WO2019148551A1 - 一种Ni基催化剂微球的制备方法及其用途 - Google Patents

一种Ni基催化剂微球的制备方法及其用途 Download PDF

Info

Publication number
WO2019148551A1
WO2019148551A1 PCT/CN2018/076796 CN2018076796W WO2019148551A1 WO 2019148551 A1 WO2019148551 A1 WO 2019148551A1 CN 2018076796 W CN2018076796 W CN 2018076796W WO 2019148551 A1 WO2019148551 A1 WO 2019148551A1
Authority
WO
WIPO (PCT)
Prior art keywords
microspheres
based catalyst
carrier
catalyst
temperature
Prior art date
Application number
PCT/CN2018/076796
Other languages
English (en)
French (fr)
Inventor
刘姣
余剑
许光文
Original Assignee
中国科学院过程工程研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国科学院过程工程研究所 filed Critical 中国科学院过程工程研究所
Publication of WO2019148551A1 publication Critical patent/WO2019148551A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/08Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the faujasite type, e.g. type X or Y
    • B01J29/10Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the faujasite type, e.g. type X or Y containing iron group metals, noble metals or copper
    • B01J29/14Iron group metals or copper
    • B01J29/146Y-type faujasite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/002Mixed oxides other than spinels, e.g. perovskite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/83Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with rare earths or actinides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/50Catalysts, in general, characterised by their form or physical properties characterised by their shape or configuration
    • B01J35/51Spheres
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C1/00Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon
    • C07C1/02Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon from oxides of a carbon
    • C07C1/04Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon from oxides of a carbon from carbon monoxide with hydrogen
    • C07C1/0425Catalysts; their physical properties
    • C07C1/043Catalysts; their physical properties characterised by the composition
    • C07C1/0435Catalysts; their physical properties characterised by the composition containing a metal of group 8 or a compound thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2523/00Constitutive chemical elements of heterogeneous catalysts
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2523/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
    • C07C2523/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of the iron group metals or copper
    • C07C2523/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups C07C2523/02 - C07C2523/36
    • C07C2523/83Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups C07C2523/02 - C07C2523/36 with rare earths or actinides
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2529/00Catalysts comprising molecular sieves
    • C07C2529/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites, pillared clays
    • C07C2529/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • C07C2529/08Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the faujasite type, e.g. type X or Y
    • C07C2529/10Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the faujasite type, e.g. type X or Y containing iron group metals, noble metals or copper
    • C07C2529/14Iron group metals or copper

Definitions

  • the present application belongs to the technical field of catalyst synthesis, and relates to a method for preparing a Ni-based catalyst microsphere and a use thereof.
  • Efficient heat and mass transfer performance makes the fluidized bed especially suitable for a variety of strong exothermic processes.
  • the bubbling fluidized bed is used as the catalytic reactor.
  • the reaction is basically carried out under isothermal conditions, and the flow rate and temperature of the heat exchange medium entering the heat exchange coil can be adjusted. The heat transfer is easily achieved, thereby increasing the life of the catalyst, and at the same time, the catalyst is renewed due to the flow state of the particles.
  • the methanation process of syngas is a rapid and exothermic process, and the adiabatic temperature rise of the bed is fast, and the increase of the operating temperature tends to lower the purity of the product and cause deactivation of the catalyst.
  • the industrialized methanation technology uses an adiabatic multi-stage fixed bed process using a tablet-formed (porous) columnar catalyst.
  • the adiabatic multi-stage fixed bed methanation process only relies on the gas stream to transfer the methanation heat. Because the gas heat capacity is small, the process must use multiple stages of reaction, feed gas splitting and product gas circulation to reduce the bed temperature of the catalyst.
  • the anti-interference ability of the process is weak, and the energy efficiency needs to be improved; at the same time, an excessive amount of catalyst is needed to ensure the life of the catalyst and the driving time.
  • the Bi-Gas process developed by American BCR Company used a fluidized bed as a methanation reactor. There were two heat exchange tubes inside, and the reaction heat was removed with mineral oil in the tubes. Through the improvement of the catalyst, CO conversion The rate can be increased to 96% to 99.2%.
  • CN103706393A discloses a preparation method of wear-resistant catalyst microspheres for producing low-carbon olefins, comprising the following steps: 1) dispersing molecular sieves and a matrix in deionized water, homogenically stirring for 1 to 3 hours, and then adding the mother liquor obtained by synthesizing molecular sieves, Stirring is continued for 1 to 5 hours to obtain a mixture slurry; 2) the slurry of the step 1) is ground by a rubber mill for 1 to 5 hours, and the resulting mixture slurry is subjected to spray drying to obtain a catalyst microsphere; 3) Step 2 The catalyst microspheres are calcined to obtain an abrasion resistant catalyst microsphere for methanol to olefin reaction.
  • a Fe/La/Cu/K/SiO 2 catalyst was synthesized.
  • the above three patents were prepared by spray granulation to produce low-carbon olefins using molecular sieves as precursors and SAPO-34 as precursors to produce MTO and Fe-Cu-based Fischer-Tropsch catalyst microspheres with wear indexes as low as 0.5 (ASTM). Method), 0.1-0.2 (Katalarrangings method) and 1.0-2.2 (ASTM method).
  • CN105381803A discloses a fluidized bed catalyst for syngas methanation comprising: 5 to 75% of active component Ni, based on the total weight of the catalyst, of 0.1 to 50% by weight of the total weight of the catalyst.
  • CN106925333A discloses a fluidized bed catalyst for syngas methanation comprising: 2 to 65% of active component Ni, based on the total weight of the catalyst, of 0.1 to 50% by weight of the total weight of the catalyst.
  • the auxiliary agent M is Fe, Co, Mo, Mg, Sc, Cr, Ti, Al, Y, An oxide of one or more of La, Ce, Yb, and Sm
  • the second carrier being one or more molecular sieves of ZSM-5, SAPO-34, and MCM-41.
  • one of the objects of the present application is to provide a method for preparing a Ni-based catalyst microsphere, which has good wear resistance of the Ni-based catalyst microsphere, and is used for fluidization of the synthesis gas obtained by coal gasification.
  • the bed has a high catalytic activity during methanation.
  • a method for preparing a Ni-based catalyst microsphere comprising the following steps:
  • Ni-based catalyst microsphere carrier The carrier microspheres are modified to obtain modified carrier microspheres, which serve as a carrier for the Ni-based catalyst microspheres;
  • step 2) The microspheres obtained in the step 2) are dried and calcined to obtain the Ni-based catalyst microspheres.
  • the carrier microspheres of step 1) are preferably FCC microspheres and/or Al 2 O 3 microspheres, which may be fresh/aged/disused FCC microspheres or Al 2 O 3 microspheres.
  • Catalytic cracking (FCC) catalyst is the most widely used catalyst in the refining industry. Its main components are kaolin, Al 2 O 3 and a small amount of Y or ZSM-5 molecular sieves. The wear index can be as low as 0.8-2.5. Highly wear resistant catalysts for use in fluidized bed reactors. However, in the process of petroleum catalytic cracking, it will be deactivated and discarded due to the adsorption of Ni, V and Fe ions in petroleum.
  • the treatment of FCC spent catalysts generally adopts a buried method, which leads to pollution of soil, water resources and atmosphere.
  • the carrier microspheres are prepared by spray granulation.
  • the Al 2 O 3 microspheres can be directly obtained by spray granulation of pseudo-boehmite.
  • the fresh/aged/waste FCC microspheres due to their small pore size, cannot be directly used as a support for Ni-based catalysts and need to be modified.
  • the modification method is to load an auxiliary agent on the carrier microsphere; that is, to modify the acid solution such as Al(NO 3 ) 3 or Mg(NO 3 ) 2 .
  • an auxiliary agent on the carrier microsphere that is, to modify the acid solution such as Al(NO 3 ) 3 or Mg(NO 3 ) 2 .
  • Supporting the active agent Al 2 O 3 and/or active MgO on the carrier microsphere can improve the pore size and specific surface area of the FCC catalyst microsphere on the one hand, and improve the acidity and alkalinity of the catalyst surface on the other hand, which is beneficial to The methanation reaction occurs to suppress the carbon deposition reaction.
  • the modification method is to calcine the carrier microspheres at a high temperature.
  • the wear index of Al 2 O 3 microspheres prepared by direct spray granulation with pseudo-boehmite as raw material is as high as 2.5-3, and high-temperature roasting is required to improve the wear resistance.
  • the high temperature roasting temperature It is 800 to 1400 °C.
  • step 2) the component ⁇ -Al 2 O 3 in the fresh/aged/disused FCC microspheres or Al 2 O 3 microspheres is partially or completely converted into boehmite AlOOH under an aqueous atmosphere, and the crystal phase changes.
  • the surface area and pore volume are greatly reduced, the average pore diameter is significantly reduced, and the mechanical strength is greatly reduced. Therefore, the spray impregnation method is used to minimize the active component Ni or the aqueous solution of the auxiliary agent and the carrier. Contact time ensures the wear strength of the catalyst microspheres.
  • the active component is Ni; more preferably, in step 2), the active component further comprises an auxiliary agent, ie The active component is Ni and an auxiliary; further preferably, the pressure of depositing the active component in the spray dipping method is from 0.06 Pa to 101.325 KPa.
  • the gas in the pores of the carrier escapes a lot during the evacuation process, leaving voids and pores not only to promote the penetration of the impregnation liquid, but also the absolute value of the residual gas partial pressure and environmental pressure in the pores is small, the system and the low pressure
  • the environment forms a new equilibrium state, and the ability to hinder the movement of material migration is weakened, which will also facilitate the diffusion process.
  • the auxiliary agent is one or a mixture of at least two of magnesium nitrate, cerium nitrate, zirconium nitrate and zirconium oxychloride.
  • a typical but non-limiting combination of the mixture is a mixture of magnesium nitrate, cerium nitrate, a mixture of magnesium nitrate, zirconium nitrate, a mixture of magnesium nitrate, zirconium oxychloride, a mixture of magnesium nitrate, cerium nitrate, zirconium nitrate, magnesium nitrate, a mixture of cerium nitrate, zirconium oxychloride, cerium nitrate, a mixture of zirconium nitrate and zirconium oxychloride, a mixture of magnesium nitrate, cerium nitrate, zirconium nitrate and zirconium oxychloride.
  • the drying temperature is 60 to 150 ° C; and the drying time is 4 to 12 hours.
  • the calcination temperature of the Ni/Al 2 O 3 catalyst directly affects the interaction between the active component and the support, thereby affecting the reduction temperature of the catalyst and the size of the active metal Ni.
  • the calcination temperature is 400 to 700 ° C; and the calcination time is 2 to 6 h.
  • a second object of the present application is to provide a Ni-based catalyst microsphere.
  • the third object of the present application is to provide a use of a Ni-based catalyst microsphere, which can be used for synthesizing a fluidized bed methanation process using the preparation method of the Ni-based catalyst microsphere of the present application; It has good catalytic activity and stability in the range of ⁇ 650 °C.
  • the preparation method of the Ni-based catalyst microsphere of the present application the Ni-based catalyst microsphere prepared has good wear resistance, the wear index can be reduced to 1.5 or less, and the fluidized bed methanation of the synthesis gas obtained by coal gasification
  • the catalytic activity is high in the process, and has good catalytic activity and stability in the use range of 300-650 ° C.
  • the conversion rate of CO is 24.8%-38.4% under the reaction space velocity of 120,000 mL/(g ⁇ h).
  • FIG. 1 is a schematic view showing the apparatus used in the immersion and drying process in the preparation method of the Ni-based catalyst microsphere of the present application.
  • 1-carrier microspheres 2-reactor; 3-spray tube; 4-vapor valve/heat transfer oil valve; 5-vacuum tube.
  • Impregnation and drying of the Ni-based catalyst microspheres of the present application can be accomplished simultaneously in the apparatus shown in FIG. (1) Impregnation process: the high-strength carrier microsphere 1 is put into the reaction vessel 2, the feeding port is sealed, the vacuum pump is started after the airtightness, and the rotating drum is started under the negative pressure state, so that the carrier microsphere 1 is uniform in the reaction vessel 2. Rotating, the immersion liquid is uniformly and quickly ejected from the spray pipe 3, and the liquid feed time is controlled. After the impregnation liquid is completed, the negative pressure state is maintained until the impregnation process is completed.
  • Al 2 O 3 microspheres obtained by spray granulation are calcined at 800 ° C for 4 h;
  • Al 2 O 3 microspheres obtained by spray granulation are calcined at 1400 ° C for 4 h;
  • Al 2 O 3 microspheres obtained by spray granulation are calcined at 1400 ° C for 4 h;
  • the Ni-based catalyst microspheres prepared in Examples 1-6 were used in a fluidized bed methanation process of a synthesis gas obtained by coal gasification.
  • the experimental results of the properties of the Ni-based catalyst microspheres are shown in Table 1.
  • the method for determining the wear index of each Ni-based catalyst microsphere sample is as follows: an air jet abrasion test system is set up according to ASTM D5757-00, the sample amount is 35 g, all catalyst particles are sieved before the test, and the particle size range is sieved. The abrasion test was carried out for the particles of 40-125 ⁇ m, and the particles of less than 40 ⁇ m in the fine powder collector and the particle wear tube after the 5h abrasion test were considered to be fine powders generated by abrasion.
  • the wear index (AI) of a particle is defined as:
  • the preparation method of the Ni-based catalyst microsphere of the present application has good wear resistance of the Ni-based catalyst microsphere, the wear index is between 0.8 and 2.2, and the wear index can be reduced to 1.5 or less.
  • the fluidized bed methanation process for syngas obtained by coal gasification has high catalytic activity, good catalytic activity and stability in the range of 300-650 ° C, and reaction space velocity of 120,000 mL/(g ⁇ h), CO The conversion rate was 24.8% to 38.4%.
  • the preparation method of the Ni-based catalyst microsphere of the present application has the advantages of simple and easy control, large processing amount, and is suitable for industrial mass production.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Catalysts (AREA)

Abstract

一种Ni基催化剂微球的制备方法及其用途。Ni基催化剂微球的制备方法包括如下步骤:1)Ni基催化剂微球载体的制备:将载体微球经改性后得到改性的载体微球,作为Ni基催化剂微球的载体;2)采用喷雾浸渍法在步骤1)得到的改性的载体微球的表面沉积活性组分;以及,3)将步骤2)得到的微球经干燥、焙烧后得到Ni基催化剂微球。制得的Ni基催化剂微球的耐磨性好,磨损指数可降至1.5以下,用于合成气流化床甲烷化过程时催化活性高。催化剂微球的制备过程简单易控、处理量大,适用于工业大规模生产。

Description

一种Ni基催化剂微球的制备方法及其用途 技术领域
本申请属于催化剂合成技术领域,涉及一种Ni基催化剂微球的制备方法及其用途。
背景技术
高效的传热传质性能,使流化床特别适用于各种强放热的工艺过程。采用鼓泡流化床作为催化反应器,除了高效的传热传质效率外,最重要的是反应基本在等温条件下进行,通过调节进入内置换热盘管的换热介质流量和温度即可轻松实现移热,从而提高了催化剂的寿命,同时,由于颗粒处于流动状态,便于催化剂的更新。
现有技术中,合成气甲烷化过程是个快速强放热的过程,床层绝热温升快,操作温度升高易使得产品纯度下降,并造成催化剂的失活。目前,已工业化的甲烷化技术均采用绝热多段固定床工艺,使用压片成型的(多孔)柱状催化剂。但是,绝热多段固定床甲烷化工艺仅依托气体流传递甲烷化反应热,由于气体热容较小,该工艺必须采用多段反应、原料气分流和产品气循环等技术方法才能降低催化剂的床层温度,导致该工艺过程抗干扰能力弱,能量效率有待提高;同时,还需使用过量的催化剂才能确保催化剂的寿命和开车时间。1963年,美国BCR公司研发的Bi-Gas工艺采用流化床作为甲烷化反应器,其内部设有2根换热列管,列管内用矿物油将反应热移出,通过催化剂的改进,CO转化率可以提高到96%~99.2%。
流化床甲烷化反应器虽然反应效果好,甲烷产率高,但其催化剂的夹带和损耗严重。研究结果表明,流化床甲烷化的催化剂磨蚀损失主要取决于催化剂 的耐磨性,但其作用随运行时间而降低,可能最终趋于稳定。目前,在提高流化床催化剂的耐磨性方面,研究者普遍采用的方法主要集中在以下两个方面:
(1)催化剂成型采用喷雾造粒方法
CN103706393A公开了一种用于生产低碳烯烃的耐磨催化剂微球制备方法,包括如下步骤:1)将分子筛和基质分散在去离子水中,均质搅拌1~3小时后加入合成分子筛所得母液,继续搅拌1~5小时得到混合物浆料;2)将步骤1)混合物浆料经胶磨机研磨1~5小时,研磨完成所得混合物浆料经过喷雾干燥,得到催化剂微球;3)将步骤2)催化剂微球经过焙烧,得到用于甲醇制烯烃反应的耐磨催化剂微球。CN101242900A公开了一种用于转化氧合物到烯烃的方法的催化剂的制备方法,包括:提供一种反应混合物,其含有铝、磷、水、有机模板和选自硅、镁、锌、铁、钴、镍、锰、铬的元素及其混合物,以形成非沸石型分子筛,按无水基准计,其具有由以下经验式所表示的化学组成:(El xAl yP z)O 2,其中“x”是El的摩尔分数且其值至少为0.001,“y”是A1的摩尔分数且其值至少为0.01,“z”是P的摩尔分数且其值至少为0.01且x+y+z=1,在100℃到250℃之间的温度下结晶分子筛;和洗涤分子筛;将含有硅酸钠和酸性明矾的第一粘合剂添加到洗涤过的分子筛中,形成催化剂浆料;喷雾干燥催化剂浆料,并在高于500℃的温度下煅烧,得到耐磨催化剂。CN1395992A公开了一种微球状费托合成催化剂的制备方法,包括如下步骤:1)按催化剂重量比组成为Fe∶La∶Cu∶K∶SiO 2=100∶0.01~5∶0.5~15∶0.5~10∶5~30,将硝酸铁或硫酸铁、硝酸镧、硝酸铜或硫酸铜溶液混合均匀,制成总摩尔数为1~5mol/L的溶液,然后加入Na 2CO 3或氨水形成沉淀浆料,洗涤,过滤,得到共沉淀滤饼;2)在共沉淀滤饼中按催化剂组成加入SiO 2∶K 2O模数为1~10,SiO 2浓度为5~30wt%的硅酸钾水玻璃溶液混合均匀,加入去离子水进行打浆,制得固含量为10~40wt% 的催化剂浆料;3)将催化剂浆料送入离心式喷雾干燥机中,在热风入口温度200~350℃,排风出口温度100~180℃的条件下进行喷雾干燥;4)喷雾干燥后的粉体进行焙烧,焙烧温度为300~450℃,焙烧时间为2~12小时,得到微球状浆态床费托合成Fe/La/Cu/K/SiO 2催化剂。上述三项专利分别采用喷雾造粒制备了以分子筛为前驱体生产低碳烯烃、SAPO-34为前驱体生产MTO和Fe-Cu系费托合成的催化剂微球,磨损指数分别低至0.5(ASTM方法)、0.1-0.2(Katalistiks方法)和1.0-2.2(ASTM方法)。CN105381803A公开了一种合成气甲烷化的流化床催化剂,其包含:以氧化物计,占催化剂总重量的5~75%的活性组分Ni、占催化剂总重量的0.1~50%的助剂M和余量的载体Al 2O 3,其中,所述助剂M为Fe、Co、Mo、Si、Mg、Ca、Sc、Cr、Ti、Y、Zr、La、Ce、Yb和Sm中的一种或多种的氧化物。CN106925333A公开了一种合成气甲烷化的流化床催化剂,其包含:以氧化物计,占催化剂总重量的2~65%的活性组分Ni、占催化剂总重量的0.1~50%的助剂M、占催化剂总重量的1~80%的第一载体ZrO2和余量的第二载体,其中,所述助剂M为Fe、Co、Mo、Mg、Sc、Cr、Ti、Al、Y、La、Ce、Yb和Sm中的一种或多种的氧化物,所述第二载体为ZSM-5、SAPO-34和MCM-41中的一种或多种分子筛。上述两项合成气甲烷化流化床催化剂的制备方法的步骤均包括Ni基催化剂浆料的制备及其喷雾造粒步骤,但没有分析催化剂的磨损强度。
(2)将催化剂活性组分负载于高强度载体微球上,从而提高催化剂的耐磨性能
Wei等(Applied Catalysis A:General 2001,210:137-150)对不同载体负载的Co基F-T合成催化剂进行研究,发现Al 2O 3和SiO 2负载的催化剂强度较好,且负载的金属对载体强度影响不大。
但是,目前Ni基催化剂微球的制备方法的研究较少,因此开发一种高效耐磨Ni基催化剂微球的制备方法是非常有意义的。
发明内容
针对现有技术的不足,本申请的目的之一在于提供一种Ni基催化剂微球的制备方法,制得的Ni基催化剂微球的耐磨性能好,用于煤气化所得合成气的流化床甲烷化过程时催化活性高。
为达此目的,本申请采用以下技术方案:
一种Ni基催化剂微球的制备方法,所述制备方法包括如下步骤:
1)Ni基催化剂微球载体的制备:将载体微球经改性后得到改性的载体微球,作为Ni基催化剂微球的载体;
2)采用喷雾浸渍法在步骤1)得到的改性的载体微球的表面沉积活性组分;以及
3)将步骤2)得到的微球经干燥、焙烧后得到所述Ni基催化剂微球。
本申请中,步骤1)的载体微球优选为FCC微球和/或Al 2O 3微球,可以为新鲜/老化/废弃的FCC微球或Al 2O 3微球。催化裂化(FCC)催化剂是炼油工业中应用量最大的一种催化剂,主要成分为高岭土、Al 2O 3及少量的Y型或ZSM-5分子筛,磨损指数可低至0.8-2.5,是目前成功应用于流化床反应器中的高耐磨催化剂。但其在应用于石油催化裂化过程中会因为吸附石油中的Ni、V和Fe等离子而失活废弃,FCC废催化剂的处理普遍采用掩埋方法,从而导致土壤、水资源和大气的污染。优选地,所述载体微球是经喷雾造粒制备得到的。Al 2O 3微球可直接由拟薄水铝石为原料喷雾造粒制得。
新鲜/老化/废弃的FCC微球由于孔径较小,不能直接作为Ni基催化剂的载体,需要对其进行改性。
作为一种优选方案,步骤1)中,所述改性的方法为在载体微球上负载助剂;即采用Al(NO 3) 3、Mg(NO 3) 2等酸性溶液对其进行改性,在载体微球上负载助剂活性Al 2O 3和/或活性MgO,一方面可以提高FCC催化剂微球的孔径和比表面积,另一方面可改善催化剂表面的酸碱性,使其有利于甲烷化反应的发生而抑制积碳反应。
作为另一种优选方案,步骤1)中,所述改性的方法为将载体微球高温焙烧。以拟薄水铝石为原料直接喷雾造粒制备的Al 2O 3微球磨损指数高达2.5-3,需高温焙烧提高其耐磨性,优选地,步骤1)中,所述高温焙烧的温度为800~1400℃。
步骤2)中,新鲜/老化/废弃的FCC微球或Al 2O 3微球中组分γ-Al 2O 3在含水气氛下会部分或全部转化成一水软铝石AlOOH,晶相的变化一方面引起其表面积和孔容很大幅度的下降,平均孔径明显减少,另一方面机械强度会大幅度降低,所以本申请采用喷雾浸渍方法尽量减少活性组分Ni或助剂的水溶液与载体的接触时间,保证催化剂微球的磨损强度。
为了确保活性组分在较短时间内快速扩散和充分浸渍,步骤2)中,所述活性组分为Ni;更优选地,步骤2)中,所述活性组分还包括助剂,即所述活性组分为Ni和助剂;进一步优选地,所述喷涂浸渍法中沉积活性组分的压力为0.06Pa~101.325KPa。在真空环境下,载体孔道内气体在抽空过程中大量逸出,留下的空隙和孔道不但促进浸渍液的渗入,且孔隙内残留的气体分压和环境压强的绝对值很小,体系与低压环境形成新的平衡状态,阻碍物质迁移运动的能力减弱,也将有利于扩散过程的进行。
步骤2)中,所述助剂为硝酸镁、硝酸镧、硝酸锆和氧氯化锆中的一种或至少两种的混合物。所述混合物典型但非限制的组合为硝酸镁、硝酸镧的混合 物,硝酸镁、硝酸锆的混合物,硝酸镁、氧氯化锆的混合物,硝酸镁、硝酸镧、硝酸锆的混合物,硝酸镁、硝酸镧、氧氯化锆的混合物,硝酸镧、硝酸锆和氧氯化锆的混合物,硝酸镁、硝酸镧、硝酸锆和氧氯化锆的混合物。
步骤3)中,所述干燥的温度为60~150℃;所述干燥的时间为4~12h。
Ni/Al 2O 3催化剂的焙烧温度直接影响活性组分与载体之间的相互作用,进而影响催化剂的还原温度与活性金属Ni大小。步骤3)中,所述焙烧的温度为400~700℃;所述焙烧的时间为2~6h。
本申请的目的之二在于提供一种Ni基催化剂微球。
本申请的目的之三在于提供一种Ni基催化剂微球的用途,使用本申请的Ni基催化剂微球的制备方法制备出的催化剂,可用于合成气流化床甲烷化过程;该催化剂在300~650℃的使用范围内具有良好的催化活性和稳定性。
与现有技术相比,本申请的有益效果为:
(1)本申请的Ni基催化剂微球的制备方法,制得的Ni基催化剂微球的耐磨性好,磨损指数可降至1.5以下,用于煤气化所得合成气的流化床甲烷化过程时催化活性高,300~650℃的使用范围内具有良好的催化活性和稳定性,120000mL/(g·h)的反应空速下,CO的转化率为24.8%~38.4%。
(2)本申请的Ni基催化剂微球的制备方法,制备过程简单易控、处理量大,适用于工业大规模生产。
附图说明
图1为本申请的Ni基催化剂微球的制备方法中浸渍与干燥工艺所用的设备的示意图。
附图标记如下:
1-载体微球;2-反应釜;3-喷淋管;4-蒸汽阀门/导热油阀门;5-抽真空 管。
具体实施方式
下面结合附图1并通过具体实施方式来进一步说明本申请的技术方案。
如无具体说明,本申请的各种原料均可市售购得,或根据本领域的常规方法制备得到。
本申请的Ni基催化剂微球的浸渍与干燥可以在图1所示的设备中同时完成。(1)浸渍过程:将高强度载体微球1投入反应釜2内,封上投料口,气密后启动真空泵,在负压状态下启动转鼓,使载体微球1在反应釜2内均匀转动,浸渍液由喷淋管3均匀迅速喷出,并控制进液时间。浸渍液进液完毕后,保持负压状态,直至浸渍过程完成。(2)干燥过程:打开反应釜2的夹套蒸汽阀门/导热油阀门4,采用蒸汽或导热油加热反应釜2,并控制反应釜2的真空度和夹套蒸汽压或温度,反应釜2内的水分开始汽化,并通过抽真空管5被抽出反应系统,达到初步干燥的效果。
实施例1
制备催化剂A
1)称取3kg新鲜FCC置于连续旋转的图1所示的反应釜中,将2.67kgAl(NO 3) 3·9H 2O用去离子水溶解后连续喷雾至反应釜中,反应过程中采用导热油维持反应釜夹套温度为60℃,等体积浸渍6h后采用导热油将反应釜夹套温度升高至150℃,待2h后将物料卸出,然后500℃焙烧4h获得改性后的FCC载体;
2)将改性后的FCC载体重新置于连续旋转的图1所示的反应釜中,将3.97kg Ni(NO 3) 2·6H 2O,0.67kg La(NO 3) 3·9H 2O和0.88kg Zr(NO 3) 4·5H 2O用去离子水溶解后连续喷雾至反应釜中,反应过程中采用导热油维持反应釜夹套 温度为60℃;
3)等体积浸渍6h后采用导热油将反应釜夹套温度升高至150℃,待2h后将物料卸出,然后500℃焙烧4h获得催化剂A,其主要技术指标见附表1。
实施例2
制备催化剂B
1)称取3kg老化后的FCC置于连续旋转的图1所示的反应釜中,将3.2kg Mg(NO 3) 2·6H 2O用去离子水溶解后连续喷雾至反应釜中,反应过程中采用导热油维持反应釜夹套温度为60℃,等体积浸渍6h后采用导热油将反应釜夹套温度升高至150℃,待2h后将物料卸出,然后500℃焙烧4h获得改性后的FCC载体;
2)将改性后的FCC载体重新置于连续旋转的图1所示的反应釜中,将3.97kg Ni(NO 3) 2·6H 2O,0.67kg La(NO 3) 3·9H 2O和0.88kg Zr(NO 3) 4·5H 2O用去离子水溶解后连续喷雾至反应釜中,反应过程中采用导热油维持反应釜夹套温度为60℃;
3)等体积浸渍6h后采用导热油将反应釜夹套温度升高至150℃,待4h后将物料卸出,然后500℃焙烧4h获得催化剂B,其主要技术指标见附表1。
实施例3
制备催化剂C
1)称取3kg废弃的FCC置于连续旋转的图1所示的反应釜中,将2.67kg Al(NO 3) 3·9H 2O和3.2kg Mg(NO 3) 2·6H 2O用去离子水溶解后连续喷雾至反应釜中,反应过程中采用导热油维持反应釜夹套温度为60℃,等体积浸渍6h后采用导热油将反应釜夹套温度升高至150℃,待2h后将物料卸出,然后500℃焙烧4h获得改性后的FCC载体;
2)将改性后的FCC载体重新置于连续旋转的图1所示的反应釜中,将3.97kg Ni(NO 3) 2·6H 2O,0.67kg La(NO 3) 3·9H 2O和0.88kg Zr(NO 3) 4·5H 2O用去离子水溶解后连续喷雾至反应釜中,反应过程中采用导热油维持反应釜夹套温度为60℃;
3)等体积浸渍6h后采用导热油将反应釜夹套温度升高至150℃,待12h后将物料卸出,然后500℃焙烧4h获得催化剂C,其主要技术指标见附表1。
实施例4
制备催化剂D
1)喷雾造粒得到的Al 2O 3微球在800℃高温焙烧4h;
2)称取3kg改性后的Al 2O 3微球置于连续旋转的图1所示的反应釜中,将3.97kg Ni(NO 3) 2·6H 2O,3.2kg Mg(NO 3) 2·6H 2O,0.67kg La(NO 3) 3·9H 2O和0.88kg Zr(NO 3) 4·5H 2O用去离子水溶解后连续喷雾至反应釜中,反应过程中采用导热油维持反应釜夹套温度为60℃;
3)等体积浸渍6h后采用导热油将反应釜夹套温度升高至150℃,待2h后将物料卸出,然后500℃焙烧4h获得催化剂D,其主要技术指标见附表1。
实施例5
制备催化剂E
1)喷雾造粒得到的Al 2O 3微球在1400℃高温焙烧4h;
2)称取3kg改性后的Al 2O 3微球置于连续旋转的图1所示的反应釜中,将3.97kg Ni(NO 3) 2·6H 2O,3.2kg Mg(NO 3) 2·6H 2O,0.67kg La(NO 3) 3·9H 2O和0.88kg Zr(NO 3) 4·5H 2O用去离子水溶解后连续喷雾至反应釜中,反应过程中采用导热油维持反应釜夹套温度为60℃;
3)等体积浸渍6h后采用导热油将反应釜夹套温度升高至150℃,待2h 后将物料卸出,然后400℃焙烧6h获得催化剂E,其主要技术指标见附表1。
实施例6
制备催化剂F
1)喷雾造粒得到的Al 2O 3微球在1400℃高温焙烧4h;
2)称取3kg改性后的Al 2O 3微球置于连续旋转的图1所示的反应釜中,将3.97kg Ni(NO 3) 2·6H 2O,3.2kg Mg(NO 3) 2·6H 2O,0.67kg La(NO 3) 3·9H 2O和0.88kg Zr(NO 3) 4·5H 2O用去离子水溶解后连续喷雾至反应釜中,反应过程中采用导热油维持反应釜夹套温度为60℃;
3)等体积浸渍6h后采用导热油将反应釜夹套温度升高至150℃,待2h后将物料卸出,然后700℃焙烧2h获得催化剂F,其主要技术指标见附表1。
将实施例1-6制得的Ni基催化剂微球用于煤气化所得合成气的流化床甲烷化过程。其中,具体反应条件为:反应温度为500℃,常压,反应气组成H 2∶CO∶N 2=3∶1∶1,反应空速:120000mL/(g·h)。Ni基催化剂微球的性能的实验结果如表1所示。
其中,各Ni基催化剂微球样品的磨损指数测定方法如下:参照ASTM D5757-00方法搭建空气喷射磨损测试系统,测试样品量为35g,测试前对所有催化剂颗粒进行筛分,筛取粒径范围为40-125μm的颗粒进行磨损测试,5h磨损测试后细粉收集器内以及颗粒磨损管中小于40μm的颗粒认为是磨损产生的细粉。颗粒的磨损指数(AI)定义为:
Figure PCTCN2018076796-appb-000001
表1
实例 磨损指数(AI) CO转化率(%)
实施例1 1.22 35.6
实施例2 1.58 37.5
实施例3 1.86 38.4
实施例4 2.14 32.7
实施例5 1.03 29.5
实施例6 0.85 24.8
由表1可以看出,本申请的Ni基催化剂微球的制备方法,制得的Ni基催化剂微球的耐磨性能好,磨损指数在0.8~2.2之间,磨损指数可降至1.5以下,用于煤气化所得合成气的流化床甲烷化过程时催化活性高,300~650℃的使用范围内具有良好的催化活性和稳定性,120000mL/(g·h)的反应空速下,CO的转化率为24.8%~38.4%。本申请的Ni基催化剂微球的制备方法,制备过程简单易控、处理量大,适用于工业大规模生产。
以上实施例仅用来说明本申请的详细方法,本申请并不局限于上述详细方法,即不意味着本申请必须依赖上述详细方法才能实施。所属技术领域的技术人员应该明了,对本申请的任何改进,对本申请产品各原料的等效替换及辅助成分的添加、具体方式的选择等,均落在本申请的保护范围和公开范围之内。

Claims (13)

  1. 一种Ni基催化剂微球的制备方法,其包括如下步骤:
    1)Ni基催化剂微球载体的制备:将载体微球经改性后得到改性的载体微球,作为Ni基催化剂微球的载体;
    2)采用喷雾浸渍法在步骤1)得到的改性的载体微球的表面沉积活性组分;以及
    3)将步骤2)得到的微球经干燥、焙烧后得到所述Ni基催化剂微球。
  2. 根据权利要求1所述的制备方法,其中,步骤1)中,所述载体微球为FCC微球和/或Al 2O 3微球。
  3. 根据权利要求2所述的制备方法,其中,所述载体微球是经喷雾造粒制备得到的。
  4. 根据权利要求1-3中任一项所述的制备方法,其中,步骤1)中,所述改性的方法为在载体微球上负载助剂。
  5. 根据权利要求4所述的制备方法,其中,步骤1)中,载体微球上负载的所述助剂为活性Al 2O 3和/或活性MgO。
  6. 根据权利要求1-3中任一项所述的制备方法,其中,步骤1)中,所述改性的方法为将载体微球高温焙烧;并且所述高温焙烧的温度为800~1400℃。
  7. 根据权利要求1-6中任一项所述的制备方法,其中,步骤2)中,所述活性组分为Ni。
  8. 根据权利要求7所述的制备方法,其中,步骤2)中,所述活性组分还包括助剂;并且,所述助剂为硝酸镁、硝酸镧、硝酸锆和氧氯化锆中的一种或至少两种的混合物。
  9. 根据权利要求7所述的制备方法,其中,步骤2)中,所述喷雾浸渍法中沉积活性组分的压力为0.06Pa~101.325KPa。
  10. 根据权利要求1-9中任一项所述的制备方法,其中,步骤3)中,所述干燥的温度为60~150℃,所述干燥的时间为4~12h。
  11. 根据权利要求1-10中任一项所述的制备方法,其中,步骤3)中,所述焙烧的温度为400~700℃,所述焙烧的时间为2~6h。
  12. 一种如权利要求1-11中任一项所述的制备方法制得的Ni基催化剂微球。
  13. 一种Ni基催化剂微球的用途,其中,将权利要求1-11中任一项所述的制备方法制得的Ni基催化剂微球用于合成气流化床甲烷化过程。
PCT/CN2018/076796 2018-01-30 2018-02-14 一种Ni基催化剂微球的制备方法及其用途 WO2019148551A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810089987.7 2018-01-30
CN201810089987.7A CN108295859B (zh) 2018-01-30 2018-01-30 一种Ni基催化剂微球的制备方法及其用途

Publications (1)

Publication Number Publication Date
WO2019148551A1 true WO2019148551A1 (zh) 2019-08-08

Family

ID=62866928

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/076796 WO2019148551A1 (zh) 2018-01-30 2018-02-14 一种Ni基催化剂微球的制备方法及其用途

Country Status (2)

Country Link
CN (1) CN108295859B (zh)
WO (1) WO2019148551A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112679636B (zh) * 2019-10-18 2022-12-27 中国石油化工股份有限公司 用于乙烯聚合的催化剂的制备方法
CN114073954B (zh) * 2020-08-14 2023-03-21 中国科学院过程工程研究所 一种应用于流化床反应器的镍/氧化铝催化剂微球及其制备方法和用途

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0389158A1 (en) * 1989-03-20 1990-09-26 Ube Industries, Ltd. High activity nickel catalyst and process for preparation thereof
US20120063963A1 (en) * 2009-04-24 2012-03-15 University Of Yamanashi Selective co methanation catalyst, method of producing the same, and apparatus using the same
CN104588126A (zh) * 2013-11-03 2015-05-06 中国石油化工股份有限公司 一种浸渍装置及制备催化剂的方法
CN106902830A (zh) * 2017-04-17 2017-06-30 西南化工研究设计院有限公司 一种输送床甲烷化催化剂、制备方法及应用

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102600860B (zh) * 2012-02-15 2014-06-11 华东理工大学 适用于中低温合成气完全甲烷化的催化剂及其制备方法
US20150174559A1 (en) * 2013-12-19 2015-06-25 Basf Corporation Phosphorus-Modified FCC Catalysts
CN105381803A (zh) * 2015-12-08 2016-03-09 大唐国际化工技术研究院有限公司 一种合成气甲烷化的流化床催化剂及其制备方法和应用

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0389158A1 (en) * 1989-03-20 1990-09-26 Ube Industries, Ltd. High activity nickel catalyst and process for preparation thereof
US20120063963A1 (en) * 2009-04-24 2012-03-15 University Of Yamanashi Selective co methanation catalyst, method of producing the same, and apparatus using the same
CN104588126A (zh) * 2013-11-03 2015-05-06 中国石油化工股份有限公司 一种浸渍装置及制备催化剂的方法
CN106902830A (zh) * 2017-04-17 2017-06-30 西南化工研究设计院有限公司 一种输送床甲烷化催化剂、制备方法及应用

Also Published As

Publication number Publication date
CN108295859B (zh) 2020-12-29
CN108295859A (zh) 2018-07-20

Similar Documents

Publication Publication Date Title
WO2017000427A1 (zh) 一种催化剂及由合成气一步法直接制备低碳烯烃的方法
US7259286B2 (en) Attrition resistant bulk iron catalysts and processes for preparing and using same
RU2478006C1 (ru) Катализатор синтеза фишера-тропша, способ его приготовления и применения
CN111229303B (zh) 二氧化碳直接制高值芳烃的复合催化剂及制备方法与应用
CN110124729B (zh) 一种用于浆态床费托合成的包覆型催化剂及其制备方法
CN106140266B (zh) 一种金属改性zsm-5分子筛催化剂及其制备方法和应用
WO2017031635A1 (zh) 共沉淀-熔融法制备的铁基催化剂、其制备方法及应用
WO2020125609A1 (zh) 一种降低烟气NOx排放的规整结构催化剂及其制备和使用方法
CN109663613B (zh) 一种金属改性zsm-5分子筛催化剂及其制备和应用
WO2019148551A1 (zh) 一种Ni基催化剂微球的制备方法及其用途
WO2024008168A1 (zh) 一种低碳烷烃铬系脱氢催化剂及其制备方法和应用
CN110280302B (zh) 一种将甲烷转化为芳烃的催化剂及其制备方法和应用
CN106607058B (zh) 合成气直接制低碳烯烃的铁系催化剂及其制备方法
CN109289831A (zh) 具有高抗积碳性的丙烷脱氢制丙烯的催化剂及其制备方法
US20230347323A1 (en) Catalyst
CN110614099B (zh) 费托合成铁基催化剂及其制备方法和费托合成的方法
CN112237939A (zh) 含分子筛的催化剂及其制备方法和应用
CN111054384A (zh) 有机液体储氢材料脱氢的催化剂及其制备方法
CN107488096A (zh) 一种低碳烷烃循环流化床脱氢工艺
CN109647292B (zh) 一种采用流化床由合成气制备低碳烯烃的方法
CN113731481A (zh) 合成气转化制低碳烯烃的催化剂组合物及其制法和用途
CN112619652A (zh) 合成气制低碳烯烃的催化剂及其制备方法
CN111686793A (zh) 一种复合催化剂及其制备和应用
RU2585289C1 (ru) Катализатор ароматизации метана, способ его получения и способ конверсии метана с получением ароматических углеводородов
CN112625726B (zh) 合成气制低碳烯烃的方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18903667

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18903667

Country of ref document: EP

Kind code of ref document: A1