WO2014103186A1 - 炭化珪素半導体装置およびその製造方法 - Google Patents

炭化珪素半導体装置およびその製造方法 Download PDF

Info

Publication number
WO2014103186A1
WO2014103186A1 PCT/JP2013/007095 JP2013007095W WO2014103186A1 WO 2014103186 A1 WO2014103186 A1 WO 2014103186A1 JP 2013007095 W JP2013007095 W JP 2013007095W WO 2014103186 A1 WO2014103186 A1 WO 2014103186A1
Authority
WO
WIPO (PCT)
Prior art keywords
silicon carbide
carbide semiconductor
layer
region
atom concentration
Prior art date
Application number
PCT/JP2013/007095
Other languages
English (en)
French (fr)
Inventor
康太郎 田中
内田 正雄
庭山 雅彦
楠本 修
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Priority to CN201380010965.2A priority Critical patent/CN104137266B/zh
Priority to US14/377,379 priority patent/US9209262B2/en
Priority to JP2014517311A priority patent/JP5608840B1/ja
Publication of WO2014103186A1 publication Critical patent/WO2014103186A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/0445Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising crystalline silicon carbide
    • H01L21/045Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising crystalline silicon carbide passivating silicon carbide surfaces
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/0445Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising crystalline silicon carbide
    • H01L21/048Making electrodes
    • H01L21/049Conductor-insulator-semiconductor electrodes, e.g. MIS contacts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/28008Making conductor-insulator-semiconductor electrodes
    • H01L21/28017Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon
    • H01L21/28158Making the insulator
    • H01L21/28167Making the insulator on single crystalline silicon, e.g. using a liquid, i.e. chemical oxidation
    • H01L21/28185Making the insulator on single crystalline silicon, e.g. using a liquid, i.e. chemical oxidation with a treatment, e.g. annealing, after the formation of the gate insulator and before the formation of the definitive gate conductor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/28008Making conductor-insulator-semiconductor electrodes
    • H01L21/28017Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon
    • H01L21/28158Making the insulator
    • H01L21/28167Making the insulator on single crystalline silicon, e.g. using a liquid, i.e. chemical oxidation
    • H01L21/28202Making the insulator on single crystalline silicon, e.g. using a liquid, i.e. chemical oxidation in a nitrogen-containing ambient, e.g. nitride deposition, growth, oxynitridation, NH3 nitridation, N2O oxidation, thermal nitridation, RTN, plasma nitridation, RPN
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/10Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode not carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/1095Body region, i.e. base region, of DMOS transistors or IGBTs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/16Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only elements of Group IV of the Periodic Table
    • H01L29/1608Silicon carbide
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/49Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET
    • H01L29/51Insulating materials associated therewith
    • H01L29/511Insulating materials associated therewith with a compositional variation, e.g. multilayer structures
    • H01L29/513Insulating materials associated therewith with a compositional variation, e.g. multilayer structures the variation being perpendicular to the channel plane
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/49Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET
    • H01L29/51Insulating materials associated therewith
    • H01L29/517Insulating materials associated therewith the insulating material comprising a metallic compound, e.g. metal oxide, metal silicate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/49Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET
    • H01L29/51Insulating materials associated therewith
    • H01L29/518Insulating materials associated therewith the insulating material containing nitrogen, e.g. nitride, oxynitride, nitrogen-doped material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66053Multistep manufacturing processes of devices having a semiconductor body comprising crystalline silicon carbide
    • H01L29/66068Multistep manufacturing processes of devices having a semiconductor body comprising crystalline silicon carbide the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66674DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/66712Vertical DMOS transistors, i.e. VDMOS transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/70Bipolar devices
    • H01L29/72Transistor-type devices, i.e. able to continuously respond to applied control signals
    • H01L29/739Transistor-type devices, i.e. able to continuously respond to applied control signals controlled by field-effect, e.g. bipolar static induction transistors [BSIT]
    • H01L29/7393Insulated gate bipolar mode transistors, i.e. IGBT; IGT; COMFET
    • H01L29/7395Vertical transistors, e.g. vertical IGBT
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7802Vertical DMOS transistors, i.e. VDMOS transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7827Vertical transistors
    • H01L29/7828Vertical transistors without inversion channel, e.g. vertical ACCUFETs, normally-on vertical MISFETs

Definitions

  • the present application relates to a wide band gap semiconductor device using silicon carbide.
  • Wide band gap semiconductors are attracting attention as semiconductor materials for power devices and the like because they have a higher withstand voltage than silicon semiconductors and can pass large currents.
  • silicon carbide semiconductors using silicon carbide SiC
  • MISFET metal-insulator-semiconductor field-effect transistor
  • MOSFET Metal-Oxide-Semiconductor Field-Effect Transistor
  • SiC-MOSFETs are capable of high-speed operation, and are attracting attention as semiconductor devices that are key to realizing miniaturization and low loss of power units.
  • the SiC-MOSFET has a problem that the channel mobility is significantly lower than the theoretical limit.
  • the reason why the channel mobility is low in the SiC-MOSFET is considered to be that there are many defects such as interface states at the interface between the silicon carbide semiconductor and the silicon oxide film (SiO 2 film). .
  • it is considered to perform nitriding after forming the oxide film by thermal oxidation or chemical vapor deposition (CVD).
  • CVD chemical vapor deposition
  • doping the high-concentration nitrogen at the interface between the oxide film and the silicon carbide semiconductor can reduce the interface state density and improve the channel mobility.
  • heat treatment is performed at 1175 ° C. for 2 hours in a nitrogen atmosphere, and nitrogen having an area concentration of, for example, 2 ⁇ 10 14 cm ⁇ 2 or more is applied to the interface between the silicon oxide film and the silicon carbide semiconductor. It is disclosed to introduce.
  • Patent Document 1 discloses that when a negative bias is applied to the gate electrode when the SiC-MOSFET is off, a phenomenon occurs in which the threshold voltage (Vth) fluctuates with time (shifts to the negative side). Yes. Patent Document 1 describes that the above phenomenon can occur when hole traps exist at high density near the interface between a silicon oxide film and a silicon carbide semiconductor, and positive charge holes are gradually trapped. Has been. In order to suppress this variation, it has been proposed to suppress the nitrogen atom concentration at the interface between the silicon carbide semiconductor and the silicon oxide film to be smaller than that of Non-Patent Document 1 (less than 1.6 ⁇ 10 14 cm ⁇ 2 ). ing.
  • NBTI Negative Bias Temperature Instability
  • the present inventor has found that the threshold voltage may vary even when a positive bias is applied to the gate electrode in the SiC-MOSFET.
  • the amount of variation in threshold voltage that occurs when a positive bias is applied may be extremely large (eg, several tens of mV to several V).
  • One embodiment of the present invention has been made in view of the above circumstances, and provides a silicon carbide semiconductor device in which threshold fluctuations caused by applying a positive bias to a gate electrode are suppressed.
  • a silicon carbide semiconductor device includes a silicon carbide semiconductor layer, a gate insulating layer disposed on the silicon carbide semiconductor layer and including a silicon oxide film, and a gate electrode disposed on the gate insulating layer. And a carbon transition layer located between the silicon carbide semiconductor layer and the silicon oxide film and having a carbon atom concentration of 10% to 90% with respect to the carbon atom concentration in the silicon carbide semiconductor layer, In the transition layer, in the region closer to the silicon oxide film than the position where the nitrogen atom concentration is maximum, the ratio of the integrated value of the nitrogen atom concentration to the integrated value of the carbon atom concentration is 0.11 or more.
  • a method for manufacturing a silicon carbide semiconductor device includes a step (a) of preparing a silicon carbide semiconductor layer and a step of forming a gate insulating layer including a silicon oxide film on the surface of the silicon carbide semiconductor layer. And a step of forming a carbon transition layer having a carbon atom concentration of 10% or more and 90% or less with respect to the carbon atom concentration in the silicon carbide semiconductor layer between the silicon carbide semiconductor layer and the silicon oxide film ( b) and a step of introducing nitrogen atoms into at least the carbon transition layer, whereby carbon atoms in a region of the carbon transition layer that is closer to the silicon oxide film than a position where the nitrogen atom peaks. And a step (c) in which the ratio of the integrated value of the nitrogen atom concentration to the integrated value of the concentration is 0.11 or more.
  • threshold fluctuation caused by applying a positive bias to the gate electrode can be suppressed.
  • (A) is a fragmentary sectional view showing MOS structure of a silicon carbide semiconductor device concerning one embodiment of the present invention, and (b) illustrates a silicon carbide semiconductor device (vertical MOSFET) concerning one embodiment. It is sectional drawing.
  • (A) and (b) is a schematic diagram for explaining the carbon transition layer of SiO 2 / SiC interface area. It is a figure which illustrates the measurement result of the profile of the thickness direction of carbon atom concentration and nitrogen atom concentration.
  • shaft represents the threshold variation
  • the ratio R of the integral value of the nitrogen concentration to carbon atom concentration which is a diagram for explaining the correlation between the threshold variation [Delta] Vth s due to the positive bias of 300 seconds. It is sectional drawing which illustrates the silicon carbide semiconductor device (horizontal MOSFET) which concerns on other embodiment of this invention.
  • threshold fluctuation when a positive bias is applied to the gate electrode refers to the threshold value Vth1 before the positive bias is applied to the gate electrode, after the positive bias is applied to the gate electrode. This means that the threshold value Vth2 varies. Further, a difference (Vth2 ⁇ Vth1) between these threshold voltages is defined as a threshold voltage fluctuation amount ⁇ Vth (V).
  • a gate oxide film may be formed by thermally oxidizing the surface of the SiC semiconductor layer.
  • silicon atoms in the SiC semiconductor layer are combined with oxygen to become SiO 2 (Si + O 2 ⁇ SiO 2 ), and carbon atoms are combined with oxygen to be sublimated to COn (C + nO ⁇ CO n ).
  • some of the carbon atoms are not sublimated and remain near the interface between the SiC semiconductor layer and the gate oxide film (SiC / SiO 2 interface).
  • the remaining carbon atoms are, for example, 1.0 ⁇ 10 19 cm ⁇ 3 or more over a region having a thickness of several nm including the SiC / SiO 2 interface. It was inferred that the threshold voltage fluctuates greatly due to the presence of defect levels (or traps) in this region due to the residual carbon. Further, it has been found that the threshold fluctuation due to residual carbon mainly occurs during a short period of time (for example, within 300 seconds) immediately after the application of the positive bias to the gate electrode is started. In this specification, the threshold fluctuation that occurs when the cumulative voltage application time to the gate electrode is relatively short is abbreviated as “initial fluctuation”.
  • the thickness of the region where residual carbon exists in the vicinity of the SiC / SiO 2 interface, the amount of residual carbon, and the like are not constant and change depending on the oxidation rate in thermal oxidation and the thickness of the thermal oxide film.
  • the present inventor has found that the fluctuation of the threshold voltage due to the residual carbon can be reduced by utilizing the effect of substituting or terminating the residual carbon with the nitrogen atom, and has reached the present invention.
  • a silicon carbide semiconductor device includes a silicon carbide semiconductor layer, a gate insulating layer that is disposed on the silicon carbide semiconductor layer and includes a silicon oxide film, and a gate electrode that is disposed on the gate insulating layer. And a carbon transition layer located between the silicon carbide semiconductor layer and the silicon oxide film and having a carbon atom concentration of 10% to 90% with respect to the carbon atom concentration in the silicon carbide semiconductor layer, In the transition layer, in the region closer to the silicon oxide film than the position where the nitrogen atom concentration is maximum, the ratio of the integrated value of the nitrogen atom concentration to the integrated value of the carbon atom concentration is 0.11 or more.
  • the silicon carbide semiconductor device is provided, for example, on a substrate that supports the silicon carbide semiconductor layer, a drain electrode provided on the opposite side of the substrate from the silicon carbide semiconductor layer, and the silicon carbide semiconductor layer.
  • the silicon carbide semiconductor layer is disposed in the body region, the drift region of the first conductivity type, the body region of the second conductivity type disposed adjacent to the drift region, and the source electrode.
  • An impurity region of a first conductivity type, and a channel layer provided between the body region and the gate insulating layer so as to connect the drift region and the impurity region, and the source electrode is
  • the carbon transition layer may be located between the channel layer and the silicon oxide film and electrically connected to the impurity region.
  • the silicon carbide semiconductor device further includes, for example, a substrate that supports the silicon carbide semiconductor layer, and a source electrode and a drain electrode provided on the silicon carbide semiconductor layer, and the silicon carbide semiconductor layer includes: A drift region of one conductivity type, a body region of a second conductivity type disposed adjacent to the drift region, a first impurity region of a first conductivity type disposed at a distance from each other in the body region, and A second impurity region; and a channel layer provided to connect the first impurity region and the second impurity region between the body region and the gate insulating layer;
  • the drain region is electrically connected to the first impurity region, the drain electrode is electrically connected to the second impurity region, and the carbon transition layer is formed between the channel layer and the silicon oxide film. It may be located in.
  • the profile in the depth direction of the nitrogen atom concentration has, for example, a peak in the carbon transition layer.
  • a method for manufacturing a silicon carbide semiconductor device includes a step (a) of preparing a silicon carbide semiconductor layer and a step of forming a gate insulating layer including a silicon oxide film on the surface of the silicon carbide semiconductor layer.
  • a carbon transition layer having a carbon atom concentration of 10% to 90% with respect to the carbon atom concentration in the silicon carbide semiconductor layer is formed between the silicon carbide semiconductor layer and the silicon oxide film.
  • a step (c) in which the ratio of the integrated value of the nitrogen atom concentration to the integrated value of the atom concentration is 0.11 or more.
  • the step (b) may include a step of thermally oxidizing the surface of the silicon carbide semiconductor layer to form the silicon oxide film.
  • the step (c) includes, for example, a step of heat-treating the silicon carbide semiconductor layer on which the gate insulating layer is formed at a temperature of 1200 ° C. or higher in an atmosphere containing nitrogen.
  • an appropriate amount of nitrogen is introduced into a region where residual carbon exists in the vicinity of the SiC / SiO 2 interface in accordance with the amount of residual carbon.
  • “in the vicinity of the SiC / SiO 2 interface” refers to a layer having a predetermined thickness located between the silicon carbide layer and the silicon oxide film.
  • the silicon carbide layer, the silicon oxide film, and the carbon transition layer located therebetween are defined by the carbon atom concentration, this corresponds to the carbon transition layer.
  • Patent Document 1 and Non-Patent Document 1 disclose that nitriding is performed, but it is not recognized that the cause of threshold fluctuation due to the application of a positive bias to the gate electrode is due to residual carbon. There is no mention of the relationship between the carbon atom concentration and the nitrogen atom concentration in the layer.
  • FIG. 1A is a partial cross-sectional view for illustrating the silicon carbide semiconductor device of this embodiment.
  • the silicon carbide semiconductor device of the present embodiment includes a silicon carbide semiconductor layer 102, a gate insulating layer 104 disposed on the silicon carbide semiconductor layer 102 and including a silicon oxide film (SiO 2 film) 104 a, and a gate insulating layer 104.
  • the gate electrode 105 is disposed.
  • a structure including silicon carbide semiconductor layer 102, gate insulating layer 104, and gate electrode 105 is also referred to as a “MOS structure”.
  • a layer 110 having a carbon atom concentration of 10% to 90% with respect to the carbon atom concentration in the silicon carbide semiconductor layer 102 is located.
  • a layer 110 is referred to as a carbon transition layer.
  • the carbon transition layer 110 contains nitrogen atoms.
  • the ratio R is 0.11 or more.
  • FIG. 2A is a diagram for explaining the carbon transition layer 110 in the present embodiment, and is a graph showing an example of the concentration profile of carbon atoms and nitrogen atoms in the depth direction from the surface of the silicon oxide film 104a. is there.
  • the carbon atom concentration decreases from the silicon carbide semiconductor layer 102 toward the silicon oxide film 104a, and the carbon atom concentration in the silicon carbide semiconductor layer 102 is 90% with respect to the carbon atom concentration.
  • the region changing from 10% to 10% becomes the carbon transition layer 110.
  • the carbon transition layer 110 contains carbon atoms (residual carbon) that remain without being sublimated during thermal oxidation.
  • the thickness of the carbon transition layer 110 varies depending on the formation method and conditions of the silicon oxide film 104a, but is 0.5 nm or more and 3 nm or less, for example.
  • the carbon transition layer 110 tends to be thicker than when formed by a CVD method or the like, and the thickness is not less than 0.5 nm and not more than 5 nm, for example.
  • Nitrogen atoms are introduced into the carbon transition layer 110.
  • the nitrogen atom concentration profile has a peak in the carbon transition layer 110. Therefore, the region 104b located on the silicon oxide film 104a side from the depth at which the nitrogen atom concentration profile reaches a peak in the carbon transition layer 110 is an atomic concentration integration region. In this region, the ratio R of the integrated value of the nitrogen atom concentration to the integrated value of the carbon atom concentration may be 0.11 or more.
  • the peak of the nitrogen atom concentration profile is located in the carbon transition layer 110, nitrogen atoms are efficiently introduced into the carbon transition layer 110, so that a more remarkable effect can be obtained.
  • the peak of the nitrogen atom concentration profile may not be located in the carbon transition layer 110.
  • the region 104b located on the silicon oxide film 104a side from the depth at which the nitrogen atom concentration is maximum in the carbon transition layer 110 is the atomic concentration integration region. Therefore, if the peak of the nitrogen atom concentration profile is at a position deeper than the depth of the interface between the silicon oxide film 104a and the carbon transition layer 110 (the depth at which the carbon atom concentration is 10%), the atomic concentration integration region is determined. Can be identified. For example, as shown in FIG. 2B, when the peak of the nitrogen atom concentration profile is located in the silicon carbide semiconductor layer 102, the entire carbon transition layer 110 becomes the atom concentration integration region 104b.
  • the nitrogen atom concentration profile does not have a sharp peak and may have a flat region.
  • the flat region has the maximum nitrogen atom concentration in the carbon transition layer 110
  • the region 104b from the flat region to the silicon oxide film 104a side to the silicon oxide film 104a is the atomic concentration integration region.
  • the carbon transition layer 110 which is a region containing residual carbon, contains a nitrogen atom amount of a predetermined ratio or more with respect to the carbon atom amount, and therefore when a positive bias is applied to the gate electrode 105, Threshold variation due to residual carbon can be reduced. The reason will be described later with reference to the experimental results.
  • FIG. 1B is a cross-sectional view illustrating a silicon carbide semiconductor device (vertical MOSFET) 100 of this embodiment.
  • the vertical MOSFET 100 includes a plurality of unit cells, and FIG. 1B shows one unit cell.
  • Each unit cell of silicon carbide semiconductor device 100 includes substrate 101 and silicon carbide semiconductor layer 102, carbon transition layer 110, gate insulating layer 104, and gate electrode 105 arranged in this order on main surface of substrate 101.
  • MOS structure, source electrode 106 provided on silicon carbide semiconductor layer 102, and drain electrode 107 provided on the back surface (surface opposite to the main surface) of substrate 101 are provided.
  • the MOS structure has a configuration similar to that described above with reference to FIG.
  • Substrate 101 is, for example, a low-resistance first conductivity type (here, n + -type) silicon carbide substrate.
  • the gate insulating layer 104 is, for example, a silicon oxide film 104a. Note that the gate insulating layer 104 only needs to include the silicon oxide film 104 a, and may include another insulating film between the silicon oxide film 104 a and the gate electrode 105.
  • Silicon carbide semiconductor layer 102 has a body region 122 having a second conductivity type (here, p-type) different from the first conductivity type, and a portion of silicon carbide semiconductor layer 102 located in a portion where body region 122 is not disposed.
  • a drift region 121 of one conductivity type and a channel layer 125 provided between the body region 122 and the gate insulating layer 104 are provided.
  • Drift region 121 is arranged adjacent to body region 122.
  • Drift region 121 is, for example, an n ⁇ type silicon carbide semiconductor region containing an n type impurity at a lower concentration than substrate 101.
  • an impurity region (source region) 123 containing a high-concentration first-conductivity type impurity (here, n + -type) is disposed inside the body region 122.
  • the impurity region 123 is in contact with the source electrode 106.
  • a contact region 124 containing a second conductivity type impurity at a higher concentration than the body region 122 (here, p + -type) may be disposed inside the body region 122.
  • Contact region 124 is disposed in contact with source electrode 106. Therefore, body region 122 is electrically connected to source electrode 106 through contact region 124.
  • the channel layer 125 is disposed on the body region 122 so as to connect the drift region 121 and the impurity region 123.
  • Channel layer 125 may be, for example, a first conductivity type (here, n-type) silicon carbide layer.
  • the channel layer 125 drifts between these body regions 122 from the body region 122 and the source region 123 inside thereof to the adjacent body region 122 and the source region 123 inside thereof. It is provided so as to straddle the region 121.
  • a portion of the channel layer 125 located on the body region 122 functions as a channel through which carriers move.
  • Silicon carbide semiconductor layer 102 may include a silicon carbide epitaxial layer (for example, thickness: 10 ⁇ m) formed by epitaxial growth on substrate 101 and a channel layer 125 formed on the silicon carbide epitaxial layer.
  • body region 122, drift region 121, and contact region 124 may be formed in the silicon carbide epitaxial layer.
  • Channel layer 125 may also be formed on the silicon carbide epitaxial layer by epitaxial growth.
  • a current can be passed through channel layer 125 under gate electrode 105 by a voltage applied to gate electrode 105. Therefore, a current (drain current) from the drain electrode 107 flows to the source electrode 106 through the substrate 101, the drift region 121, the channel layer 125, and the source region 123 (on state).
  • the substrate 101 in the present embodiment preferably includes, for example, an n-type impurity of 1 ⁇ 10 18 cm ⁇ 3 or more.
  • the n-type impurity contained in the substrate 101 is preferably nitrogen, phosphorus, arsenic, or the like.
  • the drift region 121 is doped with n-type impurities of about 1 ⁇ 10 14 cm ⁇ 3 to 1 ⁇ 10 16 cm ⁇ 3
  • the impurity region 123 is doped with n-type impurities of about 1 ⁇ 10 19 cm ⁇ 3 to 1 ⁇ 10 21 cm ⁇ 3. It may be.
  • the n-type impurity may be nitrogen.
  • the channel layer 125 may contain a small amount of n-type impurity such as nitrogen, phosphorus, or antimony.
  • the body region 122 may contain a p-type impurity of about 1 ⁇ 10 16 cm ⁇ 3 to 2 ⁇ 10 19 cm ⁇ 3
  • the contact region 124 may contain a p-type impurity of about 5 ⁇ 10 19 cm ⁇ 3 .
  • the p-type impurity concentration in body region 122 is preferably 1 ⁇ 10 17 cm ⁇ 3 or more.
  • an interlayer insulating film that covers the gate electrode 105 and the source electrode 106 may be formed as necessary, and a wiring connected to the gate electrode 105, the source electrode 106, and the like may be formed on the interlayer insulating film.
  • the source electrode 106 is provided so as to be in contact with both the source region 123 and the contact region 124, but the source electrode 106 may not be in contact with the contact region 124.
  • a contact electrode may be formed on the contact region 124, and the source electrode 106 and the contact electrode may be connected by wiring or the like.
  • the contact region 124 may be disposed in the body region 122 and may not be in contact with the source region 123.
  • carbon transition layer 110 is located between silicon carbide semiconductor layer 102 (here, channel layer 125) and silicon oxide film 104a. Yes.
  • the ratio R of the integrated value of the nitrogen atom concentration to the integrated value of the carbon atom concentration is 0. .11 or more.
  • the ratio R of the integrated value of the nitrogen atom concentration to the integrated value of the carbon atom concentration can be obtained as follows, for example.
  • FIG. 3 is a graph illustrating a concentration profile in the depth direction of carbon atoms and nitrogen atoms obtained by SIMS.
  • the horizontal axis of the graph represents the depth from the surface of the silicon oxide film 104a.
  • a depth at which the carbon atom concentration is 10% or more and 90% or less of the carbon atom concentration of the silicon carbide semiconductor layer 102 is determined to define the carbon transition layer 110 (see FIGS. 2A and 2B). Further, a depth at which the nitrogen atom concentration in the carbon transition layer 110 is maximized is obtained, and an atomic concentration integration region is defined.
  • the obtained integrated value can be evaluated as an area nitrogen atom concentration (atom / cm 2 ) and an area carbon atom concentration (atom / cm 2 ), ignoring the dimension in the depth direction.
  • the influence of resolution accuracy in the depth direction can be reduced by integrating the concentration in the depth direction and using the area concentration that can ignore the dimension in the depth direction as an index of concentration.
  • an n-type silicon carbide epitaxial layer is formed on the substrate 101 by epitaxial growth.
  • the impurity concentration of the silicon carbide epitaxial layer can be controlled by adding an impurity (for example, nitrogen) gas during epitaxial growth.
  • a plurality of body regions 122 are formed in the silicon carbide epitaxial layer by implanting p-type impurity ions (here, Al (aluminum) ions) into the silicon carbide epitaxial layer.
  • p-type impurity ions here, Al (aluminum) ions
  • the region in which the body region 122 is not formed in the silicon carbide epitaxial layer becomes an n-type drift region.
  • the source region 123 is formed by implanting n-type impurity ions (N (nitrogen) ions in this case) into the body region 122.
  • the contact region 124 is formed by implanting p-type impurity ions (Al ions) into the body region 122.
  • annealing for activating impurity ions implanted into the silicon carbide epitaxial layer is performed.
  • the activation annealing is performed, for example, in an Ar atmosphere at a temperature of 1700 ° C. for 30 minutes.
  • a channel layer 125 is formed by further epitaxially growing silicon carbide on the silicon carbide epitaxial layer. Thereby, silicon carbide semiconductor layer 102 is obtained.
  • the channel layer 125 is n-type and has an impurity concentration of 1 ⁇ 10 15 cm ⁇ 3 and a thickness of about 100 nm, for example.
  • the impurity concentration of the channel layer 125 can be controlled by adding an impurity (for example, nitrogen) gas during epitaxial growth.
  • the thickness of the channel layer 125 is reduced when a gate insulating layer is formed later.
  • the nitrogen concentration is, for example, about 2 ⁇ 10 19 cm ⁇ 3 .
  • the amount of nitrogen contained in the region where the gate insulating layer is formed by thermal oxidation in a later step is less than the SIMS detection lower limit, and is extremely small compared to the amount of nitrogen doped in this region by the nitriding treatment described later.
  • a silicon oxide film 104a is formed as a gate insulating layer 104 on the channel layer 125 by thermally oxidizing the surface portion of the channel layer 125.
  • the thermal oxidation can be performed, for example, at a temperature of about 1100 ° C. to 1250 ° C. in a dry oxygen atmosphere.
  • the processing time can be appropriately adjusted so as to obtain a thermal oxide film (silicon oxide film 104a) having a desired thickness.
  • a diluent gas such as nitrogen gas or argon gas may be added to the oxygen atmosphere.
  • a silicon oxide film 104a having a thickness of 70 nm is formed at a temperature of 1200 ° C. in a dry oxygen atmosphere.
  • silicon atoms in silicon carbide semiconductor layer 102 (here, channel layer 125) become silicon dioxide, and carbon atoms in silicon carbide semiconductor layer 102 sublimate as COn.
  • some carbon atoms are not sublimated and remain between silicon carbide semiconductor layer 102 and silicon oxide film 104a formed by thermal oxidation, and become residual carbon. In this way, the carbon transition layer 110 containing residual carbon is formed.
  • the silicon oxide film 104a may be formed by a method other than thermal oxidation, such as pyrogenic oxidation or chemical vapor deposition (CVD). Even when a method other than thermal oxidation is used, the carbon transition layer 110 is formed. However, when thermal oxidation is used, the amount of residual carbon is increased as compared with other methods. Therefore, the present invention can more effectively suppress threshold fluctuation caused by residual carbon.
  • thermal oxidation such as pyrogenic oxidation or chemical vapor deposition (CVD).
  • nitrogen doping is performed on at least the carbon transition layer 110 from above the silicon oxide film 104a (nitriding treatment).
  • Nitrogen doping can be performed, for example, in a nitrogen monoxide (NO) atmosphere at a temperature of 1200 ° C. or higher. The nitriding temperature and time are appropriately adjusted so that a desired amount of nitrogen is introduced into the carbon transition layer 110.
  • the treatment atmosphere is not limited to the nitrogen monoxide atmosphere, and various gas atmospheres containing nitrogen may be used. When doping nitrogen, it is preferable to dilute with nitrogen so that carbon monoxide is not excessively decomposed.
  • a gate electrode 105 is formed on the gate insulating layer 104.
  • the gate electrode 105 may be formed, for example, by depositing a polysilicon film doped with an n-type impurity and patterning it.
  • a silicide layer may be provided on the gate electrode 105.
  • the source electrode 106 and the drain electrode are formed.
  • the source electrode 106 can be formed by forming a Ni film so as to be in contact with the source region 123 and the contact region 124 and performing an alloying reaction between SiC and Ni by heat treatment.
  • the source electrode 106 thus obtained contains nickel silicide and forms an ohmic junction with the source region 123 and the contact region 124.
  • the drain electrode 107 can also be formed by depositing Ni on the back surface of the substrate 101 and performing an alloying reaction between SiC in the substrate 101 and Ni.
  • Example In the following, a plurality of evaluation samples (SiC-MOSFETs) A to F are manufactured under different nitriding conditions, and the amount of variation in the threshold voltage is evaluated. The method and result will be described.
  • Samples A to F were manufactured using silicon carbide substrates having a polytype of 4H and an off angle of 4 °.
  • a silicon oxide film (thickness: 70 nm) was formed by thermally oxidizing the surface of the silicon carbide semiconductor layer (channel layer). Thermal oxidation was performed at a temperature of 1200 ° C. in a dry oxygen atmosphere.
  • the nitriding treatment was performed by introducing nitrogen from above the silicon oxide film in a nitrogen monoxide atmosphere. Specifically, nitric oxide is introduced into the chamber at atmospheric pressure for 1 slm (where slm is L / min at 0 ° C.
  • ⁇ Vth the variation amount ( ⁇ Vth) of the threshold voltage Vth of the samples A to F was evaluated.
  • ⁇ Vth was defined as a difference between Vth2 after applying a predetermined voltage to the gate electrode and Vth1 in an initial state before applying the voltage (Vth2 ⁇ Vth1).
  • the heater temperature was set to 150 ° C.
  • the sample (MOSFET) to be evaluated was installed, and the threshold voltage Vth1 in the initial state was measured before applying the voltage to the gate electrode.
  • the voltage applied to the gate electrode is gradually increased in a state where the drain-source voltage (Vds) is 10 V, and the gate-source voltage (Vgs) when the drain current (Id) is 1 mA is Vth1. did.
  • Vds was set to 0 V without changing the heater temperature, and a voltage (stress voltage) of +20 V was applied to the gate electrode.
  • Vth was measured again at 150 ° C. to obtain Vth2 after voltage application.
  • the difference between Vth2 after voltage application and Vth1 in the initial state was obtained and set as ⁇ Vth.
  • FIG. 4 is a diagram showing the results of evaluating the amount of variation in the threshold voltage of each sample.
  • the vertical axis represents the fluctuation amount ⁇ Vth from the threshold value Vth1 in the initial state, and the horizontal axis represents the cumulative voltage application time to the gate electrode.
  • the variation amount ⁇ Vth increases as the accumulated voltage application time to the gate electrode increases. Further, the fluctuation amount ⁇ Vth decreases as the nitriding temperature increases, and the fluctuation amount ⁇ Vth decreases as the nitriding time increases at the same temperature. Furthermore, when the area nitrogen atom concentration in the carbon transition layer of each sample was examined, the area nitrogen atom concentration increased in the order of samples A to F. Therefore, it was found that the higher the nitrogen atom concentration, the more the threshold voltage variation ⁇ Vth due to the positive bias application to the gate electrode can be suppressed.
  • the present inventor examined the evaluation results shown in FIG. 4 while focusing on the tendency of the change rate of the threshold fluctuation amount of each sample, the change in the fluctuation amount caused by the application of the stress voltage for a relatively long time was examined. It has been found that the ratio (the slope of the graph) and the ratio of the change in the amount of change caused by the application of the stress voltage for a relatively short time have different tendencies. This is because there is a mechanism of threshold fluctuation that occurs after a relatively long time has elapsed since the start of stress voltage application, and a mechanism of threshold fluctuation that occurs within a relatively short period of time after the start of stress voltage application. It is thought to mean different. That is, there are at least two mechanisms that cause threshold variation by applying a positive bias to the gate. Therefore, the present inventor examined two factors that cause threshold fluctuations.
  • FIG. 6 is a graph showing a nitrogen atom distribution in the vicinity of the SiO 2 / SiC interface in Sample B as an example of a sample having a large ⁇ Vth and Sample F as an example of a sample having a small ⁇ Vth.
  • a high concentration of nitrogen is distributed in the vicinity of the nitrided SiO 2 / SiC interface, and even in these samples, a high concentration of nitrogen atoms is present in the vicinity of the SiO 2 / SiC interface. It was confirmed that was introduced. In these samples, the peak of nitrogen atom concentration was located in the carbon transition layer.
  • FIG. 7 shows the result of measuring the energy distribution of the interface state density in the vicinity of the band edge on the conduction band side for the samples B and F described above.
  • the horizontal axis represents the difference between the energy (Ec) at the lower end of the conduction band and the energy (Ev) at the upper end of the valence band, and the vertical axis represents the interface state density (Dit). Since the interface state density is difficult to measure with the vertical MOSFET shown in FIG. 1, it was evaluated using a MOS capacitor having an area of 0.1 mm 2 manufactured under the same conditions as those of each sample.
  • the voltage applied to the gate electrode is changed from 15 V to -15 V at 0.1 V / s, and 100 kHz high frequency CV measurement and quasi-Static CV measurement are performed simultaneously.
  • the interface state density was calculated from the difference (High-Low method).
  • the interface state density of sample F is smaller than the interface state density of sample B. Therefore, it was found that the interface state density can be decreased by increasing the nitrogen atom concentration in the vicinity of the SiO 2 / SiC interface. Therefore, it was confirmed that one of the factors causing the threshold fluctuation is an increase in interface state density.
  • Nit (t) A ⁇ E m ⁇ exp ( ⁇ / kT) ⁇ t n
  • A is a constant
  • E is an electric field
  • m is an electric field-dependent exponent
  • is an activation energy
  • k is a Boltzmann coefficient
  • T is an absolute temperature
  • t time
  • n is a time-dependent exponent.
  • the graph a shown in FIG. 5 is a graph schematically showing the measurement results of the samples A and B, the graph c is the samples C and D, and the graph e is the samples E and F.
  • Graphs a (h), c (h), and e (h) provided corresponding to each graph show threshold voltage fluctuations ⁇ Vth (assuming that the threshold voltage increases as the interface state density increases. It is a graph which shows the behavior of h).
  • the behavior of ⁇ Vth that occurs after a relatively long time is the behavior of ⁇ Vth (h) (graphs a (h), c (h ) And e (h)). Therefore, the threshold fluctuation that occurs after a long time is caused by an increase in interface state density in the vicinity of the interface between silicon carbide semiconductor layer 102 and silicon oxide film 104a, as described above with reference to FIGS. It is guessed.
  • the fluctuation of the threshold voltage that occurs after a short time has elapsed since the start of the application of the stress voltage is considered to be caused by a mechanism that has not been conventionally known.
  • the magnitude ⁇ Vth of the threshold fluctuation (initial fluctuation) after a short period of time is further varied in addition to ⁇ Vth (h) of graph a (h). Has occurred. It can be seen that this variation is caused by factors other than the interface state density.
  • the magnitude ⁇ Vth of the initial fluctuation is lower than ⁇ Vth (h) in the graph e (h).
  • the fluctuation was caused by residual carbon. That is, it is considered that the threshold value fluctuation is caused by the defect level (or trap) caused by the residual carbon existing over the region of several nm at the unstable MOS interface generated in the oxidation process.
  • the effect of substituting or terminating residual carbon with nitrogen is increased. As a result, a more stable state for electrons can be created, and it is presumed that the effect of suppressing the initial fluctuation of the threshold voltage has occurred.
  • FIG. 8 is a diagram showing the correlation between the ratio R of the nitrogen atom concentration to the carbon atom concentration in the vicinity of the SiO 2 / SiC interface of Samples A to F and the amount of variation ⁇ Vth s of Vth due to a short-time stress voltage application. It is.
  • the ratio R of nitrogen atom concentration shown on the horizontal axis is obtained by integrating the carbon atom concentration and the nitrogen atom concentration obtained by SIMS, and the ratio of the nitrogen atom concentration integrated value to the carbon atom concentration integrated value (nitrogen atom concentration integrated value / carbon atom). (Density integrated value) is calculated.
  • the integration range of each atom is the atomic concentration integration region (carbon transition layer) in which the carbon atom concentration is 10% to 90% of the silicon carbide semiconductor (on the silicon oxide film side from the maximum value of the nitrogen atom concentration). 2).
  • the fluctuation amount ⁇ Vth s on the vertical axis is the fluctuation amount of Vth when a stress voltage of +20 V is applied to the gate electrode for 300 seconds in a high temperature atmosphere of 150 ° C.
  • the threshold voltage fluctuation amount ⁇ Vth s can be further reduced as the nitrogen atom concentration ratio R increases. Focusing on the change in the variation ⁇ Vth s of samples C to F having a nitriding temperature of 1200 ° C., as shown by the chain line in the figure, an increase in the ratio R of nitrogen atom concentration (that is, an increase in nitriding time) ) And the variation amount ⁇ Vth s decreases, and when the nitrogen atom concentration ratio R is 0.11 or more, the decrease amount of the variation amount ⁇ Vth s is saturated.
  • the threshold voltage fluctuation amount ⁇ Vth s caused by the short-time stress voltage application depends not only on the nitrogen atom concentration but also on the concentration of carbon atoms (residual carbon) in the vicinity of the SiO 2 / SiC interface. .
  • the nitrogen atom concentration ratio R increases, the effect of substituting or terminating defect levels (or traps) caused by residual carbon existing in the carbon transition layer with nitrogen increases, and the variation ⁇ Vth s decreases.
  • the amount of nitrogen atoms is greater than or equal to a predetermined amount (the ratio R is greater than or equal to 0.11) with respect to the residual carbon amount, the fluctuation amount ⁇ Vth s is saturated and becomes substantially constant.
  • the ratio R of the nitrogen atom concentration is 0.11 or more, the fluctuation amount ⁇ Vth s due to the short-time stress voltage application can be reduced, and the fluctuation amount due to the subsequent stress voltage application is also reduced by this reduction amount. The Therefore, it is possible to reduce the fluctuation of the threshold voltage regardless of the stress voltage application time.
  • the range of the amount of nitrogen atoms to be introduced in the vicinity of the SiO 2 / SiC interface in order to suppress the fluctuation amount ⁇ Vth s cannot be determined unconditionally for any silicon oxide film formed. Varies depending on the amount of carbon atoms present.
  • the entire carbon transition layer Since residual carbon exists over the entire carbon transition layer, it may be possible to set the entire carbon transition layer in the atomic concentration integration region. However, if the entire carbon transition layer is in the range of the atomic concentration integration region, it may be difficult to accurately measure the ratio of the nitrogen atom concentration because the carbon atom concentration is extremely higher than the nitrogen atom concentration. As a result, it becomes difficult to investigate the relationship between the ratio of the nitrogen atom concentration and the threshold fluctuation and suppress the threshold fluctuation. Therefore, a region having a relatively low carbon atom concentration in the carbon transition layer was set as an atomic concentration integration region, and a ratio R of nitrogen atom concentration was obtained. Incidentally, it is considered that the correlation between carbon and nitrogen appears most prominently at the position where the nitrogen atom concentration reaches a peak. This is because the localization of nitrogen atoms means that there are the most defect levels (or traps). Therefore, in the above embodiment, the atomic concentration integration region in the carbon transition layer is set with reference to the peak position of the nitrogen atom concentration.
  • the upper limit value of the nitrogen atom concentration ratio R is not particularly limited, but is, for example, 0.18 or less.
  • the area nitrogen atom concentration in the carbon transition layer should be suppressed to 1 ⁇ 10 15 cm ⁇ 2 or less. Is preferred.
  • the interface state density can be further reduced, so that the threshold voltage variation ⁇ Vth due to the stress voltage application for a long time is reduced. The effect is increased. Therefore, the threshold voltage fluctuation amount ⁇ Vth due to the application of the stress voltage for a short time and for a long time can be more effectively reduced, so that a more remarkable effect can be obtained.
  • the area carbon atom concentration in the carbon transition layer is not limited because it can vary depending on the formation method, formation conditions, and materials of the silicon carbide semiconductor layer and the silicon oxide film.
  • the area carbon atom concentration in the carbon transition layer is, for example, 6 ⁇ 10 15 cm ⁇ 2 or more and 1 ⁇ 10 16 cm ⁇ 2 or less. It is.
  • the half-value width ⁇ M is a width of a region where nitrogen atoms exist at a concentration of 1/2 or more of the peak value Cm of nitrogen atom concentration.
  • Sample F will be described as an example.
  • a nitrogen atom concentration profile in the depth direction in the vicinity of the interface between the silicon oxide film of the sample F and the silicon carbide semiconductor layer is obtained by SIMS.
  • the measurement of the nitrogen atom concentration using SIMS was performed using oxygen ions as primary ions.
  • the peak value (peak concentration) Cm and the half value width ⁇ M of the nitrogen atom concentration are obtained.
  • the width ⁇ M of the depth between two points at which the concentration (Cm / 2) is 1 ⁇ 2 of the peak value Cm is the half-value width.
  • the half-value width ⁇ M increases as the NO treatment time increases.
  • the full width at half maximum ⁇ M is, for example, 2.3 nm or more.
  • residual carbon exists over a region of several nm at the MOS interface. This region is referred to as “residual carbon region”. In the residual carbon region, the residual carbon exists at a concentration of 1.0 ⁇ 10 19 cm ⁇ 3 or more, for example.
  • the half-value width ⁇ M of the nitrogen atom concentration profile is small, a region in which the nitrogen atoms are insufficient may occur in the residual carbon region. For this reason, threshold fluctuations may occur due to defect levels resulting from residual carbon that has not been substituted or terminated by nitrogen atoms.
  • the half-value width ⁇ M is increased (for example, 2.3 nm or more)
  • the residual carbon can be more reliably replaced or terminated with nitrogen over the residual carbon region, so that the threshold fluctuation due to the defect level caused by the residual carbon. Can be suppressed more effectively.
  • the silicon carbide semiconductor device of this embodiment is not limited to the vertical MOSFET shown in FIG.
  • the MOSFET of this embodiment may not have a channel layer.
  • a gate insulating layer silicon oxide film
  • the present embodiment can be applied to various semiconductor devices having a structure (MOS structure) in which an electrode is disposed on a silicon carbide semiconductor layer via an insulating film.
  • MOS structure a structure in which an electrode is disposed on a silicon carbide semiconductor layer via an insulating film.
  • a lateral MOSFET may be used.
  • FIG. 9 is a cross-sectional view illustrating a lateral MOSFET.
  • source electrode 106 and drain electrode 107 are provided on silicon carbide semiconductor layer 102.
  • a contact electrode 108 may be further provided on the silicon carbide semiconductor layer 102.
  • Silicon carbide semiconductor layer 102 includes a first conductivity type (here, n ⁇ -type) drift region 121, a second conductivity type (here, p-type) body region 122 disposed adjacent to drift region 121, and A channel layer 125 is provided between the body region 122 and the silicon oxide film 104a.
  • the carbon transition layer 110 is located between the channel layer 125 and the silicon oxide film 104a.
  • the body region 122 (here, n + -type) a first conductivity type (also referred to as a source region) first impurity region 123, a second impurity region (drain region of the first conductivity type (here n + -type) 126) are also spaced apart from each other.
  • the source region 123 and the drain region 126 are arranged on both sides with the gate electrode 105 interposed therebetween.
  • the channel layer 125 is disposed so as to connect the first impurity region 123 and the second impurity region 126.
  • the source electrode 106 is electrically connected to the first impurity region 123
  • the drain electrode 107 is electrically connected to the second impurity region 126.
  • the source electrode 106, the drain electrode 107, and the contact electrode 108 are independently arranged. However, as in the structure shown in FIG. 108 may be integrally formed.
  • the first conductivity type is n-type and the second conductivity type is p-type.
  • the n-type region and the p-type region can be interchanged.
  • MOSFET which has a gate trench.
  • the present invention can also be applied to silicon carbide semiconductor devices other than MOSFETs.
  • the MOSFET is manufactured using the substrate 101 having the same conductivity type as that of the drift region 121.
  • an insulated gate bipolar transistor Insulated Gate Bipolar Transistor: IGBT
  • IGBT Insulated Gate Bipolar Transistor
  • the channel mobility can be improved and the threshold value fluctuation when a positive bias is applied to the gate electrode can be suppressed, so that the reliability can be greatly improved. It is useful as a silicon carbide semiconductor device.
  • the present invention can be widely applied to various silicon carbide semiconductor devices having a MOS structure such as MOEFET and IGBT.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)
  • Electrodes Of Semiconductors (AREA)

Abstract

 炭化珪素半導体装置は、炭化珪素半導体層と、炭化珪素半導体層上に配置され、シリコン酸化膜を含むゲート絶縁層と、ゲート絶縁層上に配置されたゲート電極と、炭化珪素半導体層とシリコン酸化膜との間に位置し、炭化珪素半導体層における炭素原子濃度に対する炭素原子濃度が10%以上90%以下である炭素遷移層とを備え、炭素遷移層のうち窒素原子濃度が最大となる位置よりもシリコン酸化膜側にある領域において、炭素原子濃度の積分値に対する窒素原子濃度の積分値の比率が0.11以上である。

Description

炭化珪素半導体装置およびその製造方法
 本願は、炭化珪素を用いたワイドバンドギャップ半導体装置に関する。
 ワイドバンドギャップ半導体は、シリコン半導体と比べて耐圧が高く、大電流を流すことができるため、パワーデバイス等の半導体材料として注目されている。ワイドバンドギャップ半導体の中でも、炭化珪素(SiC)を用いた炭化珪素半導体は、特に高い絶縁破壊電界を有するため、次世代の低損失パワーデバイス用の材料として期待されている。炭化珪素半導体を用いた半導体装置として、ユニポーラのスイッチングデバイスである金属-絶縁体-半導体電界効果トランジスタ(Metal-Insulator-Semiconductor Field-Effect Transistor:MISFET)がある。金属-酸化物-半導体電界効果トランジスタ(Metal-Oxide-Semiconductor Field-Effect Transistor:MOSFET)は、MISFETの一種である。SiC-MOSFETは高速動作が可能であり、パワーユニットの小型化及び低損失化を実現するための鍵となる半導体装置として注目されている。
 SiC-MOSFETには、チャネル移動度が理論的限界と比べて著しく低いという問題がある。SiC-MOSFETにおいてチャネル移動度が低い原因は、炭化珪素半導体とシリコン酸化膜(SiO2膜)との界面に、界面準位等の多くの欠陥が存在しているためであると考えられている。このため、酸化膜と炭化珪素半導体との界面における欠陥を低減するために、熱酸化又は化学気相堆積(CVD)法等により酸化膜を形成した後、窒化処理を行うことが検討されている。酸化膜と炭化珪素半導体との界面に高濃度の窒素をドーピングすることにより、界面準位密度を低減し、チャネル移動度を改善できると期待される。例えば、非特許文献1には、窒素雰囲気中で1175℃で2時間の熱処理を行い、シリコン酸化膜と炭化珪素半導体との界面に、面積濃度で例えば2×1014cm-2以上の窒素を導入することが開示されている。
 一方、例えば特許文献1には、SiC-MOSFETのオフ時にゲート電極に負バイアスを印加すると、閾値電圧(Vth)が経時的に変動する(負側にシフトする)現象が生じることが開示されている。特許文献1には、上記の現象は、シリコン酸化膜と炭化珪素半導体との界面近傍に高密度でホールトラップが存在し、正の電荷であるホールが徐々にトラッピングされることにより生じ得ると記載されている。また、この変動を抑制するために、炭化珪素半導体とシリコン酸化膜との界面における窒素原子濃度を、非特許文献1よりも小さく(1.6×1014cm-2未満)抑えることが提案されている。
 なお、シリコン(Si)半導体を用いたpチャネルMOSFETにおいても、ゲート電極に負バイアスを印加すると、閾値電圧が変動する現象(NBTI(Negative Bias Temperature Instability)と呼ばれる。)が生じることが知られている。閾値電圧の変動量は長時間(例えば1000h)のストレス電圧で0.1V以下である。この原因は、Siの未結合手等に起因する界面準位にキャリアが出入りすることと考えられており(例えば特許文献2)、SiC-MOSFETで生じる上記現象の原因とは全く異なるものである。
特開2011-82454号公報 特開2004-253777号公報
J. Appl. Phys., Vol.93, No.5, 2003, p.2719
 しかしながら、本発明者は、SiC-MOSFETにおいて、ゲート電極に正バイアスを印加した場合にも閾値電圧の変動が生じ得ることを見出した。正バイアスを印加した場合に生じる閾値電圧の変動量は極めて大きくなる場合がある(例えば数10mV~数V)。
 本発明者がさらに鋭意検討した結果、正バイアスの印加による閾値変動は、上述した負バイアスの印加による閾値変動とは全く異なる要因およびメカニズムによって引き起こされることを突き止めた。本発明者による検討結果については後述する。従って、従来と同様の手段によって、正バイアスの印加による閾値変動を十分に抑制することは困難である。
 本発明の一実施形態は、上記事情を鑑みてなされたものであり、ゲート電極に正バイアスを印加することによって生じる閾値変動が抑制された炭化珪素半導体装置を提供する。
 本発明による一実施形態の炭化珪素半導体装置は、炭化珪素半導体層と、前記炭化珪素半導体層上に配置され、シリコン酸化膜を含むゲート絶縁層と、前記ゲート絶縁層上に配置されたゲート電極と、前記炭化珪素半導体層と前記シリコン酸化膜との間に位置し、前記炭化珪素半導体層における炭素原子濃度に対する炭素原子濃度が10%以上90%以下である炭素遷移層とを備え、前記炭素遷移層のうち窒素原子濃度が最大となる位置よりも前記シリコン酸化膜側にある領域において、炭素原子濃度の積分値に対する窒素原子濃度の積分値の比率が0.11以上である。
 本発明の一実施形態の炭化珪素半導体装置の製造方法は、炭化珪素半導体層を用意する工程(a)と、前記炭化珪素半導体層の表面にシリコン酸化膜を含むゲート絶縁層を形成する工程であって、前記炭化珪素半導体層と前記シリコン酸化膜との間には、前記炭化珪素半導体層における炭素原子濃度に対する炭素原子濃度が10%以上90%以下である炭素遷移層が形成される工程(b)と、少なくとも前記炭素遷移層に窒素原子を導入する工程であって、これにより、前記炭素遷移層のうち窒素原子のピークとなる位置よりも前記シリコン酸化膜側にある領域において、炭素原子濃度の積分値に対する窒素原子濃度の積分値の比率を0.11以上とする工程(c)とを包含する。
 本発明の一実施形態によれば、炭化珪素半導体装置において、ゲート電極に正バイアスを印加することによって生じる閾値変動を抑制できる。
(a)は、本発明の一実施形態に係る炭化珪素半導体装置のMOS構造を示す部分断面図であり、(b)は、一実施形態に係る炭化珪素半導体装置(縦型MOSFET)を例示する断面図である。 (a)および(b)は、SiO2/SiC界面近傍の炭素遷移層を説明するための模式的な図である。 炭素原子濃度および窒素原子濃度の厚さ方向のプロファイルの測定結果を例示する図である。 ゲート電極への正バイアス印加による閾値の変動量ΔVthを測定した結果を示すグラフであり、横軸は正バイアスを印加した時間、縦軸は閾値の変動量ΔVthを表す。 ゲート電極への正バイアス印加による閾値変動の要因を説明するための模式図である。 試料BおよびFの厚さ方向における窒素原子濃度プロファイルの測定結果を示す図である。 試料BおよびFの伝導帯側バンド端近傍における界面準位密度の測定結果を示す図である。 炭素原子濃度に対する窒素原子濃度の積分値の比率Rと、300秒間の正バイアス印加による閾値変動量ΔVthsとの相関関係を説明するための図である。 本発明の他の実施形態に係る炭化珪素半導体装置(横型MOSFET)を例示する断面図である。
 上述したように、本発明者は、SiC-MOSFETに正バイアスを印加したときに閾値電圧が変動する現象について、そのメカニズムを検討した。なお、本明細書において、「ゲート電極に正バイアスを印加した際の閾値変動」とは、ゲート電極に正バイアスを印加する前の閾値Vth1に対して、ゲート電極に正バイアスを印加した後の閾値Vth2が変動することを意味する。また、これらの閾値電圧の差(Vth2-Vth1)を閾値電圧の変動量ΔVth(V)とする。
 本発明者による検討の結果、ゲート電極に正バイアスを印加した際の閾値変動の要因は少なくとも2つあり、そのうち1つがシリコン酸化膜とSiC半導体層との間に残留する炭素原子に起因することを見出した。これは、SiC特有の要因である。
 SiC-MOSFETでは、SiC半導体層の表面を熱酸化することによってゲート酸化膜(熱酸化膜)を形成する場合がある。熱酸化では、SiC半導体層におけるシリコン原子は酸素と結合してSiO2となり(Si+O2→SiO2)、炭素原子は酸素と結合し、COnとなって昇華する(C+nO→COn)。しかしながら、一部の炭素原子は昇華せずに、SiC半導体層とゲート酸化膜との界面(SiC/SiO2界面)近傍に残留する。本発明者が調べたところ、残留した炭素原子(残留炭素)は、例えば、SiC/SiO2界面を含む厚さが数nmの領域に亘って1.0×1019cm-3以上存在する。この残留炭素に起因する欠陥準位(あるいはトラップ)がこの領域に存在することによって、閾値電圧が大きく変動すると推察された。さらに、残留炭素に起因する閾値変動は、主に、ゲート電極への正バイアスの印加を開始した直後から短時間経過するまでの間(例えば300秒以内)に生じることも突き止めた。本明細書では、ゲート電極への累積電圧印加時間が比較的短いときに生じる閾値変動を「初期変動」と略する。また、SiC/SiO2界面近傍における残留炭素が存在する領域の厚さや残留炭素量などは一定でなく、熱酸化における酸化の速度や熱酸化膜の厚さによって変化することも分かった。
 このような知見に基づいて、本発明者は、窒素原子によって残留炭素を置換または終端する効果を利用して、残留炭素に起因する閾値電圧の変動を低減できることを見出し、本願発明に至った。
 本発明の一実施形態の概要は以下のとおりである。
 本発明の一実施形態の炭化珪素半導体装置は、炭化珪素半導体層と、前記炭化珪素半導体層上に配置され、シリコン酸化膜を含むゲート絶縁層と、前記ゲート絶縁層上に配置されたゲート電極と、前記炭化珪素半導体層と前記シリコン酸化膜との間に位置し、前記炭化珪素半導体層における炭素原子濃度に対する炭素原子濃度が10%以上90%以下である炭素遷移層とを備え、前記炭素遷移層のうち窒素原子濃度が最大となる位置よりも前記シリコン酸化膜側にある領域において、炭素原子濃度の積分値に対する窒素原子濃度の積分値の比率が0.11以上である。
 上記の炭化珪素半導体装置は、例えば、前記炭化珪素半導体層を支持する基板と、前記基板の前記炭化珪素半導体層と反対側に設けられたドレイン電極と、前記炭化珪素半導体層の上に設けられたソース電極とをさらに備え、前記炭化珪素半導体層は、第1導電型のドリフト領域と、前記ドリフト領域に隣接して配置された第2導電型のボディ領域と、前記ボディ領域内に配置された第1導電型の不純物領域と、前記ボディ領域と前記ゲート絶縁層との間に、前記ドリフト領域と前記不純物領域とを接続するように設けられたチャネル層とを有し、前記ソース電極は前記不純物領域と電気的に接続されており、前記炭素遷移層は、前記チャネル層と前記シリコン酸化膜との間に位置していてもよい。
 上記の炭化珪素半導体装置は、例えば、前記炭化珪素半導体層を支持する基板と、前記炭化珪素半導体層の上に設けられたソース電極およびドレイン電極とをさらに備え、前記炭化珪素半導体層は、第1導電型のドリフト領域と、前記ドリフト領域に隣接して配置された第2導電型のボディ領域と、前記ボディ領域内に互いに間隔を空けて配置された第1導電型の第1不純物領域および第2不純物領域と、前記ボディ領域と前記ゲート絶縁層との間に、前記第1不純物領域と前記第2不純物領域とを接続するように設けられたチャネル層とを有し、前記ソース電極は前記第1不純物領域と電気的に接続され、前記ドレイン電極は前記第2不純物領域と電気的に接続されており、前記炭素遷移層は、前記チャネル層と前記シリコン酸化膜との間に位置していてもよい。
 前記窒素原子濃度の深さ方向におけるプロファイルは、例えば、前記炭素遷移層内にピークを有している。
 本発明の一実施形態の炭化珪素半導体装置の製造方法は、炭化珪素半導体層を用意する工程(a)と、前記炭化珪素半導体層の表面にシリコン酸化膜を含むゲート絶縁層を形成する工程であって、前記炭化珪素半導体層と前記シリコン酸化膜との間には、前記炭化珪素半導体層における炭素原子濃度に対する炭素原子濃度が10%以上90%以下である炭素遷移層が形成される、工程(b)と、少なくとも前記炭素遷移層に窒素原子を導入する工程であって、これにより、前記炭素遷移層のうち窒素原子のピークとなる位置よりも前記シリコン酸化膜側にある領域において、炭素原子濃度の積分値に対する窒素原子濃度の積分値の比率を0.11以上とする工程(c)とを包含する。
 前記工程(b)は、前記炭化珪素半導体層の前記表面を熱酸化して前記シリコン酸化膜を形成する工程を含んでもよい。
 前記工程(c)は、例えば、前記ゲート絶縁層が形成された前記炭化珪素半導体層に対して、窒素を含む雰囲気中で1200℃以上の温度で熱処理を行う工程を含む。
 上述のように、本発明の一実施形態では、SiC/SiO2界面近傍における残留炭素が存在する領域に、残留炭素量に応じて適量の窒素を導入する。これにより、残留炭素に起因する初期変動を抑制することが可能になる。ここでいう「SiC/SiO2界面近傍」とは、炭化珪素層とシリコン酸化膜との間に位置する所定の厚さを有する層を指す。後述するように、炭素原子濃度によって炭化珪素層、シリコン酸化膜およびその間に位置する炭素遷移層を画定する場合には、炭素遷移層に相当する。
 なお、例えばシリコン半導体を用いたMOSFET(Si-MOSFET)では、そもそも残留炭素は存在しないので、残留炭素に起因する閾値電圧の変動は生じ得ない。また、SiC-MOSFETの閾値変動を低減する従来の方法によって、ゲート電極への正バイアス印加による初期変動を抑制することは困難である。例えば特許文献1や非特許文献1では、窒化処理を行うことが開示されているものの、ゲート電極への正バイアス印加による閾値変動の要因が残留炭素にあることが認識されておらず、炭素遷移層における炭素原子濃度と窒素原子濃度との関係についても全く言及されていない。
 以下、図面を参照しながら、本発明の実施の形態をより具体的に説明する。図面中、同様の構成要素には同一の参照符号を付し、冗長な説明を避けるために重複する説明を省略する。また、図面に示される構成要素は模式的に示されており、構成要素の形状も図示する形状に限定されない。
 図1(a)は、本実施形態の炭化珪素半導体装置を説明するための部分断面図である。本実施形態の炭化珪素半導体装置は、炭化珪素半導体層102と、炭化珪素半導体層102上に配置され、シリコン酸化膜(SiO2膜)104aを含むゲート絶縁層104と、ゲート絶縁層104上に配置されたゲート電極105とを備える。このように、炭化珪素半導体層102、ゲート絶縁層104およびゲート電極105を含む構造体を「MOS構造体」とも呼ぶ。
 炭化珪素半導体層102とシリコン酸化膜104aとの間には、炭化珪素半導体層102における炭素原子濃度に対して10%以上90%以下の炭素原子濃度を有する層110が位置している。本明細書では、このような層110を炭素遷移層と称する。炭素遷移層110は窒素原子を含んでいる。本実施形態では、炭素遷移層110のうち窒素原子濃度が最大となる位置よりもシリコン酸化膜104a側にある領域(原子濃度積分領域)において、炭素原子濃度の積分値に対する窒素原子濃度の積分値の比率Rは0.11以上である。
 図2(a)は、本実施形態における炭素遷移層110を説明するための図であり、シリコン酸化膜104aの表面からの深さ方向における炭素原子および窒素原子の濃度プロファイルの一例を示すグラフである。
 図2(a)に示す例では、炭素原子濃度は、炭化珪素半導体層102からシリコン酸化膜104a側に向かって低くなっており、炭化珪素半導体層102における炭素原子濃度に対する炭素原子濃度が90%から10%まで変化する領域が炭素遷移層110となる。例えば、炭化珪素半導体層102の表面を熱酸化してシリコン酸化膜104aを形成する場合、炭素遷移層110は、熱酸化時に昇華せずに残留した炭素原子(残留炭素)を含んでいる。炭素遷移層110の厚さは、シリコン酸化膜104aの形成方法や条件などによって変わるが、例えば0.5nm以上3nm以下である。熱酸化によってシリコン酸化膜104aを形成する場合には、CVD法などによって形成する場合よりも炭素遷移層110が厚くなる傾向があり、その厚さは例えば0.5nm以上5nm以下である。
 炭素遷移層110には窒素原子が導入されている。図示する例では、窒素原子濃度プロファイルは、炭素遷移層110内にピークを有している。従って、炭素遷移層110のうち窒素原子濃度プロファイルがピークとなる深さからシリコン酸化膜104a側に位置する領域104bが、原子濃度積分領域となる。この領域において、炭素原子濃度の積分値に対する窒素原子濃度の積分値の比率Rが0.11以上であればよい。このように、窒素原子濃度プロファイルのピークが炭素遷移層110内に位置していると、窒素原子が炭素遷移層110により効率的に導入されているので、より顕著な効果が得られる。
 なお、窒素原子濃度プロファイルのピークが炭素遷移層110内に位置していなくてもよい。その場合、炭素遷移層110において窒素原子濃度が最大となる深さからシリコン酸化膜104a側に位置する領域104bが原子濃度積分領域となる。従って、窒素原子濃度プロファイルのピークが、シリコン酸化膜104aと炭素遷移層110との界面の深さ(炭素原子濃度が10%となる深さ)よりも深い位置にあれば、原子濃度積分領域を特定することができる。例えば図2(b)に示すように、窒素原子濃度プロファイルのピークが炭化珪素半導体層102内に位置していると、炭素遷移層110全体が原子濃度積分領域104bとなる。あるいは、窒素原子濃度プロファイルは鋭いピークを有さず、平坦な領域を有していてもよい。平坦な領域が炭素遷移層110における窒素原子濃度の最大値となる場合には、平坦な領域の最もシリコン酸化膜104a側からシリコン酸化膜104aまでの領域104bが原子濃度積分領域となる。
 本実施形態によると、残留炭素を含む領域である炭素遷移層110に、炭素原子量に対して所定の割合以上の窒素原子量が含まれているので、ゲート電極105に正バイアスを印加した際の、残留炭素に起因する閾値変動を低減することができる。その理由については、実験結果を参照しながら後述する。
 次に、本実施形態の炭化珪素半導体装置の構造を、縦型MOSFETを例に、さらに具体的に説明する。
 図1(b)は、本実施形態の炭化珪素半導体装置(縦型MOSFET)100を例示する断面図である。縦型MOSFET100は、複数のユニットセルを備えており、図1(b)は1個のユニットセルを示している。
 炭化珪素半導体装置100の各ユニットセルは、基板101と、基板101の主面上に配置された、炭化珪素半導体層102、炭素遷移層110、ゲート絶縁層104およびゲート電極105をこの順で含むMOS構造体と、炭化珪素半導体層102上に設けられたソース電極106と、基板101の裏面(主面と反対側の面)上に設けられたドレイン電極107とを備えている。MOS構造体は、図1(a)を参照しながら前述した構成と同様の構成を有している。
 基板101は、例えば低抵抗の第1導電型(ここではn+型)の炭化珪素基板である。
 ゲート絶縁層104は、例えばシリコン酸化膜104aである。なお、ゲート絶縁層104は、シリコン酸化膜104aを含んでいればよく、シリコン酸化膜104aとゲート電極105との間に他の絶縁膜を含んでいても構わない。
 炭化珪素半導体層102は、第1導電型と異なる第2導電型(ここではp型)を有するボディ領域122と、炭化珪素半導体層102のうちボディ領域122が配置されていない部分に位置する第1導電型のドリフト領域121と、ボディ領域122とゲート絶縁層104との間に設けられたチャネル層125とを有している。ドリフト領域121は、ボディ領域122と隣接するように配置されている。ドリフト領域121は、例えば、基板101よりも低濃度でn型不純物を含むn-型の炭化珪素半導体領域である。ボディ領域122の内部には、高濃度で第1導電型の不純物を含む(ここではn+型)不純物領域(ソース領域)123が配置されている。不純物領域123はソース電極106と接している。また、ボディ領域122の内部に、ボディ領域122よりも高い濃度で第2導電型の不純物を含む(ここではp+型)コンタクト領域124が配置されていてもよい。コンタクト領域124はソース電極106と接するように配置される。従って、ボディ領域122は、コンタクト領域124を介してソース電極106と電気的に接続される。
 チャネル層125は、ボディ領域122上に、ドリフト領域121と不純物領域123とを接続するように配置されている。チャネル層125は、例えば第1導電型(ここではn型)の炭化珪素層であってもよい。この例では、チャネル層125は、ボディ領域122およびその内部にあるソース領域123上から、隣接するボディ領域122およびその内部にあるソース領域123上まで、これらのボディ領域122の間に位置するドリフト領域121を跨ぐように設けられている。チャネル層125におけるボディ領域122上に位置する部分は、キャリアが移動するチャネルとして機能する。
 炭化珪素半導体層102は、基板101上にエピタキシャル成長によって形成された炭化珪素エピタキシャル層(例えば厚さ:10μm)と、炭化珪素エピタキシャル層上に形成されたチャネル層125とを有していてもよい。この場合、炭化珪素エピタキシャル層にボディ領域122、ドリフト領域121およびコンタクト領域124が形成されていてもよい。また、チャネル層125も、炭化珪素エピタキシャル層の上にエピタキシャル成長によって形成されていてもよい。
 炭化珪素半導体装置100では、ゲート電極105に印加する電圧により、ゲート電極105の下にあるチャネル層125に電流を流すことができる。そのため、ドレイン電極107からの電流(ドレイン電流)は、基板101、ドリフト領域121、チャネル層125およびソース領域123を介してソース電極106へ流れる(オン状態)。
 本実施形態における基板101は、例えば、1×1018cm-3以上のn型不純物を含んでいることが好ましい。基板101に含まれるn型不純物は、窒素、リン又はヒ素等が好ましい。ドリフト領域121は、1×1014cm-3~1×1016cm-3程度、不純物領域123は、1×1019cm-3~1×1021cm-3程度のn型不純物がドープされていてもよい。この場合のn型不純物は窒素であってもよい。チャネル層125は、微量の窒素、リン又はアンチモン等のn型不純物を含んでいてもよい。ボディ領域122は1×1016cm-3~2×1019cm-3程度、コンタクト領域124は5×1019cm-3程度のp型不純物を含んでいてもよい。ボディ領域122におけるp型不純物濃度は1×1017cm-3以上であることが好ましい。
 図示していないが、必要に応じてゲート電極105及びソース電極106を覆う層間絶縁膜を形成し、層間絶縁膜にゲート電極105及びソース電極106等と接続された配線を形成してもよい。また、この例では、ソース電極106はソース領域123およびコンタクト領域124の両方に接するように設けられているが、ソース電極106はコンタクト領域124と接していなくてもよい。この場合には、コンタクト領域124の上にコンタクト電極を形成し、ソース電極106とコンタクト電極とを配線等により接続してもよい。コンタクト領域124は、ボディ領域122内に配置されていればよく、ソース領域123と接していなくてもよい。
 炭化珪素半導体装置100でも、図1(a)を参照しながら前述したように、炭化珪素半導体層102(ここではチャネル層125)とシリコン酸化膜104aとの間に炭素遷移層110が位置している。炭素遷移層110のうち窒素原子濃度が最大となる位置よりもシリコン酸化膜104a側にある領域(原子濃度積分領域)において、炭素原子濃度の積分値に対する窒素原子濃度の積分値の比率Rは0.11以上である。窒素原子濃度の比率Rを上記範囲に設定することにより、界面準位密度を低減できるだけでなく、ゲート電極105に正バイアスを印加した際の閾値変動を低減することができる。
 <窒素原子濃度の比率Rの算出方法>
 炭素原子濃度の積分値に対する窒素原子濃度の積分値の比率Rは、例えば以下のようにして求めることができる。
 まず、二次イオン質量分析(SIMS)を用いて、シリコン酸化膜104aと炭化珪素半導体層102との界面近傍における炭素原子濃度および窒素原子濃度を測定する。図3は、SIMSによって得られた、炭素原子および窒素原子の深さ方向の濃度プロファイルを例示するグラフである。グラフの横軸はシリコン酸化膜104aの表面からの深さを表している。
 次いで、炭素原子濃度が炭化珪素半導体層102の炭素原子濃度の10%以上90%以下となる深さを求め、炭素遷移層110を画定する(図2(a)および(b)参照)。さらに、炭素遷移層110における窒素原子濃度が最大となる深さを求め、原子濃度積分領域を画定する。
 この後、原子濃度積分領域における炭素原子濃度および窒素原子濃度の積分を行う。得られた積分値は、深さ方向のディメンジョンを無視した、面積窒素原子濃度(原子/cm2)および面積炭素原子濃度(原子/cm2)として評価され得る。
 深さ方向の濃度を積分し、深さ方向のディメンジョンを無視できるようにした面積濃度を濃度の指標として用いることにより、深さ方向の分解能精度の影響を低減することができる。
 <炭化珪素半導体装置100の製造方法>
 次に、炭化珪素半導体装置100の製造方法の一例を説明する。
 まず、基板101上に、エピタキシャル成長によって、n型の炭化珪素エピタキシャル層を形成する。炭化珪素エピタキシャル層の不純物濃度は、エピタキシャル成長中に不純物(例えば窒素)ガスを添加することによって制御できる。
 次に、炭化珪素エピタキシャル層にp型不純物イオン(ここではAl(アルミニウム)イオン)を注入することにより、炭化珪素エピタキシャル層に複数のボディ領域122を形成する。炭化珪素エピタキシャル層のうちボディ領域122が形成されなかった領域は、n型のドリフト領域となる。
 続いて、ボディ領域122内にn型不純物イオン(ここではN(窒素)イオン)を注入することにより、ソース領域123を形成する。また、ボディ領域122内にp型不純物イオン(Alイオン)を注入することにより、コンタクト領域124を形成する。
 この後、炭化珪素エピタキシャル層に注入した不純物イオンを活性化させるためのアニール(活性化アニール)を行う。活性化アニールは、例えばAr雰囲気中、1700℃の温度で30分間行う。
 次に、炭化珪素エピタキシャル層上に、さらに炭化珪素をエピタキシャル成長させてチャネル層125を形成する。これにより、炭化珪素半導体層102を得る。
 チャネル層125はn型であり、その不純物濃度は、例えば1×1015cm-3、厚さは100nm程度とする。チャネル層125の不純物濃度は、エピタキシャル成長中に不純物(例えば窒素)ガスを添加することによって制御できる。チャネル層125の厚さは、後にゲート絶縁層を形成する際に減少する。なお、チャネル層125がn型不純物として窒素を含む場合でも、その窒素濃度は例えば2×1019cm-3程度である。従って、後の工程で熱酸化によりゲート絶縁層が形成される領域に含まれる窒素の量はSIMS検出下限以下であり、後述する窒化処理でこの領域にドープされる窒素量に比べて極めて少ない。
 次に、チャネル層125の表面部分を熱酸化させることにより、チャネル層125上にゲート絶縁層104として、シリコン酸化膜104aを形成する。熱酸化は、例えば、ドライ酸素雰囲気中で1100℃~1250℃程度の温度で行うことができる。処理時間は、所望の厚さの熱酸化膜(シリコン酸化膜104a)が得られるように適宜調整され得る。熱酸化の際に、酸素雰囲気中に、窒素ガス又はアルゴンガス等の希釈ガスを添加してもよい。ここでは、ドライ酸素雰囲気中、1200℃の温度で、厚さが70nmのシリコン酸化膜104aを形成する。厚さが例えば70nmのシリコン酸化膜104aを形成する場合、熱酸化によってチャネル層125の表面部分が30nm程度消費される。
 この工程において、炭化珪素半導体層102(ここではチャネル層125)におけるシリコン原子が二酸化シリコンになるとともに、炭化珪素半導体層102における炭素原子がCOnとなって昇華する。しかしながら、一部の炭素原子は昇華せずに炭化珪素半導体層102と熱酸化によって形成されるシリコン酸化膜104aとの間に残り、残留炭素となる。このようにして、残留炭素を含む炭素遷移層110が形成される。
 なお、シリコン酸化膜104aは、熱酸化以外の方法、例えばパイロジェニック酸化、化学気相堆積(CVD)法などによって形成されてもよい。熱酸化以外の方法を用いる場合でも、炭素遷移層110が形成される。ただし、熱酸化を用いると、他の方法よりも残留炭素の量が多くなることから、本願発明によって、残留炭素に起因する閾値変動をより効果的に抑制できる。
 続いて、シリコン酸化膜104aの上方から、少なくとも炭素遷移層110に対し、窒素のドーピングを行う(窒化処理)。窒素のドーピングは、例えば、一酸化窒素(NO)雰囲気中で、1200℃以上の温度で行うことができる。窒化処理温度および時間は、所望の量の窒素が炭素遷移層110に導入されるように適宜調整される。処理雰囲気は、一酸化窒素雰囲気に限定されず、窒素の含まれる各種ガス雰囲気でもよい。窒素のドーピングを行う際には、一酸化炭素が過剰に分解されないように、窒素で希釈することが好ましい。
 次いで、ゲート絶縁層104上に、ゲート電極105を形成する。ゲート電極105は、例えば、n型不純物がドープされたポリシリコン膜を堆積し、これをパターニングすることにより形成されてもよい。ポリシリコン膜を用いてゲート電極105を形成する場合には、ゲート電極105の上部にシリサイド層を設けてもよい。
 この後、ソース電極106およびドレイン電極を形成する。ソース電極106は、ソース領域123およびコンタクト領域124と接するようにNi膜を形成し、熱処理によってSiCとNiとの合金化反応を行うことによって形成され得る。このようにして得られたソース電極106は、ニッケルシリサイドを含み、ソース領域123およびコンタクト領域124とオーミック接合を形成する。ドレイン電極107も、同様に、基板101の裏面にNiを堆積し、基板101中のSiCとNiとの合金化反応を行うことにより形成され得る。
 (実施例)
 以下、窒化処理の条件を異ならせて、複数の評価用試料(SiC-MOSFET)A~Fを作製し、それらの閾値電圧の変動量を評価したので、その方法および結果を説明する。
 <試料の作製>
 試料A~Fの作製には、ポリタイプが4Hでありオフ角が4°の炭化珪素基板を用いた。また、これらの試料では、炭化珪素半導体層(チャネル層)の表面を熱酸化することにより、シリコン酸化膜(厚さ:70nm)を形成した。熱酸化は、ドライ酸素雰囲気中で1200℃の温度で行った。窒化処理は、一酸化窒素雰囲気中でシリコン酸化膜の上方から窒素を導入することにより行った。具体的には、大気圧にてチャンバー内に一酸化窒素を1slm(但し、slmは、L/min at 0℃、101.3kPaである。)、窒素を4slmの流量で導入して熱処理を行った。窒化処理条件(温度および時間)は試料ごとに異ならせた。試料A~Fにおける窒素導入時の温度および時間を表1に示す。窒化処理条件以外のプロセス条件は全て同じとして、図1(b)に示す縦型MOSFETを作成し、試料A~Fを得た。
Figure JPOXMLDOC01-appb-T000001
 <試料の評価>
 次に、上記A~Fの試料の閾値電圧Vthの変動量(ΔVth)を評価した。ΔVthは、ゲート電極に所定の電圧を印加した後のVth2と、電圧を印加する前の初期状態のVth1との差とした(Vth2-Vth1)。
 まず、ヒーター温度を150℃に設定して、評価しようとする試料(MOSFET)を設置し、ゲート電極に電圧を印加する前に初期状態の閾値電圧Vth1を測定した。ここでは、ドレイン・ソース間電圧(Vds)を10Vとした状態でゲート電極に印加する電圧を次第に高くし、ドレイン電流(Id)が1mAとなる際におけるゲート・ソース間電圧(Vgs)をVth1とした。初期状態のVth1を測定した後、ヒーター温度は変えずにVdsを0Vとし、ゲート電極に+20Vの電圧(ストレス電圧)を印加した。所定の時間が経過した後、ゲート電極への電圧の印加を停止し、再び150℃でVthの測定を行い、電圧印加後のVth2とした。電圧印加後のVth2と初期状態のVth1との差を求め、ΔVthとした。
 図4は、各試料の閾値電圧の変動量を評価した結果を示す図である。縦軸は初期状態の閾値Vth1からの変動量ΔVth、横軸はゲート電極への累積電圧印加時間を表している。
 図4から分かるように、何れの試料でも、ゲート電極への累積電圧印加時間が増えるにつれて、変動量ΔVthが増加している。また、窒化処理の温度が高いほど変動量ΔVthが小さくなり、同一温度では窒化処理時間が長いほど変動量ΔVthが小さくなっている。さらに、各試料の炭素遷移層における面積窒素原子濃度を調べたところ、試料AからFの順に面積窒素原子濃度が高くなっていた。従って、窒素原子濃度が高いほど、ゲート電極への正バイアス印加による閾値電圧の変動量ΔVthを抑制できることが分かった。
 ここで、本発明者が図4に示す評価結果を、各試料の閾値変動量の変化率の傾向に着目して検討したところ、比較的長時間のストレス電圧の印加によって生じる変動量の変化の割合(グラフの傾き)と、比較的短時間のストレス電圧の印加によって生じる変動量の変化の割合とは、異なる傾向を有していることを見出した。これは、ストレス電圧の印加を開始してから比較的長時間が経過した状態で生じる閾値変動のメカニズムと、ストレス電圧の印加を開始してから比較的短時間以内で生じる閾値変動のメカニズムとが異なっていることを意味すると考えられる。すなわち、正バイアスをゲートへ印加することによって閾値変動を生じさせるメカニズムは少なくとも2つある。そこで、本発明者は、閾値変動を引き起こす2つの要因について、検討を行った。
 <閾値変動の要因の検討1:界面準位密度>
 窒素の導入によって閾値変動が低減されるメカニズムを検討するために、まず、各試料の窒素原子濃度分布を測定し、窒素原子濃度と閾値変動量との関係を調べた。
 図6は、ΔVthの大きい試料の一例として試料B、ΔVthの小さい試料の一例とし試料FにおけるSiO2/SiC界面近傍の窒素原子分布を示すグラフである。一般的に、窒化処理を施したSiO2/SiC界面近傍には高濃度の窒素が分布していることが知られており、これらの試料でも、SiO2/SiC界面近傍に高濃度の窒素原子が導入されていることが確認された。また、これらの試料では、窒素原子濃度のピークは、炭素遷移層内に位置していた。試料Fの炭素遷移層における面積窒素原子濃度を求め、SiO2膜中に含まれる窒素の質量%に換算すると約5.9%となった。文献等において報告されているSiO2膜換算の窒素原子濃度は3%程度であり、試料Fにおいては通常よりも高い濃度の窒素が導入されていることが分かった。
 図7は、上述の試料B、Fについて伝導帯側バンド端近傍における界面準位密度のエネルギー分布を測定した結果を示している。横軸は伝導帯下端のエネルギー(Ec)と価電子帯上端のエネルギー(Ev)との差であり、縦軸は界面準位密度(Dit)である。界面準位密度は、図1に示す縦型のMOSFETでは測定が困難であるため、各試料と同じ条件で作製した面積0.1mm2のMOSキャパシタを用いて評価した。ゲートへの印加電圧に対するキャリアトラップの影響を抑制するため、0.1V/sでゲート電極に印加する電圧を15Vから-15Vまで変化させ、100kHzの高周波CV測定とquasi-Static CV測定を同時に実施し、その差分から界面準位密度を算出した(High-Low法)。
 図7に示すように、試料Fの界面準位密度は、試料Bの界面準位密度よりも小さい。従って、SiO2/SiC界面近傍における窒素原子濃度を高くすると、界面準位密度を小さくできることが分かった。従って、閾値変動を引き起こす要因の1つが界面準位密度の増加にあることが確認された。
 <閾値変動の要因の検討2:残留炭素>
 前述したように、図4の結果から、閾値変動の要因は少なくとも2つあり、その1つは界面準位密度の増加と考えられる。そこで、本発明者は、界面準位密度と閾値電圧の変動量ΔVthとが相関関係を有すると仮定し、モデル式からΔVth(h)を算出した。なお、ΔVth(h)の算出に用いる界面準位密度は、下記式により求めた。
Nit(t)=A・Em・exp(-φ/kT)・tn
ここで、Aは定数、Eは電界、mは電界依存性のべき指数、φは活性化エネルギー、kはボルツマン係数、Tは絶対温度、tは時間、nは時間依存性のべき指数である。
 次いで、算出したΔVth(h)と実際のΔVthとの挙動を比較することにより、閾値電圧の変動を引き起こす他の要因についての検討を行った。
 図5に示すモデル図を用いて説明する。図5に示すグラフaは試料AおよびB、グラフcは試料CおよびD、グラフeは試料EおよびFの測定結果を模式化したグラフである。各グラフに対応して設けられたグラフa(h)、c(h)およびe(h)は、界面準位密度の増加により閾値電圧が増大すると仮定して算出した閾値電圧の変動量ΔVth(h)の挙動を示すグラフである。
 図5から分かるように、ストレス電圧の印加を開始してから比較的長時間(例えば300秒超)経過後に生じるΔVthの挙動は、ΔVth(h)の挙動(グラフa(h)、c(h)およびe(h))と略等しい。従って、長時間経過後に生じる閾値変動は、図6および図7を参照しながら前述したように、炭化珪素半導体層102とシリコン酸化膜104aとの界面近傍における界面準位密度の増加に起因するものと推察される。
 一方、ストレス電圧印加を開始してから短時間経過後に生じる閾値電圧の変動は、従来知られていなかったメカニズムによって生じると考えられる。例えば、グラフaでは、短時間経過後(ストレス電圧印加直後から300秒以内)の閾値変動(初期変動)の大きさΔVthは、グラフa(h)のΔVth(h)に加えて、さらなる変動が生じている。この変動は、界面準位密度以外の要因によって引き起こされることがわかる。一方、グラフeでは、初期変動の大きさΔVthは、グラフe(h)のΔVth(h)を下回っている。このように、試料AおよびBでは、界面準位密度の増加以外の要因による初期変動が比較的大きく、試料CおよびDでは、試料AおよびBよりも初期変動が減少している。試料EおよびFでは、初期変動に寄与する浅い準位が減少し、初期変動がさらに減少している。
 本発明者が初期変動の要因およびメカニズムを鋭意検討した結果、残留炭素に起因する変動であると推察された。すなわち、酸化過程で生成された不安定なMOS界面の数nmの領域にわたって存在する残留炭素に起因する欠陥準位(あるいはトラップ)によって閾値変動が生じたと考えられる。窒化処理条件をより強化し、炭素原子量に対して所定量以上の窒素原子を導入することによって、残留炭素を窒素で置換または終端する効果が大きくなる。この結果、電子にとってより安定な状態を作り出すことができ、閾値電圧の初期変動を抑制する効果が生じたと推測される。
 図8は、試料A~FのSiO2/SiC界面近傍に存在する炭素原子濃度に対する窒素原子濃度の比率Rと、短時間のストレス電圧印加によるVthの変動量ΔVthsとの相関関係を示す図である。横軸に示す窒素原子濃度の比率Rは、SIMSにより求めた炭素原子濃度および窒素原子濃度をそれぞれ積分し、炭素原子濃度積分値に対する窒素原子濃度積分値の割合(窒素原子濃度積分値/炭素原子濃度積分値)を算出した値である。各原子の積分範囲は、炭素原子濃度が炭化珪素半導体の10%~90%である領域(炭素遷移層)において、窒素原子濃度の最大値よりもシリコン酸化膜側にある原子濃度積分領域(図2参照)とした。縦軸の変動量ΔVthsは、150℃の高温雰囲気中で、ゲート電極に+20Vのストレス電圧を300秒間印加したときのVthの変動量である。
 図8に示すように、窒素原子濃度の比率Rが大きくなるにつれて、閾値電圧の変動量ΔVthsをより低減できることが分かる。また、窒化処理温度が1200度である試料C~Fの変動量ΔVthsの変化に着目すると、図中の鎖線に示されるように、窒素原子濃度の比率Rの増加(すなわち窒化処理時間の増加)に伴って変動量ΔVthsが減少し、窒素原子濃度の比率Rが0.11以上になると、変動量ΔVthsの減少量が飽和することが分かる。
 この結果から分かるように、短時間のストレス電圧印加によって生じる閾値電圧の変動量ΔVthsは、窒素原子濃度だけでなく、SiO2/SiC界面近傍における炭素原子(残留炭素)の濃度にも依存する。窒素原子濃度の比率Rが高いほど、炭素遷移層に存在する残留炭素に起因する欠陥準位(あるいはトラップ)を窒素で置換または終端する効果が大きくなり、変動量ΔVthsが小さくなる。残留炭素量に対して窒素原子の量が所定量以上(比率Rが0.11以上)になると、変動量ΔVthsは飽和し、略一定になる。また、窒素原子濃度の比率Rが0.11以上であれば、短時間のストレス電圧印加による変動量ΔVthsを減少でき、この減少量の分だけ、その後のストレス電圧印加による変動量も低減される。従って、ストレス電圧印加時間にかかわらず、閾値電圧の変動を低減することが可能である。変動量ΔVthsを抑制するためにSiO2/SiC界面近傍に導入すべき窒素原子量の範囲は、どのように形成されたシリコン酸化膜に対しても一概に決定できるものではなく、炭素遷移層に存在する炭素原子量によって変わる。
 なお、比率Rを算出する原子濃度積分領域の範囲(深さの範囲)を、窒素原子濃度のピークのシリコン酸化膜側に設定した理由は次のとおりである。
 炭素遷移層全体に亘って残留炭素が存在することから、炭素遷移層全体を原子濃度積分領域に設定することも考えられる。しかしながら、炭素遷移層全体を原子濃度積分領域の範囲とすると、炭素原子濃度が窒素原子濃度に比べて極めて高いため、窒素原子濃度の比率を精確に測定することが難しい場合がある。この結果、窒素原子濃度の比率と閾値変動との関係を調べ、閾値変動を抑制することは困難となる。そこで、炭素遷移層における炭素原子濃度の比較的低い領域を原子濃度積分領域として設定し、窒素原子濃度の比率Rを求めた。なお、窒素原子濃度がピークとなる位置では、炭素と窒素の相関が最も顕著に現れていると考えられる。窒素原子が局在するということは、欠陥準位(あるいはトラップ)が最も多く存在することを意味するからである。従って、上記の実施例では、炭素遷移層における原子濃度積分領域を窒素原子濃度のピーク位置を基準として設定した。
 窒素原子濃度の比率Rの上限値は特に限定しないが、例えば0.18以下である。また、炭素遷移層における面積窒素原子濃度が高すぎると、キャリアの散乱による移動度の劣化の可能性があるので、炭素遷移層における面積窒素原子濃度を1×1015cm-2以下に抑えることが好ましい。一方、炭素遷移層における面積窒素原子濃度が例えば6×1014cm-2以上であれば、界面準位密度をより低減できるので、長時間のストレス電圧印加による閾値電圧の変動量ΔVthを低減する効果が大きくなる。従って、短時間および長時間のストレス電圧印加による閾値電圧の変動量ΔVthをより効果的に低減できるので、より顕著な効果が得られる。
 炭素遷移層における面積炭素原子濃度も、炭化珪素半導体層やシリコン酸化膜の形成方法や形成条件、材料によって変わり得るので限定しない。一例として、エピタキシャル成長によって形成された炭化珪素層を熱酸化してシリコン酸化膜を形成する場合、炭素遷移層における面積炭素原子濃度は例えば6×1015cm-2以上1×1016cm-2以下である。
 <窒素原子濃度プロファイルにおけるピーク値Cmおよび半値幅ΔM>
 各試料B~Fについて、深さ方向における窒素原子濃度プロファイルからピーク値Cmおよび半値幅ΔMを求めたので、その方法および結果を説明する。半値幅ΔMは、窒素原子濃度のピーク値Cmの1/2以上の濃度で窒素原子が存在する領域の幅である。
 試料Fを例に説明する。SIMSにより、試料Fのシリコン酸化膜と炭化珪素半導体層との界面近傍における深さ方向の窒素原子濃度プロファイルを求める。ここでは、SIMSを用いた窒素原子濃度の測定を、一次イオンとして酸素イオンを用いて行った。
 次いで、SIMSにより得られた窒素原子濃度プロファイル(図6)から、窒素原子濃度のピーク値(ピーク濃度)Cmおよび半値幅ΔMを求める。図6に示すように、ピーク値Cmの1/2の濃度(Cm/2)となる2点間の深さの幅ΔMが半値幅である。
 他の試料についても同様にピーク値Cmおよび半値幅ΔMを求める。得られた結果を表2に示す。
Figure JPOXMLDOC01-appb-T000002
 この結果から、NO処理時間が6時間以下の場合には、NO処理時間の長い試料ほど半値幅ΔMが増加することが分かる。閾値電圧の変動量ΔVthの低い試料(試料E、F)では、半値幅ΔMは、例えば2.3nm以上である。
 半値幅ΔMが大きいと、次のようなメリットがある。上述したように、従来の半導体装置では、MOS界面の数nmの領域にわたって、残留炭素が存在している。この領域を「残留炭素領域」と称する。残留炭素領域では、残留炭素は、例えば1.0×1019cm-3以上の濃度で存在している。窒素原子濃度プロファイルの半値幅ΔMが小さいと、残留炭素領域内に窒素原子が不足する領域が生じ得る。このため、窒素原子によって置換や終端されなかった残留炭素に起因する欠陥準位によって、閾値変動が生じる可能性がある。これに対し、半値幅ΔMを大きくすると(例えば2.3nm以上)、残留炭素領域に亘って、残留炭素をより確実に窒素で置換または終端できるので、残留炭素に起因する欠陥準位による閾値変動をより効果的に抑制できる。
 本実施形態の炭化珪素半導体装置は、図1(b)に示す縦型MOSFETに限定されない。本実施形態のMOSFETは、チャネル層を有していなくてもよい。その場合、ボディ領域およびドリフト領域の表面と接するようにゲート絶縁層(シリコン酸化膜)が配置されていてもよい。
 また、本実施形態は、炭化珪素半導体層上に絶縁膜を介して電極が配置された構造(MOS構造)を有する種々の半導体装置に適用され得る。例えば、以下に説明するように、横型のMOSFETであってもよい。
 図9は、横型のMOSFETを例示する断面図である。図9に示す横型のMOSFETでは、ソース電極106およびドレイン電極107は、炭化珪素半導体層102の上に設けられている。炭化珪素半導体層102の上に、コンタクト電極108をさらに備えていてもよい。
 炭化珪素半導体層102は、第1導電型(ここではn-型)のドリフト領域121と、ドリフト領域121に隣接して配置された第2導電型(ここではp型)のボディ領域122と、ボディ領域122とシリコン酸化膜104aとの間に設けられたチャネル層125とを有している。炭素遷移層110は、チャネル層125とシリコン酸化膜104aとの間に位置している。
 ボディ領域122には、第1導電型(ここではn+型)の第1不純物領域(ソース領域ともいう)123と、第1導電型(ここではn+型)の第2不純物領域(ドレイン領域ともいう)126とが間隔を空けて配置されている。この例では、ソース領域123とドレイン領域126とは、ゲート電極105を挟んで両側に配置されている。チャネル層125は、第1不純物領域123と第2不純物領域126とを接続するように配置されている。ソース電極106は第1不純物領域123と電気的に接続され、ドレイン電極107は第2不純物領域126と電気的に接続されている。
 なお、図9では、ソース電極106及びドレイン電極107とコンタクト電極108とが独立して配置されているが、図1(b)に示す構造と同様に、ソース電極106及びドレイン電極107とコンタクト電極108とが一体的に構成されていてもよい。
 上述した実施形態では、いずれも、第1導電型をn型、第2導電型をp型としたが、n型の領域とp型の領域とを入れ替えることも可能である。また、ゲートトレンチを有するMOSFETにも適用可能である。さらに、本願発明を、MOSFET以外の炭化珪素半導体装置に適用することも可能である。上記実施形態では、ドリフト領域121と同じ導電型の基板101を用いてMOSFETを製造しているが、ドリフト領域121と異なる導電型の炭化珪素基板を用いて絶縁ゲートバイポーラトランジスタ(Insulated Gate Bipolar Transistor:IGBT)を製造することもできる。
 本発明の実施形態によると、チャネル移動度を向上させると共に、ゲート電極に正バイアスを印加した際の閾値変動を抑制して信頼性を大きく向上させることができ、特に、パワーデバイスをはじめとする炭化珪素半導体装置等として有用である。
 本発明は、MOEFET、IGBTなどのMOS構造を有する種々の炭化珪素半導体装置に広く適用できる。
101   基板
102   炭化珪素半導体層
104   ゲート絶縁層
104a  シリコン酸化膜
105   ゲート電極
106   ソース電極
107   ドレイン電極
108   コンタクト電極
110   炭素遷移層
121   ドリフト領域
122   ボディ領域
123   ソース領域
124   コンタクト領域
125   チャネル層
126   ドレイン領域

Claims (7)

  1.  炭化珪素半導体層と、
     前記炭化珪素半導体層上に配置され、シリコン酸化膜を含むゲート絶縁層と、
     前記ゲート絶縁層上に配置されたゲート電極と、
     前記炭化珪素半導体層と前記シリコン酸化膜との間に位置し、前記炭化珪素半導体層における炭素原子濃度に対する炭素原子濃度が10%以上90%以下である炭素遷移層と
    を備え、
     前記炭素遷移層のうち窒素原子濃度が最大となる位置よりも前記シリコン酸化膜側にある領域において、炭素原子濃度の積分値に対する窒素原子濃度の積分値の比率が0.11以上である炭化珪素半導体装置。
  2.  前記炭化珪素半導体層を支持する基板と、前記基板の前記炭化珪素半導体層と反対側に設けられたドレイン電極と、前記炭化珪素半導体層の上に設けられたソース電極とをさらに備え、
     前記炭化珪素半導体層は、第1導電型のドリフト領域と、前記ドリフト領域に隣接して配置された第2導電型のボディ領域と、前記ボディ領域内に配置された第1導電型の不純物領域と、前記ボディ領域と前記ゲート絶縁層との間に、前記ドリフト領域と前記不純物領域とを接続するように設けられたチャネル層とを有し、
     前記ソース電極は前記不純物領域と電気的に接続されており、
     前記炭素遷移層は、前記チャネル層と前記シリコン酸化膜との間に位置する請求項1に記載の炭化珪素半導体装置。
  3.  前記炭化珪素半導体層を支持する基板と、前記炭化珪素半導体層の上に設けられたソース電極およびドレイン電極とをさらに備え、
     前記炭化珪素半導体層は、第1導電型のドリフト領域と、前記ドリフト領域に隣接して配置された第2導電型のボディ領域と、前記ボディ領域内に互いに間隔を空けて配置された第1導電型の第1不純物領域および第2不純物領域と、前記ボディ領域と前記ゲート絶縁層との間に、前記第1不純物領域と前記第2不純物領域とを接続するように設けられたチャネル層とを有し、
     前記ソース電極は前記第1不純物領域と電気的に接続され、前記ドレイン電極は前記第2不純物領域と電気的に接続されており、
     前記炭素遷移層は、前記チャネル層と前記シリコン酸化膜との間に位置する請求項1に記載の炭化珪素半導体装置。
  4.  前記窒素原子濃度の深さ方向におけるプロファイルは、前記炭素遷移層内にピークを有している請求項1から3のいずれかに記載の炭化珪素半導体装置。
  5.  炭化珪素半導体層を用意する工程(a)と、
     前記炭化珪素半導体層の表面にシリコン酸化膜を含むゲート絶縁層を形成する工程であって、前記炭化珪素半導体層と前記シリコン酸化膜との間には、前記炭化珪素半導体層における炭素原子濃度に対する炭素原子濃度が10%以上90%以下である炭素遷移層が形成される工程(b)と、
     少なくとも前記炭素遷移層に窒素原子を導入する工程であって、これにより、前記炭素遷移層のうち窒素原子のピークとなる位置よりも前記シリコン酸化膜側にある領域において、炭素原子濃度の積分値に対する窒素原子濃度の積分値の比率を0.11以上とする工程(c)と
    を包含する炭化珪素半導体装置の製造方法。
  6.  前記工程(b)は、前記炭化珪素半導体層の前記表面を熱酸化して前記シリコン酸化膜を形成する工程を含む請求項5に記載の炭化珪素半導体装置の製造方法。
  7.  前記工程(c)は、前記ゲート絶縁層が形成された前記炭化珪素半導体層に対して、窒素を含む雰囲気中で1200℃以上の温度で熱処理を行う工程を含む請求項5または6に記載の炭化珪素半導体装置の製造方法。
PCT/JP2013/007095 2012-12-27 2013-12-03 炭化珪素半導体装置およびその製造方法 WO2014103186A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201380010965.2A CN104137266B (zh) 2012-12-27 2013-12-03 碳化硅半导体装置及其制造方法
US14/377,379 US9209262B2 (en) 2012-12-27 2013-12-03 Silicon carbide semiconductor device and method for manufacturing same
JP2014517311A JP5608840B1 (ja) 2012-12-27 2013-12-03 炭化珪素半導体装置およびその製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-285708 2012-12-27
JP2012285708 2012-12-27

Publications (1)

Publication Number Publication Date
WO2014103186A1 true WO2014103186A1 (ja) 2014-07-03

Family

ID=51020310

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/007095 WO2014103186A1 (ja) 2012-12-27 2013-12-03 炭化珪素半導体装置およびその製造方法

Country Status (4)

Country Link
US (1) US9209262B2 (ja)
JP (1) JP5608840B1 (ja)
CN (1) CN104137266B (ja)
WO (1) WO2014103186A1 (ja)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2999000A3 (en) * 2014-09-19 2016-03-30 Kabushiki Kaisha Toshiba Semiconductor device
US20170104072A1 (en) * 2014-07-07 2017-04-13 Kabushiki Kaisha Toshiba Semiconductor device and method for manufacturing the same
JP2017216306A (ja) * 2016-05-30 2017-12-07 株式会社東芝 半導体装置、半導体装置の製造方法、インバータ回路、駆動装置、車両、及び、昇降機
JP2017216305A (ja) * 2016-05-30 2017-12-07 株式会社東芝 半導体装置、半導体装置の製造方法、インバータ回路、駆動装置、車両、及び、昇降機
JP2019091941A (ja) * 2015-03-24 2019-06-13 株式会社東芝 半導体装置、インバータ回路、駆動装置、車両、及び、昇降機
JP2019149527A (ja) * 2018-02-28 2019-09-05 国立研究開発法人産業技術総合研究所 炭化珪素半導体装置および炭化珪素半導体装置の製造方法
WO2020031971A1 (ja) * 2018-08-07 2020-02-13 ローム株式会社 SiC半導体装置
JP2020047666A (ja) * 2018-09-14 2020-03-26 株式会社東芝 半導体装置、半導体装置の製造方法、インバータ回路、駆動装置、車両、及び、昇降機
JP2020155698A (ja) * 2019-03-22 2020-09-24 株式会社豊田中央研究所 炭化珪素半導体装置
WO2020188862A1 (ja) * 2019-03-18 2020-09-24 三菱電機株式会社 炭化珪素半導体装置、電力変換装置および炭化珪素半導体装置の製造方法

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9496366B2 (en) * 2013-10-08 2016-11-15 Shindengen Electric Manufacturing Co., Ltd. Method for manufacturing silicon carbide (SiC) semiconductor device by introducing nitrogen concentration of 5X1019 cm-3 or more at a boundary surface between thermal oxide film and the SiC substrate and then removing the thermal oxide film
JP6158153B2 (ja) * 2014-09-19 2017-07-05 株式会社東芝 半導体装置及びその製造方法
JP2016115860A (ja) * 2014-12-17 2016-06-23 三菱電機株式会社 炭化珪素半導体装置の製造方法
JP2016157762A (ja) * 2015-02-24 2016-09-01 株式会社東芝 半導体装置及びその製造方法
US9673315B2 (en) * 2015-03-24 2017-06-06 Kabushiki Kaisha Toshiba Semiconductor device, inverter circuit, driving device, vehicle, and elevator
JP2017059562A (ja) * 2015-09-14 2017-03-23 株式会社東芝 半導体装置
JP6584966B2 (ja) * 2016-01-12 2019-10-02 株式会社東芝 半導体装置、半導体装置の製造方法、インバータ回路、駆動装置、車両、及び昇降機
JP6692265B2 (ja) * 2016-09-16 2020-05-13 株式会社東芝 半導体装置、半導体装置の製造方法、インバータ回路、駆動装置、車両、及び、昇降機
JP7241704B2 (ja) 2018-01-17 2023-03-17 ローム株式会社 半導体装置およびその製造方法
JP7154772B2 (ja) 2018-02-16 2022-10-18 株式会社豊田中央研究所 炭化珪素半導体装置の製造方法
JP6862384B2 (ja) * 2018-03-21 2021-04-21 株式会社東芝 半導体装置、半導体装置の製造方法、インバータ回路、駆動装置、車両、及び、昇降機
JP7293749B2 (ja) * 2019-03-14 2023-06-20 富士電機株式会社 炭化珪素半導体装置の選別方法
DE102019120692A1 (de) * 2019-07-31 2021-02-04 Infineon Technologies Ag Leistungshalbleitervorrichtung und Verfahren
CN115244651B (zh) * 2020-03-17 2023-08-08 日立能源瑞士股份公司 绝缘栅结构、具有绝缘栅结构的宽带隙材料功率器件及其制造方法
US11764270B2 (en) * 2020-03-19 2023-09-19 Kabushiki Kaisha Toshiba Semiconductor device, method for manufacturing semiconductor device, inverter circuit, drive device, vehicle, and elevator
JP2022041725A (ja) * 2020-09-01 2022-03-11 富士電機株式会社 炭化珪素半導体装置
CN112599524B (zh) * 2020-12-18 2022-09-20 浙江大学杭州国际科创中心 一种具有增强可靠性的碳化硅功率mosfet器件

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008147365A (ja) * 2006-12-08 2008-06-26 Tohoku Univ 半導体装置および半導体装置の製造方法
WO2010103820A1 (ja) * 2009-03-11 2010-09-16 三菱電機株式会社 炭化珪素半導体装置の製造方法
JP2011082454A (ja) * 2009-10-09 2011-04-21 Panasonic Corp 絶縁膜構造体及びこれを用いた半導体装置
JP2011165941A (ja) * 2010-02-10 2011-08-25 Toshiba Corp 半導体装置および半導体装置の製造方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004253777A (ja) 2003-01-31 2004-09-09 Nec Electronics Corp 半導体装置及び半導体装置の製造方法
US7709403B2 (en) 2003-10-09 2010-05-04 Panasonic Corporation Silicon carbide-oxide layered structure, production method thereof, and semiconductor device
JP4867333B2 (ja) 2005-12-27 2012-02-01 三菱電機株式会社 炭化珪素半導体装置、及び炭化珪素半導体装置の製造方法
US7439594B2 (en) 2006-03-16 2008-10-21 Micron Technology, Inc. Stacked non-volatile memory with silicon carbide-based amorphous silicon thin film transistors
WO2011089687A1 (ja) 2010-01-19 2011-07-28 住友電気工業株式会社 炭化ケイ素半導体装置およびその製造方法
US8093146B2 (en) * 2010-03-17 2012-01-10 Taiwan Semiconductor Manufacturing Company, Ltd. Method of fabricating gate electrode using a hard mask with spacers
JP2012038919A (ja) 2010-08-06 2012-02-23 Mitsubishi Electric Corp 炭化珪素半導体装置の製造方法
JP5524103B2 (ja) 2011-02-07 2014-06-18 株式会社東芝 半導体装置
US10367089B2 (en) * 2011-03-28 2019-07-30 General Electric Company Semiconductor device and method for reduced bias threshold instability

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008147365A (ja) * 2006-12-08 2008-06-26 Tohoku Univ 半導体装置および半導体装置の製造方法
WO2010103820A1 (ja) * 2009-03-11 2010-09-16 三菱電機株式会社 炭化珪素半導体装置の製造方法
JP2011082454A (ja) * 2009-10-09 2011-04-21 Panasonic Corp 絶縁膜構造体及びこれを用いた半導体装置
JP2011165941A (ja) * 2010-02-10 2011-08-25 Toshiba Corp 半導体装置および半導体装置の製造方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
JOHN ROZEN ET AL.: "Density of interface states, electron traps, and hole traps as a function of the nitrogen density in Si02 on SiC", JOURNAL OF APPLIED PHYSICS, vol. 105, 22 June 2009 (2009-06-22), pages 124506 - 1-11 *
KEIKO FUJIHIRA ET AL.: "Characteristics of 4H- SiC MOS interface annealed in N20", SOLID-STATE ELECTRONICS, vol. 49, 14 April 2005 (2005-04-14), pages 896 - 901 *
RAJAN ARORA ET AL.: "Charge Trapping Properties of 3C- and 4H-SiC MOS Capacitors With Nitrided Gate Oxides", IEEE TRANSACTIONS ON NUCLEAR SCIENCE, vol. 56, no. 6, 2009, pages 3185 - 3191 *

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170104072A1 (en) * 2014-07-07 2017-04-13 Kabushiki Kaisha Toshiba Semiconductor device and method for manufacturing the same
US10319819B2 (en) * 2014-07-07 2019-06-11 Kabushiki Kaisha Toshiba Semiconductor device and method for manufacturing the same
EP2999000A3 (en) * 2014-09-19 2016-03-30 Kabushiki Kaisha Toshiba Semiconductor device
JP2016063122A (ja) * 2014-09-19 2016-04-25 株式会社東芝 半導体装置
US9443937B2 (en) 2014-09-19 2016-09-13 Kabushiki Kaisha Toshiba Semiconductor device
JP2019091941A (ja) * 2015-03-24 2019-06-13 株式会社東芝 半導体装置、インバータ回路、駆動装置、車両、及び、昇降機
JP2017216306A (ja) * 2016-05-30 2017-12-07 株式会社東芝 半導体装置、半導体装置の製造方法、インバータ回路、駆動装置、車両、及び、昇降機
JP2017216305A (ja) * 2016-05-30 2017-12-07 株式会社東芝 半導体装置、半導体装置の製造方法、インバータ回路、駆動装置、車両、及び、昇降機
JP2019149527A (ja) * 2018-02-28 2019-09-05 国立研究開発法人産業技術総合研究所 炭化珪素半導体装置および炭化珪素半導体装置の製造方法
JP7056232B2 (ja) 2018-02-28 2022-04-19 富士電機株式会社 炭化珪素半導体装置および炭化珪素半導体装置の製造方法
WO2020031971A1 (ja) * 2018-08-07 2020-02-13 ローム株式会社 SiC半導体装置
JPWO2020031971A1 (ja) * 2018-08-07 2021-08-10 ローム株式会社 SiC半導体装置
US12080760B2 (en) 2018-08-07 2024-09-03 Rohm Co., Ltd. SiC semiconductor device
JP2020047666A (ja) * 2018-09-14 2020-03-26 株式会社東芝 半導体装置、半導体装置の製造方法、インバータ回路、駆動装置、車両、及び、昇降機
JP7072148B2 (ja) 2018-09-14 2022-05-20 株式会社東芝 半導体装置、半導体装置の製造方法、インバータ回路、駆動装置、車両、及び、昇降機
WO2020188862A1 (ja) * 2019-03-18 2020-09-24 三菱電機株式会社 炭化珪素半導体装置、電力変換装置および炭化珪素半導体装置の製造方法
JPWO2020188862A1 (ja) * 2019-03-18 2021-10-21 三菱電機株式会社 炭化珪素半導体装置、電力変換装置および炭化珪素半導体装置の製造方法
JP7138770B2 (ja) 2019-03-18 2022-09-16 三菱電機株式会社 炭化珪素半導体装置、電力変換装置および炭化珪素半導体装置の製造方法
JP2020155698A (ja) * 2019-03-22 2020-09-24 株式会社豊田中央研究所 炭化珪素半導体装置

Also Published As

Publication number Publication date
JPWO2014103186A1 (ja) 2017-01-12
US20150303271A1 (en) 2015-10-22
US9209262B2 (en) 2015-12-08
CN104137266A (zh) 2014-11-05
JP5608840B1 (ja) 2014-10-15
CN104137266B (zh) 2015-07-15

Similar Documents

Publication Publication Date Title
JP5608840B1 (ja) 炭化珪素半導体装置およびその製造方法
US9812529B2 (en) Semiconductor device and method for manufacturing the same
JP6305294B2 (ja) 半導体装置及びその製造方法
US9755064B2 (en) Semiconductor device and method for manufacturing the same
US9496365B2 (en) Semiconductor device and manufacturing method for the same
US9000448B2 (en) Silicon carbide semiconductor device
KR102324000B1 (ko) 실리콘 탄화물 반도체 디바이스 및 그 제조 방법
JP6095902B2 (ja) ワイドバンドギャップ半導体装置およびその製造方法
JP2011082454A (ja) 絶縁膜構造体及びこれを用いた半導体装置
JP2006210818A (ja) 半導体素子およびその製造方法
US20180308937A1 (en) Silicon carbide semiconductor device and method of manufacturing silicon carbide semiconductor device
WO2012165008A1 (ja) 炭化珪素半導体装置およびその製造方法
JP6432232B2 (ja) 炭化ケイ素半導体装置および炭化ケイ素半導体装置の製造方法
US10002931B2 (en) Silicon carbide semiconductor device
US9978842B2 (en) Semiconductor device and method for manufacturing the same
US20170271456A1 (en) Silicon carbide semiconductor device and method of manufacturing silicon carbide semiconductor device
JP2014222735A (ja) 半導体装置及びその製造方法
CN107078158B (zh) 碳化硅半导体装置及其制造方法
JPWO2010110252A1 (ja) Mosfetおよびmosfetの製造方法
JP2016201500A (ja) 炭化ケイ素mos型半導体装置およびその製造方法
JP6582537B2 (ja) 半導体装置および半導体装置の製造方法
US10892332B2 (en) Gate insulating layer having a plurality of silicon oxide layer with varying thickness
JP7304577B2 (ja) 絶縁ゲート型半導体装置及び絶縁ゲート型半導体装置の製造方法
Zhang Reliability and irradiation effects of 4hydrogen-silicon carbide MOS devices

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2014517311

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14377379

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13866676

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13866676

Country of ref document: EP

Kind code of ref document: A1