WO2019136792A1 - 一种从溶液中分离镍钴的方法 - Google Patents

一种从溶液中分离镍钴的方法 Download PDF

Info

Publication number
WO2019136792A1
WO2019136792A1 PCT/CN2018/076546 CN2018076546W WO2019136792A1 WO 2019136792 A1 WO2019136792 A1 WO 2019136792A1 CN 2018076546 W CN2018076546 W CN 2018076546W WO 2019136792 A1 WO2019136792 A1 WO 2019136792A1
Authority
WO
WIPO (PCT)
Prior art keywords
cobalt
nickel
extractant
solution
extraction
Prior art date
Application number
PCT/CN2018/076546
Other languages
English (en)
French (fr)
Inventor
席晓丽
张政政
马立文
聂祚仁
Original Assignee
北京工业大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京工业大学 filed Critical 北京工业大学
Priority to JP2019553974A priority Critical patent/JP6844029B2/ja
Publication of WO2019136792A1 publication Critical patent/WO2019136792A1/zh
Priority to US16/713,921 priority patent/US11008638B2/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B23/00Obtaining nickel or cobalt
    • C22B23/04Obtaining nickel or cobalt by wet processes
    • C22B23/0476Separation of nickel from cobalt
    • C22B23/0484Separation of nickel from cobalt in acidic type solutions
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B3/00Extraction of metal compounds from ores or concentrates by wet processes
    • C22B3/20Treatment or purification of solutions, e.g. obtained by leaching
    • C22B3/26Treatment or purification of solutions, e.g. obtained by leaching by liquid-liquid extraction using organic compounds
    • C22B3/28Amines
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B3/00Extraction of metal compounds from ores or concentrates by wet processes
    • C22B3/20Treatment or purification of solutions, e.g. obtained by leaching
    • C22B3/26Treatment or purification of solutions, e.g. obtained by leaching by liquid-liquid extraction using organic compounds
    • C22B3/28Amines
    • C22B3/282Aliphatic amines
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B3/00Extraction of metal compounds from ores or concentrates by wet processes
    • C22B3/20Treatment or purification of solutions, e.g. obtained by leaching
    • C22B3/26Treatment or purification of solutions, e.g. obtained by leaching by liquid-liquid extraction using organic compounds
    • C22B3/38Treatment or purification of solutions, e.g. obtained by leaching by liquid-liquid extraction using organic compounds containing phosphorus
    • C22B3/384Pentavalent phosphorus oxyacids, esters thereof
    • C22B3/3844Phosphonic acid, e.g. H2P(O)(OH)2
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B3/00Extraction of metal compounds from ores or concentrates by wet processes
    • C22B3/20Treatment or purification of solutions, e.g. obtained by leaching
    • C22B3/26Treatment or purification of solutions, e.g. obtained by leaching by liquid-liquid extraction using organic compounds
    • C22B3/38Treatment or purification of solutions, e.g. obtained by leaching by liquid-liquid extraction using organic compounds containing phosphorus
    • C22B3/384Pentavalent phosphorus oxyacids, esters thereof
    • C22B3/3846Phosphoric acid, e.g. (O)P(OH)3
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B3/00Extraction of metal compounds from ores or concentrates by wet processes
    • C22B3/20Treatment or purification of solutions, e.g. obtained by leaching
    • C22B3/26Treatment or purification of solutions, e.g. obtained by leaching by liquid-liquid extraction using organic compounds
    • C22B3/40Mixtures
    • C22B3/408Mixtures using a mixture of phosphorus-based acid derivatives of different types
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B7/00Working up raw materials other than ores, e.g. scrap, to produce non-ferrous metals and compounds thereof; Methods of a general interest or applied to the winning of more than two metals
    • C22B7/006Wet processes
    • C22B7/007Wet processes by acid leaching
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Definitions

  • the invention belongs to the technical field of solid waste treatment, and in particular relates to a method for separating solid waste containing nickel and cobalt.
  • the extraction methods commonly used in nickel-cobalt separation mainly use acid extractant P204, P507. These kinds of extractants are weakly acidic.
  • the reaction process of this kind of extractant and nickel-cobalt element is cation exchange process, which is easy to cause in the reaction process.
  • the hydrogen ion concentration of the solution increases, and the acid leaching is enhanced, thereby affecting the extraction effect. Therefore, in the use of such an acidic extractant, the acidic extractant is often saponified using an alkaline liquid such as sodium hydroxide or ammonia water, and the hydrogen ion in the hydroxyl group of the acid extractant is replaced by the basic cation.
  • the saponification-free extraction and separation technology will solve the problems of ammonia nitrogen wastewater in the extraction process in the extraction and separation process, and the saponification process will be eliminated.
  • the process of extraction and separation can be shortened, the operation can be simplified, and the alkali consumption can be reduced, and the cost can be saved;
  • the extraction process can avoid the production of wastewater such as ammonia nitrogen, which greatly reduces the discharge of wastewater.
  • a method for separating nickel cobalt from a solution comprising the steps of:
  • the extractant contains an acidic extractant P507 and an alkaline extractant N235.
  • the nickel-cobalt-containing solution further contains chloride ions, and the concentration of the chloride ions is 3-3.5 mol/L.
  • the reagent for adjusting the pH of the solution is sodium hydroxide and/or hydrochloric acid.
  • the volume ratio of the acidic extractant P507 and the alkaline extractant N235 is (1 to 9): (9 to 1).
  • the volume ratio of the acidic extractant P507 and the alkaline extractant N235 is (2 to 4): (6-8).
  • the diluent is further added with a diluent
  • the diluent is kerosene or sulfonated kerosene
  • the volume ratio of the sum of the two extractants to the diluent is 1: (2-4).
  • the volume ratio of the extracting agent to the solution is (3 to 5): 1.
  • the method for efficiently extracting and separating nickel and cobalt proposed by the invention adopts a non-saponification extraction method, and does not use NaOH as a saponification agent, thereby avoiding the discharge of saponification wastewater.
  • the acidic extractant P507 and the alkaline extractant N235 act synergistically, and the cobalt in the acid leaching solution is effectively extracted and separated into the organic phase, thereby realizing the separation of nickel and cobalt.
  • the solution treated in this embodiment is a waste liquid containing a cobalt-nickel element, and is obtained by dissolving a positive electrode material of a lithium ion battery with hydrochloric acid.
  • the content of nickel is 0.9 mol/L, and the content of cobalt is 0.15 mol/L.
  • the nickel-cobalt solution and the synergistic extraction extractant are used for the extraction reaction, wherein the nickel-cobalt solution is adjusted to pH 4 with sodium hydroxide, and the solution contains chlorine ions of 3 mol/L.
  • the extractant is added to the solution.
  • the volume ratio of P507 to N235 in the extractant is 5:5.
  • the volume of the two organic extractants and the thinner kerosene is 1:2, and the volume of the extractant and the aqueous phase is 3:1.
  • Cobalt mainly enters the organic phase with a distribution ratio of 2.4 (calculated as cobalt).
  • Synergistic extraction coefficient distribution ratio using synergistic extractant / sum of partition coefficients of one extractant alone
  • the synergistic extraction coefficient of this example was 3.42.
  • the nickel-cobalt solution and the synergistic extraction extractant were used for the extraction reaction, wherein the content of nickel was 0.9 mol/L, the content of cobalt was 0.15 mol/L, and the content of chloride ion was 3.2 mol/L.
  • the pH of the nickel-cobalt solution was adjusted to 4 with sodium hydroxide, the volume ratio of P507 to N235 in the extractant was 3:7, the volume of the two extractants and the volume of the kerosene with the diluent was 1:3, and the volume of the extractant and the aqueous phase. It is 4:1, and it is allowed to stand for 10 min to achieve static stratification. After the interface is clear, the lower aqueous phase is separated. The distribution ratio is 11.8.
  • the synergistic extraction coefficient of this example was 10.53.
  • the content of nickel in solution is 1mol/L
  • the content of cobalt is 0.2mol/L
  • the pH of nickel-cobalt solution is adjusted to 4 with sodium hydroxide
  • the solution contains 3.5mol of chloride ion.
  • the volume ratio of P507 to N235 in the synergistic extractant is 2:8
  • the volume of the organic extractant and kerosene is 1:4
  • the volume of the synergistic extractant and the aqueous phase is 3:1, and it is allowed to stand for 10 min to achieve static standing.
  • the distribution ratio is 7.3.
  • the synergistic extraction coefficient of this example was 6.95.

Abstract

一种从溶液中分离镍钴的方法,包括以下步骤:废旧锂离子电池正极材料酸浸之后得到含镍钴的溶液,调节含有镍钴的溶液的pH值为3.5~4.5,加入萃取剂萃取,使镍钴分离,萃取剂含有酸性萃取剂P507和碱性萃取剂N235。该萃取分离镍钴的方法,采用非皂化萃取的方法,不用NaOH作为皂化剂,避免了皂化废水的排放。在酸性条件下以酸性萃取剂P507和碱性萃取剂N235协同作用,实现了镍钴的分离。

Description

一种从溶液中分离镍钴的方法
交叉引用
本申请引用于2018年01月10日提交的专利名称为“一种从溶液中分离镍钴的方法”的第2018100234642号中国专利申请,其通过引用被全部并入本申请。
技术领域
本发明属于固体废弃物处理技术领域,具体涉及一种含有镍钴的固废的分离方法。
背景技术
目前,镍钴分离常用的萃取方法中主要是运用酸性萃取剂P204,P507,这类萃取剂表现为弱酸性,该类萃取剂与镍钴元素发生反应过程为阳离子交换过程,反应过程中易导致溶液的氢离子浓度增大,酸浸增强,从而影响萃取效果。因此,在此类酸性萃取剂使用过程中,常使用氢氧化钠或氨水等碱性液体对酸性萃取剂进行皂化处理,酸性萃取剂羟基中的氢离子被碱性阳离子取代,萃取反应发生时,碱性阳离子释放到水溶液中,因而水溶液中氢离子不会增加,溶液的酸度不会增强,不会影响萃取效果。但是采用NaOH作为皂化剂的成本较高且皂化的废水中盐含量超标,如果排放到土壤中会使得土地盐化程度加重,采用浓氨水处理成本相对较低,但是会造成废水中的氨氮含量增加,排放后会严重污染水体,使得治理成本大大增加。
而无皂化萃取分离技术将解决萃取分离工艺中萃取工序氨氮废水等问题,舍去皂化工序,一方面可以缩短萃取分离的工艺流程,简化操作,并且降低碱耗量,节约成本;另一方面,可避免萃取工序产生氨氮等废水,大大减少了废水的排放量。
发明内容
基于本领域存在的不足之处,本发明的目的是提供一种从溶液中分离 镍钴的方法。
实现本发明目的的技术方案为:
一种从溶液中分离镍钴的方法,包括步骤:
废旧锂离子电池正极材料酸浸之后得到含有镍钴的溶液,调节含有镍钴的溶液的pH值为3.5~4.5,加入萃取剂萃取,使镍钴分离,钴进入有机相,镍留在水相,其中镍的含量为0.7-1.2mol/L,钴的含量为0.05-0.25mol/L;
所述萃取剂含有酸性萃取剂P507和碱性萃取剂N235。
其中,所述含有镍钴的溶液中还含有氯离子,氯离子的浓度为3-3.5mol/L。
其中,调节溶液pH值的试剂为氢氧化钠和/或盐酸。
其中,所述萃取剂中,酸性萃取剂P507和碱性萃取剂N235的体积比例为(1~9):(9~1)。
优选地,所述萃取剂中,酸性萃取剂P507和碱性萃取剂N235的体积比例为(2~4):(6-8)。
其中,萃取剂中还加有稀释剂,所述稀释剂为煤油或磺化煤油,两种萃取剂之和与稀释剂的体积比为1:(2-4)。
其中,萃取剂和溶液的体积比为(3~5):1。
进一步地,加入萃取剂萃取后,震荡后静置8~15min,分离有机相和水相。
本发明的有益效果为:
本发明提出的高效萃取分离镍钴的方法,采用非皂化萃取的方法,不用NaOH作为皂化剂,避免了皂化废水的排放。在酸性条件下以酸性萃取剂P507和碱性萃取剂N235协同作用,有效地将酸浸液中的钴萃取分离至有机相中,实现了镍钴的分离。
具体实施方式
以下通过具体实施例来说明本发明的技术方案。
实施例1:
本实施例处理的溶液是含有钴镍元素的废液,是锂离子电池正极材料用盐酸溶解而得。其中镍的含量为0.9mol/L,钴的含量为0.15mol/L。
含有镍钴溶液和协同萃取萃取剂进行萃取反应,其中镍钴溶液用氢氧化钠调节pH为4,溶液中含有氯离子3mol/L。向溶液中加入萃取剂,萃取剂中P507与N235体积比为5:5,这两种有机萃取剂与稀释剂煤油的体积为1:2,萃取剂与水相的体积为3:1,震荡萃取后静置10min,实现静置分层,待界面清晰后分离下层水相。钴主要进入有机相中,分配比为2.4(以钴计算)。
分别取相同的体积的有机试剂P507和N235,在相同的条件下,对含有镍钴的溶液进行萃取分离,静置10min,实现静置分层,待界面清晰后分离下层水相,分配比分别为0.4和0.3。
采用下式计算协同萃取系数:
协同萃取系数=使用协同萃取剂的分配比/单独使用一种萃取剂的分配系数之和
本实施例的协同萃取系数为3.42。
实施例2
含有镍钴溶液和协同萃取萃取剂进行萃取反应,其中镍的含量为0.9mol/L,钴的含量为0.15mol/L,氯离子的含量为3.2mol/L。用氢氧化钠调节镍钴溶液的pH为4,萃取剂中P507与N235体积比为3:7,两种萃取剂体积和与稀释剂煤油的体积为1:3,萃取剂与水相的体积为4:1,静置10min,实现静置分层,待界面清晰后分离下层水相。分配比为11.8。
分别取相同的体积的有机试剂P507和N235,在相同的条件下,对含有镍钴的溶液进行萃取分离,静置10min,实现静置分层,待界面清晰后分离下层水,分配比分别为0.64和0.48
本实施例协同萃取系数为10.53。
实施例3
含有镍钴溶液和协同萃取萃取剂进行萃取反应,溶液中镍的含量1mol/L,钴的含量0.2mol/L,用氢氧化钠调节镍钴溶液的pH为4,溶液中含有氯离子3.5mol/L,协同萃取剂中P507与N235体积比为2:8,有机萃取剂与煤油的体积为1:4,协同萃取剂与水相的体积为3:1,静置10min,实现静置分层,待界面清晰后分离下层水相。分配比为7.3。
分别取相同的体积的有机试剂P507和N235,在相同的条件下,对含 有镍钴的溶液进行萃取分离,静置10min,实现静置分层,待界面清晰后分离下层水相,分配比分别为0.78和0.27。
本实施例的协同萃取系数为6.95。
本领域技术人员应当知晓,以上的实施例仅仅是对本发明的优选实施方式进行描述,并非对本发明的范围进行限定,在不脱离本发明设计精神的前提下,对本发明的技术方案作出的各种变型和改进,均应落入本发明的权利要求书确定的保护范围内。

Claims (8)

  1. 一种从溶液中分离镍钴的方法,其特征在于,包括步骤:
    废旧锂离子电池正极材料酸浸之后得到含有镍钴的溶液,调节含有镍钴的溶液的pH值为3.5-4.5,加入萃取剂萃取,使镍钴分离,钴进入有机相,镍留在水相,其中镍的含量为0.7-1.2mol/L,钴的含量为0.05-0.25mol/L,
    所述萃取剂含有酸性萃取剂P507和碱性萃取剂N235。
  2. 根据权利要求1所述的方法,其特征在于,所述含有镍钴的溶液中还含有氯离子,氯离子的浓度为2-3.5mol/L。
  3. 根据权利要求1所述的方法,其特征在于,调节溶液pH值的试剂为氢氧化钠和/或盐酸。
  4. 根据权利要求1~3任一项所述的方法,其特征在于,所述萃取剂中,酸性萃取剂P507和碱性萃取剂N235的体积比例为(1-9):(9-1)。
  5. 根据权利要求4所述的方法,其特征在于,所述萃取剂中,酸性萃取剂P507和碱性萃取剂N235的体积比例为(2-4):(6-8)。
  6. 根据权利要求4所述的方法,其特征在于,萃取剂中还加有稀释剂,所述稀释剂为煤油或磺化煤油,两种萃取剂之和与稀释剂的体积比为1:(2-4)。
  7. 根据权利要求1~3任一项所述的方法,其特征在于,萃取剂和溶液的体积比为(3-5):1。
  8. 根据权利要求1~3任一项所述的方法,其特征在于,加入萃取剂萃取后,震荡后静置8-15min,分离有机相和水相。
PCT/CN2018/076546 2018-01-10 2018-02-12 一种从溶液中分离镍钴的方法 WO2019136792A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2019553974A JP6844029B2 (ja) 2018-01-10 2018-02-12 溶液からニッケルとコバルトを分離する方法
US16/713,921 US11008638B2 (en) 2018-01-10 2019-12-13 Method for separating nickel and cobalt from a solution

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810023464.2A CN108179286A (zh) 2018-01-10 2018-01-10 一种从溶液中分离镍钴的方法
CN201810023464.2 2018-01-10

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/713,921 Continuation US11008638B2 (en) 2018-01-10 2019-12-13 Method for separating nickel and cobalt from a solution

Publications (1)

Publication Number Publication Date
WO2019136792A1 true WO2019136792A1 (zh) 2019-07-18

Family

ID=62550196

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/076546 WO2019136792A1 (zh) 2018-01-10 2018-02-12 一种从溶液中分离镍钴的方法

Country Status (4)

Country Link
US (1) US11008638B2 (zh)
JP (1) JP6844029B2 (zh)
CN (1) CN108179286A (zh)
WO (1) WO2019136792A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112981139A (zh) * 2021-02-04 2021-06-18 西安建筑科技大学 用于分离镍钴离子的疏水性低共熔溶剂及其制备方法和分离镍钴离子的方法
WO2021132946A1 (ko) * 2019-12-26 2021-07-01 에스케이이노베이션 주식회사 양극 활물질 전구체의 회수 방법
CN114058845A (zh) * 2021-11-05 2022-02-18 金川集团股份有限公司 一种利用p204和n235在氯化镍溶液中联合萃取的方法

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111304460A (zh) * 2018-12-12 2020-06-19 格林美(江苏)钴业股份有限公司 一种从镍钴高酸浸出液中萃取分离钴、镍的方法
CN109504859B (zh) * 2018-12-29 2020-08-04 启东市北新无机化工有限公司 一种从废旧锂离子电池中回收钴镍的方法
CN111517407B (zh) * 2020-04-30 2021-12-24 中国科学院过程工程研究所 一种酸性萃取体系皂化废水中酸性萃取剂的回收方法及回收装置
CN114150155B (zh) * 2021-12-20 2023-03-21 中国科学院过程工程研究所 一种同时回收电池级钴盐、镍盐萃取工艺优化方法
CN114318003B (zh) * 2021-12-22 2023-04-28 安阳师范学院 一种强化萃取分离钴镍离子的方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3411885A1 (de) * 1984-03-30 1985-10-10 Hermann C. Starck Berlin, 1000 Berlin Verwendung eines synergistischen extraktionsmittelgemisches fuer die co/ni-trennung
CN102766766A (zh) * 2012-08-16 2012-11-07 江西理工大学 一种无皂化稀土萃取分离工艺
CN104120258A (zh) * 2014-07-25 2014-10-29 广西师范大学 一种无皂化萃取分离轻稀土元素的方法
CN105789724A (zh) * 2014-12-24 2016-07-20 中国电子工程设计院 一种废锂离子电池的处理方法
CN106636637A (zh) * 2015-10-30 2017-05-10 虔东稀土集团股份有限公司 一种萃取方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62247099A (ja) * 1986-04-18 1987-10-28 Kurita Water Ind Ltd 金属の抽出方法
JP5882164B2 (ja) * 2012-08-20 2016-03-09 国立大学法人九州大学 コバルト抽出剤及びコバルト抽出方法
JP5706457B2 (ja) * 2013-02-27 2015-04-22 Jx日鉱日石金属株式会社 金属混合溶液からの金属の分離回収方法
CN103326088B (zh) * 2013-07-04 2016-02-03 厦门钨业股份有限公司 一种废旧锂离子电池的综合回收方法
CA2915371A1 (en) * 2015-12-15 2017-06-15 Institut National De La Recherche Scientifique (Inrs) Method for recycling valuable metals from spent batteries
CN105567978B (zh) * 2016-01-28 2018-08-31 浙江新时代中能循环科技有限公司 从各种含有色金属的废料中回收铜锌钴镍的方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3411885A1 (de) * 1984-03-30 1985-10-10 Hermann C. Starck Berlin, 1000 Berlin Verwendung eines synergistischen extraktionsmittelgemisches fuer die co/ni-trennung
CN102766766A (zh) * 2012-08-16 2012-11-07 江西理工大学 一种无皂化稀土萃取分离工艺
CN104120258A (zh) * 2014-07-25 2014-10-29 广西师范大学 一种无皂化萃取分离轻稀土元素的方法
CN105789724A (zh) * 2014-12-24 2016-07-20 中国电子工程设计院 一种废锂离子电池的处理方法
CN106636637A (zh) * 2015-10-30 2017-05-10 虔东稀土集团股份有限公司 一种萃取方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
KANG JIANZHUANG ET AL.: "Extraction effect of cobalt, nickel and magnesium from water by complex extractant P204-N235", vol. 30, no. 4, pages 65 - 69 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021132946A1 (ko) * 2019-12-26 2021-07-01 에스케이이노베이션 주식회사 양극 활물질 전구체의 회수 방법
CN112981139A (zh) * 2021-02-04 2021-06-18 西安建筑科技大学 用于分离镍钴离子的疏水性低共熔溶剂及其制备方法和分离镍钴离子的方法
CN114058845A (zh) * 2021-11-05 2022-02-18 金川集团股份有限公司 一种利用p204和n235在氯化镍溶液中联合萃取的方法

Also Published As

Publication number Publication date
CN108179286A (zh) 2018-06-19
US11008638B2 (en) 2021-05-18
JP2020515719A (ja) 2020-05-28
US20200115773A1 (en) 2020-04-16
JP6844029B2 (ja) 2021-03-17

Similar Documents

Publication Publication Date Title
WO2019136792A1 (zh) 一种从溶液中分离镍钴的方法
Jing et al. Effects of additives on nickel electrowinning from sulfate system
CN102303917B (zh) 印刷电路板酸性蚀刻废液与微蚀废液混合处理方法
CN102228746B (zh) 用活性氧化铝脱除硫酸锌溶液中氟的方法
CN104018012A (zh) 一种从氯化铝溶液中提取镓的方法
CN113526752B (zh) 一种焦磷酸镀铜废水中铜、磷资源回收利用方法
CN104911683A (zh) 一种侧线脱除硫酸锌电镀液中铁离子的方法
CN109437446A (zh) 一种锌-镍合金电镀废水处理工艺
CN103951017B (zh) 一种电解处理含氰含铜电镀废水并回收铜的方法
CN108503167B (zh) 一种利用钢铁酸洗废液合成净水剂的方法
CN105200233A (zh) 一种从电解锰阳极液中回收锰镁的方法
CN103159311A (zh) 一种新型重金属捕捉剂及其制作方法
CN102212842A (zh) 化学镀镍老化液中镍的回收方法
CN112209452B (zh) 一种镍钴溶液净化除硅的方法
CN111663155B (zh) 一种硝酸铜废削铜液综合回收处理方法
CN105177321A (zh) 一种镓锗吸附剂、其制备方法和应用以及从湿法炼锌浸出液中富集镓锗的方法
CN110106367B (zh) 一种除氟剂及其制备方法与除氟回收工艺
CN105350016B (zh) 一种循环利用树脂处理含锌氯化镍溶液的方法
CN111172407A (zh) 一种电场作用下的氟、镁离子共同去除方法
CN103555932B (zh) 一种钼精矿焙烧的方法
CN108306057B (zh) 一种铅酸蓄电池用添加剂
CN105239075A (zh) 用于循环冷却水系统中紫铜材料的复合缓蚀剂
CN101812719A (zh) 低碱度电解去毛刺溶液、其制备方法及使用方法
CN203065593U (zh) 一种低铜稀酸性废水提铜设备
CN103408091B (zh) 一种草酸稀土沉淀废水的回收方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18899239

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019553974

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18899239

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC