WO2024008168A1 - 一种低碳烷烃铬系脱氢催化剂及其制备方法和应用 - Google Patents

一种低碳烷烃铬系脱氢催化剂及其制备方法和应用 Download PDF

Info

Publication number
WO2024008168A1
WO2024008168A1 PCT/CN2023/106184 CN2023106184W WO2024008168A1 WO 2024008168 A1 WO2024008168 A1 WO 2024008168A1 CN 2023106184 W CN2023106184 W CN 2023106184W WO 2024008168 A1 WO2024008168 A1 WO 2024008168A1
Authority
WO
WIPO (PCT)
Prior art keywords
chromium
low
catalyst
dehydrogenation catalyst
auxiliary agent
Prior art date
Application number
PCT/CN2023/106184
Other languages
English (en)
French (fr)
Inventor
张春雪
卓润生
孙秋实
刘兵
饶宇森
兰兴玥
赵瑞玲
刘新生
Original Assignee
润和科华催化剂(上海)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 润和科华催化剂(上海)有限公司 filed Critical 润和科华催化剂(上海)有限公司
Publication of WO2024008168A1 publication Critical patent/WO2024008168A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/24Chromium, molybdenum or tungsten
    • B01J23/26Chromium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/02Boron or aluminium; Oxides or hydroxides thereof
    • B01J21/04Alumina
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/005Spinels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/40Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11, as exemplified by patent documents US3702886, GB1334243 and US3709979, respectively
    • B01J29/48Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11, as exemplified by patent documents US3702886, GB1334243 and US3709979, respectively containing arsenic, antimony, bismuth, vanadium, niobium tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/61Surface area
    • B01J35/61310-100 m2/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/61Surface area
    • B01J35/615100-500 m2/g
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C5/00Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms
    • C07C5/32Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms by dehydrogenation with formation of free hydrogen
    • C07C5/327Formation of non-aromatic carbon-to-carbon double bonds only
    • C07C5/333Catalytic processes
    • C07C5/3332Catalytic processes with metal oxides or metal sulfides

Definitions

  • the invention belongs to the technical field of petrochemical industry, and specifically relates to a low-carbon alkane chromium-based dehydrogenation catalyst and its preparation method and application.
  • the alkane dehydrogenation-to-olefins process Compared with the methanol-to-olefins process and the coal-to-olefins process, the alkane dehydrogenation-to-olefins process has the advantages of abundant raw materials, low cost, no need to introduce water in the reaction process, and low wastewater volume.
  • the low-carbon alkane dehydrogenation process can be divided into oxidative dehydrogenation and direct dehydrogenation.
  • the oxidative dehydrogenation reaction process has high heat release, dangerous operation process, poor selectivity of the target product, and low conversion rate. Therefore, direct dehydrogenation of alkanes is the most effective method for producing olefins.
  • the currently developed alkane direct dehydrogenation processes include UOP's Oleflex process, Air Product &Chemical's Catofin process, Phillips' Star process, Snamprogetti &Yarsintz's FBD process, and Linde's Linde process.
  • UOP's Oleflex process Air Product &Chemical's Catofin process
  • Phillips' Star process Phillips' Star process
  • Snamprogetti &Yarsintz's FBD process and Linde's Linde process.
  • the fluidized bed alkane dehydrogenation process has broad development prospects.
  • fluidized bed reactors have high bed heat transfer efficiency, can stably control the bed temperature uniformly, can continuously react and regenerate, and can achieve long-term stability at higher temperatures. Operational advantages.
  • the by-products are mainly C1 and C2 light hydrocarbons, and these light hydrocarbons are generated from cracking.
  • most FBD processes use powdered Cr 2 O 3 catalysts or microsphere Cr 2 O 3 /Al 2 O 3 catalysts.
  • the selectivity and stability of chromium-based catalysts need to be improved.
  • Traditional chromium-based catalysts are mostly based on alumina. As a carrier, it is prepared by modification with elements such as alkali metals.
  • Chinese patents CN110560043, CN103769078, and US patent US20030232720 mention the role of alkali metals in dehydrogenation catalysts, and disclose methods of adding a small amount of alkali metal elements to the catalyst in an attempt to reduce the acidity of the catalyst itself. However, due to the strong alkalinity of alkali metals, it not only reduces the acidity, but also reduces the stability of the catalyst. US Patent No. 8835347 adds some alkali metals and alkaline earth metals to the dehydrogenation catalyst in the hope of changing its selectivity.
  • the alkaline earth elements added in the patent only serve to cover the acidic sites on the catalyst surface, improving selectivity.
  • the alkaline earth elements do not form with the fixed bed carrier. spinel structure, so the service life of its catalyst is not enhanced.
  • fluidized bed reactors can stably control the bed temperature to be uniform, the heat transfer process is completed almost instantly, and the heat and mass transfer efficiency is high. Therefore, experimental research on propane catalytic dehydrogenation in fluidized bed reactors reduces the occurrence of side reactions caused by temperature unevenness. Moreover, the fluidized bed dehydrogenation process can continuously react and regenerate, and can achieve long-term stable operation at higher temperatures. However, the fluidized bed reactor The fluidization performance and wear resistance of the agent are required to be high.
  • the catalyst used in the current fluidized bed process has a low propane conversion rate and a low propylene yield.
  • the present invention provides a low-carbon alkane chromium-based dehydrogenation catalyst and its preparation method and application.
  • the present invention provides a low-carbon alkane chromium-based dehydrogenation catalyst.
  • the dehydrogenation catalyst has a spinel structure and includes the following mass fraction components based on the total dry mass:
  • Chromium oxide 0.1% to 35%, first additive 0.1% to 5%, second additive 0.1% to 10%, third additive 0.1% to 5%, and the rest are fluidized bed carriers;
  • the first auxiliary agent is a substance containing at least one alkaline earth metal element
  • the second auxiliary agent is a substance containing at least one Group IVB element
  • the third auxiliary agent is a substance containing at least one lanthanide metal element.
  • the specific surface area of the above-mentioned fluidized bed carrier is 50-300 m 2 /g, and the particle size is 100-200 ⁇ m.
  • the above-mentioned fluidized bed carrier includes a Strength alumina, molecular sieves or silica.
  • the spinel structure includes at least one of a magnesium-aluminum spinel structure, a calcium-aluminum spinel structure, a titanium-containing spinel structure, and a perovskite structure.
  • the above-mentioned first auxiliary agent includes alkaline earth metal powder, alkaline earth metal halide, alkaline earth metal oxide, alkaline earth metal sulfide, alkaline earth metal nitrate, alkaline earth metal acetate and alkaline earth metal.
  • One or more metal oxalates include alkaline earth metal powder, alkaline earth metal halide, alkaline earth metal oxide, alkaline earth metal sulfide, alkaline earth metal nitrate, alkaline earth metal acetate and alkaline earth metal.
  • One or more metal oxalates One or more metal oxalates.
  • the above-mentioned second auxiliary agent includes Group IVB element metal powder, Group IVB element halide, Group IVB element oxide, Group IVB element sulfide, Group IVB element One or more of the element nitrate, the Group IVB element acetate and the Group IVB element oxalate.
  • the above-mentioned third auxiliary agent includes lanthanide metal powder, lanthanide metal halide, lanthanide metal oxide, lanthanide metal sulfide, lanthanide metal carbide, lanthanide One or more of metal nitrates, lanthanide metal acetates and lanthanide metal oxalates.
  • the present invention provides a method for preparing a low-carbon alkane chromium-based dehydrogenation catalyst, including:
  • the fluidized bed carrier is placed in the impregnation liquid for impregnation treatment, then aged for 1 to 10 hours, dried, and then roasted at 650 to 950°C for 2 to 10 hours.
  • the particle size of the fluidized bed carrier is 100-200 ⁇ m, which is obtained by calcining alumina, molecular sieves or silica at 300-1000°C for 2-10 hours, and then sieving.
  • the present invention provides an application of the above-mentioned low-carbon alkane chromium-based dehydrogenation catalyst.
  • the catalyst is used in a fluidized bed reactor with a reaction pressure of 0.01-0.50MPa, a temperature of 530-660°C, and a volume of Airspeed 800 ⁇ 2400h -1 .
  • the present invention at least has the following technical effects:
  • the low-carbon alkane chromium-based dehydrogenation catalyst for fluidized bed uses alkaline earth metals, Group IVB elements and lanthanide metal elements.
  • the existence of active centers in the catalyst is controlled by adjusting the electrical properties of the carrier surface, so that the catalyst has higher dehydrogenation activity and propylene selectivity; on the other hand, the additives and the fluidized bed carrier will form properties
  • the relatively more stable spinel structure enhances the overall stability, strength and wear of the catalyst, and alleviates the problem of catalyst loss during use.
  • the catalyst production raw materials are simple and easy to obtain, the preparation process is simple, and existing production lines can be used for efficient, stable and economical production, and can effectively replace the existing traditional chromium-based dehydrogenation catalysts.
  • the present invention provides a fluidized bed reactor for Bed of low carbon alkane chromium dehydrogenation catalyst.
  • the low-carbon alkane chromium-based dehydrogenation catalyst has a spinel structure and is used in a fluidized bed reactor with a reaction pressure of 0.01 to 0.50MPa and a temperature of 530 to 660°C. Volume airspeed is 800 ⁇ 2400h -1 .
  • the low-carbon alkane chromium-based dehydrogenation catalyst has a spinel structure, including at least one of a magnesium-aluminum spinel structure, a calcium-aluminum spinel structure or a titanium-containing spinel structure.
  • the low-carbon alkane chromium-based dehydrogenation catalyst includes the following mass fraction components based on the total dry weight of the low-carbon alkane chromium-based dehydrogenation catalyst: 0.1% to 35% of chromium oxide, and 0.1% to 1% of the first auxiliary agent. 5%, the second additive is 0.1% to 10%, the third additive is 0.1% to 5%, and the rest is the fluidized bed carrier;
  • the components with the following mass fractions based on the total dry mass are: 0.1-35% of chromium oxide, 0.1-5% of the first auxiliary agent, 0.1-10% of the second auxiliary agent, and 0.1-10% of the third auxiliary agent.
  • the rest is fluidized bed carrier; more preferably, chromium oxide 1 ⁇ 25%, first auxiliary 0.5 ⁇ 3%, second auxiliary 0.5 ⁇ 3%, third auxiliary 0.5 ⁇ 3%, the rest It is a fluidized bed carrier.
  • the chromium in chromium oxide comes from sodium chromate, sodium dichromate, potassium chromate, potassium dichromate, ammonium dichromate, chromic acid, chromium chloride, acetylacetonate chromic acid, potassium chromium sulfate, trioxide
  • chromium, chromium peroxide, lead chromate, chromium nitride, chromium nitrate and chromium fluoride One or more of chromium, chromium peroxide, lead chromate, chromium nitride, chromium nitrate and chromium fluoride.
  • the first additive is a substance containing at least one alkaline earth metal element, including alkaline earth metal powder, alkaline earth metal halide, alkaline earth metal oxide, alkaline earth metal sulfide, alkaline earth metal nitrate, alkaline earth metal acetate and alkaline earth metal oxalic acid
  • the first auxiliary agent is alkali metal acetate and nitrate. Using such substances as the first auxiliary agent will not easily introduce impurities during the preparation process of the catalyst.
  • the second auxiliary agent is a substance containing at least one Group IVB element, including Group IVB element metal powder, Group IVB element halide, Group IVB element oxide, Group IVB element sulfide, Group IVB element nitric acid One or more of salts, acetates of Group IVB elements, organic ammonium salts of Group IVB elements, and oxalates of Group IVB elements.
  • the second auxiliary agent is an organic ammonium salt and a nitrate of the IVB element. Acid acid, using this substance as the second auxiliary agent, is not easy to introduce impurities during the preparation process of the catalyst.
  • the third additive is a substance containing at least one lanthanide metal element, including lanthanide metal powder, lanthanide metal halide, lanthanide metal oxide, lanthanide metal sulfide, lanthanide metal carbide, lanthanide metal nitric acid One or more of salts, lanthanide metal carbonates and lanthanide metal oxalates.
  • the third auxiliary agent is lanthanide metal nitrate and carbonate. Using such substances as the third auxiliary agent will not easily introduce impurities during the preparation process of the catalyst.
  • the fluidized bed carrier includes alumina, molecular sieve or silica with higher mechanical strength.
  • the fluidized bed carrier has a specific surface area of 50 to 300 m 2 /g and a particle size of 100 to 200 ⁇ m.
  • the fluidized bed carrier has a specific surface area of 80 to 120 m 2 /g and a particle size of 120 to 180 ⁇ m. Using a fluidized bed carrier of this specification helps the catalyst fluidize.
  • This embodiment also provides a method for preparing the above-mentioned low-carbon alkane chromium-based dehydrogenation catalyst, including:
  • the chromium source can use one of chromium oxide, chromium acetate, chromium nitrate and chromium oxalate; to prepare the required soluble solution containing calcium or magnesium
  • the magnesium source can use one of magnesium sulfate, magnesium chloride and magnesium nitrate.
  • the vacuum degree is preferably 0.2kPa-50kPa, more preferably 0.2kPa-5kPa; the aging time is preferably 1-5 hours, more preferably 2-4 hours hours; drying time is preferably 2-8 hours, more preferably 2-5 hours; roasting temperature is preferably 750-950°C, More preferably, it is 750-900°C; the calcination time is preferably 2-8 hours, and more preferably 4-6 hours.
  • This embodiment provides a low-carbon alkane chromium-based dehydrogenation catalyst for fluidized bed, and its preparation method includes:
  • This embodiment provides a low-carbon alkane chromium-based dehydrogenation catalyst for fluidized bed, and its preparation method includes:
  • This embodiment provides a low-carbon alkane chromium-based dehydrogenation catalyst for fluidized bed, and its preparation method includes:
  • This embodiment provides a low-carbon alkane chromium-based dehydrogenation catalyst for fluidized bed, and its preparation method includes:
  • This embodiment provides a low-carbon alkane chromium-based dehydrogenation catalyst for fluidized bed, and its preparation method includes:
  • This embodiment provides a low-carbon alkane chromium-based dehydrogenation catalyst for fluidized bed, and its preparation method includes include:
  • porous silica as a carrier, dry the silica, raise the temperature to 300°C at a rate of 5°C/min, calcine at this temperature for 10 hours, cool and then sieve to obtain a fluidized bed with a particle size of 100 to 200 ⁇ m.
  • the water absorption capacity of the carrier was measured to be 45g H 2 O/100g, and the specific surface area was 250 to 300m 2 /g.
  • This comparative example provides a dehydrogenation catalyst, and its preparation method includes:
  • This comparative example provides a dehydrogenation catalyst, and its preparation method includes:
  • the fluidized bed catalysts 1-4 prepared in Examples 1 to 4 and the fluidized bed contrast agents 1-2 in Comparative Examples 1 and 2 were respectively subjected to propane dehydrogenation tests;
  • the process flow used is an existing process flow, which will not be elaborated in the embodiments.
  • the control parameters in the process flow are as follows: the propane volume space velocity is 1000h -1 , an appropriate amount of nitrogen is introduced, the propane partial pressure is maintained at 50kPa, and the total reaction system The pressure is normal pressure; the bed temperature is 560-610°C; the results are shown in Table 1,
  • the low-carbon alkane chromium-based dehydrogenation catalysts provided in Examples 1 to 4 of the present invention have even propylene selectivity in the 600°C propane dehydrogenation reaction. There is improvement.
  • the process flow used is an existing process flow, which will not be elaborated in the embodiments.
  • the control parameters in the process flow are as follows: the propane volume space velocity is 1000h -1 , an appropriate amount of nitrogen is introduced, the propane partial pressure is maintained at 50kPa, and the total reaction system The pressure is normal pressure; the bed temperature is 560-610°C; the results are shown in Table 2,
  • this low-carbon alkane chromium-based dehydrogenation catalyst has a bed temperature in the range of 560-610°C. As the temperature rises, the catalyst conversion rate increases and the selectivity decreases, but the by-products increase, which is consistent with propane dehydrogenation. According to the kinetic rules of the hydrogen catalyst, when the reaction temperature reaches 600°C, the propylene yield is higher than 40%, which exceeds the propylene yield of the traditional chromium-based dehydrogenation catalyst. This shows that the chromium-based dehydrogenation catalyst prepared by the present invention has higher reactivity and stability.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

本发明公开了一种低碳烷烃铬系脱氢催化剂及其制备方法和应用,属于石油化工技术领域。该脱氢催化剂具有尖晶石结构,包括以干基总质量为基准计的以下质量分数的组分:氧化铬0.1~35%,第一助剂0.1~5%,第二助剂0.1~10%,第三助剂0.1~5%,其余为流化床载体。这种脱氢催化剂,通过调整载体表面的电性对催化剂中的活性中心的存在状态进行了控制,使催化剂的具有更高的脱氢活性、丙烯选择性;同时增强了催化剂整体的稳定性、强度以及磨耗,缓解了催化剂在使用过程中损耗问题。

Description

一种低碳烷烃铬系脱氢催化剂及其制备方法和应用 技术领域
本发明属于石油化工技术领域,具体涉及一种低碳烷烃铬系脱氢催化剂及其制备方法和应用。
背景技术
随着聚丙烯、聚丙烯腈、环氧丙烷、丙烯酸等衍生物需求的迅速增长,对丙烯的需求也逐年俱增,当前全球市场对丙烯需求的增长速度已超过了产能的增速,市场供求日趋紧张。近年来,我国丙烯需求量同样增长快速。在催化裂化、石脑油蒸汽裂解等工艺过程中会副产大量低碳烷烃,将这些烷烃经济地转化成丙烯,将有效改善市场对丙烯的需求。且相对于甲醇制烯烃工艺、煤制烯烃工艺,烷烃脱氢制烯烃工艺具有原料丰富、成本低、反应过程不需要引入水,废水量低等优点。低碳烷烃脱氢工艺可分为氧化脱氢和直接脱氢,氧化脱氢反应过程放热量高,操作过程危险,目标产物选择性差,转化率不占优势。因此烷烃直接脱氢是制烯烃的最有效方法。
目前所开发的烷烃直接脱氢工艺包括UOP公司的Oleflex工艺、Air Product&Chemical公司的Catofin工艺、Phillips公司的Star工艺、Snamprogetti&Yarsintz公司的FBD工艺、以及Linde公司的Linde工艺等。根据操作压力、温度、可连续性、生产装置的稳定操作和降低生产成本的综合比较,流化床烷烃脱氢工艺具有广泛的发展前景。流化床反应器相对于固定床反应器和移动床反应器,具有床层传热效率高、能够稳定地控制床层温度均匀、可以连续反应与再生、可以实现在较高温度下长周期稳定操作等优点。意大利Snamprogetti和 俄罗斯Yarsintz公司的FBD工艺采用流化床反应器,配备反应-再生系统,目前已应用于俄罗斯1套13万吨/年异丁烯工业装置,还应用于5套异丁烷和丙烷脱氢装置。而国内同样重视流化床烷烃脱氢工艺的发展,由中国石油大学(华东)重质油国家重点实验室自主研发、中国石油工程建设公司华东设计分公司设计的新型丙烷/丁烷脱氢(ADHO)技术,已于2016年在山东恒源石油化工完成工业化试验证明,填补了国内该技术领域的空白。
在丙烷直接脱氢的反应中,副产物主要为C1和C2的轻质烃,这些轻质烃的产生源自裂解。现阶段,FBD工艺大多采用粉状Cr2O3催化剂或微球Cr2O3/Al2O3催化剂,铬系催化剂的选择性和稳定性都需要改进,传统铬系催化剂,多以氧化铝做载体,采用碱金属等元素进行改性制备得到。中国专利CN110560043、CN103769078、美国专利US20030232720提及了碱金属在脱氢催化剂中的作用,并公开了在催化剂中加入了少量的碱金属元素的方法,试图降低催化剂自身的酸性。但是由于碱金属的碱性较强,不仅降低了酸性,同时也降低了催化剂的稳定性。美国专利US8835347将部分碱金属和碱土金属加入脱氢催化剂中,以期待改变其选择性。但是,根据其催化剂的制备方法和性能表现,可以看出,该专利中加入的碱土元素的作用仅为在覆盖催化剂表面的酸性位点,提高了选择性,然而碱土元素未与固定床载体形成尖晶石结构,因此其催化剂的使用寿命并未得到增强。
相对于固定床、移动床反应器,流化床反应器能够稳定地控制床层温度均匀,传热过程几乎瞬间完成,传热传质效率高。因此,流化床反应器丙烷催化脱氢实验研究减少了温度不均引起的副反应的发生。并且流化床脱氢工艺可以连续反应与再生,可以实现在较高温度下长期稳定操作。但流化床反应器对催 化剂的流化性能和耐磨性能要求较高,现阶段流化床工艺所使用催化剂丙烷转化率较低,丙烯产率较低。
但是现有的流化床脱氢工艺的催化剂,由于强度、磨耗、以及稳定性等问题,经常出现由于催化剂颗粒磨损所产生的损耗问题,一方面增加了催化剂的消耗量,另一方面对装置的旋风分离器以及颗粒回收装置也有较高的要求。因此,需要对流化床脱氢工艺的催化剂进行改进,以克服上述问题。
发明内容
为了克服现有技术中存在的“流化床脱氢工艺的催化剂强度、磨耗和稳定性不足的问题”,本发明提供一种低碳烷烃铬系脱氢催化剂及其制备方法和应用。
本发明通过以下技术方案实现:
第一方面,本发明提供一种低碳烷烃铬系脱氢催化剂,脱氢催化剂具有尖晶石结构,包括以干基总质量为基准计的以下质量分数的组分:
氧化铬0.1%~35%,第一助剂0.1%~5%,第二助剂0.1%~10%,第三助剂0.1%~5%,其余为流化床载体;
第一助剂为包含至少一种碱土金属元素的物质;
第二助剂为包含至少一种第ⅣB族元素的物质;
第三助剂为包含至少一种镧系金属元素的物质。
进一步地,在本发明较佳的实施例中,上述流化床载体的比表面积为50~300m2/g,粒度100~200μm。
进一步地,在本发明较佳的实施例中,上述流化床载体包括具有较高机械 强度的氧化铝、分子筛或氧化硅。
尖晶石结构包括镁铝尖晶石结构、钙铝尖晶石结构、含钛尖晶石结构以及钙钛矿结构中的至少一种。
进一步地,在本发明较佳的实施例中,上述第一助剂包括碱土金属粉末、碱土金属卤化物、碱土金属氧化物、碱土金属硫化物、碱土金属硝酸盐,碱土金属乙酸盐以及碱土金属草酸盐中的一种或多种。
进一步地,在本发明较佳的实施例中,上述第二助剂包括第ⅣB族元素金属粉末、第ⅣB族元素卤化物、第ⅣB族元素氧化物、第ⅣB族元素硫化物、第ⅣB族元素硝酸盐、第ⅣB族元素乙酸盐以及第ⅣB族元素草酸盐中的一种或多种。
进一步地,在本发明较佳的实施例中,上述第三助剂包括镧系金属粉末、镧系金属卤化物、镧系金属氧化物、镧系金属硫化物、镧系金属碳化物、镧系金属硝酸盐、镧系金属乙酸盐以及镧系金属草酸盐中的一种或多种。
第二方面,本发明提供一种低碳烷烃铬系脱氢催化剂的制备方法,包括:
按照质量分数,将氧化铬、第一助剂、第二助剂和第三助剂混合后,得到浸渍液;
在真空条件下,将流化床载体置于浸渍液中进行浸渍处理,再陈化1~10h、干燥后,于650~950℃下焙烧2~10h。
进一步地,在本发明较佳的实施例中,上述流化床载体的粒度100~200μm,通过将氧化铝、分子筛或氧化硅在300-1000℃下煅烧2-10小时,过筛制得。
第三方面,本发明提供一种上述低碳烷烃铬系脱氢催化剂的应用,催化剂用于流化床反应器中,反应压力为0.01~0.50MPa、温度为530~660℃、体积 空速800~2400h-1
与现有技术相比,本发明至少具有如下技术效果:
相比于现有的传统流化床铬系脱氢催化剂,本发明提供的用于流化床的低碳烷烃铬系脱氢催化剂,使用碱土金属、第IVB族元素以及镧系金属元素,一方面通过调整载体表面的电性对催化剂中的活性中心的存在状态进行了控制,使催化剂的具有更高的脱氢活性、丙烯选择性;另一方面由于助剂与流化床载体会形成性能相对更加稳定的尖晶石结构,因此增强了催化剂整体的稳定性、强度以及磨耗,缓解了催化剂在使用过程中损耗问题。此外该催化剂生产原料简单易得,制备工艺简单,并可以使用现有的生产线高效,稳定,经济进行生产,可以有效的代替现有的传统铬系脱氢催化剂。
具体实施方式
下面将结合实施例对本发明的实施方案进行详细描述,但是本领域技术人员将会理解,下列实施例仅用于说明本发明,而不应视为限制本发明的范围,实施例中未注明的具体条件,按照常规条件或者制造商建议的条件进行,所用试剂或仪器未注明生产厂商者,均为可以通过市售购买获得的常规产品。
本发明的技术方案为:
为了满足流化床反应器对催化剂的流动性和耐磨性能的高要求,和解决低碳烷烃铬系脱氢催化剂存在的稳定性差,选择性低的问题,本发明提供一种用于流化床的低碳烷烃铬系脱氢催化剂。该低碳烷烃铬系脱氢催化剂具有尖晶石结构,用于流化床反应器中,反应压力为0.01~0.50MPa、温度为530~660℃、 体积空速800~2400h-1
该低碳烷烃铬系脱氢催化剂,具有尖晶石结构,包括镁铝尖晶石结构,钙铝尖晶石结构或含钛尖晶石结构中的至少一种。
该低碳烷烃铬系脱氢催化剂,包括按低碳烷烃铬系脱氢催化剂干基总质量为基准计的以下质量分数的组分:氧化铬0.1%~35%,第一助剂0.1%~5%,第二助剂0.1%~10%,第三助剂0.1%~5%,其余为流化床载体;
优选地,按干基总质量为基准计的以下质量分数的组分:氧化铬0.1~35%,第一助剂0.1~5%,第二助剂0.1~10%,第三助剂0.1~5%,其余为流化床载体;更为优选地,氧化铬1~25%,第一助剂0.5~3%,第二助剂0.5~3%,第三助剂0.5~3%,其余为流化床载体。
其中,氧化铬中的铬来源于铬酸钠,重铬酸钠,铬酸钾,重铬酸钾,重铬酸铵,铬酸,氯化铬,乙酰丙酮铬酸,硫酸铬钾,三氧化铬,过氧化铬,铬酸铅,氮化铬,硝酸铬以及氟化铬中的一种或多种。
第一助剂为包含至少一种碱土金属元素的物质,包括碱土金属粉末、碱土金属卤化物、碱土金属氧化物、碱土金属硫化物、碱土金属硝酸盐,碱土金属乙酸盐以及碱土金属草酸盐中的一种或多种。优选地,第一助剂为碱金属乙酸盐和硝酸盐,采用这种物质作为第一助剂,不易在催化剂的制备过程中引入杂质。
第二助剂为包含至少一种第ⅣB族元素的物质,包括第ⅣB族元素金属粉末、第ⅣB族元素卤化物、第ⅣB族元素氧化物、第ⅣB族元素硫化物、第ⅣB族元素硝酸盐、第ⅣB族元素乙酸盐,第IVB族元素的有机铵盐以及第ⅣB族元素草酸盐中的一种或多种。优选地,第二助剂为第IVB元素的有机铵盐和硝 酸盐,采用这种物质作为第二助剂,不易在催化剂的制备过程中引入杂质。
第三助剂为包含至少一种镧系金属元素的物质,包含镧系金属粉末、镧系金属卤化物、镧系金属氧化物、镧系金属硫化物、镧系金属碳化物、镧系金属硝酸盐、镧系金属碳酸盐以及镧系金属草酸盐中的一种或多种。优选地,第三助剂为;镧系金属硝酸盐和碳酸盐,采用这种物质作为第三助剂,不易在催化剂的制备过程中引入杂质。
进一步地,流化床载体包括具有较高机械强度的氧化铝、分子筛或氧化硅。流化床载体的比表面积为50~300m2/g,粒度100~200μm。优选地,流化床载体的比表面积为80~120m2/g,粒度120~180μm。采用这种规格的流化床载体,有助于催化剂流化。
本实施方式还提供一种上述低碳烷烃铬系脱氢催化剂的制备方法,包括:
(1)按照质量分数,将氧化铬、第一助剂、第二助剂和第三助剂混合后,得到浸渍液;
(2)在真空条件下,将所述流化床载体置于浸渍液中进行浸渍处理,待表面干燥,再陈化1~10h、干燥后,于650~950℃下焙烧2~10h。
进一步地,配置所需含铬的可溶性溶液,其铬源可以使用铬的氧化物、铬的醋酸盐、铬的硝酸盐和铬的草酸盐中的一种;配置所需含钙或镁的可溶性溶液,镁源可以使用含镁硫酸盐、含镁的氯化物和含镁的硝酸盐中的一种,钙源配制时可以使用含钙的氯化物、含钙的硝酸盐和含钙的硫酸盐中的一种。
进一步地,将流化床载体与浸渍液的浸渍过程中,其真空度优选为0.2kPa-50kPa,更优选为0.2kPa-5kPa;陈化时间优选为1-5小时,更优选为2-4小时;干燥时间优选为2-8小时,更优选为2-5小时;焙烧温度优选为750-950℃, 更优选为750-900℃;焙烧时间优选为2-8小时,更优选为4-6小时。
以下对本发明的具体实施方式进行详细说明。应当理解的是,此处所描述的具体实施方式仅用于说明和解释本发明,并不用于限制本发明。
实施例1
本实施例提供一种用于流化床的低碳烷烃铬系脱氢催化剂,其制备方法包括:
(1)将铝石粉烘干,以5℃/min的速度升温至900℃下,在该温度下煅烧3小时,冷却后筛分得到粒度100~200μm的流化床载体,测得其吸水量为45g H2O/100g、比表面积为110-120m2/g。
(2)称取23.8g铬酸酐、6.4g四水醋酸镁、2.2g一水草酸氧钛铵和3.2g六水硝酸镧,溶于50g水中,得到浸渍液;将100g流化床载体加入抽滤瓶中,抽真空2小时,真空度为-50kPa;将浸渍液缓慢加入抽滤瓶中,将湿润的流化床载体每10分钟进行一次搅拌,直至载体表面风干。放入110℃烘箱中烘干8小时,得到干燥的催化剂;将干燥的催化剂在马弗炉中进行焙烧,焙烧温度为800℃,焙烧时间为8小时,升温速率为5℃/min,待催化剂自然降温至200℃以下时,得到流化床催化剂1。
实施例2
本实施例提供一种用于流化床的低碳烷烃铬系脱氢催化剂,其制备方法包括:
称取33.9g铬酸酐,6.8g四水醋酸镁,1.7g八水氯化氧锆,3.4g六水硝酸镧,溶于50g水中,得到浸渍液;将实施例1中制得的100g流化床载体加入抽 滤瓶中,抽真空2小时,真空度为-50kPa;将浸渍液缓慢加入抽滤瓶中,将湿润的流化床载体每10分钟进行一次搅拌,直至载体表面风干。放入110℃烘箱中烘干8小时,得到干燥的催化剂;将干燥的催化剂在马弗炉中进行焙烧,焙烧温度为650℃,焙烧时间为6小时,升温速率为5℃/min,待催化剂自然降温至200℃以下时,得到流化床催化剂2。
实施例3
本实施例提供一种用于流化床的低碳烷烃铬系脱氢催化剂,其制备方法包括:
称取33.7g铬酸酐,5.4g四水硝酸钙,1.7g八水氯化氧锆,1.6g六水硝酸铈,溶于50g水中,得到浸渍液;将实施例1中制得的100g流化床载体加入抽滤瓶中,抽真空2小时,真空度为-50kPa;将浸渍液缓慢加入抽滤瓶中,将湿润的流化床载体每10分钟进行一次搅拌,直至载体表面风干。放入110℃烘箱中烘干8小时,得到干燥的催化剂;将干燥的催化剂在马弗炉中进行焙烧,焙烧温度为750℃,焙烧时间为6小时,升温速率为5℃/min,待催化剂自然降温至200℃以下时,得到流化床催化剂3。
实施例4
本实施例提供一种用于流化床的低碳烷烃铬系脱氢催化剂,其制备方法包括:
称取29.8g铬酸酐,4g二水氯化钡,2.3g一水草酸氧钛胺,1.6g六水硝酸铈,溶于50g水中,得到浸渍液;将实施例1中制得的100g流化床载体加入抽 滤瓶中,抽真空2小时,真空度为-50kPa;将浸渍液缓慢加入抽滤瓶中,将湿润的流化床载体每10分钟进行一次搅拌,直至载体表面风干。放入110℃烘箱中烘干8小时,得到干燥的催化剂;将干燥的催化剂在马弗炉中进行焙烧,焙烧温度为850℃,焙烧时间为6小时,升温速率为5℃/min,待催化剂自然降温至200℃以下时,得到流化床催化剂4。
实施例5
本实施例提供一种用于流化床的低碳烷烃铬系脱氢催化剂,其制备方法包括:
(1)以ZSM-5分子筛载体,将分子筛烘干,以5℃/min的速度升温至500℃下,在该温度下煅烧2小时,冷却后筛分得到粒度100~200μm的流化床载体,测得其吸水量为45g H2O/100g、比表面积为50~60m2/g。
(2)称取23.8g铬酸酐、6.4g四水醋酸镁、2.2g一水草酸氧钛铵和3.2g六水硝酸镧,溶于50g水中,得到浸渍液;将100g流化床载体加入抽滤瓶中,抽真空2小时,真空度为-40kPa;将浸渍液缓慢加入抽滤瓶中,将湿润的流化床载体每5分钟进行一次搅拌,直至载体表面风干。放入120℃烘箱中烘干2小时,得到干燥的催化剂;将干燥的催化剂在马弗炉中进行焙烧,焙烧温度为950℃,焙烧时间为2小时,升温速率为10℃/min,待催化剂自然降温至200℃以下时,得到流化床催化剂5。
实施例6
本实施例提供一种用于流化床的低碳烷烃铬系脱氢催化剂,其制备方法包 括:
(1)以多孔氧化硅为载体,将氧化硅烘干,以5℃/min的速度升温至300℃下,在该温度下煅烧10小时,冷却后筛分得到粒度100~200μm的流化床载体,测得其吸水量为45g H2O/100g、比表面积为250~300m2/g。
(2)称取33.7g铬酸酐,5.4g四水硝酸钙,1.7g八水氯化氧锆,1.6g六水硝酸铈,溶于50g水中,得到浸渍液;将100g流化床载体加入抽滤瓶中,抽真空2小时,真空度为-100kPa;将浸渍液缓慢加入抽滤瓶中,将湿润的流化床载体每20分钟进行一次搅拌,直至载体表面风干。放入100℃烘箱中烘干5小时,得到干燥的催化剂;将干燥的催化剂在马弗炉中进行焙烧,焙烧温度为650℃,焙烧时间为10小时,升温速率为3℃/min,待催化剂自然降温至200℃以下时,得到流化床催化剂6。
对比例1
本对比例提供一种用于脱氢催化剂,其制备方法包括:
称取23.7g铬酸酐,6.4g四水醋酸镁,溶于50g水中,得到浸渍液;将100g流化床载体加入抽滤瓶中,抽真空2小时,真空度为-50kPa;将浸渍液缓慢加入抽滤瓶中,将湿润的流化床载体每10分钟进行一次搅拌,直至载体表面风干。放入110℃烘箱中烘干8小时,得到干燥的催化剂;将干燥的催化剂在马弗炉中进行焙烧,焙烧温度为650℃,焙烧时间为6小时,升温速率为5℃每分,待催化剂自然降温至200℃以下时,得到流化床对比剂1。
对比例2
本对比例提供一种用于脱氢催化剂,其制备方法包括:
称取29.8g铬酸酐,6.7g四水醋酸镁,2.3g一水草酸氧钛,溶于50g水中,得到浸渍液;将100g流化床载体加入抽滤瓶中,抽真空2小时,真空度为-50kPa;将浸渍液缓慢加入抽滤瓶中,将湿润的流化床载体每10分钟进行一次搅拌,直至载体表面风干。放入110℃烘箱中烘干8小时,得到干燥的催化剂;将干燥的催化剂在马弗炉中进行焙烧,焙烧温度为850℃,焙烧时间为6小时,升温速率为5℃每分,待催化剂自然降温至200℃以下时,得到流化床对比剂2。
为了说明本申请提供的低碳烷烃铬系脱氢催化剂的技术效果,特进行下述实验:
实验例1丙烷脱氢试验
将实施例1~4制得的流化床催化剂1-4与对比例1和2中的流化床对比剂1-2分别进行丙烷脱氢试验;
采用的工艺流程为现有的工艺流程,实施例中不作详细阐述,工艺流程中的控制参数如下:丙烷体积空速为1000h-1,通入适量氮气,保持丙烷分压为50kPa,反应体系总压力为常压;床层温度为560-610℃;结果如表1所示,
表1.

由表1可知,相比于对比例1和对比例2提供的催化剂,本发明实施例1~4提供的这种低碳烷烃铬系脱氢催化剂在600℃丙烷脱氢反应中丙烯选择性均有提高。
实验例2
实施例3提供的流化床催化剂3在不同温度下的丙烷脱氢性能试验
采用的工艺流程为现有的工艺流程,实施例中不作详细阐述,工艺流程中的控制参数如下:丙烷体积空速为1000h-1,通入适量氮气,保持丙烷分压为50kPa,反应体系总压力为常压;床层温度为560-610℃;结果如表2所示,
表2.

由表2可知,这种低碳烷烃铬系脱氢催化剂在床层温度为560-610℃范围内,随着温度上升,催化剂转化率升高,选择性降低,但副产物增加,符合丙烷脱氢催化剂的动力学规律,反应温度达到600℃时,丙烯收率高于40%,超过传统铬系脱氢催化剂的丙烯收率,由此说明,本发明制备的铬系脱氢催化剂具有较高的反应活性和稳定性。
最后应说明的是:以上所述仅为本发明的优选实施例而已,并不用于限制本发明的保护范围。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (10)

  1. 一种低碳烷烃铬系脱氢催化剂,其特征在于,所述脱氢催化剂具有尖晶石结构,包括以干基总质量为基准计的以下质量分数的组分:
    氧化铬0.1%~35%,第一助剂0.1%~5%,第二助剂0.1%~10%,第三助剂0.1%~5%,其余为载体;
    所述第一助剂为包含至少一种碱土金属元素的物质;
    所述第二助剂为包含至少一种第ⅣB族元素的物质;
    所述第三助剂为包含至少一种镧系金属元素的物质。
  2. 根据权利要求1所述的低碳烷烃铬系脱氢催化剂,其特征在于,所述载体的比表面积为50~300m2/g,粒度100~200μm。
  3. 根据权利要求2所述的低碳烷烃铬系脱氢催化剂,其特征在于,所述载体包括氧化铝、分子筛和氧化硅中的至少一种。
  4. 根据权利要求1所述的低碳烷烃铬系脱氢催化剂,其特征在于,所述尖晶石结构包括镁铝尖晶石结构、钙铝尖晶石结构、含钛尖晶石结构以及钙钛矿结构中的至少一种。
  5. 根据权利要求1所述的低碳烷烃铬系脱氢催化剂,其特征在于,所述第一助剂包括碱土金属、碱土金属卤化物、碱土金属氧化物、碱土金属硫化物、碱土金属硝酸盐,碱土金属乙酸盐以及碱土金属草酸盐中的一种或多种。
  6. 根据权利要求1所述的低碳烷烃铬系脱氢催化剂,其特征在于,所述第二助剂包括第ⅣB族元素金属、第ⅣB族元素卤化物、第ⅣB族元素氧化物、第ⅣB族元素硫化物、第ⅣB族元素硝酸盐、第ⅣB族元素乙酸盐以及第ⅣB族元素草酸盐中的一种或多种。
  7. 根据权利要求1所述的低碳烷烃铬系脱氢催化剂,其特征在于,所述第三助剂包含镧系金属、镧系金属卤化物、镧系金属氧化物、镧系金属硫化物、 镧系金属碳化物、镧系金属硝酸盐、镧系金属乙酸盐以及镧系金属草酸盐中的一种或多种。
  8. 一种如权利要求1~7任一项所述的低碳烷烃铬系脱氢催化剂的制备方法,其特征在于,包括:
    按照质量分数,将所述氧化铬、所述第一助剂、所述第二助剂和所述第三助剂混合后,得到浸渍液;
    在真空条件下,将所述载体置于所述浸渍液中进行浸渍处理,再陈化1~10h、干燥后,于650~950℃下焙烧2~10h。
  9. 根据权利要求8所述的低碳烷烃铬系脱氢催化剂的制备方法,其特征在于,所述载体的粒度为100~200μm,通过将氧化铝、分子筛或氧化硅在300-1000℃下煅烧2-10小时,过筛制得。
  10. 一种如权利要求1~7任一项所述的低碳烷烃铬系脱氢催化剂的应用,其特征在于,所述催化剂用于流化床反应器中,反应压力为0.01~0.50MPa、温度为530~660℃、体积空速800~2400h-1
PCT/CN2023/106184 2022-07-08 2023-07-06 一种低碳烷烃铬系脱氢催化剂及其制备方法和应用 WO2024008168A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210806633.6 2022-07-08
CN202210806633.6A CN115055178A (zh) 2022-07-08 2022-07-08 一种低碳烷烃铬系脱氢催化剂及其制备方法和应用

Publications (1)

Publication Number Publication Date
WO2024008168A1 true WO2024008168A1 (zh) 2024-01-11

Family

ID=83206650

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/106184 WO2024008168A1 (zh) 2022-07-08 2023-07-06 一种低碳烷烃铬系脱氢催化剂及其制备方法和应用

Country Status (2)

Country Link
CN (1) CN115055178A (zh)
WO (1) WO2024008168A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115055178A (zh) * 2022-07-08 2022-09-16 润和科华催化剂(上海)有限公司 一种低碳烷烃铬系脱氢催化剂及其制备方法和应用
CN115646509B (zh) * 2022-10-21 2024-04-05 西南化工研究设计院有限公司 一种用于烷烃脱氢制烯烃催化剂及其制备方法

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5378350A (en) * 1988-12-12 1995-01-03 Linde Aktiengesellschaft Process and catalyst for dehydrogenation or dehydrocyclization of hydrocarbons
US20040092391A1 (en) * 2002-11-08 2004-05-13 Andrzej Rokicki Fluid bed catalyst for dehydrogenation of hydrocarbons
RU2322290C1 (ru) * 2006-12-18 2008-04-20 Институт Катализа Им. Г.К. Борескова Сибирского Отделения Российской Академии Наук Катализатор, способ его получения и процесс дегидрирования c3-c5-парафиновых углеводородов в олефины
CN102019178A (zh) * 2009-09-14 2011-04-20 卓润生 一种丙烷脱氢制丙烯催化剂及其制备和应用
CN103480359A (zh) * 2013-09-26 2014-01-01 中国海洋石油总公司 一种活性组分非均匀分布低碳烷烃脱氢催化剂的制法
CN111672500A (zh) * 2020-01-23 2020-09-18 中国科学院大连化学物理研究所 一种具有特定组成和结构丙烷脱氢制丙烯负载催化剂及其制备方法
CN112246236A (zh) * 2020-11-18 2021-01-22 润和催化材料(浙江)有限公司 含有尖晶石结构的低碳烷烃铬系脱氢催化剂及其制备方法
CN113244907A (zh) * 2021-04-19 2021-08-13 润和催化材料(浙江)有限公司 一种基于稀土金属改性的低碳烷烃脱氢催化剂及其制备方法
CN113522266A (zh) * 2021-08-19 2021-10-22 润和催化剂股份有限公司 一种改性的铬系丙烷脱氢催化剂固定床载体、制备及应用方法
CN115055178A (zh) * 2022-07-08 2022-09-16 润和科华催化剂(上海)有限公司 一种低碳烷烃铬系脱氢催化剂及其制备方法和应用

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5378350A (en) * 1988-12-12 1995-01-03 Linde Aktiengesellschaft Process and catalyst for dehydrogenation or dehydrocyclization of hydrocarbons
US20040092391A1 (en) * 2002-11-08 2004-05-13 Andrzej Rokicki Fluid bed catalyst for dehydrogenation of hydrocarbons
RU2322290C1 (ru) * 2006-12-18 2008-04-20 Институт Катализа Им. Г.К. Борескова Сибирского Отделения Российской Академии Наук Катализатор, способ его получения и процесс дегидрирования c3-c5-парафиновых углеводородов в олефины
CN102019178A (zh) * 2009-09-14 2011-04-20 卓润生 一种丙烷脱氢制丙烯催化剂及其制备和应用
CN103480359A (zh) * 2013-09-26 2014-01-01 中国海洋石油总公司 一种活性组分非均匀分布低碳烷烃脱氢催化剂的制法
CN111672500A (zh) * 2020-01-23 2020-09-18 中国科学院大连化学物理研究所 一种具有特定组成和结构丙烷脱氢制丙烯负载催化剂及其制备方法
CN112246236A (zh) * 2020-11-18 2021-01-22 润和催化材料(浙江)有限公司 含有尖晶石结构的低碳烷烃铬系脱氢催化剂及其制备方法
CN113244907A (zh) * 2021-04-19 2021-08-13 润和催化材料(浙江)有限公司 一种基于稀土金属改性的低碳烷烃脱氢催化剂及其制备方法
CN113522266A (zh) * 2021-08-19 2021-10-22 润和催化剂股份有限公司 一种改性的铬系丙烷脱氢催化剂固定床载体、制备及应用方法
CN115055178A (zh) * 2022-07-08 2022-09-16 润和科华催化剂(上海)有限公司 一种低碳烷烃铬系脱氢催化剂及其制备方法和应用

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
KANG KI HYUK, KIM TAE HYEOP, CHOI WON CHOON, PARK YONG-KI, HONG UNG GI, PARK DEUK SOO, KIM CHUL-JIN, SONG IN KYU: "Dehydrogenation of propane to propylene over CrOy-CeO2-K2O/γ-Al2O3 catalysts: Effect of cerium content", CATALYSIS COMMUNICATIONS, ELSEVIER, AMSTERDAM, NL, vol. 72, 1 December 2015 (2015-12-01), AMSTERDAM, NL , pages 68 - 72, XP093124638, ISSN: 1566-7367, DOI: 10.1016/j.catcom.2015.09.009 *
XIN-PEI XU, WANG DE-LONG; YAO YUE; SHAO HUAI-QI; JIANG TAO: "Research progress in Cr-based catalysts for dehydrogenation of propane to propylene ", NATURAL GAS CHEMICAL INDUSTRY, vol. 42, no. 5, 25 October 2017 (2017-10-25), pages 107 - 113, 125, XP093124636 *

Also Published As

Publication number Publication date
CN115055178A (zh) 2022-09-16

Similar Documents

Publication Publication Date Title
WO2024008168A1 (zh) 一种低碳烷烃铬系脱氢催化剂及其制备方法和应用
CA2655841C (en) Supported oxidative dehydrogenation catalyst
JP6029682B2 (ja) アルカンの脱水素化に有用な亜鉛および/またはマンガンアルミネート触媒
BR122013017195A2 (pt) Composição de catalisador, seus métodos de preparação, seu uso e processo para preparo de acroleína
WO2010102573A1 (zh) 一种费托合成催化剂、其制备方法和应用
US20140296605A1 (en) Catalyst composition for the dehydrogenation of alkanes
WO2024008171A1 (zh) 过渡金属基低碳烷烃脱氢催化剂及其制备方法和应用
CN112246236B (zh) 含有尖晶石结构的低碳烷烃铬系脱氢催化剂及其制备方法
JP6812620B2 (ja) 酸化的脱水素化反応用触媒システム、それを含むブタジエン製造用反応器及び1,3−ブタジエンの製造方法
WO2019148551A1 (zh) 一种Ni基催化剂微球的制备方法及其用途
CA3050720A1 (en) Oxidative dehydrogenation catalyst compositions
CN109663613B (zh) 一种金属改性zsm-5分子筛催化剂及其制备和应用
US11865514B2 (en) Catalyst for producing olefin, including oxygen carrier material and dehydrogenation catalyst
TWI510465B (zh) Butadiene manufacturing method
CN107488093B (zh) 一种低碳烷烃的脱氢工艺
WO2021107541A1 (ko) 알칸족 가스로부터 올레핀 제조용 탈수소촉매 및 그 제조방법
JP6622283B2 (ja) 共役ジオレフィン製造用触媒と、その製造方法
US9540292B2 (en) Process for non-oxidative dehydrogenation of alkane
CN111013563A (zh) 用于二氧化碳气氛下乙烷脱氢制乙烯的尖晶石催化剂及其制备方法
CN114452981B (zh) 超低水比乙苯脱氢催化剂及其制备方法
Folkins et al. Preparation and properties of catalysts
CN113877596B (zh) 乙苯脱氢催化剂及其制备方法和应用
KR20200004501A (ko) 전환율 및 선택도가 향상된 올레핀 제조용 촉매 및 그 제조방법
CN112844355B (zh) 一种催化生物乙醇制备乙烯和丙烯的催化剂及工艺与应用
US20230041466A1 (en) Method for preparing ceria-zirconia composite oxide, ceria-zirconia composite oxide, catalyst comprising same, and method for preparing butadiene

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23834934

Country of ref document: EP

Kind code of ref document: A1