WO2019151462A1 - 重合性トリプチセン誘導体化合物を構成成分として含む高分子化合物 - Google Patents

重合性トリプチセン誘導体化合物を構成成分として含む高分子化合物 Download PDF

Info

Publication number
WO2019151462A1
WO2019151462A1 PCT/JP2019/003546 JP2019003546W WO2019151462A1 WO 2019151462 A1 WO2019151462 A1 WO 2019151462A1 JP 2019003546 W JP2019003546 W JP 2019003546W WO 2019151462 A1 WO2019151462 A1 WO 2019151462A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
compound
triptycene derivative
general formula
substituent
Prior art date
Application number
PCT/JP2019/003546
Other languages
English (en)
French (fr)
Inventor
佳子 山崎
Original Assignee
株式会社シード
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社シード filed Critical 株式会社シード
Priority to US16/966,463 priority Critical patent/US11292762B2/en
Priority to EP19748198.9A priority patent/EP3747918B1/en
Priority to JP2019569599A priority patent/JP7142034B2/ja
Publication of WO2019151462A1 publication Critical patent/WO2019151462A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C69/00Esters of carboxylic acids; Esters of carbonic or haloformic acids
    • C07C69/52Esters of acyclic unsaturated carboxylic acids having the esterified carboxyl group bound to an acyclic carbon atom
    • C07C69/533Monocarboxylic acid esters having only one carbon-to-carbon double bond
    • C07C69/54Acrylic acid esters; Methacrylic acid esters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F212/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring
    • C08F212/02Monomers containing only one unsaturated aliphatic radical
    • C08F212/32Monomers containing only one unsaturated aliphatic radical containing two or more rings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/20Esters of polyhydric alcohols or phenols, e.g. 2-hydroxyethyl (meth)acrylate or glycerol mono-(meth)acrylate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F222/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a carboxyl radical and containing at least one other carboxyl radical in the molecule; Salts, anhydrides, esters, amides, imides, or nitriles thereof
    • C08F222/10Esters
    • C08F222/1006Esters of polyhydric alcohols or polyhydric phenols
    • C08F222/102Esters of polyhydric alcohols or polyhydric phenols of dialcohols, e.g. ethylene glycol di(meth)acrylate or 1,4-butanediol dimethacrylate
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/55Design of synthesis routes, e.g. reducing the use of auxiliary or protecting groups

Definitions

  • the present invention relates to a polymer compound containing a triptycene derivative compound having a substituted triptycene structure as a constituent component.
  • the polymer compound is a compound having a dicarboxylic acid in the molecule, which is a monomer component and is used for a polymerization reaction alone or in combination of two or more polymerizable compounds such as (meth) acrylic acid and derivatives thereof. Or a compound having an amino group and a carboxyl group can be obtained by subjecting it to a polycondensation reaction.
  • the characteristics of the polymer compound vary depending on the monomer compound used as a raw material and the combination thereof. Therefore, in order to obtain a polymer compound with new characteristics or a polymer compound with improved known characteristics, various combinations of monomer compounds as raw materials and creation of new monomer compounds will be studied. . Among these, in order to create a new monomer compound, various attempts are made such as chemical modification of a specific site of a known compound or addition of a polymerizable functional group.
  • Triptycene one of the known compounds, is an aromatic hydrocarbon having a D 3h symmetrical structure in which three benzene rings are arranged like a three-blade gear. Since triptycene has such a structure, various applications to functional materials have been studied. Some triptycene derivative compounds, which are compounds having a triptycene structure (skeleton), are also known.
  • a compound formed by further condensing a ring structure on a triptycene skeleton see Patent Document 1 below, the entire description of which is incorporated herein by reference
  • An optically active triptycene derivative compound see Patent Document 2 below, the entire description of which is incorporated herein by reference
  • a mixture of optical isomers of a triptycene derivative having a hydrolyzable functional group Known are optically active triptycene derivative compounds (see Patent Document 3 below, the entire description of which is incorporated herein by reference) obtained by acting a hydrolase having the ability to hydrolyze Yes.
  • a photoresist base material and a photoresist composition (see Patent Document 4 below, the entire description of which is incorporated herein by reference), other liquid crystallinity formed by arranging a triptycene derivative compound having a specific structure
  • a liquid crystalline compound having excellent compatibility with a compound, having a small wavelength dispersion of retardation or optical anisotropy value, having a polymerizability, and containing a triptycene ring (see Patent Document 5 below, for a full description of the document) Incorporated herein as disclosure), an optionally substituted vinylene group, ethynylene group, arylene group, heteroarylene group and spirobifluorene group-containing polymer electroluminescent material containing a triptycene group (see Patent Document 6 below) The entire description of this document is incorporated herein by reference), and has a liquid crystal phase and good compatibility with other liquid crystal compounds and organic solvents.
  • triptycene derivative compound having a structure in which a plurality of unsaturated polymerizable functional groups such as a triple bond-containing functional group or a double bond-containing functional group is bonded to valerene is also known (see Patent Document 9 below, The entire description of this document is incorporated herein by reference).
  • triptycene derivative compounds known as the prior art have a structure in which a polymerizable group that becomes an extended chain of a polymer is introduced into an aromatic ring in the triptycene skeleton, so that three benzene rings are condensed. There is a high possibility that rotational movement around the ballerene will be hindered.
  • the triptycene derivative compound described in Patent Document 9 has unsaturated polymerizable functional groups at the 9th and 10th positions of triptycene, there is a low possibility that such rotational movement is hindered.
  • the unsaturated polymerizable functional group used in the triptycene derivative compound described in Patent Document 9 is a hydrophobic alkenyl group and an alkynyl group, and the tryptene itself is also hydrophobic.
  • the disclosed triptycene derivative compounds are generally hydrophobic. Due to such characteristics, the triptycene derivative compound described in Patent Document 9 has a problem in versatility because the application range to the composition as a functional material is limited.
  • a polymerizable triptycene derivative compound or a polymer compound containing the polymerizable triptycene derivative compound as a constituent component that can solve the above-described problems of the prior art is not known.
  • the three benzene rings arranged around the valerene of the triptycene skeleton have a structure capable of performing balanced rotational movement, and are more hydrophilic than conventional polymerizable triptycene derivative compounds.
  • the problem to be solved by the present invention is to provide a polymer compound containing a novel polymerizable triptycene derivative compound as a constituent component, which can be expected to improve versatility to functional materials.
  • the present inventors paid attention to the bonding sites and types of polymerizable functional groups that contribute to the polymerization reaction in earnest studies in order to provide the above-described novel polymerizable triptycene derivative compounds.
  • the three benzene rings In order for the three benzene rings to rotate in a balanced manner, it was considered desirable to rotate around the valerene to which the three benzene rings are bonded.
  • a functional group having hydrophilicity as the polymerizable functional group to be introduced, a polymerizable triptycene derivative compound having compatibility and copolymerization with other hydrophilic compounds can be provided. I thought that.
  • the present inventors further increased the compatibility with other copolymerizable compounds by using a polymerizable triptycene derivative compound having a (meth) acryloyloxyalkyl group at the 9-position and / or 10-position of the triptycene skeleton. And succeeded in creating a polymer compound that forms a good hydrogel.
  • the present invention has been completed based on the above-mentioned ideas and success examples.
  • R 1 to R 4 are each independently a hydrogen atom, alkyl group, cycloalkyl group, heterocyclic group, alkenyl group, cycloalkenyl group, alkynyl group, alkoxy group, alkylthio group, aryl ether group, aryl thioether group, A substituent selected from the group consisting of an aryl group, heteroaryl group, halogen atom, carbonyl group, carboxyl group, oxycarbonyl group, carbamoyl group, amino group, phosphine oxide group and silyl group, provided that the adjacent substituent They may form a ring with each other;
  • One of X and Y is represented by the following general formula (2) (In the formula, n is an integer of 1 to 5; and R 5 represents a hydrogen atom or a methyl group.) Represents a substituent represented by And the other is a functional group represented by the general formula (2)
  • the other substituent is represented by the following general formula (3): (Wherein n is an integer of 1 to 5; and R 6 represents a substituent selected from the group consisting of a hydrogen atom and an alkyl group having 1 to 3 carbon atoms.) A substituent represented by The following general formula (4) (Wherein n is an integer of 1 to 5; and R 7 represents a substituent selected from the group consisting of a hydrogen atom and a carbamate protecting group.) And a substituent represented by the following general formula (5) (In the formula, n is an integer of 1 to 5.) The substituent selected from the group which consists of a substituent shown by these is shown.
  • the compound copolymerizable with the polymerizable triptycene derivative compound is at least one hydrophilic compound.
  • the polymerizable triptycene derivative compound used in the polymer compound which is one embodiment of the present invention has a structure in which the polymerizable functional group is bonded to carbon constituting the central skeleton of triptycene.
  • the benzene ring can perform balanced rotational movements around the axis of valerene and introduces a functional group having hydrophilicity, so that compatibility with not only hydrophobic compounds but also hydrophilic compounds is achieved.
  • the polymer compound of one embodiment of the present invention can be a polymer compound having various functions different from those of the conventional one.
  • the polymer compound of one embodiment of the present invention can be a hydrated and swollen hydrogel that cannot be achieved by conventional techniques.
  • the three benzene rings in the triptycene structure can perform a balanced rotational movement around the valerene. Therefore, for example, a substance is included in the polymer compound. In some cases, it can be expected to control the rate and degree of diffusion of the substance when the contained substance is released from the polymer compound.
  • the polymer compound of one embodiment of the present invention includes at least a polymerizable triptycene derivative compound and a compound copolymerizable with the polymerizable triptycene derivative compound as constituent components.
  • the polymerizable triptycene derivative compound is represented by the following general formula (1).
  • R 1 to R 4 are each independently a hydrogen atom, alkyl group, cycloalkyl group, heterocyclic group, alkenyl group, cycloalkenyl group, alkynyl group, alkoxy group, alkylthio group, aryl A substituent selected from the group consisting of an ether group, an arylthioether group, an aryl group, a heteroaryl group, a halogen atom, a carbonyl group, a carboxyl group, an oxycarbonyl group, a carbamoyl group, an amino group, a phosphine oxide group, and a silyl group .
  • R 1 to R 4 can form a ring with substituents adjacent to each other.
  • one of X and Y represents a substituent represented by the following general formula (2).
  • n is an integer of 1 to 5; and R 5 represents a hydrogen atom or a methyl group.
  • one of X and Y represents a substituent represented by the general formula (2)
  • the other substituent is a substituent represented by the general formula (2), a hydrogen atom and a halogen atom.
  • a substituent selected from the group consisting of an alkoxycarbonyl group, an alkoxycarbonylalkyl group, a formyl group, a formylalkyl group, and an alkyl group is shown.
  • the “protected” substituent is not particularly limited as long as it is a substituent having an arbitrary protecting group.
  • the other substituent in the general formula (1) includes a substituent represented by the general formula (2), a substituent represented by the following general formula (3), a substituent represented by the following general formula (4), and the following general formula.
  • the substituent is preferably any one of the substituents represented by the formula (5).
  • n is an integer of 1 to 5; and R 6 represents a substituent selected from the group consisting of a hydrogen atom and an alkyl group having 1 to 3 carbon atoms.
  • n is an integer of 1 to 5; and R 7 represents a substituent selected from the group consisting of a hydrogen atom and a carbamate protecting group.
  • n is an integer of 1 to 5.
  • polymerizable triptycene derivative compound represented by the general formula (1) include, for example, polymerizable triptycene derivative compounds in which X and Y are substituents independently shown in Table 1 below. It is not limited to these. When both X and Y are substituents represented by the general formula (2) as in the compound E, they may be the same substituent or different substituents.
  • R 1 to R 4 may be substituents different from each other, or two, three, or The four types may be the same substituent.
  • the substituents exemplified as the substituents represented by R 1 to R 7 are not particularly limited as long as they have a meaning as commonly known. For example, in the substituents exemplified below, possible.
  • the substituents exemplified as the substituents represented by R 1 to R 7 may have a further substituent.
  • the further substituent is not particularly limited, and examples thereof include an alkyl group, a cycloalkyl group, an aryl group, and a heteroaryl group.
  • alkyl group examples include saturated aliphatic hydrocarbon groups having 1 to 4 carbon atoms such as methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, sec-butyl group, and tert-butyl group. However, it is not limited to these. Although carbon number of an alkyl group is not specifically limited, For example, it is preferably 1 or more and 20 or less, more preferably 1 or more and 8 or less, and further preferably 1 or more and 3 or less.
  • alkyl group having a substituent include, but are not limited to, a hydroxyalkyl group, an aminoalkyl group, a carboxyalkyl group, and a formylalkyl group.
  • cycloalkyl group examples include, but are not limited to, saturated alicyclic hydrocarbon groups such as a cyclopropyl group, a cyclohexyl group, a norbornyl group, and an adamantyl group.
  • the number of carbon atoms of the cycloalkyl group is not particularly limited, but is preferably 3 or more and 20 or less.
  • heterocyclic group examples include, but are not limited to, an aliphatic ring having an atom other than a carbon atom such as a nitrogen atom or a sulfur atom such as a pyran ring, a piperidine ring, or a cyclic amide in the ring.
  • carbon number of a heterocyclic group is not specifically limited, It is preferable that it is 2-20.
  • alkenyl group examples include, but are not limited to, an unsaturated aliphatic hydrocarbon group containing a double bond such as a vinyl group, an allyl group, or a butadienyl group.
  • carbon number of an alkenyl group is not specifically limited, It is preferable that it is the range of 2-20.
  • cycloalkenyl group examples include, but are not limited to, unsaturated alicyclic hydrocarbon groups containing a double bond such as a cyclopentenyl group, a cyclopentadienyl group, and a cyclohexenyl group.
  • alkynyl group examples include, but are not limited to, an unsaturated aliphatic hydrocarbon group containing a triple bond such as an ethynyl group.
  • carbon number of an alkynyl group is not specifically limited, It is preferable that it is the range of 2-20.
  • alkoxy group examples include, but are not limited to, a functional group in which an aliphatic hydrocarbon group is bonded via an ether bond such as a methoxy group, an ethoxy group, or a propoxy group.
  • the number of carbon atoms of the alkoxy group is not particularly limited, but is preferably 1 or more and 20 or less.
  • alkoxy group having a substituent examples include, but are not limited to, an alkoxyalkyl group, an alkoxycarbonyl group, and an alkoxycarbonylalkyl group.
  • alkylthio group examples include, but are not limited to, those in which an oxygen atom of an ether bond of an alkoxy group is substituted with a sulfur atom.
  • carbon number of an alkylthio group is not specifically limited, It is preferable that it is the range of 1-20.
  • aryl ether group examples include, but are not limited to, a functional group to which an aromatic hydrocarbon group is bonded via an ether bond such as a phenoxy group.
  • carbon number of an aryl ether group is not specifically limited, It is preferable that it is the range of 6-40.
  • aryl thioether group examples include, but are not limited to, those in which the oxygen atom of the ether bond of the aryl ether group is substituted with a sulfur atom.
  • the number of carbon atoms of the aryl thioether group is not particularly limited, but is preferably 6 or more and 40 or less.
  • aryl group examples include, but are not limited to, an aromatic hydrocarbon group such as a phenyl group, a naphthyl group, a biphenyl group, an anthracenyl group, a phenanthryl group, a terphenyl group, and a pyrenyl group.
  • carbon number of an aryl group is not specifically limited, It is preferable that it is the range of 6-40.
  • heteroaryl group examples include 5-membered ring aromatic groups having one atom other than carbon such as furanyl group, thiophenyl group, benzofuranyl group, and dibenzofuranyl group in one ring, other than carbon such as biridyl group and quinolinyl group.
  • heteroaryl group examples include, but are not limited to, a 6-membered aromatic group having one or more atoms in the ring.
  • the number of carbon atoms of the heteroaryl group is not particularly limited, but is preferably 2 or more and 30 or less.
  • halogen atom examples include, but are not limited to, fluorine, chlorine, bromine, iodine and the like.
  • the carbonyl group, carboxyl group, oxycarbonyl group, carbamoyl group, amino group, formyl group and phosphine oxide group may have a substituent as described above, and the substituent further has a further substituent. May be.
  • the amino group having a substituent include, but are not limited to, an aminocarbonyl group and an aminocarbonylalkyl group.
  • silyl group examples include, but are not limited to, a functional group having a bond to a silicon atom such as a trimethylsilyl group.
  • carbon number of a silyl group is not specifically limited, It is preferable that it is the range of 3-20.
  • the number of silicon is not particularly limited, but is preferably 1 or more and 6 or less.
  • the substituents represented by R 1 to R 4 are adjacent to each other, that is, between R 1 and R 2 , between R 2 and R 3 , and / or R 3 and R 4.
  • a ring (fused ring) may be formed between and.
  • the condensed ring is a ring in which any two adjacent substituents selected from R 1 to R 4 (for example, R 1 and R 2 ) are bonded to each other to form a conjugated or non-conjugated condensed ring. is there.
  • the constituent elements contributing to the formation of the condensed ring are not particularly limited, and examples thereof include a carbon atom, a nitrogen atom, an oxygen atom, a sulfur atom, a phosphorus atom, and a silicon atom.
  • the substituent represented by R 1 to R 4 may be further condensed with another ring.
  • carbamate protecting groups include carbamate protecting groups such as tert-butoxycarbonyl group, benzyloxycarbonyl group, 9-fluorenylmethyloxycarbonyl group, 2,2,2-trichloroethoxycarbonyl group, and allyloxycarbonyl group. Groups and the like, but are not limited thereto.
  • the manufacturing method of a polymerizable triptycene derivative compound is not specifically limited, For example, the method as described in the Example mentioned later, the method of changing this method suitably, and obtaining the desired polymerizable triptycene derivative compound, etc. are mentioned.
  • the method for producing the polymerizable triptycene derivative compound of the general formula (1) for example, 9-halogen anthracene or 9,10-dihalogen anthracene and an acetal compound having a vinyl group are subjected to Heck coupling reaction and hydrolysis. It is subjected to a reaction, and then the obtained reactant and benzyne are subjected to a Diels-Alder reaction, and if necessary, further subjected to a reaction for modifying a substituent of benzyne, and then the obtained reactant is converted to a metal hydride.
  • the method for producing the polymerizable triptycene derivative compound represented by the general formula (1) for example, 9-halogen anthracene or 9,10-dihalogen anthracene and an acetal compound having a vinyl group are subjected to Heck coupling reaction and It is subjected to a hydrolysis reaction, then the obtained reactant and benzyne are subjected to a Diels-Alder reaction, and if necessary, further subjected to a reaction for modifying a substituent of benzyne, and then the obtained reactant is subjected to alkali treatment and
  • the method include obtaining a polymerizable triptycene derivative compound of the general formula (1) in which one of X and Y is a substituent represented by the general formula (3) by subjecting to acid treatment. It is not limited to.
  • the obtained reaction product is subjected to an alkali treatment and an acid treatment, whereby one of X and Y is a substituent represented by the general formula (4), and the polymerizable triptycene of the general formula (1)
  • the method including obtaining a derivative compound is mentioned, it is not limited to this method.
  • the method for producing the polymerizable triptycene derivative compound represented by the general formula (1) for example, 9-halogen anthracene or 9,10-dihalogen anthracene and an acetal compound having a vinyl group are subjected to Heck coupling reaction and It is subjected to a hydrolysis reaction, then the obtained reactant and benzyne are subjected to a Diels-Alder reaction and subjected to a reaction with methacryloyl chloride, whereby one of X and Y is a substituent represented by the general formula (5)
  • the method including obtaining the (meth) acryloyltriptycene derivative compound of General formula (1) is mentioned, It is not limited to this method.
  • the polymer compound of one embodiment of the present invention is a compound that can be copolymerized with one of the polymerizable triptycene derivative compounds represented by the general formula (1) alone or in combination of two or more thereof. Can be formed by subjecting to a copolymerization reaction.
  • a preferable blending amount of the polymerizable triptycene derivative compound of the general formula (1) in the polymer compound of one embodiment of the present invention is not particularly limited, but for example, 0.1 to 25% by weight with respect to the total amount of the polymer compound Yes, preferably 0.5 to 20% by weight, more preferably 1 to 15% by weight.
  • the compounding amount of the polymerizable triptycene derivative compound of the general formula (1) is less than 0.1% by weight, the effect of the triptycene structure is hardly expressed in the obtained polymer compound.
  • the compounding amount of the polymerizable triptycene derivative compound of the general formula (1) exceeds 25% by weight, it is not preferable because the resulting polymer compound is likely to become cloudy or decrease in strength.
  • the compound that can be copolymerized with the polymerizable triptycene derivative compound of the general formula (1) in the polymer compound of one embodiment of the present invention is not particularly limited as long as it can be a monomer component as generally known.
  • a hydrophilic compound is preferably used.
  • the polymer compound obtained by using a hydrophilic compound is one in which the three benzene rings in the triptycene structure can each perform a balanced rotational movement around the ballerene. Since the polymerizable triptycene derivative compound introduces a functional group having hydrophilicity, for example, the polymer compound can include a hydrophilic substance or a hydrophobic substance. When releasing, it is possible to control the speed and degree of diffusion of the substance.
  • the polymer compound having such characteristics can be applied to various uses, and is useful as, for example, a liquid crystal alignment film, a liquid crystal display element, an organic EL display, an electron transporting organic thin film, a light emitting element, an organic conductive composition, and the like. In addition to the above, it can be used as a hydrogel, a medical device, an ophthalmic lens, a DDS device, and the like.
  • the hydrophilic compound copolymerizable with the polymerizable triptycene derivative compound of the general formula (1) is not particularly limited as long as it can be a hydrophilic monomer component as commonly known.
  • -(Meth) acrylic monomers such as dimethylacrylamide, 2-hydroxyethyl methacrylate, (meth) acrylic acid, polyethylene glycol monomethacrylate, glycerol methacrylate, N-vinylpyrrolidone, N-vinyl-N-methylacetamide, N-vinyl-
  • vinyl monomers such as N-ethylacetamide, N-vinyl-N-ethylformamide, and N-vinylformamide.
  • the blending amount of the hydrophilic compound that can be copolymerized with the polymerizable triptycene derivative compound of the general formula (1) is not particularly limited. For example, it is 75 to 99.9% by weight with respect to the total amount of the polymer compound, preferably Is 80 to 99.5% by weight, more preferably 75 to 99% by weight. Depending on the type and blending amount of the hydrophilic compound copolymerizable with the polymerizable triptycene derivative compound of the general formula (1), it is possible to obtain a polymer compound having desired flexibility and water content.
  • methyl (meth) acrylate as a hydrophobic compound copolymerizable with the polymerizable triptycene derivative compound of the general formula (1), Ethyl (meth) acrylate, propyl (meth) acrylate, i-propyl (meth) acrylate, n-butyl (meth) acrylate, i-butyl (meth) acrylate, t-butyl (meth) acrylate, 2-ethylhexyl (meth) Straight chain such as acrylate, cyclohexyl (meth) acrylate, methoxydiethylene glycol (meth) acrylate, ethoxydiethylene glycol (meth) acrylate, phenyl (meth) acrylate, phenoxyethyl (meth) acrylate, benzyl (meth) acrylate, isoborn
  • the blending amount of the hydrophobic compound copolymerizable with the polymerizable triptycene derivative compound of the general formula (1) is not particularly limited, but is, for example, 0 to 30% by weight, preferably 0 based on the total amount of the polymer compound. ⁇ 20% by weight.
  • the blending amount of the hydrophobic compound copolymerizable with the polymerizable triptycene derivative compound of the general formula (1) exceeds 30% by weight, the strength, shape stability, flexibility, etc. of the resulting polymer compound may be lowered. There is.
  • the blending amount of the crosslinkable compound is not particularly limited, but is, for example, 0.01 to 10% by weight, preferably 0.05 to 3% by weight, based on the total amount of the polymer compound.
  • the amount of the crosslinkable compound exceeds 10% by weight, the flexibility of the resulting polymer compound may be lowered.
  • the polymer compound of one embodiment of the present invention can be produced by combining processes known by those skilled in the art, and the production method is not particularly limited, and can include, for example, the following processes: Component, polymerizable triptycene derivative compound of general formula (1), hydrophilic compound copolymerizable with polymerizable triptycene derivative compound of general formula (1), copolymerized with polymerizable triptycene derivative compound of general formula (1) A step of adding a polymerization initiator to a mixture of monomer compounds such as possible hydrophobic compounds and crosslinkable compounds, stirring and dissolving the mixture to obtain a monomer mixture; putting the obtained monomer mixture in a desired mold , A step of obtaining a copolymer by a copolymerization reaction; cooling and peeling the copolymer from the mold, cutting and polishing as necessary, and then hydrating and swelling the molded copolymer to form a polymer as a hydrogel Obtaining a compound;
  • polymerization initiator examples include peroxide polymerization initiators such as lauroyl peroxide, cumene hydroperoxide, and benzoyl peroxide, which are general radical polymerization initiators; azobisdimethylvaleronitrile, azobisisobutyronitrile ( An azo polymerization initiator such as AIBN) can be used alone or in combination of two or more.
  • the addition amount of the polymerization initiator is not particularly limited as long as it is a sufficient amount for accelerating the copolymerization reaction of the monomer. For example, it is preferably 10 to 7000 ppm relative to the total monomer weight of the polymerization component.
  • the monomer mixture is put in a metal, glass, plastic or other mold, sealed, heated in a constant temperature bath or the like stepwise or continuously in the range of 25 to 120 ° C., 5 to This can be done by completing the polymerization in 120 hours.
  • a constant temperature bath or the like stepwise or continuously in the range of 25 to 120 ° C., 5 to This can be done by completing the polymerization in 120 hours.
  • ultraviolet rays, electron beams, gamma rays, and the like can be used.
  • solution polymerization can be applied by adding water or an organic solvent to the monomer mixture.
  • the mixture is cooled to room temperature, and the obtained polymer is peeled from the mold, cut and polished as necessary, and then hydrated and swollen to obtain a hydrogel.
  • the liquid (swelling liquid) to be used include water, physiological saline, isotonic buffer and the like.
  • the swelling liquid is heated to 60 to 100 ° C. and immersed for a certain time to obtain a swollen state. Further, it is preferable to remove unpolymerized monomers contained in the polymer during the swelling treatment.
  • the NMR spectrum of the obtained triptycene derivative compound (8) was as follows. 1 H-NMR (CDCl 3 ) ⁇ ppm; 2.04 (m, 3H), 2.51 (br s, 2H), 3.44 (m, 5H), 3.52 (s, 3H), 3.71 (T, 2H), 3.77 (m, 2H), 3.97 (m, 2H), 4.06 (m, 2H), 4.53 (t, 2H), 5.62 (m, 1H) , 5.88 (s, 1H), 6.24 (m, 1H), 6.51 (m, 2H), 7.03 (m, 4H), 7.41 (m, 2H), 7.53 ( br s, 2H) 13 C-NMR (CDCl 3 ) ⁇ ppm; 14.26, 18.61, 22.78, 25.43, 26.16, 31.71, 47.53, 59.39, 66.22, 69.92, 71.39, 112.34, 112.44, 123.87, 124.64, 124
  • the NMR spectrum of the obtained triptycene derivative compound (10) was as follows. 1 H-NMR (CDCl 3 ) ⁇ ppm; 2.04 (m, 3H), 2.62 (m, 2H), 3.04 (m, 2H), 3.30 (d, 2H), 3.38 ( d, 2H), 4.60 (t, 2H), 5.65 (s, 1H), 6.26 (s, 1H), 7.05 (brs, 6H), 7.42 (brs, 6H) ) 13 C-NMR (CDCl 3 ) ⁇ ppm; 18.57, 22.59, 24.58, 30.60, 52.44, 65.67, 122.09, 124.98, 125.98, 135.60, 147.31, 150.29, 158.26, 160.24, 167.96
  • the NMR spectrum of the obtained triptycene derivative compound (11) was as follows. 1 H-NMR (CDCl 3 ) ⁇ ppm; 0.07 (s, 9H), 1.67 (m, 4H), 2.04 (s, 3H), 2.59 (m, 2H), 3.05 ( m, 2H), 4.60 (t, 2H), 4.93 (d, 2H), 5.65 (s, 1H), 6.25 (s, 1H), 7.06 (m, 6H), 7.41 (m, 6H), 8.46 (s, 1H) 13 C-NMR (CDCl 3 ) ⁇ ppm; 0.06, 1.10, 18.57, 24.53, 31.04, 37.40, 51.56, 52.61, 64.17, 65.55, 122.04, 125.30, 126.01, 136.57, 161.72, 167.90
  • the NMR spectrum of the obtained triptycene derivative compound (12) was as follows. 1 H-NMR (CDCl 3 ) ⁇ ppm; 2.05 (d, 6H), 2.60 (m, 4H), 3.02 (m, 4H), 4.60 (t, 4H), 5.64 ( m, 2H), 6.25 (s, 2H), 7.02 (m, 6H), 7.43 (s, 6H) 13 C-NMR (CDCl 3 ) ⁇ ppm; 18.56, 24.57, 24.75, 52.39, 65.67, 122.41, 124.80, 125.93, 136.60, 167.91
  • Example 7 Synthesis of polymer hydrogel containing triptycene derivative compounds (9), (10), (11) and (12) obtained in Examples 4 to 6] Mix 0.5 parts of triptycene derivative compounds (9) to (12), 9.5 g of 2-hydroxyethyl methacrylate, 0.01 g of ethylene glycol dimethacrylate and 2000 ppm of AIBN, and stir for about 1 hour with sufficient nitrogen substitution. did. After stirring, the monomer mixture was put into a mold and heated in the range of 50 to 100 ° C. over 25 hours to obtain a polymer. The obtained polymer was returned to room temperature, taken out from the container, and hydrated and swollen by immersing it in distilled water at about 60 ° C. for about 4 hours, and containing four types of tryptycene derivative compounds (9) to (12). A triptycene derivative-containing hydrogel was obtained.
  • the polymer compound that is one embodiment of the present invention includes a hydrogel and a medical device It can be used as an ophthalmic lens, a DDS device, or the like.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

本発明の目的は、トリプチセン骨格のバレレンを軸として配される3つのベンゼン環が、均衡した回転運動を行え得るような構造を有すると共に、従来の重合性トリプチセン誘導体化合物に比し、親水性が付与されていることで、機能性材料への汎用性を向上させることが期待できる、新規な重合性トリプチセン誘導体化合物、及び当該化合物を構成成分として含む高分子化合物を提供することにある。上記目的は、トリプチセン骨格の9位及び/又は10位に親水性重合性官能基である(メタ)アクリロイルオキシアルキル基を有する重合性トリプチセン誘導体化合物を構成成分として含む高分子ハイドロゲル化合物などにより解決される。

Description

重合性トリプチセン誘導体化合物を構成成分として含む高分子化合物
本発明は、置換されたトリプチセン構造を有するトリプチセン誘導体化合物を構成成分として含む高分子化合物に関する。
高分子化合物は、モノマー成分である(メタ)アクリル酸及びその誘導体などの重合性化合物の1種を単独で、又は2種以上を組み合わせて重合反応に供すること、分子内にジカルボン酸を有する化合物やアミノ基及びカルボキシル基を有する化合物を重縮合反応に供することによって得られ得る。
高分子化合物の特性は、原料となるモノマー化合物やその組み合わせにより様々に変化する。そこで、新たな特性を有する高分子化合物や既知の特性を改善してなる高分子化合物を得るためには、原料となるモノマー化合物の組み合わせや新規のモノマー化合物の創製などを種々検討することになる。このうち、新規のモノマー化合物を創製するためには、既知化合物の特定部位の化学修飾や重合性官能基の付加などを種々試みる。
既知化合物の1種であるトリプチセンは、3つのベンゼン環が三枚羽根の歯車様に配置したD3h対称構造を有する芳香族炭化水素である。トリプチセンは、このような構造をとることから、機能性材料への応用が様々に検討されている。トリプチセン構造(骨格)を有する化合物であるトリプチセン誘導体化合物もまた、いくつか知られている。
例えば、トリプチセン骨格にさらに他の環構造が縮環して形成してなる化合物(下記特許文献1を参照、該文献の全記載はここに開示として援用される)、酵素を用いた不斉アシル化による光学活性なトリプチセン誘導体化合物(下記特許文献2を参照、該文献の全記載はここに開示として援用される)、加水分解され得る官能基を有するトリプチセン誘導体の光学異性体混合物に、不斉加水分解する能力を有する加水分解酵素を作用させることにより得られる、光学活性なトリプチセン誘導体化合物(下記特許文献3を参照、該文献の全記載はここに開示として援用される)などが知られている。
また、特定構造を有するトリプチセン誘導体化合物を配してなるフォトレジスト基材及びフォトレジスト組成物(下記特許文献4を参照、該文献の全記載はここに開示として援用される)、他の液晶性化合物との相溶性に優れ、位相差又は光学異方性値の波長分散が小さく、重合性を持ち、トリプチセン環を含む液晶性化合物(下記特許文献5を参照、該文献の全記載はここに開示として援用される)、任意に置換されたビニレン基、エチニレン基、アリーレン基、ヘテロアリーレン基及びスピロビフルオレン基を有する、トリプチセン基含有のポリマーエレクトロルミネッセント材料(下記特許文献6を参照、該文献の全記載はここに開示として援用される)、液晶相を有するとともに、他の液晶性化合物及び有機溶媒に対する良好な相溶性を有する、重合性基と1,4-ジメチレンシクロヘキサン骨格とを有する化合物の一つとして、トリプチセン含有化合物(下記特許文献7を参照、該文献の全記載はここに開示として援用される)、ジアミンとテトラカルボン酸二無水物とからなるポリイミド又はその前駆体であるポリアミック酸誘導体から選択される光重合性モノマー及び/又はオリゴマーを成分として構成される液晶表示素子化合物の一つとして、トリプチセン含有化合物(下記特許文献8を参照、該文献の全記載はここに開示として援用される)などもまた知られている。
さらに、三重結合含有官能基や二重結合含有官能基などの不飽和重合性官能基の複数個をバレレンに結合した構造を有するトリプチセン誘導体化合物もまた知られている(下記特許文献9を参照、該文献の全記載はここに開示として援用される)。
特開2011-207792号公報 特開2013-223458号公報 特開2006-187225号公報 特開2008-308433号公報 特開2006-111571号公報 特表2002-539286号公報 特開2011-246365号公報 特開2014-178712号公報 特開2008-075047号公報
従来技術として知られているトリプチセン誘導体化合物の大半は、トリプチセン骨格中の芳香環にポリマーの伸長鎖となる重合性基が導入された構造を有していることから、3つのベンゼン環が縮合するバレレンを軸とした回転運動が妨げられる可能性が高い。一方で、特許文献9に記載のトリプチセン誘導体化合物は、トリプチセンの9位及び10位に不飽和重合性官能基があることから、このような回転運動が妨げられる可能性は低い。
ところが、特許文献9に記載のトリプチセン誘導体化合物に用いられている不飽和重合性官能基は、疎水性のアルケニル基及びアルキニル基であり、さらにトリプチセン自体も疎水性であることから、特許文献9において開示されるトリプチセン誘導体化合物は全体的に疎水性となる。このような特性により、特許文献9に記載のトリプチセン誘導体化合物は、機能性材料としての組成物への適用範囲が限定されるため、汎用性に問題がある。
そして、上記した先行技術の問題を解決し得るような重合性トリプチセン誘導体化合物や該重合性トリプチセン誘導体化合物を構成成分として含む高分子化合物は知られていない。
そこで、本発明においては、トリプチセン骨格のバレレンを軸として配される3つのベンゼン環が、均衡した回転運動を行え得るような構造を有すると共に、従来の重合性トリプチセン誘導体化合物に比し、親水性が付与されていることで、機能性材料への汎用性を向上させることが期待できる、新規な重合性トリプチセン誘導体化合物を構成成分として含む高分子化合物を提供することを本発明の解決すべき課題とする。
本発明者らは、上記した新規の重合性トリプチセン誘導体化合物を提供するために鋭意検討する中で、重合反応に寄与する重合性官能基の結合部位及び種類に着目した。3つのベンゼン環が均衡に回転するためには、3つのベンゼン環が結合するバレレンを中心として回転させることが望ましいと考えた。さらに、導入する重合性官能基として親水性を有する官能基を選択することで、その他の親水性化合物との相溶性と共重合性とを有した重合性トリプチセン誘導体化合物を提供することができるのではないかと考えた。
上記した本発明者らの考えの下で、さらに研究開発を進めて試行錯誤を繰り返すことにより、トリプチセン骨格の9位及び/又は10位に親水性重合性官能基を有する化合物を創作することに成功した。このような化合物は、トリプチセン骨格のバレレンを軸として配される3つのベンゼン環が、均衡した回転運動を行い得るような構造を有すると共に、従来の重合性トリプチセン誘導体化合物に比し、親水性が付与されている重合性トリプチセン誘導体化合物であり、さらに汎用性が向上した機能性材料として有望なものである。なお、このようにして完成させた新規の重合性トリプチセン誘導体化合物の一部については、特願2016-152953として特許出願をしている。
本発明者らは、さらにトリプチセン骨格の9位及び/又は10位に(メタ)アクリロイルオキシアルキル基を有する重合性トリプチセン誘導体化合物を用いることによって、その他の共重合可能な化合物との相溶性が増大して、良好なハイドロゲルを形成する高分子化合物を創作することに成功した。本発明は、上記した考えや成功例に基づき完成された発明である。
すなわち、本発明の一態様によれば、下記一般式(1)
Figure JPOXMLDOC01-appb-C000006
(式中、
~Rは、それぞれ独立して、水素原子、アルキル基、シクロアルキル基、複素環基、アルケニル基、シクロアルケニル基、アルキニル基、アルコキシ基、アルキルチオ基、アリールエーテル基、アリールチオエーテル基、アリール基、ヘテロアリール基、ハロゲン原子、カルボニル基、カルボキシル基、オキシカルボニル基、カルバモイル基、アミノ基、ホスフィンオキサイド基及びシリル基からなる群から選択される置換基を示し、ただし、隣接する置換基同士で環を形成してもよく;
X及びYは、一方が下記一般式(2)
Figure JPOXMLDOC01-appb-C000007
(式中、nは1~5の整数であり;及び、Rは水素原子又はメチル基を示す。)
で示される置換基を示し、
かつ、他方が前記一般式(2)で示される官能基、水素原子及びハロゲン原子、並びに、保護された、又は保護されていない、ヒドロキシル基、ヒドロキシアルキル基、カルボキシル基、カルボキシアルキル基 、アミノ基、アミノアルキル基 、アミノカルボニル基、アミノカルボニルアルキル基、アルコキシ基、アルコキシアルキル基、アルコキシカルボニル基、アルコキシカルボニルアルキル基 、ホルミル基、ホルミルアルキル基及びアルキル基からなる群から選択される置換基を示す。)
で示される、重合性トリプチセン誘導体化合物と、
該重合性トリプチセン誘導体化合物と共重合可能な化合物と
を構成成分として含む、高分子化合物が提供される。
好ましくは、前記他方の置換基は下記一般式(3)
Figure JPOXMLDOC01-appb-C000008
(式中、nは1~5の整数であり;及び、Rは水素原子及び炭素数1~3のアルキル基からなる群から選択される置換基を示す。)
で示される置換基、
下記一般式(4)
Figure JPOXMLDOC01-appb-C000009
(式中、nは1~5の整数であり;及び、Rは水素原子及びカルバメート系保護基からなる群から選択される置換基を示す。)
で示される置換基
及び、下記一般式(5)
Figure JPOXMLDOC01-appb-C000010
 (式中、nは1~5の整数である。)
で示される置換基からなる群から選択される置換基を示す。
好ましくは、前記重合性トリプチセン誘導体化合物と共重合可能な化合物が、少なくとも1種の親水性化合物である。
本発明の一態様である高分子化合物において用いる重合性トリプチセン誘導体化合物は、重合性官能基がトリプチセンの中心骨格であるバレレンを構成する炭素に結合した構造を有することから、トリプチセン構造中の3つのベンゼン環がバレレンを軸とした各々均衡な回転運動を行うことができるとともに、親水性を有する官能基を導入するものであることから、疎水性化合物のみならず、親水性化合物との相溶性も有している。このことより、本発明の一態様の高分子化合物は、従来とは異なる種々の機能を有した高分子化合物となり得るものである。特に、本発明の一態様の高分子化合物は、従来技術では為し得ることができない、水和膨潤させたハイドロゲルとすることが可能である。
さらには、本発明の一態様の高分子化合物中において、トリプチセン構造中の3つのベンゼン環は、バレレンを軸とした均衡な回転運動を行えることから、例えば、高分子化合物に物質を包含させた場合において、包含させた物質を高分子化合物から放出させる際に、物質の拡散の速度や程度などを制御することが期待できる。
以下、本発明の一態様の高分子化合物の詳細について説明するが、本発明の技術的範囲は本項目の事項によってのみに限定されるものではなく、本発明はその目的を達成する限りにおいて種々の態様をとり得る。
本発明の一態様の高分子化合物は、重合性トリプチセン誘導体化合物と、該重合性トリプチセン誘導体化合物と共重合可能な化合物とを構成成分として少なくとも含む。
重合性トリプチセン誘導体化合物は、下記一般式(1)で示される。
Figure JPOXMLDOC01-appb-C000011
一般式(1)において、R~Rは、それぞれ独立して、水素原子、アルキル基、シクロアルキル基、複素環基、アルケニル基、シクロアルケニル基、アルキニル基、アルコキシ基、アルキルチオ基、アリールエーテル基、アリールチオエーテル基、アリール基、ヘテロアリール基、ハロゲン原子、カルボニル基、カルボキシル基、オキシカルボニル基、カルバモイル基、アミノ基、ホスフィンオキサイド基及びシリル基からなる群から選択される置換基を示す。ただし、R~Rは、それぞれが隣接する置換基同士で環を形成することができる。
一般式(1)において、X及びYは、一方が下記一般式(2)で示される置換基を示す。
Figure JPOXMLDOC01-appb-C000012
一般式(2)において、nは1~5の整数であり;及び、Rは水素原子又はメチル基を示す。
一般式(1)において、X及びYは、一方が一般式(2)で示される置換基を示し、かつ、他方の置換基は一般式(2)で示される置換基、水素原子及びハロゲン原子、並びに、保護された、又は保護されていない、ヒドロキシル基、ヒドロキシアルキル基、カルボキシル基、カルボキシアルキル基 、アミノ基、アミノアルキル基 、アミノカルボニル基、アミノカルボニルアルキル基、アルコキシ基、アルコキシアルキル基、アルコキシカルボニル基、アルコキシカルボニルアルキル基 、ホルミル基、ホルミルアルキル基及びアルキル基からなる群から選択される置換基を示す。なお、「保護された」置換基は、任意の保護基を有する置換基であれば、特に限定されない。
一般式(1)における他方の置換基は、一般式(2)で示される置換基、下記一般式(3)で示される置換基、下記一般式(4)で示される置換基、及び下記一般式(5)で示される置換基のいずれかの置換基であることが好ましい。
Figure JPOXMLDOC01-appb-C000013
一般式(3)において、nは1~5の整数であり;及び、Rは水素原子及び炭素数1~3のアルキル基からなる群から選択される置換基を示す。
Figure JPOXMLDOC01-appb-C000014
一般式(4)において、nは1~5の整数であり;及び、Rは水素原子及びカルバメート系保護基からなる群から選択される置換基を示す。
Figure JPOXMLDOC01-appb-C000015
一般式(5)において、nは1~5の整数である。
一般式(1)で示される重合性トリプチセン誘導体化合物の具体的態様としては、例えば、X及びYが独立して下記表1に示される置換基である重合性トリプチセン誘導体化合物などが挙げられるが、これらに限定されない。化合物Eのように、X及びYの両方が一般式(2)で示される置換基である場合に、それらは同一の置換基であってもよく、相違する置換基であってもよい。
Figure JPOXMLDOC01-appb-T000016
また、表1で示される重合性トリプチセン誘導体化合物において、R~Rは、これらのうちの4種全てが相違する置換基であってもよく、又はこれらのうちの2種、3種若しくは4種が同一の置換基であってもよい。
~Rで示される置換基として挙げられている置換基は、通常知られているとおりの意味を有するものであれば特に限定されないが、例えば、以下に例示として挙げるような置換基であり得る。また、R~Rで示される置換基として挙げられている置換基は、さらなる置換基を有していてもよい。さらなる置換基は特に限定されないが、例えば、アルキル基、シクロアルキル基、アリール基、ヘテロアリール基などが挙げられる。
アルキル基としては、例えば、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、sec-ブチル基、tert-ブチル基などの炭素数1~4の飽和脂肪族炭化水素基などが挙げられるが、これらに限定されない。アルキル基の炭素数は特に限定されないが、例えば、1以上20以下であることが好ましく、1以上8以下であることがより好ましく、1以上3以下であることがさらに好ましい。置換基を有するアルキル基の例としては、ヒドロキシアルキル基、アミノアルキル基、カルボキシアルキル基、ホルミルアルキル基などが挙げられるが、これらに限定されない。
シクロアルキル基としては、例えば、シクロプロピル基、シクロへキシル基、ノルボルニル基、アダマンチル基などの飽和脂環式炭化水素基などが挙げられるが、これらに限定されない。シクロアルキル基の炭素数は特に限定されないが、3以上20以下であることが好ましい。
複素環基としては、例えば、ピラン環、ピペリジン環、環状アミドなどの窒素原子や硫黄原子などの炭素原子以外の原子を環内に有する脂肪族環などが挙げられるが、これらに限定されない。複素環基の炭素数は特に限定されないが、2以上20以下であることが好ましい。
アルケニル基としては、例えば、ビニル基、アリル基、ブタジエニル基などの二重結合を含む不飽和脂肪族炭化水素基などが挙げられるが、これらに限定されない。アルケニル基の炭素数は特に限定されないが、2以上20以下の範囲であることが好ましい。
シクロアルケニル基としては、例えば、シクロペンテニル基、シクロペンタジエニル基、シクロヘキセニル基などの二重結合を含む不飽和脂環式炭化水素基などが挙げられるが、これらに限定されない。
アルキニル基としては、例えば、エチニル基などの三重結合を含む不飽和脂肪族炭化水素基などが挙げられるが、これらに限定されない。アルキニル基の炭素数は特に限定されないが、2以上20以下の範囲であることが好ましい。
アルコキシ基としては、例えば、メトキシ基、エトキシ基、プロポキシ基などのエーテル結合を介して脂肪族炭化水素基が結合した官能基などが挙げられるが、これらに限定されない。アルコキシ基の炭素数は特に限定されないが、1以上20以下であることが好ましい。置換基を有するアルコキシ基の例としては、アルコキシアルキル基、アルコキシカルボニル基、アルコキシカルボニルアルキル基などが挙げられるが、これらに限定されない。
アルキルチオ基としては、例えば、アルコキシ基のエーテル結合の酸素原子が硫黄原子に置換されたものなどが挙げられるが、これらに限定されない。アルキルチオ基の炭素数は特に限定されないが、1以上20以下の範囲であることが好ましい。
アリールエーテル基としては、例えば、フェノキシ基などのエーテル結合を介した芳香族炭化水素基が結合した官能基などが挙げられるが、これらに限定されない。アリールエーテル基の炭素数は特に限定されないが、6以上40以下の範囲であることが好ましい。
アリールチオエーテル基としては、例えば、アリールエーテル基のエーテル結合の酸素原子が硫黄原子に置換されたものなどが挙げられるが、これらに限定されない。アリールチオエーテル基の炭素数は特に限定されないが、6以上40以下であることが好ましい。
アリール基としては、例えば、フェニル基、ナフチル基、ビフェニル基、アントラセニル基、フェナントリル基、ターフェニル基、ピレニル基などの芳香族炭化水素基などが挙げられるが、これらに限定されない。アリール基の炭素数は特に限定されないが、6以上40以下の範囲であることが好ましい。
ヘテロアリール基としては、例えば、フラニル基、チオフェニル基、ベンゾフラニル基、ジベンゾフラニル基などの炭素以外の原子を一個環内に有する5員環芳香族基、ビリジル基、キノリニル基などの炭素以外の原子の一個又は複数個を環内に有する6員環芳香族基などが挙げられるが、これらに限定されない。ヘテロアリール基の炭素数は特に限定されないが、2以上30以下であることが好ましい。
ハロゲン原子としては、例えば、フッ素、塩素、臭素、ヨウ素などが挙げられるが、これらに限定されない。
カルボニル基、カルボキシル基、オキシカルボニル基、カルバモイル基、アミノ基、ホルミル基及びホスフィンオキサイド基は、上記したとおりに置換基を有していてもよく、さらに該置換基はさらなる置換基を有していてもよい。置換基を有するアミノ基の例としては、アミノカルボニル基、アミノカルボニルアルキル基などが挙げられるが、これらに限定されない。
シリル基としては、例えば、トリメチルシリル基などのケイ素原子への結合を有する官能基などが挙げられるが、これらに限定されない。シリル基の炭素数は特に限定されないが、3以上20以下の範囲であることが好ましい。また、ケイ素数は特に限定されないが、1以上6以下であることが好ましい。
~Rで示される置換基は、それぞれ隣接する置換基同士で、すなわち、R及びRとの間で、R及びRとの間で、及び/又はR及びRとの間で環(縮合環)を形成してもよい。このように、縮合環は、R~Rの中から選ばれる任意の隣接2置換基(例えば、RとR)が互いに結合して共役又は非共役の縮合環を形成するものである。縮合環の形成に寄与する構成元素は特に限定されないが、例えば、炭素原子、窒素原子、酸素原子、硫黄原子、リン原子、ケイ素原子などが挙げられる。R~Rで示される置換基は、さらに別の環と縮合していてもよい。
カルバメート系保護基としては、例えば、tert-ブトキシカルボニル基、ベンジルオキシカルボニル基、9-フルオレニルメチルオキシカルボニル基、2,2,2-トリクロロエトキシカルボニル基、アリルオキシカルボニル基などのカルバメート系保護基などが挙げられるが、これらに限定されない。
一般式(1)で示される重合性トリプチセン誘導体化合物のより具体的な態様としては、例えば、以下に示す式(6)、(7)、(8)、(9)、(10)、(11)及び(12)の化合物などが挙げられるが、これらに限定されない。なお、式中のMeは、メチル基を示す。
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000018
Figure JPOXMLDOC01-appb-C000019
Figure JPOXMLDOC01-appb-C000020
Figure JPOXMLDOC01-appb-C000021
Figure JPOXMLDOC01-appb-C000022
Figure JPOXMLDOC01-appb-C000023
重合性トリプチセン誘導体化合物の製造方法は特に限定されないが、例えば、後述する実施例に記載の方法、該方法を適宜改変して所望の重合性トリプチセン誘導体化合物を得る方法などが挙げられる。
一般式(1)の重合性トリプチセン誘導体化合物の製造方法の一態様としては、例えば、9-ハロゲンアントラセン又は9、10-ジハロゲンアントラセンとビニル基を有するアセタール化合物とをヘック・カップリング反応及び加水分解反応に供し、次いで得られた反応物とベンザインとをディールス・アルダー反応に供し、さらに必要があればベンザインが有する置換基を修飾する反応に供し、次いで得られた反応物を、金属水素化物による還元反応に供し、次いで得られた反応物をハロゲン化(メタ)アクリロイルとの反応に供することにより、一般式(1)の重合性トリプチセン誘導体化合物として(メタ)アクリロイルオキシアルキル基を有するトリプチセン誘導体化合物を得ることを含む方法などが挙げられるが、該方法に限定されない。
一般式(1)の重合性トリプチセン誘導体化合物の製造方法の別の一態様としては、例えば、9-ハロゲンアントラセン又は9、10-ジハロゲンアントラセンとビニル基を有するアセタール化合物とをヘック・カップリング反応及び加水分解反応に供し、次いで得られた反応物とベンザインとをディールス・アルダー反応に供し、さらに必要があればベンザインが有する置換基を修飾する反応に供し、次いで得られた反応物をアルカリ処理及び酸処理に供することにより、X及びYの一方が一般式(3)で示される置換基である一般式(1)の重合性トリプチセン誘導体化合物を得ることを含む方法などが挙げられるが、該方法に限定されない。
一般式(1)の重合性トリプチセン誘導体化合物の製造方法の別の一態様としては、例えば、9-ハロゲンアントラセン又はアントラセンとアミド化合物とをビルスマイヤー・ハック反応に供し、次いで得られた反応物とカルバメート系保護基を有する第1級アミンとをアミン付加反応に供し、次いで得られた反応物とベンザインとをディールス・アルダー反応に供し、さらに必要があればベンザインが有する置換基を修飾する反応に供し、さらに必要があれば得られた反応物をアルカリ処理及び酸処理に供することにより、X及びYの一方が一般式(4)で示される置換基である一般式(1)の重合性トリプチセン誘導体化合物を得ることを含む方法などが挙げられるが、該方法に限定されない。
一般式(1)の重合性トリプチセン誘導体化合物の製造方法の別の一態様としては、例えば、9-ハロゲンアントラセン又は9、10-ジハロゲンアントラセンとビニル基を有するアセタール化合物とをヘック・カップリング反応及び加水分解反応に供し、次いで得られた反応物とベンザインとをディールス・アルダー反応に供し、塩化メタクリロイルとの反応に供することによりX及びYの一方が一般式(5)で示される置換基である一般式(1)の(メタ)アクリロイルトリプチセン誘導体化合物を得ることを含む方法などが挙げられるが、該方法に限定されない。
また、上記した一般式(1)の重合性トリプチセン誘導体化合物の製造方法を組み合わせれば、X及びYの双方が一般式(2)で示される置換基である一般式(1)の重合性トリプチセン誘導体化合物;X及びYの一方が一般式(2)で示される置換基であり、かつ、他方が一般式(3)で示される置換基である一般式(1)の重合性トリプチセン誘導体化合物;X及びYの一方が一般式(2)で示される置換基であり、かつ、他方が一般式(4)で示される置換基である一般式(1)の重合性トリプチセン誘導体化合物;或いは、X及びYの一方が一般式(2)で示される置換基であり、かつ、他方が一般式(5)で示される置換基である一般式(1)の重合性トリプチセン誘導体化合物が得られ得る。
本発明の一態様の高分子化合物は、上記した一般式(1)の重合性トリプチセン誘導体化合物の1種を単独で、又は、2種以上を組合わせたものと、これらと共重合可能な化合物とを共重合反応に供することにより、形成することができる。
本発明の一態様の高分子化合物における一般式(1)の重合性トリプチセン誘導体化合物の好ましい配合量は特に限定されないが、例えば、高分子化合物の全量に対して、0.1~25重量%であり、好ましく0.5~20重量%、より好ましくは1~15重量%である。一般式(1)の重合性トリプチセン誘導体化合物の配合量が0.1重量%未満の場合、得られる高分子化合物において、トリプチセン構造の有する効果が発現されにくくなる。一般式(1)の重合性トリプチセン誘導体化合物の配合量が25重量%を超過する場合、得られる高分子化合物に白濁や、強度の低下が生じやすくなるため好ましくない。
本発明の一態様の高分子化合物における、一般式(1)の重合性トリプチセン誘導体化合物と共重合可能な化合物は、通常知られているとおりのモノマー成分になり得るものであれば特に限定されないが、例えば、親水性化合物が好適に用いられる。親水性化合物を利用して得られた高分子化合物は、トリプチセン構造中の3つのベンゼン環がバレレンを軸とした各々均衡な回転運動を行うことができるものであり、さらに一般式(1)の重合性トリプチセン誘導体化合物は親水性を有する官能基を導入するものであることから、例えば、高分子化合物に親水性物質又は疎水性物質を包含することができ、さらに包含した物質を高分子化合物から放出させる際に、物質の拡散の速度や程度などを制御することが可能である。このような特性を有する高分子化合物は、種々の用途に適用でき、例えば、液晶配向膜、液晶表示素子、有機ELディスプレイ、電子輸送性の有機薄膜、発光素子、有機導電性組成物などとして有用であることに加えて、ハイドロゲル、医療用デバイス、眼用レンズ、DDSデバイスなどとしても利用可能である。
一般式(1)の重合性トリプチセン誘導体化合物と共重合可能な親水性化合物は、通常知られているとおりの親水性のモノマー成分になり得るものであれば特に限定されないが、例えば、N,N-ジメチルアクリルアミド、2-ヒドロキシエチルメタクリレート、(メタ)アクリル酸、ポリエチレングリコールモノメタクリレート、グリセロールメタクリレートなどの(メタ)アクリル系モノマー、N-ビニルピロリドン、N-ビニル-N-メチルアセトアミド、N-ビニル-N-エチルアセトアミド、N-ビニル-N-エチルホルムアミド、N-ビニルホルムアミドなどのビニル系モノマーなどが挙げられ、これらの1種を単独で又は2種以上を組合わせて使用することができる。一般式(1)の重合性トリプチセン誘導体化合物と共重合可能な親水性化合物の配合量は特に限定されないが、例えば、高分子化合物の全量に対して、75~99.9重量%であり、好ましくは80~99.5重量%、より好ましくは75~99重量%である。一般式(1)の重合性トリプチセン誘導体化合物と共重合可能な親水性化合物の種類や配合量により、所望の柔軟性や、含水率を有した高分子化合物を得ることが可能となる。
本発明の一態様の高分子化合物に強度、形状安定性や柔軟性を付与するために、一般式(1)の重合性トリプチセン誘導体化合物と共重合可能な疎水性化合物としてメチル(メタ)アクリレート、エチル(メタ)アクリレート、プロピル(メタ)アクリレート、i-プロピル(メタ)アクリレート、n-ブチル(メタ)アクリレート、i-ブチル(メタ)アクリレート、t-ブチル(メタ)アクリレート、2-エチルヘキシル(メタ)アクリレート、シクロヘキシル(メタ)アクリレート、メトキシジエチレングリコール(メタ)アクリレート、エトキシジエチレングリコール(メタ)アクリレート、フェニル(メタ)アクリレート、フェノキシエチル(メタ)アクリレート、ベンジル(メタ)アクリレート、イソボニル(メタ)アクリレート等の直鎖状、分岐鎖状又は環状のアルキル(メタ)アクリレートなどを用いることができ、所望の物性に合わせ、単独で1種又は組み合わせた2種以上を適宜配合できる。一般式(1)の重合性トリプチセン誘導体化合物と共重合可能な疎水性化合物の配合量は特に限定されないが、例えば、高分子化合物の全量に対して、0~30重量%であり、好ましくは0~20重量%である。一般式(1)の重合性トリプチセン誘導体化合物と共重合可能な疎水性化合物の配合量が30重量%を超える場合、得られる高分子化合物の強度、形状安定性、柔軟性などが低下する可能性がある。
本発明の一態様の高分子化合物に耐熱性や機械的特性を付与するために、構成成分としてエチレングリコールジ(メタ)アクリレート、ジエチレングリコールジ(メタ)アクリレート、トリエリチレングリコールジ(メタ)アクリレート、プロピレングリコールジ(メタ)アクリレート、ジプロピレングリコールジ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレートなどの(メタ)アクリレート系架橋性化合物、アリル(メタ)アクリレート、ジアリルマレエート、ジアリルフマレート、ジアリルサクシネート、ジアリルフタレート、トリアリルシアヌレート、トリアリルイソシアヌレート、ジエチレングリコールビスアリルカーボネート、トリアリルホスフェート、トリアリルトリメリテート、ジアリルエーテル、N,N-ジアリルメラミン、ジビニルベンゼン等のビニル系架橋性化合物などの架橋性化合物を用いることが可能であり、所望の物性に合わせ、単独で1種又は組み合わせた2種以上を適宜配合できる。架橋性化合物の配合量は特に限定されないが、例えば、高分子化合物の全量に対して、0.01~10重量%であり、好ましくは0.05~3重量%である。架橋性化合物の配合量が10重量%を超える場合、得られる高分子化合物の柔軟性などが低下する可能性がある。
本発明の一態様の高分子化合物は、当業者により知られている工程を組み合わせることで製造することができ、その製造方法は特に限定されないが、例えば、下記工程を含むことができる:
構成成分である一般式(1)の重合性トリプチセン誘導体化合物、一般式(1)の重合性トリプチセン誘導体化合物と共重合可能な親水性化合物、一般式(1)の重合性トリプチセン誘導体化合物と共重合可能な疎水性化合物、架橋性化合物などのモノマー化合物の混合物に、重合開始剤を添加し、撹拌及び溶解することによりモノマー混合液を得る工程;得られたモノマー混合液を所望の成形型に入れ、共重合反応により共重合体を得る工程;共重合体を冷却及び成形型から剥離し、必要に応じて切削、研磨した後に、成形した共重合体を水和膨潤させてハイドロゲルとして高分子化合物を得る工程。
重合開始剤としては、一般的なラジカル重合開始剤であるラウロイルパーオキサイド、クメンハイドロパーオキサイド、ベンゾイルパーオキサイドなどの過酸化物系重合開始剤;アゾビスジメチルバレロニトリル、アゾビスイソブチロニトリル(AIBN)などのアゾ系重合開始剤などを単独又は2種以上を組み合わせて使用できる。重合開始剤の添加量としては、モノマーの共重合反応を促進する十分量であれば特に限定されず、例えば、重合成分のモノマー総重量に対して10~7000ppmが好ましい。
共重合体を得る工程は、モノマー混合液を金属、ガラス、プラスチックなどの成形型に入れ、密閉し、恒温槽などで段階的又は連続的に25~120℃の範囲で昇温し、5~120時間で重合を完了させることにより実施できる。重合に関しては、紫外線、電子線、ガンマ線などを用いることが可能である。また、モノマー混合液に水や有機溶媒を添加することで溶液重合を適用することが可能である。
ハイドロゲルを得る工程は、重合終了後、室温に冷却し、得られた重合体を成形型から剥離し、必要に応じて切削、研磨した後に、水和膨潤させてハイドロゲルとする。使用する液体(膨潤液)としては、例えば、水、生理食塩水、等張性緩衝液などが挙げられる。膨潤液を60~100℃に加温し、一定時間浸漬させ膨潤状態とする。また、膨潤処理時に重合体に含まれる未重合モノマーを除去することが好ましい。
以下、本発明を実施例によってさらに具体的に説明するが、本発明はこれら実施例に限定されるものではなく、本発明の課題を解決し得る限り、本発明は種々の態様をとることができる。
[例1.トリプチセン誘導体化合物(6)の合成]
1.トリプチセン誘導体化合物(6)の合成スキーム
以下のスキーム(I)に従って、トリプチセン誘導体化合物(6)を合成した。
Figure JPOXMLDOC01-appb-C000024
              (I)
2.化合物(b)の合成
スキーム(I)中の化合物(b)は、ケ・パンらの文献(Ke Pan,et al., Journal of Organometallic Chemistry、2008;693(17);p.2863-2868、該文献の全記載はここに開示として援用される)に記載の方法に従い、合成した。すなわち、9-ブロモアントラセンである化合物(a) 2.7g(10mmol)のジメチルホルムアミド溶液(30mL)に、ヘルマンのパラダサイクル 0.19g(0.2mmol)、炭酸カリウム 2.1g(15mmol)及びアクロレインジエチルアセタール 2.3mL(15mmol)をアルゴン雰囲気下にて室温で加え、次いで110℃で一晩撹拌することにより反応させた。得られた反応液を室温に戻し、酢酸エチルで希釈し、次いで1N塩酸、飽和炭酸水素ナトリウム水溶液及び飽和食塩水で洗浄した。分離した有機層を、無水硫酸マグネシウムで乾燥した後、溶媒を留去した。得られた残渣をシリカゲルカラムクロマトグラフィーにより精製し、化合物(b) 2.4g(収率87%)を得た。
3.化合物(c)の合成
化合物(b) 0.87g(3.1mmol)をアセトニトリル 15mLに溶かした溶液に、アルゴン雰囲気下で、フッ化セシウム 0.57g(3.7mmol)及び2-(トリメチルシリル)フェニルトリフラート 0.91mL(3.7mmol)を加え、40℃で18時間撹拌した。撹拌後の反応液を室温に戻し、セライトろ過に供した。得られたろ液を減圧下で濃縮した。得られた濃縮残渣をシリカゲルカラムクロマトグラフィーにより精製し、化合物(c) 0.92g(収率83%)を得た。
得られた化合物(c)のNMRスペクトルは以下のとおりであった。
H-NMR(CDCl)δppm;1.35(t,3H),3.17(m,2H),3.35(m,2H),4.31(q,2H),5.35(s,1H),7.00(m,6H),7.37(m,6H)
13C-NMR(CDCl)δppm;14.47,22.61,30.96,53.48,54.58,61.01,122.12,123.70,125.02,125.14,145.76,146.99,174.20
4.化合物(d)の合成
水素化リチウムアルミニウム 0.20g(5.3mmol)を、アルゴン雰囲気下で、0℃に冷却したテトラヒドロフラン 15mLに溶かした溶液を調製した。得られた溶液に化合物(c) 1.56g(4.4mmol)を加え、室温で3時間撹拌した。得られた反応液に、氷冷下、0.2mLの水、0.2mLの15w/v%水酸化ナトリウム水溶液及び0.6mLの水を順次ゆっくりと滴下し、室温で1時間撹拌した。撹拌後の反応液をセライトろ過に供した。得られたろ液を減圧下で濃縮した。得られた濃縮残渣をシリカゲルカラムクロマトグラフィーにより精製し、化合物(d) 1.34g(収率98%)を得た。
得られた化合物(d)のNMRスペクトルは以下のとおりであった。
H-NMR(CDCl)δppm;2.41(m,2H),2.98(m,2H),4.00(t,2H),5.34(s,1H),6.96(m,6H),7.36(m,6H)
13C-NMR(CDCl)δppm;24.36,28.23,53.29,54.63,64.00,122.44,123.60,124.88,124.98,146.33,147.07
5.トリプチセン誘導体化合物(6)の合成
化合物(d) 1.34g(4.3mmol)をテトラヒドロフラン 20mLに溶かした溶液に、アルゴン雰囲気下で0℃にて、トリエチルアミン 0.90mL(6.5mmol)及び塩化メタクリロイル 0.61mL(6.5mmol)を加え、0℃で18時間撹拌した。撹拌後の反応液に飽和炭酸水素ナトリウム水溶液を加えて反応を停止し、液中の有機化合物をジエチルエーテルで抽出した。抽出後の有機層を、飽和食塩水で洗浄した後、無水硫酸マグネシウムを用いて乾燥した。乾燥後の有機層から溶媒を留去することにより得られた残渣をシリカゲルカラムクロマトグラフィーにより精製し、トリプチセン誘導体化合物(6)1.03g(収率63%)を得た。
得られたトリプチセン誘導体化合物(6)のNMRスペクトルは以下のとおりであった。
H-NMR(CDCl)δppm;2.04(s,3H),2.60(m,2H),3.04(m,2H),4.58(t,2H),5.36(s,1H),5.63(m,1H),6.25(s,1H),6.99(m,6H),7.39(m,6H)
13C-NMR(CDCl)δppm;18.60,24.53,24.57,53.15,54.62,65.64,122.28,123.68,124.91,125.07,125.85,136.50,146.09,147.04,167.77
[例2.トリプチセン誘導体化合物(7)の合成]
1.トリプチセン誘導体化合物(7)の合成スキーム
以下のスキーム(II)に従って、トリプチセン誘導体化合物(7)を合成した。
Figure JPOXMLDOC01-appb-C000025
              (II)
2.化合物(b)の合成
例1の「2.化合物(b)の合成」を参照して化合物(b)を合成した。
3.化合物(e)の合成
ベンゾキノン 1.1g(10mmol)をジクロロメタン 15mLに溶かした溶液に、アルゴン雰囲気下で0℃にて、ボロントリフルオリド-ジエチルエーテル-コンプレックス 1.1mL(9.0mmol)を加え、30分間撹拌した。撹拌後の反応液を-20℃に冷却した。冷却した反応液に、化合物(b) 0.56g(2.0mmol)を加え、-20℃で3時間撹拌した。撹拌後の反応液を、室温に戻した後、飽和食塩水で洗浄した。洗浄後の反応液から分離した有機層を無水硫酸マグネシウムを用いて乾燥した。乾燥後の有機層から溶媒を留去することにより得られた残渣をシリカゲルカラムクロマトグラフィーにより精製し、化合物(e) 0.67g(収率87%)を得た。
得られた化合物(e)のNMRスペクトルは以下のとおりであった。
H-NMR(CDCl)δppm;1.37(t,3H),2.80(m,2H),2.90(m,1H),2.99(d,1H),3.22(dd,1H),3.34(m,1H),4.29(dd,2H),4.65(d,1H),6.12(d,2H),7.18(m,6H),7.41(m,2H)
13C-NMR(CDCl)δppm;14.48,24.00,30.22,49.38,50.10,51.05,60.86,122.24,123.17,124.20,124.93,126.63,126.73,126.85,127.06,139.03,140.05,141.37,141.88,142.98,173.85,197.73,198.89
4.化合物(f)の合成
化合物(e) 0.93g(2.4mmol)をジメチルホルムアミド 10mLに溶かした溶液に、アルゴン雰囲気下で、炭酸セシウム 2.0g(6.0mmol)及びヨウ化メチル 0.67mL(7.2mmol)を加え、40℃で18時間撹拌した。撹拌後の反応液をセライトろ過に供した。得られたろ液を減圧下で濃縮することにより得られた濃縮残渣をシリカゲルカラムクロマトグラフィーにより精製し、化合物(f) 0.82g(収率82%)を得た。
得られた化合物(f)のNMRスペクトルは以下のとおりであった。
H-NMR(CDCl)δppm;1.37(t,3H),3.09(br s,2H),3.66(s,3H),3.74(br s,2H),3.80(s,3H),4.29(q,2H),5.86(s,1H),6.51(m,2H),7.01(m,4H),7.43(m,4H)
13C-NMR(CDCl)δppm;14.52,24.23,32.65,32.71,47.27,56.08,56.50,60.47,109.73,110.23,123.47,123.79,124.78,125.21,125.55,146.50,148.86,150.17,174.92
5.化合物(g)の合成
化合物(c)に代えて化合物(f) 0.69g(1.7mmol)を用いたこと以外は、例1の「4.化合物(d)の合成」と同様の操作を実施することにより、化合物(g) 0.58g(収率93%)を得た。
得られた化合物(g)のNMRスペクトルは以下のとおりであった。
H-NMR(CDCl)δppm;1.65(br s,1H),2.34(br s,2H),3.28(br s,2H),3.70(s,3H),3.79(s,3H),4.05(t,2H),5.85(s,1H),6.50(m,2H),7.01(m,4H),7.46(m,4H)
13C-NMR(CDCl)δppm;26.06,29.85,29.99,47.38,56.56,56.60,64.70,109.68,110.72,123.76,124.66,124.91,146.67,148.94,150.45
6.トリプチセン誘導体化合物(7)の合成
化合物(d)に代えて化合物(g) 0.58g(1.6mmol)を用いたこと以外は、例1の「5.トリプチセン誘導体化合物(6)の合成」と同様の操作を実施することにより、トリプチセン誘導体化合物(7) 0.62g(収率90%)を得た。
得られたトリプチセン誘導体化合物(7)のNMRスペクトルは以下のとおりであった。
H-NMR(CDCl)δppm;2.04(m,3H),2.47(br s,2H),3.33(br s,2H),3.70(s,3H),3.78(s,3H),4.54(t,2H),5.62(m,1H),5.86(s,1H),6.23(d,1H),6.50(br s,2H),7.02(m,4H),7.41(br s,2H),7.50(br s,2H)
13C-NMR(CDCl)δppm;18.59,25.91,26.30,47.35,54.86,56.32,56.54,66.33,109.66,110.47,123.78,124.66,124.96,125.54,136.70,138.11,146.66,148.88,150.37,167.87
[例3.一般式(8)のトリプチセン誘導体化合物の合成]
1.トリプチセン誘導体化合物(8)の合成スキーム
以下のスキーム(III)に従って、トリプチセン誘導体化合物(8)を合成した。
Figure JPOXMLDOC01-appb-C000026
              (III)
2.化合物(b)の合成
例1の「2.化合物(b)の合成」を参照して化合物(b)を合成した。
3.化合物(e)の合成
例2の「3.化合物(e)の合成」を参照して化合物(e)を合成した。
4.化合物(h)の合成
化合物(e)0.50g(1.3mmol)のジメチルホルムアミド10mL溶液に、アルゴン雰囲気下、炭酸セシウム1.1g(3.2mmol)及び2-ブロモエチルメチルエーテル0.37mL(3.9mmol)を加え、40℃で18時間撹拌した。反応液をセライトろ過後、ろ液を減圧下濃縮し、残渣をシリカゲルカラムクロマトグラフィーにより精製し、化合物(h)0.57g(収率87%)を得た。
得られた化合物(h)のNMRスペクトルは以下のとおりであった。
H-NMR(CDCl3)δppm;1.29(t,3H),2.98(m,2H),
3.38(br s,3H),3.45(s,3H),3.70(m,6H),3.92(m,2H),4.00(m,2H),4.22(q,2H),5.81(s,1H),6.44(s,2H),6.94(m,4H),7.38(m,4H)
13C-NMR(CDCl)δppm;14.55,24.37,32.09,47.45,59.20,59.41,60.55,69.25,69.89,71.22,71.39,112.36,123.56,123.89,124.80,125.18,146.40,148.25,149.90,174.92
5.化合物(i)の合成
化合物(c)の代わりに、化合物(h)0.46g(0.92mmol)を用いた以外は、例1の「4.化合物(d)の合成」を参照して化合物(i)0.41g(収率97%)を得た。
得られた化合物(i)のNMRスペクトルは以下のとおりであった。
H-NMR(CDCl)δppm;2.36(br s,2H),3.46(br s,2H),3.47(s,3H),3.52(s,3H),3.76(dd,4H),4.03(m,4H),5.88(s,1H),6.46(d,1H),6.52(d,1H),7.00(m,4H),7.40(d,2H),7.51(d,2H)
13C-NMR(CDCl)δppm;26.44,29.14,47.54,58.85,59.41,64.48,68.92,69.89,71.39,71.69,112.39,123.81,124.66,124.93,146.46,148.42,149.88
6.トリプチセン誘導体化合物(8)の合成
化合物(d)に代えて、化合物(i)0.71g(1.5mmol)を原料とした以外は、例1の「5.トリプチセン誘導体化合物(6)の合成」と同様の操作を実施することにより、トリプチセン誘導体化合物(8)0.63g(収率77%)を得た。
得られたトリプチセン誘導体化合物(8)のNMRスペクトルは以下のとおりであった。
H-NMR(CDCl)δppm;2.04(m,3H),2.51(br s, 2H),3.44(m,5H),3.52(s,3H),3.71(t,2H),3.77(m,2H),3.97(m,2H),4.06(m,2H),4.53(t,2H),5.62(m,1H),5.88(s,1H),6.24(m,1H),6.51(m,2H),7.03(m,4H),7.41(m,2H),7.53(br s,2H)
13C-NMR(CDCl)δppm;14.26,18.61,22.78,25.43,26.16,31.71,47.53,59.39,66.22,69.92,71.39,112.34,112.44,123.87,124.64,124.98,125.58,136.67,146.51,148.24,150.02,167.87
[例4.一般式(9)及び(10)のトリプチセン誘導体化合物の合成]
1.トリプチセン誘導体化合物(9)及び(10)の合成スキーム
以下のスキーム(IV)に従って、トリプチセン誘導体化合物(9)及び(10)を合成した。
Figure JPOXMLDOC01-appb-C000027
              (IV)
2.化合物(k)の合成
化合物(a)の代わりに、化合物(j)を用いた以外は、例1の「2.化合物(b)の合成」を参照して化合物(k)を得た。
得られた化合物(k)のNMRスペクトルは以下のとおりであった。
H-NMR(CDCl)δppm;1.28(t,6H),2.78(m,4H),3.97(m,4H),4.21(q,4H),7.55(dd,4H),8.33(dd,4H)
13C-NMR(CDCl)δppm;14.38,23.60,35.53,60.81,124.95,125.63,129.47,132.03,173.22
3.化合物(l)の合成
化合物(k) 0.26g(0.69mmol)をアセトニトリル 10mLに溶かした溶液に、アルゴン雰囲気下で、フッ化セシウム 0.13g(0.83mmol)及び2-(トリメチルシリル)フェニルトリフラート 0.20mL(0.83mmol)を加え、40℃で18時間撹拌した。撹拌後の反応液を室温に戻し、セライトろ過に供した。得られたろ液を減圧下で濃縮し、残渣をシリカゲルカラムクロマトグラフィーにより精製し、化合物(l) 0.29g(収率93%)を得た。
得られた化合物(l)のNMRスペクトルは以下のとおりであった。
H-NMR(CDCl)δppm;1.36(m,6H),3.16(m,4H),3.34(m,4H),4.33(q,4H),7.02(m,6H),7.40(m,6H)
13C-NMR(CDCl)δppm;14.47,22.75,31.03,52.76,61.04,122.19,124.88,146.91,174.18
4.化合物(m)の合成
化合物(c)の代わりに、化合物(l)0.45g(1.0mmol)を用いた以外は、例1の「4.化合物(d)の合成」を参照して化合物(m)0.34g(収率93%)を得た。
得られた化合物(m)のNMRスペクトルは以下のとおりであった。
H-NMR(CDCl)δppm;2.49(m,4H),3.00(m,4H),4.13(m,4H),7.00(br s,6H),7.43(br s,6H)
13C-NMR(CDCl)δppm;24.59,28.37,52.50,64.16,122.29,124.63
5.トリプチセン誘導体化合物(9)の合成
化合物(m)50mg(0.14mmol)のテトラヒドロフラン 5mL溶液に、アルゴン雰囲気下、0℃にて、水素化ナトリウム5.4mg(0.14mmol)を加え、30分撹拌した。塩化メタクリロイル 12μL(0.13mmol)を加え、0℃で18時間撹拌した。撹拌後の反応液に飽和炭酸水素ナトリウム水溶液を加えて反応を停止し、液中の有機化合物をジエチルエーテルで抽出した。抽出後の有機層を、飽和食塩水で洗浄した後、無水硫酸マグネシウムを用いて乾燥した。乾燥後の有機層から溶媒を留去することにより得られた残渣をシリカゲルカラムクロマトグラフィーにより精製し、トリプチセン誘導体化合物(9)38mg(収率64%)を得た。
得られた化合物(9)のNMRスペクトルは以下のとおりであった。
H-NMR(CDCl)δppm;1.62(br s,1H),2.05(s,3H),2.47(m,2H),2.61(m,2H),3.01(dd,4H),4.13(t,2H),4.59(t,2H),5.63(s,1H),6.25(s,1H)
7.01(s,6H)7.43(br s,6H)
13C-NMR(CDCl)δppm;18.57,24.60,24.78,28.34,52.38,52.52,61.57,61.14,65.70,122.34,124.78,125.94,167.94
6.トリプチセン誘導体化合物(10)の合成
トリプチセン誘導体化合物(9)27mg(0.06mmol)をアセトン 1mLに溶かした溶液に、0℃にてジョーンズ試薬を反応溶液がオレンジ色になるまで滴下し、10分撹拌後、水で希釈した反応溶液から有機物をジエチルエーテルで3回抽出した。抽出後の有機層を、飽和食塩水で洗浄した後、無水硫酸マグネシウムを用いて乾燥した。乾燥後の有機層から溶媒を留去することにより得られた残渣をシリカゲルカラムクロマトグラフィーにより精製し、トリプチセン誘導体化合物(10)9.9mg(収率36%)を得た。
得られたトリプチセン誘導体化合物(10)のNMRスペクトルは以下のとおりであった。
H-NMR(CDCl)δppm;2.04(m,3H),2.62(m,2H),3.04(m,2H),3.30(d,2H),3.38(d,2H),4.60(t,2H),5.65(s,1H),6.26(s,1H),7.05(br s,6H) ,7.42(br s,6H)
13C-NMR(CDCl)δppm;18.57,22.59,24.58,30.60,52.44,65.67,122.09,124.98,125.98,135.60,147.31,150.29,158.26,160.24,167.96
[例5.一般式(11)のトリプチセン誘導体化合物の合成]
1.トリプチセン誘導体化合物(11)の合成スキーム
以下のスキーム(V)に従って、トリプチセン誘導体化合物(11)を合成した。
Figure JPOXMLDOC01-appb-C000028
              (V)
2.化合物(b)の合成
例1の「2.化合物(b)の合成」を参照して化合物(b)を得た。
3.化合物(n)の合成
ジメチルホルムアミド 5mLに、アルゴン雰囲気下で0℃にて、塩化ホスホリル 0.94mL(10.1mmol)を滴下し、室温で1.5時間撹拌した。撹拌後の反応液に化合物(b) 1.0g(3.6mmol)を溶解させ、110℃で18時間撹拌した。撹拌後の反応液を室温に戻し、酢酸エチルで希釈した。希釈した反応液を、1N塩酸、飽和炭酸水素ナトリウム水溶液及び飽和食塩水で順次洗浄した。洗浄後に分離して得られた有機層を無水硫酸マグネシウムで乾燥した。乾燥後の有機層から溶媒を留去することにより得た残渣をシリカゲルカラムクロマトグラフィーにより精製し、化合物(n)0.78g(収率71%)を得た。
得られた化合物(n)のNMRスペクトルは以下のとおりであった。
H-NMR(CDCl)δppm;1.25(m,3H),2.77(m,2H),3.98(m,2H),4.20(q,2H),7.62(m,4H),8.33(m,2H),8.92(dd,2H),11.45(s,1H)
13C-NMR(CDCl)δppm;14.34,24.19,35.32,60.99,124.45,124.77,125.01,126.30,128.48,129.08,131.64,141.68,172.65,193.63
4.化合物(o)の合成
化合物(n)0.74g(2.4mmol)をアセトニトリル 10mLに溶かした溶液に、アルゴン雰囲気下で、カルバミン酸ベンジル1.1g(7.2mmol)、トリエチルシラン0.59mL(7.2mmol)及び、トリフルオロ酢酸0.61mL(7.0mmol)を加え、室温で18時間撹拌した。撹拌後の反応液を、酢酸エチルで希釈した後、飽和炭酸水素ナトリウム水溶液及び飽和食塩水で順次洗浄した。洗浄後に分離して得られた有機層を無水硫酸マグネシウムで乾燥した。乾燥後の有機層から溶媒を留去したことにより得られた残渣をシリカゲルカラムクロマトグラフィーにより精製し、化合物(o)0.84g(収率83%)を得た。
得られた化合物(o)のNMRスペクトルは以下のとおりであった。
H-NMR(CDCl)δppm;1.21(m,3H),2.69(m,2H),3.90(m,2H),4.13(q,2H),4.94(s,1H),5.08(s,2H),5.32(d,2H),7.28(m,5H),7.50(m,4H),8.27(m,4H)
13C-NMR(CDCl)δppm;14.36,23.60,35.40,37.73,60.84,67.00,124.84,125.82,126.36,128.16,128.60,129.38,130.19,134.17,136.52,156.23,173.02
5.化合物(p)の合成
化合物(b)に代えて化合物(o)0.29g(0.66mmol)を用いたこと以外は、例1の「3.化合物(c)の合成」と同様の操作により、化合物(p)0.27g(収率78%)を得た。
得られた化合物(p)のNMRスペクトルは以下のとおりであった。
H-NMR(CDCl)δppm;1.36(m,3H),3.14(m,2H),3.34(m,2H),4.33(q,2H),4.85(d,2H),5.26(s,2H),5.42(m,1H),7.03(m,6H),7.35(m,11H)
13C-NMR(CDCl)δppm;14.48,22.68,30.97,40.20,52.03,52.92,61.11,67.19,122.35,125.26,128.20,128.33,128.69,136.58,147.07,16.59,174.08
6.化合物(q)の合成
化合物(c)に代えて化合物(p)0.15g(0.29mmol)を用いたこと以外は、例1の「4.化合物(d)の合成」と同様の操作により、化合物(q)87mg(収率88%)を得た。
得られた化合物(q)のNMRスペクトルは以下のとおりであった。
H-NMR(CDCl)δppm;2.45(m,2H),3.03(m,2H),4.11(d,2H),4.91(d,2H),6.29(s,1H),7.02(br s,6H),7.39(m,6H),8.41(s,1H)
13C-NMR(CDCl)δppm;24.47,28.19,37.44,51.49,52.71,63.89,121.92,125.10,161.69
7.トリプチセン誘導体化合物(11)の合成
化合物(q)25mg(0.073mmol)をジクロロメタン 1mLに溶かした溶液に、アルゴン雰囲気下で、1-[2-(トリメチルシリル)エトキシカルボニルオキシ]ベンゾトリアゾール 22mg(0.080mmol)を加え、室温で30分撹拌した。5%炭酸水素ナトリウム水溶液を加え反応を停止し、液中の有機化合物をジクロロメタンで抽出した。抽出後の有機層を、5%炭酸水素ナトリウム水溶液で洗浄した後、無水硫酸マグネシウムを用いて乾燥した。乾燥後の有機層から溶媒を留去することにより化合物(r)を得た。得られた化合物(r)をテトラヒドロフラン 5mLに溶かした溶液に、アルゴン雰囲気下で0℃にて、トリエチルアミン 20μL(0.14mmol)及び塩化メタクリロイル 14μL(0.14mmol)を加え、0℃で18時間撹拌した。撹拌後の反応液に飽和炭酸水素ナトリウム水溶液を加えて反応を停止し、液中の有機化合物をジエチルエーテルで抽出した。抽出後の有機層を、飽和食塩水で洗浄した後、無水硫酸マグネシウムを用いて乾燥した。乾燥後の有機層から溶媒を留去することにより得られた残渣をシリカゲルカラムクロマトグラフィーにより精製し、トリプチセン誘導体化合物(11)6.5mg(収率18%)を得た。
得られたトリプチセン誘導体化合物(11)のNMRスペクトルは以下のとおりであった。
H-NMR(CDCl)δppm;0.07(s,9H),1.67(m,4H),2.04(s,3H),2.59(m,2H),3.05(m,2H),4.60(t,2H),4.93(d,2H),5.65(s,1H),6.25(s,1H),7.06(m,6H),7.41(m,6H),8.46(s,1H)
13C-NMR(CDCl)δppm;0.06,1.10,18.57,24.53,31.04,37.40,51.56,52.61,64.17,65.55,122.04,125.30,126.01,136.57,161.72,167.90
[例6.一般式(12)のトリプチセン誘導体化合物の合成]
1.トリプチセン誘導体化合物(12)の合成スキーム
以下のスキーム(VI)に従って、トリプチセン誘導体化合物(12)を合成した。
Figure JPOXMLDOC01-appb-C000029
              (VI)
2.化合物(k)の合成
例4の「2.化合物(k)の合成」を参照して化合物(k)を得た。
3.化合物(l)の合成
例4の「3.化合物(l)の合成」を参照して化合物(l)を得た。
4.化合物(m)の合成
例4の「4.化合物(m)の合成」を参照して化合物(m)を得た。
5.トリプチセン誘導体化合物(12)の合成
化合物(m) 35mg(0.094mmol)をテトラヒドロフラン 5mLに溶かした溶液に、アルゴン雰囲気下で0℃にて、トリエチルアミン 33μL(0.24mmol)及び塩化メタクリロイル 22μL(0.24mmol)を加え、0℃で18時間撹拌した。撹拌後の反応液に飽和炭酸水素ナトリウム水溶液を加えて反応を停止し、液中の有機化合物をジエチルエーテルで抽出した。抽出後の有機層を、飽和食塩水で洗浄した後、無水硫酸マグネシウムを用いて乾燥した。乾燥後の有機層から溶媒を留去することにより得られた残渣をシリカゲルカラムクロマトグラフィーにより精製し、トリプチセン誘導体化合物(12)26mg(収率54%)を得た。
得られたトリプチセン誘導体化合物(12)のNMRスペクトルは以下のとおりであった。
H-NMR(CDCl)δppm;2.05(d,6H),2.60(m,4H),3.02(m,4H),4.60(t,4H),5.64(m,2H),6.25(s,2H),7.02(m,6H),7.43(s,6H)
13C-NMR(CDCl)δppm;18.56,24.57,24.75,52.39,65.67,122.41,124.80,125.93,136.60,167.91
[例7.例4~6で得られたトリプチセン誘導体化合物(9)、(10)、(11)及び(12)を含む高分子ハイドロゲルの合成]
トリプチセン誘導体化合物(9)~(12)を各々0.5g、2-ヒドロキシエチルメタクリレート9.5g、エチレングリコールジメタクリレート0.01g及びAIBN 2000ppmを混合し、十分に窒素置換をしながら約1時間撹拌した。撹拌後、モノマー混合液を成形型に入れ、50~100℃の範囲で25時間かけて昇温させ、重合体を得た。得られた重合体を室温に戻し、容器から取り出し、約60℃の蒸留水中に約4時間浸漬することで水和膨潤させ、トリプチセン誘導体化合物(9)~(12)をそれぞれ含有する4種類のトリプチセン誘導体含有ハイドロゲルを得た。
比較例として、トリプチセン誘導体化合物(9)~(12)に代えて、下記に示す式(A)で示される特許文献9(特開2008-075407号公報)の化合物8を用いた以外は、上記と同様にして、2-ヒドロキシエチルメタクリレート9.5g、エチレングリコールジメタクリレート0.01g及びAIBN2000ppmを混合した。しかし、特許文献9の化合物8を用いた場合は、均一溶液が得られず、共重合反応に供することができなかった。このことより、従来のトリプチセン誘導体化合物は、親水性化合物との相溶性が低いことが示唆された。
Figure JPOXMLDOC01-appb-C000030
本発明の一態様である高分子化合物は、液晶配向膜、液晶表示素子、有機ELディスプレイ、電子輸送性の有機薄膜、発光素子、有機導電性組成物などに加えて、ハイドロゲル、医療用デバイス、眼用レンズ、DDSデバイスなどとして使用可能である。
関連出願の相互参照
本出願は、2018年2月2日出願の日本特願2018-017415号の優先権を主張し、その全記載は、ここに開示として援用される。
 

 

Claims (3)

  1. 下記一般式(1)
    Figure JPOXMLDOC01-appb-C000001
    (式中、
    ~Rは、それぞれ独立して、水素原子、アルキル基、シクロアルキル基、複素環基、アルケニル基、シクロアルケニル基、アルキニル基、アルコキシ基、アルキルチオ基、アリールエーテル基、アリールチオエーテル基、アリール基、ヘテロアリール基、ハロゲン原子、カルボニル基、カルボキシル基、オキシカルボニル基、カルバモイル基、アミノ基、ホスフィンオキサイド基及びシリル基からなる群から選択される置換基を示し、ただし、隣接する置換基同士で環を形成してもよく;
    X及びYは、一方が下記一般式(2)
    Figure JPOXMLDOC01-appb-C000002
    (式中、nは1~5の整数であり;及び、Rは水素原子又はメチル基を示す。)
    で示される置換基を示し、
    かつ、他方が前記一般式(2)で示される官能基、水素原子及びハロゲン原子、並びに、保護された、又は保護されていない、ヒドロキシル基、ヒドロキシアルキル基、カルボキシル基、カルボキシアルキル基 、アミノ基、アミノアルキル基 、アミノカルボニル基、アミノカルボニルアルキル基、アルコキシ基、アルコキシアルキル基、アルコキシカルボニル基、アルコキシカルボニルアルキル基 、ホルミル基、ホルミルアルキル基及びアルキル基からなる群から選択される置換基を示す。)
    で示される、重合性トリプチセン誘導体化合物と、
    該重合性トリプチセン誘導体化合物と共重合可能な化合物と
    を構成成分として含む、高分子化合物。
  2. 前記他方の置換基は下記一般式(3)
    Figure JPOXMLDOC01-appb-C000003
    (式中、nは1~5の整数であり;及び、Rは水素原子及び炭素数1~3のアルキル基からなる群から選択される置換基を示す。)
    で示される置換基、
    下記一般式(4)
    Figure JPOXMLDOC01-appb-C000004
    (式中、nは1~5の整数であり;及び、Rは水素原子及びカルバメート系保護基からなる群から選択される置換基を示す。)
    で示される置換基
    及び下記一般式(5)
    Figure JPOXMLDOC01-appb-C000005
    (式中、nは1~5の整数である。)
    で示される置換基からなる群から選択される置換基を示す、請求項1に記載の高分子化合物。
  3. 前記重合性トリプチセン誘導体化合物と共重合可能な化合物が、少なくとも1種の重合性トリプチセン誘導体化合物と共重合可能な親水性化合物である、請求項1又は2に記載の高分子化合物。
     

     
PCT/JP2019/003546 2018-02-02 2019-02-01 重合性トリプチセン誘導体化合物を構成成分として含む高分子化合物 WO2019151462A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US16/966,463 US11292762B2 (en) 2018-02-02 2019-02-01 Polymer including polymerizable triptycene derivative compound as component
EP19748198.9A EP3747918B1 (en) 2018-02-02 2019-02-01 Polymer including polymerizable triptycene derivative compound as component
JP2019569599A JP7142034B2 (ja) 2018-02-02 2019-02-01 重合性トリプチセン誘導体化合物を構成成分として含む高分子化合物

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018017415 2018-02-02
JP2018-017415 2018-02-02

Publications (1)

Publication Number Publication Date
WO2019151462A1 true WO2019151462A1 (ja) 2019-08-08

Family

ID=67478405

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/003546 WO2019151462A1 (ja) 2018-02-02 2019-02-01 重合性トリプチセン誘導体化合物を構成成分として含む高分子化合物

Country Status (4)

Country Link
US (1) US11292762B2 (ja)
EP (1) EP3747918B1 (ja)
JP (1) JP7142034B2 (ja)
WO (1) WO2019151462A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023210378A1 (ja) * 2022-04-28 2023-11-02 Agc株式会社 化合物、組成物、表面処理剤、物品の製造方法、及び物品

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7216669B2 (ja) * 2018-02-02 2023-02-01 株式会社シード 重合性トリプチセン誘導体化合物及びその化合物を構成成分として含む高分子化合物
JP7142034B2 (ja) * 2018-02-02 2022-09-26 株式会社シード 重合性トリプチセン誘導体化合物を構成成分として含む高分子化合物
CN116102560B (zh) * 2023-04-07 2023-06-23 季华实验室 一种三蝶烯化合物、其制备方法和发光器件

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6081148A (ja) * 1983-10-13 1985-05-09 Daicel Chem Ind Ltd 新規なトリプチシルエステル化合物
JPS63117013A (ja) * 1986-11-01 1988-05-21 Chisso Corp 新規高分子物質
JP2002539286A (ja) 1998-02-13 2002-11-19 セラニーズ・ヴェンチャーズ・ゲーエムベーハー トリプチセンポリマー及びコポリマー
JP2006111571A (ja) 2004-10-14 2006-04-27 Chisso Corp 重合性トリプチセン誘導体
JP2006187225A (ja) 2005-01-05 2006-07-20 Kikkoman Corp トリプチセン類化合物の製造方法
JP2008075407A (ja) 2006-09-25 2008-04-03 Daiwa Kasei Ind Co Ltd 車両用エアシール構造
JP2008075047A (ja) 2006-09-25 2008-04-03 Fujifilm Corp トリプチセン誘導体の重合体を含有する組成物、それを用いた絶縁膜、及び電子デバイス
JP2008308433A (ja) 2007-06-14 2008-12-25 Idemitsu Kosan Co Ltd トリプチセン構造を有する化合物、フォトレジスト基材及びフォトレジスト組成物
JP2011207792A (ja) 2010-03-29 2011-10-20 Fujifilm Corp トリプチセン構造を有する化合物
JP2011246365A (ja) 2010-05-25 2011-12-08 Jnc Corp 重合性液晶化合物、組成物およびその重合体
JP2013223458A (ja) 2012-04-23 2013-10-31 Tokyo Univ Of Science 光学活性なトリプチセン誘導体の製造方法
JP2014178712A (ja) 2009-09-18 2014-09-25 Jnc Corp 液晶表示素子
JP2016152953A (ja) 2016-04-15 2016-08-25 株式会社ソフイア 遊技機
WO2018025892A1 (ja) * 2016-08-03 2018-02-08 株式会社シード 重合性トリプチセン誘導体化合物

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9447916B2 (en) 2012-10-01 2016-09-20 Nation Wide Products, Inc. Securing an air conditioning unit to a building by applying force to an interior and an exterior surface of the building
US10738157B2 (en) * 2015-07-20 2020-08-11 Massachusetts Institute Of Technology Functionalized triptycene polymers and their uses
JP7142034B2 (ja) * 2018-02-02 2022-09-26 株式会社シード 重合性トリプチセン誘導体化合物を構成成分として含む高分子化合物
JP7216669B2 (ja) * 2018-02-02 2023-02-01 株式会社シード 重合性トリプチセン誘導体化合物及びその化合物を構成成分として含む高分子化合物

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6081148A (ja) * 1983-10-13 1985-05-09 Daicel Chem Ind Ltd 新規なトリプチシルエステル化合物
JPS63117013A (ja) * 1986-11-01 1988-05-21 Chisso Corp 新規高分子物質
JP2002539286A (ja) 1998-02-13 2002-11-19 セラニーズ・ヴェンチャーズ・ゲーエムベーハー トリプチセンポリマー及びコポリマー
JP2006111571A (ja) 2004-10-14 2006-04-27 Chisso Corp 重合性トリプチセン誘導体
JP2006187225A (ja) 2005-01-05 2006-07-20 Kikkoman Corp トリプチセン類化合物の製造方法
JP2008075047A (ja) 2006-09-25 2008-04-03 Fujifilm Corp トリプチセン誘導体の重合体を含有する組成物、それを用いた絶縁膜、及び電子デバイス
JP2008075407A (ja) 2006-09-25 2008-04-03 Daiwa Kasei Ind Co Ltd 車両用エアシール構造
JP2008308433A (ja) 2007-06-14 2008-12-25 Idemitsu Kosan Co Ltd トリプチセン構造を有する化合物、フォトレジスト基材及びフォトレジスト組成物
JP2014178712A (ja) 2009-09-18 2014-09-25 Jnc Corp 液晶表示素子
JP2011207792A (ja) 2010-03-29 2011-10-20 Fujifilm Corp トリプチセン構造を有する化合物
JP2011246365A (ja) 2010-05-25 2011-12-08 Jnc Corp 重合性液晶化合物、組成物およびその重合体
JP2013223458A (ja) 2012-04-23 2013-10-31 Tokyo Univ Of Science 光学活性なトリプチセン誘導体の製造方法
JP2016152953A (ja) 2016-04-15 2016-08-25 株式会社ソフイア 遊技機
WO2018025892A1 (ja) * 2016-08-03 2018-02-08 株式会社シード 重合性トリプチセン誘導体化合物

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
BARROS, S. A. ET AL.: "Bridgehead-Substituted Triptycenes for Discovery of Nucleic Acid Junction Binders", ORGANIC LETTERS, vol. 18, no. 10, 2016, pages 2423 - 2426, XP055371555, doi:10.1021/acs.orglett.6b00945 *
BRUNOVLENSKAYA, I. I. ET AL.: "Aromatic hydrocarbons. LXIII. Intramolecular cyclization in the triptycene series", ZHURNAL ORGANICHESKOI KHIMII, vol. 15, no. 7, 1979, pages 1502 - 1506, XP009513633 *
HOFFMEISTER, E. ET AL.: "Triptycene polymers", JOURNAL OF POLYMER SCIENCE , PART A-L: POLYMER CHEMISTRY, vol. 7, no. 1, 1969, pages 55 - 72, XP055568750, doi:10.1002/pol.1969.150070107 *
KE PAN ET AL., JOURNAL OF ORGANOMETALLIC CHEMISTRY, vol. 693, no. 17, 2008, pages 2863 - 2868
See also references of EP3747918A4

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023210378A1 (ja) * 2022-04-28 2023-11-02 Agc株式会社 化合物、組成物、表面処理剤、物品の製造方法、及び物品

Also Published As

Publication number Publication date
US11292762B2 (en) 2022-04-05
JPWO2019151462A1 (ja) 2021-01-14
EP3747918A1 (en) 2020-12-09
US20210032388A1 (en) 2021-02-04
JP7142034B2 (ja) 2022-09-26
EP3747918A4 (en) 2021-11-10
EP3747918B1 (en) 2022-12-21

Similar Documents

Publication Publication Date Title
JP7216669B2 (ja) 重合性トリプチセン誘導体化合物及びその化合物を構成成分として含む高分子化合物
JP7142034B2 (ja) 重合性トリプチセン誘導体化合物を構成成分として含む高分子化合物
CN111032704B (zh) 固化物、光学部件、透镜、化合物及固化性组合物
JPH04500388A (ja) ペルフルオロシクロブタン環を有するポリマーの製造方法及びペルフルオロシクロブタン環を含むポリマー
JP7165797B2 (ja) 硬化性組成物、硬化物、光学部材、レンズ、及び化合物
JP6927975B2 (ja) 重合性トリプチセン誘導体化合物
JP5282385B2 (ja) ラジカル重合性組成物
JP5246469B2 (ja) アントラセン二量体骨格を有する新規なアクリレート化合物及びその製造法
JP2006265176A (ja) スピロ化合物の製造法
WO2022039143A1 (ja) 化合物、硬化性樹脂組成物、硬化物、光学部材及びレンズ
CN109503460A (zh) 一种有机材料及其制备方法与应用
JP4937515B2 (ja) 硫黄原子含有環状化合物およびその製造方法並びに架橋性組成物
JPWO2017183549A1 (ja) 新規テトラチアスピロ化合物、それを含む光学用組成物、及びその製造方法
KR102441105B1 (ko) 투명체의 제조 방법, 투명체 및 비정질체
JP2004277473A (ja) 環状オレフィン系共重合体の製造方法
JP2009221404A (ja) ピレン化合物及びこれを含む高分子化合物
JP2021024842A (ja) 含硫黄芳香族複素環を有する化合物とその製造方法、重合性組成物、及び重合物
JP2010275234A (ja) アントラセン二量体骨格を有する新規なエポキシアクリレート化合物及びその製造法
JP5582424B2 (ja) ラジカル重合性組成物の重合方法及びその重合物
JP6427376B2 (ja) 組成物、硬化物及び光透過性積層体
JP2002030082A (ja) 重合性チオ(メタ)アクリレート化合物
JPH0559103B2 (ja)
JP2007153798A (ja) トリチアシクロペンタン環含有ジ(メタ)アクリレート類、及びその製造方法
JPH0359061B2 (ja)
JP2012006874A (ja) 10−アシルオキシ−1,2,3,4−テトラヒドロアントラセン−9−イル−(メタ)アクリレート化合物、その製造法及び該(メタ)アクリレート化合物を重合してなる重合物。

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19748198

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019569599

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019748198

Country of ref document: EP

Effective date: 20200902