WO2019142722A1 - 半導体装置およびその製造方法 - Google Patents

半導体装置およびその製造方法 Download PDF

Info

Publication number
WO2019142722A1
WO2019142722A1 PCT/JP2019/000540 JP2019000540W WO2019142722A1 WO 2019142722 A1 WO2019142722 A1 WO 2019142722A1 JP 2019000540 W JP2019000540 W JP 2019000540W WO 2019142722 A1 WO2019142722 A1 WO 2019142722A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
sio
region
semiconductor device
gate oxide
Prior art date
Application number
PCT/JP2019/000540
Other languages
English (en)
French (fr)
Inventor
木本 恒暢
拓真 小林
佑紀 中野
明田 正俊
Original Assignee
ローム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ローム株式会社 filed Critical ローム株式会社
Priority to JP2019566441A priority Critical patent/JP7241704B2/ja
Priority to CN201980008940.6A priority patent/CN111684607A/zh
Priority to DE212019000027.4U priority patent/DE212019000027U1/de
Priority to DE112019000292.9T priority patent/DE112019000292T5/de
Priority to US16/962,160 priority patent/US11502172B2/en
Publication of WO2019142722A1 publication Critical patent/WO2019142722A1/ja
Priority to US17/955,067 priority patent/US11996449B2/en
Priority to JP2022178306A priority patent/JP7512348B2/ja
Priority to US18/636,310 priority patent/US20240258380A1/en
Priority to JP2024103268A priority patent/JP2024111334A/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/02227Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a process other than a deposition process
    • H01L21/0223Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a process other than a deposition process formation by oxidation, e.g. oxidation of the substrate
    • H01L21/02233Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a process other than a deposition process formation by oxidation, e.g. oxidation of the substrate of the semiconductor substrate or a semiconductor layer
    • H01L21/02236Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a process other than a deposition process formation by oxidation, e.g. oxidation of the substrate of the semiconductor substrate or a semiconductor layer group IV semiconductor
    • H01L21/02238Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a process other than a deposition process formation by oxidation, e.g. oxidation of the substrate of the semiconductor substrate or a semiconductor layer group IV semiconductor silicon in uncombined form, i.e. pure silicon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02614Transformation of metal, e.g. oxidation, nitridation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/283Deposition of conductive or insulating materials for electrodes conducting electric current
    • H01L21/285Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation
    • H01L21/28506Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers
    • H01L21/28512Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers on semiconductor bodies comprising elements of Group IV of the Periodic Table
    • H01L21/28556Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers on semiconductor bodies comprising elements of Group IV of the Periodic Table by chemical means, e.g. CVD, LPCVD, PECVD, laser CVD
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0607Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/10Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode not carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/1095Body region, i.e. base region, of DMOS transistors or IGBTs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/16Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only elements of Group IV of the Periodic Table
    • H01L29/1608Silicon carbide
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/36Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the concentration or distribution of impurities in the bulk material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/423Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
    • H01L29/42312Gate electrodes for field effect devices
    • H01L29/42316Gate electrodes for field effect devices for field-effect transistors
    • H01L29/4232Gate electrodes for field effect devices for field-effect transistors with insulated gate
    • H01L29/42356Disposition, e.g. buried gate electrode
    • H01L29/4236Disposition, e.g. buried gate electrode within a trench, e.g. trench gate electrode, groove gate electrode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/423Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
    • H01L29/42312Gate electrodes for field effect devices
    • H01L29/42316Gate electrodes for field effect devices for field-effect transistors
    • H01L29/4232Gate electrodes for field effect devices for field-effect transistors with insulated gate
    • H01L29/42364Gate electrodes for field effect devices for field-effect transistors with insulated gate characterised by the insulating layer, e.g. thickness or uniformity
    • H01L29/42368Gate electrodes for field effect devices for field-effect transistors with insulated gate characterised by the insulating layer, e.g. thickness or uniformity the thickness being non-uniform
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/49Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET
    • H01L29/51Insulating materials associated therewith
    • H01L29/511Insulating materials associated therewith with a compositional variation, e.g. multilayer structures
    • H01L29/513Insulating materials associated therewith with a compositional variation, e.g. multilayer structures the variation being perpendicular to the channel plane
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66015Multistep manufacturing processes of devices having a semiconductor body comprising semiconducting carbon, e.g. diamond, diamond-like carbon, graphene
    • H01L29/66037Multistep manufacturing processes of devices having a semiconductor body comprising semiconducting carbon, e.g. diamond, diamond-like carbon, graphene the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66045Field-effect transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66053Multistep manufacturing processes of devices having a semiconductor body comprising crystalline silicon carbide
    • H01L29/66068Multistep manufacturing processes of devices having a semiconductor body comprising crystalline silicon carbide the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66234Bipolar junction transistors [BJT]
    • H01L29/66325Bipolar junction transistors [BJT] controlled by field-effect, e.g. insulated gate bipolar transistors [IGBT]
    • H01L29/66333Vertical insulated gate bipolar transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66234Bipolar junction transistors [BJT]
    • H01L29/66325Bipolar junction transistors [BJT] controlled by field-effect, e.g. insulated gate bipolar transistors [IGBT]
    • H01L29/66333Vertical insulated gate bipolar transistors
    • H01L29/66348Vertical insulated gate bipolar transistors with a recessed gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/70Bipolar devices
    • H01L29/72Transistor-type devices, i.e. able to continuously respond to applied control signals
    • H01L29/739Transistor-type devices, i.e. able to continuously respond to applied control signals controlled by field-effect, e.g. bipolar static induction transistors [BSIT]
    • H01L29/7393Insulated gate bipolar mode transistors, i.e. IGBT; IGT; COMFET
    • H01L29/7395Vertical transistors, e.g. vertical IGBT
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/70Bipolar devices
    • H01L29/72Transistor-type devices, i.e. able to continuously respond to applied control signals
    • H01L29/739Transistor-type devices, i.e. able to continuously respond to applied control signals controlled by field-effect, e.g. bipolar static induction transistors [BSIT]
    • H01L29/7393Insulated gate bipolar mode transistors, i.e. IGBT; IGT; COMFET
    • H01L29/7395Vertical transistors, e.g. vertical IGBT
    • H01L29/7396Vertical transistors, e.g. vertical IGBT with a non planar surface, e.g. with a non planar gate or with a trench or recess or pillar in the surface of the emitter, base or collector region for improving current density or short circuiting the emitter and base regions
    • H01L29/7397Vertical transistors, e.g. vertical IGBT with a non planar surface, e.g. with a non planar gate or with a trench or recess or pillar in the surface of the emitter, base or collector region for improving current density or short circuiting the emitter and base regions and a gate structure lying on a slanted or vertical surface or formed in a groove, e.g. trench gate IGBT
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7802Vertical DMOS transistors, i.e. VDMOS transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7802Vertical DMOS transistors, i.e. VDMOS transistors
    • H01L29/7813Vertical DMOS transistors, i.e. VDMOS transistors with trench gate electrode, e.g. UMOS transistors

Definitions

  • the interface state density has a correlation with the channel mobility (also called carrier mobility). More specifically, an increase in interface state density causes a decrease in channel mobility.
  • Patent Literature 1 and Patent Literature 2 disclose an example of a technique for improving interface state density.
  • Patent Document 2 includes a step of forming a SiO 2 layer on a SiC semiconductor substrate, a step of heat treating the SiO 2 layer in an atmosphere containing POCl 3 (phosphoryl chloride), and a step of adding phosphorus to the SiO 2 layer And a method of manufacturing a semiconductor device.
  • POCl 3 phosphoryl chloride
  • Patent Document 2 carbon atoms in the SiO 2 layer and oxygen atoms in the atmosphere can be reacted. Thus, because it removes the carbon atoms of the SiO 2 layer in, it can reduce the interfacial defects.
  • P (phosphorus) added to the SiO 2 layer functions as a charge trap, which may cause the SiO 2 layer to deteriorate with time.
  • One embodiment of the present invention can reduce interface defects between a SiC semiconductor layer and a SiO 2 layer, and provides a semiconductor device having a good SiO 2 layer and a method of manufacturing the same.
  • One embodiment of the present invention is a SiC semiconductor layer having a carbon density of 1.0 ⁇ 10 22 cm ⁇ 3 or more, a connection surface formed on the SiC semiconductor layer and in contact with the SiC semiconductor layer, and and the SiO 2 layer having a non-connection surface located opposite the connecting surface, formed in the surface layer portion of the connection surface of the SiO 2 layer, the carbon density is gradually decreased toward the non-connection surface of the SiO 2 layer
  • a semiconductor device comprising: a carbon density gradual reduction region; and a low carbon density region formed on a surface portion of the non-connecting surface of the SiO 2 layer and having a carbon density of 1.0 ⁇ 10 19 cm ⁇ 3 or less.
  • An embodiment of the present invention includes the steps of providing a SiC semiconductor layer, forming a SiO 2 layer on the SiC semiconductor layer, by annealing under a low oxygen partial pressure atmosphere, the SiO 2 Providing an oxygen atom introducing step of introducing an oxygen atom into a layer.
  • FIG. 1 is a cross-sectional view showing a region in which a trench gate type MISFET is formed in a semiconductor device according to a first embodiment of the present invention.
  • FIG. 2 is a process diagram for illustrating an example of a method of manufacturing the semiconductor device shown in FIG.
  • FIG. 3A is a cross-sectional view for illustrating an example of a method of manufacturing the semiconductor device shown in FIG.
  • FIG. 3B is a cross-sectional view showing a step subsequent to FIG. 3A.
  • FIG. 3C is a cross-sectional view showing a step subsequent to FIG. 3B.
  • FIG. 3D is a cross-sectional view showing the step after FIG. 3C.
  • FIG. 3E is a cross-sectional view showing a step subsequent to FIG. 3D.
  • FIG. 3F is a cross-sectional view showing a step subsequent to FIG. 3E.
  • FIG. 3G is a cross-sectional view showing a step subsequent to FIG. 3F.
  • FIG. 3H is a cross-sectional view showing a step subsequent to FIG. 3G.
  • FIG. 3I is a cross-sectional view showing a step subsequent to FIG. 3H.
  • FIG. 3J is a cross-sectional view showing the step after FIG. 3I.
  • FIG. 3K is a cross-sectional view showing the step after FIG. 3J.
  • FIG. 3L is a cross-sectional view showing a step subsequent to FIG. 3K.
  • FIG. 3M is a cross-sectional view showing a step subsequent to FIG. 3L.
  • FIG. 3N is a cross-sectional view showing a step subsequent to FIG. 3M.
  • FIG. 4 is a graph showing the measurement results of the carbon density of the gate oxide layer.
  • FIG. 5 is a graph showing the measurement results of the high frequency CV characteristics and the quasi-static CV characteristics of the gate oxide layer.
  • FIG. 6 is a graph in which the graph of FIG. 5 is converted to interface state density based on the High-Low method.
  • FIG. 7 is a graph showing measurement results of current density characteristics of the gate oxide layer.
  • FIG. 8 is a cross-sectional view showing a region where a planar gate type MISFET is formed in a semiconductor device according to a second embodiment of the present invention.
  • FIG. 9 is a process diagram for illustrating an example of a method of manufacturing the semiconductor device shown in FIG.
  • FIG. 10A is a cross-sectional view for illustrating an example of a method of manufacturing the semiconductor device shown in FIG. 8.
  • FIG. 10B is a cross-sectional view showing the process after FIG. 10A.
  • FIG. 10C is a cross-sectional view showing a step subsequent to FIG. 10B.
  • FIG. 10D is a cross-sectional view showing the process after FIG. 10C.
  • FIG. 10E is a cross-sectional view showing a step subsequent to FIG. 10D.
  • FIG. 10F is a cross-sectional view showing a step subsequent to FIG. 10E.
  • FIG. 10G is a cross-sectional view showing a step subsequent to FIG. 10F.
  • FIG. 10H is a cross-sectional view showing a step subsequent to FIG. 10G.
  • FIG. 10I is a cross-sectional view showing a step subsequent to FIG. 10H.
  • FIG. 10J is a cross-sectional view showing a step subsequent to FIG. 10I.
  • FIG. 10K is a cross-sectional view showing the process after FIG. 10J.
  • FIG. 10L is a cross-sectional view showing a step subsequent to FIG. 10K.
  • FIG. 11 is a cross-sectional view showing a region in which a trench gate type MISFET is formed in the semiconductor device according to the third embodiment of the present invention.
  • the semiconductor device 1 has a basic form provided with a trench gate type MISFET (Metal Insulator Semiconductor Field Effect Transistor).
  • the semiconductor device 1 includes an n-type SiC semiconductor layer 2 to which an n-type impurity is added.
  • the SiC semiconductor layer 2 is made of 4H—SiC single crystal in this form.
  • the n-type impurity of the SiC semiconductor layer 2 may be N (nitrogen), As (arsenic) or P (phosphorus).
  • the SiC semiconductor layer 2 includes a first main surface 3 on one side and a second main surface 4 on the other side.
  • First main surface 3 and second main surface 4 may have an off-angle inclined at an angle of 10 ° or less in the ⁇ 11-20> direction with respect to the [0001] plane of 4H-SiC single crystal .
  • the off angle is also an angle between the normal direction of the first major surface 3 and the second major surface 4 and the c-axis of 4H—SiC single crystal.
  • the off angle may be 0 ° or more and 4 ° or less. When the off angle is 0 °, the normal direction of the first major surface 3 and the c-axis of the 4H—SiC single crystal coincide with each other.
  • the off angle may be greater than 0 ° and less than 4 °.
  • the off angle is typically set in the range of 2 ° ⁇ 10% or 4 ° ⁇ 10%.
  • SiC semiconductor layer 2 has a laminated structure including SiC semiconductor substrate 5 and SiC epitaxial layer 6.
  • the SiC semiconductor substrate 5 forms the second major surface 4 of the SiC semiconductor layer 2.
  • the SiC epitaxial layer 6 forms the first major surface 3 of the SiC semiconductor layer 2.
  • the SiC semiconductor substrate 5 is formed as the drain region 7 of the MISFET.
  • the n-type impurity concentration of SiC semiconductor substrate 5 may be 1.0 ⁇ 10 15 cm ⁇ 3 or more and 1.0 ⁇ 10 21 cm ⁇ 3 or less (eg, about 1.0 ⁇ 10 18 cm ⁇ 3 ).
  • the SiC epitaxial layer 6 is made of an n-type 4H—SiC single crystal layer having the off angle.
  • SiC epitaxial layer 6 has an n-type impurity concentration less than the n-type impurity concentration of SiC semiconductor substrate 5.
  • the n-type impurity concentration of the SiC epitaxial layer 6 may be 1.0 ⁇ 10 15 cm ⁇ 3 or more and 1.0 ⁇ 10 17 cm ⁇ 3 or less (for example, about 1.0 ⁇ 10 16 cm ⁇ 3 ).
  • the carbon density of the SiC epitaxial layer 6 may be 1.0 ⁇ 10 22 cm ⁇ 3 or more and 1.0 ⁇ 10 24 cm ⁇ 3 or less (for example, about 5.0 ⁇ 10 22 cm ⁇ 3 ).
  • a p-type body region 8 is formed in the surface layer portion of the first main surface 3 of the SiC semiconductor layer 2.
  • Body region 8 is formed on the side of first main surface 3 with respect to SiC semiconductor substrate 5 at an interval.
  • the region between SiC semiconductor substrate 5 and body region 8 in SiC epitaxial layer 6 is formed as drift region 9.
  • a trench gate structure 10 is formed in the surface layer portion of the first major surface 3.
  • Trench gate structure 10 includes gate trench 11, gate oxide layer 12 and gate electrode layer 13.
  • Gate trench 11 penetrates body region 8 from first main surface 3 to drift region 9.
  • the corner connecting the side wall and the bottom wall in the gate trench 11 may have a curved surface.
  • the gate oxide layer 12 is formed as an example of a SiO 2 (silicon oxide) layer. Gate oxide layer 12 is formed in a film shape along the inner wall surface of gate trench 11 and defines a concave space in gate trench 11. The gate oxide layer 12 may be integrally provided with a covering portion which is drawn from the gate trench 11 and covers the first major surface 3.
  • SiO 2 silicon oxide
  • Gate oxide layer 12 has a connection surface 21 in contact with SiC semiconductor layer 2 and a non-connection surface 22 located on the opposite side of connection surface 21.
  • the gate oxide layer 12 may have a thickness of 20 nm or more and 500 nm or less.
  • the thickness of the gate oxide layer 12 is preferably 150 nm or less. More preferably, the thickness of the gate oxide layer 12 is 100 nm or less.
  • the thickness of the gate oxide layer 12 is the thickness between the connection surface 21 and the non-connection surface 22.
  • the thickness of the gate oxide layer 12 is also a thickness along the normal direction of the inner wall surface of the gate trench 11 in this form. That is, the thickness direction of the gate oxide layer 12 coincides with the normal direction of the inner wall surface of the gate trench 11.
  • Gate oxide layer 12 includes, in this form, first region 14 and second region 15.
  • the first region 14 is formed along the side wall of the gate trench 11.
  • the second region 15 is formed along the bottom wall of the gate trench 11.
  • the second region 15 has a second thickness T2 that is equal to or greater than the first thickness T1 of the first region 14.
  • the ratio T2 / T1 of the second thickness T2 to the first thickness T1 may be 1 or more and 3 or less.
  • the first thickness T1 may be 20 nm or more and 200 nm or less.
  • the first thickness T1 is preferably 150 nm or less.
  • the first thickness T1 is more preferably 100 nm or less.
  • the second thickness T2 may be 20 nm or more and 500 nm or less.
  • the first region 14 may have a uniform thickness.
  • the second region 15 may have a uniform thickness. When the first thickness T1 is equal to the second thickness T2, the first region 14 and the second region 15 are formed to have a uniform thickness.
  • Gate oxide layer 12 includes, in this embodiment, a bulge 16 formed along the corner on the opening side of gate trench 11.
  • the bulging portion 16 protrudes in a curved shape toward the inside of the gate trench 11.
  • the bulging portion 16 narrows the opening of the gate trench 11 at the opening of the gate trench 11.
  • Gate oxide layer 12 includes carbon density gradual area 23 and low carbon density area 24.
  • the carbon density gradual area 23 and the low carbon density area 24 respectively contain carbon atoms diffused from the gate oxide layer 12.
  • the carbon density gradual reduction area 23 and the low carbon density area 24 are formed in the area of the gate oxide layer 12 in contact with at least the body area 8 (channel CH of the MISFET to be described later).
  • the carbon density gradual reduction region 23 and the low carbon density region 24 are also formed in the gate oxide layer 12 in a region in contact with the drift region 9 and the source region 26 described later.
  • the carbon density gradual area 23 and the low carbon density area 24 are uniformly formed in the gate oxide layer 12.
  • the carbon density gradual reduction region 23 is formed in the surface layer portion of the connection surface 21 of the gate oxide layer 12.
  • the carbon density gradual reduction region 23 gradually decreases from the carbon density (1.0 ⁇ 10 22 cm ⁇ 3 or more) of the SiC epitaxial layer 6 to 1.0 ⁇ 10 19 cm ⁇ 3 or less from the connection surface 21 to the non-connection surface 22.
  • the thickness of the carbon density gradual reduction region 23 based on the connection surface 21 of the gate oxide layer 12 is 0.15 nm or more and 25 nm or less in this embodiment.
  • the low carbon density region 24 is formed in the surface layer portion of the non-connecting surface 22 of the gate oxide layer 12. More specifically, the low carbon density region 24 is formed in the gate oxide layer 12 in the region between the non-connecting surface 22 and the carbon density gradual reduction region 23.
  • the low carbon density region 24 has a thickness obtained by subtracting the thickness of the carbon density gradual reduction region 23 from the thickness of the gate oxide layer 12.
  • the proportion of the low carbon density region 24 in the gate oxide layer 12 in the thickness direction of the gate oxide layer 12 is equal to or greater than the proportion of the carbon density gradual reduction region 23 in the gate oxide layer 12. That is, the low carbon density region 24 has a thickness equal to or greater than the thickness of the low carbon density region 24.
  • the low carbon density region 24 has a carbon density of 1.0 ⁇ 10 19 cm ⁇ 3 or less. More specifically, the carbon density of the low carbon density region 24 is less than 1.0 ⁇ 10 19 cm ⁇ 3 . More specifically, the carbon density of the low carbon density region 24 has a minimum value of more than 1.0 ⁇ 10 17 cm ⁇ 3 and not more than 1.0 ⁇ 10 18 cm ⁇ 3 . The minimum value of the low carbon density region 24 is located approximately at the center of the gate oxide layer 12 in the thickness direction.
  • the low carbon density region 24 includes a first region where the carbon density is relatively high, and a second region where the carbon density is low compared to the first region.
  • the first region is located on the non-connection surface 22 side, and the second region is located on the connection surface 21 side.
  • the second region is more specifically located in the region between the first region and the low carbon density region 24.
  • the first region may have a thickness of 5 nm to 20 nm, for example.
  • the first region may have a thickness of 5 nm to 10 nm, 10 nm to 15 nm, or 15 nm to 20 nm.
  • the first region preferably has a thickness of 10 nm or more.
  • the second region preferably has a thickness of 10 nm or more.
  • the second region is preferably formed in the gate oxide layer 12 at a depth position away from the non-connection surface 22 toward the connection surface 21 by at least 10 nm or more.
  • P (phosphorus) is not added to the low carbon density region 24 and the carbon density gradual reduction region 23 (that is, the gate oxide layer 12). This "addition” does not include “diffusion”. That is, P (phosphorus) as an n-type impurity is contained in SiC semiconductor layer 2, and P (phosphorus) as the n-type impurity diffuses into gate oxide layer 12. It does not mean that phosphorus) was added.
  • the n-type impurity concentration (phosphorus density) of gate oxide layer 12 is the n-type impurity concentration (phosphorus) of SiC semiconductor layer 2 (SiC epitaxial layer 6). Less than density).
  • the n-type impurity concentration (phosphorus density) of the gate oxide layer 12 has a profile which gradually decreases from the connection surface 21 toward the non-connection surface 22. Such a profile is formed by the diffusion of P (phosphorus) from the SiC semiconductor layer 2.
  • the n-type impurity concentration (phosphorus density) of the gate oxide layer 12 is less than 1.0 ⁇ 10 16 cm ⁇ 3 .
  • gate electrode layer 13 is embedded in gate trench 11 with gate oxide layer 12 interposed therebetween. More specifically, gate electrode layer 13 is embedded in a concave space partitioned by gate oxide layer 12 in gate trench 11.
  • An interface region 25 is formed at the interface of the SiC semiconductor layer 2 in contact with the gate oxide layer 12.
  • the interface region 25 contains a nitrogen atom in this form.
  • the interface region 25 is more specifically a nitrogen-terminated surface terminated by nitrogen atoms.
  • the nitrogen density of the interface region 25 may be 5.0 ⁇ 10 18 cm ⁇ 3 or more and 5.0 ⁇ 10 21 cm ⁇ 3 or less (for example, about 5.0 ⁇ 10 20 cm ⁇ 3 ).
  • the nitrogen atoms are diffused through the gate oxide layer 12 to the interface region 25.
  • the nitrogen atom density on the connection surface 21 side of the gate oxide layer 12 is larger than the nitrogen atom density on the non-connection surface 22 side of the gate oxide layer 12.
  • n + -type source region 26 is formed in a region along the side wall of the gate trench 11 in the surface layer portion of the body region 8.
  • the n-type impurity concentration of the source region 26 may be 1.0 ⁇ 10 15 cm ⁇ 3 or more and 1.0 ⁇ 10 21 cm ⁇ 3 or less (for example, about 1.0 ⁇ 10 19 cm ⁇ 3 ).
  • the n-type impurity of the source region 26 may be As (arsenic) or P (phosphorus).
  • ap + -type contact region 27 is formed in a region spaced from the side wall of gate trench 11.
  • the p + -type contact region 27 is electrically connected to the body region 8.
  • the contact region 27 penetrates the source region 26 from the first major surface 3 to the body region 8.
  • An interlayer insulating layer 31 is formed on the first major surface 3.
  • the interlayer insulating layer 31 may contain silicon oxide or silicon nitride.
  • Interlayer insulating layer 31 contains silicon oxide in this form.
  • Interlayer insulating layer 31 covers arbitrary regions of trench gate structure 10 and first main surface 3.
  • Contact holes 32 are formed in the interlayer insulating layer 31. Contact hole 32 exposes source region 26 and contact region 27.
  • the source electrode 33 is formed on the interlayer insulating layer 31. Source electrode 33 penetrates into contact hole 32 from above interlayer insulating layer 31. Source electrode 33 is connected to source region 26 and contact region 27 in contact hole 32. A drain electrode 34 is connected to the second major surface 4 of the SiC semiconductor layer 2.
  • FIG. 2 is a process diagram for illustrating an example of a method of manufacturing the semiconductor device 1 shown in FIG. 3A to 3N are cross-sectional views for explaining an example of a method of manufacturing the semiconductor device 1 shown in FIG.
  • SiC semiconductor layer 2 is prepared (step S1 in FIG. 2).
  • the SiC semiconductor layer 2 is formed through the steps of preparing the SiC semiconductor substrate 5 and forming the SiC epitaxial layer 6 on the main surface of the SiC semiconductor substrate 5.
  • the SiC epitaxial layer 6 is formed by epitaxially growing SiC from the main surface of the SiC semiconductor substrate 5.
  • p-type body region 8 is formed in the surface layer portion of first main surface 3 of SiC semiconductor layer 2 (step S2 in FIG. 2).
  • the step of forming body region 8 includes the step of introducing a p-type impurity into the surface layer portion of first main surface 3.
  • the p-type impurity may be introduced into the surface layer portion of the first major surface 3 by ion implantation.
  • p + -type contact region 27 is formed in the surface layer portion of body region 8 (step S2 in FIG. 2).
  • the step of forming contact region 27 includes the step of introducing a p-type impurity into the surface layer portion of body region 8.
  • the p-type impurity may be introduced into the surface layer of the body region 8 by ion implantation through the ion implantation mask 41.
  • n + -type source region 26 is formed in the surface layer portion of body region 8 (step S2 in FIG. 2).
  • the step of forming source region 26 includes the step of introducing an n-type impurity into the surface layer portion of body region 8.
  • the n-type impurity may be introduced into the surface layer of the body region 8 by ion implantation through the ion implantation mask 42.
  • the order of the process of forming the body region 8, the process of forming the contact region 27 and the process of forming the source region 26 is merely an example, and is not limited to the above order.
  • the order of the process of forming the body region 8, the process of forming the contact region 27, and the process of forming the source region 26 may be reversed as necessary.
  • a hard mask 43 having a predetermined pattern is formed on first main surface 3 (step S3 in FIG. 2).
  • the hard mask 43 may include an insulator (for example, silicon oxide).
  • the hard mask 43 has an opening 44 that exposes a region in which the gate trench 11 is to be formed.
  • a portion to be gate trench 11 in first main surface 3 is removed.
  • Unnecessary portions of the SiC semiconductor layer 2 may be removed by an etching method (for example, dry etching method) through the hard mask 43. Thereby, the gate trench 11 is formed in the first major surface 3. Thereafter, the hard mask 43 is removed.
  • gate oxide layer 12 is formed on first main surface 3 (step S4 in FIG. 2).
  • the gate oxide layer 12 is formed by an oxidation method (more specifically, a thermal oxidation method).
  • the first major surface 3 is oxidized at a temperature of 1000 ° C. or more to form a gate oxide layer 12 having a thickness of 20 nm or more.
  • a gate oxide layer 12 having a thickness of about 90 nm is formed.
  • a gate oxide layer 12 having a thickness of about 60 nm is formed.
  • the oxidation treatment method may include a dry oxidation treatment method or a wet oxidation treatment method.
  • the gate oxide layer 12 is formed by dry oxidation.
  • the gate oxide layer 12 may be formed by a CVD (Chemical Vapor Deposition) method instead of the oxidation treatment method.
  • unbonded species and carbon atoms exist in the interface region 25 of the SiC semiconductor layer 2 in contact with the gate oxide layer 12.
  • the unbound species is shown abbreviated by "X” and the carbon atom is shown simplified by "C”.
  • Unbound species and carbon atoms are a factor of interface defects in the interface region 25. Excellent channel mobility can not be obtained in the presence of unbound species and carbon atoms.
  • a nitrogen atom introducing step of introducing a nitrogen atom into gate oxide layer 12 is performed (step S5 in FIG. 2).
  • the nitrogen atom introducing step is also referred to as a post deposition annealing step or a post oxidation annealing step.
  • the nitrogen atom introducing step includes the step of annealing in a gas atmosphere containing nitrogen atoms.
  • the phosphorus atom is not included in this atmosphere.
  • the nitrogen atom introducing step may be performed at a temperature of 1000 ° C. or more and 1400 ° C. or less (for example, about 1250 ° C.) and conditions of 1 minute or more and 600 minutes or less.
  • the gas containing nitrogen atoms is a mixed gas obtained by diluting NO (nitrogen monoxide) gas containing nitrogen atoms and oxygen atoms with an inert gas.
  • the inert gas may include at least one of N 2 (nitrogen) gas, Ar (argon) gas and He (helium) gas.
  • the content of the inert gas in the mixed gas may be 5% or more and 20% or less (for example, about 10%).
  • oxygen atoms in NO (nitrogen monoxide) gas are also introduced into the gate oxide layer 12.
  • the oxygen atoms react with the carbon atoms in the gate oxide layer 12.
  • the oxygen atoms also react with the carbon atoms present in the interface region 25 of the SiC semiconductor layer 2.
  • carbon atoms in the gate oxide layer 12 and carbon atoms present in the interface region 25 of the SiC semiconductor layer 2 become CO (carbon monoxide) or CO 2 (carbon dioxide).
  • interface defects between the SiC semiconductor layer 2 and the gate oxide layer 12 can be nitrogen-terminated by nitrogen atoms. Also, in this step, carbon atoms can be desorbed from the gate oxide layer 12 and the interface region 25. Therefore, interface defects between SiC semiconductor layer 2 and gate oxide layer 12 (that is, interface region 25) can be reduced.
  • an oxygen atom introducing step of introducing an oxygen atom into gate oxide layer 12 is further performed (step S6 of FIG. 2).
  • the oxygen atom introduction step includes the step of annealing in a low oxygen partial pressure atmosphere diluted with a mixed gas containing an inert gas.
  • the inert gas may contain a noble gas, a nitrogen atom or the like. Phosphorus atoms are not included in the low oxygen partial pressure atmosphere.
  • the oxygen partial pressure in the low oxygen partial pressure atmosphere may be 0.1 Pa or more and 10 Pa or less.
  • the oxygen atom introduction step may be performed at a temperature of 800 ° C. or more and 1500 ° C. or less (for example, about 1300 ° C.) and conditions of 1 minute or more and 600 minutes or less.
  • the pressure of the mixed gas may be 0.1 atm or more and 2 atm or less (for example, about 1 atm).
  • interface region 25 it is possible to further reduce interface defects between SiC semiconductor layer 2 and gate oxide layer 12 (that is, interface region 25).
  • interface defects between SiC semiconductor layer 2 and gate oxide layer 12 that is, interface region 25.
  • carbon atoms can be appropriately desorbed from the interface region 25 while suppressing oxidation of the interface region 25.
  • a base electrode layer 45 serving as a base of gate electrode layer 13 is formed on first main surface 3 (step S7 in FIG. 2).
  • the base electrode layer 45 may include conductive polysilicon.
  • the base electrode layer 45 may be formed by a CVD method.
  • the base electrode layer 45 fills the gate trench 11 and covers the first major surface 3.
  • Unnecessary portions of the base electrode layer 45 may be removed by an etching method (for example, a wet etching method) through a mask (not shown). Unwanted portions of the base electrode layer 45 may be removed until the gate oxide layer 12 is exposed. Thereby, the gate electrode layer 13 is formed.
  • interlayer insulating layer 31 is formed on first main surface 3 (step S8 in FIG. 2).
  • the interlayer insulating layer 31 may contain silicon oxide.
  • the interlayer insulating layer 31 may be formed by a CVD method.
  • source electrode 33 is formed on first main surface 3 and drain electrode 34 is formed on second main surface 4 (step S10 in FIG. 2).
  • the semiconductor device 1 is manufactured through the steps including the above.
  • FIG. 4 is a graph showing the measurement results of the carbon density of the gate oxide layer manufactured under the conditions different from that of the gate oxide layer 12.
  • the vertical axis is carbon density [cm ⁇ 3 ]
  • the horizontal axis is depth [nm]. More specifically, the horizontal axis makes the non-connecting surface 22 of the gate oxide layer 12 zero, and the depth in the direction from the non-connecting surface 22 of the gate oxide layer 12 toward the SiC semiconductor layer 2 (connecting surface 21) It represents.
  • a first curve L1, a second curve L2 and a third curve L3 are shown in FIG.
  • the first curve L1 shows the carbon density of the first reference gate oxide layer.
  • the nitrogen atom introducing step (step S5) and the oxygen atom introducing step (step S6) are not performed.
  • the thickness of the first reference gate oxide layer is about 54 nm.
  • the carbon density of the first reference gate oxide layer is good.
  • the nitrogen atom introducing step (step S5) and the oxygen atom introducing step (step S6) are not performed on the first reference gate oxide layer. Therefore, as shown in FIG. 3G, in the interface region 25 of the SiC semiconductor layer 2, unbonded species and carbon atoms exist. Therefore, excellent channel mobility can not be obtained.
  • the second reference gate oxide layer has a carbon density decreasing region 23 and a low carbon density region 24.
  • the carbon density gradual reduction region 23 is gradually reduced from the carbon density (1.0 ⁇ 10 22 cm ⁇ 3 or more) of the SiC semiconductor layer 2 to 1.0 ⁇ 10 21 cm ⁇ 3 or less.
  • the low carbon density region 24 has a carbon density of 8.0 ⁇ 10 19 cm ⁇ 3 or more and 1.0 ⁇ 10 21 cm ⁇ 3 or less.
  • Performing the annealing process in an Ar (argon) gas atmosphere is effective in reducing interface defects between the SiC semiconductor layer 2 and the gate oxide layer 12 (that is, the interface region 25).
  • the second reference gate oxide layer contains a large amount of carbon atoms, so that it is not possible to obtain an excellent withstand voltage.
  • the third reference gate oxide layer has a carbon density decreasing region 23 and a low carbon density region 24.
  • the carbon density gradual reduction region 23 is gradually reduced from the carbon density (1.0 ⁇ 10 22 cm ⁇ 3 or more) of the SiC semiconductor layer 2 to 1.0 ⁇ 10 19 cm ⁇ 3 or less.
  • the low carbon density region 24 has a carbon density of 1.0 ⁇ 10 19 cm ⁇ 3 or less.
  • the annealing process is not performed in the atmosphere containing P (phosphorus). Therefore, P (phosphorus) is not added to the third reference gate oxide layer. That is, in the third reference gate oxide layer, the introduction of charge traps is suppressed. Therefore, according to the third reference gate oxide layer (that is, the gate oxide layer 12), it is possible to suppress deterioration with time due to charge trapping.
  • FIG. 5 is a graph showing measurement results of high frequency CV characteristics and quasi-static CV characteristics.
  • the vertical axis is the ratio C / Cox of the total capacitance C of the semiconductor device 1 to the capacitance Cox of the gate oxide layer 12, and the horizontal axis is the gate voltage VG [V].
  • the first hysteresis curve HL1 shows the high frequency CV characteristic (see solid line) and the quasi-static CV characteristic (see broken line) of the fourth reference gate oxide layer.
  • the nitrogen atom introducing step (step S5) and the oxygen atom introducing step (step S6) are not performed.
  • the third hysteresis curve HL3 indicates the high frequency CV characteristics (see solid line) and the quasi-static CV characteristics (see broken line) of the sixth reference gate oxide layer.
  • the nitrogen atom introducing step (step S5) and the oxygen atom introducing step (step S6) are performed, but the step of forming the gate trench 11 (step S3) is not performed.
  • the thickness of the sixth reference gate oxide layer is about 54 nm.
  • a process of forming a sixth reference gate oxide layer is applied to the gate oxide layer 12 according to the present embodiment.
  • the formation process of the gate oxide layer 12 according to the present embodiment is different from the formation process of the sixth reference gate oxide layer in that it is formed on the inner wall of the gate trench 11 (the growth direction with respect to the SiC semiconductor layer 2).
  • the high frequency CV characteristics and the quasi-static CV characteristics of the gate oxide layer 12 according to the present embodiment are substantially equal to the high frequency CV characteristics (see solid line) and the quasi-static CV characteristics (see dashed line) of the sixth reference gate oxide layer. .
  • the difference in capacitance between the high frequency CV characteristics (see solid line) and the quasi-static CV characteristics (see dashed line) indicates the amount of charge captured by the gate oxide layer.
  • the effective fixed charge of the fourth reference gate oxide layer was about ⁇ 7.0 ⁇ 10 11 cm ⁇ 2 .
  • the effective fixed charge is calculated by multiplying the flat band voltage shift by the capacitance of the gate oxide.
  • the effective fixed charge of the fifth reference gate oxide layer was about ⁇ 1.0 ⁇ 10 11 cm ⁇ 2 .
  • the effective fixed charge of the sixth reference gate oxide layer has a positive value.
  • the effective fixed charge of the sixth reference gate oxide layer is 1.0 ⁇ 10 11 cm ⁇ 2 or more and 1.0 ⁇ 10 13 cm ⁇ 2 or less (more specifically, about 1.0 ⁇ 10 12 cm ⁇ 2 ) Met.
  • a first curve L11, a second curve L12 and a third curve L13 are shown in FIG.
  • the first curve L11 shows the characteristic of the interface state density Dit of the interface region 25 in contact with the fourth reference gate oxide layer in the SiC semiconductor layer 2.
  • the second curve L12 indicates the characteristics of the interface state density Dit of the interface region 25 in contact with the fifth reference gate oxide layer in the SiC semiconductor layer 2.
  • the third curve L13 shows the characteristic of the interface state density Dit of the interface region 25 in contact with the sixth reference gate oxide layer in the SiC semiconductor layer 2.
  • the formation process of the gate oxide layer 12 according to the present embodiment is different from the formation process of the sixth reference gate oxide layer in that it is formed on the inner wall of the gate trench 11 (the growth direction with respect to the SiC semiconductor layer 2).
  • the interface state density Dit of the gate oxide layer 12 according to the present embodiment is approximately equal to the interface state density Dit of the sixth reference gate oxide layer.
  • the interface state density Dit of the sixth reference gate oxide layer is 2.0 ⁇ 10 11 eV ⁇ 1 in the range where the energy level EC-ET from the conduction band edge is 0.3 eV or more and 0.5 eV or less. -It was less than cm- 2 . Furthermore, the interface state density Dit of the sixth reference gate oxide layer is 1.0 ⁇ 10 11 eV ⁇ 1 in the range where the energy level EC-ET from the conduction band edge is 0.4 eV or more and 0.5 eV or less. -It was less than cm- 2 .
  • the interface state density Dit and the channel mobility of the SiC semiconductor layer 2 are in a mutually contradictory relationship. That is, when the interface state density Dit is high, the channel mobility of the SiC semiconductor layer 2 is low. On the other hand, when the interface state density Dit is low, the channel mobility of the SiC semiconductor layer 2 is high.
  • FIG. 7 is a graph showing the measurement results of the current density characteristics of the gate oxide layer 12.
  • the vertical axis represents the current density [A ⁇ cm ⁇ 2 ] flowing through the gate oxide layer 12
  • the horizontal axis represents the electric field strength [MV ⁇ cm ⁇ 1 ] applied to the gate oxide layer 12.
  • the current density flowing through the gate oxide layer 12 was 1.0 ⁇ 10 ⁇ 9 A ⁇ cm ⁇ 2 or less.
  • the current density flowing through gate oxide layer 12 is 1.0 ⁇ 10 ⁇ 6 A ⁇ cm. It rose to about -2 .
  • nitrogen atoms are introduced into the gate oxide layer 12 in the nitrogen atom introducing step (step S ⁇ b> 5 in FIG. 2).
  • the nitrogen atoms reach the interface region 25 in contact with the gate oxide layer 12 in the SiC semiconductor layer 2 (see also FIG. 3H).
  • the interface defect between SiC semiconductor layer 2 and gate oxide layer 12 that is, interface region 25
  • the annealing process is performed on the gate oxide layer 12 in an atmosphere containing oxygen atoms. Thereby, oxygen atoms are introduced into the gate oxide layer 12 (see also FIG. 3I).
  • the oxygen atoms react with the carbon atoms in the gate oxide layer 12. Also, this oxygen atom reacts with the carbon atom present in the interface region 25. Thereby, carbon atoms in the gate oxide layer 12 and carbon atoms present in the interface region 25 become CO (carbon monoxide) or CO 2 (carbon dioxide).
  • the gate oxide layer 12 preferably has a relatively small thickness. More specifically, the thickness of the gate oxide layer 12 is preferably 20 nm or more and 150 nm or less. The thickness of the gate oxide layer 12 is more preferably 20 nm or more and 100 nm or less. By reducing the thickness of the gate oxide layer 12, carbon atoms in the gate oxide layer 12 can be properly released. Thereby, the carbon density in the interface region 25 can be appropriately reduced, and interface defects can be appropriately reduced.
  • FIG. 8 is a cross-sectional view showing a region where a MISFET of a planar structure is formed in a semiconductor device 51 according to a second embodiment of the present invention.
  • the structures corresponding to the structures described in the semiconductor device 1 are given the same reference numerals and the description thereof is omitted.
  • semiconductor device 51 has a basic form provided with a planar gate type MISFET.
  • the semiconductor device 51 includes an n-type SiC semiconductor layer 2.
  • a well-like p-type body region 8 is formed in the surface layer portion of the first main surface 3 of the SiC semiconductor layer 2.
  • a source region 26 and a contact region 27 are formed in the surface layer portion of the body region 8.
  • the source region 26 is formed at an interval from the periphery of the body region 8 to the inner region.
  • the contact region 27 is formed at the central portion of the body region 8 in a plan view.
  • the source region 26 may surround the contact region 27.
  • a planar gate structure 62 is formed on the first major surface 3 of the SiC semiconductor layer 2.
  • the planar gate structure 62 has a stacked structure including the gate oxide layer 12 and the gate electrode layer 13 stacked in this order on the first major surface 3.
  • the gate oxide layer 12 has a connection surface 21 in contact with the first major surface 3 and a non-connection surface 22 located on the opposite side of the connection surface 21.
  • Gate oxide layer 12 includes the aforementioned carbon density gradual area 23 and low carbon density area 24.
  • the carbon concentration profile of the gate oxide layer 12 is similar to the carbon concentration profile of the third reference gate oxide layer (ie, the gate oxide layer 12), as shown in FIG.
  • Gate electrode layer 13 faces source region 26, body region 8 and drift region 9 with gate oxide layer 12 interposed therebetween.
  • the gate electrode layer 13 may contain at least one of copper, aluminum and conductive polysilicon.
  • Interlayer insulating layer 31 is formed on the first major surface 3.
  • Interlayer insulating layer 31 covers planar gate structure 62.
  • the interlayer insulating layer 31 is formed with a contact hole 32 for exposing the source region 26 and the contact region 27.
  • FIG. 9 is a process diagram for illustrating an example of a method of manufacturing the semiconductor device 51 shown in FIG. 10A to 10L are cross-sectional views for illustrating an example of a method of manufacturing the semiconductor device 51 shown in FIG.
  • SiC semiconductor layer 2 is prepared (step S11 in FIG. 9).
  • the SiC semiconductor layer 2 is formed through the steps of preparing the SiC semiconductor substrate 5 and forming the SiC epitaxial layer 6 on the main surface of the SiC semiconductor substrate 5.
  • the SiC epitaxial layer 6 is formed by epitaxially growing SiC from the main surface of the SiC semiconductor substrate 5.
  • n + -type source region 26 is formed in the surface layer portion of body region 8 (step S12 in FIG. 9).
  • the step of forming source region 26 includes the step of introducing an n-type impurity into the surface layer portion of body region 8.
  • the n-type impurity may be introduced into the surface layer portion of the body region 8 by the ion implantation method through the ion implantation mask 72.
  • p + -type contact region 27 is formed in the surface layer portion of body region 8 (step S12 in FIG. 9).
  • the step of forming contact region 27 includes the step of introducing a p-type impurity into the surface layer portion of body region 8.
  • the p-type impurity may be introduced into the surface layer of the body region 8 by ion implantation through the ion implantation mask 73.
  • the order of the process of forming the body region 8, the process of forming the source region 26, and the process of forming the contact region 27 is merely an example, and is not limited to the above order.
  • the order of the process of forming the body region 8, the process of forming the source region 26, and the process of forming the contact region 27 may be switched as necessary.
  • gate oxide layer 12 is formed on first main surface 3 (step S13 in FIG. 9).
  • the gate oxide layer 12 is formed by an oxidation method (more specifically, a thermal oxidation method).
  • the first major surface 3 is oxidized at a temperature of 1000 ° C. or more to form a gate oxide layer 12 having a thickness of 20 nm or more.
  • a gate oxide layer 12 having a thickness of about 90 nm is formed. Further, by oxidizing the first major surface 3 at a temperature of 1300 ° C. and a condition of about 40 minutes, a gate oxide layer 12 having a thickness of about 60 nm is formed.
  • the oxidation treatment method may include a dry oxidation treatment method or a wet oxidation treatment method.
  • the gate oxide layer 12 is formed by dry oxidation.
  • the gate oxide layer 12 may be formed by a CVD (Chemical Vapor Deposition) method instead of the oxidation treatment method.
  • unbonded species and carbon atoms exist in the interface region 25 of the SiC semiconductor layer 2 in contact with the gate oxide layer 12.
  • the unbound species is shown abbreviated by "X” and the carbon atom is shown simplified by "C”.
  • Unbound species and carbon atoms are a factor of interface defects in the interface region 25. Excellent channel mobility can not be obtained in the presence of unbound species and carbon atoms.
  • the nitrogen atom introducing step may be performed at a temperature of 1000 ° C. or more and 1400 ° C. or less (for example, about 1250 ° C.) and conditions of 1 minute or more and 600 minutes or less.
  • the nitrogen atom introducing step includes the step of annealing in a gas atmosphere containing nitrogen atoms. The phosphorus atom is not included in this atmosphere.
  • the gas containing nitrogen atoms is a mixed gas obtained by diluting NO (nitrogen monoxide) gas containing nitrogen atoms and oxygen atoms with an inert gas.
  • the inert gas may include at least one of N 2 (nitrogen) gas, Ar (argon) gas or He (helium) gas.
  • the content of the inert gas in the mixed gas may be 5% or more and 20% or less (for example, about 10%).
  • nitrogen atoms in NO (nitrogen monoxide) gas are introduced into the gate oxide layer 12.
  • the nitrogen atoms combine with unbonded species present in the interface region 25 of the SiC semiconductor layer 2.
  • nitrogen atoms are indicated by “N”.
  • oxygen atoms in NO (nitrogen monoxide) gas are also introduced into the gate oxide layer 12.
  • the oxygen atoms react with the carbon atoms in the gate oxide layer 12.
  • the oxygen atoms also react with carbon atoms present in the interface region 25.
  • carbon atoms in the gate oxide layer 12 and carbon atoms present in the interface region 25 become CO (carbon monoxide) or CO 2 (carbon dioxide).
  • interface defects between SiC semiconductor layer 2 and gate oxide layer 12 can be nitrogen-terminated by nitrogen atoms.
  • carbon atoms can be desorbed from the gate oxide layer 12 and the interface region 25. Therefore, interface defects between SiC semiconductor layer 2 and gate oxide layer 12 (that is, interface region 25) can be reduced.
  • an oxygen atom introducing step of introducing an oxygen atom into gate oxide layer 12 is further carried out (step S15 of FIG. 9).
  • the oxygen atom introduction step includes the step of annealing in a low oxygen partial pressure atmosphere diluted with a mixed gas containing an inert gas.
  • the inert gas may contain a noble gas, a nitrogen atom or the like.
  • the phosphorus atom is not included in this atmosphere.
  • the oxygen partial pressure in the low oxygen partial pressure atmosphere may be 0.1 Pa or more and 10 Pa or less.
  • the oxygen atom introduction step may be performed at a temperature of 800 ° C. or more and 1500 ° C. or less (for example, about 1300 ° C.) and conditions of 1 minute or more and 600 minutes or less.
  • the pressure of the mixed gas may be 0.1 atm or more and 2 atm or less (for example, about 1 atm).
  • oxygen atoms in O 2 (oxygen) gas are introduced into the gate oxide layer 12.
  • the oxygen atoms react with the carbon atoms in the gate oxide layer 12.
  • the oxygen atoms also react with carbon atoms present in the interface region 25.
  • interface region 25 it is possible to further reduce interface defects between SiC semiconductor layer 2 and gate oxide layer 12 (that is, interface region 25).
  • interface defects between SiC semiconductor layer 2 and gate oxide layer 12 that is, interface region 25.
  • carbon atoms can be appropriately desorbed from the interface region 25 while suppressing oxidation of the interface region 25.
  • base electrode layer 74 serving as a base of gate electrode layer 13 is formed on first main surface 3 (step S16 in FIG. 9).
  • Base electrode layer 74 may include polysilicon or aluminum.
  • the base electrode layer 74 may be formed by a CVD method.
  • a mask 75 having a predetermined pattern is formed on base electrode layer 74.
  • the mask 75 covers the region of the base electrode layer 74 where the gate electrode layer 13 is to be formed.
  • Unwanted portions of the base electrode layer 74 are removed. Unwanted portions of the base electrode layer 74 may be removed by an etching method (eg, wet etching method) through the mask 75. Thereby, the gate electrode layer 13 is formed.
  • an etching method eg, wet etching method
  • interlayer insulating layer 31 is formed on first main surface 3 (step S17 in FIG. 9).
  • the interlayer insulating layer 31 may contain silicon oxide.
  • the interlayer insulating layer 31 may be formed by a CVD method.
  • a mask 76 having a predetermined pattern is formed on interlayer insulating layer 31 (step S18 in FIG. 9).
  • the mask 76 may be a resist mask containing a photosensitive resin.
  • the mask 76 has an opening 77 that exposes the area where the contact hole 32 is to be formed.
  • the semiconductor device 51 according to the present embodiment has the same structure as the semiconductor device 1 except that the planar gate structure 62 is provided instead of the trench gate structure 10. Therefore, also in the method of manufacturing semiconductor device 51 and semiconductor device 51, the same effects as the effects described for semiconductor device 1 and the method of manufacturing semiconductor device 1 can be obtained.
  • FIG. 11 is a cross-sectional view showing a region in which a trench gate type MISFET is formed in a semiconductor device 81 according to a third embodiment of the present invention.
  • the gate oxide layer 12 may be formed to have a uniform thickness.
  • the gate oxide layer 12 may be formed by the CVD method in the process of FIG. 3G.
  • the semiconductor device 81 according to the third embodiment is an example of the semiconductor device 1 including the gate oxide layer 12 formed by the CVD method.
  • the structures corresponding to the structures described in the semiconductor device 1 are given the same reference numerals and the description thereof is omitted.
  • the first thickness T1 may exceed the second thickness T2 (for example, T1> T2 ⁇ 1.1), It may be less than the second thickness T2 (for example, T1 ⁇ T2 ⁇ 0.9).
  • the semiconductor device 81 is manufactured by the same manufacturing method as the method of manufacturing the semiconductor device 1. Further, as shown in FIG. 4, the carbon concentration profile of the gate oxide layer 12 according to the semiconductor device 81 is the same as the carbon concentration profile of the third reference gate oxide layer (that is, the gate oxide layer 12).
  • the same effects as the effects described for the semiconductor device 1 and the method of manufacturing the semiconductor device 1 can be obtained.
  • step S6 in FIG. 2 and step S15 in FIG. 9 is performed after the nitrogen atom introducing step (step S5 in FIG. 2 and step S14 in FIG. 9).
  • the oxygen atom introducing step step S6 in FIG. 2 and step S15 in FIG. 9 is performed.
  • An example has been described.
  • only the oxygen atom introduction step step S6 in FIG. 2 and step S15 in FIG. 9 is performed without performing the nitrogen atom introduction step (step S5 in FIG. 2 and step S14 in FIG. 9). It may be done.
  • the nitrogen atom introducing step (step S5 in FIG. 2 and step S14 in FIG. 9) and the oxygen atom introducing step (step S6 in FIG. 2 and step S15 in FIG. 9) for the gate oxide layer 12 Has been described.
  • the nitrogen atom introducing step (Step S5 in FIG. 2 and Step S14 in FIG. 9) and the oxygen atom introducing step (Step S6 in FIG. 2 and Step S15 in FIG. 9) May be implemented.
  • Nitrogen introducing step conducted and oxygen atom introducing step (step S14 in step S5 and 9 in FIG. 2) (step S15 in step S6 and 9 of FIG. 2), a gate oxide layer 12 (SiO 2 layer) or a surface
  • a gate oxide layer 12 SiO 2 layer
  • the technical idea of desorbing carbon atoms from the region 25 can also be expected to some extent in an insulating layer containing an inorganic insulator other than SiO 2 .
  • the p-type portion may be n-type
  • the n-type portion may be p-type
  • p + -type SiC semiconductor substrate 5 may be adopted in place of the SiC semiconductor substrate 5 of n + -type.
  • the p + -type SiC semiconductor substrate 5 functions as a collector region of an IGBT (Insulated Gate Bipolar Transistor).
  • IGBT Insulated Gate Bipolar Transistor

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Electrodes Of Semiconductors (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)
  • Formation Of Insulating Films (AREA)

Abstract

半導体装置は、1.0×1022cm-3以上の炭素密度を有するSiC半導体層と、前記SiC半導体層の上に形成され、前記SiC半導体層に接する接続面、および、前記接続面の反対側に位置する非接続面を有するSiO層と、前記SiO層の前記接続面の表層部に形成され、前記SiO層の前記非接続面に向けて炭素密度が漸減する炭素密度漸減領域と、前記SiO層の前記非接続面の表層部に形成され、1.0×1019cm-3以下の炭素密度を有する低炭素密度領域と、を含む。

Description

半導体装置およびその製造方法
 本発明は、SiC半導体層の上にSiO層が形成された構造を有する半導体装置およびその製造方法に関する。
 SiC半導体層の上にSiO層が形成された構造では、SiC半導体層においてSiO層に接する界面領域における界面準位密度の増加の問題が知られている。界面準位密度の増加の原因は様々であるが、その主たる原因の一つとして、SiC半導体層およびSiO層の間の界面領域における界面欠陥を例示できる。界面欠陥は、界面領域に存する炭素原子によって形成され得る。
 界面準位密度は、チャネル移動度(キャリア移動度とも称される。)との間において相関関係を有している。より具体的には、界面準位密度の増加は、チャネル移動度の低下を引き起こす。界面準位密度を改善する手法の一例が特許文献1および特許文献2に開示されている。
 特許文献1は、SiC半導体基板の上にSiO層を形成する工程と、Ar(アルゴン)を含む不活性ガス雰囲気においてSiO層に対して熱処理を施す工程と、を含む、半導体装置の製造方法を開示している。
 特許文献2は、SiC半導体基板の上にSiO層を形成する工程と、POCl(塩化ホスホリル)を含む雰囲気においてSiO層に対して熱処理を施し、SiO層にリンを添加する工程と、を含む、半導体装置の製造方法を開示している。
特開2001-345320号公報 国際公開第2011/074237A1号
 特許文献1の製造方法では、SiC半導体層においてSiO層に接する界面領域から炭素原子を脱離させることができる。これにより、界面欠陥を低減できる。しかし、この場合、SiO層内に炭素原子が残存するので、満足する絶縁特性を得ることはできない。
 特許文献2の製造方法では、SiO層内の炭素原子および雰囲気中の酸素原子を反応させることができる。これにより、SiO層内の炭素原子を除去できるから、界面欠陥を低減できる。しかし、この場合、SiO層に添加されたP(リン)が電荷トラップとして機能するため、SiO層の経時劣化が引き起こされる虞がある。
 本発明の一実施形態は、SiC半導体層およびSiO層の間の界面欠陥を低減でき、かつ、良質なSiO層を有する半導体装置およびその製造方法を提供する。
 本発明の一実施形態は、1.0×1022cm-3以上の炭素密度を有するSiC半導体層と、前記SiC半導体層の上に形成され、前記SiC半導体層に接する接続面、および、前記接続面の反対側に位置する非接続面を有するSiO層と、前記SiO層の前記接続面の表層部に形成され、前記SiO層の前記非接続面に向けて炭素密度が漸減する炭素密度漸減領域と、前記SiO層の前記非接続面の表層部に形成され、1.0×1019cm-3以下の炭素密度を有する低炭素密度領域と、を含む、半導体装置を提供する。
 本発明の一実施形態は、SiC半導体層を用意する工程と、前記SiC半導体層の上にSiO層を形成する工程と、低酸素分圧雰囲気下でアニール処理を施すことにより、前記SiO層に酸素原子を導入する酸素原子導入工程と、を含む、半導体装置の製造方法を提供する。
 本発明における上述の、またはさらに他の目的、特徴および効果は、添付図面を参照して次に述べる実施形態の説明により明らかにされる。
図1は、本発明の第1実施形態に係る半導体装置においてトレンチゲート型のMISFETが形成された領域を示す断面図である。 図2は、図1に示す半導体装置の製造方法の一例を説明するための工程図である。 図3Aは、図1に示す半導体装置の製造方法の一例を説明するための断面図である。 図3Bは、図3Aの後の工程を示す断面図である。 図3Cは、図3Bの後の工程を示す断面図である。 図3Dは、図3Cの後の工程を示す断面図である。 図3Eは、図3Dの後の工程を示す断面図である。 図3Fは、図3Eの後の工程を示す断面図である。 図3Gは、図3Fの後の工程を示す断面図である。 図3Hは、図3Gの後の工程を示す断面図である。 図3Iは、図3Hの後の工程を示す断面図である。 図3Jは、図3Iの後の工程を示す断面図である。 図3Kは、図3Jの後の工程を示す断面図である。 図3Lは、図3Kの後の工程を示す断面図である。 図3Mは、図3Lの後の工程を示す断面図である。 図3Nは、図3Mの後の工程を示す断面図である。 図4は、ゲート酸化層の炭素密度の測定結果を示すグラフである。 図5は、ゲート酸化層の高周波CV特性および準静的CV特性の測定結果を示すグラフである。 図6は、図5のグラフをHigh-Low法に基づいて界面準位密度に変換したグラフである。 図7は、ゲート酸化層の電流密度特性の測定結果を示すグラフである。 図8は、本発明の第2実施形態に係る半導体装置においてプレーナゲート型のMISFETが形成された領域を示す断面図である。 図9は、図8に示す半導体装置の製造方法の一例を説明するための工程図である。 図10Aは、図8に示す半導体装置の製造方法の一例を説明するための断面図である。 図10Bは、図10Aの後の工程を示す断面図である。 図10Cは、図10Bの後の工程を示す断面図である。 図10Dは、図10Cの後の工程を示す断面図である。 図10Eは、図10Dの後の工程を示す断面図である。 図10Fは、図10Eの後の工程を示す断面図である。 図10Gは、図10Fの後の工程を示す断面図である。 図10Hは、図10Gの後の工程を示す断面図である。 図10Iは、図10Hの後の工程を示す断面図である。 図10Jは、図10Iの後の工程を示す断面図である。 図10Kは、図10Jの後の工程を示す断面図である。 図10Lは、図10Kの後の工程を示す断面図である。 図11は、本発明の第3実施形態に係る半導体装置においてトレンチゲート型のMISFETが形成された領域を示す断面図である。
 図1は、本発明の第1実施形態に係る半導体装置1においてMISFETが形成された領域を示す断面図である。
 半導体装置1は、トレンチゲート型のMISFET(Metal Insulator Semiconductor Field Effect Transistor)を備えた基本形態を有している。半導体装置1は、n型不純物が添加されたn型のSiC半導体層2を含む。SiC半導体層2は、この形態では、4H-SiC単結晶からなる。SiC半導体層2のn型不純物は、N(窒素)、As(ヒ素)またはP(リン)であってもよい。
 SiC半導体層2は、一方側の第1主面3および他方側の第2主面4を含む。第1主面3および第2主面4は、4H-SiC単結晶の[0001]面に対して<11-20>方向に10°以下の角度で傾斜したオフ角を有していてもよい。オフ角は、第1主面3および第2主面4の法線方向および4H-SiC単結晶のc軸の間の角度でもある。
 オフ角は、0°以上4°以下であってもよい。オフ角が0°であるとは、第1主面3の法線方向および4H-SiC単結晶のc軸が一致している状態である。オフ角は、0°を超えて4°未満であってもよい。オフ角は、典型的には、2°±10%または4°±10%の範囲に設定される。
 SiC半導体層2は、より具体的には、SiC半導体基板5およびSiCエピタキシャル層6を含む積層構造を有している。SiC半導体基板5は、SiC半導体層2の第2主面4を形成している。SiCエピタキシャル層6は、SiC半導体層2の第1主面3を形成している。
 SiC半導体基板5は、n型の4H-SiC単結晶基板からなる。4H-SiC単結晶基板の主面は、[0001]面に対して<11-20>方向に10°以下の角度で傾斜したオフ角を有していてもよい。オフ角は、より具体的には、0°以上4°以下(たとえば2°または4°)である。
 SiC半導体基板5は、MISFETのドレイン領域7として形成されている。SiC半導体基板5のn型不純物濃度は、1.0×1015cm-3以上1.0×1021cm-3以下(たとえば1.0×1018cm-3程度)であってもよい。
 SiCエピタキシャル層6は、前記オフ角を有するn型の4H-SiC単結晶層からなる。SiCエピタキシャル層6は、SiC半導体基板5のn型不純物濃度未満のn型不純物濃度を有している。SiCエピタキシャル層6のn型不純物濃度は、1.0×1015cm-3以上1.0×1017cm-3以下(たとえば1.0×1016cm-3程度)であってもよい。SiCエピタキシャル層6の炭素密度は、1.0×1022cm-3以上1.0×1024cm-3以下(たとえば5.0×1022cm-3程度)であってもよい。
 SiC半導体層2の第1主面3の表層部には、p型のボディ領域8が形成されている。ボディ領域8は、SiC半導体基板5に対して第1主面3側に間隔を空けて形成されている。SiCエピタキシャル層6においてSiC半導体基板5およびボディ領域8の間の領域は、ドリフト領域9として形成されている。
 第1主面3の表層部には、トレンチゲート構造10が形成されている。トレンチゲート構造10は、ゲートトレンチ11、ゲート酸化層12およびゲート電極層13を含む。ゲートトレンチ11は、第1主面3からボディ領域8を貫通し、ドリフト領域9に至る。ゲートトレンチ11において側壁および底壁を接続する角部は湾曲面を有していてもよい。
 ゲート酸化層12は、SiO(酸化シリコン)層の一例として形成されている。ゲート酸化層12は、ゲートトレンチ11の内壁面に沿って膜状に形成され、ゲートトレンチ11内において凹状の空間を区画している。ゲート酸化層12は、ゲートトレンチ11から引き出され、第1主面3を被覆する被覆部を一体的に有していてもよい。
 ゲート酸化層12は、SiC半導体層2に接する接続面21、および、接続面21の反対側に位置する非接続面22を有している。ゲート酸化層12は、20nm以上500nm以下の厚さを有していてもよい。ゲート酸化層12の厚さは、150nm以下であることが好ましい。ゲート酸化層12の厚さは、100nm以下であることがさらに好ましい。
 ゲート酸化層12の厚さは、接続面21および非接続面22の間の厚さである。ゲート酸化層12の厚さは、この形態では、ゲートトレンチ11の内壁面の法線方向に沿う厚さでもある。つまり、ゲート酸化層12の厚さ方向は、ゲートトレンチ11の内壁面の法線方向に一致する。
 ゲート酸化層12は、この形態では、第1領域14および第2領域15を含む。第1領域14は、ゲートトレンチ11の側壁に沿って形成されている。第2領域15は、ゲートトレンチ11の底壁に沿って形成されている。第2領域15は、第1領域14の第1厚さT1以上の第2厚さT2を有している。第1厚さT1に対する第2厚さT2の比T2/T1は、1以上3以下であってもよい。
 第1厚さT1は、20nm以上200nm以下であってもよい。第1厚さT1は、150nm以下であることが好ましい。第1厚さT1は、100nm以下であることがさらに好ましい。第2厚さT2は、20nm以上500nm以下であってもよい。第1領域14は、一様な厚さを有していてもよい。第2領域15は、一様な厚さを有していてもよい。第1厚さT1が第2厚さT2と等しい場合、第1領域14および第2領域15は、一様な厚さで形成される。
 ゲート酸化層12は、この形態では、ゲートトレンチ11の開口側の角部に沿って形成された膨出部16を含む。膨出部16は、ゲートトレンチ11の内方に向かって湾曲状に張り出している。膨出部16は、ゲートトレンチ11の開口部においてゲートトレンチ11の開口を狭めている。
 ゲート酸化層12は、炭素密度漸減領域23および低炭素密度領域24を含む。炭素密度漸減領域23および低炭素密度領域24は、ゲート酸化層12から拡散した炭素原子をそれぞれ含む。
 炭素密度漸減領域23および低炭素密度領域24は、ゲート酸化層12において少なくともボディ領域8(後述するMISFETのチャネルCH)に接する領域に形成される。炭素密度漸減領域23および低炭素密度領域24は、ゲート酸化層12においてドリフト領域9や後述するソース領域26に接する領域にも形成される。炭素密度漸減領域23および低炭素密度領域24は、ゲート酸化層12内に一様に形成されている。
 炭素密度漸減領域23は、より具体的には、ゲート酸化層12の接続面21の表層部に形成されている。炭素密度漸減領域23は、接続面21から非接続面22に向けてSiCエピタキシャル層6の炭素密度(1.0×1022cm-3以上)から1.0×1019cm-3以下まで漸減する炭素密度を有している。ゲート酸化層12の接続面21を基準とする炭素密度漸減領域23の厚さは、この形態では、0.15nm以上25nm以下である。
 低炭素密度領域24は、ゲート酸化層12の非接続面22の表層部に形成されている。低炭素密度領域24は、より具体的には、ゲート酸化層12において非接続面22および炭素密度漸減領域23の間の領域に形成されている。
 低炭素密度領域24は、ゲート酸化層12の厚さから炭素密度漸減領域23の厚さを差し引いた厚さを有している。ゲート酸化層12の厚さ方向に関して、ゲート酸化層12内において低炭素密度領域24が占める割合は、ゲート酸化層12内において炭素密度漸減領域23が占める割合以上である。つまり、低炭素密度領域24は、低炭素密度領域24の厚さ以上の厚さを有している。
 より具体的には、ゲート酸化層12の厚さ方向に関して、ゲート酸化層12内において低炭素密度領域24が占める割合は、ゲート酸化層12内において炭素密度漸減領域23が占める割合よりも大きい。つまり、低炭素密度領域24は、低炭素密度領域24の厚さを超える厚さを有している。
 低炭素密度領域24は、1.0×1019cm-3以下の炭素密度を有している。低炭素密度領域24の炭素密度は、より具体的には、1.0×1019cm-3未満である。低炭素密度領域24の炭素密度は、さらに具体的には、1.0×1017cm-3を超えて1.0×1018cm-3以下の極小値を有している。低炭素密度領域24の極小値は、ゲート酸化層12の厚さ方向のほぼ中央に位置している。
 低炭素密度領域24は、炭素密度が比較的高い第1領域、および、第1領域に比べて炭素密度が低い第2領域を含む。第1領域は非接続面22側に位置し、第2領域は接続面21側に位置している。第2領域は、より具体的には、第1領域および低炭素密度領域24の間の領域に位置している。
 第1領域は、1.0×1018cm-3を超えて1.0×1019cm-3以下の炭素密度を有している。第2領域は、1.0×1017cm-3を超えて1.0×1018cm-3以下の炭素密度を有している。低炭素密度領域24の極小値は、第2領域に位置している。
 第1領域は、一例として、5nm以上20nm以下の厚さを有していてもよい。第1領域は、5nm以上10nm以下、10nm以上15nm以下、または、15nm以上20nm以下の厚さを有していてもよい。第1領域は、10nm以上の厚さを有していることが好ましい。
 第2領域の厚さは、ゲート酸化層12の厚さに応じて異なる。第2領域は、一例として、5nm以上50nm以下の厚さを有していてもよい。第2領域は、5nm以上10nm以下、10nm以上15nm以下、15nm以上20nm以下、15nm以上20nm以下、20nm以上25nm以下、25nm以上30nm以下、30nm以上35nm以下、35nm以上40nm以下、40nm以上45nm以下、または、45nm以上50nm以下の厚さを有していてもよい。第2領域は、5nm以上20nm以下の厚さを有していてもよい。
 第2領域は、10nm以上の厚さを有していることが好ましい。第2領域は、ゲート酸化層12内において非接続面22から接続面21に向けて少なくとも10nm以上離れた深さ位置に形成されていることが好ましい。
 低炭素密度領域24および炭素密度漸減領域23(つまり、ゲート酸化層12)には、P(リン)は添加されていない。この「添加」には、「拡散」は含まれない。すなわち、SiC半導体層2内にn型不純物としてのP(リン)が含まれ、当該n型不純物としてのP(リン)がゲート酸化層12に拡散した場合には、ゲート酸化層12にP(リン)が添加されたことを意味しない。
 ゲート酸化層12がn型不純物としてのP(リン)を含む場合、ゲート酸化層12のn型不純物濃度(リン密度)は、SiC半導体層2(SiCエピタキシャル層6)のn型不純物濃度(リン密度)未満である。この場合、ゲート酸化層12のn型不純物濃度(リン密度)は、接続面21から非接続面22に向かって漸減するプロファイルを有する。このようなプロファイルは、SiC半導体層2からのP(リン)の拡散によって形成される。ゲート酸化層12のn型不純物濃度(リン密度)は、1.0×1016cm-3未満である。
 図1を再度参照して、ゲート電極層13は、ゲート酸化層12を挟んでゲートトレンチ11に埋め込まれている。ゲート電極層13は、より具体的には、ゲートトレンチ11内においてゲート酸化層12によって区画された凹状の空間に埋め込まれている。
 ゲート電極層13の上端部は、ゲート酸化層12の膨出部16に接している。これにより、ゲート電極層13の上端部は、ゲート酸化層12の膨出部16に沿って窪んだ括れ部を有している。ゲート電極層13は、タングステン、チタン、チタンナイトライド、モリブデンおよび導電性ポリシリコンのうちの少なくとも1種を含んでいてもよい。
 SiC半導体層2においてゲート酸化層12に接する境界面には、界面領域25が形成されている。界面領域25は、この形態では、窒素原子を含む。界面領域25は、より具体的には、窒素原子によって終端された窒素終端面である。界面領域25の窒素密度は、5.0×1018cm-3以上5.0×1021cm-3以下(たとえば5.0×1020cm-3程度)であってもよい。この窒素原子は、ゲート酸化層12を通って界面領域25に拡散している。ゲート酸化層12の接続面21側の窒素原子密度は、ゲート酸化層12の非接続面22側の窒素原子密度よりも大きい。
 ボディ領域8の表層部においてゲートトレンチ11の側壁に沿う領域には、n型のソース領域26が形成されている。ソース領域26のn型不純物濃度は、1.0×1015cm-3以上1.0×1021cm-3以下(たとえば1.0×1019cm-3程度)であってもよい。ソース領域26のn型不純物は、As(ヒ素)またはP(リン)であってもよい。
 ボディ領域8の表層部においてゲートトレンチ11の側壁から間隔を空けた領域には、p型のコンタクト領域27が形成されている。p型のコンタクト領域27は、ボディ領域8に電気的に接続されている。コンタクト領域27は、第1主面3からソース領域26を貫通し、ボディ領域8に至る。
 このように、第1主面3の表層部においてゲートトレンチ11の側壁に沿う領域には、ソース領域26、ボディ領域8およびドリフト領域9が、第1主面3から第2主面4側に向けてこの順に形成されている。MISFETのチャネルCHは、ボディ領域8においてゲート酸化層12を挟んでゲート電極層13と対向する領域に形成される。
 第1主面3の上には、層間絶縁層31が形成されている。層間絶縁層31は、酸化シリコンまたは窒化シリコンを含んでいてもよい。層間絶縁層31は、この形態では、酸化シリコンを含む。層間絶縁層31は、トレンチゲート構造10および第1主面3の任意の領域を被覆している。層間絶縁層31には、コンタクト孔32が形成されている。コンタクト孔32は、ソース領域26およびコンタクト領域27を露出させている。
 層間絶縁層31の上には、ソース電極33が形成されている。ソース電極33は、層間絶縁層31の上からコンタクト孔32に入り込んでいる。ソース電極33は、コンタクト孔32内において、ソース領域26およびコンタクト領域27に接続されている。SiC半導体層2の第2主面4には、ドレイン電極34が接続されている。
 図2は、図1に示す半導体装置1の製造方法の一例を説明するための工程図である。図3A~図3Nは、図1に示す半導体装置1の製造方法の一例を説明するための断面図である。
 図3Aを参照して、SiC半導体層2が用意される(図2のステップS1)。SiC半導体層2は、SiC半導体基板5を用意する工程、および、SiC半導体基板5の主面の上にSiCエピタキシャル層6を形成する工程を経て形成される。SiCエピタキシャル層6は、SiC半導体基板5の主面からSiCをエピタキシャル成長させることによって形成される。
 次に、図3Bを参照して、p型のボディ領域8が、SiC半導体層2の第1主面3の表層部に形成される(図2のステップS2)。ボディ領域8を形成する工程は、第1主面3の表層部にp型不純物を導入する工程を含む。p型不純物は、イオン注入法によって第1主面3の表層部に導入されてもよい。
 次に、図3Cを参照して、p型のコンタクト領域27が、ボディ領域8の表層部に形成される(図2のステップS2)。コンタクト領域27を形成する工程は、ボディ領域8の表層部にp型不純物を導入する工程を含む。p型不純物は、イオン注入マスク41を介するイオン注入法によってボディ領域8の表層部に導入されてもよい。
 次に、図3Dを参照して、n型のソース領域26が、ボディ領域8の表層部に形成される(図2のステップS2)。ソース領域26を形成する工程は、ボディ領域8の表層部にn型不純物を導入する工程を含む。n型不純物は、イオン注入マスク42を介するイオン注入法によって、ボディ領域8の表層部に導入されてもよい。
 ボディ領域8の形成工程、コンタクト領域27の形成工程およびソース領域26の形成工程の順序は、一例に過ぎず、前記順序に限定されない。ボディ領域8の形成工程、コンタクト領域27の形成工程およびソース領域26の形成工程の順序は、必要に応じて入れ替えられてもよい。
 次に、図3Eを参照して、所定パターンを有するハードマスク43が、第1主面3の上に形成される(図2のステップS3)。ハードマスク43は、絶縁体(たとえば酸化シリコン)を含んでいてもよい。ハードマスク43は、ゲートトレンチ11を形成すべき領域を露出させる開口44を有している。
 次に、図3Fを参照して、第1主面3においてゲートトレンチ11となる部分が除去される。SiC半導体層2の不要な部分は、ハードマスク43を介するエッチング法(たとえばドライエッチング法)によって除去されてもよい。これにより、第1主面3にゲートトレンチ11が形成される。その後、ハードマスク43は、除去される。
 次に、図3Gを参照して、ゲート酸化層12が、第1主面3に形成される(図2のステップS4)。ゲート酸化層12は、酸化処理法(より具体的には熱酸化処理法)によって形成される。この工程では、1000℃以上の温度で第1主面3を酸化させることにより、20nm以上の厚さを有するゲート酸化層12が形成される。
 たとえば、1150℃の温度および20時間程度の条件で第1主面3を酸化させることにより、90nm程度の厚さを有するゲート酸化層12が形成される。1300℃の温度および40分程度の条件で第1主面3を酸化させることにより、60nm程度の厚さを有するゲート酸化層12が形成される。
 酸化処理法は、ドライ酸化処理法またはウェット酸化処理法を含んでいてもよい。この形態では、ドライ酸化処理法によってゲート酸化層12が形成される。ゲート酸化層12は、酸化処理法に代えてCVD(Chemical Vapor Deposition)法によって形成されてもよい。
 ゲート酸化層12が形成された直後では、SiC半導体層2においてゲート酸化層12に接する界面領域25に、未結合種および炭素原子が存在する。図3Gでは、未結合種が「X」によって簡略化して示され、炭素原子が「C」によって簡略化して示されている。未結合種および炭素原子は、界面領域25における界面欠陥の一要因である。未結合種および炭素原子が存する状態では、優れたチャネル移動度を得ることはできない。
 次に、図3Hを参照して、ゲート酸化層12に窒素原子を導入する窒素原子導入工程が実施される(図2のステップS5)。窒素原子導入工程は、ポストデポジションアニール工程やポストオキシデーションアニール工程とも称される。
 窒素原子導入工程は、窒素原子を含むガス雰囲気下でアニール処理を施す工程を含む。この雰囲気にリン原子は含まれない。窒素原子導入工程は、1000℃以上1400℃以下(たとえば1250℃程度)の温度および1分以上600分以下の条件で実施されてもよい。
 窒素原子を含むガスは、この形態では、窒素原子および酸素原子を含むNO(一酸化窒素)ガスを不活性ガスで希釈した混合ガスである。不活性ガスは、N(窒素)ガス、Ar(アルゴン)ガスおよびHe(ヘリウム)ガスのうちの少なくとも1種を含んでいてもよい。混合ガス中の不活性ガスの含有率は、5%以上20%以下(たとえば10%程度)であってもよい。
 この工程では、NO(一酸化窒素)ガス中の窒素原子が、ゲート酸化層12に導入される。この窒素原子は、SiC半導体層2の界面領域25に存する未結合種と結合する。図3Hでは、窒素原子が「N」によって示されている。
 また、この工程では、NO(一酸化窒素)ガス中の酸素原子も、ゲート酸化層12に導入される。この酸素原子は、ゲート酸化層12中の炭素原子と反応する。また、この酸素原子は、SiC半導体層2の界面領域25に存する炭素原子とも反応する。これにより、ゲート酸化層12中の炭素原子およびSiC半導体層2の界面領域25に存する炭素原子が、CO(一酸化炭素)またはCO(二酸化炭素)となる。
 この工程では、SiC半導体層2およびゲート酸化層12の間(つまり、界面領域25)の界面欠陥を、窒素原子によって窒素終端させることができる。また、この工程では、ゲート酸化層12および界面領域25から炭素原子を脱離させることができる。したがって、SiC半導体層2およびゲート酸化層12の間(つまり、界面領域25)の界面欠陥を低減できる。
 図3Iを参照して、窒素原子導入工程の後、ゲート酸化層12に酸素原子を導入する酸素原子導入工程がさらに実施される(図2のステップS6)。酸素原子導入工程は、不活性ガスを含む混合ガスで希釈された低酸素分圧雰囲気下でアニール処理を施す工程を含む。不活性ガスは、希ガスや窒素原子等を含んでいてもよい。低酸素分圧雰囲気にリン原子は含まれない。
 低酸素分圧雰囲気下での酸素分圧は、0.1Pa以上10Pa以下であってもよい。酸素原子導入工程は、800℃以上1500℃以下(たとえば1300℃程度)の温度および1分以上600分以下の条件で実施されてもよい。混合ガスの圧力は、0.1気圧以上2気圧以下(たとえば1気圧程度)であってもよい。
 この工程では、O(酸素)ガス中の酸素原子が、ゲート酸化層12に導入される。この酸素原子は、ゲート酸化層12中の炭素原子と反応する。また、この酸素原子は、SiC半導体層2の界面領域25に存する炭素原子とも反応する。
 これにより、ゲート酸化層12中の炭素原子および界面領域25に存する炭素原子が、CO(一酸化炭素)またはCO(二酸化炭素)となる。その結果、ゲート酸化層12および界面領域25から炭素原子を脱離させることができる。
 よって、SiC半導体層2およびゲート酸化層12の間(つまり、界面領域25)の界面欠陥の更なる低減を図ることができる。特に、酸素分圧が0.1Pa以上10Pa以下の雰囲気下であれば、界面領域25の酸化を抑制しつつ、界面領域25から炭素原子を適切に脱離させることができる。
 次に、図3Jを参照して、ゲート電極層13のベースとなるベース電極層45が、第1主面3の上に形成される(図2のステップS7)。ベース電極層45は、導電性ポリシリコンを含んでいてもよい。ベース電極層45は、CVD法によって形成されてもよい。ベース電極層45は、ゲートトレンチ11を埋めて、第1主面3を被覆する。
 次に、図3Kを参照して、ベース電極層45の不要な部分が除去される。ベース電極層45の不要な部分は、マスク(図示せず)を介するエッチング法(たとえばウエットエッチング法)によって除去されてもよい。ベース電極層45の不要な部分は、ゲート酸化層12が露出するまで除去されてもよい。これにより、ゲート電極層13が形成される。
 次に、図3Lを参照して、層間絶縁層31が、第1主面3の上に形成される(図2のステップS8)。層間絶縁層31は、酸化シリコンを含んでいてもよい。層間絶縁層31は、CVD法によって形成されてもよい。
 次に、図3Mを参照して、所定パターンを有するマスク46が、層間絶縁層31の上に形成される(図2のステップS9)。マスク46は、感光性樹脂を含むレジストマスクであってもよい。マスク46は、コンタクト孔32を形成すべき領域を露出させる開口47を有している。
 次に、層間絶縁層31の不要な部分が除去される。層間絶縁層31の不要な部分は、マスク46を介するエッチング法(たとえばウエットエッチング法)によって除去されてもよい。この工程では、ゲート酸化層12の不要な部分も除去される。これにより、コンタクト孔32が形成される。コンタクト孔32が形成された後、マスク46は除去される。
 次に、図3Nを参照して、ソース電極33が第1主面3の上に形成され、ドレイン電極34が第2主面4の上に形成される(図2のステップS10)。以上を含む工程を経て、半導体装置1が製造される。
 図4は、ゲート酸化層12とは異なる条件で製造されたゲート酸化層の炭素密度の測定結果を示すグラフである。図4において、縦軸は炭素密度[cm-3]であり、横軸は、深さ[nm]である。横軸は、より具体的には、ゲート酸化層12の非接続面22を零とし、当該ゲート酸化層12の非接続面22からSiC半導体層2(接続面21)に向かう方向の深さを表している。
 図4には、第1曲線L1、第2曲線L2および第3曲線L3が示されている。第1曲線L1は、第1参考ゲート酸化層の炭素密度を示している。第1参考ゲート酸化層の形成工程では、窒素原子導入工程(ステップS5)および酸素原子導入工程(ステップS6)が実施されていない。第1参考ゲート酸化層の厚さは、54nm程度である。
 第2曲線L2は、第2参考ゲート酸化層の炭素密度を示している。第2参考ゲート酸化層の形成工程では、窒素原子導入工程(ステップS5)および酸素原子導入工程(ステップS6)に代えて、Ar(アルゴン)ガス雰囲気下でアニール処理が実施されている。第2参考ゲート酸化層の厚さは、54nm程度である。
 第3曲線L3は、第3参考ゲート酸化層の炭素密度を示している。第3参考ゲート酸化層の形成工程では、窒素原子導入工程(ステップS5)および酸素原子導入工程(ステップS6)が実施されているが、ゲートトレンチ11の形成工程(ステップS3)が実施されていない。第3参考ゲート酸化層の厚さは、54nm程度である。
 本実施形態に係るゲート酸化層12の形成工程には、第3参考ゲート酸化層の形成工程が適用されている。本実施形態に係るゲート酸化層12の形成工程は、ゲートトレンチ11の内壁に形成されている点(SiC半導体層2に対する成長方向)において、第3参考ゲート酸化層との形成工程と相違する。しかし、本実施形態に係るゲート酸化層12の炭素密度は、第3参考ゲート酸化層の炭素密度とほぼ等しい。
 第1曲線L1を参照して、第1参考ゲート酸化層は、炭素密度漸減領域23および低炭素密度領域24を有している。炭素密度漸減領域23は、SiC半導体層2の炭素密度(1.0×1022cm-3以上)から1.0×1019cm-3以下まで漸減している。低炭素密度領域24は、1.0×1019cm-3以下の炭素密度を有している。
 第1参考ゲート酸化層の炭素密度は、良好である。しかし、第1参考ゲート酸化層に対しては、窒素原子導入工程(ステップS5)および酸素原子導入工程(ステップS6)が実施されていない。したがって、図3Gに示されるように、SiC半導体層2の界面領域25に、未結合種および炭素原子が存在する。そのため、優れたチャネル移動度を得ることはできない。
 第2曲線L2を参照して、第2参考ゲート酸化層は、炭素密度漸減領域23および低炭素密度領域24を有している。炭素密度漸減領域23は、SiC半導体層2の炭素密度(1.0×1022cm-3以上)から1.0×1021cm-3以下まで漸減している。低炭素密度領域24は、8.0×1019cm-3以上1.0×1021cm-3以下の炭素密度を有している。
 Ar(アルゴン)ガス雰囲気下でアニール処理を実施することは、SiC半導体層2およびゲート酸化層12の間(つまり、界面領域25)における界面欠陥を低減する上で有効である。しかし、第2曲線L2から理解されるように、第2参考ゲート酸化層は、多量の炭素原子を含んでいるため、優れた絶縁耐圧を得ることはできない。
 第3曲線L3を参照して、第3参考ゲート酸化層は、炭素密度漸減領域23および低炭素密度領域24を有している。炭素密度漸減領域23は、SiC半導体層2の炭素密度(1.0×1022cm-3以上)から1.0×1019cm-3以下まで漸減している。低炭素密度領域24は、1.0×1019cm-3以下の炭素密度を有している。
 第1曲線L1および第2曲線L2との対比からも明らかなように、第3参考ゲート酸化層の炭素密度は、良好である。また、第3参考ゲート酸化層の形成工程では、窒素原子導入工程(ステップS5)が実施されているから、界面領域25の界面欠陥が窒素原子によって窒素終端させている。また、第3参考ゲート酸化層の形成工程では、酸素原子導入工程(ステップS6)が実施されているから、界面領域25から炭素原子が脱離されている。したがって、第3参考ゲート酸化層(つまり、ゲート酸化層12)によれば、優れたチャネル移動度および優れた絶縁耐圧を実現できる。
 また、第3参考ゲート酸化層に係る製造方法では、P(リン)を含む雰囲気中でアニール処理は実施されない。したがって、第3参考ゲート酸化層にP(リン)が添加されることはない。つまり、第3参考ゲート酸化層では、電荷トラップの導入が抑制されている。したがって、第3参考ゲート酸化層(つまり、ゲート酸化層12)によれば、電荷トラップに起因する経時劣化を抑制できる。
 図5は、高周波CV特性および準静的CV特性の測定結果を示すグラフである。図5において、縦軸は、ゲート酸化層12の容量Coxに対する半導体装置1の全容量Cの比率C/Coxであり、横軸は、ゲート電圧VG[V]である。
 図5には、第1ヒステリシス曲線HL1、第2ヒステリシス曲線HL2および第3ヒステリシス曲線HL3が示されている。
 第1ヒステリシス曲線HL1は、第4参考ゲート酸化層の高周波CV特性(実線参照)および準静的CV特性(破線参照)を示している。第4参考ゲート酸化層の形成工程では、窒素原子導入工程(ステップS5)および酸素原子導入工程(ステップS6)は実施されていない。
 第2ヒステリシス曲線HL2は、第5参考ゲート酸化層の高周波CV特性(実線参照)および準静的CV特性(破線参照)を示している。第5参考ゲート酸化層の形成工程では、窒素原子導入工程(ステップS5)は実施されているが、酸素原子導入工程(ステップS6)は実施されていない。
 第3ヒステリシス曲線HL3は、第6参考ゲート酸化層の高周波CV特性(実線参照)および準静的CV特性(破線参照)を示している。第6参考ゲート酸化層の形成工程では、窒素原子導入工程(ステップS5)および酸素原子導入工程(ステップS6)が実施されているが、ゲートトレンチ11の形成工程(ステップS3)が実施されていない。第6参考ゲート酸化層の厚さは、54nm程度である。
 本実施形態に係るゲート酸化層12には、第6参考ゲート酸化層の形成工程が適用されている。本実施形態に係るゲート酸化層12の形成工程は、ゲートトレンチ11の内壁に形成されている点(SiC半導体層2に対する成長方向)において、第6参考ゲート酸化層の形成工程と相違する。しかし、本実施形態に係るゲート酸化層12の高周波CV特性および準静的CV特性は、第6参考ゲート酸化層の高周波CV特性(実線参照)および準静的CV特性(破線参照)とほぼ等しい。
 高周波CV特性(実線参照)および準静的CV特性(破線参照)の間の容量差が大きい程、界面準位密度Ditが大きい。つまり、高周波CV特性(実線参照)および準静的CV特性(破線参照)の間の容量差は、ゲート酸化層によって捕獲された電荷量を示している。
 図5を参照して、第1ヒステリシス曲線HL、第2ヒステリシス曲線HL2および第3ヒステリシス曲線HL3の順に、高周波CV特性(実線参照)および準静的CV特性(破線参照)の間の容量差が小さくなっていることが分かる。
 第4参考ゲート酸化層の実効固定電荷は、-7.0×1011cm-2程度であった。実効固定電荷は、フラットバンド電圧シフトにゲート酸化層の容量値を乗じることによって算出される。第5参考ゲート酸化層の実効固定電荷は、-1.0×1011cm-2程度であった。
 第6参考ゲート酸化層の実効固定電荷は、正の値を有している。第6参考ゲート酸化層の実効固定電荷は、1.0×1011cm-2以上1.0×1013cm-2以下(より具体的には、1.0×1012cm-2程度)であった。
 図6は、図5のグラフをHigh-Low法に基づいて界面準位密度Ditに変換したグラフである。図6において、縦軸は、界面準位密度Dit[eV-1・cm-2]であり、横軸は、伝導帯端からのエネルギー準位EC-ET[eV-1]である。伝導帯端からのエネルギー準位EC-ETは、より具体的には、伝導帯のエネルギー準位ECおよびトラップ帯のエネルギー準位ETの差である。
 図6には、第1曲線L11、第2曲線L12および第3曲線L13が示されている。
 第1曲線L11は、SiC半導体層2において第4参考ゲート酸化層に接する界面領域25の界面準位密度Ditの特性を示している。第2曲線L12は、SiC半導体層2において第5参考ゲート酸化層に接する界面領域25の界面準位密度Ditの特性を示している。
 第3曲線L13は、SiC半導体層2において第6参考ゲート酸化層に接する界面領域25の界面準位密度Ditの特性を示している。本実施形態に係るゲート酸化層12の形成工程は、ゲートトレンチ11の内壁に形成されている点(SiC半導体層2に対する成長方向)において、第6参考ゲート酸化層の形成工程と相違する。しかし、本実施形態に係るゲート酸化層12の界面準位密度Ditは、第6参考ゲート酸化層の界面準位密度Ditとほぼ等しい。
 図6を参照して、第1曲線L11、第2曲線L12および第3曲線L13の順に、界面準位密度Ditが低下していることが分かる。第3曲線L13を参照して、第6参考ゲート酸化層に係る界面準位密度Ditは、伝導帯端からのエネルギー準位EC-ETが0.2eV以上0.5eV以下の範囲において4.0×1011eV-1・cm-2以下であった。
 また、第6参考ゲート酸化層に係る界面準位密度Ditは、伝導帯端からのエネルギー準位EC-ETが0.3eV以上0.5eV以下の範囲において、2.0×1011eV-1・cm-2以下であった。さらに、第6参考ゲート酸化層に係る界面準位密度Ditは、伝導帯端からのエネルギー準位EC-ETが0.4eV以上0.5eV以下の範囲において、1.0×1011eV-1・cm-2以下であった。
 界面準位密度DitおよびSiC半導体層2のチャネル移動度は、互いに背反の関係にある。すなわち、界面準位密度Ditが高い場合、SiC半導体層2のチャネル移動度は低くなる。一方、界面準位密度Ditが低い場合、SiC半導体層2のチャネル移動度は高くなる。
 第6参考ゲート酸化層に係る界面準位密度Ditは、4.0×1011eV-1・cm-2以下であり、比較的低い。第6参考ゲート酸化層を有する半導体装置(つまり、ゲート酸化層12を有する半導体装置1)では、SiC半導体層2のチャネル移動度が50cm/Vs以上である。
 図7は、ゲート酸化層12の電流密度特性の測定結果を示すグラフである。図7において、縦軸は、ゲート酸化層12を流れる電流密度[A・cm-2]であり、横軸は、ゲート酸化層12に印加された電界強度[MV・cm-1]である。
 ゲート酸化層12に印加された電界強度が6.0MV・cm-1以下の時、ゲート酸化層12を流れる電流密度は、1.0×10-9A・cm-2以下であった。ゲート酸化層12に印加された電界強度が6.0MV・cm-1から9.0MV・cm-1まで上昇すると、ゲート酸化層12を流れる電流密度は、1.0×10-6A・cm-2程度まで上昇した。
 ゲート酸化層12に印加された電界強度が9.0MV・cm-1(より具体的には、9.5MV・cm-1)以上になると、ゲート酸化層12を流れる電流密度が大幅に増加した。このことから、ゲート酸化層12は、9.0MV・cm-1(より具体的には、9.5MV・cm-1)以上という比較的高いブレークダウン電界強度を有していることが分かった。
 以上、半導体装置1の製造方法によれば、窒素原子導入工程(図2のステップS5)において窒素原子がゲート酸化層12に導入される。この窒素原子は、SiC半導体層2においてゲート酸化層12に接する界面領域25に至る(図3Hも併せて参照)。これにより、SiC半導体層2およびゲート酸化層12の間(つまり、界面領域25)の界面欠陥を、窒素原子によって窒素終端させることができる。
 また、この製造方法によれば、酸素原子導入工程(図2のステップS6)において、酸素原子を含む雰囲気下で、ゲート酸化層12に対してアニール処理が実施される。これにより、ゲート酸化層12に酸素原子が導入される(図3Iも併せて参照)。
 この酸素原子は、ゲート酸化層12中の炭素原子と反応する。また、この酸素原子は、界面領域25に存する炭素原子と反応する。これにより、ゲート酸化層12中の炭素原子および界面領域25に存する炭素原子が、CO(一酸化炭素)またはCO(二酸化炭素)となる。
 その結果、ゲート酸化層12および界面領域25から炭素原子を脱離させることができる。よって、SiC半導体層2およびゲート酸化層12の間の界面欠陥を低減できると共に、良質なゲート酸化層12を得ることができる。
 ゲート酸化層12は、比較的小さい厚さを有していることが好ましい。ゲート酸化層12の厚さは、より具体的には、20nm以上150nm以下であることが好ましい。ゲート酸化層12の厚さは、20nm以上100nm以下であることがさらに好ましい。ゲート酸化層12の厚さを小さくすることにより、ゲート酸化層12中の炭素原子を適切に離脱させることができる。これにより、界面領域25における炭素密度を適切に低減し、界面欠陥を適切に低減できる。
 図8は、本発明の第2実施形態に係る半導体装置51においてプレーナ構造のMISFETが形成された領域を示す断面図である。以下では、半導体装置1において述べた構造に対応する構造については、同一の参照符号を付して説明を省略する。
 図8を参照して、半導体装置51は、プレーナゲート型のMISFETを備えた基本形態を有している。半導体装置51は、n型のSiC半導体層2を含む。SiC半導体層2の第1主面3の表層部には、ウェル状のp型のボディ領域8が形成されている。ボディ領域8の表層部には、ソース領域26およびコンタクト領域27が形成されている。
 ソース領域26は、ボディ領域8の周縁から内方領域に間隔を空けて形成されている。コンタクト領域27は、平面視においてボディ領域8の中央部に形成されている。ソース領域26は、コンタクト領域27を取り囲んでいてもよい。
 SiC半導体層2の第1主面3には、プレーナゲート構造62が形成されている。プレーナゲート構造62は、第1主面3の上にこの順に積層されたゲート酸化層12およびゲート電極層13を含む積層構造を有している。
 ゲート酸化層12は、第1主面3の上においてソース領域26、ボディ領域8およびドリフト領域9に対向している。ゲート酸化層12は、20nm以上500nm以下の厚さを有していてもよい。ゲート酸化層12の厚さは、この形態では、第1主面3の法線方向に沿う厚さである。ゲート酸化層12の厚さは、150nm以下であることが好ましい。ゲート酸化層12の厚さは、100nm以下であることがさらに好ましい。ゲート酸化層12は、この形態では、一様な厚さで形成されている。
 ゲート酸化層12は、第1主面3に接する接続面21、および、接続面21の反対側に位置する非接続面22を有している。ゲート酸化層12は、前述の炭素密度漸減領域23および低炭素密度領域24を含む。ゲート酸化層12の炭素濃度プロファイルは、図4に示された通り、第3参考ゲート酸化層(つまり、ゲート酸化層12)の炭素濃度プロファイルと同様である。
 ゲート電極層13は、ゲート酸化層12を挟んで、ソース領域26、ボディ領域8およびドリフト領域9に対向している。ゲート電極層13は、銅、アルミニウムおよび導電性ポリシリコンのうちの少なくとも1種を含んでいてもよい。
 MISFETのチャネルCHは、ボディ領域8においてゲート酸化層12を挟んでゲート電極層13と対向する領域に形成される。SiC半導体層2においてゲート酸化層12に接する境界面には、界面領域25が形成されている。
 第1主面3の上には、層間絶縁層31が形成されている。層間絶縁層31は、プレーナゲート構造62を被覆している。層間絶縁層31には、ソース領域26およびコンタクト領域27を露出させるコンタクト孔32が形成されている。
 層間絶縁層31の上には、ソース電極33が形成されている。ソース電極33は、層間絶縁層31の上からコンタクト孔32に入り込んでいる。ソース電極33は、コンタクト孔32内においてソース領域26およびコンタクト領域27に接続されている。SiC半導体層2の第2主面4の上には、ドレイン電極34が接続されている。
 図9は、図8に示す半導体装置51の製造方法の一例を説明するための工程図である。図10A~図10Lは、図8に示す半導体装置51の製造方法の一例を説明するための断面図である。
 図10Aを参照して、SiC半導体層2が用意される(図9のステップS11)。SiC半導体層2は、SiC半導体基板5を用意する工程と、SiC半導体基板5の主面の上にSiCエピタキシャル層6を形成する工程とを経て形成される。SiCエピタキシャル層6は、SiC半導体基板5の主面からSiCをエピタキシャル成長させることによって形成される。
 次に、図10Bを参照して、p型のボディ領域8が、第1主面3の表層部に形成される(図9のステップS12)。ボディ領域8を形成する工程は、第1主面3の表層部にp型不純物を導入する工程を含む。p型不純物は、イオン注入マスク71を介するイオン注入法によって、SiC半導体層2の第1主面3の表層部に導入されてもよい。
 次に、図10Cを参照して、n型のソース領域26が、ボディ領域8の表層部に形成される(図9のステップS12)。ソース領域26を形成する工程は、ボディ領域8の表層部にn型不純物を導入する工程を含む。n型不純物は、イオン注入マスク72を介するイオン注入法によって、ボディ領域8の表層部に導入されてもよい。
 次に、図10Dを参照して、ボディ領域8の表層部にp型のコンタクト領域27が形成される(図9のステップS12)。コンタクト領域27を形成する工程は、ボディ領域8の表層部にp型不純物を導入する工程を含む。p型不純物は、イオン注入マスク73を介するイオン注入法によって、ボディ領域8の表層部に導入されてもよい。
 ボディ領域8の形成工程、ソース領域26の形成工程およびコンタクト領域27の形成工程の順序は、一例に過ぎず、前記順序に限定されない。ボディ領域8の形成工程、ソース領域26の形成工程およびコンタクト領域27の形成工程の順序は、必要に応じて入れ替えられてもよい。
 次に、図10Eを参照して、ゲート酸化層12が、第1主面3に形成される(図9のステップS13)。ゲート酸化層12は、酸化処理法(より具体的には熱酸化処理法)によって形成される。この工程では、1000℃以上の温度で第1主面3を酸化させることにより、20nm以上の厚さを有するゲート酸化層12が形成される。
 たとえば、1150℃の温度および20時間程度の条件で第1主面3を酸化させることにより、90nm程度の厚さを有するゲート酸化層12が形成される。また、1300℃の温度および40分程度の条件で第1主面3を酸化させることにより、60nm程度の厚さを有するゲート酸化層12が形成される。
 酸化処理法は、ドライ酸化処理法またはウェット酸化処理法を含んでいてもよい。この形態では、ドライ酸化処理法によってゲート酸化層12が形成される。むろん、ゲート酸化層12は、酸化処理法に代えてCVD(Chemical Vapor Deposition)法によって形成されてもよい。
 ゲート酸化層12が形成された直後では、SiC半導体層2においてゲート酸化層12に接する界面領域25に、未結合種および炭素原子が存在する。図10Eでは、未結合種が「X」によって簡略化して示され、炭素原子が「C」によって簡略化して示されている。未結合種および炭素原子は、界面領域25における界面欠陥の一要因である。未結合種および炭素原子が存する状態では、優れたチャネル移動度を得ることはできない。
 次に、図10Fを参照して、ゲート酸化層12に窒素原子を導入する窒素原子導入工程が実施される(図9のステップS14)。窒素原子導入工程は、ポストデポジションアニール工程やポストオキシデーションアニール工程とも称される。
 窒素原子導入工程は、1000℃以上1400℃以下(たとえば1250℃程度)の温度および1分以上600分以下の条件で実施されてもよい。窒素原子導入工程は、窒素原子を含むガス雰囲気下でアニール処理を施す工程を含む。この雰囲気にリン原子は含まれない。
 窒素原子を含むガスは、この形態では、窒素原子および酸素原子を含むNO(一酸化窒素)ガスを不活性ガスで希釈した混合ガスである。不活性ガスは、N(窒素)ガス、Ar(アルゴン)ガスまたはHe(ヘリウム)ガスのうちの少なくとも1種を含んでいてもよい。混合ガス中の不活性ガスの含有率は、5%以上20%以下(たとえば10%程度)であってもよい。
 この工程では、NO(一酸化窒素)ガス中の窒素原子が、ゲート酸化層12に導入される。この窒素原子は、SiC半導体層2の界面領域25に存する未結合種と結合する。図10Fでは、窒素原子が「N」によって示されている。
 また、この工程では、NO(一酸化窒素)ガス中の酸素原子も、ゲート酸化層12に導入される。この酸素原子は、ゲート酸化層12中の炭素原子と反応する。また、この酸素原子は、界面領域25に存する炭素原子とも反応する。これにより、ゲート酸化層12中の炭素原子および界面領域25に存する炭素原子が、CO(一酸化炭素)またはCO(二酸化炭素)となる。
 このように、この工程では、SiC半導体層2およびゲート酸化層12の間(つまり、界面領域25)の界面欠陥を、窒素原子によって窒素終端させることができる。また、この工程では、ゲート酸化層12および界面領域25から炭素原子を脱離させることができる。したがって、SiC半導体層2およびゲート酸化層12の間(つまり、界面領域25)の界面欠陥を低減できる。
 図10Gを参照して、窒素原子導入工程の後、ゲート酸化層12に酸素原子を導入する酸素原子導入工程がさらに実施される(図9のステップS15)。酸素原子導入工程は、不活性ガスを含む混合ガスで希釈された低酸素分圧雰囲気下でアニール処理を施す工程を含む。不活性ガスは、希ガスや窒素原子等を含んでいてもよい。この雰囲気にリン原子は含まれない。
 低酸素分圧雰囲気下での酸素分圧は、0.1Pa以上10Pa以下であってもよい。酸素原子導入工程は、800℃以上1500℃以下(たとえば1300℃程度)の温度および1分以上600分以下の条件で実施されてもよい。混合ガスの圧力は、0.1気圧以上2気圧以下(たとえば1気圧程度)であってもよい。
 この工程では、O(酸素)ガス中の酸素原子が、ゲート酸化層12に導入される。この酸素原子は、ゲート酸化層12中の炭素原子と反応する。また、この酸素原子は、界面領域25に存する炭素原子とも反応する。
 これにより、ゲート酸化層12中の炭素原子および界面領域25に存する炭素原子が、CO(一酸化炭素)またはCO(二酸化炭素)となる。その結果、ゲート酸化層12および界面領域25から炭素原子を脱離させることができる。
 よって、SiC半導体層2およびゲート酸化層12の間(つまり、界面領域25)の界面欠陥の更なる低減を図ることができる。特に、酸素分圧が0.1Pa以上10Pa以下の雰囲気下であれば、界面領域25の酸化を抑制しつつ、界面領域25から炭素原子を適切に脱離させることができる。
 次に、図10Hを参照して、ゲート電極層13のベースとなるベース電極層74が、第1主面3の上に形成される(図9のステップS16)。ベース電極層74は、ポリシリコンまたはアルミニウムを含んでいてもよい。ベース電極層74は、CVD法によって形成されてもよい。
 次に、図10Iを参照して、所定パターンを有するマスク75が、ベース電極層74の上に形成される。マスク75は、ベース電極層74においてゲート電極層13が形成されるべき領域を被覆している。
 次に、ベース電極層74の不要な部分が除去される。ベース電極層74の不要な部分は、マスク75を介するエッチング法(たとえばウエットエッチング法)によって除去されてもよい。これにより、ゲート電極層13が形成される。
 次に、図10Jを参照して、層間絶縁層31が、第1主面3の上に形成される(図9のステップS17)。層間絶縁層31は、酸化シリコンを含んでいてもよい。層間絶縁層31は、CVD法によって形成されてもよい。
 次に、図10Kを参照して、所定パターンを有するマスク76が、層間絶縁層31の上に形成される(図9のステップS18)。マスク76は、感光性樹脂を含むレジストマスクであってもよい。マスク76は、コンタクト孔32を形成すべき領域を露出させる開口77を有している。
 次に、層間絶縁層31の不要な部分が除去される。層間絶縁層31の不要な部分は、マスク76を介するエッチング法(たとえばウエットエッチング法)によって除去されてもよい。これにより、コンタクト孔32が形成される。コンタクト孔32が形成された後、マスク76は除去される。
 次に、図10Lを参照して、ソース電極33が第1主面3の上に形成され、ドレイン電極34が第2主面4の上に形成される(図9のステップS19)。以上を含む工程を経て、半導体装置51が製造される。
 以上、本実施形態に係る半導体装置51は、トレンチゲート構造10に代えてプレーナゲート構造62を有している点を除いて、半導体装置1と同様の構造を有している。したがって、半導体装置51および半導体装置51の製造方法においても、半導体装置1および半導体装置1の製造方法に対して述べた効果と同様の効果を奏することができる。
 図11は、本発明の第3実施形態に係る半導体装置81においてトレンチゲート型のMISFETが形成された領域を示す断面図である。第1実施形態に係る半導体装置1では、ゲート酸化層12が一様な厚さで形成されてもよい旨を説明した。また、第1実施形態に係る半導体装置1では、図3Gの工程においてゲート酸化層12がCVD法によって形成されてもよい旨を説明した。
 第3実施形態に係る半導体装置81は、CVD法によって形成されたゲート酸化層12を含む半導体装置1の一形態例である。以下では、半導体装置1において述べた構造に対応する構造については、同一の参照符号を付して説明を省略する。
 図11を参照して、ゲート酸化層12は、この形態では、CVD法によって形成され、一様な厚さでゲートトレンチ11の側壁および底壁を被覆する膜状に形成されている。つまり、ゲート酸化層12の第1厚さT1は、ゲート酸化層12の第2厚さT2とほぼ等しい(T1=T2(T1≒T2))。
 第1厚さT1が第2厚さT2とほぼ等しいとは、第1厚さT1が第2厚さT2の±10%以内の値(T2×0.9≦T1≦T2×1.1)を有していることを意味する。むろん、ゲート酸化層12がCVD法によって形成されているという条件下において、第1厚さT1は、第2厚さT2を超えていてもよいし(たとえば、T1>T2×1.1)、第2厚さT2未満(たとえば、T1<T2×0.9)であってもよい。
 図3A~図3Nに示された通り、半導体装置81は、半導体装置1の製造方法と同様の製造方法によって製造される。また、図4に示された通り、半導体装置81に係るゲート酸化層12の炭素濃度プロファイルは、第3参考ゲート酸化層(つまり、ゲート酸化層12)の炭素濃度プロファイルと同様である。
 以上、半導体装置81および半導体装置81の製造方法においても、半導体装置1および半導体装置1の製造方法に対して述べた効果と同様の効果を奏することができる。
 本発明の実施形態について説明したが、本発明は他の形態で実施することもできる。
 たとえば、前述の各実施形態では、窒素原子導入工程(図2のステップS5および図9のステップS14)の後、酸素原子導入工程(図2のステップS6および図9のステップS15)が実施される例について説明した。しかし、前述の各実施形態において、窒素原子導入工程(図2のステップS5および図9のステップS14)を行わずに酸素原子導入工程(図2のステップS6および図9のステップS15)だけが実施されてもよい。
 前述の各実施形態では、ゲート酸化層12に対して、窒素原子導入工程(図2のステップS5および図9のステップS14)および酸素原子導入工程(図2のステップS6および図9のステップS15)が実施される例について説明した。しかし、ゲート酸化層12以外のSiO層に対して、窒素原子導入工程(図2のステップS5および図9のステップS14)および酸素原子導入工程(図2のステップS6および図9のステップS15)が実施されてもよい。
 ゲート酸化層12以外のSiO層は、LOCOS(Local Oxidation Of Silicon)層に代表される領域分離のためのSiO層を含んでいてもよい。その他、第1主面3の酸化によって形成されるSiO層や、CVD法によって第1主面3に形成されるSiO層は、ゲート酸化層12以外のSiO層として適切である。
 窒素原子導入工程(図2のステップS5および図9のステップS14)および酸素原子導入工程(図2のステップS6および図9のステップS15)を実施し、ゲート酸化層12(SiO層)や界面領域25から炭素原子を脱離させるという技術的思想は、SiO以外の無機絶縁体を含む絶縁層にもある程度の効果を見込むことができる。
 SiO以外の無機絶縁体を含む絶縁層としては、SiN(窒化シリコン)層、Al(酸化アルミニウム)層、ONO層等を例示できる。ONO層は、SiC半導体層2の第1主面3の上にこの順に積層されたSiO層、SiN層およびSiO層を含む積層構造を有している。つまり、前述の各実施形態において、ゲート酸化層12は、SiOに代えてまたはこれに加えて、SiN層、Al層、ONO層等を含んでいてもよい。
 前述の各実施形態において、各半導体部分の導電型が反転された構造が採用されてもよい。つまり、p型の部分がn型とされ、n型の部分がp型とされてもよい。
 前述の各実施形態において、n型のSiC半導体基板5に代えてp型のSiC半導体基板5が採用されてもよい。p型のSiC半導体基板5は、IGBT(Insulated Gate Bipolar Transistor)のコレクタ領域として機能する。この場合、前述の各実施形態において、MISFETの「ソース」がIGBTの「エミッタ」と読み替えられ、MISFETの「ドレイン」がIGBTの「コレクタ」と読み替えられる。
 この明細書は、第1~第3実施形態に示された特徴の如何なる組み合わせ形態をも制限しない。第1~第3実施形態は、それらの間で任意の態様および任意の形態において組み合わせられることができる。つまり、第1~第3実施形態に示された特徴が任意の態様および任意の形態で組み合わされた形態が採用されてもよい。
 この出願は、2018年1月17日に日本国特許庁に提出された特願2018-005735号に対応しており、この出願の全開示はここに引用により組み込まれるものとする。
 本発明の実施形態について詳細に説明してきたが、これらは本発明の技術的内容を明らかにするために用いられた具体例に過ぎず、本発明はこれらの具体例に限定して解釈されるべきではなく、本発明の範囲は添付の請求の範囲によってのみ限定される。
1  半導体装置
2  SiC半導体層
5  SiC半導体基板
6  SiCエピタキシャル層
12 ゲート酸化層(SiO層)
13 ゲート電極層
21 ゲート酸化層の接続面
22 ゲート酸化層の非接続面
23 炭素密度漸減領域
24 低炭素密度領域
25 界面領域
51 半導体装置
81 半導体装置

Claims (26)

  1.  1.0×1022cm-3以上の炭素密度を有するSiC半導体層と、
     前記SiC半導体層の上に形成され、前記SiC半導体層に接する接続面、および、前記接続面の反対側に位置する非接続面を有するSiO層と、
     前記SiO層の前記接続面の表層部に形成され、前記SiO層の前記非接続面に向けて炭素密度が漸減する炭素密度漸減領域と、
     前記SiO層の前記非接続面の表層部に形成され、1.0×1019cm-3以下の炭素密度を有する低炭素密度領域と、を含む、半導体装置。
  2.  前記低炭素密度領域は、前記SiO層の前記接続面および前記非接続面の間の厚さ方向に関して、前記低炭素密度領域が占める割合以上の割合を占めている、請求項1に記載の半導体装置。
  3.  前記低炭素密度領域は、前記炭素密度漸減領域の厚さ以上の厚さを有している、請求項1または2に記載の半導体装置。
  4.  前記炭素密度漸減領域の炭素密度は、前記SiC半導体層の炭素密度から1.0×1019cm-3以下まで漸減し、
     前記低炭素密度領域は、1.0×1019cm-3未満の炭素密度を有している、請求項1~3のいずれか一項に記載の半導体装置。
  5.  前記SiO層の前記接続面側の窒素原子密度は、前記SiO層の前記非接続面側の窒素原子密度よりも大きい、請求項1~4のいずれか一項に記載の半導体装置。
  6.  前記SiC半導体層において前記SiO層に接する領域に形成され、伝導帯端からのエネルギー準位が0.2eV以上0.5eV以下の範囲において4.0×1011eV-1・cm-2以下である界面準位密度を有する界面領域をさらに含む、請求項1~5のいずれか一項に記載の半導体装置。
  7.  前記SiO層は、9.0MV・cm-1以上のブレークダウン電界強度を有している、請求項1~6のいずれか一項に記載の半導体装置。
  8.  前記SiO層は、20nm以上の厚さを有している、請求項1~7のいずれか一項に記載の半導体装置。
  9.  前記SiC半導体層は、SiC半導体基板、および、前記SiC半導体基板の上に形成されたSiCエピタキシャル層を含み、
     前記SiO層は、前記SiCエピタキシャル層の上に形成されている、請求項1~8のいずれか一項に記載の半導体装置。
  10.  前記SiCエピタキシャル層は、1.0×1015cm-3以上1.0×1017cm-3以下のn型不純物濃度を有している、請求項9に記載の半導体装置。
  11.  前記SiO層を挟んで前記SiC半導体層に対向する電極をさらに含む、請求項1~10のいずれか一項に記載の半導体装置。
  12.  前記SiC半導体層には、トレンチが形成されており、
     前記SiO層は前記トレンチの内壁面に沿って形成されている、請求項1~10のいずれか一項に記載の半導体装置。
  13.  前記SiO層の厚さは、前記トレンチの内壁面を被覆する部分に応じて異なっている、請求項12に記載の半導体装置。
  14.  前記SiO層を挟んで前記トレンチに埋め込まれた電極をさらに含む、請求項12または13に記載の半導体装置。
  15.  前記SiC半導体層において前記SiO層が形成された面とは反対側の面に形成された電極をさらに含む、請求項1~14のいずれか一項に記載の半導体装置。
  16.  前記SiC半導体層は、4H-SiC単結晶を含み、前記4H-SiC単結晶の[0001]面から<11-20>方向に対して10°以下のオフ角を有する主面を含む、請求項1~15のいずれか一項に記載の半導体装置。
  17.  SiC半導体層を用意する工程と、
     前記SiC半導体層の上にSiO層を形成する工程と、
     低酸素分圧雰囲気下でアニール処理を施すことにより、前記SiO層に酸素原子を導入する酸素原子導入工程と、を含む、半導体装置の製造方法。
  18.  前記酸素原子導入工程に先立って、窒素原子を含む雰囲気下でアニール処理を施すことにより、前記SiO層に窒素原子を導入する窒素原子導入工程をさらに含む、請求項17に記載の半導体装置の製造方法。
  19.  前記窒素原子導入工程は、酸素原子および窒素原子を含む雰囲気下でアニール処理を施す工程を含む、請求項18に記載の半導体装置の製造方法。
  20.  20nm以上の厚さを有する前記SiO層が形成される、請求項17~19のいずれか一項に記載の半導体装置の製造方法。
  21.  酸化処理法によって前記SiO層が形成される、請求項17~20のいずれか一項に記載の半導体装置の製造方法。
  22.  CVD(Chemical Vapor Deposition)法によって前記SiO層が形成される、請求項17~20のいずれか一項に記載の半導体装置の製造方法。
  23.  前記SiC半導体層を用意する工程は、SiC半導体基板を用意する工程、および、エピタキシャル成長法によって前記SiC半導体基板の上にSiCエピタキシャル層を形成する工程を含み、
     前記SiO層は、前記SiCエピタキシャル層の上に形成される、請求項17~22のいずれか一項に記載の半導体装置の製造方法。
  24.  1.0×1015cm-3以上1.0×1017cm-3以下のn型不純物濃度を有する前記SiCエピタキシャル層が形成される、請求項23に記載の半導体装置の製造方法。
  25.  前記SiC半導体層は、4H-SiC単結晶を含み、前記4H-SiC単結晶の[0001]面から<11-20>方向に対して10°以下のオフ角を有する主面を含む、請求項17~24のいずれか一項に記載の半導体装置の製造方法。
  26.  前記SiO層を挟んで前記SiC半導体層に対向する電極を形成する工程をさらに含む、請求項17~25のいずれか一項に記載の半導体装置の製造方法。
PCT/JP2019/000540 2018-01-17 2019-01-10 半導体装置およびその製造方法 WO2019142722A1 (ja)

Priority Applications (9)

Application Number Priority Date Filing Date Title
JP2019566441A JP7241704B2 (ja) 2018-01-17 2019-01-10 半導体装置およびその製造方法
CN201980008940.6A CN111684607A (zh) 2018-01-17 2019-01-10 半导体装置及其制造方法
DE212019000027.4U DE212019000027U1 (de) 2018-01-17 2019-01-10 Halbleitervorrichtung
DE112019000292.9T DE112019000292T5 (de) 2018-01-17 2019-01-10 Halbleitervorrichtung und verfahren zu ihrer herstellung
US16/962,160 US11502172B2 (en) 2018-01-17 2019-01-10 Semiconductor device with carbon-density-decreasing region
US17/955,067 US11996449B2 (en) 2018-01-17 2022-09-28 Semiconductor device with carbon-density-decreasing region
JP2022178306A JP7512348B2 (ja) 2018-01-17 2022-11-07 半導体装置およびその製造方法
US18/636,310 US20240258380A1 (en) 2018-01-17 2024-04-16 Semiconductor device with carbon-density-decreasing region
JP2024103268A JP2024111334A (ja) 2018-01-17 2024-06-26 半導体装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018005735 2018-01-17
JP2018-005735 2018-01-17

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US16/962,160 A-371-Of-International US11502172B2 (en) 2018-01-17 2019-01-10 Semiconductor device with carbon-density-decreasing region
US17/955,067 Continuation US11996449B2 (en) 2018-01-17 2022-09-28 Semiconductor device with carbon-density-decreasing region

Publications (1)

Publication Number Publication Date
WO2019142722A1 true WO2019142722A1 (ja) 2019-07-25

Family

ID=67301481

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/000540 WO2019142722A1 (ja) 2018-01-17 2019-01-10 半導体装置およびその製造方法

Country Status (5)

Country Link
US (3) US11502172B2 (ja)
JP (3) JP7241704B2 (ja)
CN (1) CN111684607A (ja)
DE (2) DE212019000027U1 (ja)
WO (1) WO2019142722A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022047349A3 (en) * 2020-08-31 2022-03-31 Genesic Semiconductor Inc. Design and manufacture of improved power devices
JP2022075445A (ja) * 2020-11-06 2022-05-18 國立交通大學 U字型ゲートmosfetのトレンチコーナー部酸化物層の厚さを増加させる製造方法

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7319072B2 (ja) * 2019-03-28 2023-08-01 ローム株式会社 半導体装置
TWI754367B (zh) * 2020-09-01 2022-02-01 富鼎先進電子股份有限公司 溝槽式半導體元件製造方法
JP7271484B2 (ja) * 2020-09-15 2023-05-11 株式会社東芝 半導体装置、半導体装置の製造方法、インバータ回路、駆動装置、車両、及び、昇降機
US11183566B1 (en) * 2021-05-05 2021-11-23 Genesic Semiconductor Inc. Performance silicon carbide power devices
US11908933B2 (en) 2022-03-04 2024-02-20 Genesic Semiconductor Inc. Designs for silicon carbide MOSFETs

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012127821A1 (ja) * 2011-03-23 2012-09-27 パナソニック株式会社 半導体装置およびその製造方法
JP2012238887A (ja) * 2012-08-06 2012-12-06 Fuji Electric Co Ltd トレンチmos型炭化珪素半導体装置の製造方法
JP2013171875A (ja) * 2012-02-17 2013-09-02 Rohm Co Ltd 半導体装置
JP2013232533A (ja) * 2012-04-27 2013-11-14 Rohm Co Ltd 半導体装置および半導体装置の製造方法
JP2015138960A (ja) * 2014-01-24 2015-07-30 ローム株式会社 半導体装置
JP2017034003A (ja) * 2015-07-29 2017-02-09 株式会社東芝 半導体装置
JP2017216306A (ja) * 2016-05-30 2017-12-07 株式会社東芝 半導体装置、半導体装置の製造方法、インバータ回路、駆動装置、車両、及び、昇降機

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2860138B2 (ja) * 1989-03-29 1999-02-24 キヤノン株式会社 半導体装置およびこれを用いた光電変換装置
JP3372528B2 (ja) 2000-06-02 2003-02-04 独立行政法人産業技術総合研究所 半導体装置の製造方法
US20070075362A1 (en) 2005-09-30 2007-04-05 Ching-Yuan Wu Self-aligned schottky-barrier clamped trench DMOS transistor structure and its manufacturing methods
JP2008244456A (ja) 2007-02-28 2008-10-09 Denso Corp 炭化珪素半導体装置およびその製造方法
CN104617145B (zh) 2009-04-13 2019-11-19 罗姆股份有限公司 半导体装置
US8841682B2 (en) * 2009-08-27 2014-09-23 Cree, Inc. Transistors with a gate insulation layer having a channel depleting interfacial charge and related fabrication methods
JP5610492B2 (ja) 2009-12-16 2014-10-22 国立大学法人 奈良先端科学技術大学院大学 SiC半導体素子およびその作製方法
JP2014110402A (ja) 2012-12-04 2014-06-12 Rohm Co Ltd 半導体装置
WO2014103186A1 (ja) 2012-12-27 2014-07-03 パナソニック株式会社 炭化珪素半導体装置およびその製造方法
US9219122B2 (en) * 2013-03-13 2015-12-22 Global Power Technologies Group, Inc. Silicon carbide semiconductor devices
JP6265122B2 (ja) 2013-03-19 2018-01-24 住友電気工業株式会社 炭化珪素半導体装置およびその製造方法
WO2015008385A1 (ja) 2013-07-19 2015-01-22 株式会社日立パワーデバイス パワーモジュール
JP5800107B2 (ja) 2013-07-31 2015-10-28 三菱電機株式会社 炭化珪素半導体装置
JP2015156429A (ja) * 2014-02-20 2015-08-27 住友電気工業株式会社 炭化珪素半導体装置およびその製造方法
JP6552950B2 (ja) 2015-03-24 2019-07-31 株式会社東芝 半導体装置、半導体装置の製造方法、インバータ回路、駆動装置、車両、及び、昇降機
DE102016112877B4 (de) 2015-09-07 2021-07-15 Fuji Electric Co., Ltd. Verfahren zum Herstellen einer Halbleitervorrichtung und für das Verfahren verwendete Halbleiterherstellungsvorrichtung
JP6667809B2 (ja) * 2016-05-30 2020-03-18 株式会社東芝 半導体装置、インバータ回路、駆動装置、車両、及び、昇降機

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012127821A1 (ja) * 2011-03-23 2012-09-27 パナソニック株式会社 半導体装置およびその製造方法
JP2013171875A (ja) * 2012-02-17 2013-09-02 Rohm Co Ltd 半導体装置
JP2013232533A (ja) * 2012-04-27 2013-11-14 Rohm Co Ltd 半導体装置および半導体装置の製造方法
JP2012238887A (ja) * 2012-08-06 2012-12-06 Fuji Electric Co Ltd トレンチmos型炭化珪素半導体装置の製造方法
JP2015138960A (ja) * 2014-01-24 2015-07-30 ローム株式会社 半導体装置
JP2017034003A (ja) * 2015-07-29 2017-02-09 株式会社東芝 半導体装置
JP2017216306A (ja) * 2016-05-30 2017-12-07 株式会社東芝 半導体装置、半導体装置の製造方法、インバータ回路、駆動装置、車両、及び、昇降機

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022047349A3 (en) * 2020-08-31 2022-03-31 Genesic Semiconductor Inc. Design and manufacture of improved power devices
JP2022075445A (ja) * 2020-11-06 2022-05-18 國立交通大學 U字型ゲートmosfetのトレンチコーナー部酸化物層の厚さを増加させる製造方法
JP7141758B2 (ja) 2020-11-06 2022-09-26 國立交通大學 U字型ゲートmosfetのトレンチコーナー部酸化物層の厚さを増加させる製造方法

Also Published As

Publication number Publication date
US11996449B2 (en) 2024-05-28
CN111684607A (zh) 2020-09-18
US11502172B2 (en) 2022-11-15
US20240258380A1 (en) 2024-08-01
JP2022190166A (ja) 2022-12-22
JP2024111334A (ja) 2024-08-16
JPWO2019142722A1 (ja) 2021-01-07
JP7512348B2 (ja) 2024-07-08
JP7241704B2 (ja) 2023-03-17
DE212019000027U1 (de) 2019-10-18
US20230019556A1 (en) 2023-01-19
US20200403069A1 (en) 2020-12-24
DE112019000292T5 (de) 2020-10-01

Similar Documents

Publication Publication Date Title
JP7241704B2 (ja) 半導体装置およびその製造方法
US11610992B2 (en) Semiconductor device
US8143094B2 (en) Silicon carbide semiconductor device and manufacturing method thereof
US20090134402A1 (en) Silicon carbide mos field-effect transistor and process for producing the same
JP5243671B1 (ja) 半導体装置及びその製造方法
US8415241B2 (en) Method of manufacturing silicon carbide semiconductor device
WO2013114477A1 (ja) 半導体装置及びその製造方法
JP2006066439A (ja) 半導体装置およびその製造方法
JP2018082114A (ja) 半導体装置の製造方法
JP2019004010A (ja) 半導体装置およびその製造方法
WO2012105170A1 (ja) 半導体装置およびその製造方法
US7391077B2 (en) Vertical type semiconductor device
US9960040B2 (en) Manufacturing method of silicon carbide semiconductor device
JP4075150B2 (ja) 炭化珪素半導体装置及びその製造方法
JP2018206872A (ja) 半導体装置
JP7152117B2 (ja) 半導体装置の製造方法および半導体装置
JP2000208606A (ja) 半導体装置及びその製造方法
JP5223040B1 (ja) 半導体装置及びその製造方法
JP7462394B2 (ja) 炭化珪素半導体装置および炭化珪素半導体装置の製造方法
US20220406931A1 (en) Silicon carbide semiconductor device and method of manufacturing silicon carbide semiconductor device
CN115939219A (zh) 半导体结构及形成方法
JP2022548223A (ja) トレンチゲート型SiCMOSFETデバイス及びその製造方法
JP2013232563A (ja) 炭化珪素半導体装置の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19741152

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019566441

Country of ref document: JP

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 19741152

Country of ref document: EP

Kind code of ref document: A1