WO2019153391A1 - 一种Ni/Al2O 3催化剂微球及其制备方法 - Google Patents
一种Ni/Al2O 3催化剂微球及其制备方法 Download PDFInfo
- Publication number
- WO2019153391A1 WO2019153391A1 PCT/CN2018/077824 CN2018077824W WO2019153391A1 WO 2019153391 A1 WO2019153391 A1 WO 2019153391A1 CN 2018077824 W CN2018077824 W CN 2018077824W WO 2019153391 A1 WO2019153391 A1 WO 2019153391A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- catalyst
- reaction
- source
- nickel
- amount
- Prior art date
Links
- 239000003054 catalyst Substances 0.000 title claims abstract description 128
- 239000004005 microsphere Substances 0.000 title claims abstract description 55
- 238000002360 preparation method Methods 0.000 title abstract description 8
- PXHVJJICTQNCMI-UHFFFAOYSA-N nickel Substances [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 claims abstract description 77
- 238000006243 chemical reaction Methods 0.000 claims abstract description 62
- 238000000034 method Methods 0.000 claims abstract description 50
- 239000002002 slurry Substances 0.000 claims abstract description 43
- 239000002243 precursor Substances 0.000 claims abstract description 28
- 238000001027 hydrothermal synthesis Methods 0.000 claims abstract description 26
- 239000007787 solid Substances 0.000 claims abstract description 25
- 238000005469 granulation Methods 0.000 claims abstract description 22
- 230000003179 granulation Effects 0.000 claims abstract description 22
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims abstract description 21
- 229910052710 silicon Inorganic materials 0.000 claims abstract description 21
- 239000010703 silicon Substances 0.000 claims abstract description 21
- 239000007921 spray Substances 0.000 claims abstract description 19
- 238000000975 co-precipitation Methods 0.000 claims abstract description 17
- 239000002244 precipitate Substances 0.000 claims abstract description 16
- BOTDANWDWHJENH-UHFFFAOYSA-N Tetraethyl orthosilicate Chemical compound CCO[Si](OCC)(OCC)OCC BOTDANWDWHJENH-UHFFFAOYSA-N 0.000 claims abstract description 15
- 239000000463 material Substances 0.000 claims abstract description 15
- 229910052782 aluminium Inorganic materials 0.000 claims abstract description 13
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims abstract description 13
- 229910052759 nickel Inorganic materials 0.000 claims abstract description 13
- 239000012018 catalyst precursor Substances 0.000 claims abstract description 10
- 238000002156 mixing Methods 0.000 claims abstract description 9
- 239000004115 Sodium Silicate Substances 0.000 claims abstract description 7
- 238000001354 calcination Methods 0.000 claims abstract description 7
- NTHWMYGWWRZVTN-UHFFFAOYSA-N sodium silicate Chemical compound [Na+].[Na+].[O-][Si]([O-])=O NTHWMYGWWRZVTN-UHFFFAOYSA-N 0.000 claims abstract description 7
- 229910052911 sodium silicate Inorganic materials 0.000 claims abstract description 7
- 238000001035 drying Methods 0.000 claims abstract description 3
- 238000005406 washing Methods 0.000 claims abstract description 3
- 229910018072 Al 2 O 3 Inorganic materials 0.000 claims description 44
- 239000011259 mixed solution Substances 0.000 claims description 25
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 23
- 239000000243 solution Substances 0.000 claims description 22
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 claims description 21
- YIXJRHPUWRPCBB-UHFFFAOYSA-N magnesium nitrate Chemical compound [Mg+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O YIXJRHPUWRPCBB-UHFFFAOYSA-N 0.000 claims description 18
- OERNJTNJEZOPIA-UHFFFAOYSA-N zirconium nitrate Chemical compound [Zr+4].[O-][N+]([O-])=O.[O-][N+]([O-])=O.[O-][N+]([O-])=O.[O-][N+]([O-])=O OERNJTNJEZOPIA-UHFFFAOYSA-N 0.000 claims description 18
- HSJPMRKMPBAUAU-UHFFFAOYSA-N cerium(3+);trinitrate Chemical compound [Ce+3].[O-][N+]([O-])=O.[O-][N+]([O-])=O.[O-][N+]([O-])=O HSJPMRKMPBAUAU-UHFFFAOYSA-N 0.000 claims description 14
- 239000003795 chemical substances by application Substances 0.000 claims description 10
- 230000001376 precipitating effect Effects 0.000 claims description 10
- 229910004298 SiO 2 Inorganic materials 0.000 claims description 8
- CDBYLPFSWZWCQE-UHFFFAOYSA-L Sodium Carbonate Chemical compound [Na+].[Na+].[O-]C([O-])=O CDBYLPFSWZWCQE-UHFFFAOYSA-L 0.000 claims description 8
- MQRWBMAEBQOWAF-UHFFFAOYSA-N acetic acid;nickel Chemical compound [Ni].CC(O)=O.CC(O)=O MQRWBMAEBQOWAF-UHFFFAOYSA-N 0.000 claims description 8
- 229940078494 nickel acetate Drugs 0.000 claims description 8
- KBJMLQFLOWQJNF-UHFFFAOYSA-N nickel(ii) nitrate Chemical compound [Ni+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O KBJMLQFLOWQJNF-UHFFFAOYSA-N 0.000 claims description 8
- 230000035484 reaction time Effects 0.000 claims description 7
- 235000011121 sodium hydroxide Nutrition 0.000 claims description 7
- VHUUQVKOLVNVRT-UHFFFAOYSA-N Ammonium hydroxide Chemical compound [NH4+].[OH-] VHUUQVKOLVNVRT-UHFFFAOYSA-N 0.000 claims description 5
- 235000011114 ammonium hydroxide Nutrition 0.000 claims description 5
- BNGXYYYYKUGPPF-UHFFFAOYSA-M (3-methylphenyl)methyl-triphenylphosphanium;chloride Chemical compound [Cl-].CC1=CC=CC(C[P+](C=2C=CC=CC=2)(C=2C=CC=CC=2)C=2C=CC=CC=2)=C1 BNGXYYYYKUGPPF-UHFFFAOYSA-M 0.000 claims description 4
- ATRRKUHOCOJYRX-UHFFFAOYSA-N Ammonium bicarbonate Chemical compound [NH4+].OC([O-])=O ATRRKUHOCOJYRX-UHFFFAOYSA-N 0.000 claims description 4
- 239000001099 ammonium carbonate Substances 0.000 claims description 4
- 235000012501 ammonium carbonate Nutrition 0.000 claims description 4
- 229910000029 sodium carbonate Inorganic materials 0.000 claims description 4
- 235000017550 sodium carbonate Nutrition 0.000 claims description 3
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 claims description 2
- 229910017604 nitric acid Inorganic materials 0.000 claims description 2
- SHWZFQPXYGHRKT-FDGPNNRMSA-N (z)-4-hydroxypent-3-en-2-one;nickel Chemical compound [Ni].C\C(O)=C\C(C)=O.C\C(O)=C\C(C)=O SHWZFQPXYGHRKT-FDGPNNRMSA-N 0.000 claims 2
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 abstract description 10
- 230000003197 catalytic effect Effects 0.000 abstract description 7
- 230000015572 biosynthetic process Effects 0.000 abstract description 5
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 abstract description 4
- 238000004519 manufacturing process Methods 0.000 abstract description 4
- 230000003628 erosive effect Effects 0.000 abstract description 3
- 229910052593 corundum Inorganic materials 0.000 abstract 3
- 229910001845 yogo sapphire Inorganic materials 0.000 abstract 3
- 239000002245 particle Substances 0.000 description 29
- 230000008569 process Effects 0.000 description 19
- 239000000843 powder Substances 0.000 description 15
- 239000007789 gas Substances 0.000 description 12
- 239000008367 deionised water Substances 0.000 description 11
- 229910021641 deionized water Inorganic materials 0.000 description 11
- 238000012360 testing method Methods 0.000 description 9
- 230000000694 effects Effects 0.000 description 8
- 238000009826 distribution Methods 0.000 description 7
- RMAQACBXLXPBSY-UHFFFAOYSA-N silicic acid Chemical compound O[Si](O)(O)O RMAQACBXLXPBSY-UHFFFAOYSA-N 0.000 description 7
- BMGNSKKZFQMGDH-FDGPNNRMSA-L nickel(2+);(z)-4-oxopent-2-en-2-olate Chemical compound [Ni+2].C\C([O-])=C\C(C)=O.C\C([O-])=C\C(C)=O BMGNSKKZFQMGDH-FDGPNNRMSA-L 0.000 description 6
- 230000000052 comparative effect Effects 0.000 description 5
- 239000013078 crystal Substances 0.000 description 5
- 238000003756 stirring Methods 0.000 description 5
- 238000005299 abrasion Methods 0.000 description 4
- 238000006460 hydrolysis reaction Methods 0.000 description 4
- 239000002994 raw material Substances 0.000 description 4
- 238000003786 synthesis reaction Methods 0.000 description 4
- 238000012546 transfer Methods 0.000 description 4
- 229910002808 Si–O–Si Inorganic materials 0.000 description 3
- 229910052799 carbon Inorganic materials 0.000 description 3
- 230000007423 decrease Effects 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- 230000007062 hydrolysis Effects 0.000 description 3
- 238000011068 loading method Methods 0.000 description 3
- 229910052751 metal Inorganic materials 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- 235000012239 silicon dioxide Nutrition 0.000 description 3
- NIXOWILDQLNWCW-UHFFFAOYSA-M Acrylate Chemical compound [O-]C(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-M 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- 239000003463 adsorbent Substances 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 2
- 238000006555 catalytic reaction Methods 0.000 description 2
- 238000006482 condensation reaction Methods 0.000 description 2
- 238000009792 diffusion process Methods 0.000 description 2
- 230000006872 improvement Effects 0.000 description 2
- 230000003993 interaction Effects 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 239000000047 product Substances 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- NLXLAEXVIDQMFP-UHFFFAOYSA-N Ammonium chloride Substances [NH4+].[Cl-] NLXLAEXVIDQMFP-UHFFFAOYSA-N 0.000 description 1
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 1
- 229910002549 Fe–Cu Inorganic materials 0.000 description 1
- 229910021193 La 2 O 3 Inorganic materials 0.000 description 1
- 229910003849 O-Si Inorganic materials 0.000 description 1
- 229910003872 O—Si Inorganic materials 0.000 description 1
- 239000006004 Quartz sand Substances 0.000 description 1
- 238000005411 Van der Waals force Methods 0.000 description 1
- QGZKDVFQNNGYKY-UHFFFAOYSA-N ammonia Natural products N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 1
- 238000000889 atomisation Methods 0.000 description 1
- 239000012752 auxiliary agent Substances 0.000 description 1
- 230000002902 bimodal effect Effects 0.000 description 1
- 230000005587 bubbling Effects 0.000 description 1
- -1 carbon olefin Chemical class 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 238000004807 desolvation Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- NBVXSUQYWXRMNV-UHFFFAOYSA-N fluoromethane Chemical compound FC NBVXSUQYWXRMNV-UHFFFAOYSA-N 0.000 description 1
- 230000004907 flux Effects 0.000 description 1
- 150000004678 hydrides Chemical class 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 239000011777 magnesium Substances 0.000 description 1
- 239000002480 mineral oil Substances 0.000 description 1
- 235000010446 mineral oil Nutrition 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 239000002808 molecular sieve Substances 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
- 238000003541 multi-stage reaction Methods 0.000 description 1
- 239000003345 natural gas Substances 0.000 description 1
- JRZJOMJEPLMPRA-UHFFFAOYSA-N olefin Natural products CCCCCCCC=C JRZJOMJEPLMPRA-UHFFFAOYSA-N 0.000 description 1
- 238000005457 optimization Methods 0.000 description 1
- 238000006068 polycondensation reaction Methods 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 230000002035 prolonged effect Effects 0.000 description 1
- 238000010298 pulverizing process Methods 0.000 description 1
- 239000010453 quartz Substances 0.000 description 1
- 238000004064 recycling Methods 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 239000012266 salt solution Substances 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 238000001878 scanning electron micrograph Methods 0.000 description 1
- ORVGYTXFUWTWDM-UHFFFAOYSA-N silicic acid;sodium Chemical compound [Na].O[Si](O)(O)O ORVGYTXFUWTWDM-UHFFFAOYSA-N 0.000 description 1
- 239000011734 sodium Substances 0.000 description 1
- URGAHOPLAPQHLN-UHFFFAOYSA-N sodium aluminosilicate Chemical compound [Na+].[Al+3].[O-][Si]([O-])=O.[O-][Si]([O-])=O URGAHOPLAPQHLN-UHFFFAOYSA-N 0.000 description 1
- 239000011949 solid catalyst Substances 0.000 description 1
- 239000012798 spherical particle Substances 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J35/00—Catalysts, in general, characterised by their form or physical properties
- B01J35/50—Catalysts, in general, characterised by their form or physical properties characterised by their shape or configuration
- B01J35/51—Spheres
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J21/00—Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
- B01J21/005—Spinels
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J21/00—Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
- B01J21/02—Boron or aluminium; Oxides or hydroxides thereof
- B01J21/04—Alumina
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J23/00—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
- B01J23/005—Spinels
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J23/00—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
- B01J23/70—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
- B01J23/74—Iron group metals
- B01J23/755—Nickel
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J23/00—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
- B01J23/70—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
- B01J23/76—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
- B01J23/78—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with alkali- or alkaline earth metals
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J35/00—Catalysts, in general, characterised by their form or physical properties
- B01J35/40—Catalysts, in general, characterised by their form or physical properties characterised by dimensions, e.g. grain size
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J37/00—Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
- B01J37/0009—Use of binding agents; Moulding; Pressing; Powdering; Granulating; Addition of materials ameliorating the mechanical properties of the product catalyst
- B01J37/0027—Powdering
- B01J37/0045—Drying a slurry, e.g. spray drying
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J37/00—Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
- B01J37/02—Impregnation, coating or precipitation
- B01J37/03—Precipitation; Co-precipitation
- B01J37/031—Precipitation
- B01J37/033—Using Hydrolysis
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J37/00—Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
- B01J37/08—Heat treatment
- B01J37/082—Decomposition and pyrolysis
- B01J37/088—Decomposition of a metal salt
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J37/00—Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
- B01J37/08—Heat treatment
- B01J37/10—Heat treatment in the presence of water, e.g. steam
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J37/00—Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
- B01J37/16—Reducing
- B01J37/18—Reducing with gases containing free hydrogen
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C1/00—Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon
- C07C1/02—Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon from oxides of a carbon
- C07C1/04—Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon from oxides of a carbon from carbon monoxide with hydrogen
- C07C1/0425—Catalysts; their physical properties
- C07C1/043—Catalysts; their physical properties characterised by the composition
- C07C1/0435—Catalysts; their physical properties characterised by the composition containing a metal of group 8 or a compound thereof
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J21/00—Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
- B01J21/06—Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
- B01J21/066—Zirconium or hafnium; Oxides or hydroxides thereof
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J21/00—Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
- B01J21/12—Silica and alumina
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J23/00—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
- B01J23/02—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the alkali- or alkaline earth metals or beryllium
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C2521/00—Catalysts comprising the elements, oxides or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium or hafnium
- C07C2521/02—Boron or aluminium; Oxides or hydroxides thereof
- C07C2521/04—Alumina
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C2521/00—Catalysts comprising the elements, oxides or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium or hafnium
- C07C2521/06—Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C2521/00—Catalysts comprising the elements, oxides or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium or hafnium
- C07C2521/06—Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
- C07C2521/08—Silica
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C2521/00—Catalysts comprising the elements, oxides or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium or hafnium
- C07C2521/10—Magnesium; Oxides or hydroxides thereof
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C2523/00—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
- C07C2523/10—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of rare earths
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C2523/00—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
- C07C2523/70—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of the iron group metals or copper
- C07C2523/74—Iron group metals
- C07C2523/755—Nickel
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C2523/00—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
- C07C2523/70—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of the iron group metals or copper
- C07C2523/76—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups C07C2523/02 - C07C2523/36
- C07C2523/83—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups C07C2523/02 - C07C2523/36 with rare earths or actinides
Definitions
- the present application relates to the technical field of catalyst and inorganic synthetic chemistry, and in particular relates to a Ni/Al 2 O 3 catalyst microsphere and a preparation method thereof.
- the methanation catalyst is the two core technologies of the coal-to-synthesis natural gas process (reaction One of the catalysts and catalysts).
- the industrialized methanation technology adopts the insulated multi-stage fixed bed process and the tablet-formed (porous) column catalyst, but the adiabatic multi-stage fixed bed methanation process only relies on the gas stream to transfer the methanation heat, because the gas heat capacity is small,
- the process must adopt multi-stage reaction, feed gas splitting and product gas circulation to reduce the catalyst bed temperature, resulting in weak anti-interference ability, energy efficiency, and excessive catalyst to ensure catalyst life.
- the efficient heat and mass transfer performance of the fluidized bed makes it particularly suitable for a variety of highly exothermic processes.
- the bubbling fluidized bed is used as the catalytic reactor.
- the reaction is basically carried out under isothermal conditions, and the flow rate and temperature of the heat exchange medium entering the heat exchange coil can be adjusted.
- the heat transfer is easily achieved, thereby increasing the life of the catalyst while the particles are in a flowing state, facilitating the renewal of the catalyst.
- the Bi-Gas process developed by American BCR Company used a fluidized bed as a methanation reactor. There were two heat exchange tubes inside, and the reaction heat was removed with mineral oil in the tubes. Through the improvement of the catalyst, CO The conversion rate can be increased to 96%-99.2%.
- CN101817716A adopts a fluidized bed-fixed bed two-stage methanation process to ensure complete conversion of CO in the synthesis gas and shorten the methanation process.
- Both CN102180756A and CN102180757A disclose a method for direct methanation of a circulating fluidized bed synthesis gas, both of which immobilize the catalyst in a gas-solid-solid reactor carrying inert heat carrier particles (alumina microspheres, quartz sand)
- the feed gas of the fluorocarbon or the CO 2 adsorbent (CaO/MgO) undergoes a complete methanation reaction in the gas-solid-solid reactor, and the inert heat carrier particles or the CO 2 adsorbent are separated by a cyclone, heat/CO 2 After recycling, it is recycled back to the reactor.
- CN104341259 discloses a transport bed methanation technology using catalyst particles directly as a heat carrier, the solid particle heat capacity is much higher than the gas heat capacity, and the fluidized bed methanation of the small particle catalyst proves to have higher reaction efficiency and Lower reaction carbon deposits (Catalysis Communications 2013, 38: 35-39). Therefore, the solid catalyst particles with higher thermal conductivity are used as the heat carrier in the conventional fixed bed process as the heat carrier to remove the reaction heat, which can greatly reduce the reaction temperature of the bed and improve the life of the catalyst. Syngas methanation is a rapid reaction, and the apparent gas velocity in the transport bed is high, which makes it smaller than the ordinary fluidized bed reactor, high gas processing flux, high process efficiency, and the catalyst dosage and active component content can be greatly reduced. .
- the methods generally used by researchers mainly focus on the following two aspects: (1) loading the active components of the catalyst on the high-strength carrier microspheres, thereby improving the wear resistance of the catalyst. performance.
- Wei et al. (Applied Catalysis A: General 2001, 210: 137-150) studied different supported Co-based FT synthesis catalysts and found that the catalysts supported by Al 2 O 3 and SiO 2 have good strength and supported metal-on-support The intensity has little effect.
- the use of the support reduces the unit catalytic activity of the catalyst, and at the same time, the method is not suitable for the preparation of a high metal loading catalyst.
- CN103706393, CN101242900 and CN1395992 are all spray granulated by adding silica sol.
- the catalysts are prepared by using molecular sieve as precursor to produce low carbon olefin and SAPO-34 as precursor to produce MTO and Fe-Cu Fischer-Tropsch catalyst microspheres. To increase the strength of the catalyst.
- silica sol reduces the activity of the catalyst, especially affects the low-temperature methanation activity of the Ni/Al 2 O 3 catalyst, and the strength of the catalyst is limited. For the above reasons, it is very meaningful to develop a new method for preparing fully methanated and highly wear-resistant Ni/Al 2 O 3 catalyst microspheres.
- the present application provides a Ni/Al 2 O 3 catalyst microsphere and a preparation method thereof, and obtains a Ni/Al 2 O 3 catalyst microsphere with high wear resistance, which can reduce the flow.
- the erosion loss of the catalyst during the methanation of the chemical bed reduces the production cost, increases the catalytic activity and stability of the catalyst, and improves the yield of methane.
- the present application provides a method for preparing a Ni/Al 2 O 3 catalyst microsphere, the method comprising the following steps:
- the present application increases the strength of the catalyst by adding sodium silicate or tetraethyl silicate as a silicon source.
- the silicon raw material is hydrolyzed and the metal salt solution is precipitated while being in a solution having an alkaline pH. get on.
- the hydrolysis condensation reaction of tetraethyl orthosilicate can be divided into three steps. First, TEOS is hydrolyzed to form monosilicic acid and alcohol, that is,
- the second step is a condensation reaction between the silicic acid formed by the hydrolysis reaction and between the silicic acid and TEOS.
- the reaction equation is as follows, at which time the Si-O-Si bond begins to form.
- the third step is to further polymerize the previously formed low polymer to form a long-chain network structure extending to three-dimensional space.
- the reaction equation is:
- the formed (-Si-O-Si-) n spatial network structure is uniformly distributed in the finally formed Ni/Al 2 O 3 .
- the catalyst precursor slurry is hydrothermally treated, washed, dried, and free water is removed, the internal skeleton structure of the catalyst precursor becomes more compact and compact.
- the catalyst precursor is pulverized, pulped, sprayed, and the fine precursor particles after pulverization pass van der Waals force, hydrogen bond, and chemical bond force (Al-O-Si bond, Al-O-Al bond, and Si-O-Si bond) ) Interacting with each other and finally forming spherical particles under the surface tension of water.
- van der Waals force hydrogen bond
- chemical bond force Al-O-Si bond, Al-O-Al bond, and Si-O-Si bond
- the nickel source in the step (1) is any one of nickel nitrate, nickel acetate or nickel acetylacetonate or a combination of at least two; for example, it may be any one of nickel nitrate, nickel acetate or nickel acetylacetonate.
- Typical, but non-limiting combinations are: nickel nitrate and nickel acetate; nickel nitrate and nickel acetylacetonate; nickel acetate and nickel acetylacetonate; nickel nitrate, nickel acetate and nickel acetylacetonate.
- the auxiliary material of the step (1) is any one of magnesium nitrate, zirconium nitrate or cerium nitrate or a combination of at least two; for example, it may be any one of magnesium nitrate, zirconium nitrate or cerium nitrate.
- Typical but non-limiting combinations are: magnesium nitrate and zirconium nitrate; magnesium nitrate and cerium nitrate; zirconium nitrate and cerium nitrate; magnesium nitrate, zirconium nitrate and cerium nitrate.
- the aluminum source of step (1) is aluminum nitrate.
- the nickel source is added in the mixed solution in the step (1) in an amount such that NiO in the Ni/Al 2 O 3 catalyst microspheres accounts for 5-50% of the mass of the catalyst, for example, 5%, 10%. 20%, 30%, 40% or 50%, and the specific point values between the above values, which are limited in length and for the sake of brevity, this application is not exhaustive.
- the auxiliary raw material in the mixed solution in the step (1) is added in an amount such that the auxiliary oxide in the Ni/Al 2 O 3 catalyst microsphere (for example, when the auxiliary raw material is magnesium nitrate, the auxiliary agent is oxidized).
- the material is MgO; when the auxiliary material is zirconium nitrate, the auxiliary oxide is ZrO 2 ; when the auxiliary material is cerium nitrate, the auxiliary oxide is La 2 O 3 , etc.) 1-20% of the mass of the catalyst
- the amount may be, for example, 1%, 5%, 10%, 15% or 20%, and the specific point values between the above values, which are limited to the length and for the sake of brevity, the application is not exhaustive.
- added in an amount such that the step (1) of the mixed solution of the aluminum source Ni / Al accounts for an amount of 30-94% by mass of the catalyst 2 O 3 2 O 3 catalyst microspheres Al may be 30% 40%, 50%, 60%, 70%, 80%, 90% or 94%, and the specific point values between the above values, limited to the length and for the sake of brevity, this application is not exhaustive.
- silicon exists in the form of SiO 2 , so in the step (1) of the present application, a silicon source is added in an amount such that SiO 2 accounts for 5-20% of the mass of the catalyst, for example, 5%, 8%, 10%, 12%, 15%, 18% or 20%, and the specific values between the above values, limited by the length and for the sake of brevity, this application is not exhaustive.
- the wear strength of the catalyst microspheres can be ensured without reducing the methanation activity of the catalyst.
- the SiO 2 is less than 5% of the catalyst mass, the strength of the catalyst microspheres is low; On the one hand, on the one hand, the strength of the catalyst microspheres is lowered, and on the other hand, the low temperature activity of the catalyst is also lowered.
- the pH of the solution during the coprecipitation reaction in step (1) is ⁇ 10;
- the present application utilizes a precipitating agent commonly used in the art to adjust the pH of the precipitate.
- the precipitating agent may be ammonia water, sodium carbonate solution, sodium hydroxide solution, ammonium carbonate solution, etc., but is not limited thereto, and other suitable precipitating agents are also the same. Applicable to this application.
- the temperature of the hydrothermal reaction in the step (2) is 160-220 ° C, for example, 160 ° C, 170 ° C, 180 ° C, 190 ° C, 200 ° C, 210 ° C or 220 ° C, and between the above values
- the specific point value is limited to the length and for the sake of brevity, this application is not exhaustive.
- the hydrothermal reaction time in step (2) is 4-24h, for example 4h, 6h, 8h, 10h, 12h, 14h, 16h, 18h, 20h, 22h or 24h, and between the above values
- the specific point value is limited to the length and for the sake of brevity, this application is not exhaustive.
- the pressure of the hydrothermal reaction in the step (2) of the present application is the saturated vapor pressure of the catalyst precursor at the reaction temperature.
- the increase of reaction temperature is beneficial to the desolvation of the growth element on the surface of the crystal, surface diffusion and hydrolysis of the silicon source, which promotes crystal growth and crystal transformation;
- the reaction time is the kinetic factor of the hydrothermal reaction, reflecting the hydrothermal reaction. speed.
- the hydrothermal reaction temperature increases and the reaction time prolongs, interactions occur between the crystal grains. Some grain sizes decrease or even disappear, and some grain sizes increase. The macroscopic result is that when the reaction time is constant, the water is hot.
- the preferred hydrothermal reaction temperature of the present application is 160-220 ° C, and the reaction time is 4-24 h. Under this condition, crystal grains having uniform size and suitable size can be obtained.
- the solid content of the precursor slurry is adjusted in step (3) to be 30-60 wt%, for example, 30 wt%, 35 wt%, 40 wt%, 45 wt%, 50 wt%, 55 wt% or 60 wt%, and the above values
- the specific point value between the two is limited to the length and for the sake of brevity, this application is not exhaustive.
- the solids content during spray granulation will directly affect the surface tension and density of the slurry, which will affect its viscosity.
- a high solids slurry (greater than 60 wt.%) results in a change in the internal shear stress of the droplet during atomization of the spray granulation, causing partial droplets to split resulting in a granulated powder particle size distribution. Uniform, so that its fluidity and bulk density are affected.
- Low solids slurry (less than 30 wt.%)
- the powder particles may have a part of a hollow sphere or a surface consisting of a porous shell containing micropores, thereby reducing the strength of the microspheres.
- the method for adjusting the solid content of the precursor slurry in the step (3) is as follows: the precursor slurry obtained in the step (2) is washed, filtered, dried, pulverized, and then dispersed in water.
- the hot air inlet temperature during the spray granulation in step (3) is 200-300 ° C, for example 200 ° C, 230 ° C, 250 ° C, 270 ° C or 300 ° C, and the specific point between the above values Values, limited by length and for the sake of brevity, this application is not exhaustive.
- the temperature of the exhaust outlet during the spray granulation in the step (3) is 100-180 ° C, for example, 100 ° C, 110 ° C, 120 ° C, 130 ° C, 140 ° C, 150 ° C, 160 ° C, 170 °C or 180 ° C, and the specific point values between the above values, limited to the length and for the sake of concise considerations, this application is not exhaustive.
- the temperature of the calcination in the step (3) is 500-800 ° C, for example, 500 ° C, 550 ° C, 600 ° C, 650 ° C, 700 ° C, 750 ° C or 800 ° C, and the specific values between the above values Point values, limited by length and for the sake of brevity, this application is not exhaustive.
- the calcination time in the step (3) is 2-10 h, for example, 2 h, 3 h, 4 h, 5 h, 6 h, 7 h, 8 h, 9 h or 10 h, and specific values between the above values are limited. For the sake of brevity and conciseness, this application is not exhaustive.
- the preparation method of the Ni/Al 2 O 3 catalyst microsphere described in the present application comprises the following steps:
- nickel source is any one or a combination of at least two of nickel nitrate, nickel acetate or nickel acetylacetonate
- the aluminum source is aluminum nitrate
- the auxiliary material is magnesium nitrate, zirconium nitrate or nitric acid.
- the nickel source, the auxiliary material, and the aluminum source are added in an amount such that NiO in the Ni/Al 2 O 3 catalyst microsphere accounts for 5-50% of the mass of the catalyst,
- the auxiliary oxide is made in an amount of 1-20% of the mass of the catalyst such that Al 2 O 3 accounts for 30-94% of the mass of the catalyst, and the silicon source is added in an amount such that SiO in the Ni/Al 2 O 3 catalyst microsphere 2 is in an amount of 5-20% by mass of the catalyst;
- the precipitating agent is any one of ammonia water, sodium carbonate, sodium hydroxide or ammonium carbonate or a combination of at least two;
- step (2) The precipitate obtained in the step (1) is heated to 160-220 ° C in an autoclave for hydrothermal reaction for 4-24 h, and a catalyst precursor slurry is obtained after completion of the reaction;
- the precursor slurry obtained in the step (2) is washed, filtered, dried, pulverized and dispersed in water to adjust the solid content of the precursor slurry to 30-60 wt.%, and the hot air inlet temperature is controlled to be 200- 300 ° C, the outlet temperature is 100-180 ° C, the adjusted slurry is spray granulated, the granulated microspheres are calcined at 500-800 ° C for 2-10h to obtain Ni / Al 2 O 3 Catalyst microspheres.
- the present application provides a Ni/Al 2 O 3 catalyst microsphere prepared by the method of the first aspect.
- the Ni/Al 2 O 3 catalyst prepared by the present invention is microspherical, has a uniform size, and has a particle diameter of 40-130 ⁇ m.
- the unique morphology and size range make it have better catalytic activity, especially 250-650.
- the methanation process is better in the temperature range of °C.
- Ni/Al 2 O 3 catalyst microspheres prepared by the present application have high wear resistance and the wear resistance index is less than 4.5; when applied to the fluidized bed methanation process, the abrasion loss of the catalyst can be reduced and the catalyst is prolonged.
- the use time, while avoiding the process of frequent replacement of the catalyst, thereby reducing the production cost, has a good application prospect.
- Ni/Al 2 O 3 catalyst prepared by the present invention is a uniform size microsphere having a size of 40-130 ⁇ m and a better catalytic activity for the methanation process in the range of 250-650 ° C. And stability, increasing the yield of methane.
- Ni/Al 2 O 3 catalyst microspheres prepared by the present invention have the advantages of large processing amount, rapid catalyst formation, simple and easy control process, and are suitable for industrial mass production.
- Example 1 is an SEM image of a Ni/Al 2 O 3 catalyst microsphere obtained in Example 2 of the present application;
- Example 2 is a particle size distribution diagram of the Ni/Al 2 O 3 catalyst microspheres obtained in Example 2 of the present application before and after the abrasion test.
- the precursor slurry obtained in the step (2) is washed to neutrality with ionized water, filtered, dried at 100 ° C for 10 h, and then pulverized into a fine powder of 3 ⁇ m or less by a ball mill to obtain the fine powder and deionized water.
- the precursor slurry obtained in the step (2) is washed to neutrality with ionized water, filtered, dried at 100 ° C for 10 h, and then pulverized into a fine powder of 3 ⁇ m or less by a ball mill to obtain the fine powder and deionized water.
- the Ni/Al 2 O 3 catalyst obtained in the present example was characterized by SEM. As shown in Fig. 1, the catalyst exhibited microspheres, good sphericity, uniform particle size, and a size of 40-130 ⁇ m.
- the Ni/Al 2 O 3 catalyst obtained in the present example was subjected to wear test, and the particle size distribution of the particles before and after the abrasion test was as shown in Fig. 2.
- the particle size of the catalyst before the wear was normally distributed, and the median diameter was about 63 ⁇ m; After wear, the particle size distribution becomes a bimodal distribution, but the amount of fine powder increases is small, indicating that the catalyst wear-off occurs mainly during the wear process.
- Step (1) After the completion of the coprecipitation reaction, stirring is continued for 1 hour, and then the precipitate is transferred to an autoclave for hydrothermal reaction, the hydrothermal reaction temperature is 220 ° C, and the reaction is maintained for 24 hours, and the catalyst is obtained after completion of the reaction.
- Precursor slurry After the completion of the coprecipitation reaction, stirring is continued for 1 hour, and then the precipitate is transferred to an autoclave for hydrothermal reaction, the hydrothermal reaction temperature is 220 ° C, and the reaction is maintained for 24 hours, and the catalyst is obtained after completion of the reaction.
- the precursor slurry obtained in the step (2) is washed to neutrality with ionized water, filtered, dried at 100 ° C for 10 h, and then pulverized into a fine powder of 3 ⁇ m or less by a ball mill to obtain the fine powder and deionized water.
- the precursor slurry obtained in the step (2) is washed to neutrality with ionized water, filtered, dried at 100 ° C for 10 h, and then pulverized into a fine powder of 3 ⁇ m or less by a ball mill to obtain the fine powder and deionized water.
- Example 4 Compared with Example 4, the other steps and conditions were identical to those of Example 4 except that the microspheres obtained after granulation in the step (4) were calcined at 800 ° C for 2 h.
- the precursor slurry obtained in the step (2) is washed to neutrality with ionized water, filtered, dried at 100 ° C for 10 h, and then pulverized into a fine powder of 3 ⁇ m or less by a ball mill to obtain the fine powder and deionized water.
- step (1) was not added with tetraethyl silicate
- the other steps and conditions were identical to those of Example 2, that is, no silicon source was added.
- Example 2 Compared with Example 2, except that 106 g of tetraethyl silicate in step (1) was replaced with 106 g of silica sol, the other steps and conditions were identical to those of Example 2, that is, preparation was carried out using a silica sol as a silicon source.
- Example 2 Compared with Example 2, except that 21 g of tetraethyl silicate was added in the step (1), the other steps and conditions were exactly the same as those in Example 2, that is, the amount of the silicon source added was too low, so that the obtained Ni/Al 2 was obtained.
- the SiO 2 in the O 3 catalyst accounts for less than 5% of the catalyst mass.
- Example 2 Compared with Example 2, except that 317 g of tetraethyl silicate was added in the step (1), the other steps and conditions were exactly the same as those in Example 2, that is, the amount of the silicon source added was too high, so that the obtained Ni/Al 2 was obtained.
- the SiO 2 in the O 3 catalyst accounts for more than 20% of the catalyst mass.
- the wear indexes of the Ni/Al 2 O 3 catalyst microsphere samples obtained in Examples 1-6 and Comparative Examples 1-4 were measured by the method of ASTM D5757-00 to build an air jet abrasion test system, and the test sample amount was 35 g. All catalyst particles were sieved before the test, and the particles with a particle size range of 40-125 ⁇ m were sieved for wear test. After 5 h wear test, the particles in the fine powder collector and the particles in the wear tube were less than 40 ⁇ m. powder.
- the wear index (AI) of a particle is defined as:
- the activity was evaluated by using a ⁇ 16 mm quartz tube fixed bed reactor with a catalyst loading of 0.1 g and reduction with H 2 at 650 ° C for 4 hours.
- the speed was 60,000 NmL ⁇ g -1 ⁇ h -1 , the operating pressure was normal pressure, and the reaction temperature was 400 °C.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- General Chemical & Material Sciences (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Catalysts (AREA)
Abstract
一种Ni/Al 2O 3催化剂微球及其制备方法,包括将镍源、助剂原料和铝源溶液混合,然后加入硅酸钠或硅酸四乙酯溶液作为硅源,加入沉淀剂调节pH进行共沉淀反应,得到沉淀物;将所得沉淀物进行水热反应,反应完成后洗涤干燥得到催化剂前驱体;调节前驱体浆料的固含量,然后进行喷雾造粒,焙烧后得到Ni/Al 2O 3催化剂微球。所得Ni/Al 2O 3催化剂微球能够降低流化床高温高压甲烷化过程中对催化剂的磨蚀损耗,降低了生产成本,同时提高了催化剂的催化活性和稳定性,提高了甲烷的产率。该催化剂具有处理量大、催化剂成型迅速、反应过程简单易控等优点,具有良好的应用前景。
Description
本申请涉及催化剂与无机合成化学交叉的技术领域,具体涉及一种Ni/Al
2O
3催化剂微球及其制备方法。
合成气甲烷化过程快速强放热,床层绝热温升快,操作温度升高易使得产品纯度下降,并造成催化剂失活,因此甲烷化催化剂是煤制合成天然气工艺的两大核心技术(反应器和催化剂)之一。目前已工业化的甲烷化技术均采用绝热多段固定床工艺以及压片成型的(多孔)柱状催化剂,但绝热多段固定床甲烷化工艺仅依托气体流传递甲烷化反应热,由于气体热容较小,该工艺必须采用多段反应、原料气分流和产品气循环等技术方法才能降低催化剂床层温度,导致该工艺过程抗干扰能力弱,能量效率有待提高,同时还需使用过量催化剂确保催化剂的寿命。
流化床高效的传热传质性能使其特别适用于各种强放热的工艺过程。采用鼓泡流化床作为催化反应器,除了高效的传热传质效率外,最重要的是反应基本在等温条件下进行,通过调节进入内置换热盘管的换热介质流量和温度即可轻松实现移热,从而提高催化剂寿命,同时颗粒处于流动状态,便于催化剂的更新。1963年,美国BCR公司研发的Bi-Gas工艺即采用流化床作为甲烷化反应器,其内部设有2根换热列管,列管内用矿物油将反应热移出,通过催化剂的改进,CO转化率可以提高到96%-99.2%。
CN101817716A采用流化床-固定床两段甲烷化工艺,可以保证合成气中CO完全转化,缩短了甲烷化工艺流程。CN102180756A和CN102180757A均公开 了一种循环流化床合成气直接甲烷化的方法,两种方法均将催化剂固定在气-固-固反应器中,携带惰性热载体颗粒(氧化铝微球、石英砂、氟矿砂)或CO
2吸附剂(CaO/MgO)的原料气在气-固-固反应器中发生完全甲烷化反应,惰性热载体颗粒或CO
2吸附剂经旋风分离器分离,热/CO
2回收后循环回反应器,此方法可大幅度降低床层反应温度同时减缓催化剂的积碳速率。CN104341259公开了一种直接采用催化剂颗粒作为热载体的输送床甲烷化技术,固体颗粒热容远远高于气体热容,而小颗粒催化剂的流化床甲烷化被证明具有更高的反应效率和更低的反应积碳(Catalysis Communications 2013,38:35-39)。因此,以采用导热系数较高的固体催化剂颗粒协同传统固定床工艺中热容较低的气体作热载体将反应热移出,一方面可大幅度降低床层反应温度,提高催化剂寿命,另一方面合成气甲烷化是快速反应,输送床内气体表观气速高,使其较普通流化床反应器直径小,气体处理通量高,过程效率高,催化剂用量和活性组分含量可大大降低。
流化床甲烷化反应器虽然反应效果好,甲烷产率高,但其催化剂的夹带和损耗严重。研究结果表明,流化床甲烷化的催化剂磨蚀损失主要取决于催化剂的耐磨性,但其作用随运行时间而降低,可能最终趋于稳定。
目前,在提高流化床催化剂耐磨性方面,研究者普遍采用的方法主要集中在以下两个方面:(1)将催化剂活性组分负载于高强度载体微球上,从而提高催化剂的耐磨性能。Wei等(Applied Catalysis A:General 2001,210:137-150)对不同载体负载的Co基F-T合成催化剂进行研究,发现Al
2O
3和SiO
2负载的催化剂强度较好,且负载的金属对载体强度影响不大。但对于Fe基F-T催化剂,载体的使用,会降低催化剂的单位催化活性,同时,该方法也不适用于高金属负载量催化剂的制备。(2)在不损失催化剂催化活性的前提下,提高催化剂的耐 磨性能,成型时采用喷雾造粒的方法是一条有效的途径。CN103706393,CN101242900和CN1395992均采用添加硅溶胶的方式进行喷雾造粒,分别制备了以分子筛为前驱体生产低碳烯烃、SAPO-34为前驱体生产MTO和Fe-Cu系费托合成的催化剂微球,提高催化剂的强度。
但硅溶胶的添加降低了催化剂的活性,尤其影响了Ni/Al
2O
3催化剂的低温甲烷化活性,且对催化剂的强度提高的有限。基于上述理由,开发新的完全甲烷化高效耐磨Ni/Al
2O
3催化剂微球的制备方法是非常有意义的。
发明内容
鉴于现有技术中存在的问题,本申请提供了一种Ni/Al
2O
3催化剂微球及其制备方法,得到了具有高耐磨性的Ni/Al
2O
3催化剂微球,能够降低流化床甲烷化过程中对催化剂的磨蚀损耗,降低生产成本,同时提高了催化剂的催化活性和稳定性,提高了甲烷的产率。
为达到上述目的,本申请采用以下技术方案:
第一方面,本申请提供一种Ni/Al
2O
3催化剂微球的制备方法,所述方法包括以下步骤:
(1)将镍源、助剂原料和铝源溶液混合,然后加入硅酸钠或硅酸四乙酯溶液作为硅源,得到混合溶液,加入沉淀剂调节pH进行共沉淀反应,得到沉淀物;
(2)将步骤(1)得到的沉淀物进行水热反应,反应完成后洗涤干燥得到催化剂前驱体;以及
(3)调节步骤(2)得到的前驱体浆料的固含量,将调节后的浆料进行喷雾造粒,焙烧后得到Ni/Al
2O
3催化剂微球。
本申请通过添加硅酸钠或硅酸四乙酯作为硅源的方式提高催化剂的强度,在催化剂前驱体制备过程中,硅原料会发生水解和金属盐溶液沉淀同时在pH为 碱性的溶液中进行。例如正硅酸四乙酯的水解缩合反应可分为三步,首先TEOS水解生成单硅酸和醇,即
Si(OCH
2CH
3)
4+4H
2O→Si(OH)
4+4C
2H
5OH
第二步是水解反应生成的硅酸之间以及硅酸与TEOS之间发生缩合反应,反应方程式如下,此时Si-O-Si键开始形成。
第三步为此前形成的低聚合物进一步聚合形成长链的向三维空间扩展的网络结构,反应方程式为:
n(Si-O-Si)→(-Si-O-Si-)
n
因为硅酸钠或硅酸四乙酯的水解和缩聚过程与金属盐沉淀同时进行,使得形成的(-Si-O-Si-)
n空间网络结构均匀分布于最终形成的Ni/Al
2O
3前驱体中,并担当其骨架的作用。催化剂前驱体浆料经水热处理、洗涤、干燥后,自由水脱除,催化剂前驱体内部骨架结构变得更加紧凑致密。将催化剂前驱体粉碎、制浆、喷雾,粉碎后的细小前驱体粒子之间通过范德华力、氢键以及化学键力(Al-O-Si键、Al-O-Al键和Si-O-Si键)相互联结并在水的表面张力作用下最终形成球状颗粒。焙烧过程中,随着焙烧温度逐渐升高,催化剂颗粒内部不同前驱体粒子中的原子和分子相互运动加剧,并通过相互之间的扩散形成固桥,固桥的结合力极大增强前驱体颗粒间的相互作用,最终形成致密连接的催化剂颗粒结构,提高了催化剂颗粒的强度。
根据本申请,步骤(1)所述镍源为硝酸镍、乙酸镍或乙酰丙酮镍中的任意一种或至少两种的组合;例如可以是硝酸镍、乙酸镍或乙酰丙酮镍中的任意一种,典型但非限定性的组合为:硝酸镍和乙酸镍;硝酸镍和乙酰丙酮镍;乙酸镍和乙酰丙酮镍;硝酸镍、乙酸镍和乙酰丙酮镍。
根据本申请,步骤(1)所述助剂原料为硝酸镁、硝酸锆或硝酸镧中的任意一种或至少两种的组合;例如可以是硝酸镁、硝酸锆或硝酸镧中的任意一种,典型但非限定性的组合为:硝酸镁和硝酸锆;硝酸镁和硝酸镧;硝酸锆和硝酸镧;硝酸镁、硝酸锆和硝酸镧。
根据本申请,步骤(1)所述铝源为硝酸铝。
根据本申请,步骤(1)所述混合溶液中镍源的添加量为使得Ni/Al
2O
3催化剂微球中NiO占催化剂质量的5-50%的量,例如可以是5%、10%、20%、30%、40%或50%,以及上述数值之间的具体点值,限于篇幅及出于简明的考虑,本申请不再穷尽列举。
根据本申请,步骤(1)所述混合溶液中助剂原料的添加量为使得Ni/Al
2O
3催化剂微球中助剂氧化物(例如,当助剂原料为硝酸镁时,助剂氧化物为MgO;当助剂原料为硝酸锆时,助剂氧化物为ZrO
2;当助剂原料为硝酸镧时,助剂氧化物为La
2O
3,等)占催化剂质量的1-20%的量,例如可以是1%、5%、10%、15%或20%,以及上述数值之间的具体点值,限于篇幅及出于简明的考虑,本申请不再穷尽列举。
根据本申请,步骤(1)所述混合溶液中铝源的添加量为使得Ni/Al
2O
3催化剂微球中Al
2O
3占催化剂质量的30-94%的量,例如可以是30%、40%、50%、60%、70%、80%、90%或94%,以及上述数值之间的具体点值,限于篇幅及出于简明的考虑,本申请不再穷尽列举。
本申请最终得到的Ni/Al
2O
3催化剂中硅以SiO
2的形态存在,因此本申请步骤(1)中按照使得SiO
2占催化剂质量的5-20%的量添加硅源,例如可以是5%、8%、10%、12%、15%、18%或20%,以及上述数值之间的具体点值,限于篇幅及出于简明的考虑,本申请不再穷尽列举。
将硅的含量控制在上述范围,能够在不降低催化剂甲烷化活性的前提下保证催化剂微球的磨损强度,当SiO
2占催化剂质量低于5%时,催化剂微球强度低;当高于20%时,一方面,催化剂微球强度会降低,另一方面也会降低催化剂的低温活性。
根据本申请,步骤(1)所述共沉淀反应进行过程中溶液的pH≥10;
本申请利用本领域常用的沉淀剂调节沉淀物的pH值,所述沉淀剂可以为氨水、碳酸钠溶液、氢氧化钠溶液、碳酸铵溶液等,但非仅限于此,其他合适的沉淀剂同样适用于本申请。
根据本申请,步骤(2)所述水热反应的温度为160-220℃,例如可以是160℃、170℃、180℃、190℃、200℃、210℃或220℃,以及上述数值之间的具体点值,限于篇幅及出于简明的考虑,本申请不再穷尽列举。
根据本申请,步骤(2)所述水热反应的时间为4-24h,例如可以是4h、6h、8h、10h、12h、14h、16h、18h、20h、22h或24h,以及上述数值之间的具体点值,限于篇幅及出于简明的考虑,本申请不再穷尽列举。
本申请步骤(2)所述水热反应的压力为反应温度下催化剂前驱体的饱和蒸汽压。反应温度升高有利于生长基元在晶体表面的脱溶剂化,表面扩散以及硅源的水解等,促进晶体生长和晶型转化;反应时间是水热反应的动力学因素,反映了水热反应的速度。随着水热反应温度的升高和反应时间的延长,晶粒之间发生相互作用,一些晶粒粒度减小甚至消失,一些晶粒粒度增大,宏观结果 是当反应时间一定时,水热反应温度越高,晶粒粒度越大,粒度分布范围越宽,反应温度一定时,随着水热反应时间延长,晶粒粒度增大,粒度分布范围加大。通过优化,本申请优选的水热反应温度为160-220℃,反应时间为4-24h,在该条件下,能够得到尺寸均匀,大小合适的晶粒。
根据本申请,步骤(3)中调节前驱体浆料的固含量为30-60wt%,例如可以是30wt%、35wt%、40wt%、45wt%、50wt%、55wt%或60wt%,以及上述数值之间的具体点值,限于篇幅及出于简明的考虑,本申请不再穷尽列举。
喷雾造粒过程中固含量将直接影响浆料的表面张力和密度,从而影响其粘度。对于本申请而言,高固含量的浆料(大于60wt.%)导致在喷雾造粒的雾化过程中,液滴内部剪应力发生变化,使部分液滴发生分裂造成造粒粉粒度分布不均匀,从而使得其流动性和松装密度受到影响。低固含量的浆料(低于30wt.%)喷雾造粒后粉体颗粒会有一部分为空心球或表面由包含微气孔的多孔壳体所组成,从而降低微球的强度。
根据本申请,步骤(3)中调节前驱体浆料的固含量的方法为:将步骤(2)得到的前驱体浆料经洗涤、过滤、干燥、粉碎后在水中进行分散。
根据本申请,步骤(3)所述喷雾造粒过程中热风入口温度为200-300℃,例如可以是200℃、230℃、250℃、270℃或300℃,以及上述数值之间的具体点值,限于篇幅及出于简明的考虑,本申请不再穷尽列举。
根据本申请,步骤(3)所述喷雾造粒过程中排风出口温度为100-180℃,例如可以是100℃、110℃、120℃、130℃、140℃、150℃、160℃、170℃或180℃,以及上述数值之间的具体点值,限于篇幅及出于简明的考虑,本申请不再穷尽列举。
根据本申请,步骤(3)所述焙烧的温度为500-800℃,例如可以是500℃、 550℃、600℃、650℃、700℃、750℃或800℃,以及上述数值之间的具体点值,限于篇幅及出于简明的考虑,本申请不再穷尽列举。
根据本申请,步骤(3)所述焙烧的时间为2-10h,例如可以是2h、3h、4h、5h、6h、7h、8h、9h或10h,以及上述数值之间的具体点值,限于篇幅及出于简明的考虑,本申请不再穷尽列举。
作为优选的技术方案,本申请所述Ni/Al
2O
3催化剂微球的制备方法包括以下步骤:
(1)将镍源、助剂原料和铝源混合,然后加入硅酸钠或硅酸四乙酯溶液作为硅源,得到混合溶液,加入沉淀剂调节pH≥10进行共沉淀反应,得到沉淀物;其中,所述镍源为硝酸镍、乙酸镍或乙酰丙酮镍中的任意一种或至少两种的组合,所述铝源为硝酸铝,所述助剂原料为硝酸镁、硝酸锆或硝酸镧中的任意一种或至少两种的组合;镍源、助剂原料和铝源的添加量分别为使得Ni/Al
2O
3催化剂微球中NiO占催化剂质量的5-50%的量、使得助剂氧化物占催化剂质量的1-20%的量、使得Al
2O
3占催化剂质量的30-94%,所述硅源的添加量为使得Ni/Al
2O
3催化剂微球中SiO
2占催化剂质量的5-20%的量;所述沉淀剂为氨水、碳酸钠、氢氧化钠或碳酸铵中的任意一种或至少两种的组合;
(2)将步骤(1)得到的沉淀物在高压反应釜中加热至160-220℃进行水热反应4-24h,反应完成后得到催化剂前驱体浆料;以及
(3)将步骤(2)得到的前驱体浆料经洗涤、过滤、干燥、粉碎后在水中进行分散,调节前驱体浆料的固含量为30-60wt.%,控制热风入口温度为200-300℃,排风出口温度为100-180℃,将调节后的浆料进行喷雾造粒,将造粒后得到的微球在500-800℃下焙烧2-10h,得到Ni/Al
2O
3催化剂微球。
第二方面,本申请提供一种如第一方面所述方法制备得到的Ni/Al
2O
3催化 剂微球。
本申请制得的Ni/Al
2O
3催化剂呈现微球状,其尺寸均一,粒径在40-130μm之间,独特的形貌和尺寸范围使其具有更好的催化活性,尤其是250-650℃的温度范围内对甲烷化过程催化效果更佳。
与现有技术方案相比,本申请至少具有以下有益效果:
(1)本申请制得的Ni/Al
2O
3催化剂微球具有高耐磨性,其耐磨指数低于4.5;应用于流化床甲烷化过程时,能够降低催化剂的磨蚀损耗,延长了其使用时间,同时避免频繁更换催化剂所带来的工序,进而降低了生产成本,具有良好的应用前景。
(2)本申请制得的Ni/Al
2O
3催化剂为尺寸均一的微球,其尺寸在40-130μm之间,在250-650℃的使用范围内对甲烷化过程具有更好的催化活性和稳定性,提高了甲烷的产率。
(3)本申请制得的Ni/Al
2O
3催化剂微球具有处理量大、催化剂成型迅速、反应过程简单易控等优点,适用于工业大规模生产。
图1为本申请实施例2得到的Ni/Al
2O
3催化剂微球的SEM图;
图2为本申请实施例2得到的Ni/Al
2O
3催化剂微球在磨损测试前后的粒径分布图。
下面结合附图并通过具体实施方式来进一步说明本申请的技术方案。
为更好地说明本申请,便于理解本申请的技术方案,本申请的典型但非限制性的实施例如下:
实施例1
(1)将596g Ni(NO
3)
2·6H
2O,96.4g Mg(NO
3)
2·6H
2O和641g Al(NO
3)
3·9H
2O溶于2000mL去离子水中,然后加入53g硅酸四乙酯,得到混合溶液,加入NaOH溶液调节混合溶液的pH为11,将混合溶液打入连续搅拌的反应釜中,在60℃下进行共沉淀反应;
(2)步骤(1)所述共沉淀反应完成后继续搅拌1h,然后将沉淀物转移至高压反应釜中进行水热反应,水热反应温度为160℃,保持反应4h,反应完成后得到催化剂前驱体浆料;
(3)使用离子水将步骤(2)得到的前驱体浆料洗涤至中性,过滤后在100℃下干燥10h,然后采用球磨机粉碎成3μm以下的细粉,将所得细粉与去离子水在高速分散机中混合制备固含量为60wt.%的浆液;
(4)将步骤(3)所得固含量为60wt.%的浆液进行喷雾造粒,控制热风入口温度200℃,排风温度100℃,然后将造粒后得到的微球在500℃下焙烧4h得到Ni/Al
2O
3催化剂微球。
实施例2
(1)将238g Ni(NO
3)
2·6H
2O,211g Zr(NO
3)
4·5H
2O和801g Al(NO
3)
3·9H
2O溶于2000mL去离子水中,然后加入106g硅酸四乙酯,得到混合溶液,加入氨水溶液调节混合溶液的pH为10,将混合溶液打入连续搅拌的反应釜中,在60℃下进行共沉淀反应;
(2)步骤(1)所述共沉淀反应完成后继续搅拌1h,然后将沉淀物转移至高压反应釜中进行水热反应,水热反应温度为200℃,保持反应10h,反应完成后得到催化剂前驱体浆料;
(3)使用离子水将步骤(2)得到的前驱体浆料洗涤至中性,过滤后在100℃下干燥10h,然后采用球磨机粉碎成3μm以下的细粉,将所得细粉与去离子水 在高速分散机中混合制备固含量为50wt.%的浆液;
(4)将步骤(3)所得固含量为50wt.%的浆液进行喷雾造粒,控制热风入口温度250℃,排风温度140℃,然后将造粒后得到的微球在500℃下焙烧4h得到Ni/Al
2O
3催化剂微球。
对本实施例得到的Ni/Al
2O
3催化剂进行SEM表征,如图1所示,催化剂呈现微球状,球形度好,粒径均匀,尺寸在40-130μm之间。
对本实施例得到的Ni/Al
2O
3催化剂进行磨损测试,磨损测试前后颗粒粒径分布情况,如图2所示,磨损前催化剂粒径均呈正态分布,中值粒径在63μm左右;磨损后,粒径分布变为双峰分布,但细粉增加量较少,说明催化剂在磨损过程中主要发生颗粒的剥层磨损。
实施例3
(1)将238g Ni(NO
3)
2·6H
2O,8g La(NO
3)
3·9H
2O和945g Al(NO
3)
3·9H
2O溶于2000mL去离子水中,然后加入212g硅酸四乙酯,得到混合溶液,加入Na
2CO
3溶液调节混合溶液的pH为10,将混合溶液打入连续搅拌的反应釜中,在60℃下进行共沉淀反应;
(2)步骤(1)所述共沉淀反应完成后继续搅拌1h,然后将沉淀物转移至高压反应釜中进行水热反应,水热反应温度为220℃,保持反应24h,反应完成后得到催化剂前驱体浆料;
(3)使用离子水将步骤(2)得到的前驱体浆料洗涤至中性,过滤后在100℃下干燥10h,然后采用球磨机粉碎成3μm以下的细粉,将所得细粉与去离子水在高速分散机中混合制备固含量为30wt.%的浆液;
(4)将步骤(3)所得固含量为30wt.%的浆液进行喷雾造粒,控制热风入口温度300℃,排风温度180℃,然后将造粒后得到的微球在500℃下焙烧4h 得到Ni/Al
2O
3催化剂微球。
实施例4
(1)将238g Ni(NO
3)
2·6H
2O,106g Zr(NO
3)
4·5H
2O和961g Al(NO
3)
3·9H
2O溶于2000mL去离子水中,然后加入106g硅酸四乙酯,得到混合溶液,加入NaOH溶液调节混合溶液的pH为11,将混合溶液打入连续搅拌的反应釜中,在60℃下进行共沉淀反应;
(2)步骤(1)所述共沉淀反应完成后继续搅拌1h,然后将沉淀物转移至高压反应釜中进行水热反应,水热反应温度为200℃,保持反应10h,反应完成后得到催化剂前驱体浆料;
(3)使用离子水将步骤(2)得到的前驱体浆料洗涤至中性,过滤后在100℃下干燥10h,然后采用球磨机粉碎成3μm以下的细粉,将所得细粉与去离子水在高速分散机中混合制备固含量为50wt.%的浆液;
(4)将步骤(3)所得固含量为50wt.%的浆液进行喷雾造粒,控制热风入口温度250℃,排风温度140℃,然后将造粒后得到的微球在600℃下焙烧10h得到Ni/Al
2O
3催化剂微球。
实施例5
与实施例4相比,除了步骤(4)中将造粒后得到的微球在在800℃下焙烧2h外,其他步骤和条件与实施例4完全相同。
实施例6
(1)将238g Ni(NO
3)
2·6H
2O,106g Zr(NO
3)
4·5H
2O和801g Al(NO
3)
3·9H
2O溶于2000mL去离子水中,将244g硅酸钠溶于600mL去离子水中,将二者混合得到混合溶液,加入NaOH溶液调节混合溶液的pH为11,将混合溶液打入连续搅拌的反应釜中,在60℃下进行共沉淀反应;
(2)步骤(1)所述共沉淀反应完成后继续搅拌1h,然后将沉淀物转移至高压反应釜中进行水热反应,水热反应温度为200℃,保持反应10h,反应完成后得到催化剂前驱体浆料;
(3)使用离子水将步骤(2)得到的前驱体浆料洗涤至中性,过滤后在100℃下干燥10h,然后采用球磨机粉碎成3μm以下的细粉,将所得细粉与去离子水在高速分散机中混合制备固含量为50wt.%的浆液;
(4)将步骤(3)所得固含量为50wt.%的浆液进行喷雾造粒,控制热风入口温度250℃,排风温度140℃,然后将造粒后得到的微球在500℃下焙烧4h得到Ni/Al
2O
3催化剂微球。
对比例1
与实施例2相比,除了步骤(1)中不加入硅酸四乙酯外,其他步骤和条件与实施例2均完全相同,即不添加硅源。
对比例2
与实施例2相比,除了将步骤(1)中106g硅酸四乙酯替换为106g硅溶胶外,其他步骤和条件与实施例2均完全相同,即利用硅溶胶作为硅源进行制备。
对比例3
与实施例2相比,除了步骤(1)中加入21g硅酸四乙酯外,其他步骤和条件与实施例2均完全相同,即硅源的加入量过低,使得到的Ni/Al
2O
3催化剂中SiO
2占催化剂质量低于5%。
对比例4
与实施例2相比,除了步骤(1)中加入317g硅酸四乙酯外,其他步骤和条件与实施例2均完全相同,即硅源的加入量过高,使得到的Ni/Al
2O
3催化剂 中SiO
2占催化剂质量高于20%。
性能测试:
测试实施例1-6以及对比例1-4得到的Ni/Al
2O
3催化剂微球样品的磨损指数,测定方法为:参照ASTM D5757-00方法搭建空气喷射磨损测试系统,测试样品量为35g,测试前对所有催化剂颗粒进行筛分,筛取粒径范围为40-125μm的颗粒进行磨损测试,5h磨损测试后细粉收集器内以及颗粒磨损管中小于40μm的颗粒认为是磨损产生的细粉。颗粒的磨损指数(AI)定义为:
活性评价采用Φ16mm的石英管固定床反应器,催化剂装填量0.1g,用H
2在650℃下还原4小时;原料气配比为H
2∶CO∶N
2=3∶1∶1,反应空速为60000NmL·g
-1·h
-1,操作压力为常压,反应温度为400℃。
所得结果如表1所示:
表1
以上详细描述了本申请的优选实施方式,但是,本申请并不限于上述实施方式中的具体细节,在本申请的技术构思范围内,可以对本申请的技术方案进行多种简单变型,这些简单变型均属于本申请的保护范围。
另外需要说明的是,在上述具体实施方式中所描述的各个具体技术特征,在不矛盾的情况下,可以通过任何合适的方式进行组合,为了避免不必要的重复,本申请对各种可能的组合方式不再另行说明。
此外,本申请的各种不同的实施方式之间也可以进行任意组合,只要其不违背本申请的思想,其同样应当视为本申请所公开的内容。
Claims (15)
- 一种Ni/Al 2O 3催化剂微球的制备方法,其包括以下步骤:(1)将镍源、助剂原料和铝源溶液混合,然后加入硅酸钠或硅酸四乙酯溶液作为硅源,得到混合溶液,加入沉淀剂调节pH进行共沉淀反应,得到沉淀物;(2)将步骤(1)得到的沉淀物进行水热反应,反应完成后洗涤干燥得到催化剂前驱体;以及(3)调节步骤(2)得到的前驱体浆料的固含量,将调节后的浆料进行喷雾造粒,焙烧后得到Ni/Al 2O 3催化剂微球。
- 如权利要求1所述的方法,其中,步骤(1)所述镍源为硝酸镍、乙酸镍或乙酰丙酮镍中的任意一种或至少两种的组合。
- 如权利要求2所述的方法,其中,步骤(1)所述助剂原料为硝酸镁、硝酸锆或硝酸镧中的任意一种或至少两种的组合。
- 如权利要求2所述的方法,其中,步骤(1)所述铝源为硝酸铝。
- 如权利要求1-4中任一项所述的方法,其中,步骤(1)所述混合溶液中镍源的添加量为使得Ni/Al 2O 3催化剂微球中NiO占催化剂质量的5-50%的量。
- 如权利要求5所述的方法,其中,步骤(1)所述混合溶液中助剂原料的添加量为使得Ni/Al 2O 3催化剂微球中助剂氧化物占催化剂质量的1-20%的量。
- 如权利要求5所述的方法,其中,步骤(1)所述混合溶液中铝源的添加量为使得Ni/Al 2O 3催化剂微球中Al 2O 3占催化剂质量的30-94%的量。
- 如权利要求1-7中任一项所述的方法,其中,步骤(1)所述硅源的添加量为使得Ni/Al 2O 3催化剂微球中SiO 2占催化剂质量的5-20%的量。
- 如权利要求1-8中任一项所述的方法,其中,步骤(1)所述共沉淀反应进行过程中溶液的pH≥10。
- 如权利要求9所述的方法,其中,步骤(1)所述沉淀剂为氨水、碳酸钠、氢氧化钠或碳酸铵中的任意一种或至少两种的组合。
- 如权利要求1-10中任一项所述的方法,其中,步骤(2)所述水热反应的温度为160-220℃;优选地,步骤(2)所述水热反应的时间为4-24h。
- 如权利要求1-11中任一项所述的方法,其中,步骤(3)中调节前驱体浆料的固含量为30-60wt%;优选地,步骤(3)中调节前驱体浆料的固含量的方法为:将步骤(2)水热反应后得到的前驱体浆料经洗涤、过滤、干燥、粉碎后在水中进行分散。
- 如权利要求1-12中任一项所述的方法,其中,步骤(3)所述喷雾造粒过程中热风入口温度为200-300℃;优选地,步骤(3)所述喷雾造粒过程中排风出口温度为100-180℃;优选地,步骤(3)所述焙烧的温度为500-800℃;优选地,步骤(3)所述焙烧的时间为2-10h。
- 如权利要求1-13中任一项所述的方法,其中,所述方法包括以下步骤:(1)将镍源、助剂原料和铝源混合,然后加入硅酸钠或硅酸四乙酯溶液作为硅源,得到混合溶液,加入沉淀剂调节pH≥10进行共沉淀反应,得到沉淀物;其中,所述镍源为硝酸镍、乙酸镍或乙酰丙酮镍中的任意一种或至少两种的组合,所述铝源为硝酸铝,所述助剂原料为硝酸镁、硝酸锆或硝酸镧中的任意一种或至少两种的组合;镍源、助剂原料和铝源的添加量分别为使得Ni/Al 2O 3催化剂微球中NiO占催化剂质量的5-50%的量、使得助剂氧化物占催化剂质量的1-20%的量、使得Al 2O 3占催化剂质量的30-94%的量,所述硅源的添加量为使得Ni/Al 2O 3催化剂微球中SiO 2占催化剂质量的5-20%的量;所述沉淀剂为氨 水、碳酸钠、氢氧化钠或碳酸铵中的任意一种或至少两种的组合;(2)将步骤(1)得到的沉淀物在高压反应釜中加热至160-220℃进行水热反应4-24h,反应完成后得到催化剂前驱体浆料;以及(3)将步骤(2)得到的前驱体浆料经洗涤、过滤、干燥、粉碎后在水中进行分散,调节前驱体浆料的固含量为30-60wt.%,控制热风入口温度为200-300℃,排风出口温度为100-180℃,将调节后的浆料进行喷雾造粒,将造粒后得到的微球在500-800℃下焙烧2-10h,得到Ni/Al 2O 3催化剂微球。
- 如权利要求1-14中任一项所述的方法制备得到的Ni/Al 2O 3催化剂微球。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810141114.6A CN108339548A (zh) | 2018-02-11 | 2018-02-11 | 一种镍/氧化铝催化剂微球及其制备方法 |
CN201810141114.6 | 2018-02-11 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2019153391A1 true WO2019153391A1 (zh) | 2019-08-15 |
Family
ID=62958877
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2018/077824 WO2019153391A1 (zh) | 2018-02-11 | 2018-03-02 | 一种Ni/Al2O 3催化剂微球及其制备方法 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN108339548A (zh) |
WO (1) | WO2019153391A1 (zh) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115212887A (zh) * | 2022-07-05 | 2022-10-21 | 南京大学 | 具有活性金属组分高分散度的重整催化剂制备方法 |
CN115254132A (zh) * | 2021-04-30 | 2022-11-01 | 中国石油化工股份有限公司 | 一种焦炉气加氢脱硫催化剂及其应用 |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109128215B (zh) * | 2018-09-21 | 2022-03-11 | 郑忆依 | 一种碳包镍粉体的制备方法 |
CN113772743B (zh) * | 2021-09-30 | 2023-06-23 | 青岛天尧新材料有限公司 | 一种锰钴复合氧化物粉体的制备方法 |
CN114634167B (zh) * | 2022-03-08 | 2023-12-19 | 中国科学院过程工程研究所 | 一种制备纯相Si2N2O空心球形粉体的系统及方法 |
CN116273003B (zh) * | 2023-02-28 | 2024-08-06 | 江苏科技大学 | 一种纳米颗粒负载棒型Zr-Co-Bi-O催化剂的合成方法及其应用 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101204666A (zh) * | 2006-12-19 | 2008-06-25 | 石大卓越科技股份有限公司 | 一种催化裂化增产丙烯助催化剂及其制备方法 |
US20110111955A1 (en) * | 2006-05-24 | 2011-05-12 | Uop Llc | Hydrothermally stable alumina |
CN106391028A (zh) * | 2016-10-31 | 2017-02-15 | 中国海洋石油总公司 | 一种用于流化床的甲烷化催化剂及其制备方法 |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4191664A (en) * | 1975-06-16 | 1980-03-04 | Union Oil Company Of California | Thermally stable nickel-alumina catalysts useful for methanation and other reactions |
CN102029161B (zh) * | 2009-09-28 | 2012-08-22 | 中国科学院大连化学物理研究所 | 一种涉及水热化学过程的完全甲烷化催化剂的制备方法 |
CN105381803A (zh) * | 2015-12-08 | 2016-03-09 | 大唐国际化工技术研究院有限公司 | 一种合成气甲烷化的流化床催化剂及其制备方法和应用 |
-
2018
- 2018-02-11 CN CN201810141114.6A patent/CN108339548A/zh active Pending
- 2018-03-02 WO PCT/CN2018/077824 patent/WO2019153391A1/zh active Application Filing
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20110111955A1 (en) * | 2006-05-24 | 2011-05-12 | Uop Llc | Hydrothermally stable alumina |
CN101204666A (zh) * | 2006-12-19 | 2008-06-25 | 石大卓越科技股份有限公司 | 一种催化裂化增产丙烯助催化剂及其制备方法 |
CN106391028A (zh) * | 2016-10-31 | 2017-02-15 | 中国海洋石油总公司 | 一种用于流化床的甲烷化催化剂及其制备方法 |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115254132A (zh) * | 2021-04-30 | 2022-11-01 | 中国石油化工股份有限公司 | 一种焦炉气加氢脱硫催化剂及其应用 |
CN115254132B (zh) * | 2021-04-30 | 2024-03-12 | 中国石油化工股份有限公司 | 一种焦炉气加氢脱硫催化剂及其应用 |
CN115212887A (zh) * | 2022-07-05 | 2022-10-21 | 南京大学 | 具有活性金属组分高分散度的重整催化剂制备方法 |
CN115212887B (zh) * | 2022-07-05 | 2023-06-06 | 南京大学 | 具有活性金属组分高分散度的重整催化剂制备方法 |
Also Published As
Publication number | Publication date |
---|---|
CN108339548A (zh) | 2018-07-31 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2019153391A1 (zh) | 一种Ni/Al2O 3催化剂微球及其制备方法 | |
RU2706241C2 (ru) | Катализатор и способ получения легких олефинов непосредственно из синтез-газа в результате осуществления одностадийного технологического процесса | |
JP4429063B2 (ja) | 合成ガスから炭化水素を製造する触媒と該触媒の製造方法及び炭化水素の製造方法 | |
WO2021115244A1 (zh) | 一种锆或铝修饰无定型介孔SiO2负载钴基费托催化剂及其制备方法 | |
WO2022178959A1 (zh) | 一种NiSn/C核壳形复合纳米催化剂及其制备方法和应用 | |
CN111229303B (zh) | 二氧化碳直接制高值芳烃的复合催化剂及制备方法与应用 | |
CN110124729B (zh) | 一种用于浆态床费托合成的包覆型催化剂及其制备方法 | |
WO2021147213A1 (zh) | 一种用于合成气直接生产芳烃的核壳铁基催化剂及其制备方法和应用 | |
CN101538051B (zh) | 一种zsm-5沸石催化剂的制备方法 | |
CN111715226A (zh) | 一种草酸酯气相加氢制乙二醇的纳米催化剂及制备方法 | |
Sun et al. | Yolk-shell structured Pt-CeO2@ Ni-SiO2 as an efficient catalyst for enhanced hydrogen production from ethanol steam reforming | |
GB2085314A (en) | Hydrocarbon cracking process and catalyst | |
US8901027B2 (en) | Stable slurry bed fischer-tropsch catalyst with high surface area and activity | |
CN101279260B (zh) | 一种铁镍费托合成催化剂及其制备方法 | |
WO2012065326A1 (zh) | 一种助剂改性的二氧化碳催化加氢制甲醇的催化剂及制备方法 | |
WO2019148551A1 (zh) | 一种Ni基催化剂微球的制备方法及其用途 | |
CN100384964C (zh) | 烃合成催化剂和方法 | |
CN111111770B (zh) | 一种合成气转化制低碳烯烃的微球型双功能催化剂的制备方法 | |
CN109225235B (zh) | 高效耐磨浆态床费托合成铁基催化剂及其制备方法和应用 | |
CN114073954A (zh) | 一种应用于流化床反应器的镍/氧化铝催化剂微球及其制备方法和用途 | |
CN114643062B (zh) | 一种合成气制低碳烯烃催化剂及其制备方法和应用 | |
CN115254122B (zh) | 微通道催化剂及其制备方法和应用 | |
CN112742373B (zh) | 低温耐硫甲烷化催化剂及其制备方法和应用 | |
CN109201062A (zh) | 费托合成沉淀铁基催化剂及其制备方法和费托合成的方法 | |
CN109225292B (zh) | 高抗耐磨性浆态床费托合成铁基催化剂及制备方法和应用 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18905666 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 18905666 Country of ref document: EP Kind code of ref document: A1 |