constituting a stranded wire.
  • the covered wire 30 according to the embodiment of the present disclosure includes the wire conductor 10 or the wire conductor 10A according to the embodiment of the present disclosure as described above, and the insulator 20 that covers the outer periphery of the wire conductors 10 and 10A. Yes.
  • the cross-sectional shape of the entire covered wire 30 including the insulator 20 is also fan-shaped or flat as in the cross-sectional shape of the wire conductors 10 and 10A. It can be regarded as.
  • the material of the insulator 20 is not particularly limited, and can be composed of various polymer materials.
  • the polymer material can appropriately contain a filler and an additive.
  • the material and thickness of the insulator 20 may be appropriately selected according to desired characteristics such as wear resistance and flexibility of the insulator 20. From the viewpoint of space saving and flexibility, it is preferable that the thickness of the insulator 20 is not excessively increased. For example, an embodiment in which the thickness of the insulator 20 is 2.0 mm or less on average can be exemplified as a preferable example.
  • the wire conductors 10 and 10A are formed in a sector shape or a flat shape in cross section, thereby reducing the unevenness of the outer peripheral portion and making the insulator 20 thin and uniform. Thereby, the thickness of the extra insulator 20 can be reduced, and the space saving property is excellent.
  • the insulator 20 integrally surrounds the entire circumference of the wire conductors 10 and 10A.
  • the insulator 20 can be provided by forming a polymer material to be the insulator 20 on the entire circumference of the wire conductors 10 and 10A by extrusion or the like.
  • the raw material stranded wire 10 ′ is compressed to form the wire conductors 10, 10 ⁇ / b> A until the covered wire 30 is manufactured.
  • This process can be carried out continuously and is excellent in productivity.
  • production of the strand 1 which comprises raw material twisted wire 10 ', twisting of the strand 1, twisting of the raw material twisted wire 10' obtained by twisting, and extrusion of the insulator 20 are all long. This is a process that can be carried out continuously for each part of the material, and high productivity can be achieved by carrying out these processes continuously.
  • the covered electric wire 30 is used in a state where the outer circumference of the single electric wire conductor 10 or 10A is covered with the insulator 20, the covered electric wire 30 is integrally formed using a covering material or the like. They may be put together or provided with a connecting member such as a connector at the end, and used in the form of a wire harness. Next, the case where it is used in the form of a wire harness will be described.
  • the wire harness according to the embodiment of the present disclosure has a connecting member such as a connector at the end portion of the covered electric wire 30 according to the embodiment of the present disclosure having the cross-sectional fan-shaped electric wire conductor 10 or the flat electric wire conductor 10A. It has become more.
  • the wire harness which concerns on this embodiment consists of what bundled the some covered electric wire, and at least one part of these some covered electric wires has the cross-section fan-shaped electric wire conductor 10 or the cross-sectional flat electric wire conductor 10A. It has a covered electric wire 30 according to an embodiment of the present disclosure.
  • a connection member such as a connector is appropriately provided at the end of each covered electric wire 30.
  • the higher harness according to the present embodiment is excellent in space-saving properties and flexibility, and therefore excellent in routeability. Thereby, since it is easy to ensure sufficient routing space, a conductor cross-sectional area can be enlarged, for example, it can be used suitably as power lines, such as an electric vehicle.
  • the wire conductors 10 and 10A are formed of a set of thin wires 1, the wire conductors 10 and 10A as a whole have high resistance to bending and vibration. Have Therefore, fatigue failure due to engine vibration or the like hardly occurs.
  • the deformation rate of the outer peripheral portion is 28%. This is a value larger than the deformation rate of the central portion, which is 1.65 times the deformation rate of the central portion.
  • the value of 28% of the deformation rate of the outer peripheral portion includes the deformation rate of the burr shown in a circle in FIG. 9C, but even if this strand is ignored, the deformation rate of the outer peripheral portion of the sample A2 is 17%, which is considerably larger than the deformation rate of the sample A1.
  • the ratio of the circular element wire is 20% in the sample A1, whereas it is only 8% in the sample A2.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Insulated Conductors (AREA)
  • Non-Insulated Conductors (AREA)
  • Processes Specially Adapted For Manufacturing Cables (AREA)

Abstract

複数の素線1を撚り合わせた撚線からなり、前記撚線の軸線方向に交差する断面が、前記断面の幅Wが高さHよりも大きくなった扁平形状、または1つの辺または頂点で互いに接する2つの辺と前記辺の端部をつなぐ外に凸の曲線とを有する扇形となった変形部を有し、前記変形部の前記断面における前記素線1の円形からの変形率が、前記変形部の外周に面する外周部において、前記外周部の内側に位置する中央部の変形率の70%以下である、電線導体10Aとする。また、そのような電線導体10Aと、前記電線導体10Aの外周を被覆する絶縁体と、を有する、被覆電線とする。さらに、そのような被覆電線を含んでなる、ワイヤーハーネスとする。そして、素線1を撚り合わせた原料撚線に対して、該原料撚線の軸線方向に交差し、相互に対向する第一の方向および第二の方向からローラを用いて加圧する圧縮工程を行うことにより、上記のような電線導体10Aを製造する。

Description

電線導体、被覆電線、ワイヤーハーネス、および電線導体の製造方法
 本開示は、電線導体、被覆電線、ワイヤーハーネス、および電線導体の製造方法に関する。
 近年、自動車の高性能化が進み、自動車内に設置される電線や部品の数が増加している。一方で、電気自動車等においては、大電流化により、用いられる電線の径が太くなってきている。
 また、電線の軽量化等の観点からアルミニウムやアルミニウム合金を電線導体として用いる場合も多くなっているが、アルミニウムやアルミニウム合金の導電率は、銅や銅合金の導電率に比べて小さいことから、アルミニウムやアルミニウム合金を電線導体として用いた電線では、必要な電気伝導性を確保するために、銅や銅合金を用いる場合よりも導体断面積を大きくする必要があり、電線導体、およびその電線導体の外周に絶縁体を設けた被覆電線の外径が大きくなってしまう。
 上記のように電線や部品の増加、電線径の増大などにより、個々の電線を配策可能なスペースが減少してきており、導体断面積を確保しつつ、電線またはワイヤーハーネスを効率よく配策することが求められる。ワイヤーハーネスを構成する電線は、断面円形状のものが一般的であるが、断面円形状の電線を束ね、あるは配列しようとすると、無駄なスペースが多く発生してしまう。
 ワイヤーハーネスは、電磁シールドや異物との干渉を防ぐなどの目的から、複数の電線をパイプ等で束ねて用いる場合がある。このとき、パイプ内での無駄なスペースを削減する目的から、例えば特許文献1では、単芯導体からなる電線導体の断面を半円形状とすることが記載されている。
特開2016-054030号公報 特開2006-269201号公報 実開平5-62917号公報 特開2017-45523号公報 特開2006-260898号公報 特開昭63-158710号公報 特開2011-134667号公報 国際公開第2017/056278号 特開平8-249926号公報
 効率的に電線を配策するには、電線を柔軟に曲げ、限られたスペースに沿わせるように配策することが好ましい。しかしながら、特許文献1のように、単芯導体からなる電線導体の場合、個々の電線の柔軟性に劣り、配策の自由度が低い。特に導体断面積の大きな電線では配策性に課題があった。
 特許文献1と同様の電線導体を、複数の素線からなる撚線を用いて構成すれば、柔軟性を改善することができる。従来、このような電線導体を作成する場合、例えば圧縮ダイス等を用いて、電線導体を軸線方向に引張るように力を印加する引抜加工のような加工法が用いられてきた。しかし、このような加工法においては、外周の素線に負荷が集中しやすく、外周部に鋭い突起構造(バリ)等が形成されやすいなどの課題があり、特に導体断面積の大きな電線導体、あるいは撚線を構成する素線の多い電線導体には適用が困難であった。
 本開示は、上記問題に鑑み、省スペース性、柔軟性に優れ、かつ特定の素線に負荷が集中しにくい電線導体と、その電線導体を備える被覆電線およびワイヤーハーネス、またそのような電線導体の製造方法を提供することを課題とする。
 本開示に係る電線導体は、複数の素線を撚り合わせた撚線からなり、前記撚線の軸線方向に交差する断面が、前記断面の幅が高さよりも大きくなった扁平形状、または1つの辺または頂点で互いに接する2つの辺と前記辺の端部をつなぐ外に凸の曲線とを有する扇形となった変形部を有し、前記変形部の前記断面における前記素線の円形からの変形率が、前記変形部の外周に面する外周部において、前記外周部の内側に位置する中央部の変形率の70%以下である。
 本開示に係る電線導体は、単芯導体ではなく、複数の素線を撚り合わせた撚線よりなっていることから、高い柔軟性を有している。また、本開示に係る電線導体は、断面形状が扁平形状または扇形となった変形部を有しているため、該電線導体からなる複数の被覆電線を、配列したり、束ねたりすることで、集積して使用する場合、被覆電線の間の隙間を小さくして、集積を行うことができ、省スペース性に優れる。さらに、本開示に係る電線導体の変形においては、外周部の素線の円形からの変形率が、中央部の素線の変形率の70%以下となっていることにより、外周部の素線に負荷が集中し、外周部に断線や材料の変性が生じること、また外周部に鋭い突起等の凹凸構造が形成されることを抑制しつつ、電線導体を十分に成形、圧縮する効果が得られる。
図1は、断面が扇形である本開示の第一の実施形態に係る電線導体を示す斜視図である。 図2は、上記電線導体を示す断面図である。 図3A,3Bは、断面が扁平形状となった本開示の第二の実施形態に係る電線導体を示す断面図である。図3Aは、断面が長方形の場合を示し、図3Bは、断面が楕円形の場合を示している。 図4A,4Bは、被覆電線を収容部材の中に配置した状態を示す断面図である。図4Aは、本開示の第一の実施形態に係る、断面が扇形の電線導体を含む被覆電線を用いた場合を示し、図4Bは、本開示の第二の実施形態に係る、断面が楕円形の電線導体を含む被覆電線を用いた場合を示している。なお、本図および図5A,5B,6Bにおいては、素線は省略している。 図5A,5Bは、本開示の第二の実施形態に係る、断面が楕円形の電線導体を含む被覆電線を用いたワイヤーハーネスにおいて、端部に止水栓を配置してコネクタハウジングに挿入した状態を示す断面図である。図5Aは、電線導体の断面が長方形の場合、図5Bは電線導体の断面が楕円形の場合を示している。 図6Aは、電線導体を圧縮していない従来の被覆電線の断面図である。図6Bは、そのような従来の被覆電線を収容部材の中に配置した状態を示す断面図である。 図7は、原料撚線の圧縮を説明する断面図である。 図8Aは、電線導体を変形させるローラの斜視図であり、図8Bは、電線導体を断面扇形に成形する場合についての、ローラと電線導体が接する部位の拡大図である。 図9A~9Cは、電線導体の断面を扇形に変形させる場合について、被覆電線の断面を撮影した写真であり、図9Aは圧縮前の原料撚線、図9Bは低圧縮率で圧縮した試料A1、図9Bは高圧縮率で圧縮した試料A2を示している。 図10A~10Cは、導体断面積15mmの電線導体の断面を扁平形状に変形させる場合について、被覆電線の断面を撮影した写真であり、図10Aは圧縮前の原料撚線、図10Bは低圧縮率で圧縮した試料B1、図10Cは高圧縮率で圧縮した試料B2を示している。 図11A~11Cは、導体断面積60mmの電線導体の断面を扁平形状に変形させる場合について、被覆電線の断面を撮影した写真であり、図11Aは圧縮前の原料撚線、図11Bは低圧縮率で圧縮した試料C1、図11Cは高圧縮率で圧縮した試料C2を示している。 図12は、3点曲げ試験を説明する側面図である。 図13は、電線導体の断面を六角形に変形させる場合について、電線導体の断面を撮影した写真である。
[本開示の実施形態の説明]
 最初に本開示の実施態様を列挙して説明する。
 本開示に係る電線導体は、複数の素線を撚り合わせた撚線からなり、前記撚線の軸線方向に交差する断面が、前記断面の幅が高さよりも大きくなった扁平形状、または1つの辺または頂点で互いに接する2つの辺と前記辺の端部をつなぐ外に凸の曲線とを有する扇形となった変形部を有し、前記変形部の前記断面における前記素線の円形からの変形率が、前記変形部の外周に面する外周部において、前記外周部の内側に位置する中央部の変形率の70%以下である。
 本開示に係る電線導体は、単芯導体ではなく、複数の素線を撚り合わせた撚線よりなっていることから、高い柔軟性を有している。また、本開示に係る電線導体は、断面形状が円形から変形された変形部を有している。その変形部において、電線導体の軸線方向に交差する断面の形状が、幅が高さよりも小さくなった扁平形状、または1つの辺または頂点で互いに接する2つの辺と、前記辺の端部をつなぐ外に凸の曲線と、を有する扇形となっているため、該電線導体からなる複数の被覆電線を、配列したり束ねたりすることで、集積して使用する場合、複数の被覆電線を、相互間の隙間を小さくして集積することができ、省スペース性に優れる。変形部の断面形状が扁平形状である場合に、扁平形状の縦横比は特に限定されず、また、四角形、楕円形等、種々の扁平形状をとることができる。変形部の断面形状が扇形である場合に、扇形の中心角は特に限定されない。なお、中心角が180度である場合、辺が1つである半円形となる。
 さらに、本開示に係る電線導体は、変形部の外周部の素線の円形からの変形率が、中央部の素線の円形からの変形率に比べて小さくなっている。すなわち、電線形状を変形させる際に、外周部の素線にかかる負荷が、中央部の素線にかかる負荷よりも小さくなっている。これにより、外周部の素線に負荷が集中し、外周部において、材料の変性や断線が発生すること、また鋭い突起等の凹凸構造(バリ)が形成されることを抑制しつつ、電線導体を十分に成形、圧縮することができる。
 特に、変形部の外周部の素線の円形からの変形率が、中央部の素線の円形からの変形率の70%以下となっていることで、外周部の素線に負荷が集中し、外周部において、材料の変性や断線が発生すること、また鋭い突起等の凹凸構造が形成されることを抑制しつつ、電線導体を十分に成形、圧縮する効果が大きくなる。外周部の素線の円形からの変形率が、中央部の素線の円形からの変形率の50%以下であると、さらに好ましい。
 ここで、前記変形部の前記断面において、円形の断面を有する前記素線の割合が、10%以上であることが好ましく、15%以上であることがより好ましい。変形部の断面に、円形から変形されていない素線の存在が、上記のような割合で確保されていることにより、電線導体が、全体として、素線の変形を伴う大きな負荷の印加が抑制されたものとなる。
 前記変形部の軸線方向に交差する断面における前記素線の円形からの変形率が、前記外周部において、15%以下であることが好ましく、10%以下であることがより好ましい。すると、外周部の素線に負荷が集中し、外周部において、材料の変性や断線が発生すること、また鋭い突起等の凹凸構造が形成されることを防ぐ効果が特に高く得られる。
 前記変形部の軸線方向に交差する断面において、前記素線に占められていない空隙の割合である空隙率が、10%以上であることが好ましい。すると、電線導体の変形部において、特に高い柔軟性を保ちやすく、配策の自由度に優れる。
 前記電線導体は、前記変形部の軸線方向に交差する断面において、前記素線を1本以上収容可能な連続した空隙を有することが好ましい。すると、そのような空隙への素線の移動を利用して、電線導体が柔軟に曲がることができ、電線導体の柔軟性を高く保つ効果に特に優れる。
 前記変形部における前記断面の形状が、前記扁平形状であり、前記幅方向に延びる端縁が、外に凸な曲線となっていることが好ましい。楕円形等、幅方向に延びる端縁が外に凸な曲線となった形状の断面を有する電線導体を用いて電線を形成した場合に、電線断面が扁平形状を有することによって、高い省スペース性が達成される。同時に、幅方向に延びる端縁の外凸の曲線形状によって、高さ方向に沿って隣接する他の電線や他の物体との密な接触が避けられるため、高い放熱性を確保しやすい。このように、省スペース性と放熱性が両立される。
 前記撚線を構成する素線が、50本以上であることが好ましい。すると、各素線を大きく変形させなくても、素線の相対配置の変更によって、撚線の断面を扁平形状または扇形に成形しやすい。よって、電線導体において、省スペース性と柔軟性を両立しやすく、また、素線の断線等を防ぎやすくなる。
 前記電線導体を構成する素線の少なくとも一部が、アルミニウムまたはアルミニウム合金からなることが好ましい。電線導体を構成する素線がアルミニウムやアルミニウム合金よりなる場合には、アルミニウムの導電率の低さにより、導体断面積が大きくなりやすいが、変形部が扁平形状または扇形の断面を有していることにより、省スペース化の効果を得ることができる。
 本開示に係る被覆電線は、上記の電線導体と、電線導体の外周を被覆する絶縁体と、を有する。本開示に係る被覆電線は、上記の電線導体を有することにより、省スペース性に優れ、高い柔軟性を有している。さらに、電線導体が、扁平形状または扇形の断面形状に成形されていることにより、電線導体表面の凹凸が抑えられ、絶縁体の厚さを薄くすることができ、その点からも、被覆電線が、省スペース性に優れたものとなる。
 本開示に係るワイヤーハーネスは、上記の被覆電線を含んでいる。本開示に係るワイヤーハーネスは、上記の被覆電線を有することにより、省スペース性に優れ、高い柔軟性を有している。特に、電線導体の変形部の断面が扁平形状をとっている形態においては、複数の被覆電線を、並べたり、重ねたりして配列した場合に、各被覆電線の間に生じる隙間を小さく抑えることができる。また、ワイヤーハーネスを配置できる空間の形状や大きさに合わせて、被覆電線の相互配置を、高自由度に選択することができる。よって、特に高い省スペース性を得ることができる。一方、電線導体の変形部の断面が扇形になっている形態においては、複数の被覆電線を、扇形の辺部において相互に対向させて配置することで、高い省スペース性が得られるとともに、複数の被覆電線の曲線部を連ねることで、被覆電線の集合体全体として、円形等、曲線形状を断面の外周に有する被覆電線の束とすることができる。
 ここで、前記ワイヤーハーネスは、前記変形部における前記断面の形状が、前記扁平形状であり、前記幅方向に延びる端縁が外に凸な曲線となっている電線導体を有する被覆電線を複数含んでなり、複数の前記被覆電線が、前記絶縁体を介して、前記幅方向に延びる端縁を相互に対向させて並べられていることが好ましい。この場合には、幅方向に延びる端縁が外に凸な曲線となった断面形状を有する被覆電線が、高さ方向に沿って、複数配列された状態となっている。すると、断面形状が扁平であることにより、高い省スペース性が達成されるとともに、断面の幅方向に沿った端縁の外凸の曲線形状により、隣接する被覆電線が、相互に対して接触しない部位が、被覆電線の外周の多くの部分を占めることになる。その結果、複数の被覆電線の間の部位において、高い放熱性が得られる。
 この場合に、複数の前記被覆電線が、間に放熱シートが介在されることなく並べられていることが好ましい。上記のように、被覆電線の断面形状によって、被覆電線の間の箇所に高い放熱性が確保されるため、放熱シートを被覆電線の間に介在させる必要がない。よって、ワイヤーハーネスを構成する部材の数を抑制し、ワイヤーハーネスの構造を簡素化することが可能になる。
 前記被覆電線は、端部に前記変形部を備え、前記変形部における前記断面の形状が、前記扁平形状であり、前記幅方向に延びる端縁が、外に凸な曲線となっている電線導体を有しており、前記被覆電線は、前記端部の外周に止水栓を配置された状態で、コネクタハウジングに収容されていることが好ましい。止水栓は、被覆電線とコネクタハウジングとの間の部位からコネクタハウジング内に水が侵入するのを、抑制する役割を果たす。被覆電線を構成する電線導体が、断面において、幅方向に延びる端縁として、外に凸な曲線部を有することで、止水栓が、緩やかな外凸形状を有する被覆電線の外周に、広い面積で密着することができる。その結果、止水栓によって、被覆電線とコネクタハウジングの間で、高い止水性能が発揮される。
 前記ワイヤーハーネスは、前記変形部における前記断面の形状が前記扇形である前記被覆電線を複数含んでなり、複数の前記被覆電線が、前記絶縁体を介して、前記扇形の辺を相互に対向させて配置されていることが好ましい。すると、複数の被覆電線を組み合わせた断面が、辺部をつなぐ曲線部が連なった略円形状となり、パイプ等に収まりやすく、省スペース性に特に優れる。
 この場合に、複数の前記被覆電線の間に、放熱シートが介在されていることが好ましい。上記のように、扇形の辺を相互に対向させた状態で複数の被覆電線を配置した場合に、対向する辺部の間では、外側に開放された曲線部等に比べ、熱を放出しにくくなる。しかし、辺部に放熱シートを介在させることにより、複数の被覆電線をパイプ等で束ねて配置しても、通電時の発熱の影響を抑制することができる。このとき、例えば、アルミのような高熱伝導のパイプ等によって被覆電線を束ねると、扇形の辺部と曲線部の双方から効率的に放熱することができる。
 本開示に係る電線導体の製造方法は、素線を撚り合わせた原料撚線に対して、該原料撚線の軸線方向に交差し、相互に対向する第一の方向および第二の方向からローラを用いて加圧する圧縮工程を行うことにより、上記の電線導体を製造するものである。本開示に係る電線導体の製造方法によれば、原料撚線の軸線方向に交差する2方向から力を印加することにより、例えば、従来の引き抜き加工に比べ、外周部の素線に負荷が集中することを抑制でき、外周部の素線の変形率を小さくしつつ、電線導体を変形することができる。これにより、外周部の素線にのみ大きな力が加わることによる断線やバリの形成を防止しつつ、電線導体の断面形状を扁平形状または扇形に成形することができ、省スペース性に優れる電線導体を提供できる。
 少なくとも1つの前記ローラは、少なくとも一部において前記原料撚線に接触する溝部を周方向に有し、前記ローラは、前記溝部の端部において他方のローラと接触しており、前記溝部の端部は、前記原料撚線を構成する素線を前記ローラ間に挟み込まないための切欠きが設けられていることが好ましい。すると、対向するローラの溝部によって形成される間隙に、素線を収容できる逃がし部ができる。逃がし部は、原料撚線を構成する素線がローラ間に挟み込まれにくくし、素線の挟み込みによる断線やバリの形成を防止できる。
[本開示の実施形態の詳細]
 次に、本開示の実施形態について図面を参照して詳細に説明する。
 なお、本明細書において、円形、扇形、長方形、楕円形、または辺、直線、円弧等の形状は、幾何学的な意味に限定されるものではなく、材料や製造工程等に起因するずれを含むものとし、円形、扇形、長方形、楕円形、または辺、直線、円弧等と認識できる程度のものであればよい。また、扇形や長方形、楕円形等、電線導体や被覆電線の断面形状は、断面における外接図形の形状に基づいて認識することができる。本明細書において、電線導体や被覆電線の断面とは、電線導体や被覆電線の軸線方向に垂直に交差する断面を指すものとする。また、導体断面積については、公称断面積を指すものとする。
<電線導体>
 本開示の実施形態に係る電線導体は、複数の素線1を相互に撚り合わせた撚線として構成されている。本開示の実施形態に係る電線導体は、軸線方向(長手方向)に沿って少なくとも一部の領域を占めて、軸線方向に交差する断面の形状が、円形から変形した変形部を有している。以下、変形部の断面形状が異なる2つの実施形態について説明する。第一の実施形態においては、変形部の断面形状が、扇形となっており、第二の実施形態においては、変形部の断面形状が、扁平形状となっている。以下では、いずれの実施形態についても、電線導体の全域が変形部となったものを示す。
(電線導体の断面形状)
(1)第一の実施形態
 図1に、本開示の第一の実施形態に係る電線導体10の外観を斜視図にて示す。また、図2に、電線導体10の軸線方向に直交する断面を示す。図1,2および後に説明する図3A,3Bにおいては、分かりやすいように、電線導体10,10Aを構成する素線1の本数を少なくして示している。
 本開示の第一の実施形態に係る電線導体10は、軸線方向に交差する断面が、扇形となっている。つまり、軸線方向に交差する断面が、1つの辺、または頂点で互いに接する2つの辺と、その辺の端部をつなぐ外に凸の曲線と、を有する扇形の形状を有している。なお、辺が1つである場合は、半円形状となる。
 電線導体10の断面における扇形の中心角は、特に限定されない。なお、中心角が180度である場合、辺が1つである半円形状となる。中心角は、電線導体10を備える電線が配策される形態によって適宜決定すればよく、例えば、後に説明する図4Aに示すように、同じ太さの電線を3本まとめて配策する場合は、すべての電線の中心角を120度程度とすればよいし、太さの異なる電線を複数本まとめて配策する場合等には、それぞれ太さに応じて中心角を変えてもよい。
(2)第二の実施形態
 図3A,3Bに、本開示の第二の実施形態に係る電線導体10Aの軸線方向に直交する断面を示す。図3Aと図3Bは、異なる断面形状の例を示している。
本開示の第二の実施形態に係る電線導体10Aは、軸線方向に交差する断面が、扁平形状となっている。つまり、軸線方向に交差する断面の幅Wが、高さHよりも大きくなっている。ここで、断面の幅Wとは、図3Aのように、断面が外縁に直線的な辺を有する場合には、その辺と平行に断面を横切り、断面全体を範囲に含む直線のうち、最長の直線の長さであり、図3Bのように、断面が外縁に直線的な辺を有さない場合には、断面を横切り、断面全体を範囲に含む直線のうち、最長の長さの直線である。断面の高さHとは、幅Wを規定する直線に直交し、断面全体を範囲に含む直線の長さである。
 電線導体10Aの断面は、扁平形状を有していれば、どのような具体的形状をとってもよい。具体例として、図3Aに、断面が長方形である場合と、図3Bに、断面が楕円形である場合を示す。いずれの場合も、幅Wが高さHよりも大きくなっている。その他の扁平形状としては、小判形(長方形の両端に半円を有する形状)、台形や平行四辺形等、長方形以外の四角形を挙げることができる。また、扁平形状の縦横比も、特に制限されるものではなく、高さH:幅Wの比を、1:2~1:8程度とする形態を例示することができる。縦横比は、特に、1:3~1:5程度とすることが好ましい。すると、電線導体10Aの断面形状を十分に扁平に成形しながら、大幅な扁平化による素線1への過度の変形や負荷の印加を避けやすくなる。
(断面における素線の形状)
 本開示の第一の実施形態に係る電線導体10および第二の実施形態に係る電線導体10Aにおいては、軸線方向に直交する断面の中で、電線導体10,10Aの外周に面する外周部の素線1の変形率が、外周部の内側に位置する中央部の素線1の変形率以下となっている。さらには、外周部の素線1の変形率が、中央部の素線1の変形率よりも小さくなっている。図1,2,3A,3Bに、素線1の変形率が、中央部の素線1の変形率以下となった形態を、模式的に示している。
 ここで、素線1の変形率は、ある素線1が円形からどれだけ逸脱した断面を有しているかを示す指標である。実際に電線導体10,10Aに含まれる素線1について、断面を横切る最長の直線の長さを長径Aとし、その素線1の断面積と同じ面積を有する円の直径を円直径Rとすると、素線1の変形率Dを、以下のように表すことができる。
  D=(A-R)/R×100%  (1)
 円直径Rは、実際の素線1の断面積を計測して算出してもよいし、変形を受ける前の素線1の径が分かっている場合や、電線導体10,10Aの軸線方向に、素線1が変形されていない部位が共存する場合には、それら変形を受けていない素線1の径を円直径Rとして採用してもよい。また、外周部の素線1として、電線導体10,10Aの最外周に配置された素線1のみを採用し、中央部の素線1として、導体の中心に配置された素線1のみを採用してもよいが、素線1の変形におけるばらつき等の影響を低減する観点から、ある程度の面積にわたる領域に含まれる複数の素線1に対する平均値として、変形率を見積もることが好ましい。
 外周部の素線1の変形率が、中央部の素線1の変形率以下となっていると、さらには、中央部の素線1の変形率よりも小さくなっていると、外周部の素線1に負荷が集中し、外周部において、材料の変性や断線が発生すること、また鋭い突起等の凹凸構造(バリ)が形成されることを防ぎつつ、電線導体10,10Aを十分に成形、圧縮することができる。特に断面が略円形状の従来一般の電線導体10’を圧縮等によって変形させて本実施形態に係る電線導体10,10Aを製造する場合には、圧縮するために印加する力による、外周部の素線1への負荷の集中を、抑制することができる。
 本開示の実施形態に係る電線導体10,10Aにおいては、断面の外周部の素線1の変形率が、中央部の素線1の変形率以下となっているだけでなく、さらに、断面の外周部の素線1の変形率が、中央部の素線1の変形率の70%以下となっている。断面の外周部の素線1の変形率が、中央部の素線1の変形率の70%以下であることにより、外周部の素線1に負荷が集中し、外周部に、材料の変性や断線が発生すること、また、鋭い突起等の凹凸構造が形成されることを防ぎつつ、電線導体10,10Aを十分に変形、圧縮する効果が、具体的な断面形状や断面寸法が多岐にわたる場合にも、さらに得られやすくなる。断面の外周部の素線1の変形率は、中央部の素線1の変形率に対して、より好ましくは50%以下、さらに20%以下、特に好ましくは10%以下である。
 また、断面の外周部の素線1の円形からの変形率は、15%以下であることが好ましく、10%以下であることがより好ましく、5%以下であることがさらに好ましい。断面の外周部の素線1の変形率が、15%以下であると、外周部の素線1に負荷が集中し、外周部に材料の変性や断線が発生すること、また鋭い突起等の凹凸構造が形成されることを防ぐ効果が特に高く得られる。
 断面扇形の第一の実施形態に係る電線導体10においては、外周部は、扇形の辺部と、曲線部と、辺部と曲線部とが接する角部と、辺部と辺部とが接する頂点部との4箇所に分類することができる。これら4箇所における素線1の変形率の大きさは、概ね、辺部>曲線部>角部>頂点部の順となっていることが好ましい。外周部の上記4箇所のうち、少なくとも角部および頂点部において、素線1の変形率が、中央部の素線1の変形率以下となっており、さらに中央部の素線1の変形率の70%以下となっていることが好ましい。電線導体10において、断面形状を扇形に成形する際に、断面形状を理想的な扇形に近づける等の目的で、扇形の頂部や角部において、素線1が大きく変形されるのを避けるためである。
 一方、断面扁平形状の第二の実施形態に係る電線導体10Aにおいては、外周部は、扁平形状の端部と、中途部の2箇所に分類することができる。端部とは、断面の扁平形状の幅方向(幅Wに沿った方向)に沿って両端の部位であり、図3Aのように断面が長方形の場合には、幅方向の辺の両端部を指す。図3Bのように断面が楕円形の場合には、端部は、長軸方向両端部を指す。中途部とは、扁平形状の幅方向に延びる端縁のうち、上記端部を除く部位、つまり幅方向に延びる端縁の中途の領域を指す。扁平形状の外周部における素線1の変形率は、中途部>端部の順となっていることが好ましい。外周部の上記2箇所のうち、少なくとも端部において、素線1の変形率が、中央部の素線1の変形率以下となっており、さらに中央部の素線1の変形率の70%以下となっていることが好ましい。電線導体10Aにおいて、断面形状を扁平形状に成形する際に、断面形状を理想的な長方形等に近づける等の目的で、扁平形状の端部において、素線1が大きく変形されるのを避けるためである。
 本実施形態に係る電線導体10,10Aにおいて、電線導体10,10A全体の外形として、断面が扇形または扁平形状になっていれば、電線導体10,10Aを構成する各素線1の断面形状はどのようなものであってもよい。一般的な金属素線は、略円形の断面を有しており、本実施形態においても、そのような素線1を適用することができる。電線導体10,10Aの少なくとも一部の素線1は、電線導体10,10Aの全体形状を扇形や扁平形状に成形する際に変形されず、略円形の状態で残っていることが好ましい。本実施形態に係る電線導体10,10Aは、特に、外周部に変形されていない素線1が残りやすい。
 さらには、電線導体10,10Aの断面において、円形の断面を有する素線1の割合(円素線割合)が、5%以上であることが好ましい。ここで、円形の断面を有する素線1とは、式(1)で定義される変形率が5%以下の素線1であり、円素線割合は、断面における全素線1の本数のうち、円形の断面を有する素線1の本数の割合として見積もられる(断面円形の素線の本数/全素線の本数×100%)。円素線割合が高いほど、電線導体10,10A断面において、円形から変形を受けていない素線1が多数を占めることになり、各素線1に変形によって印加される負荷が、断面全体として小さいことを意味する。つまり、負荷の印加による素線1の変性や断線が発生しにくいことを意味する。円素線割合が5%以上であることにより、素線1の変形による変性や断線の発生を、効果的に抑制することができる。それらの効果をさらに高める観点から、円素線割合は、10%以上、15%以上、20%以上、40%以上であると、さらに好ましい。一方、電線導体10,10A全体としての断面形状を、扇形または扁平形状に十分に成形する観点から、円素線割合は、80%以下、また70%以下であることが好ましい。
(素線形状以外の特徴)
 上記のように、本実施形態に係る電線導体10,10Aは、複数の素線1が撚り合わせられた撚線よりなっている。そのため、電線導体10,10Aは、同じ導体断面積の単芯導体に比べ、高い柔軟性を有する。
 電線導体10,10Aを構成する素線1は、金属材料をはじめとし、いかなる導電性材料よりなってもよい。素線1を構成する代表的な材料として、銅および銅合金、そしてアルミニウムおよびアルミニウム合金を挙げることができる。これらの金属材料は、撚線を構成した際に変形によって、所望の形状を形成しやすく、また、一旦形成した形状を強固に維持しやすいという点において、本実施形態に係る電線導体10,10Aを構成するのに好適である。電線導体10,10Aの軽量化やコスト抑制等の観点、圧縮によって導体径を縮小することの意義の大きさの観点等から、アルミニウムまたはアルミニウム合金が好ましい。電線導体10,10Aを構成する素線1としては、全て同じ材料よりなるものを用いても、異なる材料よりなる複数種の素線1を混合して用いてもよい。電線導体10,10Aが、異なる材料よりなる複数種の素線1より構成されている場合、外周部と中央部の変形率は、同じ材料よりなる素線1同士、あるいは複数種の素線1の変形率の平均値で比較されることが好ましい。
 電線導体10,10Aの導体断面積は、所望される抵抗値等に応じて任意に選択すればよいが、電線導体10,10Aの導体断面積の好ましい範囲としては、3mm以上を例示できる。より好ましくは、50mm以上である。導体断面積が3mm以上であると、電線導体10,10Aの断面形状を扇形または扁平形状とすることによる省スペース化の効果が大きい。また、これらの場合に、電線導体10,10Aを構成する素線1の好適な径として、0.3~1.0mmを例示することができる。
 電線導体10,10Aは、断面において、素線1に占められていない空隙の割合である空隙率が10%以上、さらには15%以上となっていることが好ましい。すると、素線1の間の空隙を利用して、素線1が多様な相対配置を取りうるため、各素線1の形状自体を大きく変形させなくても、素線1の相対配置を利用して、電線導体10,10Aの断面を、所望の形状に成形しやすくなる。空隙率の上限は特に限定されないが、扇形や扁平形状に成形しやすく、形成された扇形や扁平形状を維持しやすいなどの観点から30%以下であることが好ましい。
 上記空隙率は、大小さまざまな形状の空隙の合計の面積が、電線導体10,10Aの断面において占める面積の割合であり、それら空隙の合計の面積が、電線導体10,10Aの断面において所定の範囲内であると、電線導体10,10Aの柔軟性が高められるが、それに加えて、ある程度の大きさを有する空隙が、連続した領域として存在していることが、電線導体10,10Aの柔軟性の向上に有効である。具体的には、電線導体10,10Aの断面に、素線1を1本以上、さらには2本以上収容可能な連続した空隙を有することが好ましい。素線1がそのような大きな空隙に移動することにより、電線の柔軟な曲げが補助されるからである。ここで、空隙に収容可能かどうかを判定する素線1としては、着目する空隙を取り囲んでいる素線1、あるいは、電線導体10,10Aを構成する任意の素線1と同じ断面積を有する断面円形の素線を想定して用いればよい。
 一般に、撚線導体に圧縮加工を施していない場合、特に撚線10’を構成する素線1の数が少ない撚線10’では、図6Aに示すように、撚線の外周に凹凸が生じる。この撚線を絶縁体20で被覆する場合、絶縁体20が最も薄い部分であっても耐摩耗性等の特性を満足できるように、絶縁体20の厚さを十分に確保する必要がある。圧縮工程により、電線導体10,10Aを扇形や扁平形状に成形することにより、撚線の外周の凹凸を低減することができ、全周に諸特性を満足できる厚さの絶縁体20を均等な厚さで形成することで、全周における平均としての絶縁体20の厚さを薄くすることができ、省スペース性に優れる。
 また、電線導体10,10Aが、扇形や扁平形状の断面形状を有することにより、電線導体10,10Aの外周を絶縁体20で被覆した被覆電線30も、扇形や扁平形状とみなすことができる断面形状をとる。後のワイヤーハーネスの項で詳しく説明するように、それら断面形状を利用して、複数の被覆電線30を、高密度に集積することが可能となる。つまり、複数の被覆電線30を束ねたり、配列したりして、集積する際に、被覆電線30の間に生じる隙間を小さくして、被覆電線30の集積を行うことができる。さらに、被覆電線30を配策すべき空間の大きさや形状に合わせて、被覆電線30の相互配置を選択することで、多様な空間への被覆電線30の配策が可能となる。
 以上のように、本実施形態に係る電線導体10,10Aは、省スペース性と柔軟性を両立し、高い配策の自由度を有するものとなっている。例えば、自動車において、近年の高機能化により、設置される電線や部品の数が増加している。また、電気自動車等において、大電流化が進み、個々の電線径も太くなっている。これにより、個々の電線を配策可能なスペースが減少してきている。本開示に係る電線導体10,10Aを用いれば、省スペース性と柔軟性に優れることから、小さなスペースを有効に利用して、電線の配策を行うことができる。多数の電線を集積させる場合や、導体断面積の大きい電線を用いる場合に、特にその効果が大きくなる。
<電線導体の成形>
 本実施形態に係る電線導体10,10Aは、その製法は特に限定されるものではないが、例えば、図7に示すように、複数の素線1を撚り合わせた原料撚線10’を、圧縮することで、成形することができる。この際、原料撚線10’の軸線方向に直交し、相互に対向する第一方向と第二方向から、力F1,F2を印加する。必要であれば、加えてさらに、第一方向および第二方向と交差し、相互に対向する第三方向および第四方向から、力F3,F4(不図示)を原料撚線10’に印加してもよい。少なくとも対向する2方向から力を印加することで、効率よく原料撚線10’を変形することができる。また、異なる複数の方向から、複数回に分けて力を印加することで、原料撚線10’の外周部の素線1に圧力が偏ることを防ぎ、外周部の素線1が材料の変性や断線を起こすことなく、またバリを形成することなく、変形された電線導体10,10Aを成形することができる。
 特に、断面扁平形状の電線導体10Aを製造する場合には、上記第一方向および第二方向からの力F1,F2に加え、第一方向および第二方向と交差して相互に対向する第三方向および第四方向から、力F3,F4を原料撚線10’に印加することが好ましい。さらには、最初に力F1,F2を印加した後、再度それらと同じ方向から力F1’,F2’を印加するとともに、同時に力F3,F4を印加することが好ましい。すると、得られる電線導体10Aを断面長方形に成形しやすくなる。この場合、力F1,F2,F1’,F2’を印加された箇所が、長方形の幅方向に沿った長辺となる。
 原料撚線10’への力の印加は、例えば、図8A,8Bに示すように、ローラ60を対向して設け、それらローラ60の間に原料撚線10’を通すことで行えばよい。ローラ60を用いた場合、対向する一対のローラ60が互いに逆方向に回転し、ローラ60の回転により原料撚線10’を送り出しながら、原料撚線10’に力を印加することができる。このとき、原料撚線10’には、ダイスを用いて圧縮した場合のような軸線方向に引張る力を印加することなく、径方向外側から内側へ向けて力を印加することができる。さらに、原料撚線10’の搬送方向手前側では、ローラ間が大きく開いているため、大きな力は印加されず、2つのローラ60の接点に向かって印加される力が漸次増大していく。これにより、印加された力は原料撚線10’の全体にいきわたり、外周部に負荷が集中することを防ぐことができる。また、ローラ60を用いると、長尺状の原料撚線10’を送り出しながら、連続的に処理でき、生産性に優れる。
 ローラ60は、その周方向に溝部61を有し、溝部61は少なくともその一部において、原料撚線10’と接触する。ローラ60によって圧縮された電線導体10,10Aの断面形状は、原料撚線10’と接触する溝部61の形状を反映する。例えば、図8Bに示すように、一対のローラのうち、一方のローラ60aに円弧状の溝部を設け、他方のローラ60bにV字状の溝部を設けることで断面扇形の電線導体10を得ることができる。断面扁平形状の電線導体10Aを製造する場合には、ローラに設ける溝部61を、所望される扁平形状に対応する形状としておけばよい。
 溝部61は、その端部においてローラ60が相互に対向する部位に、素線1をローラ間に挟み込まないための切欠き62が設けられていることが好ましい。具体的には、図8Bに示すように、ローラ60の軸方向に、原料撚線10’から離れるように傾斜するような構造を例示することができる。原料撚線10’を圧縮する際、構成する素線1の一部が、ローラ間に挟み込まれると突起状に鋭く変形したバリが形成されたり、挟み込まれた素線1が断線したりする場合があるが、溝部61の端部に切欠き62が設けられていると、対向するローラ60の溝部61が形成する間隙が、素線1を挟み込まないように収容する逃がし部63を形成し、素線1が挟み込まれにくくなる。これにより、挟み込みによるバリの発生や断線を防止できる。
 以上のように、原料撚線10’の軸線方向に直交し、相互に対向する第一方向と第二方向から、ローラを用いて力F1,F2を印加することにより、外周部の変形率が、中央部の変形率以下となった電線導体10,10Aを製造することができる。従来、断面略円形状の撚線からなる電線導体10’を変形させる場合、圧縮ダイス等を用いて、電線導体10’を軸線方向に引張るように力を印加する引抜加工のような加工法が用いられてきたが、このような加工法においては、外周部の素線1に負荷が集中しやすく、外周部の素線1の変形率が大きくなる傾向があった。これにより、特に導体断面積の大きな電線導体10’、あるいは撚線を構成する素線1の多い電線導体10’を変形させる場合、大きな引抜力が必要となり、バリや断線が発生しやすく、製造が困難であった。本実施形態に係る製造方法は、従来製造が困難であった大断面積、あるいは撚線を構成する素線1の多い場合に特に適している。
<被覆電線>
 本開示の実施形態に係る被覆電線30は、上記のような本開示の実施形態に係る電線導体10または電線導体10Aと、電線導体10,10Aの外周を被覆する絶縁体20とを有している。上でも説明したが、電線導体10,10Aの断面形状を反映して、絶縁体20を含めた被覆電線30全体の断面形状も、電線導体10,10Aの断面形状と同様に、扇形または扁平形状とみなせるものとなる。
 絶縁体20の材料は特に限定されるものではなく、種々の高分子材料より構成することができる。また、高分子材料には、適宜、充填剤や添加剤を含有させることができる。絶縁体20の材料および厚さは、絶縁体20の耐摩耗性や柔軟性等の所望の特性に応じて適宜選定されればよい。省スペース性や柔軟性などの観点からは、絶縁体20の厚さは、過度に厚くしないことが好ましい。例えば、絶縁体20の厚さを、平均値で2.0mm以下とする形態を好ましいものとして例示することができる。
 電線導体10,10Aは、断面形状を扇形または扁平形状に成形されることにより、外周部の凹凸を低減し、絶縁体20の厚さを薄く、均一にすることができる。これにより、余分な絶縁体20の厚さを削減でき、省スペース性に優れる。
 絶縁体20は、電線導体10,10Aの全周を一体的に取り囲む形態とすることが好ましい。この場合に、絶縁体20となる高分子材料を、押し出し等によって電線導体10,10Aの全周に成形することで、絶縁体20を設けることができる。
 電線導体10,10Aを成形するローラ装置と、絶縁体20を押し出す押出装置とを連続させると、原料撚線10’を圧縮して電線導体10,10Aを形成し、被覆電線30を製造するまでの工程を連続して行うことができ、生産性に優れる。また、原料撚線10’を構成する素線1の製造、素線1の撚り合わせ、撚り合わせて得た原料撚線10’の変形、絶縁体20の押し出しのいずれもが、長尺状の材料の各部に対して連続して実施し得る工程であり、これらの工程を連続して行うことで、高い生産性を達成することができる。
 被覆電線30は、単一の電線導体10,10Aの外周を絶縁体20で被覆した被覆電線30を単独の状態で使用しても、被覆材等を用いて複数の被覆電線30を一体的にまとめたり、端部にコネクタ等の接続部材を設けたりして、ワイヤーハーネスの形態で使用してもよい。ワイヤーハーネスの形態で使用する場合について、次に説明する。
<ワイヤーハーネス>
 本開示の実施形態に係るワイヤーハーネスは、断面扇形の電線導体10または断面扁平形状の電線導体10Aを有する本開示の実施形態に係る被覆電線30の端部に、コネクタ等の接続部材を有するものよりなっている。あるいは、本実施形態に係るワイヤーハーネスは、複数の被覆電線を束ねたものよりなっており、それら複数の被覆電線の少なくとも一部が、断面扇形の電線導体10または断面扁平形状の電線導体10Aを有する本開示の実施形態に係る被覆電線30よりなっている。各被覆電線30の端部には、適宜、コネクタ等の接続部材が設けられる。この場合に、ワイヤーハーネスは、上記のような断面扇形または扁平形状の電線導体10,10Aを有する被覆電線30のみを用いて構成してもよいし、断面扇形または扁平形状の被覆電線30と、一般的な円形の電線導体10’を有する被覆電線30’等、他種の被覆電線を併用して構成してもよい。また、本開示に係る断面扇形または扁平形状の電線導体10,10Aを有する被覆電線30を複数用いてワイヤーハーネスを構成する場合には、それら複数の被覆電線30を構成する電線導体10,10Aや絶縁体20の材質や形状、寸法等は、相互に同じであってもよいし、異なっていてもよい。
 本実施形態に係るハイヤーハーネスは、省スペース性と柔軟性に優れることから、配策性に優れる。これにより、十分な配策スペースを確保しやすいことから、導体断面積を大きくすることができ、例えば、電気自動車等の電力線として好適に用いることができる。特に、本実施形態のワイヤーハーネスを用いて電力線を構成した場合に、電線導体10,10Aが細い素線1の集合よりなるため、電線導体10,10A全体として、屈曲や振動に対して高い耐性を有する。よって、エンジン振動等による疲労破壊が起きにくい。
 従来一般の被覆電線30’を束にして構成されたワイヤーハーネスは、全体として嵩高くなるため、自動車内でその配策スペースを確保しようとすれば、居住空間(乗員が滞在できる空間)が狭くなってしまう場合があった。例えば、複数の被覆電線の集合体を、パイプシールドやコルゲートチューブ等、中空筒状の収容部材40に収容して配策する際に、被覆電線の集合体が占める体積が大きくなると、それに応じて、収容部材40として、径が大きいものを用いる必要が生じる。収容部材40の具体例として、自動車の床下に配置されるワイヤーハーネスにおいて、複数の被覆電線を内部に収容するパイプシールドを例示することができる。従来一般の断面円形の導体を備えた被覆電線30’を複数集積して、パイプシールド等、収容部材40の内部に収容するとすれば、図6Bのように、収容部材40の内部に余分なスペースが生じてしまい、径の大きい収容部材40を用いる必要がある。
 これに対し、上記のように、断面扇形の電線導体10または断面扁平形状の電線導体10Aを有する被覆電線30を用いて、ワイヤーハーネスの配策に要する空間を小さく抑えることで、居住空間を広く確保することが可能となる。電線導体10,10Aの断面形状を反映した被覆電線30の形状を利用して、被覆電線30の集合体が占める空間を小さく抑えることができるからである。例えば、パイプシールドやコルゲートチューブ等、被覆電線30の集合体を収容する収容部材40として、径の小さいものを用いることができる。下に、断面が扇形の第一の実施形態に係る電線導体10を用いる場合と、断面が扁平形状の第二の実施形態に係る電線導体10Aを用いる場合について、それぞれ、収容部材40を備えたワイヤーハーネスの具体例を説明する。
(1)第一の実施形態
 まず、断面扇形の本開示の第一の実施形態に係る電線導体10を備えた被覆電線30を用いて、ワイヤーハーネスを構成する形態について例示する。複数の被覆電線30をパイプ等の収容部材40で一体的にまとめて用いる際、図4Aのように、断面が半円形または扇形である被覆電線30を、半円形または扇形の辺部が相互に隣接し、曲線部が連続して円形を形成するように配置すると、断面円形の領域に、被覆電線30を隙間なく充填することができる。すると、収容部材40として、その断面円形の領域が収まる径を有する収容部材40を用いればよいことになるので、断面円形の電線導体10’を有する被覆電線30’を束ねる場合よりも、収容部材40の径を小さくすることができる。例えば、図4Aに示すとおり、パイプシールド等の収容部材40に、複数の被覆電線30を隙間なく配置することができる。
 さらに、被覆電線30の間に、放熱シート50を介在させると放熱性に優れる。断面扇形の電線導体10を用いる場合には、被覆電線30間の距離が近くなることにより、対向する扇形の辺部では、外側に開放された曲線部等に比べ、熱を放出しにくくなる。しかし、辺部に放熱シート50を介在させることにより、複数の被覆電線30をパイプ等で束ねて配置しても、通電時の発熱の影響を抑制することができる。このとき、例えば、アルミのような高熱伝導のパイプ等を収容部材40として用いて被覆電線30を束ねると、辺部と曲線部の双方から放熱することができる。
(2)第二の実施形態
 次に、本開示の第二の実施形態に係る電線導体10Aを備えた被覆電線30を用いて、ワイヤーハーネスを構成する形態について例示する。この形態においては、被覆電線30が断面扁平形状をとることを利用して、多数の被覆電線30を、幅方向(幅Wに沿った方向)または高さ方向(高さHに沿った方向)に配列することができる。幅方向と高さ方向の両方向に、複数の被覆電線30をマトリクス状に配列してもよい。扁平形状を利用して、多数の被覆電線30を、整然と、また相互間に形成される隙間を小さくして、配列することができ、ワイヤーハーネスが、省スペース性に優れたものとなる。さらに、被覆電線30を幅方向に並べる数や、高さ方向に積層する数等、被覆電線の配列にかかるパラメータを選択することにより、被覆電線30の群を、様々な相互配置で集積することができる。配策すべき空間の形状や大きさに応じて、被覆電線30の相互配置を設定することで、多様な空間を利用して、ワイヤーハーネスを配策することができる。例えば、被覆電線30を幅方向に並べて配置することで、平面や曲面に沿わせるようにして、ワイヤーハーネスを、全体としての高さを小さく抑えて配策することができる。また、被覆電線30を高さ方向に積層して配置することで、細長い空間にワイヤーハーネスを収容することができる。
 特に、図3Aのように、断面長方形の電線導体10Aを有する被覆電線30を用いて、ワイヤーハーネスを構成する場合には、長方形の辺(短辺および/または長辺)同士が平行に隣接するように、被覆電線30を配列することで、特に整然と被覆電線30を配列することができ、被覆電線30の間の隙間も、特に小さくすることができる。よって、この場合には、省スペース性が非常に高いワイヤーハーネスが得られる。ただし、この場合には、隣接する被覆電線30の間の隙間が小さくなること、あるいはなくなることにより、放熱性が悪くなりやすいので、隣接する被覆電線30の間に、放熱シート50を介在させておくことが好ましい。
 一方、図3Bの楕円形等、電線導体10Aの断面において、幅方向に延びる端縁が、外に凸の曲線形状となっている場合には、そのような電線導体10Aを備えた被覆電線30を用いてワイヤーハーネスを構成することで、省スペース性と放熱性を両立しやすい。つまり、被覆電線30の断面形状が幅方向に長い扁平形状となっていることにより、上記のように、幅方向や高さ方向に沿って複数の被覆電線30を配列した際に、高い省スペース性が得られる。一方、電線導体10Aの断面において、外縁の多くの部分を占める幅方向に延びる端縁(幅方向端縁)が、断面長方形の場合のような直線状ではなく、外に凸な曲線形状を有することにより、図4Bのように、高さ方向に沿って複数の被覆電線30を配列しても、隣接する被覆電線30の間の接触箇所が、幅方向端縁のうち最も外に凸になった箇所に限定される。その箇所以外の領域、つまり被覆電線30の断面の外縁の大部分を占める領域においては、隣接する被覆電線30が、相互に接触せず離れた状態に維持される。そのため、被覆電線30の間の箇所において、高い放熱性が確保される。
 この場合には、被覆電線30の間の箇所からの放熱を目的として、隣接する被覆電線30の間に、放熱シート50を介在させなくてもよい。図4Bに示すように、放熱シート50を介在させることなく、複数の被覆電線30を高さ方向に配列し、適宜、コルゲートチューブ等の収容部材40に収容して、ワイヤーハーネスを構成すればよい。放熱シート50を用いないようにすることにより、ワイヤーハーネスの構成部材の数を抑え、ワイヤーハーネスを簡素なものとできる。
 さらに、楕円形等、幅方向に延びる端縁が外に凸の曲線となった断面形状を有する電線導体10Aを備えた被覆電線30は、ワイヤーハーネスを構成する際に、端部への他の部材の取り付けに際しても、有利となる。被覆電線30の断面の外形が、長方形のように、直線的な形状、つまり直線と角を含んだ形状を有する場合よりも、楕円形のように、外に凸な曲線を含んだ緩やかな形状を有する場合の方が、被覆電線30の外周に、他の部材を密に沿わせて配置しやすいからである。
 例えば、図5A,5Bに示すように、被覆電線30の端部の外周に、ゴム材料よりなる中空筒状の止水栓70を配置したうえで、コネクタハウジング75に収容する場合を考える。止水栓70は、被覆電線30とコネクタハウジング75の間を止水する役割を果たす。図5Aのように、断面長方形の電線導体10Aを用いる場合には、被覆電線30の断面形状も、長方形となっており、被覆電線30の外周に止水栓70を被せた際に、止水栓70の内周面を、長方形の直線状の辺や角に沿わせにくい。例えば、止水栓70は、長方形の角に相当する部位に係止された状態となり、長方形の辺部においては、被覆電線30の外側に浮き上がった状態となる。すると、被覆電線30の長方形の辺部と止水栓70の間に、空間が形成される。この空間は、外部からコネクタハウジング75内に水が侵入する経路となる可能性があり、止水栓70によって十分な止水性能が発揮されない場合が生じうる。
 一方、図5Bに示すように、断面が、楕円形のように、外に凸な曲線よりなる幅方向端縁を有する電線導体10Aを用いる場合には、被覆電線30の幅方向端縁も、外に凸な曲線よりなる。この被覆電線30の外周に止水栓70を被せると、止水栓70の内周面が、外凸の曲線形状を有する幅方向端縁に対応する被覆電線30の外周の曲面形状に沿って、被覆電線30の外周面に密着した状態となりやすい。特に、電線導体10Aの断面が楕円形の場合には、被覆電線30の外周全体が、滑らかな外凸の曲面形状よりなるため、止水栓70の内周面全体が、被覆電線30の外周面に沿って密着した状態となりやすい。止水栓70が、間に空間を介さずに被覆電線30の外周に密着することにより、止水栓70と被覆電線30の間に水が侵入しにくくなり、被覆電線30とコネクタハウジング75の間に、高い止水性能が得られる。
 以下に、実施例を示す。なお、本発明はこれら実施例によって限定されるものではない。
(1)電線導体の断面を扇形とする場合
 断面扇形に成形した電線導体の断面に対して、素線の変形状態や空隙の状態を確認した。
 (試験方法)
 外径0.32mmのアルミニウム合金線を741本撚り合わせ、導体断面積60mmの断面略円形の原料撚線を作製した。原料撚線は、素線間の空隙を含めると、その断面積はおよそ78.5mmであった。
 上記原料撚線に対して、ローラを用いて圧縮加工を施し、断面扇形の電線導体を作製した。ローラによる圧縮においては、円弧状の溝部を有するローラと、V字状の溝部を有するローラとを用いて、上下方向から力を印加した。この際、溝部の断面積を変え、原料撚線に印加される力を変化させた。溝部の断面積が元の原料撚線の85%のローラで圧縮したものを試料A1とし、80%のローラで圧縮したものを試料A2とする。すなわち、溝部の断面積の小さい試料A2の方が、より強い力が印加された高圧縮率の状態にある。その後、各電線導体の外周に、PVCよりなる厚さ1.5mmの絶縁体を被覆した。
 試料A1、試料A2のそれぞれを、エポキシ樹脂に埋め込み、軸線方向に交差する断面を研磨し、断面試料を作製した。そして、得られた断面試料に対して、写真撮影を行った。
 撮影した断面の写真に対して、画像解析を行い、素線の変形率を評価した。この際、素線の変形率は、断面を横切る最長の直線の長さを長径Aとし、変形前の素線の直径を円直径Rとし、変形率Dを、下記式(1)から算出した。
  D=(A-R)/R×100%  (1)
 円直径Rとしては、変形前の原料撚線の素線の外径である0.32mmを採用した。また、素線の変形率は、図9B,9C中に正方形の領域R1として示した外周部と、同じく正方形の領域R2として示した中央部に含まれる素線に対して見積もり、各領域における変形率の平均値を算出した。さらに、中央部の変形率に対する外周部の変形率の比として、外周変形率比を算出した(外周変形率比=外周部変形率/中央部変形率×100%)。
 また、変形率が5%以下の素線を、断面円形の素線とみなし、全素線の本数に占める断面円形の素線の本数の割合として、円素線割合を見積もった(円素線割合=断面円形の素線の本数/全素線の本数×100%)。
 さらに、画像解析によって、空隙率を評価した。この際、電線導体全体の断面積(A0)を、電線導体の最外周に位置する素線の輪郭をつないだ外郭線の内側の領域の面積として見積もるとともに、空隙の面積(A1)を、その領域の中で、素線に占められていない領域の面積として見積もり、空隙率を算出した(A1/A0×100%)。
 (試験結果)
 図9A~9Cに、被覆電線の断面に対して撮影した写真を示す。図9Aは、圧縮前の原料撚線、図9Bは低圧縮率の試料A1、図9Cは高圧縮率の試料A2に対応している。また、下の表1に、試料A1および試料A2について画像解析によって得られた、素線の変形率および円素線割合、空隙率の値をまとめる。なお、表1の断面積比は、ローラに設けられた溝部の断面積を、圧縮前の原料撚線の断面積(78.5mm)に対する百分率で表したものである。
Figure JPOXMLDOC01-appb-T000001
 図9Bの試料A1と図9C試料A2の断面写真を比較すると、試料A1では、各素線の断面が、図9Aの加工前の略円形の形状から、大きくは変形していないのに対し、試料A2では、円形から大きく変形している素線が多く見られる。特に、扇形の辺と曲線とが接する角部に着目すると、試料A1では、外周部が滑らかに成形されているのに対し、試料A2では、円で囲んで示したように、鋭いバリが発生してしまっている。なお、試料A1のように外周部の変形率が小さくなるように圧縮した場合には、角部は外周部の中でも比較的変形率が低くなる傾向があるが、試料A2においては、円弧状の溝部を有するローラとV字状の溝部を有するローラを用いて高圧縮率で圧縮したため、ローラの接点である角部に鋭く突出したバリ構造が発生している。
 写真で見られるこれらの傾向は、表1の画像解析結果にも表れている。素線の変形率に関して、電線導体の中央部の変形率は、試料A1と試料A2で同程度になっている。しかし、外周部の変形率は、試料A1と試料A2で大きく異なっている。試料A1では、外周部の変形率が2.6%と小さく、中央部の変形率に対する変形率比が14%となっている。
 一方、試料A2では、外周部の変形率が、28%となっている。これは、中央部の変形率よりも大きな値であり、中央部の変形率に対して1.65倍となっている。この外周部の変形率の28%との値は、図9Cに円で囲んで示したバリの変形率も含むものであるが、この素線を無視したとしても、試料A2の外周部の変形率は17%となり、試料A1の変形率に比べるとかなり大きい値となる。また、円素線割合については、試料A1では、20%となっているのに対し、試料A2では、8%しかない。
 なお、試料A2は試料A1に比べローラの溝部の断面積比が小さく、高い圧力で圧縮されているが、表1において、試料A1の空隙率よりも試料A2の空隙率の方が大きくなっている。これは、試料A2はバリを含むことから、被覆材による締め付けがなく、圧縮後に電線導体が解けたために見かけ上の空隙率が大きくなったものである。
 また、図9B,9Cの断面写真からわかるように、試料A1,試料A2は素線間に十分な空隙が残るように圧縮されているため、柔軟性に優れる。
(2)電線導体の断面を扁平形状とする場合
 断面扁平形状に成形した電線導体に対しても、断面において素線の変形状態を確認するとともに、柔軟性を評価した。
 (試験方法)
・断面における素線の変形状態の評価
 外径0.32mmのアルミニウム合金線を171本撚り合わせて、導体断面積15mmの断面略円形の原料撚線を作製した。また、同じアルミニウム合金線を741本撚り合わせ、導体断面積60mmの断面略円形の原料撚線を作製した。この原料撚線は、上記試験(1)で用いたのと同じものである。
 上記2種の原料撚線に対して、ローラを用いて圧縮加工を施し、断面長方形の電線導体を作製した。ローラによる圧縮は、最初に上下方向から力F1,F2を印加した後、再度それらと同じ方向から力F1’,F2’を印加するとともに、同時に幅方向両側から、力F3,F4を印加することによって行った。この際、印加する力の大きさを異ならせることで、圧縮率の異なる電線導体を作製した。導体断面積15mmの場合については、圧縮率の低い電線導体として、試料B1を作製し、圧縮率の高い電線導体として、試料B2を作製した。導体断面積60mmの場合については、圧縮率の低い電線導体として、試料C1を作製し、圧縮率の高い電線導体として、試料C2を作製した。電線導体を作製した後、各電線導体の外周に、PVCよりなる厚さ1.5mmの絶縁体を被覆した。
 各試料について、上記試験(1)と同様に、断面試料の作製と写真撮影を行った。そして、得られた断面写真を解析して、外周部と中央部のそれぞれにおける素線の変形率の平均値を見積もった。それら各領域の変形率の見積もりに用いた領域R1,R2は、図10B,10C,11B,11Cに表示している。合わせて、各試料の断面における円素線割合を見積もった。
・柔軟性の評価
 各試料の柔軟性を、3点曲げ試験によって評価した。3点曲げ試験は、JIS K 7171:2016に準じて、図12に示すような試験装置90を用いて行った。すなわち、直径10mmの円柱形状を有する1対の支持部91,91を40mm離間させて配置し、それらの支持部91,91の間に、試料電線Sを渡して支持した。さらに、1対の支持部91,91の中間の位置に、試料電線Sを挟んで、荷重印加部92を配置した。荷重印加部92も、支持部91,91と同様、直径10mmの円柱形状を有している。荷重印加部92を、支持部91,91が配置されている方向に向かって移動させ(運動M)、試料電線Sを屈曲させた。荷重印加部92の移動速度は、20mm/minとした。試料電線Sを屈曲させている間に、試料電線Sに印加される荷重を、ロードセルにて測定し、荷重の最大値を記録した。
 (試験結果)
 図10A~10Cに、導体断面積が15mmの場合について、被覆電線の断面に対して撮影した写真を示す。図10Aは、圧縮前の原料撚線、図10Bは低圧縮率の試料B1、図10Cは高圧縮率の試料B2に対応している。また、図11A~図11Cに、導体断面積が60mmの場合について、被覆電線の断面に対して撮影した写真を示す。図11Aは、圧縮前の原料撚線、図11Bは低圧縮率の試料C1、図11Cは高圧縮率の試料C2に対応している。さらに、下の表2および表3に、それぞれ試料B1,B2および試料C1,C2について、画像解析によって得られた素線の変形率および円素線割合の値、および3点曲げ試験で得られた最大荷重をまとめる。表中には、断面写真から実測した断面寸法、また、ローラ間の空間の断面積と原料撚線の断面積の比率より算出した圧縮率(圧縮による断面積の減少量の割合)も、合わせて示している。
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
 図10Bの試料B1と図10C試料B2の断面写真を比較すると、試料B1では、各素線の断面が、図10Aの加工前の略円形の形状から、大きくは変形していないのに対し、試料B2では、円形から大きく変形している素線が多く見られる。さらに、試料B1では、素線の間に大きな空隙が残されているのに対し、試料B2では、素線間の空隙は、小さくなっている。図11Bの試料C1と図11Cの試料C2の断面写真の比較においても、以上と同様の傾向が見て取れる。
 写真で見られるこれらの傾向は、表2,3の画像解析結果にも表れている。まず、表2の導体断面積15mmの場合を見ると、素線の変形率に関して、電線導体の中央部の変形率は、試料B1と試料B2で同程度になっている。しかし、外周部の変形率は、試料B1と試料B2で大きく異なっている。試料B1では、外周部の変形率が1.9%と小さく、中央部の変形率に対する変形率比が12%となっている。これに対し、試料B2では、外周部の変形率が、32%となっている。これは、中央部の変形率よりも大きくなっており、中央部の変形率に対して2.3倍となっている。円素線割合については、試料B1では、51%となっているのに対し、試料B2では、4%しかない。
 次に、表3の導体断面積60mmの場合を見ると、試料C1では、素線の変形率が、中央部では38%であるのに対し、外周部では1.9%となっている。つまり、外周部の変形率は、中央部の変形率に対して大幅に小さな値となっている。中央部の変形率に対する外周部の変形率比は、4.9%となっている。一方、試料C2では、中央部の変形率が49%となっているのに対し、外周部の変形率が、35%となっている。つまり、高圧縮率の試料C2においても、低圧縮率の試料C1と同様に、素線の変形率が、外周部において、中央部よりも小さくなっている。これは、表2において、高圧縮率の試料B2では、素線の変形率が、外周部において、中央部よりも大きくなっていたのとは相違している。しかし、試料C2について、中央部の変形率に対する外周部の変形率の比率である変形率比を求めると、71%となっている。これは、低圧縮率の試料C1における4.9%との変形率比より、大幅に大きいものとなっている。円素線割合については、試料C1では、50%となっているのに対し、試料C2では、2%しかない。
 以上より、いずれの導体断面積の扁平状試料においても、低圧縮率の場合(試料B1,C1)は、素線の変形率が、外周部において、中央部の70%以下となっているのに対し、高圧縮率の場合(試料B2,C2)は、素線の変形率が、外周部において、中央部の70%を超えていることになる。また、いずれの導体断面積の試料においても、円素線割合については、低圧縮率の場合(試料B1,C1)では、50%にまで達しているのに対し、高圧縮率の場合(試料B2,C2)では、5%にも達していない。
 さらに、表2,3で、3点曲げ試験で得られた最大荷重に着目する。最大荷重の値が大きいほど、試料電線を曲げるのに大きな荷重が必要であり、電線導体の柔軟性が低いことを示す。表2によると、最大荷重は、圧縮前の状態で14Nであるのに対し、低圧縮率の試料B1では14N、高圧縮率の試料B2では16Nとなっている。つまり、試料B1では、電線導体の圧縮を経ても、圧縮前と同等の柔軟性が確保されているのに対し、試料B2では、圧縮を経て、電線導体の柔軟性が低下している。
 表3によると、表2の場合よりも導体断面積が大きいことに対応して、3点曲げの最大荷重の値は大きくなっている。しかし、3点曲げ荷重を、各試料間で比較すると、圧縮前の状態で75Nであるのに対し、低圧縮率の試料C1では76N、高圧縮率の試料C2では88Nとなっている。つまり、試料C1では、電線導体の圧縮を経ても、圧縮前とほぼ同等の柔軟性が確保されているのに対し、試料C2では、圧縮を経て、電線導体の柔軟性が低下している。
 以上、断面扁平形状の場合の試験において、導体の断面における素線の変形と、3点曲げによる柔軟性の評価の結果を合わせて、以下のことが分かる。つまり、導体の圧縮率を低くすると、素線の変形率を、外周部において、中央部の70%以下とすることができ、円素線割合も5%を大きく超える。その結果として、圧縮前とほぼ同等の柔軟性を確保することができる。おおむね、3点曲げによる最大荷重が、導体断面積が同じ非圧縮の電線導体を用いた場合の値に対して、98%以上の範囲に収まっている。一方、圧縮率を高めることで、電線導体の断面において、中央部に対する外周部の素線の変形率の比率が、70%を超えて高くなった場合、また円素線率が5%よりも低くなった場合には、圧縮後の電線導体において、十分な柔軟性を確保することが難しくなる。
 以上の電線導体の断面が扇形および扁平形状の場合の試験結果より、以下のことが示される。つまり、電線導体を、断面扇形や断面扁平形状に成形する際に、外周部の変形率が中央部の変形率以下となるように、さらには外周部の変形率が中央部の変形率の70%以下となるように、成形を行うことにより、外周部の素線に過度な負荷がかかりにくく、バリ等の不良を発生させることなく、省スペース性、柔軟性に優れる電線導体を提供できる。
 以上、本発明の実施の形態について詳細に説明したが、本発明は上記実施の形態に何ら限定されるものではなく、本発明の要旨を逸脱しない範囲で種々の改変が可能である。
 上記では、省スペース性、柔軟性に優れ、かつ特定の素線に負荷が集中しにくい電線導体、およびそのような電線導体を備えた被覆電線およびワイヤーハーネスを提供することを課題として、複数の素線を撚り合わせた撚線からなり、断面が扁平形状または扇形となった変形部を有し、変形部の断面における素線の円形からの変形率が、変形部の外周に面する外周部において、外周部の内側に位置する中央部の変形率の70%以下である電線導体について詳細に説明した。しかし、上記課題は、変形部の外周部における素線の円形からの変形率が、中央部の変形率に対して、上記のような関係となっていない場合でも、解決することができる。
 例えば、複数の素線を撚り合わせた撚線からなり、断面が扁平形状または扇形となった変形部を有し、変形部の断面において、円形の断面を有する素線の割合が、10%以上である電線導体とすればよい。あるいは、複数の素線を撚り合わせた撚線からなり、断面が扁平形状または扇形となった変形部を有し、変形部の断面における素線の円形からの変形率が、変形部の外周に面する外周部において、15%以下である電線導体とすればよい。これら2つの場合についても、電線導体や被覆電線、ワイヤーハーネスの好ましい構成として、上記で詳しく説明した各種構成を適用することができる。また、電線導体は、上記で詳しく説明した製造方法によって製造することができる。
 さらに、上記課題は、変形部の断面が、扁平形状または扇形である形態以外でも、解決することができる。つまり、複数の素線を撚り合わせた撚線からなり、断面が非円形となった変形部を有する電線導体において、変形部が、以下の(1)~(3)の構成のいずれか少なくとも1つを有するようにすればよい。ここで、非円形とは、円形、あるいは円形に近似できる形状以外の形状を指し、扁平形状や扇形の他に、多角形、あるいは多角形に近似できる形状を、例示することができる。
(1)変形部の断面における素線の円形からの変形率が、変形部の外周に面する外周部において、外周部の内側に位置する中央部の変形率以下となっている。あるいはさらに、外周部の素線の変形率が、中央部の素線の変形率よりも小さくなっている。あるいはさらに、外周部の素線の変形率が、中央部の素線の変形率の70%以下となっている。
(2)変形部の断面において、円形の断面を有する素線の割合が、10%以上である。
(3)変形部の断面における素線の円形からの変形率が、外周部において、15%以下である。
 これらの場合についても、電線導体や被覆電線、ワイヤーハーネスの好ましい構成として、上記で詳しく説明した各種構成を適用することができる。また、電線導体は、上記で詳しく説明した製造方法によって製造することができる。
 電線導体において、変形部の断面形状が、扁平形状および扇形以外の非円形となっている場合の例として、図13に断面写真を示す。ここでは、電線導体の断面が、六角形に成形されている。写真においては、外周部の素線が円形からほぼ変形を受けておらず、上記(1)のように、外周部の素線の変形率が中央部の素線の変形率以下となっている。また、上記(2),(3)の構成も、満たされていることが、写真から明らかである。なお、この断面における空隙率は、24%となっている。
 1            素線
 10,10A       電線導体
 10’          原料撚線(従来一般の電線導体)
 20           絶縁体
 30,30’       被覆電線
 40           収容部材
 50           放熱シート
 60(60a,60b)  ローラ
 61           溝部
 62           切欠き
 63           逃がし部
 70           止水栓
 75           コネクタハウジング
 90           試験装置
 91           支持部
 92           荷重印加部
 M            荷重印加時の運動
 S            試料電線
 H            扁平形状の高さ
 W            扁平形状の幅

Claims (17)

  1.  複数の素線を撚り合わせた撚線からなり、
     前記撚線の軸線方向に交差する断面が、前記断面の幅が高さよりも大きくなった扁平形状、または1つの辺または頂点で互いに接する2つの辺と前記辺の端部をつなぐ外に凸の曲線とを有する扇形となった変形部を有し、
     前記変形部の前記断面における前記素線の円形からの変形率が、前記変形部の外周に面する外周部において、前記外周部の内側に位置する中央部の変形率の70%以下である、電線導体。
  2.  前記変形部の前記断面において、円形の断面を有する前記素線の割合が、10%以上である、請求項1に記載の電線導体。
  3.  前記変形部の前記断面における前記素線の円形からの変形率が、前記外周部において、15%以下である、請求項1または請求項2に記載の電線導体。
  4.  前記変形部の前記断面において、前記素線に占められていない空隙の割合である空隙率が、10%以上である、請求項1から請求項3のいずれか1項に記載の電線導体。
  5.  前記変形部の前記断面において、前記素線を1本以上収容可能な連続した空隙を有する、請求項1から請求項4のいずれか1項に記載の電線導体。
  6.  前記変形部における前記断面の形状が、前記扁平形状であり、前記幅方向に延びる端縁が、外に凸な曲線となっている、請求項1から5のいずれか1項に記載の電線導体。
  7.  前記撚線を構成する素線が、50本以上である、請求項1から請求項6のいずれか1項に記載の電線導体。
  8.  前記素線の少なくとも一部が、アルミニウムまたはアルミニウム合金からなる、請求項1から請求項7のいずれか1項に記載の電線導体。
  9.  請求項1から請求項8のいずれか1項に記載の電線導体と、
     前記電線導体の外周を被覆する絶縁体と、を有する、被覆電線。
  10.  請求項9に記載の被覆電線を含んでなる、ワイヤーハーネス。
  11.  前記ワイヤーハーネスが、請求項6に記載の電線導体を有する前記被覆電線を複数含んでなり、
     複数の前記被覆電線が、前記絶縁体を介して、前記幅方向に延びる端縁を相互に対向させて並べられている、請求項10に記載のワイヤーハーネス。
  12.  複数の前記被覆電線が、間に放熱シートが介在されることなく並べられている、請求項11に記載のワイヤーハーネス。
  13.  前記被覆電線は、端部に前記変形部を有する請求項6に記載の電線導体を有しており、前記被覆電線は、前記端部の外周に止水栓を配置された状態で、コネクタハウジングに収容されている、請求項10から請求項12のいずれか1項に記載のワイヤーハーネス。
  14.  前記変形部における前記断面の形状が前記扇形である請求項9に記載の被覆電線を複数含んでなり、
     複数の前記被覆電線が、前記絶縁体を介して、前記扇形の辺を相互に対向させて配置されている、請求項10に記載のワイヤーハーネス。
  15.  複数の前記被覆電線の間に、放熱シートが介在されている、請求項14に記載のワイヤーハーネス。
  16.  素線を撚り合わせた原料撚線に対して、該原料撚線の軸線方向に交差し、相互に対向する第一の方向および第二の方向からローラを用いて加圧する圧縮工程を行うことにより、請求項1から請求項8のいずれか1項に記載の電線導体を製造する、電線導体の製造方法。
  17.  少なくとも1つの前記ローラは、少なくとも一部において前記原料撚線に接触する溝部を周方向に有し、
     前記ローラは、前記溝部の端部において他方のローラと接触しており、前記溝部の端部は、前記原料撚線を構成する素線を前記ローラ間に挟み込まないための切欠きが設けられている、請求項16に記載の電線導体の製造方法。

     
PCT/JP2019/010248 2018-03-14 2019-03-13 電線導体、被覆電線、ワイヤーハーネス、および電線導体の製造方法 WO2019177016A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
DE112019001284.3T DE112019001284T5 (de) 2018-03-14 2019-03-13 Elektrischer Drahtleiter, ummantelter elektrischer Draht, Verkabelung und Verfahren zum Herstellen eines elektrischen Drahtleiters
US16/977,635 US11189394B2 (en) 2018-03-14 2019-03-13 Electric wire conductor, covered electric wire, wire harness, and method for manufacturing electric wire conductor
JP2020506601A JP7024855B2 (ja) 2018-03-14 2019-03-13 電線導体、被覆電線、ワイヤーハーネス、および電線導体の製造方法
CN201980016151.7A CN112005320B (zh) 2018-03-14 2019-03-13 电线导体、包覆电线、线束及电线导体的制造方法
JP2022018548A JP7290184B2 (ja) 2018-03-14 2022-02-09 電線導体、被覆電線、ワイヤーハーネス、および電線導体の製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
PCT/JP2018/009907 WO2019176001A1 (ja) 2018-03-14 2018-03-14 電線導体、被覆電線、ワイヤーハーネス、および電線導体の製造方法
JPPCT/JP2018/009907 2018-03-14

Publications (1)

Publication Number Publication Date
WO2019177016A1 true WO2019177016A1 (ja) 2019-09-19

Family

ID=67906586

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/JP2018/009907 WO2019176001A1 (ja) 2018-03-14 2018-03-14 電線導体、被覆電線、ワイヤーハーネス、および電線導体の製造方法
PCT/JP2019/010248 WO2019177016A1 (ja) 2018-03-14 2019-03-13 電線導体、被覆電線、ワイヤーハーネス、および電線導体の製造方法

Family Applications Before (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/009907 WO2019176001A1 (ja) 2018-03-14 2018-03-14 電線導体、被覆電線、ワイヤーハーネス、および電線導体の製造方法

Country Status (5)

Country Link
US (2) US11749423B2 (ja)
JP (3) JP7060081B2 (ja)
CN (2) CN111788639B (ja)
DE (2) DE112018007264T8 (ja)
WO (2) WO2019176001A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113053566A (zh) * 2019-12-27 2021-06-29 矢崎总业株式会社 电线
US20220028581A1 (en) * 2019-01-30 2022-01-27 Autonetworks Technologies, Ltd. Insulated electric wire, wire harness, and insulated electric wire production method
WO2022210332A1 (ja) * 2021-03-31 2022-10-06 株式会社オートネットワーク技術研究所 絶縁電線およびワイヤーハーネス
WO2022210331A1 (ja) * 2021-03-31 2022-10-06 株式会社オートネットワーク技術研究所 絶縁電線およびワイヤーハーネス
US11887757B2 (en) 2019-01-30 2024-01-30 Autonetworks Technologies, Ltd. Insulated electric wire and wire harness
US11887758B2 (en) 2019-01-30 2024-01-30 Autonetworks Technologies, Ltd. Wire harness and insulated electric wire thereof having water-stopping agent
US11908598B2 (en) 2019-01-30 2024-02-20 Autonetworks Technologies, Ltd. Insulated electric wire and harness with water-stopping agent and wire harness

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109923621B (zh) * 2016-11-08 2021-02-09 株式会社自动网络技术研究所 电线导体、被覆电线、线束
JP6997953B2 (ja) * 2018-09-05 2022-02-04 株式会社オートネットワーク技術研究所 ワイヤーハーネス
KR102381550B1 (ko) * 2020-01-17 2022-04-01 주식회사 디에스엔프라 와이어 하네스용 전선 구조체
US11582865B2 (en) * 2020-11-26 2023-02-14 Innolux Corporation Package device
US11447948B1 (en) * 2021-06-29 2022-09-20 Ronald Hohmann, Jr. Veneer ties having asymmetrical transverse cross-sections and wall anchoring system utilizing the same

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017079151A (ja) * 2015-10-20 2017-04-27 住友電装株式会社 ワイヤハーネス
WO2018088419A1 (ja) * 2016-11-08 2018-05-17 株式会社オートネットワーク技術研究所 電線導体、被覆電線、ワイヤーハーネス

Family Cites Families (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1231568A (en) * 1915-03-10 1917-07-03 Le Roy Clark Electric cable.
US1691869A (en) * 1924-07-03 1928-11-13 Frank F Fowle Electrical conductor
US1692767A (en) * 1927-04-20 1928-11-20 Gen Cable Corp Stranded sector-shaped conductor
FR766758A (ja) 1933-05-25 1934-07-03
DE698278C (de) 1933-12-19 1940-11-06 Felten & Guilleaume Carlswerk Verfahren zur Herstellung eines nicht kreisrunden elektrischen Leiters
US2235139A (en) * 1939-01-11 1941-03-18 Bruce Malcolm Radio antenna system
US3831132A (en) * 1971-04-29 1974-08-20 Molex Inc Crimp terminal for aluminum wire
US3906308A (en) * 1973-09-27 1975-09-16 Mc Donnell Douglas Corp Aircraft lightning protection system
JP2761537B2 (ja) 1986-12-22 1998-06-04 矢崎総業株式会社 ワイヤーハーネス及びその製造法
JP2709178B2 (ja) * 1990-05-10 1998-02-04 住友電気工業株式会社 ハーネス用電線導体
JP2596188B2 (ja) * 1990-07-04 1997-04-02 日立電線株式会社 異形撚線成形用ロール
JPH05159628A (ja) 1991-12-04 1993-06-25 Yazaki Corp ワイヤハーネス用電線及び自動車用ワイヤハーネス
JPH0562917U (ja) 1992-01-31 1993-08-20 株式会社フジクラ 扇形導体3芯電力ケーブルの遮水構造
US5260516A (en) 1992-04-24 1993-11-09 Ceeco Machinery Manufacturing Limited Concentric compressed unilay stranded conductors
JPH08249926A (ja) 1995-03-14 1996-09-27 Hitachi Cable Ltd 可撓撚線導体およびケーブルコア並びにその製造方法
DE19549406C2 (de) * 1995-06-22 1997-12-11 Alcatel Kabel Ag Verfahren zur Herstellung eines Sektorleiters für elektrische Energiekabel
JP2003331671A (ja) 2002-05-16 2003-11-21 Furukawa Electric Co Ltd:The 分割導体の製造方法
ATE465499T1 (de) * 2003-03-28 2010-05-15 Grupo General Cable Sist S S A Leiter aus metall und entsprechendes herstellungsverfahren
JP2006260898A (ja) * 2005-03-16 2006-09-28 Auto Network Gijutsu Kenkyusho:Kk シールド導電路及びシート状導電路の製造方法
JP2006269201A (ja) * 2005-03-23 2006-10-05 Auto Network Gijutsu Kenkyusho:Kk シールド導電路
WO2008026645A1 (fr) * 2006-08-30 2008-03-06 Koatsu Gas Kogyo Co., Ltd. Composition de résine pour un matériau amortisseur et matériau amortisseur
JP5024948B2 (ja) * 2007-11-16 2012-09-12 矢崎総業株式会社 アルミ電線と端子との圧着構造
JP5421064B2 (ja) * 2009-10-26 2014-02-19 後藤電子 株式会社 高周波高圧高電流電線
JP2011134667A (ja) 2009-12-25 2011-07-07 Autonetworks Technologies Ltd ワイヤーハーネス
JP5175897B2 (ja) 2010-05-12 2013-04-03 トヨタ自動車株式会社 電気ケーブルおよび電気コネクタ
US8757560B2 (en) * 2010-06-24 2014-06-24 Wanaka Holdings, LLC Cable retention device
JP5673164B2 (ja) * 2011-02-04 2015-02-18 日立金属株式会社 三芯一括ケーブル
JP5920284B2 (ja) * 2013-05-17 2016-05-18 住友電装株式会社 端子付電線
JP2015141854A (ja) * 2014-01-30 2015-08-03 株式会社オートネットワーク技術研究所 撚り線導体および絶縁電線
WO2015146819A1 (ja) * 2014-03-24 2015-10-01 古河電気工業株式会社 ワイヤハーネス、被覆導線と端子との接続方法、およびワイヤハーネス構造体
JP2016054030A (ja) 2014-09-03 2016-04-14 住友電装株式会社 ワイヤハーネスおよびシールド導電路
JP6281448B2 (ja) * 2014-09-03 2018-02-21 住友電装株式会社 導電路
JP6102987B2 (ja) * 2015-06-12 2017-03-29 株式会社オートネットワーク技術研究所 アルミニウム合金線、アルミニウム合金撚線、被覆電線およびワイヤーハーネス
JP2017045523A (ja) 2015-08-24 2017-03-02 株式会社フジクラ コネクタ付き電線
CN109065226B (zh) 2015-09-30 2020-01-21 住友电气工业株式会社 多芯电缆用芯电线和多芯电缆
CN109923621B (zh) * 2016-11-08 2021-02-09 株式会社自动网络技术研究所 电线导体、被覆电线、线束
CN206672669U (zh) * 2017-04-13 2017-11-24 辽宁津达线缆有限公司 一种高柔性抗拉耐磨移动扁平电缆

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017079151A (ja) * 2015-10-20 2017-04-27 住友電装株式会社 ワイヤハーネス
WO2018088419A1 (ja) * 2016-11-08 2018-05-17 株式会社オートネットワーク技術研究所 電線導体、被覆電線、ワイヤーハーネス

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220028581A1 (en) * 2019-01-30 2022-01-27 Autonetworks Technologies, Ltd. Insulated electric wire, wire harness, and insulated electric wire production method
US11887757B2 (en) 2019-01-30 2024-01-30 Autonetworks Technologies, Ltd. Insulated electric wire and wire harness
US11887758B2 (en) 2019-01-30 2024-01-30 Autonetworks Technologies, Ltd. Wire harness and insulated electric wire thereof having water-stopping agent
US11887759B2 (en) 2019-01-30 2024-01-30 Autonetworks Technologies, Ltd. Insulated electric wire with water-stopping agent, wire harness, and insulated electric wire production method
US11908598B2 (en) 2019-01-30 2024-02-20 Autonetworks Technologies, Ltd. Insulated electric wire and harness with water-stopping agent and wire harness
CN113053566A (zh) * 2019-12-27 2021-06-29 矢崎总业株式会社 电线
WO2022210332A1 (ja) * 2021-03-31 2022-10-06 株式会社オートネットワーク技術研究所 絶縁電線およびワイヤーハーネス
WO2022210331A1 (ja) * 2021-03-31 2022-10-06 株式会社オートネットワーク技術研究所 絶縁電線およびワイヤーハーネス
DE112022001889T5 (de) 2021-03-31 2024-01-11 Autonetworks Technologies, Ltd. Isolierte elektrische leitung und kabelbaum
DE112022001886T5 (de) 2021-03-31 2024-01-11 Autonetworks Technologies, Ltd. Isolierte elektrische Leitung und Kabelbaum

Also Published As

Publication number Publication date
DE112019001284T5 (de) 2020-12-03
WO2019176001A1 (ja) 2019-09-19
JP7060081B2 (ja) 2022-04-26
CN111788639A (zh) 2020-10-16
CN112005320B (zh) 2022-05-17
JPWO2019176001A1 (ja) 2021-02-04
US20210050128A1 (en) 2021-02-18
JPWO2019177016A1 (ja) 2021-03-18
CN111788639B (zh) 2022-06-14
US11189394B2 (en) 2021-11-30
JP7290184B2 (ja) 2023-06-13
US11749423B2 (en) 2023-09-05
JP7024855B2 (ja) 2022-02-24
US20210090757A1 (en) 2021-03-25
CN112005320A (zh) 2020-11-27
JP2022058941A (ja) 2022-04-12
DE112018007264T8 (de) 2021-01-14
DE112018007264T5 (de) 2020-11-26

Similar Documents

Publication Publication Date Title
WO2019177016A1 (ja) 電線導体、被覆電線、ワイヤーハーネス、および電線導体の製造方法
JP7293275B2 (ja) 電線導体、被覆電線、ワイヤーハーネス
JP6904432B2 (ja) 電線導体、被覆電線、ワイヤーハーネス
WO2018088419A1 (ja) 電線導体、被覆電線、ワイヤーハーネス
WO2022210331A1 (ja) 絶縁電線およびワイヤーハーネス
JP2023146624A (ja) 電線、及びケーブル

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19766518

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
ENP Entry into the national phase

Ref document number: 2020506601

Country of ref document: JP

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 19766518

Country of ref document: EP

Kind code of ref document: A1