WO2019134387A1 - 一种骨传导扬声器 - Google Patents

一种骨传导扬声器 Download PDF

Info

Publication number
WO2019134387A1
WO2019134387A1 PCT/CN2018/104934 CN2018104934W WO2019134387A1 WO 2019134387 A1 WO2019134387 A1 WO 2019134387A1 CN 2018104934 W CN2018104934 W CN 2018104934W WO 2019134387 A1 WO2019134387 A1 WO 2019134387A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnetic
circuit assembly
magnetization direction
magnetic element
magnetic circuit
Prior art date
Application number
PCT/CN2018/104934
Other languages
English (en)
French (fr)
Inventor
张磊
廖风云
齐心
Original Assignee
深圳市韶音科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to MX2020007457A priority Critical patent/MX2020007457A/es
Priority to BR112020013968A priority patent/BR112020013968A8/pt
Priority to RU2020126339A priority patent/RU2766828C2/ru
Priority to EP18897956.1A priority patent/EP3723388A4/en
Priority to JP2020538036A priority patent/JP7093415B2/ja
Priority to KR1020207022679A priority patent/KR102460744B1/ko
Application filed by 深圳市韶音科技有限公司 filed Critical 深圳市韶音科技有限公司
Publication of WO2019134387A1 publication Critical patent/WO2019134387A1/zh
Priority to US16/923,015 priority patent/US11310602B2/en
Priority to US17/170,897 priority patent/US11197100B2/en
Priority to US17/170,908 priority patent/US11172309B2/en
Priority to US17/450,454 priority patent/US11765510B2/en
Priority to US17/453,643 priority patent/US11778384B2/en
Priority to US17/649,358 priority patent/US11711654B2/en
Priority to JP2022071579A priority patent/JP2022106837A/ja
Priority to US18/452,080 priority patent/US20230396928A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R9/00Transducers of moving-coil, moving-strip, or moving-wire type
    • H04R9/02Details
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R9/00Transducers of moving-coil, moving-strip, or moving-wire type
    • H04R9/02Details
    • H04R9/025Magnetic circuit
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F7/00Magnets
    • H01F7/06Electromagnets; Actuators including electromagnets
    • H01F7/08Electromagnets; Actuators including electromagnets with armatures
    • H01F7/081Magnetic constructions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F7/00Magnets
    • H01F7/06Electromagnets; Actuators including electromagnets
    • H01F7/08Electromagnets; Actuators including electromagnets with armatures
    • H01F7/121Guiding or setting position of armatures, e.g. retaining armatures in their end position
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R1/00Details of transducers, loudspeakers or microphones
    • H04R1/10Earpieces; Attachments therefor ; Earphones; Monophonic headphones
    • H04R1/1091Details not provided for in groups H04R1/1008 - H04R1/1083
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R11/00Transducers of moving-armature or moving-core type
    • H04R11/02Loudspeakers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R9/00Transducers of moving-coil, moving-strip, or moving-wire type
    • H04R9/06Loudspeakers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R2460/00Details of hearing devices, i.e. of ear- or headphones covered by H04R1/10 or H04R5/033 but not provided for in any of their subgroups, or of hearing aids covered by H04R25/00 but not provided for in any of its subgroups
    • H04R2460/13Hearing devices using bone conduction transducers

Definitions

  • the present application relates to a bone conduction speaker, and more particularly to a magnetic circuit assembly in a bone conduction speaker.
  • the bone conduction speaker can convert the electrical signal into a mechanical vibration signal, and the vibration signal is transmitted into the cochlea through the human body tissue and the bone, so that the user can hear the sound.
  • the air vibration is generated by the diaphragm to generate sound, and the bone conduction vibration speaker needs to drive the soft tissue and the bone of the user to vibrate, so that the mechanical power required is high.
  • Increasing the sensitivity of the bone conduction speaker enables the conversion of electrical energy into mechanical energy more efficiently, thereby outputting greater mechanical power. Increasing sensitivity is even more important for bone-conducting speakers with higher power requirements.
  • the present application relates to a magnetic circuit assembly for a bone conduction speaker.
  • the magnetic circuit assembly generates a first magnetic field, the magnetic circuit assembly including a first magnetic element that generates a second magnetic field; a first magnetically conductive element; and at least one second magnetic element, the at least one second magnetic element Surrounding the first magnetic element and forming a magnetic gap with the first magnetic element, the magnetic field strength of the first magnetic field in the magnetic gap is greater than the magnetic field strength of the second magnetic field in the magnetic gap.
  • the magnetic circuit assembly may further include a second magnetic conductive element and at least one third magnetic element, the at least one third magnetic element connecting the second magnetic conductive element and the at least one second magnetic element .
  • the magnetic circuit assembly may further include at least one fourth magnetic element located below the magnetic gap and connecting the first magnetic element and the second magnetic conductive element.
  • the magnetic circuit assembly may further include at least one fifth magnetic element connected to an upper surface of the first magnetic conductive element.
  • the magnetic circuit assembly may further include a third magnetic conductive element connected to an upper surface of the fifth magnetic element, the third magnetic conductive element being configured to suppress the first The field strength of the magnetic field leaks.
  • the magnetic circuit assembly may further include at least one conductive element connecting the first magnetic element, the first magnetic conductive element, or at least one of the second magnetic conductive elements.
  • the application further relates to a magnetic circuit assembly for a bone conduction speaker.
  • the magnetic assembly generates a first magnetic field
  • the magnetic circuit assembly can include a first magnetic element that generates a second magnetic field; a first magnetically conductive element; and a second magnetically conductive element that surrounds the first magnetic element a magnetic element forming a magnetic gap with the first magnetic element; and at least one second magnetic element, the at least one second magnetic element being below the magnetic gap, the magnetic field of the first magnetic field in the magnetic gap
  • the intensity is greater than the magnetic field strength of the second magnetic field within the magnetic gap.
  • the magnetic circuit assembly may further include at least one third magnetic element coupled to the second magnetic conductive element.
  • the magnetic circuit assembly may further include at least one fourth magnetic element between the second magnetic element and the at least one third magnetic element.
  • the magnetic circuit assembly may further include a magnetic shield surrounding the first magnetic element, the first magnetic conductive element, the second magnetic conductive element, and the second magnetic element.
  • the magnetic circuit assembly may further include at least one conductive element connecting the first magnetic element, the first magnetic conductive element, or at least one of the second magnetic elements.
  • the present application relates to a magnetic circuit assembly for a bone conduction speaker.
  • the magnetic assembly generates a first magnetic field
  • the magnetic circuit assembly can include a first magnetic element that produces a second magnetic field; a first magnetically conductive element; a second magnetically conductive element, at least a portion of the second magnetically conductive element Surrounding the first magnetic element and forming a magnetic gap and the at least one second magnetic element with the first magnetic element, the at least one second magnetic element connecting the upper surface of the first magnetically conductive element, the first magnetic field being The magnetic field strength in the magnetic gap is greater than the magnetic field strength of the second magnetic field in the magnetic gap.
  • the magnetic circuit assembly may further include at least one third magnetic element surrounding the at least one second magnetic element.
  • the magnetic circuit assembly may further include at least one fourth magnetic element connecting the second magnetic conductive element and the at least one third magnetic element.
  • the magnetic circuit assembly may further include at least one fifth magnetic element located below the magnetic gap and connecting the first magnetic element and the second magnetic conductive element.
  • the magnetic circuit assembly may further include a third magnetically conductive element coupled to the at least one second magnetic element.
  • the present application relates to a magnetic circuit assembly for a bone conduction speaker.
  • the magnetic circuit assembly may include a first magnetic element that generates a second magnetic field; a first magnetic conductive element and at least one second magnetic element, the at least one second magnetic element surrounding the first magnetic element, and A magnetic gap is formed between the first magnetic elements, and the second magnetic element generates a second magnetic field that increases the strength of the magnetic field of the first magnetic field at the magnetic gap.
  • the magnetic circuit assembly may further include a second magnetic conductive element and at least one third magnetic element, the at least one third magnetic element connecting the second magnetic conductive element and the at least one second magnetic element
  • the at least one third magnetic element generates a third magnetic field that increases a magnetic field strength of the first magnetic field at the magnetic gap.
  • the magnetic circuit assembly may further include at least one fourth magnetic element disposed under the magnetic gap and connecting the first magnetic element and the second magnetic conductive element The at least one fourth magnetic element generates a fourth magnetic field that increases a magnetic field strength of the first magnetic field at the magnetic gap.
  • the magnetic circuit assembly may further include at least one fifth magnetic element connected to an upper surface of the first magnetic conductive element, the at least one fifth magnetic element generating a fifth a magnetic field that increases the strength of the magnetic field of the first magnetic field at the magnetic gap.
  • the magnetic circuit assembly may further include a third magnetic conductive element connected to an upper surface of the fifth magnetic element, the third magnetic conductive element being configured to suppress the first The field strength of the magnetic field and the second magnetic field leaks.
  • the magnetic circuit assembly may further include at least one conductive element connecting the first magnetic element, the first magnetic conductive element, or at least one of the second magnetic conductive elements.
  • the present application relates to a magnetic circuit assembly for a bone conduction speaker.
  • the magnetic circuit assembly may include a first magnetic element that generates a first magnetic field, a first magnetic conductive element, a second magnetic conductive element, the second magnetic conductive element surrounds the first magnetic element, and the first magnetic element Forming a magnetic gap between the magnetic elements and at least one second magnetic element, the at least one second magnetic element being disposed under the magnetic gap, the at least one second magnetic element generating a second magnetic field, the second magnetic field increasing the first The magnetic induction of the magnetic field at the magnetic gap.
  • the magnetic circuit assembly may further include at least one third magnetic element coupled to the second magnetic element, the at least one third magnetic element generating a third magnetic field, the third The magnetic field increases the strength of the magnetic field of the first magnetic field at the magnetic gap.
  • the magnetic circuit assembly may further include at least one fourth magnetic element between the second magnetic element and the at least one third magnetic element.
  • the magnetic circuit assembly may further include a magnetic shield surrounding the first magnetic element, the first magnetic conductive element, the second magnetic conductive element, and the second magnetic element.
  • the magnetic circuit assembly may further include at least one fifth magnetic element connected to an upper surface of the first magnetic conductive element, the at least one fifth magnetic element generating a fifth a magnetic field that increases the strength of the magnetic field of the first magnetic field at the magnetic gap.
  • the magnetic circuit assembly may further include a third magnetic conductive element connected to an upper surface of the fifth magnetic element, the third magnetic conductive element being configured to suppress the first The field strength of the magnetic field and the second magnetic field leaks.
  • the magnetic circuit assembly may further include at least one conductive element connecting the first magnetic element, the first magnetic conductive element, or at least one of the second magnetic elements.
  • the present application relates to a magnetic circuit assembly for a bone conduction speaker.
  • the magnetic circuit assembly may include a first magnetic element that generates a second magnetic field; a first magnetically conductive element; a second magnetically conductive element, at least a portion of the second magnetically conductive element surrounds the first magnetic element, and Forming a magnetic gap with the first magnetic element and at least one second magnetic element, the at least one second magnetic element connecting the upper surface of the first magnetic element, the at least one second magnetic element generating a second magnetic field, the The two magnetic fields increase the strength of the magnetic field of the first magnetic field within the magnetic gap.
  • the magnetic circuit assembly may further include at least one third magnetic element surrounding the at least one second magnetic element.
  • the magnetic circuit assembly may further include at least one fourth magnetic element connecting the second magnetic conductive element and the at least one third magnetic element.
  • the magnetic circuit assembly may further include at least one fifth magnetic element located below the magnetic gap and connecting the first magnetic element and the second magnetic conductive element.
  • the magnetic circuit assembly may further include a third magnetically conductive element coupled to the at least one second magnetic element.
  • the present application relates to a magnetic circuit assembly for a bone conduction speaker.
  • the magnetic circuit assembly may include a first magnetic element that generates a second magnetic field; a first magnetically conductive element; a second magnetically conductive element, the second magnetically conductive element including a bottom plate and a sidewall, the second magnetically conductive
  • the component substrate is connected to the first magnetic component; the at least one second magnetic component is connected to the sidewall of the second magnetic component, and forms a magnetic gap and at least a third portion with the first magnetic component a magnetic component, the at least one third magnetic component is coupled to the bottom plate and the sidewall of the second magnetic component, and the magnetic field strength of the first magnetic field in the magnetic gap is greater than the magnetic field strength of the second magnetic field in the magnetic gap.
  • the magnetic circuit assembly may further include at least one fourth magnetic element connecting an upper surface of the at least one second magnetic element and a sidewall of the second magnetic conductive element .
  • the magnetic circuit assembly may further include at least one fifth magnetic element connected to an upper surface of the first magnetic conductive element.
  • the magnetic circuit assembly may further include a third magnetic conductive element connected to an upper surface of the fifth magnetic element, the third magnetic conductive element being configured to suppress the first The field strength of the magnetic field leaks.
  • the magnetic circuit assembly may further include at least one conductive element connecting the first magnetic element, the first magnetic conductive element, or at least one of the second magnetic conductive elements.
  • the bone conduction speaker may include a vibration assembly including a voice coil and at least one vibration plate; a magnetic circuit assembly including a first magnetic element that generates a first magnetic field; and a first magnetic conductive element And at least one second magnetic element surrounding the first magnetic element and forming a magnetic gap with the first magnetic element, the voice coil being located in the magnetic gap, the at least one second magnetic The component generates a second magnetic field that increases the magnetic field strength of the first magnetic field at the voice coil.
  • FIG. 1 is a structural block diagram of a bone conduction speaker shown in accordance with some embodiments of the present application.
  • FIG. 2 is a schematic longitudinal cross-sectional view of a bone conduction speaker shown in accordance with some embodiments of the present application;
  • FIG. 3A is a schematic longitudinal cross-sectional view of a magnetic circuit assembly shown in accordance with some embodiments of the present application.
  • 3B is a schematic longitudinal cross-sectional view of a magnetic circuit assembly shown in accordance with some embodiments of the present application.
  • 3C is a schematic longitudinal cross-sectional view of a magnetic circuit assembly shown in accordance with some embodiments of the present application.
  • 3D is a schematic longitudinal cross-sectional view of a magnetic circuit assembly shown in accordance with some embodiments of the present application.
  • 3E is a schematic longitudinal cross-sectional view of a magnetic circuit assembly shown in accordance with some embodiments of the present application.
  • 3F is a schematic longitudinal cross-sectional view of a magnetic circuit assembly shown in accordance with some embodiments of the present application.
  • 3G is a schematic longitudinal cross-sectional view of a magnetic circuit assembly according to some embodiments of the present application.
  • FIG. 4A is a schematic longitudinal cross-sectional view of a magnetic circuit assembly, according to some embodiments of the present application.
  • FIG. 4B is a schematic longitudinal cross-sectional view of a magnetic circuit assembly shown in accordance with some embodiments of the present application.
  • FIG. 4C is a schematic longitudinal cross-sectional view of a magnetic circuit assembly shown in accordance with some embodiments of the present application.
  • 4D is a schematic longitudinal cross-sectional view of a magnetic circuit assembly shown in accordance with some embodiments of the present application.
  • 4E is a schematic longitudinal cross-sectional view of a magnetic circuit assembly shown in accordance with some embodiments of the present application.
  • 4F is a schematic longitudinal cross-sectional view of a magnetic circuit assembly according to some embodiments of the present application.
  • 4G is a schematic longitudinal cross-sectional view of a magnetic circuit assembly shown in accordance with some embodiments of the present application.
  • 4H is a schematic longitudinal cross-sectional view of a magnetic circuit assembly shown in accordance with some embodiments of the present application.
  • 4M is a schematic longitudinal cross-sectional view of a magnetic circuit assembly shown in accordance with some embodiments of the present application.
  • FIG. 5A is a schematic longitudinal cross-sectional view of a magnetic circuit assembly shown in accordance with some embodiments of the present application.
  • FIG. 5B is a schematic longitudinal cross-sectional view of a magnetic circuit assembly shown in accordance with some embodiments of the present application.
  • 5C is a schematic longitudinal cross-sectional view of a magnetic circuit assembly shown in accordance with some embodiments of the present application.
  • 5D is a schematic longitudinal cross-sectional view of a magnetic circuit assembly shown in accordance with some embodiments of the present application.
  • 5E is a schematic longitudinal cross-sectional view of a magnetic circuit assembly shown in accordance with some embodiments of the present application.
  • 5F is a schematic longitudinal cross-sectional view of a magnetic circuit assembly shown in accordance with some embodiments of the present application.
  • FIG. 6A is a schematic cross-sectional view of a magnetic element shown in accordance with some embodiments of the present application.
  • 6B is a schematic illustration of a magnetic element shown in accordance with some embodiments of the present application.
  • 6C is a schematic view showing a magnetization direction of a magnetic element in a magnetic circuit assembly according to some embodiments of the present application.
  • 6D is a magnetic induction line profile of a magnetic component in a magnetic assembly, in accordance with some embodiments of the present application.
  • FIG. 7A is a schematic structural view of a magnetic circuit assembly according to some embodiments of the present application.
  • 7B-7E are graphs of driving force coefficients at a voice coil shown in accordance with some embodiments of the present application, and magnetic circuit assembly parameters shown in FIG. 7A;
  • FIG. 8A is a schematic structural diagram of a magnetic circuit assembly according to some embodiments of the present application.
  • FIG. 8B-8E are graphs of driving force coefficients at a voice coil shown in accordance with some embodiments of the present application, and magnetic circuit assembly parameters shown in FIG. 8A;
  • FIG. 9A is a schematic diagram of magnetic line distribution of a magnetic circuit assembly according to some embodiments of the present application.
  • FIG. 9B is a graph showing the relationship between the magnetic induction at the voice coil and the thickness of each component in the magnetic circuit assembly shown in FIG. 9A, according to some embodiments of the present application;
  • FIG. 10A is a schematic diagram of magnetic line distribution of a magnetic circuit assembly according to some embodiments of the present application.
  • Figure 10B is a graph showing the relationship between the magnetic induction at the voice coil and the thickness of each component in the magnetic circuit assembly shown in Figure 10A, in accordance with some embodiments of the present application;
  • FIG. 11A is a schematic diagram of magnetic line distribution of a magnetic circuit assembly according to some embodiments of the present application.
  • Figure 11B is a graph showing the relationship between the magnetic induction of the magnetic circuit assembly of Figures 9A, 10A and 11A and the thickness of the magnetic element, according to some embodiments of the present application;
  • Figure 11C is a graph showing the relationship between the magnetic induction at the voice coil and the thickness of each component in the magnetic circuit assembly shown in Figure 11A, in accordance with some embodiments of the present application;
  • FIG. 12A is a schematic structural view of a magnetic circuit assembly according to some embodiments of the present application.
  • FIG. 12B is a graph showing the relationship between the inductive reactance of the voice coil and the conductive elements in the magnetic circuit assembly shown in FIG. 12A, according to some embodiments of the present application;
  • FIG. 13A is a schematic structural diagram of a magnetic circuit assembly according to some embodiments of the present application.
  • Figure 13B is a graph showing the relationship between the inductive reactance of the voice coil and the conductive elements of the magnetic circuit assembly shown in Figure 13A, in accordance with some embodiments of the present application;
  • FIG. 14A is a schematic structural view of a magnetic circuit assembly according to some embodiments of the present application.
  • FIG. 14B is a graph showing the relationship between the inductive reactance of the voice coil and the number of conductive elements in the magnetic circuit assembly shown in FIG. 14A, according to some embodiments of the present application;
  • 15A is a schematic structural view of a magnetic circuit assembly according to some embodiments of the present application.
  • Figure 15B is a graph showing the relationship between the ampere force of the voice coil and the thickness of each component in the magnetic circuit assembly of Figure 15A, in accordance with some embodiments of the present application;
  • FIG. 16 is a schematic structural view of a bone conduction speaker according to some embodiments of the present application.
  • FIG. 17 is a schematic structural view of a bone conduction speaker according to some embodiments of the present application.
  • FIG. 18 is a schematic structural view of a bone conduction speaker according to some embodiments of the present application.
  • FIG. 19 is a schematic block diagram of a bone conduction speaker shown in accordance with some embodiments of the present application.
  • a microphone such as a microphone can pick up the sound of the user/wearer's surroundings and, under a certain algorithm, transmit the sound processed (or generated electrical signal) to the bone conduction speaker portion. That is, the bone conduction speaker can be modified to add the function of picking up the ambient sound, and after a certain signal processing, the sound is transmitted to the user/wearer through the bone conduction speaker portion, thereby realizing the function of the bone conduction hearing aid.
  • the algorithms described herein may include noise cancellation, automatic gain control, acoustic feedback suppression, wide dynamic range compression, active environmental recognition, active noise immunity, directional processing, tinnitus processing, multi-channel wide dynamic range compression, active howling One or more combinations of suppression, volume control, and the like.
  • the bone conduction speaker can include a magnetic circuit assembly.
  • the magnetic circuit assembly can generate a first full magnetic field.
  • the magnetic circuit assembly can include a first magnetic element, a first magnetically conductive element, a second magnetically permeable element, and one or more second magnetic elements.
  • the first magnetic element may generate a second magnetic field, the one or more second magnetic elements surround the first magnetic element, and form a magnetic gap with the first magnetic element, the first full magnetic field
  • the strength of the magnetic field within the magnetic gap is greater than the strength of the magnetic field of the second magnetic field within the magnetic gap.
  • the arrangement of the plurality of second magnetic elements in the magnetic circuit assembly around the first magnetic element can reduce the volume and weight of the magnetic circuit assembly and improve the magnetic field strength of the magnetic conduction speaker and improve the sensitivity of the bone conduction speaker.
  • the efficiency of the bone conduction speaker increases the life of the bone conduction speaker.
  • the bone conduction speaker has the characteristics of small volume, light weight, high efficiency, high sensitivity and long service life, and is convenient to combine the bone conduction speaker and the wearable smart device, thereby realizing the multifunctionality of a single device and improving Optimize the user experience.
  • the wearable smart device includes, but is not limited to, a smart earphone, smart glasses, a smart headband, a smart helmet, a smart watch, a smart glove, a smart shoe, a smart camera, a smart camera, and the like.
  • the bone conduction speaker can be further integrated with a smart material to integrate a bone conduction speaker in a manufacturing material of a user's clothing, gloves, hat, shoes, and the like.
  • the bone conduction speaker can also be further implanted into the human body to cooperate with a human implanted chip or an external processor to achieve a more personalized function.
  • the bone conduction speaker 100 can include a magnetic circuit assembly 102, a vibration assembly 104, a support assembly 106, and a storage assembly 108.
  • the magnetic circuit assembly 102 can provide a magnetic field.
  • the magnetic field can be used to convert a signal containing sound information into a vibration signal.
  • the sound information may include video, audio files, or data or files that may be converted to sound by a particular way.
  • the signal containing the sound information may be from the storage component 108 of the bone conduction speaker 100 itself, or may be derived from an information generation, storage or delivery system other than the bone conduction speaker 100.
  • the signal containing the sound information may include a combination of one or more of an electrical signal, an optical signal, a magnetic signal, a mechanical signal, and the like.
  • the signal containing the sound information may be from one signal source or multiple signal sources. The plurality of signal sources may or may not be related.
  • the bone conduction speaker 100 can acquire the signal containing the sound information in a number of different manners, the acquisition of the signal can be wired or wireless, and can be real time or delayed.
  • the bone conduction speaker 100 can receive an electrical signal containing sound information by wire or wirelessly, or can acquire data directly from a storage medium (eg, the storage component 108) to generate a sound signal.
  • the bone conduction hearing aid may include a component having a sound collection function, which converts the mechanical vibration of the sound into an electrical signal by picking up the sound in the environment, and processes the amplifier to obtain an electrical signal that satisfies a specific requirement.
  • the wired connection may comprise a metal cable, an optical cable, or a hybrid cable of metal and optics, such as a coaxial cable, a communication cable, a flexible cable, a spiral cable, a non-metallic sheath cable, a metal sheath A combination of one or more of a cable, a multi-core cable, a twisted pair cable, a ribbon cable, a shielded cable, a telecommunication cable, a twin-strand cable, a parallel twin-core wire, a twisted pair, and the like.
  • the examples described above are for convenience of description only, and the wired connection medium may be other types, for example, transmission signals of other electrical signals or optical signals.
  • Wireless connections may include radio communications, free space optical communications, acoustic communications, and electromagnetic induction.
  • the radio communication may include IEEE1002.11 series standards, IEEE1002.15 series standards (such as Bluetooth technology and Zigbee technology), first generation mobile communication technologies, and second generation mobile communication technologies (such as FDMA, TDMA, SDMA, CDMA, And SSMA, etc., general packet radio service technology, third generation mobile communication technologies (such as CDMA2000, WCDMA, TD-SCDMA, and WiMAX), fourth generation mobile communication technologies (such as TD-LTE and FDD-LTE, etc.) Satellite communications (eg GPS technology, etc.), Near Field Communication (NFC) and other technologies operating in the ISM band (eg 2.4 GHz, etc.); free-space optical communications may include visible light, infrared signals, etc.; acoustic communications may include sonic, ultrasonic signals Etc.; electromagnetic induction can include near field communication technology and the like.
  • the wirelessly connected medium may be of other types, such as Z-wave technology, other paid civilian radio bands, and military radio bands.
  • the bone conduction speaker 100 can acquire a signal containing sound information from other devices through Bluetooth technology.
  • the vibration assembly 104 can generate mechanical vibrations.
  • the generation of the vibration is accompanied by the conversion of energy
  • the bone conduction speaker 100 can convert the signal containing the sound information to the mechanical vibration using the specific magnetic circuit assembly 102 and the vibration assembly 104.
  • the process of conversion may involve the coexistence and conversion of many different types of energy.
  • an electrical signal can be directly converted into mechanical vibration by a transducer to generate sound.
  • the sound information may be included in the optical signal, and a particular transducer device may implement a process of converting the optical signal into a vibration signal.
  • Other types of energy that can coexist and convert during the operation of the transducer include thermal energy, magnetic field energy, and the like.
  • the energy conversion mode of the transducer device may include a moving coil type, an electrostatic type, a piezoelectric type, a moving iron type, a pneumatic type, an electromagnetic type, and the like.
  • the frequency response range and sound quality of the bone conduction speaker 100 are affected by the vibration assembly 104.
  • the vibrating assembly 104 includes a wound columnar coil and a vibrating body (for example, a vibrating piece), and the columnar coil driven by the signal current drives the vibrating body to vibrate in a magnetic field, and the vibrating body material
  • a vibrating body for example, a vibrating piece
  • the stretching and contraction, the deformation of the pleats, the size, the shape and the fixing manner, the magnetic density of the permanent magnets, and the like all have a great influence on the sound quality of the bone conduction speaker 100.
  • the vibrating body in the vibrating component 104 may be a mirror-symmetric structure, a centrally symmetric structure or an asymmetrical structure; the vibrating body may be provided with a discontinuous hole-like structure to cause a larger displacement of the vibrating body, thereby enabling the bone conduction speaker to be realized.
  • the higher the sensitivity, the higher the output power of the vibration and the sound; the vibrating body may be a torus structure, and a plurality of struts that are radiated toward the center are arranged in the ring body, and the number of the struts may be two or more.
  • the support assembly 106 can support the magnetic circuit assembly 102, the vibration assembly 104, and/or the storage assembly 108.
  • Support assembly 106 can include one or more housings, one or more connectors.
  • the one or more housings may form an accommodation space for receiving the magnetic circuit assembly 102, the vibration assembly 104, and/or the storage assembly 108.
  • the one or more connectors may connect the housing to the magnetic circuit assembly 102, the vibration assembly 104, and/or the storage assembly 108.
  • Storage component 108 can store signals containing sound information.
  • storage component 108 can include one or more storage devices.
  • the storage device may include a storage device on a storage system such as a Direct Attached Storage, a Network Attached Storage, and a Storage Area Network.
  • Storage devices can include various types of storage devices such as solid-state storage devices (solid-state drives, solid-state hybrid drives, etc.), mechanical hard drives, USB flash drives, memory sticks, memory cards (such as CF, SD, etc.), and other drives (such as CD, DVD, HD). DVD, Blu-ray, etc.), random access memory (RAM) and read only memory (ROM).
  • the RAM may include a decimal counter, a select tube, a delay line memory, a Williams tube, a dynamic random access memory (DRAM), a static random access memory (SRAM), a thyristor random access memory (T-RAM), and a zero capacitance random access memory.
  • DRAM dynamic random access memory
  • SRAM static random access memory
  • T-RAM thyristor random access memory
  • ROM may include bubble memory, magnetic button memory, thin film memory, magnetic plate line memory, magnetic core memory, drum memory, optical disk drive, hard disk, magnetic tape, early NVRAM (nonvolatile memory) Phase change memory, magnetoresistive random storage memory, ferroelectric random access memory, nonvolatile SRAM, flash memory, electronic erasable rewritable read only memory, erasable programmable read only memory, programmable read only memory Shielded heap read memory, floating gate random access memory, nano random access memory, track memory, variable resistive memory, and programmable metallization cells.
  • the above-mentioned storage device/storage unit is exemplified by some examples, and the storage device that the storage device/storage unit can use is not limited thereto.
  • the bone conduction speaker 100 can include one or more processors that can execute one or more sound signal processing algorithms.
  • the sound signal processing algorithm may modify or enhance the sound signal.
  • the bone conduction speaker 100 can include one or more sensors, such as a temperature sensor, a humidity sensor, a speed sensor, a displacement sensor, and the like. The sensor can collect user information or environmental information.
  • the bone conduction speaker 200 can include a first magnetic element 202, a first magnetically permeable element 204, a second magnetically permeable element 206, a first vibrating plate 208, a voice coil 210, a second vibrating plate 212, and a vibrating panel 214. .
  • the magnetic element described in the present application refers to an element that can generate a magnetic field, such as a magnet or the like.
  • the magnetic element may have a magnetization direction, which refers to the direction of the magnetic field inside the magnetic element.
  • the first magnetic element 202 can include one or more magnets.
  • the magnet may comprise a metal alloy magnet, ferrite or the like.
  • the metal alloy magnet may include neodymium iron boron, samarium cobalt, aluminum nickel cobalt, iron chromium cobalt, aluminum iron boron, iron carbon aluminum, or the like, or a combination of plural kinds thereof.
  • the ferrite may include barium ferrite, steel oxide, manganese ferrite, lithium manganese ferrite, or the like, or a combination thereof.
  • the lower surface of the first magnetically conductive element 204 may be coupled to the upper surface of the first magnetic element 202.
  • the second magnetically permeable element 206 can be coupled to the first magnetic element 202.
  • the magnetizer referred to herein may also be referred to as a magnetic field concentrator or a core.
  • the magnetizer can adjust the distribution of the magnetic field (eg, the magnetic field generated by the first magnetic element 202).
  • the magnetizer may comprise an element machined from a soft magnetic material.
  • the soft magnetic material may include a metal material, a metal alloy, a metal oxide material, an amorphous metal material, or the like, such as iron, iron-silicon alloy, iron-aluminum alloy, nickel-iron alloy, iron cobalt.
  • the magnetizer can be processed by one or more combinations of casting, plastic working, cutting, powder metallurgy, and the like.
  • Casting may include sand casting, investment casting, pressure casting, centrifugal casting, etc.
  • plastic processing may include one or more combinations of rolling, casting, forging, stamping, extrusion, drawing, etc.
  • cutting may include turning, milling , planing, grinding, etc.
  • the method of processing the magnetizer may include 3D printing, a numerically controlled machine tool, or the like.
  • the manner of connection between the first magnetically conductive element 204, the second magnetically conductive element 206, and the first magnetic element 202 may include one or more combinations of bonding, snapping, soldering, riveting, bolting, and the like.
  • the first magnetic element 202, the first magnetically permeable element 204, and the second magnetically permeable element 206 can be configured as an axisymmetric structure.
  • the axisymmetric structure may be a ring structure, a columnar structure or the like having an axisymmetric structure.
  • a magnetic gap may be formed between the first magnetic element 202 and the second magnetically permeable element 206.
  • a voice coil 210 can be disposed in the magnetic gap.
  • the voice coil 210 can be coupled to the first diaphragm 208.
  • the first vibrating plate 208 may be coupled to the second vibrating plate 212, and the second vibrating plate 212 may be coupled to the vibrating panel 214.
  • the voice coil 210 is located in a magnetic field formed by the first magnetic element 202, the first magnetic conductive element 214, and the second magnetic conductive element 206, and is subjected to an ampere force.
  • the ampere force drives the voice coil 210 to vibrate, and the vibration of the voice coil 210 drives the vibration of the first diaphragm 208, the second diaphragm 212, and the vibration panel 214.
  • the vibrating panel 214 transmits the vibrations through the tissue and bone to the auditory nerve so that the human hears the sound.
  • the vibrating panel 214 may be in direct contact with human skin or may be in contact with the skin through a vibration transmitting layer composed of a specific material.
  • the magnetic line of inductance passing through the voice coil is not uniform and divergent.
  • magnetic flux leakage may occur in the magnetic circuit, that is, more magnetic sensing lines leak out of the magnetic gap and fail to pass through the voice coil, so that the magnetic induction intensity (or magnetic field strength) at the voice coil position is lowered, affecting the bone conduction speaker.
  • the bone conduction speaker 200 can further include at least one second magnetic element and/or at least one third magnetically conductive element (not shown).
  • the at least one second magnetic element and/or the at least one third magnetically conductive element can suppress leakage of the magnetic line of sight, constrain the shape of the magnetic induction line passing through the voice coil, so that more magnetic lines of interest pass through the sound as densely as possible
  • the circle enhances the magnetic induction (or magnetic field strength) at the position of the voice coil, thereby increasing the sensitivity of the bone conduction speaker 200, thereby improving the mechanical conversion efficiency of the bone conduction speaker 200 (ie, converting the electrical energy input to the bone conduction speaker 200 into a voice coil) The efficiency of mechanical energy of vibration).
  • Further description of the at least one second magnetic element can be seen in Figures 3A-3G, 4A-4M and/or 5A-5F.
  • the bone conduction speaker 200 can include a housing, a connector, and the like.
  • the connector may connect the vibration panel 214 to the outer casing.
  • the bone conduction speaker 200 can include a second magnetic element that can be coupled to the first magnetically conductive element 204.
  • the bone conduction speaker 200 can further include one or more annular magnetic elements that can be coupled to the second magnetically conductive element 206.
  • FIG. 3A is a schematic longitudinal cross-sectional view of a magnetic circuit assembly 3100, in accordance with some embodiments of the present application.
  • the magnetic circuit assembly 3100 can include a first magnetic element 302, a first magnetically conductive element 304, a second magnetically conductive element 306, and a second magnetic element 308.
  • first magnetic element 302 and/or second magnetic element 308 can comprise any one or more of the magnets described herein.
  • the first magnetic element 302 can include a first magnet and the second magnetic element 308 can include a second magnet, which can be the same or different than the second magnet.
  • the first magnetically permeable element 304 and/or the second magnetically permeable element 306 can comprise any one or more of the magnetically permeable materials described herein.
  • the method of processing the first magnetically permeable element 304 and/or the second magnetically permeable element 306 can include any one or more of the processing methods described herein.
  • the first magnetic element 302 and/or the first magnetically permeable element 304 can be configured as an axisymmetric structure.
  • the first magnetic element 302 and/or the first magnetically permeable element 304 can be a cylinder, a rectangular parallelepiped, or a hollow annular shape (eg, a cross-sectional shape of a racetrack).
  • the first magnetic element 302 and the first magnetically permeable element 304 can be coaxial cylinders containing the same or different diameters.
  • the second magnetically permeable element 306 can be a grooved structure.
  • the groove-type structure may comprise a U-shaped profile (as shown in Figure 3A).
  • the groove-shaped second magnetically conductive element 306 may include a bottom plate and a side wall.
  • the bottom plate and the side walls may be integrally formed, for example, the side walls may be formed by the bottom plate extending in a direction perpendicular to the bottom plate.
  • the bottom plate can be joined to the side wall by any one or more of the connections described in this application.
  • the second magnetic member 308 can be set in a ring shape or a sheet shape. Regarding the shape of the second magnetic member 308, reference may be made to other places in the specification (for example, FIGS. 5A and 5B and related descriptions). In some embodiments, the second magnetic element 308 can be coaxial with the first magnetic element 302 and/or the first magnetically permeable element 304.
  • the upper surface of the first magnetic element 302 may be coupled to the lower surface of the first magnetically conductive element 304.
  • the lower surface of the first magnetic element 302 can be coupled to the bottom plate of the second magnetically conductive element 306.
  • the lower surface of the second magnetic element 308 is coupled to the sidewall of the second magnetically conductive element 306.
  • the connection between the first magnetic element 302, the first magnetic conductive element 304, the second magnetic conductive element 306 and/or the second magnetic element 308 may include bonding, snapping, soldering, riveting, bolting, and the like. Or a variety of combinations.
  • a magnetic gap is formed between the first magnetic element 302 and/or the first magnetically conductive element 304 and the inner ring of the second magnetic element 308.
  • a voice coil 328 can be disposed in the magnetic gap. In some embodiments, the height of the second magnetic element 308 and the voice coil 328 relative to the bottom plate of the second magnetically conductive element 306 are equal.
  • the first magnetic element 302, the first magnetically conductive element 304, the second magnetically conductive element 306, and the second magnetic element 308 can form a magnetic circuit.
  • the magnetic circuit assembly 3100 can generate a first full magnetic field (also referred to as "the total magnetic field of the magnetic circuit assembly"), and the first magnetic element 302 can generate a second magnetic field.
  • the first full magnetic field is generated by all of the components in the magnetic circuit assembly 3100 (eg, the first magnetic element 302, the first magnetically conductive element 304, the second magnetically conductive element 306, and the second magnetic element 308) Formed together.
  • the magnetic field strength (which may also be referred to as magnetic induction or magnetic flux density) of the first full magnetic field within the magnetic gap is greater than the magnetic field strength of the second magnetic field within the magnetic gap.
  • the second magnetic element 308 can generate a third magnetic field that can increase the magnetic field strength of the first full magnetic field at the magnetic gap.
  • the third magnetic field referred to herein increases the magnetic field strength of the first full magnetic field means that the magnetic field strength of the first full magnetic field in the magnetic gap is greater than when there is a third magnetic field (ie, the presence of the second magnetic element 308) The first full magnetic field is present when the third magnetic field is present (ie, the second magnetic element 308 is absent).
  • a magnetic circuit assembly denotes a structure including all magnetic elements and magnetic conductive elements
  • a first full magnetic field indicates a magnetic field generated by the magnetic circuit assembly as a whole, and a second magnetic field and a third magnetic field.
  • the Nth magnetic field represents the magnetic field generated by the corresponding magnetic element, respectively.
  • the magnetic elements that generate the second magnetic field (or the third magnetic field, ..., the Nth magnetic field) may be the same or different.
  • the angle between the magnetization direction of the first magnetic element 302 and the magnetization direction of the second magnetic element 308 is between 0 and 180 degrees. In some embodiments, the angle between the magnetization direction of the first magnetic element 302 and the magnetization direction of the second magnetic element 308 is between 45 and 135 degrees. In some embodiments, the angle between the magnetization direction of the first magnetic element 302 and the magnetization direction of the second magnetic element 308 is equal to or greater than 90 degrees.
  • the magnetization direction of the first magnetic element 302 is perpendicular to the lower or upper surface of the first magnetic element 302 vertically upward (as indicated by a in the figure), and the magnetization direction of the second magnetic element 308 is The inner ring of the two magnetic elements 308 is directed toward the outer ring (as indicated by b in the figure, on the right side of the first magnetic element 302, the magnetization direction of the first magnetic element 302 is deflected 90 degrees in the clockwise direction).
  • the angle between the direction of the first full magnetic field and the magnetization direction of the second magnetic element 308 is no more than 90 degrees. In some embodiments, at the location of the second magnetic element 308, the angle between the direction of the magnetic field generated by the first magnetic element 302 and the magnetization direction of the second magnetic element 308 can be 0 degrees, 10 degrees, 20 degrees. Equal angle less than or equal to 90 degrees.
  • the second magnetic element 308 can increase the total magnetic flux in the magnetic gap in the magnetic circuit assembly 3100, thereby increasing the magnetic induction in the magnetic gap, as compared to the magnetic circuit assembly of a single magnetic element. Moreover, under the action of the second magnetic element 308, the originally diffused magnetic line of interest converges toward the position of the magnetic gap, further increasing the magnetic induction in the magnetic gap.
  • the second magnetically permeable element 306 can be a ring structure or a sheet structure.
  • the magnetic circuit assembly 3100 can further include a magnetic shield that can surround the first magnetic element 302, the first magnetically conductive element 304, the second magnetically conductive element 306, and the second magnetic element 308.
  • FIG. 3B is a schematic longitudinal cross-sectional view of a magnetic circuit assembly 3200, in accordance with some embodiments of the present application. As shown in FIG. 3B, unlike the magnetic circuit assembly 3100, the magnetic circuit assembly 3200 can further include a third magnetic element 310.
  • the upper surface of the third magnetic element 310 is connected to the second magnetic element 308, and the lower surface is connected to the side wall of the second magnetically conductive element 306.
  • a magnetic gap may be formed between the first magnetic element 302, the first magnetically conductive element 304, the second magnetic element 308, and/or the third magnetic element 310.
  • a voice coil 328 can be disposed in the magnetic gap.
  • the first magnetic element 302, the first magnetically conductive element 304, the second magnetically conductive element 306, the second magnetic element 308, and the third magnetic element 310 can form a magnetic circuit.
  • the magnetization direction of the second magnetic element 308 can be referred to the detailed description of FIG. 3A of the present application.
  • the magnetic circuit assembly 3200 can generate a first full magnetic field, and the first magnetic element 302 can generate a second magnetic field, the first full magnetic field having a magnetic field strength within the magnetic gap greater than the second magnetic field The strength of the magnetic field within the magnetic gap.
  • the third magnetic element 310 can generate a third magnetic field that can increase the magnetic field strength of the second magnetic field at the magnetic gap.
  • the angle between the magnetization direction of the first magnetic element 302 and the magnetization direction of the third magnetic element 310 is between 0 and 180 degrees. In some embodiments, the angle between the magnetization direction of the first magnetic element 302 and the magnetization direction of the third magnetic element 310 is between 45 and 135 degrees. In some embodiments, the angle between the magnetization direction of the first magnetic element 302 and the magnetization direction of the third magnetic element 310 is equal to or greater than 90 degrees. In some embodiments, the magnetization direction of the first magnetic element 302 is perpendicular to the lower or upper surface of the first magnetic element 302 vertically upward (as shown in the direction of a), and the magnetization direction of the third magnetic element 310 is third.
  • the upper surface of the magnetic element 310 is directed to the lower surface (shown in the direction of c, as shown in the direction of c, on the right side of the first magnetic element 302, the magnetization direction of the first magnetic element 302 is deflected 180 degrees in the clockwise direction).
  • the angle between the direction of the first full magnetic field and the magnetization direction of the third magnetic element 310 is no more than 90 degrees. In some embodiments, at the position of the third magnetic element 310, the angle between the direction of the magnetic field generated by the first magnetic element 302 and the magnetization direction of the third magnetic element 310 may be 0 degrees, 10 degrees, 20 degrees. Equal angle less than or equal to 90 degrees.
  • the magnetic circuit assembly 3200 further adds the third magnetic element 310 as compared to the magnetic circuit assembly 3100.
  • the third magnetic element 310 can further increase the total magnetic flux in the magnetic gap in the magnetic circuit assembly 3200, thereby increasing the magnetic induction in the magnetic gap.
  • the magnetic line of inductance will further converge toward the position of the magnetic gap, further increasing the magnetic induction intensity in the magnetic gap.
  • the second magnetically permeable element 306 can be a ring structure or a sheet structure.
  • the magnetic circuit assembly 3200 may not include the second magnetically conductive element 306.
  • the magnetic circuit assembly 3200 can further add at least one magnetic element.
  • the lower surface of the further added magnetic element can be coupled to the upper surface of the second magnetic element 308.
  • the magnetization direction of the further added magnetic element is opposite to the magnetization direction of the third magnetic element 312.
  • the further added magnetic element can connect the sidewalls of the first magnetic element 302 and the second magnetically conductive element 306.
  • the magnetization direction of the further added magnetic element is opposite to the magnetization direction of the second magnetic element 308.
  • FIG. 3C is a schematic longitudinal cross-sectional view of a magnetic circuit assembly 3300, shown in accordance with some embodiments of the present application. As shown in FIG. 3C, unlike the magnetic circuit assembly 3100, the magnetic circuit assembly 3300 can further include a fourth magnetic element 312.
  • the fourth magnetic element 312 can connect the sidewalls of the first magnetic element 302 and the second magnetically conductive element 306 by one or more combinations of bonding, snapping, soldering, riveting, bolting, and the like.
  • the first magnetic element 302, the first magnetically conductive element 304, the second magnetically conductive element 306, the second magnetic element 308, and the fourth magnetic element 312 can form a magnetic gap.
  • the magnetization direction of the second magnetic element 308 can be referred to the detailed description of FIG. 3A of the present application.
  • the magnetic circuit assembly 3300 can generate a first full magnetic field, and the first magnetic element 302 can generate a second magnetic field, the first full magnetic field having a magnetic field strength within the magnetic gap greater than the second magnetic field The strength of the magnetic field within the magnetic gap.
  • the fourth magnetic element 312 can generate a fourth magnetic field that can increase the magnetic field strength of the second magnetic field at the magnetic gap.
  • the angle between the magnetization direction of the first magnetic element 302 and the magnetization direction of the fourth magnetic element 312 is between 0 and 180 degrees. In some embodiments, the angle between the magnetization direction of the first magnetic element 302 and the magnetization direction of the fourth magnetic element 312 is between 45 and 135 degrees. In some embodiments, the angle between the magnetization direction of the first magnetic element 302 and the magnetization direction of the fourth magnetic element 312 is no more than 90 degrees. In some embodiments, the magnetization direction of the first magnetic element 302 is perpendicular to the lower or upper surface of the first magnetic element 302 vertically upward (as shown in the direction of a), and the magnetization direction of the fourth magnetic element 312 is fourth.
  • the outer ring of the magnetic element 312 is directed toward the inner ring (shown in the direction of d in the figure, on the right side of the first magnetic element 302, the magnetization direction of the first magnetic element 302 is deflected by 270 degrees in the clockwise direction).
  • the angle between the direction of the first full magnetic field and the magnetization direction of the fourth magnetic element 312 is no more than 90 degrees. In some embodiments, at the position of the fourth magnetic element 312, the angle between the direction of the magnetic field generated by the first magnetic element 302 and the magnetization direction of the fourth magnetic element 312 may be 0 degrees, 10 degrees, 20 degrees, etc. An angle less than or equal to 90 degrees.
  • the magnetic circuit assembly 3300 further adds the fourth magnetic element 312 as compared to the magnetic circuit assembly 3100.
  • the fourth magnetic element 312 can further increase the total magnetic flux within the magnetic gap in the magnetic circuit assembly 3300, thereby increasing the magnetic induction in the magnetic gap.
  • the magnetic line of inductance will further converge toward the position of the magnetic gap, further increasing the magnetic induction intensity in the magnetic gap.
  • the second magnetically permeable element 306 can be a ring structure or a sheet structure.
  • the magnetic circuit assembly 3300 may not include the second magnetic element 308.
  • the magnetic circuit assembly 3300 can further add at least one magnetic element.
  • the lower surface of the further added magnetic element can be coupled to the upper surface of the second magnetic element 308.
  • the magnetization direction of the further added magnetic element is the same as the magnetization direction of the first magnetic element 302.
  • the upper surface of the further added magnetic element can be coupled to the lower surface of the second magnetic element 308.
  • the magnetization direction of the magnetic element is opposite to the magnetization direction of the first magnetic element 302.
  • FIG. 3D is a schematic longitudinal cross-sectional view of a magnetic circuit assembly 3400, in accordance with some embodiments of the present application.
  • the magnetic circuit assembly 3400 can further include a fifth magnetic element 314.
  • the fifth magnetic element 314 can include any of the magnet materials described in this application.
  • the fifth magnetic element 314 can be configured as an axisymmetric structure.
  • the fifth magnetic element 314 can be a cylinder, a rectangular parallelepiped, or a hollow annular shape (eg, a cross-sectional shape of a racetrack).
  • the first magnetic element 302, the first magnetically permeable element 304, and/or the fifth magnetic element 314 can be coaxial cylinders that contain the same or different diameters.
  • the thickness of the fifth magnetic element 314 and the first magnetic element 302 may be the same or different.
  • the fifth magnetic element 314 can be coupled to the first magnetically conductive element 304.
  • the angle between the magnetization direction of the fifth magnetic element 314 and the magnetization direction of the first magnetic element 302 is between 90 and 180 degrees. In some embodiments, the angle between the magnetization direction of the fifth magnetic element 314 and the magnetization direction of the first magnetic element 302 is between 150 and 180 degrees. In some embodiments, the magnetization direction of the fifth magnetic element 314 is opposite to the magnetization direction of the first magnetic element 302 (as shown, the a direction and the e direction).
  • the magnetic circuit assembly 3400 further adds a fifth magnetic element 314 as compared to the magnetic circuit assembly 3100.
  • the fifth magnetic element 314 can suppress magnetic flux leakage in the magnetization direction of the first magnetic element 302 in the magnetic circuit assembly 3400, so that the magnetic field generated by the first magnetic element 302 can be more compressed into the magnetic gap, thereby improving the magnetic gap. Magnetic induction inside.
  • the second magnetically permeable element 306 can be a ring structure or a sheet structure.
  • the magnetic circuit assembly 3400 may not include the second magnetic element 308.
  • the magnetic circuit assembly 3400 can further add at least one magnetic element.
  • the lower surface of the further added magnetic element can be coupled to the upper surface of the second magnetic element 308.
  • the magnetization direction of the further added magnetic element is the same as the magnetization direction of the first magnetic element 302.
  • the upper surface of the further added magnetic element can be coupled to the lower surface of the second magnetic element 308.
  • the magnetization direction of the further added magnetic element is opposite to the magnetization direction of the first magnetic element 302.
  • the further added magnetic element can connect the first magnetic element 302 and the second magnetically conductive element 306, the magnetization direction of the further added magnetic element being opposite to the magnetization direction of the second magnetic element 308.
  • FIG. 3E is a schematic longitudinal cross-sectional view of a magnetic circuit assembly 3500, shown in accordance with some embodiments of the present application.
  • the magnetic circuit assembly 3500 can further include a third magnetically conductive element 316.
  • the third magnetically permeable element 316 can comprise any one or more of the magnetically permeable materials described herein.
  • the magnetically permeable materials included in the first magnetically permeable element 304, the second magnetically permeable element 306, and/or the third magnetically permeable element 316 may be the same or different.
  • the third magnetically permeable element 316 can be configured in a symmetrical configuration.
  • the third magnetically permeable element 316 can be a cylinder.
  • the first magnetic element 302, the first magnetically conductive element 304, the fifth magnetic element 314, and/or the third magnetically permeable element 316 can be coaxial cylinders containing the same or different diameters.
  • the third magnetically conductive element 316 can be coupled to the fifth magnetic element 314.
  • the third magnetically permeable element 316 can connect the fifth magnetic element 314 and the second magnetic element 308.
  • the third magnetic conductive element 316, the second magnetic conductive element 306, and the second magnetic element 308 may form a cavity, and the cavity may include a first magnetic element 302, a fifth magnetic element 314, and a first magnetic conductive element. 304.
  • the magnetic circuit assembly 3500 further adds a third magnetically conductive element 316 as compared to the magnetic circuit assembly 3400.
  • the third magnetically conductive element 316 can suppress magnetic flux leakage in the magnetization direction of the fifth magnetic element 314 in the magnetic circuit assembly 3500, so that the magnetic field generated by the fifth magnetic element 314 can be more compressed into the magnetic gap, thereby improving the magnetic Magnetic induction in the gap.
  • the second magnetically permeable element 306 can be a ring structure or a sheet structure.
  • the magnetic circuit assembly 3500 may not include the second magnetic element 308.
  • the magnetic circuit assembly 3500 can further add at least one magnetic element.
  • the lower surface of the further added magnetic element can be coupled to the upper surface of the second magnetic element 308.
  • the magnetization direction of the further added magnetic element is the same as the magnetization direction of the first magnetic element 302.
  • the upper surface of the further added magnetic element can be coupled to the lower surface of the second magnetic element 308.
  • the magnetization direction of the further added magnetic element is opposite to the magnetization direction of the first magnetic element 302.
  • the further added magnetic element can connect the first magnetic element 302 and the second magnetically conductive element 306, the magnetization direction of the further added magnetic element being opposite to the magnetization direction of the second magnetic element 308.
  • FIG. 3F is a schematic longitudinal cross-sectional view of a magnetic circuit assembly 3600, in accordance with some embodiments of the present application. As shown in FIG. 3F, unlike magnetic circuit assembly 3100, magnetic circuit assembly 3600 can further include one or more conductive elements (eg, first conductive element 318, second conductive element 320, and third conductive element 322).
  • conductive elements eg, first conductive element 318, second conductive element 320, and third conductive element 322.
  • the conductive element may comprise a metal material, a metal alloy material, an inorganic non-metal material or other conductive material.
  • the metal material may include gold, silver, copper, aluminum, etc.; the metal alloy material may include an iron-based alloy, an aluminum-based alloy material, a copper-based alloy, a zinc-based alloy, and the like; the inorganic non-metal material may include graphite or the like.
  • the conductive element may be in the form of a sheet, a ring, a mesh or the like.
  • the first conductive element 318 may be disposed on an upper surface of the first magnetic conductive element 304.
  • the second conductive element 320 can connect the first magnetic element 302 and the second magnetic conductive element 306.
  • the third conductive element 322 can be coupled to the sidewall of the first magnetic element 302.
  • the first magnetically permeable element 304 can protrude from the first magnetic element 302 to form a first recess, and the third conductive element 322 is disposed in the first recess.
  • first conductive element 318, second conductive element 320, and third conductive element 322 can comprise the same or different conductive materials.
  • the first conductive element 318, the second conductive element 320, and the third conductive element 322 may be coupled to the first magnetically conductive element 304, the second magnetically conductive element 306, and/or by any one or more of the connections described herein.
  • a magnetic gap is formed between the first magnetic element 302, the first magnetically conductive element 304, and the inner ring of the second magnetic element 308.
  • a voice coil 328 can be disposed in the magnetic gap.
  • the first magnetic element 302, the first magnetically conductive element 304, the second magnetically conductive element 306, and the second magnetic element 308 can form a magnetic circuit.
  • the conductive element can reduce the inductive reactance of the voice coil 328. For example, if the voice coil 328 passes the first alternating current, a first alternating induced magnetic field is generated near the voice coil 328.
  • the first alternating induced magnetic field under the action of the magnetic field in the magnetic circuit, causes the voice coil 328 to generate an inductive reactance, hindering the movement of the voice coil 328.
  • the conductive element When conductive elements (eg, first conductive element 318, second conductive element 320, and third conductive element 322) are disposed adjacent to voice coil 328, the conductive element may be induced by the first alternating induced magnetic field.
  • the second alternating current A third alternating current in the conductive element may generate a second alternating induced magnetic field in the vicinity thereof, the second alternating induced magnetic field being opposite to the first alternating induced magnetic field, and the first intersection may be weakened
  • the induced magnetic field is reduced, thereby reducing the inductive reactance of the voice coil 328, increasing the current in the voice coil, and improving the sensitivity of the bone conduction speaker.
  • the second magnetically permeable element 306 can be a ring structure or a sheet structure.
  • the magnetic circuit assembly 3600 may not include the second magnetic element 308.
  • the magnetic circuit assembly 3500 can further add at least one magnetic element.
  • the lower surface of the further added magnetic element can be coupled to the upper surface of the second magnetic element 308.
  • the magnetization direction of the further added magnetic element is the same as the magnetization direction of the first magnetic element 302.
  • FIG. 3G is a schematic longitudinal cross-sectional view of a magnetic circuit assembly 3900, shown in accordance with some embodiments of the present application.
  • the magnetic circuit assembly 3900 may further include a third magnetic element 310, a fourth magnetic element 312, a fifth magnetic element 314, a third magnetic conductive element 316, and a sixth Magnetic element 324 and seventh magnetic element 326.
  • the third magnetic element 310, the fourth magnetic element 312, the fifth magnetic element 314, the third magnetic conductive element 316, and/or the sixth magnetic element 324 and the seventh magnetic element 326 may be disposed as a coaxial annular cylinder.
  • the upper surface of the second magnetic element 308 is coupled to the seventh magnetic element 326, and the lower surface of the second magnetic element 308 can be coupled to the third magnetic element 310.
  • the third magnetic element 310 can be coupled to the second magnetically conductive element 306.
  • the upper surface of the seventh magnetic element 326 may be connected to the third magnetically conductive element 316.
  • the fourth magnetic element 312 can connect the second magnetically conductive element 306 and the first magnetic element 302.
  • the sixth magnetic element 324 can connect the fifth magnetic element 314, the third magnetic conductive element 316, and the seventh magnetic element 326.
  • the third magnetically conductive element 316, the sixth magnetic element 324, and the seventh magnetic element 326 may form a magnetic circuit and a magnetic gap.
  • the magnetization direction of the second magnetic element 308 can be referred to the detailed description in FIG. 3A of the present application.
  • the magnetization direction of the third magnetic element 310 can be referred to the detailed description of FIG. 3B of the present application, and the magnetization of the fourth magnetic element 312.
  • the direction can refer to the detailed description in FIG. 3C of the present application.
  • the angle between the magnetization direction of the first magnetic element 302 and the magnetization direction of the sixth magnetic element 324 may be between 0 and 180 degrees. In some embodiments, the angle between the magnetization direction of the first magnetic element 302 and the magnetization direction of the sixth magnetic element 324 is between 45 and 135 degrees. In some embodiments, the angle between the magnetization direction of the first magnetic element 302 and the magnetization direction of the sixth magnetic element 324 is no more than 90 degrees. In some embodiments, the magnetization direction of the first magnetic element 302 is perpendicular to the lower or upper surface of the first magnetic element 302 vertically upward (as shown in the direction of a), and the magnetization direction of the sixth magnetic element 324 is sixth.
  • the outer ring of the magnetic element 324 is directed toward the inner ring (shown in the direction of g in the figure, on the right side of the first magnetic element 302, the magnetization direction of the first magnetic element 302 is deflected by 270 degrees in the clockwise direction).
  • the magnetization direction of the sixth magnetic element 324 and the magnetization direction of the fourth magnetic element 312 may be the same in the same vertical direction.
  • the angle between the direction of the magnetic field generated by the magnetic circuit assembly 3900 and the magnetization direction of the sixth magnetic element 324 is no more than 90 degrees. In some embodiments, at the position of the sixth magnetic element 324, the angle between the direction of the magnetic field generated by the first magnetic element 302 and the magnetization direction of the sixth magnetic element 324 may be 0 degrees, 10 degrees, 20 degrees. Equal angle less than or equal to 90 degrees.
  • the angle between the magnetization direction of the first magnetic element 302 and the magnetization direction of the seventh magnetic element 326 may be between 0 and 180 degrees. In some embodiments, the angle between the magnetization direction of the first magnetic element 302 and the magnetization direction of the seventh magnetic element 326 is between 45 and 135 degrees. In some embodiments, the angle between the magnetization direction of the first magnetic element 302 and the magnetization direction of the seventh magnetic element 326 is no more than 90 degrees. In some embodiments, the magnetization direction of the first magnetic element 302 is perpendicular to the lower or upper surface of the first magnetic element 302 vertically upward (as shown in the direction of direction a), and the magnetization direction of the seventh magnetic element 326 is seventh.
  • the lower surface of the magnetic member 326 is directed to the upper surface (shown in the direction of f in the figure, on the right side of the first magnetic member 302, the magnetization direction of the first magnetic member 302 is deflected 360 degrees in the clockwise direction).
  • the magnetization direction of the seventh magnetic element 326 and the magnetization direction of the third magnetic element 310 may be opposite.
  • the angle between the direction of the magnetic field generated by the magnetic circuit assembly 3900 and the magnetization direction of the seventh magnetic element 326 is no more than 90 degrees. In some embodiments, at the location of the seventh magnetic element 326, the angle between the direction of the magnetic field generated by the first magnetic element 302 and the magnetization direction of the seventh magnetic element 326 can be 0 degrees, 10 degrees, 20 degrees. Equal angle less than or equal to 90 degrees.
  • the third magnetic conductive element 316 can close the magnetic circuit generated by the magnetic circuit assembly 3900, so that more magnetic sensing lines are concentrated in the magnetic gap, thereby suppressing leakage magnetic flux and increasing magnetic gap.
  • the magnetic induction intensity and the effect of improving the sensitivity of the bone conduction speaker can be improved.
  • the second magnetically permeable element 306 can be a ring structure or a sheet structure.
  • the magnetic circuit assembly 3900 may not include the second magnetic element 308.
  • the magnetic circuit assembly 3900 can further include at least one conductive element that can connect the first magnetic element 302, the fifth magnetic element 314, the first magnetic conductive element 304, the second magnetic conductive element 306, and/or The third magnetically conductive element 316.
  • the magnetic circuit assembly 3900 can further add at least one conductive element, and the further added conductive element can connect the second magnetic element 308, the third magnetic element 310, the fourth magnetic element 312, and the sixth magnetic element 324. And at least one of the seventh magnetic elements 326.
  • the magnetic circuit assembly 4100 can include a first magnetic element 402, a first magnetically conductive element 404, a first full magnetic field changing element 406, and a second magnetic element 408.
  • first magnetic element 402 and/or second magnetic element 408 can include any one or more of the magnets described herein.
  • the first magnetic element 402 can include a first magnet and the second magnetic element 408 can include a second magnet, which can be the same or different than the second magnet.
  • the first magnetically permeable element 404 can include any one or more of the magnetically permeable materials described herein, such as low carbon steel, silicon steel sheets, silicon steel sheets, ferrites, and the like.
  • the first magnetic element 402 and/or the first magnetically permeable element 404 can be configured as an axisymmetric structure.
  • the first magnetic element 402 and/or the first magnetically conductive element 404 can be a cylinder.
  • first magnetic element 402 and first magnetically permeable element 404 can be coaxial cylinders that contain the same or different diameters.
  • the first full magnetic field changing element 406 can be any of a magnetic element or a magnetically conductive element.
  • the first full magnetic field changing element 406 and/or the second magnetic element 408 may be set in a ring shape or a sheet shape. A description of the first full magnetic field changing element 406 and the second magnetic element 408 can be found elsewhere in the specification (eg, Figures 5A and 5B and their associated descriptions).
  • the second magnetic element 408 can be an annular cylinder that is coaxial with the first magnetic element 402, the first magnetically permeable element 404, and/or the first full magnetic field changing element 406, and includes inner rings of the same or different diameters. And / outer ring.
  • the method of processing the first magnetically permeable element 404 and/or the first full magnetic field changing element 406 can include any one or more of the processing methods described herein.
  • the upper surface of the first magnetic element 402 may be coupled to the lower surface of the first magnetically conductive element 404, and the second magnetic element 408 may be coupled to the first magnetic element 402 and the first full magnetic field changing element 406.
  • the manner of connection between the first magnetic element 402, the first magnetically permeable element 404, the first full magnetic field changing element 406, and/or the second magnetic element 408 can be based on any one or more of the connections described in this application.
  • the first magnetic element 402, the first magnetically permeable element 404, the first full magnetic field changing element 406, and/or the second magnetic element 408 can form a magnetic circuit and a magnetic gap.
  • the magnetic circuit assembly 4100 can generate a first full magnetic field, and the first magnetic element 402 can generate a second magnetic field, the first full magnetic field having a magnetic field strength within the magnetic gap greater than the second magnetic field The strength of the magnetic field within the magnetic gap.
  • the second magnetic element 408 can generate a third magnetic field that can increase the magnetic field strength of the second magnetic field at the magnetic gap.
  • the angle between the magnetization direction of the first magnetic element 402 and the magnetization direction of the second magnetic element 408 can be between 0 and 180 degrees. In some embodiments, the angle between the magnetization direction of the first magnetic element 402 and the magnetization direction of the second magnetic element 408 is between 45 and 135 degrees. In some embodiments, the angle between the magnetization direction of the first magnetic element 402 and the magnetization direction of the second magnetic element 408 may be no more than 90 degrees.
  • the angle between the direction of the first full magnetic field and the magnetization direction of the second magnetic element 408 is no more than 90 degrees. In some embodiments, at the location of the second magnetic element 408, the angle between the direction of the magnetic field generated by the first magnetic element 402 and the magnetization direction of the second magnetic element 408 can be 0 degrees, 10 degrees, 20 degrees. Equal angle less than or equal to 90 degrees.
  • the magnetization direction of the first magnetic element 402 is perpendicular to the lower or upper surface of the first magnetic element 402 vertically upward (as shown in the direction of a), and the magnetization direction of the second magnetic element 408 is made by the second magnetic element 408.
  • the outer ring points toward the inner ring (shown in the direction of c, as shown in the c direction, on the right side of the first magnetic element 402, the magnetization direction of the first magnetic element 402 is deflected 270 degrees in the clockwise direction).
  • the first full magnetic field changing element 406 in the magnetic circuit assembly 4100 can increase the total magnetic flux in the magnetic gap, thereby increasing the magnetic induction in the magnetic gap, as compared to the magnetic circuit assembly of a single magnetic element. Moreover, under the action of the first full magnetic field changing element 406, the originally diverged magnetic sensing line converges toward the position of the magnetic gap, further increasing the magnetic induction intensity in the magnetic gap.
  • the magnetic circuit assembly 4100 can further include a magnetically permeable cover that can include a first magnetic element 402, a first magnetically permeable element 404, a first full magnetic field changing element 406, and a second magnetic element 408.
  • FIG. 4B is a schematic longitudinal cross-sectional view of a magnetic circuit assembly 4200, in accordance with some embodiments of the present application. As shown in FIG. 4B, unlike the magnetic circuit assembly 4100, the magnetic circuit assembly 4200 can further include a third magnetic element 410.
  • the lower surface of the third magnetic element 410 may be coupled to the first full magnetic field changing element 406.
  • the manner of connection between the third magnetic element 410 and the first full magnetic field changing element 406 can be based on any one or more of the connections described in this application.
  • a magnetic gap may be formed between the first magnetic element 402, the first magnetically permeable element 404, the first full magnetic field changing element 406, the second magnetic element 408, and/or the third magnetic element 410.
  • the magnetic circuit assembly 4200 can generate a first full magnetic field, and the first magnetic element 402 can generate a second magnetic field, the first full magnetic field having a magnetic field strength within the magnetic gap greater than the second magnetic field The strength of the magnetic field within the magnetic gap.
  • the third magnetic element 410 can generate a third magnetic field that can increase the magnetic field strength of the second magnetic field at the magnetic gap.
  • the angle between the magnetization direction of the first magnetic element 402 and the magnetization direction of the third magnetic element 410 may be between 0 and 180 degrees. In some embodiments, the angle between the magnetization direction of the first magnetic element 402 and the magnetization direction of the third magnetic element 410 is between 45 and 135 degrees. In some embodiments, the angle between the magnetization direction of the first magnetic element 402 and the magnetization direction of the third magnetic element 410 may be equal to or greater than 90 degrees. In some embodiments, the magnetization direction of the first magnetic element 402 is perpendicular to the lower or upper surface of the first magnetic element 402 vertically upward (as shown in the direction of a), and the magnetization direction of the third magnetic element 410 is third.
  • the inner ring of the magnetic element 410 is directed toward the outer ring (shown in the direction of b in the figure, on the right side of the first magnetic element 402, the magnetization direction of the first magnetic element 402 is deflected 90 degrees in the clockwise direction).
  • the angle between the direction of the first full magnetic field and the magnetization direction of the second magnetic element 408 is no more than 90 degrees. In some embodiments, at the position of the third magnetic element 410, the angle between the direction of the magnetic field generated by the first magnetic element 402 and the magnetization direction of the third magnetic element 410 may be 0 degrees, 10 degrees, 20 degrees. Equal angle less than or equal to 90 degrees.
  • the magnetic circuit assembly 4200 further adds the third magnetic element 410 as compared to the magnetic circuit assembly 4100.
  • the third magnetic element 410 can further increase the total magnetic flux within the magnetic gap in the magnetic circuit assembly 4200, thereby increasing the magnetic induction in the magnetic gap.
  • the magnetic line of inductance will further converge toward the position of the magnetic gap, thereby increasing the magnetic induction in the magnetic gap.
  • the magnetic circuit assembly 4200 can further include a magnetic shield, which can include a first magnetic element 402, a first magnetically conductive element 404, a first full magnetic field changing element 406, a second magnetic element 408, and a third magnetic Element 410.
  • FIG. 4C is a block diagram of a magnetic circuit assembly 4300, shown in accordance with some embodiments of the present application. As shown in FIG. 4C, unlike the magnetic circuit assembly 4200, the magnetic circuit assembly 4300 can further include a fourth magnetic element 412.
  • the lower surface of the fourth magnetic element 412 may be coupled to the upper surface of the first full magnetic field changing element 406, and the upper surface of the fourth magnetic element 412 may be coupled to the lower surface of the second magnetic element 408.
  • the manner of connection between the fourth magnetic element 412 and the first full magnetic field changing element 406 and the second magnetic element 408 can be based on any one or more of the connections described in this application.
  • a first magnetic element 402, a first magnetically permeable element 404, a first full magnetic field changing element 406, a second magnetic element 408, a third magnetic element 410, and/or a fourth magnetic element 412 can be formed. Magnetic gap.
  • the magnetization directions of the second magnetic element 408 and the third magnetic element 410 can be referred to the detailed descriptions in the present application 4A and/or 4B, respectively.
  • the magnetic circuit assembly 4300 can generate a first full magnetic field, and the first magnetic element 402 can generate a second magnetic field, the first full magnetic field having a magnetic field strength within the magnetic gap greater than the second magnetic field The strength of the magnetic field within the magnetic gap.
  • the fourth magnetic element 412 can generate a third magnetic field that can increase the magnetic field strength of the second magnetic field at the magnetic gap.
  • the angle between the magnetization direction of the first magnetic element 402 and the magnetization direction of the fourth magnetic element 412 may be between 0 and 180 degrees. In some embodiments, the angle between the magnetization direction of the first magnetic element 402 and the magnetization direction of the fourth magnetic element 412 is between 45 and 135 degrees. In some embodiments, the angle between the magnetization direction of the first magnetic element 402 and the magnetization direction of the fourth magnetic element 412 may be equal to or greater than 90 degrees. In some embodiments, the magnetization direction of the first magnetic element 402 is perpendicular to the lower or upper surface of the first magnetic element 402 vertically upward (as shown in the direction of a), and the magnetization direction of the fourth magnetic element 412 is fourth.
  • the upper surface of the magnetic element 412 is directed toward the lower surface (shown in the direction of d, as shown in the direction of d, on the right side of the first magnetic element 402, the magnetization direction of the first magnetic element 402 is deflected 180 degrees in the clockwise direction).
  • the angle between the direction of the first full magnetic field and the magnetization direction of the fourth magnetic element 412 is no more than 90 degrees. In some embodiments, at the position of the fourth magnetic element 412, the angle between the direction of the magnetic field generated by the first magnetic element 402 and the magnetization direction of the fourth magnetic element 412 may be 0 degrees, 10 degrees, 20 degrees. Equal angle less than or equal to 90 degrees.
  • the magnetic circuit assembly 4300 further adds a fourth magnetic element 412 as compared to the magnetic circuit assembly 4200.
  • the fourth magnetic element 412 can further increase the total magnetic flux within the magnetic gap in the magnetic circuit assembly 4300, thereby increasing the magnetic induction in the magnetic gap.
  • the magnetic line of inductance will further converge toward the position of the magnetic gap, thereby increasing the magnetic induction in the magnetic gap.
  • the magnetic circuit assembly 4300 can further include one or more conductive elements that can connect the first magnetic element 402, the first magnetically conductive element 404, the second magnetic element 408, and the third magnetic element 410. And at least one of the fourth magnetic elements 412.
  • FIG. 4D is a schematic longitudinal cross-sectional view of a magnetic circuit assembly 4400, shown in accordance with some embodiments of the present application. As shown in FIG. 4D, unlike the magnetic circuit assembly 4300, the magnetic circuit assembly 4400 can further include a magnetic shield 414.
  • the magnetic shield 414 can include any one or more of the magnetically permeable materials described herein, such as low carbon steel, silicon steel sheets, silicon steel sheets, ferrites, and the like.
  • the magnetic shield 414 can connect the first full magnetic field changing element 406, the second magnetic element 408, the third magnetic element 410, and the fourth magnetic element 412 by any one or more of the connections described in this application.
  • the method of processing the magnetic shield 414 can include any of the processing methods described herein, such as one or more combinations of casting, plastic working, cutting, powder metallurgy, and the like.
  • the magnetic shield 414 can include a bottom plate and side walls that are annular structures.
  • the bottom plate and the side walls may be integrally formed.
  • the bottom plate can be joined to the side wall by any one or more of the connections described in this application.
  • the magnetic circuit assembly 4400 further adds a magnetic shield 414 as compared to the magnetic circuit assembly 4300.
  • the magnetic shield 414 can suppress the magnetic flux leakage of the magnetic circuit assembly 4300, effectively reduce the magnetic path length and magnetic resistance, so that more magnetic sensing lines can pass through the magnetic gap, thereby improving the magnetic induction intensity in the magnetic gap.
  • the magnetic circuit assembly 4400 can further include one or more conductive elements that can connect the first magnetic element 402, the first magnetically conductive element 404, the second magnetic element 408, and the third magnetic element 410. And at least one of the fourth magnetic elements 412.
  • the magnetic circuit assembly 4200 may further include a fifth magnetic element, a lower surface of the fifth magnetic element is coupled to an upper surface of the first magnetic conductive element 404, and a magnetization direction of the fifth magnetic element is opposite to the first magnetic The magnetization direction of element 402 is reversed.
  • connection surface of the first total magnetic field changing element 406 and the second magnetic element 408 of the magnetic circuit assembly 4500 may be a wedge-shaped cross section.
  • the connecting surface of the first full magnetic field changing element 406 and the second magnetic element 408 of the magnetic circuit assembly 4500 is configured as a wedge-shaped cross section, so that the magnetic sensing line can be smoothly turned.
  • the wedge-shaped cross section can facilitate the assembly of the first full magnetic field changing element 406 and the second magnetic element 408 and can reduce the number of assembled components and reduce the weight of the bone conduction speaker.
  • the magnetic circuit assembly 4500 can further include one or more conductive elements that can connect at least one of the first magnetic element 402, the first magnetic conductive element 404, the second magnetic element 408, and the third magnetic element 410.
  • One component can connect at least one of the first magnetic element 402, the first magnetic conductive element 404, the second magnetic element 408, and the third magnetic element 410.
  • the magnetic circuit assembly 4500 may further include a fifth magnetic element, a lower surface of the fifth magnetic element is coupled to an upper surface of the first magnetic conductive element 404, and a magnetization direction of the fifth magnetic element is opposite to the first magnetic The magnetization direction of element 402 is reversed.
  • the magnetic circuit assembly 4500 can further include a magnetic shield, which can include a first magnetic element 402, a first magnetically conductive element 404, a first full magnetic field changing element 406, and a second magnetic element. 408 and a third magnetic element 410.
  • the magnetic circuit assembly 4600 can further include a fifth magnetic element 416.
  • the fifth magnetic element 416 can include one or more magnets.
  • the magnet may comprise any one or several of the magnet materials described in this application.
  • the fifth magnetic element 416 can include a first magnet, and the first magnetic element 402 can include a second magnet, and the first magnet and the second magnet can comprise the same or different magnet materials.
  • the fifth magnetic element 416, the first magnetic element 402, and the first magnetically conductive element 404 can be disposed in an axisymmetric configuration, such as the fifth magnetic element 416, the first magnetic element 402, and the first magnetically conductive element.
  • 404 can be a cylinder.
  • fifth magnetic element 416, first magnetic element 402, and first magnetically permeable element 404 can be coaxial cylinders that contain the same or different diameters.
  • the diameter of the first magnetically permeable element 404 can be greater than the first magnetic element 402 and/or the fifth magnetic element 416, and the sidewalls of the first magnetic element 402 and/or the fifth magnetic element 416 can form a first recess and/or Second recess.
  • the ratio of the thickness of the second magnetic element 416 to the sum of the thicknesses of the first magnetic element 402, the second magnetic element 416, and the first magnetically permeable element 404 ranges from 0.4 to 0.6.
  • the ratio of the sum of the thicknesses of the first magnetically conductive element 404 and the first magnetic element 402, the second magnetic element 416, and the first magnetically conductive element 404 ranges from 0.5 to 1.5.
  • the angle between the magnetization direction of the fifth magnetic element 416 and the magnetization direction of the first magnetic element 402 is between 150 and 180 degrees. In some embodiments, the angle between the magnetization direction of the fifth magnetic element 416 and the magnetization direction of the first magnetic element 402 is between 90 and 180 degrees. For example, the magnetization direction of the fifth magnetic element 416 is opposite to the magnetization direction of the first magnetic element 402 (as shown, the a direction and the e direction).
  • the magnetic circuit assembly 4600 further adds a fifth magnetic element 416 as compared to the magnetic circuit assembly 4100.
  • the fifth magnetic element 426 can suppress magnetic flux leakage in the magnetization direction of the first magnetic element 402 in the magnetic circuit assembly 4600, so that the magnetic field generated by the first magnetic element 402 can be more compressed into the magnetic gap, thereby improving the magnetic gap. Magnetic induction.
  • the magnetic circuit assembly 4600 can further include one or more conductive elements that can connect the first magnetic element 402, the first magnetically conductive element 404, the second magnetic element 408, and At least one of the fifth magnetic elements 416, such as the one or more conductive elements, may be disposed in the first recess and/or the second recess.
  • the magnetic circuit assembly 4600 can further add at least one magnetic element that can be coupled to the first full magnetic field changing element 406.
  • the magnetic circuit assembly 4600 can further include a magnetic shield that includes a first magnetic element 402, a first magnetically conductive element 404, a first full magnetic field changing element 406, and a second magnetic element 408. And a fifth magnetic element 416.
  • FIG. 4G is a schematic longitudinal cross-sectional view of a magnetic circuit assembly 4900, shown in accordance with some embodiments of the present application.
  • the magnetic circuit assembly 4900 can include a first magnetic element 402, a first magnetically conductive element 404, a first full magnetic field changing element 406, a second magnetic element 408, a third magnetic element 410, a fourth magnetic element 412, and a fifth magnetic element 416. a sixth magnetic element 418, a seventh magnetic element 420, and a second annular element 422.
  • First magnetic element 402 First magnetic element 402, first magnetic conductive element 404, first full magnetic field changing element 406, second magnetic element 408, third magnetic element 410, third magnetic element 410, fourth magnetic element 412, and fifth magnetic element 416
  • first full magnetic field changing element 406 and/or the second annular element 422 can comprise an annular magnetic element or a toroidal magnetically conductive element.
  • the annular magnetic element may comprise any one or more of the magnet materials described herein, and the annular magnetically conductive element may comprise any one or more of the magnetically permeable materials described herein.
  • the sixth magnetic element 418 can connect the fifth magnetic element 416 and the second annular element 422, and the seventh magnetic element 420 can connect the third magnetic element 410 and the second annular element 422.
  • the first magnetic element 402, the fifth magnetic element 416, the second magnetic element 408, the third magnetic element 410, the fourth magnetic element 412, the sixth magnetic element 418, and/or the seventh magnetic element 420 are The first magnetically permeable element 404, the first full magnetic field changing element 406, and the second annular element 422 may form a magnetic circuit.
  • the magnetization direction of the second magnetic element 408 can be referred to the detailed description in FIG. 4A of the present application, and the magnetization directions of the third magnetic element 410, the fourth magnetic element 412, and the fifth magnetic element 416 can be referred to FIG. 4B, 4C, and 4F, respectively, of the present application. Detailed description.
  • the angle between the magnetization direction of the first magnetic element 402 and the magnetization direction of the sixth magnetic element 418 may be between 0 and 180 degrees. In some embodiments, the angle between the magnetization direction of the first magnetic element 402 and the magnetization direction of the sixth magnetic element 418 is between 45 and 135 degrees. In some embodiments, the angle between the magnetization direction of the first magnetic element 402 and the magnetization direction of the sixth magnetic element 418 is no more than 90 degrees. In some embodiments, the magnetization direction of the first magnetic element 402 is perpendicular to the lower or upper surface of the first magnetic element 402 vertically upward (as shown in the direction of direction a), and the magnetization direction of the sixth magnetic element 418 is sixth.
  • the outer ring of magnetic element 418 is directed toward the inner ring (shown in the direction of f, as shown in the direction of f, on the right side of first magnetic element 402, the magnetization direction of first magnetic element 402 is deflected 270 degrees in a clockwise direction).
  • the magnetization direction of the sixth magnetic element 418 and the magnetization direction of the second magnetic element 408 may be the same in the same vertical direction.
  • the magnetization direction of the first magnetic element 402 is perpendicular to the lower or upper surface of the first magnetic element 402 vertically upward (as shown in the direction of a), and the magnetization direction of the seventh magnetic element 420 is seventh.
  • the lower surface of the magnetic member 420 is directed to the upper surface (as shown in the e-direction, as shown in the e-direction, the magnetization direction of the first magnetic member 402 is deflected 360 degrees in the clockwise direction).
  • the magnetization direction of the seventh magnetic element 420 and the magnetization direction of the third magnetic element 412 may be the same.
  • the angle between the direction of the magnetic field generated by the magnetic circuit assembly 4900 and the magnetization direction of the sixth magnetic element 418 is no more than 90 degrees. In some embodiments, at the location of the sixth magnetic element 418, the angle between the direction of the magnetic field generated by the first magnetic element 402 and the magnetization direction of the sixth magnetic element 418 can be 0 degrees, 10 degrees, 20 degrees. Equal angle less than or equal to 90 degrees.
  • the angle between the magnetization direction of the first magnetic element 402 and the magnetization direction of the seventh magnetic element 420 may be between 0 and 180 degrees. In some embodiments, the angle between the magnetization direction of the first magnetic element 402 and the magnetization direction of the seventh magnetic element 420 is between 45 and 135 degrees. In some embodiments, the angle between the magnetization direction of the first magnetic element 402 and the magnetization direction of the seventh magnetic element 420 is no more than 90 degrees.
  • the angle between the direction of the magnetic field generated by the magnetic circuit assembly 4900 and the magnetization direction of the seventh magnetic element 420 is no more than 90 degrees. In some embodiments, at the position of the seventh magnetic element 420, the angle between the direction of the magnetic field generated by the first magnetic element 402 and the magnetization direction of the seventh magnetic element 420 may be 0 degrees, 10 degrees, 20 degrees. Equal angle less than or equal to 90 degrees.
  • the first full magnetic field changing element 406 can be an annular magnetic element.
  • the magnetization direction of the first full magnetic field changing element 406 may be the same as the magnetization direction of the second magnetic element 408 or the fourth magnetic element 412.
  • the magnetization direction of the first full magnetic field changing element 406 can be directed by the outer ring of the first full magnetic field changing element 406 toward the inner ring.
  • the second annular element 422 can be an annular magnetic element.
  • the magnetization direction of the second ring member 422 may be the same as the magnetization direction of the sixth magnetic member 418 or the seventh magnetic member 420.
  • the direction of magnetization of the second annular element 422 can be directed by the outer ring of the second annular element 422 toward the inner ring.
  • a plurality of magnetic elements can increase the total magnetic flux, and different magnetic elements interact to suppress magnetic line leakage, improve magnetic induction at the magnetic gap, and improve the sensitivity of the bone conduction speaker.
  • the magnetic circuit assembly 4900 can further include one or more conductive elements that can connect the first magnetic element 402, the first magnetically conductive element 404, the second magnetic element 408, At least one of the three magnetic elements 410, the fourth magnetic element 412, the fifth magnetic element 416, the sixth magnetic element 418, and the seventh magnetic element 420.
  • FIG. 4H is a schematic longitudinal cross-sectional view of a magnetic circuit assembly 41000, shown in accordance with some embodiments of the present application. As shown in FIG. 4H, unlike the magnetic circuit assembly 4900, the magnetic circuit assembly 41000 can further include a magnetic shield 414.
  • the magnetic shield 414 can include any one or more of the magnetically permeable materials described herein, such as low carbon steel, silicon steel sheets, silicon steel sheets, ferrites, and the like.
  • the magnetic shield 414 can be coupled to the first magnetic element 402, the first full magnetic field changing element 406, the second magnetic element 408, the third magnetic element 410, and the fourth magnetic element by any one or more of the connections described in this application. 412.
  • the method of processing the magnetic shield 414 can include any of the processing methods described herein, such as one or more combinations of casting, plastic working, cutting, powder metallurgy, and the like.
  • the magnetic shield can include at least one bottom plate and side walls, the side walls being annular structures.
  • the bottom plate and the side walls may be integrally formed.
  • the bottom plate can be joined to the side wall by any one or more of the connections described in this application.
  • the magnetic shield 414 may include a first bottom plate, a second bottom plate, and a side wall, the first bottom plate and the side wall may be integrally formed, and the second bottom plate may pass any one or several of the ones described in the present application.
  • a connection means connects the side walls.
  • the magnetic shield 414 can close the magnetic circuit generated by the magnetic circuit assembly 41000, so that more magnetic sensing lines are concentrated in the magnetic gap in the magnetic circuit assembly 41000, thereby suppressing magnetic leakage and increasing The magnetic induction at the magnetic gap and the sensitivity of the bone conduction speaker.
  • the magnetic circuit assembly 41000 can further include one or more conductive elements that can connect the first magnetic element 402, the first magnetically conductive element 404, the second magnetic element 408, and the third magnetic element 410. At least one of the fourth magnetic element 412, the fifth magnetic element 416, the sixth magnetic element 418, and the seventh magnetic element 420.
  • magnetic circuit assembly 41100 is a schematic longitudinal cross-sectional view of a magnetic circuit assembly 41100, in accordance with some embodiments of the present application. As shown in FIG. 4M, unlike magnetic circuit assembly 4100, magnetic circuit assembly 41100 can further include one or more conductive elements (eg, first conductive element 424, second conductive element 426, and third conductive element 428).
  • conductive elements eg, first conductive element 424, second conductive element 426, and third conductive element 428.
  • conductive elements The description of the conductive elements is similar to conductive elements 318, conductive elements 320 and conductive elements 322, the relevant description of which is not repeated here.
  • the description of the structure of the magnetic circuit assembly 41100 is merely a specific example and should not be considered as the only feasible implementation. Obviously, for those skilled in the art, after understanding the basic principles of the magnetic circuit assembly, it is possible to carry out the form and details of the specific manner and steps of implementing the magnetic circuit assembly 41100 without departing from this principle. Various modifications and changes, but such modifications and changes are still within the scope of the above description.
  • the magnetic circuit assembly 41100 can further include at least one magnetic element and/or magnetically permeable element.
  • FIG. 5A is a schematic longitudinal cross-sectional view of a magnetic circuit assembly 5100, in accordance with some embodiments of the present application.
  • the magnetic circuit assembly 5100 can include a first magnetic element 502, a first magnetically conductive element 504, a second magnetically conductive element 506, and a second magnetic element 508.
  • first magnetic element 502 and/or second magnetic element 508 can include any one or more of the magnets described herein.
  • the first magnetic element 502 can include a first magnet and the second magnetic element 508 can include a second magnet, which can be the same or different than the second magnet.
  • the first magnetically permeable element 504 and/or the second magnetically permeable element 506 can comprise any one or more of the magnetically permeable materials described herein.
  • the method of processing the first magnetically permeable element 504 and/or the second magnetically permeable element 506 can include any one or more of the processing methods described herein.
  • the first magnetic element 502, the first magnetically conductive element 504, and/or the second magnetic element 508 can be configured as an axisymmetric structure.
  • the first magnetic element 502, the first magnetically conductive element 504, and/or the second magnetic element 508 can be a cylinder.
  • the first magnetic element 502, the first magnetically conductive element 504, and/or the second magnetic element 508 can be coaxial cylinders that contain the same or different diameters.
  • the thickness of the first magnetic element 502 can be greater than or equal to the thickness of the second magnetic element 508.
  • the second magnetically permeable element 506 can be a grooved structure.
  • the groove-type structure may comprise a U-shaped profile (as shown in Figure 5A).
  • the groove-shaped second magnetically conductive element 506 may include a bottom plate and a side wall.
  • the bottom plate and the side walls may be integrally formed, for example, the side walls may be formed by the bottom plate extending in a direction perpendicular to the bottom plate.
  • the bottom plate can be joined to the side wall by any one or more of the connections described in this application.
  • the second magnetic member 508 can be set in a ring shape or a sheet shape. Regarding the shape of the second magnetic member 508, reference may be made to other places in the specification (for example, FIGS. 6A and 6B and their related descriptions).
  • the second magnetic element 508 can be coaxial with the first magnetic element 502 and/or the first magnetically conductive element 504.
  • the upper surface of the first magnetic element 502 may be coupled to the lower surface of the first magnetically conductive element 504.
  • the lower surface of the first magnetic element 502 can be coupled to the bottom plate of the second magnetically conductive element 506.
  • the lower surface of the second magnetic element 508 is coupled to the upper surface of the first magnetically conductive element 504.
  • the connection between the first magnetic element 502, the first magnetic conductive element 504, the second magnetic conductive element 506 and/or the second magnetic element 508 may include bonding, snapping, soldering, riveting, bolting, and the like. Or a variety of combinations.
  • a magnetic gap is formed between the first magnetic element 502, the first magnetic conductive element 504, and/or the second magnetic element 508 and the sidewall of the second magnetic conductive element 506.
  • a voice coil 520 can be disposed in the magnetic gap.
  • the first magnetic element 502, the first magnetically conductive element 504, the second magnetically conductive element 506, and the second magnetic element 508 can form a magnetic circuit.
  • the magnetic circuit assembly 5100 can generate a first full magnetic field and the first magnetic element 502 can generate a second magnetic field. The first full magnetic field is generated by all of the components in the magnetic circuit assembly 5100 (eg, the first magnetic element 502, the first magnetically conductive element 504, the second magnetically conductive element 506, and the second magnetic element 508) Formed together.
  • the magnetic field strength (which may also be referred to as magnetic induction or magnetic flux density) of the first full magnetic field within the magnetic gap is greater than the magnetic field strength of the second magnetic field within the magnetic gap.
  • the second magnetic element 508 can generate a third magnetic field that can increase the magnetic field strength of the second magnetic field at the magnetic gap.
  • the angle between the magnetization direction of the second magnetic element 508 and the magnetization direction of the first magnetic element 502 is between 90 and 180 degrees. In some embodiments, the angle between the magnetization direction of the second magnetic element 508 and the magnetization direction of the first magnetic element 502 is between 150 and 180 degrees. In some embodiments, the magnetization direction of the second magnetic element 508 is opposite to the magnetization direction of the first magnetic element 502 (as shown, the a direction and the b direction).
  • the magnetic circuit assembly 5100 adds a second magnetic element 508 as compared to a magnetic circuit assembly of a single magnetic element.
  • the magnetization direction of the second magnetic element 508 is opposite to the magnetization direction of the first magnetic element 502, and the magnetic flux leakage of the first magnetic element 502 in the magnetization direction can be suppressed, so that the magnetic field generated by the first magnetic element 502 can be more compressed to the magnetic field. In the gap, thus increasing the magnetic induction in the magnetic gap.
  • the second magnetically permeable element 506 can be a ring structure or a sheet structure.
  • the magnetic circuit assembly 5100 can further include a conductive element that can connect the first magnetic element 502, the first magnetic conductive element 504, the second magnetic conductive element 506, and the second magnetic element 508.
  • FIG. 5B is a schematic longitudinal cross-sectional view of a magnetic circuit assembly 5200, in accordance with some embodiments of the present application. As shown in FIG. 5B, unlike the magnetic circuit assembly 5100, the magnetic circuit assembly 5200 can further include a third magnetic element 510.
  • the lower surface of the third magnetic element 510 is coupled to the sidewall of the second magnetically conductive element 506.
  • a magnetic gap may be formed between the first magnetic element 502, the first magnetically conductive element 504, the second magnetic element 508, and/or the third magnetic element 510.
  • a voice coil 520 can be disposed in the magnetic gap.
  • the first magnetic element 502, the first magnetically conductive element 504, the second magnetically conductive element 506, the second magnetic element 508, and the third magnetic element 510 can form a magnetic circuit.
  • the magnetization direction of the second magnetic element 508 can be referred to the detailed description of FIG. 3A of the present application.
  • the magnetic circuit assembly 5200 can generate a first full magnetic field, and the first magnetic element 502 can generate a second magnetic field, the first full magnetic field having a magnetic field strength within the magnetic gap greater than the second magnetic field The strength of the magnetic field within the magnetic gap.
  • the third magnetic element 510 can generate a third magnetic field that can increase the magnetic field strength of the second magnetic field at the magnetic gap.
  • the angle between the magnetization direction of the first magnetic element 502 and the magnetization direction of the third magnetic element 510 is between 0 and 180 degrees. In some embodiments, the angle between the magnetization direction of the first magnetic element 502 and the magnetization direction of the third magnetic element 510 is between 45 and 135 degrees. In some embodiments, the angle between the magnetization direction of the first magnetic element 502 and the magnetization direction of the third magnetic element 510 is equal to or greater than 90 degrees.
  • the magnetization direction of the first magnetic element 502 is perpendicular to the lower surface or the upper surface of the first magnetic element 502 vertically upward (as indicated by a in the figure), and the magnetization direction of the third magnetic element 510 is determined by The inner ring of the three magnetic elements 510 is directed toward the outer ring (as indicated by c in the figure, on the right side of the first magnetic element 502, the magnetization direction of the first magnetic element 502 is deflected 90 degrees in the clockwise direction).
  • the angle between the direction of the first full magnetic field and the magnetization direction of the third magnetic element 510 is no more than 90 degrees. In some embodiments, at the location of the third magnetic element 510, the angle between the direction of the magnetic field generated by the first magnetic element 502 and the magnetization direction of the third magnetic element 510 can be 0 degrees, 10 degrees, 20 degrees. Equal angle less than or equal to 90 degrees.
  • the magnetic circuit assembly 5200 further adds the third magnetic element 510 as compared to the magnetic circuit assembly 5100.
  • the third magnetic element 510 can further increase the total magnetic flux within the magnetic gap in the magnetic circuit assembly 5200, thereby increasing the magnetic induction in the magnetic gap.
  • the magnetic line of inductance will further converge toward the position of the magnetic gap, further increasing the magnetic induction intensity in the magnetic gap.
  • FIG. 5C is a schematic longitudinal cross-sectional view of a magnetic circuit assembly 5300, shown in accordance with some embodiments of the present application. As shown in FIG. 5C, unlike the magnetic circuit assembly 5100, the magnetic circuit assembly 5300 can further include a fourth magnetic element 512.
  • the fourth magnetic element 512 can connect the sidewalls of the first magnetic element 502 and the second magnetically conductive element 506 by one or more combinations of bonding, snapping, soldering, riveting, bolting, and the like.
  • the first magnetic element 502, the first magnetically conductive element 504, the second magnetically conductive element 506, the second magnetic element 508, and the fourth magnetic element 512 can form a magnetic gap.
  • the magnetization direction of the second magnetic element 508 can be referred to the detailed description of FIG. 5A of the present application.
  • the magnetic circuit assembly 5200 can generate a first full magnetic field, and the first magnetic element 502 can generate a second magnetic field, the first full magnetic field having a magnetic field strength within the magnetic gap greater than the second magnetic field The strength of the magnetic field within the magnetic gap.
  • the fourth magnetic element 512 can generate a fourth magnetic field that can increase the magnetic field strength of the second magnetic field at the magnetic gap.
  • the angle between the magnetization direction of the first magnetic element 502 and the magnetization direction of the fourth magnetic element 512 is between 0 and 180 degrees. In some embodiments, the angle between the magnetization direction of the first magnetic element 502 and the magnetization direction of the fourth magnetic element 512 is between 45 and 135 degrees. In some embodiments, the angle between the magnetization direction of the first magnetic element 502 and the magnetization direction of the fourth magnetic element 512 is no more than 90 degrees. In some embodiments, the magnetization direction of the first magnetic element 502 is perpendicular to the lower or upper surface of the first magnetic element 502 vertically upward (as shown in the direction of direction a), and the magnetization direction of the fourth magnetic element 512 is fourth.
  • the outer ring of the magnetic element 512 is directed toward the inner ring (shown in the direction of the e, as shown in the e-direction, the magnetization direction of the first magnetic element 502 is deflected by 270 degrees in the clockwise direction).
  • the angle between the direction of the first full magnetic field and the magnetization direction of the fourth magnetic element 512 is no more than 90 degrees. In some embodiments, at the position of the fourth magnetic element 512, the angle between the direction of the magnetic field generated by the first magnetic element 502 and the magnetization direction of the fourth magnetic element 512 may be 0 degrees, 10 degrees, 20 degrees, etc. An angle less than or equal to 90 degrees.
  • the magnetic circuit assembly 5300 further adds a fourth magnetic element 512 as compared to the magnetic circuit assembly 5200.
  • the fourth magnetic element 512 can further increase the total magnetic flux within the magnetic gap in the magnetic circuit assembly 5300, thereby increasing the magnetic induction in the magnetic gap.
  • the magnetic line of inductance will further converge toward the position of the magnetic gap, further increasing the magnetic induction intensity in the magnetic gap.
  • FIG. 5D is a schematic longitudinal cross-sectional view of a magnetic circuit assembly 5400, in accordance with some embodiments of the present application. As shown in FIG. 5D, unlike the magnetic circuit assembly 5200, the magnetic circuit assembly 5400 can further include a fifth magnetic element 514.
  • the lower surface of the third magnetic element 510 is coupled to the fifth magnetic element 514, and the lower surface of the fifth magnetic element 514 is coupled to the sidewall of the second magnetically conductive element 506.
  • a magnetic gap may be formed between the first magnetic element 502, the first magnetically conductive element 504, the second magnetic element 508, and/or the third magnetic element 510.
  • a voice coil 520 can be disposed in the magnetic gap.
  • the first magnetic element 502, the first magnetically conductive element 504, the second magnetically conductive element 506, the second magnetic element 508, the third magnetic element 510, and the fifth magnetic element 514 can form a magnetic circuit.
  • the magnetization direction of the second magnetic element 508 and the third magnetic element 510 can be referenced to the detailed description of FIGS. 5A and 5B of the present application.
  • the magnetic circuit assembly 5400 can generate a first full magnetic field, and the first magnetic element 502 can generate a second magnetic field, the first full magnetic field having a magnetic field strength within the magnetic gap greater than the second magnetic field The strength of the magnetic field within the magnetic gap.
  • the fifth magnetic element 514 can generate a fifth magnetic field that can increase the magnetic field strength of the second magnetic field at the magnetic gap.
  • the angle between the magnetization direction of the first magnetic element 502 and the magnetization direction of the fifth magnetic element 514 is between 0 and 180 degrees. In some embodiments, the angle between the magnetization direction of the first magnetic element 502 and the magnetization direction of the fifth magnetic element 514 is between 45 and 135 degrees. In some embodiments, the angle between the magnetization direction of the first magnetic element 502 and the magnetization direction of the fifth magnetic element 514 is equal to or greater than 90 degrees.
  • the angle between the direction of the first full magnetic field and the magnetization direction of the fifth magnetic element 514 is no more than 90 degrees. In some embodiments, at the location of the fifth magnetic element 514, the angle between the direction of the magnetic field generated by the first magnetic element 502 and the magnetization direction of the fifth magnetic element 514 can be 0 degrees, 10 degrees, 20 degrees. Equal angle less than or equal to 90 degrees. In some embodiments, the magnetization direction of the first magnetic element 502 is perpendicular to the lower or upper surface of the first magnetic element 502 vertically upward (as shown in the direction of direction a), and the magnetization direction of the fifth magnetic element 514 is fifth.
  • the upper surface of the magnetic element 514 is directed to the lower surface (shown in the direction of d, as shown in the direction of d, on the right side of the first magnetic element 502, the magnetization direction of the first magnetic element 502 is deflected 180 degrees in the clockwise direction).
  • the magnetic circuit assembly 5400 further adds a fifth magnetic element 514 as compared to the magnetic circuit assembly 5200.
  • the fifth magnetic element 514 can further increase the total magnetic flux within the magnetic gap in the magnetic circuit assembly 5400, thereby increasing the magnetic induction in the magnetic gap.
  • the magnetic line of inductance will further converge toward the position of the magnetic gap, further increasing the magnetic induction intensity in the magnetic gap.
  • FIG. 5E is a schematic longitudinal cross-sectional view of a magnetic circuit assembly 5500, shown in accordance with some embodiments of the present application. As shown in FIG. 5E, unlike the magnetic circuit assembly 5300, the magnetic circuit assembly 5500 can further include a sixth magnetic element 516.
  • the sixth magnetic element 516 can connect the second magnetic element 508 and the sidewall of the second magnetically conductive element 506 by one or more combinations of bonding, snapping, soldering, riveting, bolting, and the like.
  • the first magnetic element 502, the first magnetically conductive element 504, the second magnetically conductive element 506, the second magnetic element 508, the fourth magnetic element 512, and the sixth magnetic element 516 can form a magnetic gap.
  • the magnetization directions of the second magnetic element 508 and the fourth magnetic element 512 can be referred to the detailed description of FIGS. 5A and 5C of the present application.
  • the magnetic circuit assembly 5500 can generate a first full magnetic field, and the first magnetic element 502 can generate a second magnetic field, the first full magnetic field having a magnetic field strength within the magnetic gap greater than the second magnetic field The strength of the magnetic field within the magnetic gap.
  • the sixth magnetic element 516 can generate a sixth magnetic field that can increase the magnetic field strength of the second magnetic field at the magnetic gap.
  • the angle between the magnetization direction of the first magnetic element 502 and the magnetization direction of the sixth magnetic element 516 is between 0 and 180 degrees. In some embodiments, the angle between the magnetization direction of the first magnetic element 502 and the magnetization direction of the sixth magnetic element 516 is between 45 and 135 degrees. In some embodiments, the angle between the magnetization direction of the first magnetic element 502 and the magnetization direction of the sixth magnetic element 516 is no more than 90 degrees. In some embodiments, the magnetization direction of the first magnetic element 502 is perpendicular to the lower or upper surface of the first magnetic element 502 vertically upward (as shown in the direction of direction a), and the magnetization direction of the sixth magnetic element 516 is sixth. The outer ring of the magnetic element 516 is directed toward the inner ring (shown in the direction of f, as shown in the direction of f, the magnetization direction of the first magnetic element 502 is deflected by 270 degrees in the clockwise direction).
  • the angle between the direction of the first full magnetic field and the magnetization direction of the sixth magnetic element 516 is no more than 90 degrees. In some embodiments, at the location of the sixth magnetic element 516, the angle between the direction of the magnetic field generated by the first magnetic element 502 and the magnetization direction of the sixth magnetic element 516 can be 90 degrees, 110 degrees, 120 degrees. Wait for an angle greater than 90 degrees.
  • the magnetic circuit assembly 5500 further adds the fourth magnetic element 512 and the sixth magnetic element 516 as compared to the magnetic circuit assembly 5100.
  • the fourth magnetic element 512 and the sixth magnetic element 516 can increase the total magnetic flux in the magnetic gap in the magnetic circuit assembly 5500, increase the magnetic induction at the magnetic gap, thereby improving the sensitivity of the bone conduction speaker.
  • FIG. 5F is a schematic longitudinal cross-sectional view of a magnetic circuit assembly 5600, in accordance with some embodiments of the present application. As shown in FIG. 5F, unlike the magnetic circuit assembly 5100, the magnetic circuit assembly 5600 can further include a third magnetically conductive element 518.
  • the third magnetically permeable element 518 can comprise any one or more of the magnetically permeable materials described herein.
  • the magnetically permeable materials included in the first magnetically permeable element 504, the second magnetically permeable element 506, and/or the third magnetically permeable element 518 may be the same or different.
  • the third magnetically permeable element 5186 can be configured in a symmetrical configuration.
  • the third magnetically permeable element 518 can be a cylinder.
  • the first magnetic element 502, the first magnetically conductive element 504, the second magnetic element 508, and/or the third magnetically permeable element 518 can be coaxial cylinders that contain the same or different diameters.
  • the third magnetically conductive element 518 can be coupled to the second magnetic element 508.
  • the third magnetically conductive element 518 can connect the second magnetic element 5084 and the second magnetically conductive element 506 such that the third magnetically conductive element 518 and the second magnetically conductive element 506 form a cavity, the cavity A first magnetic element 502, a second magnetic element 508, and a first magnetically conductive element 504 can be included.
  • the magnetic circuit assembly 5600 further adds a third magnetically conductive element 518 as compared to the magnetic circuit assembly 5100.
  • the third magnetically conductive element 518 can suppress magnetic flux leakage in the magnetization direction of the second magnetic element 508 in the magnetic circuit assembly 5600, so that the magnetic field generated by the second magnetic element 508 can be more compressed into the magnetic gap, thereby improving the magnetic Magnetic induction in the gap.
  • FIG. 6A is a cross-sectional schematic view of a magnetic element structure shown in accordance with some embodiments of the present application.
  • the magnetic element 600 can be adapted for use in any of the magnetic circuit assemblies of the present application (eg, the magnetic circuit assemblies illustrated in Figures 3A-3G, 4A-4M, or 5A-5F).
  • the magnetic element 600 can be annular.
  • Magnetic element 600 can include an inner ring 602 and an outer ring 604.
  • the shape of the inner ring 602 and/or outer ring 604 can be circular, elliptical, triangular, quadrilateral, or any other polygonal shape.
  • FIG. 6B is a schematic illustration of a magnetic element structure shown in accordance with some embodiments of the present application.
  • the magnetic element can be suitable for use in any of the magnetic circuit assemblies of the present application (e.g., the magnetic circuit assemblies shown in Figures 3A-3G, 4A-4M, or 5A-5F).
  • the magnetic element can be comprised of a plurality of magnet arrangements. Both ends of any one of the magnets may be connected to or at a certain distance from both ends of the adjacent magnets. The spacing between the plurality of magnets can be the same or different.
  • the magnetic element may be constructed of an equidistant arrangement of two or three sheet magnets (eg, magnets 608-2, 608-4, and 608-6).
  • the shape of the sheet-like magnet may be a sector shape, a quadrangle shape or the like.
  • the magnetic circuit assembly can include a first magnetic element 601, a second magnetic element 603, and a third magnetic element 605.
  • the magnetization direction of the first magnetic member 601 may be directed from the lower surface of the first magnetic member 601 to the upper surface (i.e., perpendicular to the direction in which the paper faces outward).
  • the second magnetic element 603 can be disposed around the first magnetic element 601.
  • a magnetic gap may be formed between the inner ring of the second magnetic element 503 and the inner ring of the first magnetic element 601.
  • the magnetization direction of the second magnetic element 603 may be directed from the inner ring of the second magnetic element 603 to the outer ring.
  • the inner ring of the third magnetic element 605 may be coupled to the outer ring of the first magnetic element 601, and the outer ring of the third magnetic element 605 may be coupled to the inner ring of the second magnetic element 603.
  • the magnetization direction of the third magnetic element 605 may be directed by the outer ring of the third magnetic element 603 toward the inner ring.
  • magnetic circuit assembly 600 (eg, the magnetic circuit assembly shown in FIGS. 3A-3G, 4A-4M, or FIGS. 5A-5F) can include a first magnetic element 602 and a second magnetic element 604.
  • the magnetization direction of the first magnetic element 602 may be that the lower surface of the first magnetic element 602 is directed to the upper surface (as indicated by arrow a).
  • the first magnetic element 602 can generate a second magnetic field, which can be represented by a magnetic induction line (the solid line in the figure indicates the distribution of the second magnetic field without the presence of the second magnetic element 604), the second The direction of the magnetic field at a certain point of the magnetic field is the tangential direction of the point on the magnetic induction line.
  • the magnetization direction of the second magnetic element 604 may be that the inner ring of the second magnetic element 604 is directed toward the outer ring (as indicated by arrow b).
  • the second magnetic element 604 can generate a third magnetic field.
  • the third magnetic field may also be represented by a magnetic induction line (the dotted line in the figure indicates the distribution of the third magnetic field in the absence of the first magnetic element 602), and the magnetic field direction at the point of the third magnetic field is the point The tangential direction on the third magnetic induction line.
  • the magnetic circuit assembly 600 can generate a first full magnetic field under the interaction of the second magnetic field and the third magnetic field.
  • the magnetic field strength of the first full magnetic field at the voice coil 606 is greater than the magnetic field strength of the second magnetic field or the third magnetic field at the voice coil 606.
  • the angle of the magnetic field at the voice coil 606 with the magnetization direction of the second magnetic element 604 of the second magnetic field is less than or equal to 90 degrees.
  • FIG. 7A is a schematic diagram of the structure of a magnetic circuit assembly 7000, according to some embodiments of the present application.
  • the magnetic circuit assembly 7000 can include a first magnetic element 702, a first magnetically conductive element 704, a first annular magnetic element 706, and a second annular magnetic element 708.
  • the first annular magnetic element 706 may also be referred to as a first full magnetic field changing element (such as the first full magnetic field changing element 406 described in Figure 4A).
  • the first magnetic element 702, the first magnetically conductive element 704, the first annular magnetic element 706, and the second annular magnetic element 708 can refer to Figures 4A, 4B, 4C, 4D, 4E, 4F, 4G, 4H, and/or 4M of the present application.
  • the first annular magnetic element 706 may be integrally formed of a magnetic material, or may be a combination of a plurality of magnetic elements.
  • the second annular magnetic element 708 may be integrally formed of a magnetic material, or may be a combination of a plurality of magnetic elements.
  • the second annular magnetic element 708 can connect the first magnetic element 702 and the first annular magnetic element 706.
  • the first annular magnetic element 706 is coupled to the upper surface of the second annular magnetic element 708, and the inner wall of the second annular magnetic element 708 is coupled to the outer wall of the first magnetic element 702.
  • the first magnetic element 702, the first magnetically conductive element 704, the first annular magnetic element 706, and the second annular magnetic element 708 can form a magnetic circuit and a magnetic gap.
  • a voice coil 720 can be placed in the magnetic gap.
  • the voice coil 720 can be circular or non-circular.
  • the non-circular shape may include an ellipse, a triangle, a quadrangle, a pentagon, other polygons, or other irregular shapes.
  • the voice coil 720 in the magnetic gap is vibrated by the ampere force under the magnetic field in the magnetic circuit, thereby converting the sound signal into a vibration signal, the vibration signal
  • Other components in the bone conduction earpiece e.g., the vibration component 104 shown in Fig. 1 are transmitted to the auditory nerve via human tissue and bone, thereby allowing the human to hear the sound.
  • the size of the ampere force of the voice coil can affect the vibration of the voice coil, further affecting the sensitivity of the bone conduction earphone.
  • the magnitude of the Ampere force applied to the voice coil is related to the magnetic induction in the magnetic gap. Further, the magnetic induction in the magnetic gap can be changed by adjusting the parameters of the magnetic circuit assembly.
  • the parameters of the magnetic circuit assembly 7000 may include the thickness H of the first magnetic element 702 (as shown in FIG. 7A, ie, the height H of the first magnetic element 702), the thickness w of the first annular magnetic element 706, and the second annular magnetic element.
  • the magnetic circuit (ie, magnetic circuit) radius R may refer to the average half width of the magnetic circuit, ie, equal to the central axis of the magnetic circuit assembly (shown in phantom in FIG. 7A) and the first The distance between the outer walls of the annular magnetic element 706.
  • the parameters of the magnetic circuit assembly 7000 can also include a ratio of the magnetic path radius R to the thickness H of the first magnetic element 702 (which can be expressed as R/H), the thickness w of the first annular magnetic element 706, and the magnetic The ratio of the path radius R (which can be expressed as w/R), the ratio of the height h of the second annular magnetic member 708 to the thickness H of the first magnetic member 702 (which can be expressed as h/H), and the like.
  • the ratio R/H of the magnetic path radius R to the thickness H of the first magnetic element 702 ranges from 2.0 to 4.0.
  • the ratio R/H of the magnetic path radius R to the thickness H of the first magnetic member 702 may be 2.0, 2.4, 2.8, 3.2, 3.6, 4.0.
  • the ratio h/H of the height h of the second annular magnetic member 708 to the thickness H of the first magnetic member 702 may be not more than 0.8, or not more than 0.6, or not more than 0.5 or the like.
  • the ratio h/H of the height h of the second annular magnetic element 708 to the thickness H of the first magnetic element 702 may be equal to 0.4.
  • the ratio w/R of the thickness w of the first annular magnetic member 706 to the radius R of the magnetic circuit may be in the range of 0.05-0.50, or 0.1-0.35, or 0.1-0.3, or 0.1-0.25, or 0.1-0.20.
  • the ratio w/R of the thickness w of the first annular magnetic element 706 to the magnetic path radius R may be in the range of 0.16-0.18.
  • the two parameters w/R and h/H can be optimized such that the ratio of the thickness H of the first magnetic element 702 to the radius R of the magnetic circuit is constant (ie, R/H is constant).
  • the magnetic induction at the magnetic gap and the voice coil are subjected to the maximum ampere force, that is, the driving force coefficient BL is the largest.
  • the driving force coefficient BL is the largest.
  • the magnetic induction at the magnetic gap and the ampere force received by the coil are maximized, that is, the driving force coefficient BL is the largest.
  • the driving force coefficient BL is the largest.
  • FIG. 7B is a plot of the driving force coefficient at voice coil 720 and the magnetic circuit assembly parameters shown in FIG. 7A, in accordance with some embodiments of the present application.
  • the driving force coefficient BL varies with the parameters w/R and h/H. Variety.
  • the ratio of the height h of the second annular magnetic element 708 to the thickness H of the first magnetic element 702 when the ratio w/R of the thickness w of the first annular magnetic element 706 to the magnetic path radius R is constant. The larger h/H, the larger the driving force coefficient BL.
  • the height h of the second annular magnetic element 708 is larger, and the ratio of the height h of the second annular magnetic element 708 to the thickness H of the first magnetic element 702 is greater.
  • the distance between the second annular magnetic element 708 and the voice coil 720 becomes smaller, and the voice coil 720 easily collides with the second annular magnetic element 708 during vibration, resulting in breakage. , thus affecting the sound quality of the bone conduction headphones. As shown in FIG.
  • the ratio h/H of the height h of the second annular magnetic member 708 to the thickness H of the first magnetic member 702 may be not more than 0.8, or not more than 0.6, or not more than 0.5 or the like.
  • the ratio h/H of the height h of the second annular magnetic element 708 to the thickness H of the first magnetic element 702 may be equal to 0.4.
  • the driving force coefficient BL varies with the thickness w of the first annular magnetic element 706.
  • the increase in the ratio of the magnetic path radius R, w/R may first become larger and then become smaller.
  • the ratio w/R of the thickness w of the first annular magnetic element 706 corresponding to the maximum driving force coefficient BL to the magnetic path radius R is within a certain range.
  • the ratio h/H of the height h of the second annular magnetic member 708 to the thickness H of the first magnetic member 702 is 0.4, if the driving force coefficient BL is maximized, the thickness w and the magnetic path of the first annular magnetic member 706 are The ratio of the radius R, w/R, may be in the range of 0.08-0.25.
  • the ratio h/H of the height h of the second annular magnetic member 708 to the thickness H of the first magnetic member 702 is different, the maximum driving force coefficient BL corresponds to the thickness w and the magnetic path radius R of the different first annular magnetic members 706. The range of the w/R will change.
  • the thickness w and the magnetic path of the first annular magnetic member 706 are The ratio of the radius R, w/R, may be in the range of 0.04 - 0.20.
  • the range of values of the ratio w/R of the thickness w of the first annular magnetic element 706 to the magnetic path radius R under the maximum driving force coefficient BL reference may be made to FIGS. 7C-7E.
  • Figures 7C-7E are plots of drive force coefficients at voice coil 720 and magnetic circuit assembly parameters shown in Figure 7A, in accordance with some embodiments of the present application.
  • the driving force coefficient BL of the voice coil 720 in the magnetic circuit assembly 7000 varies with the parameters R/H, w/R, and h/H of the magnetic circuit assembly 7000.
  • FIG. 7C when the ratio R/H of the magnetic path radius R to the thickness H of the first magnetic member 702 is 2.0 and 2.4, if the driving force coefficient BL is maximized, the thickness w of the first annular magnetic member 706 and the magnetic path are shown.
  • the ratio of the radius R, w/R may be in the range of 0.05 to 0.20, or 0.05 to 0.15, or 0.05 to 0.25, or 0.1 to 0.25, or 0.1 to 0.18. As shown in FIG. 7D, when the ratio R/H of the magnetic path radius R to the thickness H of the first magnetic member 702 is 2.8 and 3.2, if the driving force coefficient BL is maximized, the thickness w of the first annular magnetic member 706 and the magnetic path are shown.
  • the ratio of the radius R, w/R may be in the range of 0.05-0.25, or 0.1-0.20, or 0.05-0.30, or 0.10-0.25. As shown in FIG.
  • the ratio of the radius R, w/R may be in the range of 0.05-0.20, or 0.10-0.15, or 0.05-0.25, or 0.10-0.20.
  • the thickness of the first annular magnetic member 706 is maximized if the driving force coefficient BL is maximized.
  • the ratio w/R of w to the magnetic path radius R may be in the range of 0.15-0.20, or 0.16-0.18.
  • FIG. 8A is a schematic diagram of the structure of a magnetic circuit assembly 8000, according to some embodiments of the present application.
  • the magnetic circuit assembly 8000 can include a first magnetic element 802, a first magnetically conductive element 804, a first annular magnetic element 806, a second annular magnetic element 808, and a magnetic shield 814.
  • the first annular magnetic element 806 may also be referred to as a first full magnetic field changing element (such as the first full magnetic field changing element 406 described in Figure 4A).
  • the first magnetic element 802, the first magnetic conductive element 804, the first annular magnetic element 806, the second annular magnetic element 808, and the magnetic shield 804 can refer to FIGS.
  • the first annular magnetic element 806 may be integrally formed of a magnetic material, or may be a combination of a plurality of magnetic elements.
  • the second annular magnetic element 808 may be integrally formed of a magnetic material, or may be a combination of a plurality of magnetic elements.
  • the magnetic shield 814 surrounds the first magnetic element 802, the first annular magnetic element 806, and the second annular magnetic element 808.
  • the magnetic shield 814 can include a bottom plate and side walls, the side walls being annular structures. In some embodiments, the bottom plate and the side walls may be integrally formed.
  • the first magnetic element 802, the first magnetically conductive element 804, the first annular magnetic element 806, and the second annular magnetic element 808 can form a magnetic circuit and a magnetic gap.
  • a voice coil 820 can be placed in the magnetic gap.
  • the voice coil 820 can be circular or non-circular.
  • the non-circular shape may include an ellipse, a triangle, a quadrangle, a pentagon, other polygons, or other irregular shapes.
  • the parameters of the magnetic circuit assembly 8000 may include the thickness H of the first magnetic element 802 (as shown in FIG. 8A, ie, the height H of the first magnetic element 802), the thickness w of the first annular magnetic element 806, and the second annular magnetic element.
  • the magnetic circuit (ie, magnetic circuit) radius R may be equal to the distance between the central axis of the magnetic circuit assembly 8000 (shown in phantom in FIG. 8A) and the outer wall of the first annular magnetic element 806. .
  • the parameters of the magnetic circuit assembly 8000 can also include a ratio of the magnetic path radius R to the thickness H of the first magnetic element 802 (which can be expressed as R/H), the thickness w of the first annular magnetic element 806, and the magnetic The ratio of the path radius R (which can be expressed as w/R), the ratio of the height h of the second annular magnetic element 808 to the thickness H of the first magnetic element 802 (which can be expressed as h/H), and the like.
  • the ratio R/H of the magnetic path radius R to the thickness H of the first magnetic element 802 ranges from 2.0 to 4.0.
  • the ratio R/H of the magnetic path radius R to the thickness H of the first magnetic member 802 may be 2.0, 2.4, 2.8, 3.2, 3.6, 4.0.
  • the ratio h/H of the height h of the second annular magnetic member 808 to the thickness H of the first magnetic member 802 may be not more than 0.8, or not more than 0.6, or not more than 0.5 or the like.
  • the ratio h/H of the height h of the second annular magnetic element 808 to the thickness H of the first magnetic element 702 may be equal to 0.4.
  • the ratio w/R of the thickness w of the first annular magnetic member 806 to the radius R of the magnetic circuit may be in the range of 0.02-0.50, or 0.05-0.35, or 0.05-0.25, or 0.1-0.25, or 0.1-0.20.
  • the ratio w/R of the thickness w of the first annular magnetic element 806 to the radius R of the magnetic circuit may range from 0.16 to 0.18.
  • the w/R and h/H parameters can be optimized such that the thickness H of the first magnetic element 802 and the magnetic path radius R are constant (ie, R/H is constant), such that the magnetic gap
  • the magnetic induction intensity at the place and the ampere force of the coil are the largest, that is, the driving force coefficient BL value is the largest.
  • the two parameters w/R and h/H can be adjusted in the case of changing R/H such that the magnetic induction at the magnetic gap and the ampere force received by the coil are maximized, that is, the driving force coefficient BL is the largest.
  • FIGS. 8C-8E Regarding the relationship between the parameters R/H, w/R, h/H and the driving force coefficient BL.
  • Figure 8B is a plot of the driving force coefficient at voice coil 820 and the magnetic circuit assembly parameters shown in Figure 8A, in accordance with some embodiments of the present application.
  • the driving force coefficient BL varies with the parameters w/R and h/H. Variety.
  • the ratio of the height h of the second annular magnetic element 808 to the thickness H of the first magnetic element 802 when the ratio w/R of the thickness w of the first annular magnetic element 806 to the magnetic path radius R is constant. The larger h/H, the larger the driving force coefficient BL.
  • the ratio h/H of the height h of the second annular magnetic member 808 to the thickness H of the first magnetic member 802 may be no greater than 0.8, or no greater than 0.6, or no greater than 0.5.
  • the ratio h/H of the height h of the second annular magnetic element 808 to the thickness H of the first magnetic element 802 may be equal to 0.4.
  • the driving force coefficient BL when the ratio h/H of the height h of the second annular magnetic element 808 to the thickness H of the first magnetic element 802 is constant, the driving force coefficient BL varies with the thickness w of the first annular magnetic element 806.
  • the ratio of the magnetic path radius R changes with a change in w/R. For example, when the ratio h/H of the height h of the second annular magnetic member 808 to the thickness H of the first magnetic member 802 is 0.4, the driving force coefficient BL follows the thickness w of the first annular magnetic member 806 and the magnetic path radius R.
  • the ratio w/R increases first and decreases.
  • the maximum driving force coefficient BL corresponds to the thickness w and the magnetic path radius R of the different first annular magnetic members 806.
  • the range of the w/R will change. For example, when the ratio h/H of the height h of the second annular magnetic member 808 to the thickness H of the first magnetic member 802 is 0.4, if the driving force coefficient BL is maximized, the thickness w and the magnetic path of the first annular magnetic member 806 are The ratio of the radius R, w/R, is in the range of 0.02 to 0.22.
  • the ratio w/H of the height h of the second annular magnetic member 808 to the thickness H of the first magnetic member 802 is 0.72, if the driving force coefficient BL is maximized, the thickness w of the first annular magnetic member 806 and the magnetic path radius R
  • the ratio w/R can be in the range of 0.02-0.16.
  • the driving force coefficient BL of the voice coil in the magnetic circuit assembly 8000 having the magnetic shield is greater than that in the absence.
  • the driving force coefficient BL in the magnetic circuit assembly 7000 of the magnetic shield that is, the ampere force that the voice coil receives in the magnetic circuit assembly 8000 is greater than the ampere force received in the magnetic circuit assembly 7000.
  • the driving force coefficient BL of the voice coil in the magnetic circuit assembly 8000 is 2.827, and the driving in the magnetic circuit assembly 7000 is performed.
  • the force coefficient BL is 2.376.
  • Figures 8C-8E are plots of drive force coefficients at voice coil 820 and magnetic circuit assembly parameters shown in Figure 8A, in accordance with some embodiments of the present application.
  • the driving force coefficient BL of the voice coil 820 in the magnetic circuit assembly 8000 varies with changes in the parameters R/H, w/R, and h/H of the magnetic circuit assembly 8000.
  • FIG. 8C when the ratio R/H of the magnetic path radius R to the thickness H of the first magnetic member 802 is 2.0 and 2.4, if the driving force coefficient BL is maximized, the thickness w of the first annular magnetic member 806 and the magnetic path are shown.
  • the ratio of the radius R, w/R may be in the range of 0.02 to 0.15, or 0.05 to 0.15, or 0.02 to 0.20. As shown in FIG. 8D, when the ratio R/H of the magnetic path radius R to the thickness H of the first magnetic member 802 is 2.8 and 3.2, if the driving force coefficient BL is maximized, the thickness w of the first annular magnetic member 806 and the magnetic circuit are shown.
  • the ratio of the radius R, w/R may be from 0.01 to 0.20, or from 0.05 to 0.15, or from 0.02 to 0.25, or from 0.10 to 0.15. As shown in FIG.
  • the ratio R/H of the magnetic path radius R to the thickness H of the first magnetic member 802 is 3.6 and 4.0, if the driving force coefficient BL is maximized, the thickness w of the first annular magnetic member 806 and the magnetic path are shown.
  • the ratio of the radius R, w/R may be in the range of 0.02-0.20, or 0.05-0.15, or 0.05-0.25, or 0.10-0.20.
  • the thickness of the first annular magnetic member 806 is maximized if the driving force coefficient BL is maximized.
  • the ratio w/R of w to the magnetic path radius R may be in the range of 0.05-0.20 or 0.16-0.18. Comparing FIGS. 7C and 8C, FIGS. 7D and 8D, and FIGS. 7E and 8E, respectively, when the ratio R/H of the magnetic path radius R to the thickness H of the first magnetic member 802 is the same, if the driving force coefficient BL is maximized, the magnetic permeability is provided.
  • the ratio w/R of the thickness w of the first annular magnetic element 806 in the magnetic assembly 8000 of the cover to the magnetic path radius R varies with respect to the magnetic component 7000.
  • the ratio R/H of the magnetic path radius R to the thickness H of the first magnetic member 802 (or 702) is 2.0, if the driving force coefficient BL is maximized, the first ring in the magnetic component 8000 having the magnetic shield
  • the ratio w/R of the thickness w of the magnetic member 806 to the radius R of the magnetic circuit is in the range of 0.02 to 0.15.
  • the ratio w/R of the thickness w of the first annular magnetic member 706 in the magnetic assembly 7000 without the magnetic shield 7000 to the magnetic path radius R is in the range of 0.05-0.25.
  • FIG. 9A is a schematic diagram of magnetic line distribution of a magnetic circuit assembly 900, according to some embodiments of the present application.
  • the magnetic circuit assembly 900 can include a first magnetic element 902, a first magnetically conductive element 904, a second magnetically conductive element 906, and a second magnetic element 914.
  • the first magnetic element 902, the first magnetic conductive element 904, the second magnetic conductive element 906, and the second magnetic element 914 can refer to the first magnetic element 302, the first magnetic conductive element 304, and the second magnetic conductive in FIG. 3D of the present application.
  • the magnetization direction of the first magnetic element 902 is opposite to the magnetization direction of the second magnetic element 914, and the magnetic line of inductance generated by the first magnetic element 902 interacts with the magnetic line of inductance generated by the second magnetic element 914 such that the first magnetic element 902
  • the generated magnetic line of interest and the magnetic line of inductance generated by the second magnetic element 914 may pass through the voice coil 928 more vertically, reducing the leakage of the magnetic line of the first magnetic element 902 in the direction of magnetization at the voice coil 928.
  • Figure 9B is a plot of magnetic induction at the voice coil shown in accordance with some embodiments of the present application as a function of component thickness in the magnetic circuit assembly 900 of Figure 9A.
  • the abscissa is the sum of the thickness (h3) of the first magnetic element 902 and the thickness of the first magnetic element 902 (h3), the thickness of the first magnetic element 904 (h2), and the thickness of the second magnetic element 914 (h5) ( The ratio of h2+h3+h5) is hereinafter referred to as the first thickness ratio.
  • the ordinate is the normalized magnetic induction at voice coil 928, which may be the ratio of the actual magnetic induction at voice coil 928 to the maximum magnetic inductive strength under the magnetic circuit formed by the single magnetic circuit assembly.
  • the single magnetic circuit assembly may mean that only one magnetic element is included in the magnetic circuit formed by the magnetic circuit assembly.
  • the single magnetic magnetic circuit assembly may include a first magnetic element, a first magnetic conductive element, and a second magnetic conductive element.
  • the volume of the magnetic element in the single magnetic circuit assembly and the magnetic element in the multi-magnetic circuit assembly corresponding to the single magnetic circuit assembly eg, the first magnetic element 902 and the second magnetic element 914 in the magnetic circuit assembly 900
  • the sum of the volumes is equal.
  • k is the ratio of the thickness (h2) of the first magnetic conductive element 904 to the sum of the thicknesses of the first magnetic element 902, the first magnetic conductive element 904, and the second magnetic element 914 (h2+h3+h5), hereinafter referred to as the second Thickness ratio (indicated by "k" in the figure).
  • the first thickness ratio gradually increases, the magnetic induction intensity at the voice coil 928 gradually increases, and gradually decreases after reaching a certain value, that is, the magnetic induction intensity at the voice coil 928 has a maximum value.
  • the first thickness ratio corresponding to the maximum value ranges between 0.4 and 0.6.
  • the second thickness ratio corresponding to the maximum value ranges between 0.26 and 0.34.
  • FIG. 10A is a schematic diagram of magnetic line distribution of a magnetic group 1000, according to some embodiments of the present application.
  • the magnetic circuit assembly 1000 can include a first magnetic element 1002, a first magnetically permeable element 1004, a second magnetically permeable element 1006, a second magnetic element 1014, and a third magnetically permeable element 1016.
  • the first magnetic element 1002, the first magnetic conductive element 1004, the second magnetic conductive element 1006, the second magnetic element 1014, and the third magnetic conductive element 1016 can refer to the first magnetic element 302 and the first magnetic conductive in FIG. 3E of the present application.
  • the third magnetically conductive element 1016 is not connected to the second magnetic conductive element 1006.
  • the magnetization direction of the first magnetic element 1002 is opposite to the magnetization direction of the second magnetic element 1014, and the magnetic line of inductance generated by the first magnetic element 1002 interacts with the magnetic line of inductance generated by the second magnetic element 1014 such that the first magnetic element 1002
  • the generated magnetic line of interest and the magnetic line of inductance generated by the second magnetic element 1014 can pass through the voice coil 1028 more vertically, reducing the leakage of the magnetic line of the first magnetic element 1002 at the voice coil 1028.
  • the third magnetically permeable plate 1016 further reduces the leakage magnetic line of the first magnetic element 1002 at the voice coil 1028.
  • Figure 10B is a plot of magnetic induction at the voice coil as shown in some embodiments of the present application as a function of component thickness in a magnetic circuit assembly.
  • the curve a corresponds to the magnetic circuit assembly 900 shown in FIG. 9A
  • the curve b corresponds to the magnetic circuit assembly 1000 shown in FIG. 10A.
  • the abscissa is the first thickness ratio
  • the ordinate is the normalized magnetic induction at the voice coil 928 or 1028.
  • the first thickness ratio and the normalized magnetic induction can be referred to the detailed description in FIG. 9B of the present application.
  • the curve a is a relationship between the magnetic induction intensity of the voice coil 928 in the magnetic circuit assembly 900 and the first thickness ratio
  • the curve b is a relationship between the magnetic induction intensity of the voice coil 1028 in the magnetic circuit assembly 1000 and the first thickness ratio.
  • the magnetic circuit assembly 1000 of the third magnetically permeable element 1016 is provided, and the magnetic induction intensity at the voice coil 1028 is significantly stronger than that of the voice coil 928 in the case where the first thickness ratio is in the range of 0-0.55.
  • the magnetic induction intensity (such as the magnetic induction intensity corresponding to curve b is higher than the magnetic induction intensity corresponding to curve a).
  • the magnetic induction at the voice coil 1028 is significantly lower than the magnetic induction at the voice coil 928 (as the magnetic induction corresponding to the curve b is lower than the magnetic induction corresponding to the curve a) strength).
  • FIG. 11A is a schematic diagram of magnetic line distribution of a magnetic circuit assembly 1100, in accordance with some embodiments of the present application.
  • the magnetic circuit assembly 1100 can include a first magnetic element 1102, a first magnetically permeable element 1104, a second magnetically permeable element 1106, a second magnetic element 1114, and a third magnetically permeable element 1116.
  • the first magnetic element 1102, the first magnetic conductive element 1104, the second magnetic conductive element 1106, the second magnetic element 1114, and the third magnetic conductive element 1116 may refer to the first magnetic element 302, the first magnetic conductive in FIG. 3E of the present application.
  • the third magnetically conductive element 1116 is coupled to the second magnetically conductive element 1106.
  • the magnetization direction of the first magnetic element 1102 is opposite to the magnetization direction of the second magnetic element 1114.
  • the magnetic field of the first magnetic element 1102 and the magnetic field of the second magnetic element 1114 repel each other at the interface of the first magnetic element 1102 and the second magnetic element 1114 such that the originally diverging magnetic field (eg, produced only by the first magnetic element 1102)
  • the magnetic field or the magnetic field generated only by the second magnetic element 1114 can pass through the voice coil 1128 under the action of mutually repulsive magnetic fields, thereby increasing the strength of the magnetic field at the voice coil 1128.
  • the third magnetic conductive plate 1116 is connected to the second magnetic conductive element 1106 such that the magnetic fields of the second magnetic element 1114 and the first magnetic element 1102 are bound in the magnetic circuit formed by the second magnetic conductive element 1106 and the third magnetic conductive element 1116. Further increases the magnetic induction at the voice coil 1128.
  • Figure 11B is a graph showing magnetic induction versus magnetic component thickness in a magnetic circuit assembly, in accordance with some embodiments of the present application.
  • the curve a corresponds to the magnetic circuit assembly 900 shown in FIG. 9A
  • the curve b corresponds to the magnetic circuit assembly 1000 shown in FIG. 10A
  • the curve c corresponds to the magnetic circuit assembly 1100 shown in FIG. 11A.
  • the abscissa is the sum of the thickness (h3) of the first magnetic element (902, 1002, 1102), the thickness of the first magnetic element (902, 1002, 1102) and the second magnetic element (914, 1014, 1114) (h3+)
  • the ratio of h5) is hereinafter referred to as the third thickness ratio.
  • the ordinate is the normalized magnetic induction at the voice coil (928, 1028, 1128), and the normalized magnetic induction can be referred to the detailed description in Fig. 9B of the present application.
  • the curve a is a relationship between the magnetic induction intensity of the voice coil 928 in the magnetic circuit assembly 900 and the first thickness ratio
  • the curve b is a relationship between the magnetic induction intensity of the voice coil 1028 in the magnetic circuit assembly 1000 and the first thickness ratio
  • Curve c is a plot of the relationship between the magnetic induction of the voice coil 1128 in the magnetic circuit assembly 1100 and the first thickness ratio. As shown in FIG.
  • the magnetic circuit assemblies 1000 and 1100 including the third magnetic conductive element correspond to the voice coil in the case where the first thickness ratio is less than 0.7 (for example, The magnetic induction intensity at the voice coil 1028 and the voice coil 1128) is stronger than the magnetic induction intensity at the voice coil 928 in the magnetic circuit assembly 900 not including the third magnetically conductive element (for example, the magnetic induction intensity corresponding to the curve b and the curve c is higher than the curve a Magnetic induction)).
  • the magnetic induction at the voice coil 1128 is stronger than The magnetic induction at the voice coil 1028 (such as the magnetic induction intensity corresponding to the curve c is higher than the magnetic induction intensity corresponding to the curve b).
  • Figure 11C is a plot of magnetic induction at the voice coil shown in accordance with some embodiments of the present application as a function of component thickness in the magnetic circuit assembly 1100 of Figure 11A.
  • the abscissa is the second thickness ratio (indicated by "h2/(h2+h3+h5)"), the ordinate is the normalized magnetic induction at the voice coil 1128, and the second thickness ratio is normalized.
  • the magnetic induction intensity can be referred to the detailed description in Fig. 9B of the present application.
  • the second thickness ratio gradually increases, the magnetic induction at the voice coil 1128 gradually increases to a maximum value and then decreases.
  • the second thickness ratio corresponding to the maximum value of the magnetic induction is in the range of 0.3-0.6.
  • FIG. 12A is a block diagram of a magnetic circuit assembly 1200, shown in accordance with some embodiments of the present application.
  • the bone conduction speaker 1200 can include a first magnetic element 1202, a first magnetically permeable element 1204, a second magnetically permeable element 1206, and a first electrically conductive element 1208.
  • the first magnetic element 1202, the first magnetically permeable element 1204, the second magnetically permeable element 1206, and the first electrically conductive element 1208 can be referred to the relevant description in this application.
  • the first conductive element 1204 may protrude from the first magnetic element 1202 to form a first recess, and the first conductive element 1208 may be disposed in parallel with the first recess and connected to the first magnetic element 1202.
  • the first magnetic element 1202, the first magnetically conductive element 1204, and the second magnetically conductive element 1206 may form a magnetic gap.
  • a voice coil 1210 can be placed in the magnetic gap.
  • the cross-sectional shape of the voice coil 1210 can be circular or non-circular, such as elliptical, rectangular, square, pentagonal, other polygonal or other irregular shapes.
  • an alternating current may be introduced into the voice coil 1210, the direction of the alternating current being as shown, perpendicular to the paper facing.
  • the voice coil 1210 can generate an alternating induced magnetic field A under the action of the magnetic field in the magnetic circuit ( It may also be referred to as "first alternating induced magnetic field"), and the direction of the induced magnetic field A is counterclockwise (as indicated by A).
  • the alternating induced magnetic field A causes a reverse induced current to be generated within the voice coil 1210, thereby reducing the current in the voice coil 1210.
  • the first conductive element 1208 can generate an alternating induced current under the action of the alternating induced magnetic field A, and the alternating induced current can generate an alternating induced magnetic field B under the magnetic field in the magnetic circuit (also It can be called "second alternating induced magnetic field").
  • the direction of the induced magnetic field B is counterclockwise (as indicated by B). Since the induced magnetic field A is opposite to the direction of the induced magnetic field B, the reverse induced current in the voice coil 1210 is reduced, that is, the inductive reactance in the voice coil 1210 is reduced, and the current in the voice coil 1210 is increased.
  • the description of the structure of the magnetic circuit assembly 1200 is merely a specific example and should not be considered as the only possible implementation. Obviously, it will be apparent to those skilled in the art that after understanding the basic principles of the bone conduction speaker, it is possible to carry out the form and details of the specific manner and steps of implementing the magnetic circuit assembly 1200 without departing from this principle. Modifications and changes, but these modifications and changes are still within the scope of the above description.
  • the first conductive element 1208 can be disposed adjacent to the voice coil 1210, such as the inner, outer, upper, and/or lower surfaces of the voice coil 1210.
  • Figure 12B is a graph of the effect of conductive elements in the magnetic circuit assembly 1200 of Figure 12A on the inductive reactance in the voice coil, in accordance with some embodiments of the present application.
  • the curve a corresponds to the magnetic circuit assembly 1200 in which the first conductive element 1208 is not disposed
  • the curve b corresponds to the magnetic circuit assembly 1200 in which the first conductive element 1208 is disposed.
  • the abscissa is the alternating current frequency in the voice coil 1210
  • the ordinate is the inductive reactance in the voice coil 1210.
  • the inductive reactance in the voice coil 1210 increases as the alternating current frequency increases.
  • the voice coil is provided.
  • the inductive reactance is significantly lower than the inductive reactance in the voice coil when the first conductive element 1208 is not provided (as the inductive reactance corresponding to the curve b is lower than the inductive reactance corresponding to the curve a).
  • FIG. 13A is a schematic block diagram of a magnetic circuit assembly 1300 shown in accordance with some embodiments of the present application.
  • the magnetic circuit assembly 1300 can include a first magnetic element 1302, a first magnetically conductive element 1304, a second magnetically conductive element 1306, and a first electrically conductive element 1318.
  • the first magnetic element 1302, the first magnetically conductive element 1304, the second magnetically conductive element 1306, and the first electrically conductive element 1318 can be referred to the relevant description in this application.
  • the first conductive element 1318 can be coupled to the upper surface of the first magnetically conductive element 1304.
  • the shape of the first conductive element 1318 may be a sheet shape, a ring shape, a mesh shape, an orifice plate, or the like.
  • the first magnetic element 1302, the first magnetically conductive element 1304, and the second magnetically conductive element 1306 may form a magnetic gap.
  • a voice coil 1328 can be placed in the magnetic gap.
  • the cross-sectional shape of the voice coil 1328 can be circular or non-circular.
  • the non-circular shape may include an ellipse, a triangle, a quadrangle, a pentagon, other polygons, or other irregular shapes.
  • the first conductive element 1318 can be disposed adjacent the voice coil 1328, such as the inner, outer, upper, and/or lower surface of the voice coil 1328.
  • Figure 13B is a graph of the effect of a magnetically permeable element in the magnetic circuit assembly 1300 of Figure 13A on the inductive reactance in the voice coil, in accordance with some embodiments of the present application.
  • the curve a corresponds to the magnetic circuit assembly 1300 in which the first conductive element 1318 is not disposed
  • the curve b corresponds to the magnetic circuit assembly 1300 in which the first conductive element 1318 is disposed.
  • the abscissa is the alternating current frequency in the voice coil 1110
  • the ordinate is the inductive reactance in the voice coil 1110.
  • the inductive reactance in the voice coil 1110 increases as the alternating current frequency increases.
  • the voice coil 1110 is disposed.
  • the inductive reactance is significantly lower than the inductive reactance in the voice coil when the first conductive element 1318 is not provided (as the inductive reactance corresponding to the curve b is lower than the inductive reactance corresponding to the curve a).
  • FIG. 14A is a block diagram of a magnetic circuit assembly 1400, shown in accordance with some embodiments of the present application.
  • the magnetic circuit assembly 1400 can include a first magnetic element 1402, a first magnetically permeable element 1404, a second magnetically permeable element 1406, a first electrically conductive element 1418, a second electrically conductive element 1420, and a third electrically conductive element 1422.
  • the first magnetic element 1402, the first magnetically conductive element 1404, the second magnetically conductive element 1406, the first conductive element 1418, the second conductive element 1420, and the third conductive element 1422 can be referred to the relevant description of FIG. 3F of the present application.
  • the first magnetic element 1302, the first magnetically conductive element 1304, and the second magnetically conductive element 1306 may form a magnetic gap.
  • a voice coil 1428 can be placed in the magnetic gap.
  • the cross-sectional shape of the voice coil 1428 can be circular or non-circular.
  • the non-circular shape may include an ellipse, a triangle, a quadrangle, a pentagon, other polygons, or other irregular shapes.
  • the first conductive element 1418 can be disposed adjacent the voice coil 1428, such as the inner, outer, upper, and/or lower surface of the voice coil 1428.
  • Figure 14B is a graph of the effect of the number of conductive elements in the magnetic circuit assembly 1420 of Figure 14A on the inductive reactance in the voice coil, in accordance with some embodiments of the present application.
  • the curve m corresponds to a magnetic circuit assembly in which no conductive elements are disposed
  • the curve n corresponds to a magnetic circuit assembly in which one conductive element is disposed (such as the magnetic circuit assembly 1200 shown in FIG. 12A)
  • the curve 1 corresponds to a magnetic circuit assembly in which a plurality of conductive elements are disposed (eg, The magnetic circuit assembly 1400) shown in Figure 14A.
  • the abscissa is the alternating current frequency in the voice coil
  • the ordinate is the inductive reactance in the voice coil. As shown in FIG.
  • the inductive reactance in the voice coil increases as the frequency of the alternating current increases, and in the case where one or more conductive elements are disposed, the voice coil is provided.
  • the inductive reactance is significantly lower than the inductive reactance in the voice coil when the conductive element is not provided (as the inductive reactance corresponding to the curves n and l is lower than the inductive reactance corresponding to the curve m).
  • the inductive reactance in the voice coil is significantly lower than the inductive reactance in the voice coil when the one conductive element is disposed (as the inductive reactance corresponding to the curve l is lower than the inductive reactance corresponding to the curve n).
  • the magnetic circuit assembly 1500 can include a first magnetic element 1502, a first magnetically conductive element 1504, a first annular element 1506, a first annular magnetic element 1508, a second annular magnetic element 1510, and a third annular magnetic element 1512.
  • the magnetic shield 1514 and the second magnetic element 1516 can include a first magnetic element 1502, a first magnetically conductive element 1504, a first annular element 1506, a first annular magnetic element 1508, a second annular magnetic element 1510, and a third annular magnetic element 1512.
  • first magnetic element 1502 a first magnetically conductive element 1504, a first annular element 1506, a first annular magnetic element 1508, a second annular magnetic element 1510, a third annular magnetic element 1512, a magnetically permeable cover 1514, and a second magnetic element 1516
  • first magnetic element 1502 a first magnetically conductive element 1504
  • first annular element 1506 a first annular magnetic element 1508, a second annular magnetic element 1510, a third annular magnetic element 1512, a magnetically permeable cover 1514, and a second magnetic element 1516
  • second magnetic element 1516 Reference may be made to the detailed description in Figures 4A, 4B, 4C, 4D, 4E, 4F, 4G, 4H and/or 4M of the present application.
  • the first magnetic element 1502, the first magnetically conductive element 1504, the second magnetic element 1516, the second annular magnetic element 1510, and/or the third annular magnetic element 1512 may form a magnetic gap.
  • a voice coil 1528 can be placed in the magnetic gap.
  • the voice coil 1528 can be circular or non-circular.
  • the non-circular shape may include an ellipse, a triangle, a quadrangle, a pentagon, other polygons, or other irregular shapes.
  • the magnetic circuit assembly 1500 can further include one or more electrically conductive elements that can be disposed adjacent the voice coil 1528, such as the inner, outer, upper, and/or lower surfaces of the voice coil 1528.
  • the conductive element can connect the first magnetic element 1502, the second magnetic element 1516, the first annular magnetic element 1508, the second annular magnetic element 1510, and/or the third annular magnetic element 1512.
  • the magnetic circuit assembly 1500 can further include a third magnetically conductive element that connects the second magnetic element 1516.
  • Figure 15B is a plot of the amperage of the voice coil shown in accordance with some embodiments of the present application as a function of the thickness of the magnetic component in the magnetic circuit assembly 1500 of Figure 15A.
  • the abscissa is the first thickness ratio
  • the ordinate is the normalized Amperage force received by the voice coil
  • the normalized Ampere force can refer to the actual Ampere force received by the voice coil and the received in the single magnetic circuit assembly.
  • the single magnetic circuit assembly may include a magnetic element, for example, the single magnetic circuit assembly may include a first magnetic element, a first magnetic conductive element, and a second magnetic conductive element.
  • the volume of the first magnetic element in the single magnetic circuit assembly is the same as the sum of the volumes of the first magnetic element 1502 and the second magnetic element 1516 in the magnetic circuit assembly 1500.
  • the first thickness ratio and the second thickness ratio may be referred to the detailed description in FIG. 9B of the present application.
  • the ordinate value is greater than 1, i.e., in the magnetic circuit assembly 1500, the voice coil 1528 is subjected to an ampere force greater than that of the voice coil in the single magnetic circuit assembly. .
  • the second thickness ratio k remains unchanged, as the first thickness ratio increases, the amperage force applied to the voice coil 1528 gradually decreases.
  • the ampere force received within the voice coil 1528 gradually increases.
  • the first thickness ratio ranges between 0.1 and 0.3 or the second thickness ratio k ranges between 0.2 and 0.7, the ampere force of the voice coil 1528 is improved compared to the ampere force of the voice coil in the single magnetic circuit assembly. 50%-60%.
  • the bone conduction speaker 1600 can include a first magnetic element 1602, a first magnetically conductive element 1604, a second magnetically conductive element 1606, a second magnetic element 1608, a voice coil 1610, a third magnetically conductive element 1612, and a bracket 1614. And a connector 1616.
  • the first magnetic element 1602, the first magnetically permeable element 1604, the second magnetically permeable element 1606, the second magnetic element 1608, the voice coil 1610, and/or the third magnetically permeable element 1612 can be referenced to the related descriptions of other figures in this application.
  • the upper surface of the first magnetic element 1602 can be coupled to the lower surface of the first magnetically conductive element 1604.
  • the lower surface of the second magnetic element 1608 may be coupled to the upper surface of the first magnetically permeable element 1604.
  • the second magnetically permeable element 1606 can include a first backplane and a first sidewall.
  • a lower surface of the first magnetic element 1602 may be coupled to an upper surface of the first bottom plate.
  • the sidewall of the second magnetically permeable element 1606 forms a magnetic gap with the sidewalls of the first magnetic element 1602, the first magnetically permeable element 1604, and/or the second magnetic element 1608.
  • the bracket 1614 can include a second bottom plate and a second side wall.
  • the voice coil 1610 can be disposed in the magnetic gap.
  • a voice coil 1610 can be coupled to the second side wall.
  • a side seam may be formed between the upper surface of the voice coil 1610 and the second bottom plate.
  • the third magnetically conductive element 1612 can connect the upper surface of the second magnetic element 1608 and the first side wall of the second magnetic conductive element 1606 through the side slit, thereby making the first The three magnetically conductive elements 1612 and the second magnetically conductive elements 1606 form a closed cavity.
  • connection between the first magnetic element 1602, the first magnetically conductive element 1604, the second magnetically conductive element 1606, the second magnetic element 1608, the voice coil 1610, and/or the third magnetically conductive element 1612 can be used in the present application. Any one or several of the connections described. In some embodiments, one or more of the first magnetic element 1602, the first magnetically conductive element 1604, the second magnetically conductive element 1606, the second magnetic element 1608, the third magnetically conductive element 1612, and/or the bracket 1614 may be disposed A hole-like structure (for example, a pin hole, a threaded hole, etc.).
  • the hole-like structure may be disposed at the center, the periphery of the first magnetic element 1602, the first magnetic conductive element 1604, the second magnetic conductive element 1606, the second magnetic element 1608, the third magnetic conductive element 1612, and/or the bracket 1614 or Other locations.
  • a connector 1616 can extend through the apertured structure and connect the various components.
  • the connector 1616 can be a tube pin.
  • the tube pin 1616 can be stamped and deformed through the bracket 1614 using a ram to secure the various components in the bone conduction speaker 1600.
  • the bone conduction speaker 1600 can include one or more electrically conductive elements disposed on the inner, outer, top, and/or bottom of the voice coil 1610.
  • the bone conduction speaker 1600 can further include one or more annular magnetic elements that can be coupled to the upper surface of the sidewall of the second magnetically conductive element 1606 or to the magnetic gap.
  • the bone conduction speaker 1700 can include a first magnetic element 1702, a first magnetically conductive element 1704, a second magnetically conductive element 1706, a second magnetic element 1708, a voice coil 1710, a third magnetically conductive element 1712, and a bracket 1714.
  • the upper surface of the first magnetic element 1702 may be coupled to the lower surface of the first magnetically conductive element 1706.
  • the lower surface of the second magnetic element 1708 can be coupled to the upper surface of the first magnetically conductive element 1706.
  • the second magnetically conductive element 1706 can include a first bottom plate and a first side wall, and the first side wall can be formed by the bottom plate extending in a direction perpendicular to the bottom plate.
  • the lower surface of the first magnetic element 1702 may be coupled to the upper surface of the bottom plate of the second magnetically conductive element 1706.
  • the sidewall of the second magnetically permeable element 1706 forms a magnetic gap with the sidewalls of the first magnetic element 1702, the first magnetically permeable element 1704, and/or the second magnetic element 1708.
  • One or more rod-like structures may be disposed around the bracket link 1718.
  • the voice coil 1710 can be coupled to the bracket link 1718.
  • the third magnetically conductive element 1712 may include a second bottom plate and a second side wall, the second side wall may be formed by extending the second bottom plate, and the second side wall may be provided with one or more first holes
  • the first hole-shaped structure corresponds to the rod-like structure of the bracket link 1718, and the rod-like structure of the bracket link 1718 can penetrate the first hole-like structure of the third magnetic conductive element 1712.
  • the second sidewall of the third magnetically conductive component 1712 can be connected to the rod-like structure of the bracket link 1718 through the first hole-shaped structure, and the second bottom plate can be connected to the second The upper surface of the magnetic element 1708.
  • the connection between the first magnetic element 1702, the first magnetically conductive element 1704, the second magnetically conductive element 1706, the second magnetic element 1708, the voice coil 1710, and/or the third magnetically conductive element 1712 can be used in the present application. Any one or several of the connections described.
  • the first magnetic element 1702, the first magnetically permeable element 1704, the second magnetically permeable element 1706, the second magnetic element 1708, the third magnetically permeable element 1712, and/or the bracket 1714 are centered, surrounded, or otherwise positioned.
  • a second hole-like structure can be provided.
  • a connector 1716 can extend through the apertured structure and connect the various components.
  • the connector 1716 can be a tube pin. The tube pin 1716 can be stamped and deformed by the punch head through the bracket 1714 to fix the first magnetic element 1702, the first magnetically conductive element 1704, the second magnetically conductive element 1706, the second magnetic element 1708, and the third magnetically conductive element 1712.
  • the bracket 1914 can be coupled to the bracket rail 1718, and the washer 1920 can further connect the second sidewall of the third magnetically conductive component 1712 and the first sidewall of the second magnetically conductive component 1706 to further secure the second magnetically conductive component 1706 and the third guide Magnetic element 1712.
  • the washer 1720 can be coupled to the bracket 1714 by a vibrating plate.
  • the bone conduction speaker 1700 can include one or more electrically conductive elements disposed on the inner, outer, top, and/or bottom of the voice coil 1710.
  • the bone conduction speaker 1700 can further include one or more annular magnetic elements that can be coupled to the upper surface of the sidewall of the second magnetically conductive element 1706 or to the magnetic gap.
  • the bone conduction speaker 1800 can include a first magnetic element 1802, a first magnetically conductive element 1804, a second magnetically conductive element 1806, a gasket 1808, a voice coil 1810, a first vibrating plate 1812, a bracket 1814, and a second vibration. Plate 1816 and vibrating panel 1818.
  • the lower surface of the first magnetic element 1802 is coupled to the inner wall of the second magnetically conductive element 1806.
  • the upper surface of the first magnetic element 1802 is coupled to the upper surface of the first magnetically conductive element 1804.
  • the first magnetic element 1802, the first magnetically conductive element 1804 and the second magnetically conductive element 1806 can form a magnetic gap.
  • a voice coil 1810 can be placed in the magnetic gap.
  • the voice coil 1810 can be a circular or non-circular structure, such as a triangle, a rectangle, a square, an ellipse, a pentagon, or other irregular shape.
  • the voice coil 1810 is coupled to the bracket 1814.
  • the bracket 1814 is coupled to the first diaphragm 1812, and the first diaphragm 1812 is coupled to the second magnetically conductive element 1806 via the washer 1808.
  • the lower surface of the second diaphragm 1816 is coupled to the bracket 1814, and the upper surface of the second diaphragm 1816 is coupled to the vibration panel 1818.
  • the first magnetic element 1802, the first magnetically permeable element 1804, the second magnetically permeable element 1806, the washer 1808, the voice coil 1810, the first vibrating plate 1812, the bracket 1814, the second vibrating plate 11016, and/or The elements in the vibrating panel 1818 can be connected by any one or more of the connections described in this application.
  • the first magnetic element 1802 can be coupled to the first magnetically conductive element 1804 and/or the second magnetically conductive element 1806 by soldering.
  • the first magnetic element 1802, the first magnetic conductive element 1804, and/or the second magnetic conductive element 1806 may be provided with a hole-like structure, a first magnetic element 1802, a first magnetic conductive element 1804, and/or a second guide.
  • the magnetic element 1806 can be connected by stamping deformation of the tube pin.
  • the first vibrating plate 1812 and/or the second vibrating plate 1816 may be disposed as one or more coaxial toroidal bodies, and the plurality of toroids are provided with a plurality of struts that radiate toward the center The center of the convergence coincides with the center of the first vibrating plate 1812 and/or the second vibrating plate 1816.
  • the plurality of struts are staggered.
  • the bone conduction speaker 1800 can include one or more electrically conductive elements disposed on the inner, outer, top, and/or bottom of the voice coil 1810.
  • the bone conduction speaker 18000 can further include one or more annular magnetic elements that can be coupled to the upper surface of the sidewall of the second magnetically conductive element 1806 or to the magnetic gap.
  • the bone conduction speaker can further include a second magnetic element and/or a third magnetically conductive element.
  • the bone conduction speaker 1900 can include a first magnetic element 1902, a first magnetically conductive element 1910, a second magnetic element 1904, a third magnetic element 1906, a second magnetically conductive element 1908, a gasket 1914, a voice coil 1912, The first vibrating plate 1916, the bracket 1918, the second vibrating plate 1920, and the vibrating panel 1922.
  • the lower surface of the first magnetic element 1902 is coupled to the inner wall of the second magnetically conductive element 1908.
  • the upper surface of the first magnetic element 1902 is coupled to the lower surface of the first magnetically conductive element 1910.
  • the outer wall of the second magnetic element 1904 is connected to the inner side wall of the second magnetically conductive element 1908.
  • the third magnetic element 1906 is below the second magnetic element 1904, while the outer wall of the third magnetic element 1906 is connected to the inner side wall of the second magnetic element 1908; the inner side wall of the third magnetic element 1906 is connected to the outer wall of the first magnetic element 1902.
  • the lower surface of the third magnetic element 1906 is connected to the inner wall of the second magnetic conductive element 1908; a magnetic gap may be formed between the first magnetic element 1902, the first magnetic conductive element 1910 and the second magnetic element 1904, and the third magnetic element 1906.
  • a voice coil 1912 can be placed in the magnetic gap. In some embodiments, the voice coil 1912 can be racetrack shaped as shown in FIG.
  • the voice coil 1912 is coupled to the bracket 1918.
  • the bracket 1918 is coupled to the first diaphragm 1916, and the first diaphragm 1916 is coupled to the second magnetically conductive member 1908 via a washer 1914.
  • the lower surface of the second diaphragm 1920 is coupled to the bracket 1918, and the upper surface of the second diaphragm 1920 is coupled to the vibration panel 1922.
  • the second magnetic element 1904 can be comprised of a plurality of magnetic elements, as shown in FIG. 19, which can be comprised of four magnetic elements 19041, 1904, 19043, 19044.
  • the shape of the plurality of magnetic elements may be a racetrack shape as shown in FIG. 19, or may be other geometric shapes such as a triangle, a rectangle, a square, an ellipse, a pentagon or other irregular shapes.
  • the third magnetic element 1906 can be composed of a plurality of magnetic elements, which can be composed of four magnetic elements 19061, 19062, 19063, 19064 as shown in FIG.
  • the shape of the plurality of magnetic elements may be a racetrack shape as shown in FIG. 19, or may be other geometric shapes such as a triangle, a rectangle, a square, an ellipse, a pentagon or other irregular shapes.
  • the second magnetic element 1904 or the third magnetic element 1906 may be replaced with a plurality of interconnected magnetic elements having different magnetization directions, the plurality of interconnected magnetization directions being different
  • the magnetic element can increase the magnetic field strength at the magnetic gap in the bone conduction speaker 1900, thereby increasing the sensitivity of the bone conduction speaker 1900.
  • the components in the bracket 1918, the second vibrating plate 1920, and/or the vibrating panel 1922 may be connected by any one or more of the connections described in this application.
  • the first magnetic element 1902, the second magnetic element 1904, and the third magnetic element 1906 can be bonded to the first magnetically conductive element 1910 and/or the second magnetically conductive element 1908 by bonding.
  • the washer 1914 can be coupled to the second magnetically conductive element 1908 by an inverted structure.
  • the washer 1914 can be coupled to the second magnetically conductive element 1908 and/or the second magnetic element 1904 by means of an inverted structure.
  • the first vibrating plate 1916 and/or the second vibrating plate 1920 may be disposed as one or more coaxial ring bodies, and the plurality of rings are provided with a plurality of struts that radiate toward the center, The center of the convergence coincides with the center of the first vibrating plate 1916 and/or the second vibrating plate 1920.
  • the plurality of struts are staggered.
  • the plurality of struts are straight rods or curved rods or partially straight rod portions are curved rods.
  • the plurality of struts are curved rods.
  • the outer surface of the vibrating panel 1922 can be planar or curved.
  • the outer surface of the vibrating panel 1922 is an outer convex curved surface as shown in FIG.
  • the bone conduction speaker 1900 can include one or more electrically conductive elements disposed on the inner, outer, top, and/or bottom of the voice coil 1912.
  • the bone conduction speaker 1900 can further include one or more annular magnetic elements that can connect the lower surface of the second magnetic element 1904 and the upper surface of the third magnetic element 1906.
  • the bone conduction speaker can further include a fifth magnetic element and/or a third magnetically conductive element as described in other embodiments of the present application.
  • "An embodiment,""anembodiment" and/or "some embodiments” means a feature, structure, or feature associated with at least one embodiment of the present application. Therefore, it should be emphasized and noted that “an embodiment” or “an embodiment” or “an alternative embodiment” that is referred to in this specification two or more times in different positions does not necessarily refer to the same embodiment. . Furthermore, some of the features, structures, or characteristics of one or more embodiments of the present application can be combined as appropriate.
  • aspects of the present application can be illustrated and described by a number of patentable categories or situations, including any new and useful process, machine, product, or combination of materials or Any new and useful improvements. Accordingly, various aspects of the present application can be performed entirely by hardware, entirely by software (including firmware, resident software, microcode, etc.) or by a combination of hardware and software.
  • the above hardware or software may be referred to as a "data block,” “module,” “engine,” “unit,” “component,” or “system.”
  • aspects of the present application may be embodied in a computer product located in one or more computer readable medium(s) including a computer readable program code.

Abstract

本申请涉及一种骨传导扬声器的磁路组件。所述磁路组件产生第一磁场。所述磁路组件包括第一磁性元件,且所述第一磁性元件产生第二磁场。所述磁路还包括第一导磁元件和至少一个第二磁性元件。所述至少一个第二磁性元件环绕所述第一磁性元件,并与所述第一磁性元件之间形成磁间隙。所述第一磁场在所述磁间隙内的磁场强度大于所述第二磁场在所述磁间隙内的磁场强度。

Description

一种骨传导扬声器
优先权信息
本申请要求于2018年1月08日提交的国际申请NO.PCT/CN2018/071751,其全部内容通过引用的方式并入本文。
技术领域
本申请涉及一种骨传导扬声器,尤其涉及骨传导扬声器中的磁路组件。
背景技术
骨传导扬声器能将电信号转换成机械振动信号,并将振动信号通过人体组织及骨头传导入耳蜗,使使用者听到声音。相对于气传导扬声器通过振膜带动空气振动产生声音,骨传导振动扬声器需要带动使用者的软组织及骨头进行振动,因而其所需要的机械功率较高。提高骨传导扬声器的灵敏度能够使电能转换成机械能的效率更高,从而输出更大的机械功率。提高灵敏度对于功率要求较高的骨传导扬声器来说显得更为重要。
简述
本申请涉及一种骨传导扬声器的磁路组件。该磁路组件产生第一磁场,该磁路组件包括第一磁性元件,该第一磁性元件产生第二磁场;第一导磁元件;以及至少一个第二磁性元件,该至少一个第二磁性元件环绕该第一磁性元件,并与该第一磁性元件之间形成磁间隙,该第一磁场在该磁间隙内的磁场强度大于该第二磁场在该磁间隙内的磁场强度。
根据本申请的一些实施例,该磁路组件可以进一步包括第二导磁元件以及至少一个第三磁性元件,该至少一个第三磁性元件连接该第二导磁元件和该至少一个第二磁性元件。
根据本申请的一些实施例,该磁路组件可以进一步包括至少一个第四磁性元件,该至少一个第四磁性元件位于该磁间隙的下方并连接该第一磁性元件以及该第二导磁元件。
根据本申请的一些实施例,该磁路组件可以进一步包括至少一个第五磁性元件,该至少一个第五磁性元件连接该第一导磁元件的上表面。
根据本申请的一些实施例,该磁路组件可以进一步包括第三导磁元件,该第三导磁元件连接该第五磁性元件的上表面,该第三导磁元件被配置为抑制该第一磁场的场强泄露。
根据本申请的一些实施例,该磁路组件可以进一步包括至少一个导电元件,该导电元件连接该第一磁性元件、该第一导磁元件,或该第二导磁元件中的至少一个元件。
本申请另涉及一种骨传导扬声器的磁路组件。该磁性组件产生第一磁场,该磁路组件可以包括第一磁性元件,该第一磁性元件产生第二磁场;第一导磁元件;第二导磁元件,该第二导磁元件环绕该第一磁性元件,并与该第一磁性元件之间形成磁间隙;以及至少一个第二磁性元件,该至少一个第二磁性元件至于该磁间隙的下方,该第一磁场在该磁间隙内的磁场强度大于该第二磁场在该磁间隙内的磁场强度。
根据本申请的一些实施例,该磁路组件可以进一步包括至少一个第三磁性元件,该第三磁性元件连接该第二导磁元件。
根据本申请的一些实施例,该磁路组件可以进一步包括至少一个第四磁性元件,该至少一个第四磁性元件位于该第二导磁元件与该至少一个第三磁性元件之间。
根据本申请的一些实施例,该磁路组件可以进一步包括导磁罩,该导磁罩环绕该第一磁性元件,该第一导磁元件,该第二导磁元件以及该第二磁性元件。
根据本申请的一些实施例,该磁路组件可以进一步包括至少一个导电元件,该导电元件连接该第一磁性元件、该第一导磁元件,或该第二磁性元件中的至少一个元件。
本申请是关于一种骨传导扬声器的磁路组件。该磁性组件产生第一磁场,该磁路组件可以包括第一磁性元件,该第一磁性元件产生第二磁场;第一导磁元件;第二导磁元件,至少部分的该第二导磁元件环绕该第一磁性元件,并与该第一磁性元件之间形成磁间隙以及至少一个第二磁性元件,该至少一个第二磁性元件连接该第一导磁元件上表面,该第一磁场在该磁间隙内的磁场强度大于该第二磁场在该磁间隙内的磁场强度。
根据本申请的一些实施例,该磁路组件可以进一步包括至少一个第三磁性元件,该至少一个第三磁性元件环绕该至少一个第二磁性元件。
根据本申请的一些实施例,该磁路组件可以进一步包括至少一个第四磁性元件,该至少一个第四磁性元件连接该第二导磁元件和该至少一个第三磁性元件。
根据本申请的一些实施例,该磁路组件可以进一步包括至少一个第五磁性元件,该至少一个第五磁性元件位于该磁间隙的下方并连接该第一磁性元件以及该第二导磁元件。
根据本申请的一些实施例,该磁路组件可以进一步包括第三导磁元件,该第三导磁元件连接该至少一个第二磁性元件。
本申请是关于一种骨传导扬声器的磁路组件。该磁路组件可以包括第一磁性元件,该第一磁性元件产生第二磁场;第一导磁元件以及至少一个第二磁性元件,该至少一个第二磁性元件环绕该第一磁性元件,并与该第一磁性元件之间形成磁间隙,该第二磁性元件产生第二磁场,该第二磁场提高该第一磁场在该磁间隙处的磁场强度。
根据本申请的一些实施例,该磁路组件可以进一步包括第二导磁元件以及至少一个第三磁性元件,该至少一个第三磁性元件连接该第二导磁元件和该至少一个第二磁性元件,该至少一个第三磁性元件产生第三磁场,该第三磁场提高该第一磁场在该磁间隙处的磁场强度。
根据本申请的一些实施例,该磁路组件可以进一步包括至少一个第四磁性元件,该至少一个第四磁性元件置于该磁间隙的下方并连接该第一磁性元件以及该第二导磁元件,该至少一个第四磁性元件产生第四磁场,该第四磁场提高该第一磁场在该磁间隙处的磁场强度。
根据本申请的一些实施例,该磁路组件可以进一步包括至少一个第五磁性元件,该至少一个第五磁性元件连接该第一导磁元件的上表面,该至少一个第五磁性元件产生第五磁场,该第五磁场提高该第一磁场在该磁间隙处的磁场强度。
根据本申请的一些实施例,该磁路组件可以进一步包括第三导磁元件,该第三导磁元件连接该第五磁性元件的上表面,该第三导磁元件被配置为抑制该第一磁场和该第二磁场的场强泄露。
根据本申请的一些实施例,该磁路组件可以进一步包括至少一个导电元件,该导电元件连接该第一磁性元件、该第一导磁元件,或该第二导磁元件中的至少一个元件。
本申请是关于一种骨传导扬声器的磁路组件。该磁路组件可以包括第一磁性元件,该第一磁性元件产生第一磁场;第一导磁元件;第二导磁元件,该第二导磁元件环绕该第一磁性元件,并与该第一磁性元件之间形成磁间隙以及至少一个第二磁性元 件,该至少一个第二磁性元件置于该磁间隙下方,该至少一个第二磁性元件产生第二磁场,该第二磁场提高该第一磁场在该磁间隙处的磁感应强度。
根据本申请的一些实施例,该磁路组件可以进一步包括至少一个第三磁性元件,该第三磁性元件连接该第二导磁元件,该至少一个第三磁性元件产生第三磁场,该第三磁场提高该第一磁场在该磁间隙处的磁场强度。
根据本申请的一些实施例,该磁路组件可以进一步包括至少一个第四磁性元件,该至少一个第四磁性元件位于该第二导磁元件与该至少一个第三磁性元件之间。
根据本申请的一些实施例,该磁路组件可以进一步包括导磁罩,该导磁罩环绕该第一磁性元件,该第一导磁元件,该第二导磁元件以及该第二磁性元件。
根据本申请的一些实施例,该磁路组件可以进一步包括至少一个第五磁性元件,该至少一个第五磁性元件连接该第一导磁元件的上表面,该至少一个第五磁性元件产生第五磁场,该第五磁场提高该第一磁场在该磁间隙处的磁场强度。
根据本申请的一些实施例,该磁路组件可以进一步包括第三导磁元件,该第三导磁元件连接该第五磁性元件的上表面,该第三导磁元件被配置为抑制该第一磁场和第二磁场的场强泄露。
根据本申请的一些实施例,该磁路组件可以进一步包括至少一个导电元件,该导电元件连接该第一磁性元件、该第一导磁元件,或该第二磁性元件中的至少一个元件。
本申请是关于一种骨传导扬声器的磁路组件。该磁路组件可以包括第一磁性元件,该第一磁性元件产生第二磁场;第一导磁元件;第二导磁元件,至少部分的该第二导磁元件环绕该第一磁性元件,并与该第一磁性元件之间形成磁间隙以及至少一个第二磁性元件,该至少一个第二磁性元件连接该第一导磁元件上表面,该至少一个第二磁性元件产生第二磁场,该第二磁场提高该第一磁场在该磁间隙内的磁场强度。
根据本申请的一些实施例,该磁路组件可以进一步包括至少一个第三磁性元件,该至少一个第三磁性元件环绕该至少一个第二磁性元件。
根据本申请的一些实施例,该磁路组件可以进一步包括至少一个第四磁性元件,该至少一个第四磁性元件连接该第二导磁元件和该至少一个第三磁性元件。
根据本申请的一些实施例,该磁路组件可以进一步包括至少一个第五磁性元件,该至少一个第五磁性元件位于该磁间隙的下方并连接该第一磁性元件以及该第二导磁元件。
根据本申请的一些实施例,该磁路组件可以进一步包括第三导磁元件,该第三导磁元件连接该至少一个第二磁性元件。
本申请是关于一种骨传导扬声器的磁路组件。该磁路组件可以包括第一磁性元件,该第一磁性元件产生第二磁场;第一导磁元件;第二导磁元件,该第二导磁元件包括底板和侧壁,该第二导磁元件底板连接该第一磁性元件;至少一个第二磁性元件,该至少一个第二磁性元件连接该第二导磁元件侧壁,并与该第一磁性元件之间形成磁间隙以及至少一个第三磁性元件,该至少一个第三磁性元件连接该第二导磁元件的底板及侧壁,该第一磁场在该磁间隙内的磁场强度大于该第二磁场在所述磁间隙内的磁场强度。
根据本申请的一些实施例,该磁路组件可以进一步包括至少一个第四磁性元件,该至少一个第四磁性元件连接该至少一个第二磁性元件的上表面以及该第二导磁元件的侧壁。
根据本申请的一些实施例,该磁路组件可以进一步包括至少一个第五磁性元件,该至少一个第五磁性元件连接该第一导磁元件的上表面。
根据本申请的一些实施例,该磁路组件可以进一步包括第三导磁元件,该第三导磁元件连接该第五磁性元件的上表面,该第三导磁元件被配置为抑制该第一磁场的场强泄露。
根据本申请的一些实施例,该磁路组件可以进一步包括至少一个导电元件,该导电元件连接该第一磁性元件、该第一导磁元件,或该第二导磁元件中的至少一个元件。
本申请是关于一种骨传导扬声器。该骨传导扬声器可以包括振动组件,该振动组件包括音圈以及至少一个振动板;磁路组件,该磁路组件包括第一磁性元件,该第一磁性元件产生第一磁场;第一导磁元件以及至少一个第二磁性元件,该至少一个第二磁性元件环绕该第一磁性元件,并与该第一磁性元件之间形成磁间隙,该音圈位于该磁间隙中,该至少一个第二磁性元件产生第二磁场,该第一磁场与该第二磁场提高该第一磁场在该音圈处的磁场强度。
本申请的一部分附加特性可以在下面的描述中进行说明。通过对以下描述中和相应附图的检查或者对实施例的生产或操作的了解,本申请的一部分附加特性对于本领域技术人员是明显的。本申请披露的特性可以通过对以下描述的具体实施例的各种方法、手段和组合的实践或使用得以实现和达到。
附图描述
在此所述的附图用来提供对本申请的进一步理解,构成本申请的一部分,本申请的示意性实施例及其说明用于解释本申请,并不构成对本申请的限定。在各图中,相同标号表示相同部件。
图1是根据本申请的一些实施例所示的一种骨传导扬声器的结构模块图;
图2是根据本申请的一些实施例所示的一种骨传导扬声器的纵截面示意图;
图3A是根据本申请的一些实施例所示的一种磁路组件的纵截面示意图;
图3B是根据本申请的一些实施例所示的一种磁路组件的纵截面示意图;
图3C是根据本申请的一些实施例所示的一种磁路组件的纵截面示意图;
图3D是根据本申请的一些实施例所示的一种磁路组件的纵截面示意图;
图3E是根据本申请的一些实施例所示的一种磁路组件的纵截面示意图;
图3F是根据本申请的一些实施例所示的一种磁路组件的纵截面示意图;
图3G是根据本申请的一些实施例所示的一种磁路组件的纵截面示意图;
图4A是根据本申请的一些实施例所示的一种磁路组件的纵截面示意图;
图4B是根据本申请的一些实施例所示的一种磁路组件的纵截面示意图;
图4C是根据本申请的一些实施例所示的一种磁路组件的纵截面示意图;
图4D是根据本申请的一些实施例所示的一种磁路组件的纵截面示意图;
图4E是根据本申请的一些实施例所示的一种磁路组件的纵截面示意图;
图4F是根据本申请的一些实施例所示的一种磁路组件的纵截面示意图;
图4G是根据本申请的一些实施例所示的一种磁路组件的纵截面示意图;
图4H是根据本申请的一些实施例所示的一种磁路组件的纵截面示意图;
图4M是根据本申请的一些实施例所示的一种磁路组件的纵截面示意图;
图5A是根据本申请的一些实施例所示的一种磁路组件的纵截面示意图;
图5B是根据本申请的一些实施例所示的一种磁路组件的纵截面示意图;
图5C是根据本申请的一些实施例所示的一种磁路组件的纵截面示意图;
图5D是根据本申请的一些实施例所示的一种磁路组件的纵截面示意图;
图5E是根据本申请的一些实施例所示的一种磁路组件的纵截面示意图;
图5F是根据本申请的一些实施例所示的一种磁路组件的纵截面示意图;
图6A是根据本申请的一些实施例所示的一种磁性元件的横截面示意图;
图6B是根据本申请的一些实施例所示一种磁性元件的示意图;
图6C是根据本申请的一些实施例所示的磁路组件中磁性元件的磁化方向示意图;
图6D是根据本申请的一些实施例所示的磁性组件中磁性元件的磁感应线分布图;
图7A是根据本申请的一些实施例所示的一种磁路组件的结构示意图;
图7B-7E是根据本申请的一些实施例所示的音圈处的驱动力系数与图7A所示的磁路组件参数的关系曲线;
图8A是根据本申请的一些实施例所示的一种磁路组件的结构示意图;
图8B-8E是根据本申请的一些实施例所示的音圈处的驱动力系数与图8A所示的磁路组件参数的关系曲线;
图9A是根据本申请的一些实施例所示的一种磁路组件的磁感线分布示意图;
图9B是根据本申请的一些实施例所示的音圈处的磁感应强度与图9A所示的磁路组件中各元件厚度的关系曲线;
图10A是根据本申请的一些实施例所示的一种磁路组件的磁感线分布示意图;
图10B是根据本申请的一些实施例所示的音圈处的磁感应强度与图10A所示的磁路组件中各元件厚度的关系曲线;
图11A是根据本申请的一些实施例所示的一种磁路组件的磁感线分布示意图;
图11B是根据本申请的一些实施例所示的图9A、图10A与图11A中磁路组件的磁感应强度与磁性元件厚度的关系曲线;
图11C是根据本申请的一些实施例所示的音圈处的磁感应强度与图11A所示的磁路组件中各元件厚度的关系曲线;
图12A是根据本申请的一些实施例所示的一种磁路组件的结构示意图;
图12B是根据本申请的一些实施例所示的音圈内感抗与图12A所示的磁路组件中导电元件的关系曲线;
图13A是根据本申请的一些实施例所示的一种磁路组件的结构示意图;
图13B是根据本申请的一些实施例所示的音圈内感抗与图13A所示的磁路组件中导电元件的关系曲线;
图14A是根据本申请的一些实施例所示的一种磁路组件的结构示意图;
图14B是根据本申请的一些实施例所示的音圈内感抗与图14A所示的磁路组件中导电元件数量的关系曲线;
图15A是根据本申请的一些实施例所示的一种磁路组件的结构示意图;
图15B是根据本申请的一些实施例所示的音圈所受安培力与图15A所示磁路组件中各元件厚度的关系曲线;
图16是根据本申请的一些实施例所示的一种骨传导扬声器的结构示意图;
图17是根据本申请的一些实施例所示的一种骨传导扬声器的结构示意图;
图18是根据本申请的一些实施例所示的一种骨传导扬声器的结构示意图;以及
图19是根据本申请的一些实施例所示的一种骨传导扬声器的结构示意图。
具体描述
为了更清楚地说明本申请的实施例的技术方案,下面将对实施例描述中所需要使用的附图作简单的介绍。显而易见地,下面描述中的附图仅仅是本申请的一些示例或实施例,对于本领域的普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图将本申请应用于其他类似情景。应当理解,给出这些示例性实施例仅仅是为了使相关领域的技术人员能够更好地理解进而实现本发明,而并非以任何方式限制本发明的范围。除非从语言环境中显而易见或另做说明,图中相同标号代表相同结构或操作。
如本申请和权利要求书中所示,除非上下文明确提示例外情形,“一”、“一个”、“一种”和/或“该”等词并非特指单数,也可包括复数。一般说来,术语“包括”与“包含”仅提示包括已明确标识的步骤和元素,而这些步骤和元素不构成一个排它性的罗列,方法或者设备也可能包含其他的步骤或元素。术语“基于”是“至少部分地基于”。术语“一个实施例”表示“至少一个实施例”;术语“另一实施例”表示“至少一个另外的实施例”。其他术语的相关定义将在下文描述中给出。以下,不失一般性,在描述本发明中骨传导相关技术时,将采用“骨传导扬声器”或“骨传导耳机”的描述。该描述仅仅为骨传导应用的一种形式,对于该领域的普通技术人员来说,“扬声器”或“耳机”也可用其他同类词语代替,比如“播放器”、“助听器”等。事实上,本发明中的各种实现方式可以很方便地应用到其它非扬声器类的听力设备上。例如,对于本领域的专业人员来说,在了解骨传导扬声器的基本原理后,可能在不背离这一原理的情况下,对实施骨传导扬声器的具体方式与步骤进行形式和细节上的各种修正和改变,特别地,在骨传导扬声器中加入环境声音拾取和处理功 能,使该扬声器实现助听器的功能。例如,麦克风等传声器可以拾取使用者/佩戴者周围环境的声音,在一定的算法下,将声音处理后(或者产生的电信号)传送至骨传导扬声器部分。即骨传导扬声器可以经过一定的修改,加入拾取环境声音的功能,并经过一定的信号处理后通过骨传导扬声器部分将声音传递给使用者/佩戴者,从而实现骨传导助听器的功能。作为举例,这里所说的算法可以包括噪声消除、自动增益控制、声反馈抑制、宽动态范围压缩、主动环境识别、主动抗噪、定向处理、耳鸣处理、多通道宽动态范围压缩、主动啸叫抑制、音量控制等一种或多种的组合。
本申请提供一种高灵敏度的骨传导扬声器。在一些实施例中,所述骨传导扬声器可以包括磁路组件。所述磁路组件可以产生第一全磁场。所述磁路组件可以包括第一磁性元件、第一导磁元件、第二导磁元件以及一个或多个第二磁性元件。所述第一磁性元件可以产生第二磁场,所述一个或多个第二磁性元件环绕所述第一磁性元件,并与所述第一磁性元件之间形成磁间隙,所述第一全磁场在所述磁间隙内的磁场强度大于所述第二磁场在所述磁间隙内的磁场强度。所述磁路组件中的多个第二磁性元件环绕所述第一磁性元件设置可以在提高磁间隙磁场强度、提高骨传导扬声器的灵敏性的情况下,减少磁路组件的体积及重量,提高骨传导扬声器的效率,增加骨传导扬声器的使用寿命。
所述骨传导扬声器具有体积小、重量轻、效率高、灵敏度高及使用寿命长等特点,便于将所述骨传导扬声器与穿戴式智能设备相结合,从而实现单一设备的多功能化,提高并优化用户体验。所述穿戴式智能设备包括但不限于智能耳机、智能眼镜、智能头箍、智能头盔、智能手表、智能手套、智能鞋、智能照相机、智能摄像机等等。所述骨传导扬声器可进一步地与智能材料相结合,在用户的衣服、手套、帽子、鞋子等的制造材料中整合骨传导扬声器。所述骨传导扬声器还可进一步地植入人体,与人体植入芯片或者外置处理器协同实现更加个性化的功能。
图1是根据本申请的一些实施例所示的一种骨传导扬声器100的结构模块图。如图所述,骨传导扬声器100可以包括一个磁路组件102,一个振动组件104、一个支撑组件106以及一个存储组件108。
磁路组件102可以提供磁场。所述磁场可以用于将含有声音信息的信号转化为振动信号。在一些实施例中,所述声音信息可以包括具有特定数据格式的视频、音频文件或可以通过特定途径转化为声音的数据或文件。所述含有声音信息的信号可以来自于骨传导扬声器100本身的存储组件108,也可以来自于骨传导扬声器100以外的 信息产生、存储或者传递系统。所述含有声音信息的信号可以包括电信号、光信号、磁信号、机械信号等一种或多种的组合。所述含有声音信息的信号可以来自一个信号源或多个信号源。所述多个信号源可以相关也可以不相关。在一些实施例中,骨传导扬声器100可以通过多种不同的方式获取所述含有声音信息的信号,所述信号的获取可以是有线的或无线的,可以是实时或延时的。例如,骨传导扬声器100可以通过有线或者无线的方式接收含有声音信息的电信号,也可以直接从存储介质上(例如,存储组件108)获取数据,产生声音信号。又例如,骨传导助听器中可以包括具有声音采集功能的组件,通过拾取环境中的声音,将声音的机械振动转换成电信号,通过放大器处理后获得满足特定要求的电信号。在一些实施例中,所述有线连接可以包括金属电缆、光学电缆或者金属和光学的混合电缆,例如,同轴电缆、通信电缆、软性电缆、螺旋电缆、非金属护皮电缆、金属护皮电缆、多芯电缆、双绞线电缆、带状电缆、屏蔽电缆、电信电缆、双股电缆、平行双芯导线、双绞线等一种或多种的组合。以上描述的例子仅作为方便说明之用,有线连接的媒介还可以是其它类型,例如,其它电信号或光信号等的传输载体。
无线连接可以包括无线电通信、自由空间光通信、声通讯、和电磁感应等。其中无线电通讯可以包括IEEE1002.11系列标准、IEEE1002.15系列标准(例如蓝牙技术和紫蜂技术等)、第一代移动通信技术、第二代移动通信技术(例如FDMA、TDMA、SDMA、CDMA、和SSMA等)、通用分组无线服务技术、第三代移动通信技术(例如CDMA2000、WCDMA、TD-SCDMA、和WiMAX等)、第四代移动通信技术(例如TD-LTE和FDD-LTE等)、卫星通信(例如GPS技术等)、近场通信(NFC)和其它运行在ISM频段(例如2.4GHz等)的技术;自由空间光通信可以包括可见光、红外线讯号等;声通讯可以包括声波、超声波讯号等;电磁感应可以包括近场通讯技术等。以上描述的例子仅作为方便说明之用,无线连接的媒介还可以是其它类型,例如,Z-wave技术、其它收费的民用无线电频段和军用无线电频段等。例如,作为本技术的一些应用场景,骨传导扬声器100可以通过蓝牙技术从其他设备获取含有声音信息的信号。
振动组件104可以产生机械振动。所述振动的产生伴随着能量的转换,骨传导扬声器100可以使用特定的磁路组件102与振动组件104实现含有声音信息的信号向机械振动转换。转换的过程中可能包含多种不同类型能量的共存和转换。例如,电信号通过换能装置可以直接转换成机械振动,产生声音。再例如,声音信息可以包含在 光信号中,一种特定的换能装置可以实现由光信号转换为振动信号的过程。其它可以在换能装置工作过程中共存和转换的能量类型包括热能、磁场能等。换能装置的能量转换方式可以包括动圈式、静电式、压电式、动铁式、气动式、电磁式等。骨传导扬声器100的频率响应范围以及音质会受到振动组件104的影响。例如,在动圈式换能装置中,振动组件104包括缠绕的柱状线圈和一个振动体(例如,一个振动片),受信号电流驱动的柱状线圈在磁场中带动振动体振动发声,振动体材质的伸展和收缩、褶皱的变形、大小、形状以及固定方式,永磁体的磁密度等,都会对骨传导扬声器100的音效质量带来很大的影响。振动组件104中振动体可以是镜面对称的结构、中心对称的结构或者非对称的结构;振动体上可以设置有间断的孔状结构,使振动体产生更大的位移,从而让骨传导扬声器实现更高的灵敏度,提高振动与声音的输出功率;振动体可以是圆环体结构,在圆环体内设置向中心辐辏的多个支杆,支杆的个数可以是两个或者更多。
支撑组件106可以对磁路组件102、振动组件104和/或存储组件108起到支撑作用。支撑组件106可以包括一个或多个壳体、一个或多个连接件。所述一个或多个壳体可以形成用于容纳磁路组件102、振动组件104和/或存储组件108的容纳空间。所述一个或多个连接件可以连接壳体与磁路组件102、振动组件104和/或存储组件108。
存储组件108可以存储含有声音信息的信号。在一些实施例中,存储组件108可以包括一个或多个存储设备。所述存储设备可以包括直接连接存储(Direct Attached Storage),网络附加存储(Network Attached Storage)和存储区域网络(Storage Area Network)等存储系统上的存储设备。存储设备可以包括各类存储设备如固态存储设备(固态硬盘、固态混合硬盘等)、机械硬盘、USB闪存、记忆棒、存储卡(如CF、SD等)、其他驱动(如CD、DVD、HD DVD、Blu-ray等)、随机存储器(RAM)和只读存储器(ROM)。其中RAM可以包括十进计数管、选数管、延迟线存储器、威廉姆斯管、动态随机存储器(DRAM)、静态随机存储器(SRAM)、晶闸管随机存储器(T-RAM)、和零电容随机存储器(Z-RAM)等;ROM可以包括磁泡存储器、磁钮线存储器、薄膜存储器、磁镀线存储器、磁芯内存、磁鼓存储器、光盘驱动器、硬盘、磁带、早期NVRAM(非易失存储器)、相变化内存、磁阻式随机存储式内存、铁电随机存储内存、非易失SRAM、闪存、电子抹除式可复写只读存储器、可擦除可编程只读存储器、可编程只读存储器、屏蔽式堆读内存、浮动连接门随机存取 存储器、纳米随机存储器、赛道内存、可变电阻式内存、和可编程金属化单元等。以上提及的存储设备/存储单元是列举了一些例子,该存储设备/存储单元可以使用的存储设备并不局限于此。
以上对骨传导扬声器结构的描述仅仅是具体的示例,不应被视为是唯一可行的实施方案。显然,对于本领域的专业人员来说,在了解骨传导扬声器的基本原理后,可能在不背离这一原理的情况下,对实施骨传导扬声器的具体方式与步骤进行形式和细节上的各种修正和改变,但是这些修正和改变仍在以上描述的范围之内。例如,骨传导扬声器100可以包括一个或多个处理器,所述处理器可以执行一个或多个声音信号处理算法。所述声音信号处理算法可以对所述声音信号进行修正或强化。例如对声音信号进行降噪、声反馈抑制、宽动态范围压缩、自动增益控制、主动环境识别、主动抗噪、定向处理、耳鸣处理、多通道宽动态范围压缩、主动啸叫抑制、音量控制,或其它类似的,或以上任意组合的处理,这些修正和改变仍在本发明的权利要求保护范围之内。又例如,骨传导扬声器100可以包括一个或多个传感器,例如温度传感器、湿度传感器、速度传感器、位移传感器等。所述传感器可以采集用户信息或环境信息。
图2是根据本申请的一些实施例所示的一种骨传导扬声器200的纵截面示意图。如图所示,骨传导扬声器200可以包括第一磁性元件202、第一导磁元件204、第二导磁元件206、第一振动板208、音圈210、第二振动板212以及振动面板214。
在本申请中描述的磁性元件是指可以产生磁场的元件,例如磁铁等。所述磁性元件可以具有磁化方向,所述磁化方向是指在所述磁性元件内部的磁场方向。第一磁性元件202可以包括一个或多个磁铁。在一些实施例中,所述磁铁可以包括金属合金磁铁,铁氧体等。其中,金属合金磁铁可以包括钕铁硼、钐钴、铝镍钴、铁铬钴、铝铁硼、铁碳铝,或类似的,或其中多种的组合。铁氧体可以包括钡铁氧体,钢铁氧体,美锰铁氧体,锂锰铁氧体,或类似的,或其中多种组合。
第一导磁元件204的下表面可以连接第一磁性元件202的上表面。第二导磁元件206可以连接第一磁性元件202。需要注意的是,这里所说的导磁体也可以称为磁场集中器或铁芯。导磁体可以调整磁场(例如,第一磁性元件202产生的磁场)的分布。所述导磁体可以包括由软磁材料加工而成的元件。在一些实施例中,所述软磁材料可以包括金属材料、金属合金、金属氧化物材料、非晶金属材料等,例如铁、铁硅系合金、铁铝系合金、镍铁系合金、铁钴系合金、低碳钢、硅钢片、矽钢片、铁氧体 等。在一些实施例中,可以通过铸造、塑性加工、切削加工、粉末冶金等一种或多种组合的方法加工所述导磁体。铸造可以包括砂型铸造、熔模铸造、压力铸造、离心铸造等;塑性加工可以包括轧制、铸造、锻造、冲压、挤压、拔制等一种或多种组合;切削加工可以包括车削、铣削、刨削、磨削等。在一些实施例中,所述导磁体的加工方法可以包括3D打印、数控机床等。第一导磁元件204、第二导磁元件206与第一磁性元件202之间的连接方式可以包括粘接、卡接、焊接、铆接、螺栓连接等一种或多种组合。在一些实施例中,第一磁性元件202、第一导磁元件204和第二导磁元件206可以设置为轴对称结构。所述轴对称结构可以是环状结构、柱状结构或是其它具有轴对称结构。
在一些实施例中,第一磁性元件202与第二导磁元件206之间可以形成磁间隙。音圈210可以设置于所述磁间隙中。音圈210可以与第一振动板208连接。第一振动板208可以连接第二振动板212,第二振动板212可以连接振动面板214。当所述音圈210内通入电流后,所述音圈210位于在第一磁性元件202、第一导磁元件214和第二导磁元件206形成的磁场,会受到安培力作用,所述安培力驱动音圈210振动,音圈210的振动会带动第一振动板208、第二振动板212和振动面板214的振动。振动面板214将所述振动通过组织与骨骼传递到听觉神经,从而使人听到声音。所述振动面板214与可以直接与人体皮肤是直接接触的,或可以通过由特定材料组成的振动传递层与皮肤接触。
在一些实施例中,对于具有单一磁性元件的骨传导扬声器,通过音圈处的磁感线并不均匀,呈发散状。同时磁路中可能会形成漏磁,即较多的磁感线泄漏至磁间隙以外,未能穿过音圈,从而使得音圈位置处的磁感应强度(或磁场强度)下降,影响骨传导扬声器的灵敏度。因此,骨传导扬声器200可以进一步包括至少一个第二磁性元件和/至少一个第三导磁元件(图中未示)。所述至少一个第二磁性元件和/至少一个第三导磁元件可以抑制磁感线的泄露,约束穿过音圈的磁感线形态,使得较多的磁感线尽量水平密集地穿过音圈,增强音圈位置处的磁感应强度(或磁场强度),从而提高骨传导扬声器200的灵敏度,进而提高骨传导扬声器200的机械转化效率(即,将输入骨传导扬声器200的电能转化为音圈振动的机械能的效率)。关于所述至少一个第二磁性元件的更多描述可以参见图3A-3G、4A-4M和/或5A-5F。
以上对骨传导扬声器200结构的描述仅仅是具体的示例,不应被视为是唯一可行的实施方案。显然,对于本领域的专业人员来说,在了解骨传导扬声器的基本原理 后,可能在不背离这一原理的情况下,对实施骨传导扬声器的具体方式与步骤进行形式和细节上的各种修正和改变,但是这些修正和改变仍在以上描述的范围之内。例如,骨传导扬声器200可以包括外壳、连接件等。所述连接件可以连接振动面板214与外壳。又例如,骨传导扬声器200可以包括第二磁性元件,所述第二磁性元件可以连接第一导磁元件204。又例如,骨传导扬声器200可以进一步包括一个或多个环形磁性元件,所述环形磁性元件可以连接第二导磁元件206。
图3A是根据本申请的一些实施例所示的一种磁路组件3100的纵截面示意图。如图3A所示,磁路组件3100可以包括第一磁性元件302、第一导磁元件304、第二导磁元件306以及第二磁性元件308。在一些实施例中,第一磁性元件302和/或第二磁性元件308可以包括本申请中描述的任意一种或几种磁铁。在一些实施例中,第一磁性元件302可以包括第一磁铁,第二磁性元件308可以包括第二磁铁,所述第一磁铁与所述第二磁铁可以相同或不同。第一导磁元件304和/或第二导磁元件306可以包括本申请中描述的任意一种或几种导磁材料。第一导磁元件304和/或第二导磁元件306的加工方法可以包括本申请中描述的任意一种或几种加工方式。在一些实施例中,第一磁性元件302和/或第一导磁元件304可以设置为轴对称结构。例如,第一磁性元件302和/或第一导磁元件304可以是圆柱体,长方体,或者中空的环状(例如,横截面为跑道的形状)。在一些实施例中,第一磁性元件302和第一导磁元件304可以是共轴的圆柱体,含有相同或者不同的直径。在一些实施例中,第二导磁元件306可以是凹槽型结构。所述凹槽型结构可以包含U型的剖面(如图3A所示)。所述凹槽型的第二导磁元件306可以包括底板和侧壁。在一些实施例中,所述底板和所述侧壁可以是一体成型的,例如,所述侧壁可以由底板在垂直于底板的方向进行延伸形成。在一些实施例中,所述底板可以通过本申请中描述的任意一种或几种连接方式连接所述侧壁。第二磁性元件308可以设定为环状或片状。关于第二磁性元件308的形状可参考说明书中其他地方的描述(例如,图5A与5B及其相关描述)。在一些实施例中,第二磁性元件308可以与第一磁性元件302和/或第一导磁元件304共轴。
第一磁性元件302的上表面可以连接第一导磁元件304的下表面。第一磁性元件302的下表面可以连接第二导磁元件306的底板。第二磁性元件308的下表面连接第二导磁元件306的侧壁。第一磁性元件302、第一导磁元件304、第二导磁元件306和/或第二磁性元件308之间的的连接方式可以包括粘接、卡接、焊接、铆接、螺栓连接等一种或多种组合。
第一磁性元件302和/或第一导磁元件304与第二磁性元件308的内环之间形成磁间隙。音圈328可以设置于所述磁间隙中。在一些实施例中,所述第二磁性元件308与所述音圈328相对于第二导磁元件306的底板的高度相等。在一些实施例中,第一磁性元件302、第一导磁元件304、第二导磁元件306以及第二磁性元件308可以形成磁回路。在一些实施例中,磁路组件3100可以产生第一全磁场(也可被称为“磁路组件的总磁场”),第一磁性元件302可以产生第二磁场。所述第一全磁场由所述磁路组件3100中的所有组分(例如,第一磁性元件302,第一导磁元件304、第二导磁元件306以及第二磁性元件308)产生的磁场共同形成。所述第一全磁场在所述磁间隙内的磁场强度(也可以被称为磁感应强度或者磁通量密度)大于所述第二磁场在所述磁间隙内的磁场强度。在一些实施例中,第二磁性元件308可以产生第三磁场,所述第三磁场可以提高所述第一全磁场在所述磁间隙处的磁场强度。这里所说的第三磁场提高第一全磁场的磁场强度指的是,在有第三磁场存在(即,存在第二磁性元件308)时第一全磁场在所述磁间隙的磁场强度大于没有第三磁场存在(即,不存在第二磁性元件308)时第一全磁场的。在本说明书中的其他实施例中,除非特别说明,磁路组件表示包含所有磁性元件和导磁元件的结构,第一全磁场表示由磁路组件整体产生的磁场,第二磁场、第三磁场、……、第N磁场分别表示由相应的磁性元件所产生的磁场。在不同的实施例中,产生所述第二磁场(或者第三磁场、……、第N磁场)的磁性元件可以是相同的,也可以不同。
在一些实施例中,第一磁性元件302的磁化方向与第二磁性元件308的磁化方向之间的夹角在0度与180度之间。在一些实施例中,第一磁性元件302的磁化方向与第二磁性元件308的磁化方向与之间的夹角在45度与135度之间。在一些实施例中,第一磁性元件302的磁化方向与第二磁性元件308的磁化方向之间的夹角等于或大于90度。在一些实施例中,第一磁性元件302的磁化方向垂直于第一磁性元件302的下表面或上表面竖直向上(如图中a所示方向),第二磁性元件308的磁化方向由第二磁性元件308的内环指向外环(如图中b所方向示,在第一磁性元件302的右侧,第一磁性元件302的磁化方向沿着顺时针方向偏转90度)。
在一些实施例中,在第二磁性元件308的位置,所述第一全磁场的方向与第二磁性元件308的磁化方向之间的夹角不高于90度。在一些实施例中,在第二磁性元件308的位置处,第一磁性元件302产生的磁场的方向与第二磁性元件308的磁化方向之间的夹角可以是0度、10度、20度等小于或等于90度的夹角。
与单一磁性元件的磁路组件相比,第二磁性元件308可以提高磁路组件3100中磁间隙内总磁通量,进而增加磁间隙中的磁感应强度。并且,在第二磁性元件308的作用下,原本发散的磁感线会向磁间隙所在位置收敛,进一步增加磁间隙中的磁感应强度。
以上对磁路组件3100的结构的描述仅仅是具体的示例,不应被视为是唯一可行的实施方案。显然,对于本领域的专业人员来说,在了解骨磁路组件的基本原理后,可能在不背离这一原理的情况下,对实施磁路组件3100的具体方式与步骤进行形式和细节上的各种修正和改变,但是这些修正和改变仍在以上描述的范围之内。例如,第二导磁元件306可以是环形结构或片状结构。又例如,磁路组件3100可以进一步包括导磁罩,所述导磁罩可以围绕第一磁性元件302、第一导磁元件304、第二导磁元件306以及第二磁性元件308。
图3B是根据本申请的一些实施例所示的一种磁路组件3200的纵截面示意图。如图3B所示,与磁路组件3100不同的是,磁路组件3200可以进一步包括第三磁性元件310。
第三磁性元件310的上表面连接第二磁性元件308,下表面连接第二导磁元件306的侧壁。第一磁性元件302、第一导磁元件304、第二磁性元件308和/或第三磁性元件310之间可以形成磁间隙。音圈328可以设置于所述磁间隙中。在一些实施例中,第一磁性元件302、第一导磁元件304、第二导磁元件306、第二磁性元件308以及第三磁性元件310可以形成磁回路。在一些实施例中,第二磁性元件308的磁化方向可以参考本申请图3A的详细描述。
在一些实施例中,磁路组件3200可以产生第一全磁场,第一磁性元件302可以产生第二磁场,所述第一全磁场在所述磁间隙内的磁场强度大于所述第二磁场在所述磁间隙内的磁场强度。在一些实施例中,第三磁性元件310可以产生第三磁场,所述第三磁场可以提高所述第二磁场在所述磁间隙处的磁场强度。
在一些实施例中,第一磁性元件302的磁化方向与第三磁性元件310的磁化方向之间的夹角在0度与180度之间。在一些实施例中,第一磁性元件302的磁化方向与第三磁性元件310的磁化方向与之间的夹角在45度与135度之间。在一些实施例中,第一磁性元件302的磁化方向与第三磁性元件310的磁化方向之间的夹角等于或大于90度。在一些实施例中,第一磁性元件302的磁化方向垂直于第一磁性元件302的下表面或上表面竖直向上(如图a方向所示),第三磁性元件310的磁化方向 由第三磁性元件310的上表面指向下表面(如图中c方向所示,在第一磁性元件302的右侧,第一磁性元件302的磁化方向沿着顺时针方向偏转180度)。
在一些实施例中,在第三磁性元件310的位置处,所述第一全磁场的方向与所述第三磁性元件310的磁化方向之间的夹角不高于90度。在一些实施例中,在第三磁性元件310的位置处,第一磁性元件302产生的磁场的方向与第三磁性元件310的磁化方向之间的夹角可以是0度、10度、20度等小于或等于90度的夹角。
与磁路组件3100相比,磁路组件3200进一步增加了第三磁性元件310。第三磁性元件310可以进一步增加磁路组件3200中磁间隙内的总磁通量,进而增加磁间隙中的磁感应强度。并且,在第三磁性元件310的作用下,磁感线会进一步向磁间隙所在位置收敛,进一步增加磁间隙中的磁感应强度。
以上对磁路组件3200的结构的描述仅仅是具体的示例,不应被视为是唯一可行的实施方案。显然,对于本领域的专业人员来说,在了解磁路组件的基本原理后,可能在不背离这一原理的情况下,对实施磁路组件3200的具体方式与步骤进行形式和细节上的各种修正和改变,但是这些修正和改变仍在以上描述的范围之内。例如,第二导磁元件306可以是环形结构或片状结构。又例如,磁路组件3200可以不包括第二导磁元件306。又例如,磁路组件3200可以进一步添加至少一个磁性元件。在一些实施例中,所述进一步添加的磁性元件的下表面可以连接第二磁性元件308的上表面。所述进一步添加的磁性元件的磁化方向与第三磁性元件312的磁化方向相反。在一些实施例中,所述进一步添加的磁性元件可以连接第一磁性元件302以及第二导磁元件306的侧壁。所述进一步添加的磁性元件的磁化方向与第二磁性元件308的磁化方向相反。
图3C是根据本申请的一些实施例所示的一种磁路组件3300的纵截面示意图。如图3C所示,与磁路组件3100不同的是,磁路组件3300可以进一步包括第四磁性元件312。
第四磁性元件312可以通过粘接、卡接、焊接、铆接、螺栓连接等一种或多种组合连接第一磁性元件302以及第二导磁元件306的侧壁。在一些实施例中,第一磁性元件302、第一导磁元件304、第二导磁元件306、第二磁性元件308以及第四磁性元件312可以形成磁间隙。在一些实施例中,第二磁性元件308的磁化方向可以参考本申请图3A的详细描述。
在一些实施例中,磁路组件3300可以产生第一全磁场,第一磁性元件302可以产生第二磁场,所述第一全磁场在所述磁间隙内的磁场强度大于所述第二磁场在所述磁间隙内的磁场强度。在一些实施例中,第四磁性元件312可以产生第四磁场,所述第四磁场可以提高所述第二磁场在所述磁间隙处的磁场强度。
在一些实施例中,第一磁性元件302的磁化方向与第四磁性元件312的磁化方向之间的夹角在0度与180度之间。在一些实施例中,第一磁性元件302的磁化方向与第四磁性元件312的磁化方向与之间的夹角在45度与135度之间。在一些实施例中,第一磁性元件302的磁化方向与第四磁性元件312的磁化方向之间的夹角不高于90度。在一些实施例中,第一磁性元件302的磁化方向垂直于第一磁性元件302的下表面或上表面竖直向上(如图a方向所示),第四磁性元件312的磁化方向由第四磁性元件312的外环指向内环(如图中d方向所示,在第一磁性元件302的右侧,第一磁性元件302的磁化方向沿着顺时针方向偏转270度)。
在一些实施例中,在第四磁性元件312的位置,所述第一全磁场的方向与所述第四磁性元件312的磁化方向之间的夹角不高于90度。在一些实施例中,在第四磁性元件312的位置,第一磁性元件302产生的磁场的方向与第四磁性元件312的磁化方向之间的夹角可以是0度、10度、20度等小于或等于90度的夹角。
与磁路组件3100相比,磁路组件3300进一步增加了第四磁性元件312。第四磁性元件312可以进一步增加磁路组件3300中磁间隙内的总磁通量,进而增加磁间隙中的磁感应强度。并且,在第四磁性元件312的作用下,磁感线会进一步向磁间隙所在位置收敛,进一步增加磁间隙中的磁感应强度。
以上对磁路组件3300的结构的描述仅仅是具体的示例,不应被视为是唯一可行的实施方案。显然,对于本领域的专业人员来说,在了解骨磁路组件的基本原理后,可能在不背离这一原理的情况下,对实施磁路组件3300的具体方式与步骤进行形式和细节上的各种修正和改变,但是这些修正和改变仍在以上描述的范围之内。例如,第二导磁元件306可以是环形结构或片状结构。又例如,磁路组件3300可以不包括第二磁性元件308。又例如,磁路组件3300可以进一步添加至少一个磁性元件。在一些实施例中,所述进一步添加的磁性元件的下表面可以连接第二磁性元件308的上表面。所述进一步添加的磁性元件的磁化方向与第一磁性元件302的磁化方向相同。在一些实施例中,所述进一步添加的磁性元件的上表面可以连接第二磁性元件308的下表面。所述磁性元件的磁化方向与第一磁性元件302的磁化方向相反。
图3D是根据本申请的一些实施例所示的一种磁路组件3400的纵截面示意图。如图3D所示,与磁路组件3100不同的是,磁路组件3400可以进一步包括第五磁性元件314。第五磁性元件314可以包括本申请中描述的任意一种磁铁材料。在一些实施例中,第五磁性元件314可以设置为轴对称结构。例如,第五磁性元件314可以是圆柱体、长方体,或者中空的环状(例如,横截面为跑道的形状)。在一些实施例中,第一磁性元件302、第一导磁元件304和/或第五磁性元件314可以是共轴的圆柱体,含有相同或者不同的直径。第五磁性元件314与第一磁性元件302的厚度可以相同或不同。第五磁性元件314可以连接第一导磁元件304。
在一些实施例中,第五磁性元件314的磁化方向与第一磁性元件302的磁化方向之间的夹角在90度与180度之间。在一些实施例中,第五磁性元件314的磁化方向与第一磁性元件302的磁化方向之间的夹角在150度与180度之间。在一些实施例中,第五磁性元件314的磁化方向与第一磁性元件302的磁化方向相反(如图所示,a方向与e方向)。
与磁路组件3100相比,磁路组件3400进一步增加了第五磁性元件314。第五磁性元件314可以抑制磁路组件3400中第一磁性元件302在磁化方向上的漏磁,从而使第一磁性元件302产生的磁场可以较多地被压缩到磁间隙中,因而提高磁间隙内的磁感应强度。
以上对磁路组件3400的结构的描述仅仅是具体的示例,不应被视为是唯一可行的实施方案。显然,对于本领域的专业人员来说,在了解磁路组件的基本原理后,可能在不背离这一原理的情况下,对实施磁路组件3400的具体方式与步骤进行形式和细节上的各种修正和改变,但是这些修正和改变仍在以上描述的范围之内。例如,第二导磁元件306可以是环形结构或片状结构。又例如,磁路组件3400可以不包括第二磁性元件308。又例如,磁路组件3400可以进一步添加至少一个磁性元件。在一些实施例中,所述进一步添加的磁性元件的下表面可以连接第二磁性元件308的上表面。所述进一步添加的磁性元件的磁化方向与第一磁性元件302的磁化方向相同。在一些实施例中,所述进一步添加的磁性元件的上表面可以连接第二磁性元件308的下表面。所述进一步添加的磁性元件的磁化方向与第一磁性元件302的磁化方向相反。在一些实施例中,所述进一步添加的磁性元件可以连接第一磁性元件302以及第二导磁元件306,所述进一步添加的磁性元件的磁化方向与第二磁性元件308的磁化方向相反。
图3E是根据本申请的一些实施例所示的一种磁路组件3500的纵截面示意图。如图3E所示,与磁路组件3400不同的是,磁路组件3500可以进一步包括第三导磁元件316。在一些实施例中,第三导磁元件316可以包括本申请中描述的任意一种或几种导磁材料。第一导磁元件304、第二导磁元件306和/或第三导磁元件316所包括的导磁材料可以相同或不同。在一些实施例中,第三导磁元件316可以设置为对称结构。例如,第三导磁元件316可以是圆柱体。在一些实施例中,第一磁性元件302、第一导磁元件304、第五磁性元件314和/或第三导磁元件316可以是共轴的圆柱体,含有相同或者不同的直径。第三导磁元件316可以连接第五磁性元件314。在一些实施例中,第三导磁元件316可以连接第五磁性元件314以及第二磁性元件308。所述第三导磁元件316、第二导磁元件306以及第二磁性元件308可以形成一腔体,所述腔体可以包含第一磁性元件302、第五磁性元件314以及第一导磁元件304。
与磁路组件3400相比,磁路组件3500进一步增加了第三导磁元件316。第三导磁元件316可以抑制磁路组件3500中第五磁性元件314在磁化方向上的漏磁,从而使第五磁性元件314产生的磁场可以较多地被压缩到磁间隙中,因而提高磁间隙内的磁感应强度。
以上对磁路组件3500的结构的描述仅仅是具体的示例,不应被视为是唯一可行的实施方案。显然,对于本领域的专业人员来说,在了解磁路组件的基本原理后,可能在不背离这一原理的情况下,对实施磁路组件3500的具体方式与步骤进行形式和细节上的各种修正和改变,但是这些修正和改变仍在以上描述的范围之内。例如,第二导磁元件306可以是环形结构或片状结构。又例如,磁路组件3500可以不包括第二磁性元件308。又例如,磁路组件3500可以进一步添加至少一个磁性元件。在一些实施例中,所述进一步添加的磁性元件的下表面可以连接第二磁性元件308的上表面。所述进一步添加的磁性元件的磁化方向与第一磁性元件302的磁化方向相同。在一些实施例中,所述进一步添加的磁性元件的上表面可以连接第二磁性元件308的下表面。所述进一步添加的磁性元件的磁化方向与第一磁性元件302的磁化方向相反。在一些实施例中,所述进一步添加的磁性元件可以连接第一磁性元件302以及第二导磁元件306,所述进一步添加的磁性元件的磁化方向与第二磁性元件308的磁化方向相反。
图3F是根据本申请的一些实施例所示的一种磁路组件3600的纵截面示意图。如图3F所示,与磁路组件3100不同的是,磁路组件3600可以进一步包括一个或多个导电元件(例如,第一导电元件318、第二导电元件320以及第三导电元件322)。
所述导电元件可以包括金属材料、金属合金材料、无机非金属材料或其它导电材料。金属材料可以包括金、银、铜、铝等;金属合金材料看可以包括铁基合金、铝基合金材料、铜基合金、锌基合金等;无机非金属材料可以包括石墨等。所述导电元件可以是片状、环状、网状等。第一导电元件318可以设置于第一导磁元件304的上表面。第二导电元件320可以连接第一磁性元件302以及第二导磁元件306。第三导电元件322可以连接第一磁性元件302的侧壁。在一些实施例中,第一导磁元件304可以凸出于第一磁性元件302形成第一凹部,第三导电元件322设置于所述第一凹部。在一些实施例中,第一导电元件318、第二导电元件320以及第三导电元件322可以包括相同或不同的导电材料。第一导电元件318、第二导电元件320以及第三导电元件322可以通过本申请中描述的任意一种或多种连接方式分别连接第一导磁元件304、第二导磁元件306和/或第一磁性元件302。
第一磁性元件302、第一导磁元件304与第二磁性元件308的内环之间形成磁间隙。音圈328可以设置于所述磁间隙中。第一磁性元件302、第一导磁元件304、第二导磁元件306以及第二磁性元件308可以形成磁回路。在一些实施例中,所述导电元件可以降低音圈328的感抗。例如,若音圈328通入第一交变电流时,音圈328附近会产生第一交变感应磁场。第一交变感应磁场在所述磁回路中磁场的作用下,会使音圈328产生感抗,阻碍音圈328的运动。当在音圈328附近设置导电元件(例如,第一导电元件318、第二导电元件320以及第三导电元件322),在所述第一交变感应磁场作用下,所述导电元件可以感生出第二交变电流。所述导电元件内的第三交变电流可以在其附近产生第二交变感应磁场,所述第二交变感应磁场与所述第一交变感应磁场方向相反,可以减弱所述第一交变感应磁场,从而减小音圈328的感抗,增大音圈中的电流,提高骨传导扬声器的灵敏度。
以上对磁路组件3600的结构的描述仅仅是具体的示例,不应被视为是唯一可行的实施方案。显然,对于本领域的专业人员来说,在了解磁路组件的基本原理后,可能在不背离这一原理的情况下,对实施磁路组件3600的具体方式与步骤进行形式和细节上的各种修正和改变,但是这些修正和改变仍在以上描述的范围之内。例如,第二导磁元件306可以是环形结构或片状结构。又例如,磁路组件3600可以不包括第二 磁性元件308。又例如,磁路组件3500可以进一步添加至少一个磁性元件。在一些实施例中,所述进一步添加的磁性元件的下表面可以连接第二磁性元件308的上表面。所述进一步添加的磁性元件的磁化方向与第一磁性元件302的磁化方向相同。
图3G是根据本申请的一些实施例所示的一种磁路组件3900的纵截面示意图。如图3G所示,与磁路组件3500不同的是,磁路组件3900可以进一步包括第三磁性元件310、第四形磁性元件312、第五磁性元件314、第三导磁元件316、第六磁性元件324以及第七磁性元件326。第三磁性元件310、第四磁性元件312、第五磁性元件314、第三导磁元件316和/或第六磁性元件324以及第七磁性元件326可以设置为共轴的环形柱体。
在一些实施例中,第二磁性元件308的上表面连接第七磁性元件326,第二磁性元件308的下表面可以连接第三磁性元件310。第三磁性元件310可以连接第二导磁元件306。第七磁性元件326的上表面可以连接第三导磁元件316。第四形磁性元件312可以连接第二导磁元件306以及第一磁性元件302。第六磁性元件324可以连接第五磁性元件314、第三导磁元件316以及第七磁性元件326。在一些实施例中,第一磁性元件302、第一导磁元件304、第二导磁元件306、第二磁性元件308、第三磁性元件310、第四磁性元件312、第五磁性元件314、第三导磁元件316、第六磁性元件324以及第七磁性元件326可以形成磁回路以及磁间隙。
在一些实施例中,第二磁性元件308的磁化方向可以参考本申请图3A中的详细描述,第三磁性元件310的磁化方向可参考本申请图3B的详细描述,第四磁性元件312的磁化方向可以参考本申请图3C中的详细描述。
在一些实施例中,第一磁性元件302的磁化方向与第六磁性元件324的磁化方向之间的夹角可以在0度与180度之间。在一些实施例中,第一磁性元件302的磁化方向与第六磁性元件324的磁化方向与之间的夹角在45度与135度之间。在一些实施例中,第一磁性元件302的磁化方向与第六磁性元件324的磁化方向之间的夹角不高于90度。在一些实施例中,第一磁性元件302的磁化方向垂直于第一磁性元件302的下表面或上表面竖直向上(如图a方向所示),第六磁性元件324的磁化方向由第六磁性元件324的外环指向内环(如图中g方向所示,在第一磁性元件302的右侧,第一磁性元件302的磁化方向沿着顺时针方向偏转270度)。在一些实施例中,在同一竖直方向上,第六磁性元件324的磁化方向与第四磁性元件312的磁化方向可以相同。
在一些实施例中,在第六磁性元件324的位置处,磁路组件3900产生的磁场的方向与第六磁性元件324的磁化方向之间的夹角不高于90度。在一些实施例中,在第六磁性元件324的位置处,第一磁性元件302产生的磁场的方向与第六磁性元件324的磁化方向之间的夹角可以是0度、10度、20度等小于或等于90度的夹角。
在一些实施例中,所述第一磁性元件302的磁化方向与第七磁性元件326的磁化方向之间的夹角可以在0度与180度之间。在一些实施例中,第一磁性元件302的磁化方向与第七磁性元件326的磁化方向与之间的夹角在45度与135度之间。在一些实施例中,所述第一磁性元件302的磁化方向与第七磁性元件326的磁化方向之间的夹角不高于90度。在一些实施例中,第一磁性元件302的磁化方向垂直于第一磁性元件302的下表面或上表面竖直向上(如图a方向所示),第七磁性元件326的磁化方向由第七磁性元件326的下表面指向上表面(如图中f方向所示,在第一磁性元件302的右侧,第一磁性元件302的磁化方向沿着顺时针方向偏转360度)。在一些实施例中,第七磁性元件326的磁化方向与第三磁性元件310的磁化方向可以相反。
在一些实施例中,在第七磁性元件326处,磁路组件3900产生的磁场的方向与所述第七磁性元件326的磁化方向之间的夹角不高于90度。在一些实施例中,在第七磁性元件326的位置处,第一磁性元件302产生的磁场的方向与第七磁性元件326的磁化方向之间的夹角可以是0度、10度、20度等小于或等于90度的夹角。
在磁路组件3900中,第三导磁元件316可以将磁路组件3900产生的磁路封闭,使得较多的磁感线集中于所述磁间隙内,从而达到抑制漏磁、增加磁间隙处的磁感应强度、及提高骨传导扬声器的灵敏度的功效。以上对磁路组件3900的结构的描述仅仅是具体的示例,不应被视为是唯一可行的实施方案。显然,对于本领域的专业人员来说,在了解磁路组件的基本原理后,可能在不背离这一原理的情况下,对实施磁路组件3900的具体方式与步骤进行形式和细节上的各种修正和改变,但是这些修正和改变仍在以上描述的范围之内。例如,第二导磁元件306可以是环形结构或片状结构。又例如,磁路组件3900可以不包括第二磁性元件308。又例如,磁路组件3900可以进一步包括至少一个导电元件,所述导电元件可以连接第一磁性元件302、第五磁性元件314、第一导磁元件304、第二导磁元件306和/或的第三导磁元件316。在一些实施例中,磁路组件3900可以进一步添加至少一个导电元件,所述进一步添加的导 电元件可以连接第二磁性元件308、第三磁性元件310、第四磁性元件312、第六磁性元件324以及第七磁性元件326中的至少一个元件。
图4A是根据本申请的一些实施例所示的一种磁路组件4100的纵截面示意图。如图4A所示,磁路组件4100可以包括第一磁性元件402、第一导磁元件404、第一全磁场改变元件406以及第二磁性元件408。在一些实施例中,第一磁性元件402和/或第二磁性元件408可以包括本申请中描述的任意一种或几种磁铁。第一磁性元件402可以包括第一磁铁,第二磁性元件408可以包括第二磁铁,所述第一磁铁与所述第二磁铁可以相同或不同。第一导磁元件404可以包括本申请中描述的任意一种或几种导磁材料,例如低碳钢、硅钢片、矽钢片、铁氧体等。在一些实施例,第一磁性元件402和/或第一导磁元件404可以设置为轴对称结构。第一磁性元件402和/或第一导磁元件404可以是圆柱体。在一些实施例中,第一磁性元件402和第一导磁元件404可以是共轴的圆柱体,含有相同或不同的直径。在一些实施例中,第一全磁场改变元件406可以是磁性元件或导磁元件中的任意一种。第一全磁场改变元件406和/或第二磁性元件408可以设定为环状或片状。关于第一全磁场改变元件406和第二磁性元件408的描述可以参见说明书中其他地方的描述(例如,图5A和5B及其相关描述)。在一些实施例中,第二磁性元件408可以与第一磁性元件402、第一导磁元件404和/或第一全磁场改变元件406共轴的环形柱体,含有直径相同或不同的内环和/外环。第一导磁元件404和/或第一全磁场改变元件406的加工方法可以包括本申请中描述的任意一种或几种加工方式。
第一磁性元件402的上表面可以连接第一导磁元件404的下表面,第二磁性元件408可以连接第一磁性元件402以及第一全磁场改变元件406。第一磁性元件402、第一导磁元件404、第一全磁场改变元件406和/或第二磁性元件408之间的连接方式可以基于本申请中描述的任意一种或几种连接方式。在一些实施例中,第一磁性元件402、第一导磁元件404、第一全磁场改变元件406和/或第二磁性元件408可形成磁回路及磁间隙。
在一些实施例中,磁路组件4100可以产生第一全磁场,第一磁性元件402可以产生第二磁场,所述第一全磁场在所述磁间隙内的磁场强度大于所述第二磁场在所述磁间隙内的磁场强度。在一些实施例中,第二磁性元件408可以产生第三磁场,所述第三磁场可以提高所述第二磁场在所述磁间隙处的磁场强度。
在一些实施例中,第一磁性元件402的磁化方向与第二磁性元件408的磁化方向之间的夹角可以在0度与180度之间。在一些实施例中,第一磁性元件402的磁化方向与第二磁性元件408的磁化方向与之间的夹角在45度与135度之间。在一些实施例中,第一磁性元件402的磁化方向与第二磁性元件408的磁化方向之间的夹角可以不高于90度。
在一些实施例中,在第二磁性元件408的位置处,所述第一全磁场的方向与第二磁性元件408的磁化方向之间的夹角不高于90度。在一些实施例中,在第二磁性元件408的位置处,第一磁性元件402产生的磁场的方向与第二磁性元件408的磁化方向之间的夹角可以是0度、10度、20度等小于或等于90度的夹角。又例如,第一磁性元件402的磁化方向垂直于第一磁性元件402的下表面或上表面竖直向上(如图a方向所示),第二磁性元件408的磁化方向由第二磁性元件408的外环指向内环(如图中c方向所示,在第一磁性元件402的右侧,第一磁性元件402的磁化方向沿着顺时针方向偏转270度)。
与单一磁性元件的磁路组件相比,磁路组件4100中的第一全磁场改变元件406可以提高磁间隙中的总磁通量,进而增加磁间隙中的磁感应强度。并且,在第一全磁场改变元件406的作用下,原本发散的磁感线会向磁间隙所在位置收敛,进一步增加磁间隙中的磁感应强度。
以上对磁路组件4100的结构的描述仅仅是具体的示例,不应被视为是唯一可行的实施方案。显然,对于本领域的专业人员来说,在了解骨磁路组件的基本原理后,可能在不背离这一原理的情况下,对实施磁路组件4100的具体方式与步骤进行形式和细节上的各种修正和改变,但是这些修正和改变仍在以上描述的范围之内。例如,磁路组件4100可以进一步包括导磁罩,所述导磁罩可以包含第一磁性元件402、第一导磁元件404、第一全磁场改变元件406以及第二磁性元件408。
图4B是根据本申请的一些实施例所示的一种磁路组件4200的纵截面示意图。如图4B所示,与磁路组件4100不同的是,磁路组件4200可以进一步包括第三磁性元件410。
第三磁性元件410的下表面可以连接第一全磁场改变元件406。第三磁性元件410与第一全磁场改变元件406之间的连接方式可以基于本申请中描述的任意一种或几种连接方式。在一些实施例中,第一磁性元件402、第一导磁元件404、第一全磁场改变元件406、第二磁性元件408和/或第三磁性元件410之间可形成磁间隙。在一些 实施例中,磁路组件4200可以产生第一全磁场,第一磁性元件402可以产生第二磁场,所述第一全磁场在所述磁间隙内的磁场强度大于所述第二磁场在所述磁间隙内的磁场强度。在一些实施例中,第三磁性元件410可以产生第三磁场,所述第三磁场可以提高所述第二磁场在所述磁间隙处的磁场强度。
在一些实施例中,第一磁性元件402的磁化方向与第三磁性元件410的磁化方向之间的夹角可以在0度与180度之间。在一些实施例中,第一磁性元件402的磁化方向与第三磁性元件410的磁化方向与之间的夹角在45度与135度之间。在一些实施例中,第一磁性元件402的磁化方向与第三磁性元件410的磁化方向之间的夹角可以等于或大于90度。在一些实施例中,第一磁性元件402的磁化方向垂直于第一磁性元件402的下表面或上表面竖直向上(如图a方向所示),第三磁性元件410的磁化方向由第三磁性元件410的内环指向外环(如图中b方向所示,在第一磁性元件402的右侧,第一磁性元件402的磁化方向沿着顺时针方向偏转90度)。
在一些实施例中,在第三磁性元件410的位置处,所述第一全磁场的方向与第二磁性元件408的磁化方向之间的夹角不高于90度。在一些实施例中,在第三磁性元件410的位置处,第一磁性元件402产生的磁场的方向与第三磁性元件410的磁化方向之间的夹角可以是0度、10度、20度等小于或等于90度的夹角。
与磁路组件4100相比,磁路组件4200进一步增加了第三磁性元件410。第三磁性元件410可以进一步增加磁路组件4200中磁间隙内的总磁通量,进而增加磁间隙中的磁感应强度。并且,在第三磁性元件410的作用下,磁感线会进一步向磁间隙所在位置收敛,从而增加磁间隙中的磁感应强度。
以上对磁路组件4200的结构的描述仅仅是具体的示例,不应被视为是唯一可行的实施方案。显然,对于本领域的专业人员来说,在了解骨磁路组件的基本原理后,可能在不背离这一原理的情况下,对实施磁路组件4200的具体方式与步骤进行形式和细节上的各种修正和改变,但是这些修正和改变仍在以上描述的范围之内。例如,磁路组件4200可以进一步包括导磁罩,所述导磁罩可以包含第一磁性元件402、第一导磁元件404、第一全磁场改变元件406、第二磁性元件408以及第三磁性元件410。
图4C是根据本申请的一些实施例所示的一种磁路组件4300的结构示意图。如图4C所示,与磁路组件4200不同的是,磁路组件4300可以进一步包括第四磁性元件412。
第四磁性元件412的下表面可以连接第一全磁场改变元件406的上表面,第四磁性元件412的上表面可以连接第二磁性元件408的下表面。第四磁性元件412与第一全磁场改变元件406以及第二磁性元件408之间的连接方式可以基于本申请中描述的任意一种或几种连接方式。在一些实施例中,第一磁性元件402、第一导磁元件404、第一全磁场改变元件406、第二磁性元件408、第三磁性元件410和/或第四磁性元件412之间可形成磁间隙。第二磁性元件408以及第三磁性元件410的磁化方向可以分别参考本申请4A和/或4B中的详细描述。
在一些实施例中,磁路组件4300可以产生第一全磁场,第一磁性元件402可以产生第二磁场,所述第一全磁场在所述磁间隙内的磁场强度大于所述第二磁场在所述磁间隙内的磁场强度。在一些实施例中,第四磁性元件412可以产生第三磁场,所述第三磁场可以提高所述第二磁场在所述磁间隙处的磁场强度。
在一些实施例中,所述第一磁性元件402的磁化方向与第四磁性元件412的磁化方向之间的夹角可以在0度与180度之间。在一些实施例中,第一磁性元件402的磁化方向与第四磁性元件412的磁化方向与之间的夹角在45度与135度之间。在一些实施例中,所述第一磁性元件402的磁化方向与第四磁性元件412的磁化方向之间的夹角可以等于或大于90度。在一些实施例中,第一磁性元件402的磁化方向垂直于第一磁性元件402的下表面或上表面竖直向上(如图a方向所示),第四磁性元件412的磁化方向由第四磁性元件412的上表面指向下表面(如图中d方向所示,在第一磁性元件402的右侧,第一磁性元件402的磁化方向沿着顺时针方向偏转180度)。
在一些实施例中,在第四磁性元件412的位置处,所述第一全磁场的方向与第四磁性元件412的磁化方向之间的夹角不高于90度。在一些实施例中,在第四磁性元件412的位置处,第一磁性元件402产生的磁场的方向与第四磁性元件412的磁化方向之间的夹角可以是0度、10度、20度等小于或等于90度的夹角。
与磁路组件4200相比,磁路组件4300进一步增加了第四磁性元件412。第四磁性元件412可以进一步增加磁路组件4300中磁间隙内的总磁通量,进而增加磁间隙中的磁感应强度。并且,在第四磁性元件412的作用下,磁感线会进一步向磁间隙所在位置收敛,从而增加磁间隙中的磁感应强度。
以上对磁路组件4300的结构的描述仅仅是具体的示例,不应被视为是唯一可行的实施方案。显然,对于本领域的专业人员来说,在了解骨磁路组件的基本原理 后,可能在不背离这一原理的情况下,对实施磁路组件4300的具体方式与步骤进行形式和细节上的各种修正和改变,但是这些修正和改变仍在以上描述的范围之内。例如,磁路组件4200可以进一步包括一个或多个导电元件,所述一个或多个导电元件可以连接第一磁性元件402、第一导磁元件404、第二磁性元件408、第三磁性元件410和第四磁性元件412中的至少一个元件。
图4D是根据本申请的一些实施例所示的一种磁路组件4400的纵截面示意图。如图4D所示,与磁路组件4300不同的是,磁路组件4400可以进一步包括导磁罩414。
导磁罩414可以包括本申请中描述的任意一种或几种导磁材料,例如,低碳钢、硅钢片、矽钢片、铁氧体等。导磁罩414可以通过本申请中描述的任意一种或几种连接方式连接第一全磁场改变元件406、第二磁性元件408、第三磁性元件410以及第四磁性元件412。导磁罩414的加工方法可以包括本申请中描述的任意一种加工方式,例如,铸造、塑性加工、切削加工、粉末冶金等一种或多种组合。在一些实施例中,导磁罩414可以包括底板和侧壁,所述侧壁为环形结构。在一些实施例中,所述底板和侧壁可以是一体成型。在一些实施例中,所述底板可以通过本申请中描述的任意一种或几种连接方式连接所述侧壁。
与磁路组件4300相比,磁路组件4400进一步增加了导磁罩414。导磁罩414可以抑制磁路组件4300的漏磁,有效减小磁路长度和磁阻,从而使较多的磁感线可以通过磁间隙,提高磁间隙内的磁感应强度。
以上对磁路组件4400的结构的描述仅仅是具体的示例,不应被视为是唯一可行的实施方案。显然,对于本领域的专业人员来说,在了解骨磁路组件的基本原理后,可能在不背离这一原理的情况下,对实施磁路组件4400的具体方式与步骤进行形式和细节上的各种修正和改变,但是这些修正和改变仍在以上描述的范围之内。例如,磁路组件4400可以进一步包括一个或多个导电元件,所述一个或多个导电元件可以连接第一磁性元件402、第一导磁元件404、第二磁性元件408、第三磁性元件410和第四磁性元件412中的至少一个元件。又例如,磁路组件4200可以进一步包括第五磁性元件,所述第五磁性元件的下表面连接第一导磁元件404的上表面,所述第五磁性元件的磁化方向与所述第一磁性元件402的磁化方向相反。
图4E是根据本申请的一些实施例所示的一种磁路组件4500的纵截面示意图。如图4E所示,与磁路组件4200不同的是,磁路组件4500的第一全磁场改变元件406与第二磁性元件408的连接面可以是楔形截面。
与磁路组件4100相比,磁路组件4500的第一全磁场改变元件406与第二磁性元件408的连接面配置为楔形截面,可以使得磁感线能顺利转折。同时,所述楔形截面可以方便第一全磁场改变元件406与第二磁性元件408的的装配并可以减小装配组件数目,降低骨传导扬声器的重量。
以上对磁路组件4500的结构的描述仅仅是具体的示例,不应被视为是唯一可行的实施方案。显然,对于本领域的专业人员来说,在了解骨磁路组件的基本原理后,可能在不背离这一原理的情况下,对实施磁路组件4500的具体方式与步骤进行形式和细节上的各种修正和改变,但是这些修正和改变仍在以上描述的范围之内。例如,磁路组件4500可以进一步包括一个或多个导电元件,所述导电元件可以连接第一磁性元件402、第一导磁元件404、第二磁性元件408、以及第三磁性元件410中的至少一个元件。又例如,磁路组件4500可以进一步包括第五磁性元件,所述第五磁性元件的下表面连接第一导磁元件404的上表面,所述第五磁性元件的磁化方向与所述第一磁性元件402的磁化方向相反。在一些实施例中,磁路组件4500可以进一步包括一个导磁罩,所述导磁罩可以包含第一磁性元件402、第一导磁元件404、第一全磁场改变元件406、第二磁性元件408以及第三磁性元件410。
图4F是根据本申请的一些实施例所示的一种磁路组件4600的纵截面示意图。如图4F所示,与磁路组件4100不同的是,磁路组件4600可以进一步包括第五磁性元件416。在一些实施例中,第五磁性元件416可以包括一个或多个磁铁。所述磁铁可以包括本申请中描述的任意一种或几种磁铁材料。在一些实施例中,第五磁性元件416可以包括第一磁铁,第一磁性元件402可以包括第二磁铁,所述第一磁铁与所述第二磁铁包括的磁铁材料可以相同或不同。在一些实施例中,第五磁性元件416、第一磁性元件402以及第一导磁元件404可以设置为轴对称结构,例如,第五磁性元件416、第一磁性元件402以及第一导磁元件404可以是圆柱体。在一些实施例中,在一些实施例中,第五磁性元件416、第一磁性元件402以及第一导磁元件404可以是共轴的圆柱体,含有相同或者不同的直径。例如,第一导磁元件404的直径可以大于第一磁性元件402和/或第五磁性元件416,第一磁性元件402和/或第五磁性元件416的侧壁可以形成第一凹部和/或第二凹部。在一些实施例中,第二磁性元件416的厚度 与所述第一磁性元件402、所述第二磁性元件416以及所述第一导磁元件404的厚度之和的比值范围为0.4-0.6。第一导磁元件404与所述第一磁性元件402、所述第二磁性元件416以及所述第一导磁元件404的厚度之和的比值范围为0.5-1.5。
在一些实施例中,第五磁性元件416的磁化方向与第一磁性元件402的磁化方向之间的夹角在150度与180度之间。在一些实施例中,第五磁性元件416的磁化方向与第一磁性元件402的磁化方向之间的夹角在90度与180度之间。例如,第五磁性元件416的磁化方向与第一磁性元件402的磁化方向相反(如图所示,a方向与e方向)。
与磁路组件4100相比,磁路组件4600进一步增加了第五磁性元件416。第五磁性元件426可以抑制磁路组件4600中第一磁性元件402在磁化方向上的漏磁,从而使第一磁性元件402产生的磁场可以较多地压缩到磁间隙中,因而提高磁间隙内的磁感应强度。
以上对磁路组件4600的结构的描述仅仅是具体的示例,不应被视为是唯一可行的实施方案。显然,对于本领域的专业人员来说,在了解骨磁路组件的基本原理后,可能在不背离这一原理的情况下,对实施磁路组件4600的具体方式与步骤进行形式和细节上的各种修正和改变,但是这些修正和改变仍在以上描述的范围之内。在一些实施例中,磁路组件4600可以进一步包括一个或多个导电元件,所述一个或多个导电元件可以连接第一磁性元件402、第一导磁元件404、第二磁性元件408、以及第五磁性元件416中的至少一个元件,例如所述一个或多个导电元件可以设置于所述第一凹部和/或所述第二凹部。在一些实施例中,磁路组件4600可以进一步添加至少一个磁性元件,所述进一步添加的磁性元件可以连接第一全磁场改变元件406。在一些实施例中,磁路组件4600可以进一步包括一个导磁罩,所述导磁罩包含第一磁性元件402、第一导磁元件404、第一全磁场改变元件406、第二磁性元件408以及第五磁性元件416。
图4G是根据本申请的一些实施例所示的一种磁路组件4900的纵截面示意图。磁路组件4900可以包括第一磁性元件402、第一导磁元件404、第一全磁场改变元件406、第二磁性元件408、第三磁性元件410、第四磁性元件412、第五磁性元件416、第六磁性元件418、第七磁性元件420以及第二环形元件422。第一磁性元件402、第一导磁元件404、第一全磁场改变元件406、第二磁性元件408、第三磁性元件410、第三磁性元件410、第四磁性元件412以及第五磁性元件416、可以参考本申 请图4A、4B、4C、4D、4E和/或4F中的详细描述。在一些实施例中,第一全磁场改变元件406和/或第二环形元件422可以包括环形磁性元件或环形导磁元件。所述环形磁性元件可以包括本申请中描述的任意一种或几种磁铁材料,所述环形导磁元件可以包括本申请中描述的任意一种或几种导磁材料。
在一些实施例中,第六磁性元件418可以连接第五磁性元件416以及第二环形元件422,第七磁性元件420可以连接第三磁性元件410以及第二环形元件422。在一些实施例中,第一磁性元件402、第五磁性元件416、第二磁性元件408、第三磁性元件410、第四磁性元件412、第六磁性元件418和/或第七磁性元件420与所述第一导磁元件404、第一全磁场改变元件406以及第二环形元件422可以形成磁回路。
第二磁性元件408的磁化方向可以参考本申请图4A中的详细描述,第三磁性元件410、第四磁性元件412以及第五磁性元件416的磁化方向可以分别参考本申请图4B、4C以及4F的详细描述。
在一些实施例中,所述第一磁性元件402的磁化方向与第六磁性元件418的磁化方向之间的夹角可以在0度与180度之间。在一些实施例中,第一磁性元件402的磁化方向与第六磁性元件418的磁化方向与之间的夹角在45度与135度之间。在一些实施例中,所述第一磁性元件402的磁化方向与第六磁性元件418的磁化方向之间的夹角不高于90度。在一些实施例中,第一磁性元件402的磁化方向垂直于第一磁性元件402的下表面或上表面竖直向上(如图a方向所示),第六磁性元件418的磁化方向由第六磁性元件418的外环指向内环(如图中f方向所示,在第一磁性元件402的右侧,第一磁性元件402的磁化方向沿着顺时针方向偏转270度)。在一些实施例中,在同一竖直方向上,第六磁性元件418的磁化方向与第二磁性元件408的磁化方向可以相同。在一些实施例中,第一磁性元件402的磁化方向垂直于第一磁性元件402的下表面或上表面竖直向上(如图a方向所示),第七磁性元件420的磁化方向由第七磁性元件420的下表面指向上表面(如图中e方向所示,在第一磁性元件402的右侧,第一磁性元件402的磁化方向沿着顺时针方向偏转360度)。在一些实施例中,第七磁性元件420的磁化方向与第三磁性元件412的磁化方向可以相同。
在一些实施例中,在第六磁性元件418的位置处,磁路组件4900产生的磁场的方向与所述第六磁性元件418的磁化方向之间的夹角不高于90度。在一些实施例中,在第六磁性元件418的位置处,第一磁性元件402产生的磁场的方向与第六磁性 元件418的磁化方向之间的夹角可以是0度、10度、20度等小于或等于90度的夹角。
在一些实施例中,所述第一磁性元件402的磁化方向与第七磁性元件420的磁化方向之间的夹角可以在0度与180度之间。在一些实施例中,第一磁性元件402的磁化方向与第七磁性元件420的磁化方向与之间的夹角在45度与135度之间。在一些实施例中,所述第一磁性元件402的磁化方向与第七磁性元件420的磁化方向之间的夹角不高于90度。
在一些实施例中,在第七磁性元件420的位置处,磁路组件4900产生的磁场的方向与所述第七磁性元件420的磁化方向之间的夹角不高于90度。在一些实施例中,在第七磁性元件420的位置处,第一磁性元件402产生的磁场的方向与第七磁性元件420的磁化方向之间的夹角可以是0度、10度、20度等小于或等于90度的夹角。
在一些实施例中,第一全磁场改变元件406可以是环形磁性元件。在这种情况下,第一全磁场改变元件406的磁化方向可以与第二磁性元件408或第四磁性元件412的磁化方向相同。例如,在第一磁性元件402的右侧,第一全磁场改变元件406的磁化方向可以由第一全磁场改变元件406的外环指向内环。在一些实施例中,第二环形元件422可以是环形磁性元件。在这种情况下,第二环形元件422的磁化方向可以与第六磁性元件418或第七磁性元件420的磁化方向相同。例如,在第一磁性元件402的右侧,第二环形元件422的磁化方向可以由第二环形元件422的外环指向内环。
在磁路组件4900中,多个磁性元件可以提高总的磁通量,不同磁性元件相互作用,可以抑制磁感线泄漏,提高磁间隙处的磁感应强度,提高骨传导扬声器的灵敏度。
以上对磁路组件4900的结构的描述仅仅是具体的示例,不应被视为是唯一可行的实施方案。显然,对于本领域的专业人员来说,在了解骨磁路组件的基本原理后,可能在不背离这一原理的情况下,对实施磁路组件4900的具体方式与步骤进行形式和细节上的各种修正和改变,但是这些修正和改变仍在以上描述的范围之内。在一些实施例中,磁路组件4900可以进一步包括一个或多个导电元件,所述一个或多个导电元件可以连接第一磁性元件402、第一导磁元件404、第二磁性元件408、第三磁性 元件410、第四磁性元件412、第五磁性元件416、第六磁性元件418以及第七磁性元件420中的至少一个元件。
图4H是根据本申请的一些实施例所示的一种磁路组件41000的纵截面示意图。如图4H所示,与磁路组件4900不同的是,磁路组件41000可以进一步包括导磁罩414。
导磁罩414可以包括本申请中描述的任意一种或几种导磁材料,例如,低碳钢、硅钢片、矽钢片、铁氧体等。导磁罩414可以通过本申请中描述的任意一种或几种连接方式连接第一磁性元件402、第一全磁场改变元件406、第二磁性元件408、第三磁性元件410、第四磁性元件412、第五磁性元件416、第六磁性元件418、第七磁性元件420以及第二环形元件422。导磁罩414的加工方法可以包括本申请中描述的任意一种加工方式,例如,铸造、塑性加工、切削加工、粉末冶金等一种或多种组合。在一些实施例中,导磁罩可以包括至少一个底板和侧壁,所述侧壁为环形结构。在一些实施例中,所述底板和侧壁可以是一体成型。在一些实施例中,所述底板可以通过本申请中描述的任意一种或几种连接方式连接所述侧壁。例如,导磁罩414可以包括第一底板、第二底板以及侧壁,所述第一底板与侧壁可以是一体成型的,所述第二底板可以通过本申请中描述的任意一种或几种连接方式连接所述侧壁。
在磁路组件41000中,导磁罩414可以将磁路组件41000产生的磁路封闭,使得较多的磁感线集中于所述磁路组件41000中的磁间隙内,达到抑制漏磁、增加磁间隙处的磁感应强度、及提高骨传导扬声器的灵敏度的功效。
以上对磁路组件41000的结构的描述仅仅是具体的示例,不应被视为是唯一可行的实施方案。显然,对于本领域的专业人员来说,在了解骨磁路组件的基本原理后,可能在不背离这一原理的情况下,对实施磁路组件41000的具体方式与步骤进行形式和细节上的各种修正和改变,但是这些修正和改变仍在以上描述的范围之内。例如,磁路组件41000可以进一步包括一个或多个导电元件,所述一个或多个导电元件可以连接第一磁性元件402、第一导磁元件404、第二磁性元件408、第三磁性元件410、第四磁性元件412、第五磁性元件416、第六磁性元件418以及第七磁性元件420中的至少一个元件。
图4M是根据本申请的一些实施例所示的一种磁路组件41100的纵截面示意图。如图4M所示,与磁路组件4100不同的是,磁路组件41100可以进一步包括一个 或多个导电元件(例如,第一导电元件424、第二导电元件426以及第三导电元件428)。
所述导电元件的描述与导电元件318,导电元件320和导电元件322类似,其相关描述在此处不再重复。
上对磁路组件41100的结构的描述仅仅是具体的示例,不应被视为是唯一可行的实施方案。显然,对于本领域的专业人员来说,在了解骨磁路组件的基本原理后,可能在不背离这一原理的情况下,对实施磁路组件41100的具体方式与步骤进行形式和细节上的各种修正和改变,但是这些修正和改变仍在以上描述的范围之内。例如,磁路组件41100可以进一步包括至少一个磁性元件和/或导磁元件。
图5A是根据本申请的一些实施例所示的一种磁路组件5100的纵截面示意图。如图5A所示,磁路组件5100可以包括第一磁性元件502、第一导磁元件504、第二导磁元件506以及第二磁性元件508。
在一些实施例中,第一磁性元件502和/或第二磁性元件508可以包括本申请中描述的任意一种或几种磁铁。在一些实施例中,第一磁性元件502可以包括第一磁铁,第二磁性元件508可以包括第二磁铁,所述第一磁铁与所述第二磁铁可以相同或不同。第一导磁元件504和/或第二导磁元件506可以包括本申请中描述的任意一种或几种导磁材料。第一导磁元件504和/或第二导磁元件506的加工方法可以包括本申请中描述的任意一种或几种加工方式。在一些实施例中,第一磁性元件502、第一导磁元件504和/或第二磁性元件508可以设置为轴对称结构。例如,第一磁性元件502、第一导磁元件504和/或第二磁性元件508可以是圆柱体。在一些实施例中,第一磁性元件502、第一导磁元件504和/或第二磁性元件508可以是共轴的圆柱体,含有相同或者不同的直径。第一磁性元件502的厚度可以大于或等于第二磁性元件508的厚度。在一些实施例中,第二导磁元件506可以是凹槽型结构。所述凹槽型结构可以包含U型的剖面(如图5A所示)。所述凹槽型的第二导磁元件506可以包括底板和侧壁。在一些实施例中,所述底板和所述侧壁可以是一体成型的,例如,所述侧壁可以由底板在垂直于底板的方向进行延伸形成。在一些实施例中,所述底板可以通过本申请中描述的任意一种或几种连接方式连接所述侧壁。第二磁性元件508可以设定为环状或片状。关于第二磁性元件508的形状可参考说明书中其他地方的描述(例如,图6A与6B及其相关描述)。在一些实施例中,第二磁性元件508可以与第一磁性元件502和/或第一导磁元件504共轴。
第一磁性元件502的上表面可以连接第一导磁元件504的下表面。第一磁性元件502的下表面可以连接第二导磁元件506的底板。第二磁性元件508的下表面连接第一导磁元件504的上表面。第一磁性元件502、第一导磁元件504、第二导磁元件506和/或第二磁性元件508之间的的连接方式可以包括粘接、卡接、焊接、铆接、螺栓连接等一种或多种组合。
第一磁性元件502、第一导磁元件504和/或第二磁性元件508与第二导磁元件506的侧壁之间形成磁间隙。音圈520可以设置于所述磁间隙中。在一些实施例中,第一磁性元件502、第一导磁元件504、第二导磁元件506以及第二磁性元件508可以形成磁回路。在一些实施例中,磁路组件5100可以产生第一全磁场,第一磁性元件502可以产生第二磁场。所述第一全磁场由所述磁路组件5100中的所有组分(例如,第一磁性元件502,第一导磁元件504、第二导磁元件506以及第二磁性元件508)产生的磁场共同形成。所述第一全磁场在所述磁间隙内的磁场强度(也可以被称为磁感应强度或者磁通量密度)大于所述第二磁场在所述磁间隙内的磁场强度。在一些实施例中,第二磁性元件508可以产生第三磁场,所述第三磁场可以提高所述第二磁场在所述磁间隙处的磁场强度。
在一些实施例中,第二磁性元件508的磁化方向与第一磁性元件502的磁化方向之间的夹角在90度与180度之间。在一些实施例中,第二磁性元件508的磁化方向与第一磁性元件502的磁化方向之间的夹角在150度与180度之间。在一些实施例中,第二磁性元件508的磁化方向与第一磁性元件502的磁化方向相反(如图所示,a方向与b方向)。
与单一磁性元件的磁路组件相比,磁路组件5100增加了第二磁性元件508。第二磁性元件508磁化方向与第一磁性元件502磁化方向相反,可以抑制第一磁性元件502在磁化方向上的漏磁,从而使第一磁性元件502产生的磁场可以较多地被压缩到磁间隙中,因而提高磁间隙内的磁感应强度。
以上对磁路组件5100的结构的描述仅仅是具体的示例,不应被视为是唯一可行的实施方案。显然,对于本领域的专业人员来说,在了解骨磁路组件的基本原理后,可能在不背离这一原理的情况下,对实施磁路组件5100的具体方式与步骤进行形式和细节上的各种修正和改变,但是这些修正和改变仍在以上描述的范围之内。例如,第二导磁元件506可以是环形结构或片状结构。又例如,磁路组件5100可以进一 步包括一个导电元件,所述导电元件可以连接第一磁性元件502、第一导磁元件504、第二导磁元件506以及第二磁性元件508。
图5B是根据本申请的一些实施例所示的一种磁路组件5200的纵截面示意图。如图5B所示,与磁路组件5100不同的是,磁路组件5200可以进一步包括第三磁性元件510。
第三磁性元件510的下表面连接第二导磁元件506的侧壁。第一磁性元件502、第一导磁元件504、第二磁性元件508和/或第三磁性元件510之间可以形成磁间隙。音圈520可以设置于所述磁间隙中。在一些实施例中,第一磁性元件502、第一导磁元件504、第二导磁元件506、第二磁性元件508以及第三磁性元件510可以形成磁回路。在一些实施例中,第二磁性元件508的磁化方向可以参考本申请图3A的详细描述。
在一些实施例中,磁路组件5200可以产生第一全磁场,第一磁性元件502可以产生第二磁场,所述第一全磁场在所述磁间隙内的磁场强度大于所述第二磁场在所述磁间隙内的磁场强度。在一些实施例中,第三磁性元件510可以产生第三磁场,所述第三磁场可以提高所述第二磁场在所述磁间隙处的磁场强度。
在一些实施例中,第一磁性元件502的磁化方向与第三磁性元件510的磁化方向之间的夹角在0度与180度之间。在一些实施例中,第一磁性元件502的磁化方向与第三磁性元件510的磁化方向与之间的夹角在45度与135度之间。在一些实施例中,第一磁性元件502的磁化方向与所述第三磁性元件510的磁化方向之间的夹角等于或大于90度。在一些实施例中,第一磁性元件502的磁化方向垂直于第一磁性元件502的下表面或上表面竖直向上(如图中a所示方向),第三磁性元件510的磁化方向由第三磁性元件510的内环指向外环(如图中c所方向示,在第一磁性元件502的右侧,第一磁性元件502的磁化方向沿着顺时针方向偏转90度)。
在一些实施例中,在第三磁性元件510的位置处,所述第一全磁场的方向与第三磁性元件510的磁化方向之间的夹角不高于90度。在一些实施例中,在第三磁性元件510的位置处,第一磁性元件502产生的磁场的方向与第三磁性元件510的磁化方向之间的夹角可以是0度、10度、20度等小于或等于90度的夹角。
与磁路组件5100相比,磁路组件5200进一步增加了第三磁性元件510。第三磁性元件510可以进一步增加磁路组件5200中磁间隙内的总磁通量,进而增加磁间隙 中的磁感应强度。并且,在第三磁性元件510的作用下,磁感线会进一步向磁间隙所在位置收敛,进一步增加磁间隙中的磁感应强度。
图5C是根据本申请的一些实施例所示的一种磁路组件5300的纵截面示意图。如图5C所示,与磁路组件5100不同的是,磁路组件5300可以进一步包括第四磁性元件512。
第四磁性元件512可以通过粘接、卡接、焊接、铆接、螺栓连接等一种或多种组合连接第一磁性元件502以及第二导磁元件506的侧壁。在一些实施例中,第一磁性元件502、第一导磁元件504、第二导磁元件506、第二磁性元件508以及第四磁性元件512可以形成磁间隙。在一些实施例中,第二磁性元件508的磁化方向可以参考本申请图5A的详细描述。
在一些实施例中,磁路组件5200可以产生第一全磁场,第一磁性元件502可以产生第二磁场,所述第一全磁场在所述磁间隙内的磁场强度大于所述第二磁场在所述磁间隙内的磁场强度。在一些实施例中,第四磁性元件512可以产生第四磁场,所述第四磁场可以提高所述第二磁场在所述磁间隙处的磁场强度。
在一些实施例中,第一磁性元件502的磁化方向与第四磁性元件512的磁化方向之间的夹角在0度与180度之间。在一些实施例中,第一磁性元件502的磁化方向与第四磁性元件512的磁化方向与之间的夹角在45度与135度之间。在一些实施例中,第一磁性元件502的磁化方向与第四磁性元件512的磁化方向之间的夹角不高于90度。在一些实施例中,第一磁性元件502的磁化方向垂直于第一磁性元件502的下表面或上表面竖直向上(如图a方向所示),第四磁性元件512的磁化方向由第四磁性元件512的外环指向内环(如图中e方向所示,在第一磁性元件502的右侧,第一磁性元件502的磁化方向沿着顺时针方向偏转270度)。
在一些实施例中,在第四磁性元件512的位置处,所述第一全磁场的方向与所述第四磁性元件512的磁化方向之间的夹角不高于90度。在一些实施例中,在第四磁性元件512的位置,第一磁性元件502产生的磁场的方向与第四磁性元件512的磁化方向之间的夹角可以是0度、10度、20度等小于或等于90度的夹角。
与磁路组件5200相比,磁路组件5300进一步增加了第四磁性元件512。第四磁性元件512可以进一步增加磁路组件5300中磁间隙内的总磁通量,进而增加磁间隙中的磁感应强度。并且,在第四磁性元件512的作用下,磁感线会进一步向磁间隙所在位置收敛,进一步增加磁间隙中的磁感应强度。
图5D是根据本申请的一些实施例所示的一种磁路组件5400的纵截面示意图。如图5D所示,与磁路组件5200不同的是,磁路组件5400可以进一步包括第五磁性元件514。
第三磁性元件510的下表面连接第五磁性元件514,第五磁性元件514的下表面连接第二导磁元件506的侧壁。第一磁性元件502、第一导磁元件504、第二磁性元件508和/或第三磁性元件510之间可以形成磁间隙。音圈520可以设置于所述磁间隙中。在一些实施例中,第一磁性元件502、第一导磁元件504、第二导磁元件506、第二磁性元件508、第三磁性元件510以及第五磁性元件514可以形成磁回路。在一些实施例中,第二磁性元件508的磁化方向以及第三磁性元件510可以参考本申请图5A以及5B的详细描述。
在一些实施例中,磁路组件5400可以产生第一全磁场,第一磁性元件502可以产生第二磁场,所述第一全磁场在所述磁间隙内的磁场强度大于所述第二磁场在所述磁间隙内的磁场强度。在一些实施例中,第五磁性元件514可以产生第五磁场,所述第五磁场可以提高所述第二磁场在所述磁间隙处的磁场强度。
在一些实施例中,第一磁性元件502的磁化方向与第五磁性元件514的磁化方向之间的夹角在0度与180度之间。在一些实施例中,第一磁性元件502的磁化方向与第五磁性元件514的磁化方向与之间的夹角在45度与135度之间。在一些实施例中,第一磁性元件502的磁化方向与第五磁性元件514的磁化方向之间的夹角等于或大于90度。
在一些实施例中,在第五磁性元件514的位置处,所述第一全磁场的方向与第五磁性元件514的磁化方向之间的夹角不高于90度。在一些实施例中,在第五磁性元件514的位置处,第一磁性元件502产生的磁场的方向与第五磁性元件514的磁化方向之间的夹角可以是0度、10度、20度等小于或等于90度的夹角。在一些实施例中,第一磁性元件502的磁化方向垂直于第一磁性元件502的下表面或上表面竖直向上(如图a方向所示),第五磁性元件514的磁化方向由第五磁性元件514的上表面指向下表面(如图中d方向所示,在第一磁性元件502的右侧,第一磁性元件502的磁化方向沿着顺时针方向偏转180度)。
与磁路组件5200相比,磁路组件5400进一步增加了第五磁性元件514。第五磁性元件514可以进一步增加磁路组件5400中磁间隙内的总磁通量,进而增加磁间隙 中的磁感应强度。并且,在第四磁性元件514的作用下,磁感线会进一步向磁间隙所在位置收敛,进一步增加磁间隙中的磁感应强度。
图5E是根据本申请的一些实施例所示的一种磁路组件5500的纵截面示意图。如图5E所示,与磁路组件5300不同的是,磁路组件5500可以进一步包括第六磁性元件516。
第六磁性元件516可以通过粘接、卡接、焊接、铆接、螺栓连接等一种或多种组合连接第二磁性元件508以及第二导磁元件506的侧壁。在一些实施例中,第一磁性元件502、第一导磁元件504、第二导磁元件506、第二磁性元件508、第四磁性元件512以及第六磁性元件516可以形成磁间隙。在一些实施例中,第二磁性元件508和第四磁性元件512的磁化方向可以参考本申请图5A及5C的详细描述。
在一些实施例中,磁路组件5500可以产生第一全磁场,第一磁性元件502可以产生第二磁场,所述第一全磁场在所述磁间隙内的磁场强度大于所述第二磁场在所述磁间隙内的磁场强度。在一些实施例中,第六磁性元件516可以产生第六磁场,所述第六磁场可以提高所述第二磁场在所述磁间隙处的磁场强度。
在一些实施例中,第一磁性元件502的磁化方向与第六磁性元件516的磁化方向之间的夹角在0度与180度之间。在一些实施例中,第一磁性元件502的磁化方向与第六磁性元件516的磁化方向与之间的夹角在45度与135度之间。在一些实施例中,第一磁性元件502的磁化方向与第六磁性元件516的磁化方向之间的夹角不高于90度。在一些实施例中,第一磁性元件502的磁化方向垂直于第一磁性元件502的下表面或上表面竖直向上(如图a方向所示),第六磁性元件516的磁化方向由第六磁性元件516的外环指向内环(如图中f方向所示,在第一磁性元件502的右侧,第一磁性元件502的磁化方向沿着顺时针方向偏转270度)。
在一些实施例中,在第六磁性元件516的位置处,所述第一全磁场的方向与第六磁性元件516的磁化方向之间的夹角不高于90度。在一些实施例中,在第六磁性元件516的位置处,第一磁性元件502产生的磁场的方向与第六磁性元件516的磁化方向之间的夹角可以是90度、110度、120度等大于90度的夹角。
与磁路组件5100相比,磁路组件5500进一步增加了第四磁性元件512和第六磁性元件516。第四磁性元件512和第六磁性元件516可以提高磁路组件5500中磁间隙内总的磁通量,提高磁间隙处的磁感应强度,从而提高骨传导扬声器的灵敏度。
图5F是根据本申请的一些实施例所示的一种磁路组件5600的纵截面示意图。如图5F所示,与磁路组件5100不同的是,磁路组件5600可以进一步包括第三导磁元件518。
在一些实施例中,第三导磁元件518可以包括本申请中描述的任意一种或几种导磁材料。第一导磁元件504、第二导磁元件506和/或第三导磁元件518所包括的导磁材料可以相同或不同。在一些实施例中,第三导磁元件5186可以设置为对称结构。例如,第三导磁元件518可以是圆柱体。在一些实施例中,第一磁性元件502、第一导磁元件504、第二磁性元件508和/或第三导磁元件518可以是共轴的圆柱体,含有相同或者不同的直径。第三导磁元件518可以连接第二磁性元件508。在一些实施例中,第三导磁元件518可以连接第二磁性元件5084以及第二导磁元件506以使得第三导磁元件518与第二导磁元件506形成一腔体,所述腔体可以包含第一磁性元件502、第二磁性元件508以及第一导磁元件504。
与磁路组件5100相比,磁路组件5600进一步增加了第三导磁元件518。第三导磁元件518可以抑制磁路组件5600中第二磁性元件508在磁化方向上的漏磁,从而使第二磁性元件508产生的磁场可以较多地被压缩到磁间隙内,因而提高磁间隙内的磁感应强度。
图6A是根据本申请的一些实施例所示的一种磁性元件结构的横截面示意图。所述磁性元件600可以适用于本申请中任一磁路组件中(例如,图3A-3G、图4A-4M或图5A-5F所示的磁路组件)。如图所示,磁性元件600可以是环状的。磁性元件600可以包括内环602以及外环604。在一些实施例中,所述内环602和/或外环604的形状可以是圆形、椭圆、三角形、四边形或其它任意多边形。
图6B是根据本申请的一些实施例所示的一种磁性元件结构的示意图。所述磁性元件可以适用于本申请中任一磁路组件中(例如,图3A-3G、图4A-4M或图5A-5F所示的磁路组件)。如图所示,所述磁性元件可以由多个磁体排列组成。所述磁体的任意一个磁体的两端可以与相邻的磁体的两端连接或存在一定的间距。多个磁体之间的间距可以相同或不同。在一些实施例中,所述磁性元件可以由2个或3个片状的磁体(例如,磁体608-2,608-4,以及608-6)等距排列构成。所述片状的磁体的形状可以是扇形、四边形等。
图6C是根据本申请的一些实施例所示的磁路组件中磁性元件的磁化方向示意图。如图所述,所述磁路组件可以包括第一磁性元件601、第二磁性元件603以及第三 磁性元件605。第一磁性元件601的磁化方向可以是由第一磁性元件601的下表面指向上表面(即垂直于纸面向外的方向)。第二磁性元件603可以环绕第一磁性元件601设置。第二磁性元件503的内环与第一磁性元件601的内环之间可以形成磁间隙。第二磁性元件603的磁化方向可以由第二磁性元件603的内环指向外环。第三磁性元件605的内环可以连接第一磁性元件601的外环,第三磁性元件605的外环可以连接第二磁性元件603的内环。第三磁性元件605的磁化方向可以由第三磁性元件603的外环指向内环。
图6D是根据本申请的一些实施例所示的一种磁路组件中的磁性元件的磁感应线示意图。如图所示,磁路组件600(例如,如图3A-3G、4A-4M或图5A-5F所示的磁路组件)可以包括第一磁性元件602以及第二磁性元件604。第一磁性元件602的磁化方向可以是第一磁性元件602的下表面指向上表面(如箭头a所示)。第一磁性元件602可以产生第二磁场,所述第二磁场可以由磁感应线表示(图中实线表示在没有第二磁性元件604存在的情况下,第二磁场的分布),所述第二磁场在某一点处的磁场方向为该点在磁感应线上的切线方向。第二磁性元件604的磁化方向可以是第二磁性元件604的内环指向外环(如箭头b所示)。第二磁性元件604可以产生第三磁场。所述第三磁场也可以由磁感应线表示(图中虚线表示在没有第一磁性元件602存在的情况下,第三磁场的分布),所述第三磁场在某一点处的磁场方向为该点在第三磁感应线上的切线方向。在所述第二磁场和所述第三磁场的相互作用下,所述磁路组件600可以产生第一全磁场。所述第一全磁场在音圈606处的磁场强度大于所述第二磁场或所述第三磁场在音圈606处的磁场强度。如图所示,所述第二磁场在音圈606处的磁场方向与所述第二磁性元件604的磁化方向的夹角小于或等于90度。
图7A是根据本申请的一些实施例所示的一种磁路组件7000的结构示意图。如图所示,磁路组件7000可以包括第一磁性元件702、第一导磁元件704、第一环形磁性元件706以及第二环形磁性元件708。第一环形磁性元件706也可称为第一全磁场改变元件(如图4A中所述的第一全磁场改变元件406)。第一磁性元件702、第一导磁元件704、第一环形磁性元件706、第二环形磁性元件708可以参考本申请图4A、4B、4C、4D、4E、4F、4G、4H和/或4M中的详细描述。例如,第一环形磁性元件706可以是磁性材料一体成型,也可以是多个磁性元件拼接组合而成。第二环形磁性元件708可以是磁性材料一体成型,也可以是多个磁性元件拼接组合而成。又例如,第二环形磁性元件708可以连接第一磁性元件702以及第一环形磁性元件706。 进一步地,第一环形磁性元件706连接于第二环形磁性元件708的上表面,第二环形磁性元件708的内壁连接第一磁性元件702的外壁。
第一磁性元件702、第一导磁元件704、第一环形磁性元件706、第二环形磁性元件708可以形成磁回路以及磁间隙。音圈720可以放置于所述磁间隙中。音圈720可以是圆形或非圆形。所述非圆形可以包括椭圆形、三角形、四边形、五边形、其它多边形或其它不规则形状。当在音圈720内通过交变电流时,处于所述磁间隙内的音圈720在磁回路中的磁场作用下因受到安培力发生振动,从而将声音信号转换为振动信号,所述振动信号通过骨传导耳机中的其它组件(例如,图1所示的振动组件104)经人体组织与骨骼传递到听觉神经,从而使人听到声音。音圈所受安培力的大小可以影响音圈的振动,从而进一步影响骨传导耳机的灵敏度。音圈所受安培力的大小与磁间隙中的磁感应强度有关,进一步地,可以通过调节磁路组件的参数改变磁间隙中的磁感应强度。
磁路组件7000的参数可以包括第一磁性元件702的厚度H(如图7A中所示,即第一磁性元件702的高度H)、第一环形磁性元件706的厚度w、第二环形磁性元件708的高度h、磁路半径R等。在一些实施例中,所述磁路(即磁回路)半径R可以指的是磁回路的平均半宽度,即等于所述磁路组件的中心轴线(如图7A中虚线所示)与第一环形磁性元件706的外壁之间的距离。在一些实施例中,磁路组件7000的参数还可以包括磁路半径R与第一磁性元件702的厚度H之比(可以表示为R/H)、第一环形磁性元件706的厚度w与磁路半径R之比(可以表示为w/R)、第二环形磁性元件708的高度h与第一磁性元件702的厚度H之比(可以表示为h/H)等。在一些实施例中,磁路半径R与第一磁性元件702的厚度H之比R/H取值范围为2.0-4.0。例如,磁路半径R与第一磁性元件702的厚度H之比R/H可以是2.0、2.4、2.8、3.2、3.6、4.0。第二环形磁性元件708的高度h与第一磁性元件702的厚度H之比h/H可以不大于0.8、或不大于0.6、或不大于0.5等。例如,第二环形磁性元件708的高度h与第一磁性元件702的厚度H之比h/H可以等于0.4。第一环形磁性元件706的厚度w与磁路半径R之比w/R可以在0.05-0.50,或0.1-0.35,或0.1-0.3、或0.1-0.25、或0.1-0.20等范围内。例如,第一环形磁性元件706的厚度w与磁路半径R之比w/R可以在0.16-0.18范围内。
在一些实施例中,可以在第一磁性元件702的厚度H与磁路半径R之比不变的情况下(即R/H不变),优化w/R和h/H两个参数,使得磁间隙处的磁感应强度及 音圈所受安培力最大,即驱动力系数BL值最大。关于参数w/R和h/H与驱动力系数BL之间关系的更多描述可以参考图7B中的详细描述。在一些实施例中,可以通过设置不同R/H,通过调节w/R和h/H两个参数,使得磁间隙处的磁感应强度及线圈受到的安培力最大,即驱动力系数BL值最大。关于参数R/H、w/R、h/H与驱动力系数BL之间的关系的更多描述可以参考图7C-7E中的详细描述。
图7B是根据本申请的一些实施例所示的音圈720处的驱动力系数与图7A所示的磁路组件参数的关系曲线。如图7B所示,当磁路半径R与第一磁性元件702的厚度H之比不变时(即R/H不变),驱动力系数BL随参数w/R和h/H的变化而变化。在一些实施例中,当第一环形磁性元件706的厚度w与磁路半径R之比w/R不变时,第二环形磁性元件708的高度h与第一磁性元件702的厚度H之比h/H越大,则驱动力系数BL越大。进一步地,若磁路大小(即磁路半径R)不变,第二环形磁性元件708的高度h越大,则第二环形磁性元件708的高度h与第一磁性元件702的厚度H之比h/H可以越大,驱动力系数BL越大。但随着第二环形磁性元件708的高度h增加,第二环形磁性元件708与音圈720的距离变小,音圈720在振动过程中与第二环形磁性元件708容易发生碰撞,产生破音,从而影响骨传导耳机的音质。如图7B所示,第二环形磁性元件708的高度h与第一磁性元件702的厚度H之比h/H可以不大于0.8、或不大于0.6、或不大于0.5等。例如,第二环形磁性元件708的高度h与第一磁性元件702的厚度H之比h/H可以等于0.4。
在一些实施例中,当第二环形磁性元件708的高度h与第一磁性元件702的厚度H之比h/H不变时,驱动力系数BL随着第一环形磁性元件706的厚度w与磁路半径R之比w/R的增加可以先变大后变小。最大驱动力系数BL对应的第一环形磁性元件706的厚度w与磁路半径R之比w/R在一定范围内。例如,当第二环形磁性元件708的高度h与第一磁性元件702的厚度H之比h/H为0.4时,若使驱动力系数BL最大,第一环形磁性元件706的厚度w与磁路半径R之比w/R可以在0.08-0.25范围内。当第二环形磁性元件708的高度h与第一磁性元件702的厚度H之比h/H不同时,最大驱动力系数BL对应不同的第一环形磁性元件706的厚度w与磁路半径R之比w/R所在的范围会发生改变。例如,当第二环形磁性元件708的高度h与第一磁性元件702的厚度H之比h/H为0.72时,若使驱动力系数BL最大,第一环形磁性元件706的厚度w与磁路半径R之比w/R可以在0.04-0.20范围内。关于最大驱动力系数 BL下第一环形磁性元件706的厚度w与磁路半径R之比w/R的取值范围的更多描述可以参考图7C-7E。
图7C-7E是根据本申请的一些实施例所示的音圈720处的驱动力系数与图7A所示的磁路组件参数的关系曲线。如图7C-7E所示,音圈720在磁路组件7000中的驱动力系数BL随磁路组件7000的参数R/H、w/R和h/H变化而变化。如图7C所示,当磁路半径R与第一磁性元件702的厚度H之比R/H为2.0和2.4,若使驱动力系数BL最大,第一环形磁性元件706的厚度w与磁路半径R之比w/R可以在0.05-0.20,或0.05-0.15,或0.05-0.25、或0.1-0.25、或0.1-0.18等范围内。如图7D所示,当磁路半径R与第一磁性元件702的厚度H之比R/H为2.8和3.2,若使驱动力系数BL最大,第一环形磁性元件706的厚度w与磁路半径R之比w/R可以在0.05-0.25、或0.1-0.20、或0.05-0.30、或0.10-0.25范围内。如图7E所示,当磁路半径R与第一磁性元件702的厚度H之比R/H为3.6和4.0,若使驱动力系数BL最大,第一环形磁性元件706的厚度w与磁路半径R之比w/R可以为0.05-0.20、或0.10-0.15、或0.05-0.25、或0.10-0.20范围内。
结合图7C-7E,当第二环形磁性元件708的高度h与第一磁性元件702的厚度H之比h/H为0.4时,若使驱动力系数BL最大,第一环形磁性元件706的厚度w与磁路半径R之比w/R可以在0.15-0.20、或0.16-0.18范围内。
图8A是根据本申请的一些实施例所示的一种磁路组件8000的结构示意图。如图所示,磁路组件8000可以包括第一磁性元件802、第一导磁元件804、第一环形磁性元件806、第二环形磁性元件808以及导磁罩814。第一环形磁性元件806也可称为第一全磁场改变元件(如图4A中所述的第一全磁场改变元件406)。第一磁性元件802、第一导磁元件804、第一环形磁性元件806、第二环形磁性元件808、导磁罩804可以参考本申请图4A、4B、4C、4D、4E、4F、4G、4H和/或4M中的详细描述。例如,第一环形磁性元件806可以是磁性材料一体成型,也可以是多个磁性元件拼接组合而成。第二环形磁性元件808可以是磁性材料一体成型,也可以是多个磁性元件拼接组合而成。又例如,导磁罩814环绕第一磁性元件802、第一环形磁性元件806以及第二环形磁性元件808。在一些实施例中,导磁罩814可以包括底板和侧壁,所述侧壁为环形结构。在一些实施例中,所述底板和侧壁可以是一体成型。第一磁性元件802、第一导磁元件804、第一环形磁性元件806、第二环形磁性元件808可以形成磁回路及磁间隙。音圈820可以放置于所述磁间隙中。音圈820可以是圆形或非圆形。 所述非圆形可以包括椭圆形、三角形、四边形、五边形、其它多边形或其它不规则形状。
磁路组件8000的参数可以包括第一磁性元件802的厚度H(如图8A中所示,即第一磁性元件802的高度H)、第一环形磁性元件806的厚度w、第二环形磁性元件808的高度h、磁路半径R等。在一些实施例中,所述磁路(即磁回路)半径R可以等于所述磁路组件8000的中心轴线(如图8A中虚线所示)与第一环形磁性元件806的外壁之间的距离。在一些实施例中,磁路组件8000的参数还可以包括磁路半径R与第一磁性元件802的厚度H之比(可以表示为R/H)、第一环形磁性元件806的厚度w与磁路半径R之比(可以表示为w/R)、第二环形磁性元件808的高度h与第一磁性元件802的厚度H之比(可以表示为h/H)等。在一些实施例中,磁路半径R与第一磁性元件802的厚度H之比R/H取值范围为2.0-4.0。例如,磁路半径R与第一磁性元件802的厚度H之比R/H可以是2.0、2.4、2.8、3.2、3.6、4.0。第二环形磁性元件808的高度h与第一磁性元件802的厚度H之比h/H可以不大于0.8、或不大于0.6、或不大于0.5等。例如,第二环形磁性元件808的高度h与第一磁性元件702的厚度H之比h/H可以等于0.4。第一环形磁性元件806的厚度w与磁路半径R之比w/R可以在0.02-0.50,或0.05-0.35,或0.05-0.25、或0.1-0.25、或0.1-0.20等范围内。例如,第一环形磁性元件806的厚度w与磁路半径R之比w/R可以在0.16-0.18范围内。在一些实施例中,可以在第一磁性元件802的厚度H与磁路半径R不变的情况下(即R/H不变),优化w/R和h/H两个参数,使得磁间隙处的磁感应强度及线圈受到的安培力最大,即驱动力系数BL值最大。关于参数w/R和h/H与驱动力系数BL之间的关系可以参考图8B中的详细描述。在一些实施例中,可以在改变R/H情况下,调节w/R和h/H两个参数,使得磁间隙处的磁感应强度及线圈受到的安培力最大,即驱动力系数BL值最大。关于参数R/H、w/R、h/H与驱动力系数BL之间关系可以参考图8C-8E中的详细描述。
图8B是根据本申请的一些实施例所示的音圈820处的驱动力系数与图8A所示的磁路组件参数的关系曲线。如图8B所示,当磁路半径R与第一磁性元件802的厚度H之比不变时(即R/H不变),驱动力系数BL随参数w/R和h/H的变化而变化。在一些实施例中,当第一环形磁性元件806的厚度w与磁路半径R之比w/R不变时,第二环形磁性元件808的高度h与第一磁性元件802的厚度H之比h/H越大,则驱动力系数BL越大。进一步地,第二环形磁性元件808的高度h越大,则第二环形 磁性元件808的高度h与第一磁性元件702的厚度H之比h/H可以越大,驱动力系数BL越大。如图8B所示,第二环形磁性元件808的高度h与第一磁性元件802的厚度H之比h/H可以不大于0.8、或不大于0.6、或不大于0.5。例如,第二环形磁性元件808的高度h与第一磁性元件802的厚度H之比h/H可以等于0.4。
在一些实施例中,当第二环形磁性元件808的高度h与第一磁性元件802的厚度H之比h/H不变时,驱动力系数BL随着第一环形磁性元件806的厚度w与磁路半径R之比w/R的变化而变化。例如,当第二环形磁性元件808的高度h与第一磁性元件802的厚度H之比h/H为0.4时,驱动力系数BL随着第一环形磁性元件806的厚度w与磁路半径R之比w/R先增大而减小。当第二环形磁性元件808的高度h与第一磁性元件802的厚度H之比h/H不同时,最大驱动力系数BL对应不同的第一环形磁性元件806的厚度w与磁路半径R之比w/R所在的范围会发生改变。例如,当第二环形磁性元件808的高度h与第一磁性元件802的厚度H之比h/H为0.4时,若使驱动力系数BL最大,第一环形磁性元件806的厚度w与磁路半径R之比w/R为0.02-0.22范围内。当第二环形磁性元件808的高度h与第一磁性元件802的厚度H之比h/H为0.72时,若使驱动力系数BL最大,第一环形磁性元件806的厚度w与磁路半径R之比w/R可以在0.02-0.16范围内。
结合图7B所示,当磁路组件8000与7000的参数R/H、w/R、h/H相同时,音圈在有导磁罩的磁路组件8000中的驱动力系数BL大于在没有导磁罩的磁路组件7000中的驱动力系数BL,即音圈在磁路组件8000中受到的安培力大于在磁路组件7000中受到的安培力。例如,如图7B与8B所示,若w/R以及h/H分别为0.21以及0.4左右时,音圈在磁路组件8000中的驱动力系数BL为2.817,在磁路组件7000中的驱动力系数BL为2.376。
图8C-8E是根据本申请的一些实施例所示的音圈820处的驱动力系数与图8A所示的磁路组件参数的关系曲线。如图8C-8E所示,音圈820在磁路组件8000中的驱动力系数BL随磁路组件8000的参数R/H、w/R和h/H变化而变化。如图8C所示,当磁路半径R与第一磁性元件802的厚度H之比R/H为2.0和2.4,若使驱动力系数BL最大,第一环形磁性元件806的厚度w与磁路半径R之比w/R可以在或0.02-0.15,或0.05-0.15,或0.02-0.20范围内。如图8D所示,当磁路半径R与第一磁性元件802的厚度H之比R/H为2.8和3.2,若使驱动力系数BL最大,第一环形磁性元件806的厚度w与磁路半径R之比w/R可以在0.01-0.20、或0.05-0.15、或0.02-0.25、或 0.10-0.15。如图8E所示,当磁路半径R与第一磁性元件802的厚度H之比R/H为3.6和4.0,若使驱动力系数BL最大,第一环形磁性元件806的厚度w与磁路半径R之比w/R可以在0.02-0.20、或0.05-0.15、或0.05-0.25、或0.10-0.20范围内。
结合图8C-8E,当第二环形磁性元件808的高度h与第一磁性元件802的厚度H之比h/H为0.4时,若使驱动力系数BL最大,第一环形磁性元件806的厚度w与磁路半径R之比w/R可以在0.05-0.20或0.16-0.18范围内。分别对比图7C与8C、图7D与8D以及图7E与8E,当磁路半径R与第一磁性元件802的厚度H之比R/H相同时,若使驱动力系数BL最大,具有导磁罩的磁性组件8000中的第一环形磁性元件806的厚度w与磁路半径R之比w/R相对于磁性组件7000沿减小的趋势变化。例如,当磁路半径R与第一磁性元件802(或702)的厚度H之比R/H为2.0时,若使驱动力系数BL最大,具有导磁罩的磁性组件8000中的第一环形磁性元件806的厚度w与磁路半径R之比w/R在0.02-0.15范围内。没有导磁罩的磁性组件7000中的第一环形磁性元件706的厚度w与磁路半径R之比w/R在0.05-0.25范围内。
图9A是根据本申请的一些实施例所示的一种磁路组件900的磁感线分布示意图。如图所示,磁路组件900可以包括第一磁性元件902、第一导磁元件904、第二导磁元件906以及第二磁性元件914。第一磁性元件902、第一导磁元件904、第二导磁元件906以及第二磁性元件914可以参考本申请图3D中对第一磁性元件302、第一导磁元件304、第二导磁元件306以及第二磁性元件314的详细描述。第一磁性元件902的磁化方向与是第二磁性元件914的磁化方向相反,第一磁性元件902产生的磁感线与第二磁性元件914产生的磁感线相互作用,使得第一磁性元件902产生的磁感线与第二磁性元件914产生的磁感线可以较多的垂直穿过音圈928,减少第一磁性元件902在音圈928处磁化方向的泄露的磁感线。
图9B是根据本申请的一些实施例所示的音圈处的磁感应强度与图9A所示的磁路组件900中元件厚度的关系曲线。其中,横坐标为第一磁性元件902厚度(h3)与第一磁性元件902厚度(h3)、第一导磁元件904厚度(h2)以及第二磁性元件914厚度(h5)的厚度之和(h2+h3+h5)的比值,以下简称第一厚度比。纵坐标为音圈928处的归一化磁感应强度,所述归一化磁感应强度可以是音圈928处实际的磁感应强度与单磁性磁路组件形成的磁回路下最大的磁感性强度之比。所述单磁路组件可以指的是磁路组件形成的磁回路中只包括一个磁性元件。例如,所述单磁性磁路组件可以包括第一磁性元件、第一导磁元件以及第二导磁元件。所述单磁性磁路组件中磁性元件的体积与与 单磁路组件对应的多磁路组件中的磁性元件(例如,磁路组件900中的第一磁性元件902及第二磁性元件914)的体积之和相等。k为第一导磁元件904的厚度(h2)与第一磁性元件902、第一导磁元件904以及第二磁性元件914的厚度之和(h2+h3+h5)的比值,以下简称第二厚度比(在图中以“k”来表示)。如图所示,随着第一厚度比的逐渐增加,音圈928处的磁感应强度逐渐增大,并达到某一值后逐渐降低,即所述音圈928处的磁感应强度存在极大值,所述极大值对应的第一厚度比的范围在0.4-0.6之间。所述极大值对应的第二厚度比的范围在0.26-0.34之间。
图10A是根据本申请的一些实施例所示的一种磁性组1000的磁感线分布示意图。如图所示,磁路组件1000可以包括第一磁性元件1002、第一导磁元件1004、第二导磁元件1006、第二磁性元件1014以及第三导磁元件1016。第一磁性元件1002、第一导磁元件1004、第二导磁元件1006、第二磁性元件1014以及第三导磁元件1016可以参考本申请图3E中对第一磁性元件302、第一导磁元件304、第二导磁元件306、第二磁性元件308、第二磁性元件314以及第三导磁元件316的详细描述。其中,第三导磁元件1016未与第二导磁元件1006连接。第一磁性元件1002的磁化方向与是第二磁性元件1014的磁化方向相反,第一磁性元件1002产生的磁感线与第二磁性元件1014产生的磁感线相互作用,使得第一磁性元件1002产生的磁感线与第二磁性元件1014产生的磁感线可以较多的垂直穿过音圈1028,减少第一磁性元件1002在音圈1028处的泄露的磁感线。第三导磁板1016进一步减小第一磁性元件1002在音圈1028处的泄露的磁感线。
图10B是根据本申请的一些实施例所示的音圈处的磁感应强度与磁路组件中元件厚度的关系曲线。其中,曲线a对应图9A所示的磁路组件900,曲线b对应图10A所示的磁路组件1000。横坐标为第一厚度比,纵坐标为音圈928或1028处的归一化磁感应强度,所述第一厚度比与归一化磁感应强度可以参考本申请附图9B中的详细描述。曲线a为音圈928在磁路组件900中的磁感应强度与第一厚度比的变化关系曲线,曲线b为音圈1028在磁路组件1000中的磁感应强度与第一厚度比的变化关系曲线。如图10B所示,设置第三导磁元件1016的磁路组件1000,在第一厚度比的范围在0-0.55之间的情况下,音圈1028处的磁感应强度显著强于音圈928处的磁感应强度(如曲线b对应的磁感应强度高于曲线a对应的磁感应强度)。在第一厚度比的范围在0.55-1之间的情况下,音圈1028处的磁感应强度显著低于于音圈928处的磁感应强度(如曲线b对应的磁感应强度低于曲线a对应的磁感应强度)。
图11A是根据本申请的一些实施例所示的一种磁路组件1100的磁感线分布示意图。如图所示,磁路组件1100可以包括第一磁性元件1102、第一导磁元件1104、第二导磁元件1106、第二磁性元件1114以及第三导磁元件1116。第一磁性元件1102、第一导磁元件1104、第二导磁元件1106、第二磁性元件1114以及第三导磁元件1116可以参考本申请图3E中对第一磁性元件302、第一导磁元件304、第二导磁元件306、第二磁性元件308、第五磁性元件314以及第三导磁元件316的详细描述。第三导磁元件1116连接第二导磁元件1106。第一磁性元件1102的磁化方向与第二磁性元件1114的磁化方向相反。第一磁性元件1102的磁场与第二磁性元件1114的磁场在第一磁性元件1102和第二磁性元件1114的交界处相互排斥,使得原本发散的磁场(例如,仅由第一磁性元件1102产生的磁场或者仅由第二磁性元件1114产生的磁场)在相互排斥的磁场作用下可以穿过音圈1128,从而增加音圈1128处的磁场强度。第三导磁板1116与第二导磁元件1106连接,使得第二磁性元件1114以及第一磁性元件1102的磁场被束缚在第二导磁元件1106以及第三导磁元件1116形成的磁回路中,进一步增加了音圈1128处的磁感应强度。
图11B是根据本申请的一些实施例所示磁感应强度与磁路组件中各元件厚度的关系曲线。其中,曲线a对应图9A所示的磁路组件900,曲线b对应图10A所示的磁路组件1000,曲线c对应图11A所示的磁路组件1100。横坐标为第一磁性元件(902、1002、1102)厚度(h3),与第一磁性元件(902、1002、1102)以及第二磁性元件(914、1014、1114)的厚度之和(h3+h5)的比值,以下简称为第三厚度比。纵坐标为音圈(928、1028、1128)处的归一化磁感应强度,所归一化磁感应强度可参考本申请图9B中的详细描述。曲线a为音圈928在磁路组件900中的磁感应强度与第一厚度比的变化关系曲线,曲线b为音圈1028在磁路组件1000中的磁感应强度与第一厚度比的变化关系曲线,曲线c为音圈1128在磁路组件1100中的磁感应强度与第一厚度比的变化关系曲线。如图11B所示,包含第三导磁元件(例如,导磁元件1014、导磁元件1114)的磁路组件1000以及1100,在第一厚度比小于0.7的情况下,对应音圈(例如,音圈1028、音圈1128)处的磁感应强度强于不包含第三导磁元件的磁路组件900中音圈928处的磁感应强度(如曲线b、曲线c对应的磁感应强度高于曲线a对应的磁感应强度)。当第三导磁元件与第二导磁元件相互连接时(例如,磁路组件1100中的第三导磁元件1116与第二导磁元件1106相互连接),音圈 1128处的磁感应强度强于音圈1028处的磁感应强度(如曲线c对应的磁感应强度高于曲线b对应的磁感应强度)。
图11C是根据本申请的一些实施例所示的音圈处的磁感应强度与图11A所示的磁路组件1100中元件厚度的关系曲线。横坐标为第二厚度比(在图中以“h2/(h2+h3+h5)”来表示),纵坐标为音圈1128处的归一化磁感应强度,所述第二厚度比与归一化磁感应强度可参考本申请图9B中的详细描述。如图11C所示,随着第二厚度比逐渐增加,音圈1128处的磁感应强度逐渐增加到最大值后减小。所述磁感应强度最大值对应的第二厚度比的范围在0.3-0.6之间。
图12A是根据本申请的一些实施例所示的一种磁路组件1200的结构示意图。如图所示,骨传导扬声器1200可以包括第一磁性元件1202、第一导磁元件1204、第二导磁元件1206以及第一导电元件1208。第一磁性元件1202、第一导磁元件1204、第二导磁元件1206以及第一导电元件1208可以参考本申请中的相关描述。第一导电元件1204可以凸出于第一磁性元件1202,形成第一凹部,第一导电元件1208可以设置与所述第一凹部并连接第一磁性元件1202。
第一磁性元件1202、第一导磁元件1204以及第二导磁元件1206可以形成磁间隙。音圈1210可以放置于所述磁间隙中。音圈1210的横截面形状可以是圆形或非圆形,例如椭圆形、长方形、正方形、五边形、其它多边形或其它不规则形状。在一些实施例中,音圈1210内可以通入交变电流,所述交变电流的方向如图所示,垂直于纸面向里。在由第一磁性元件1202、第一导磁元件1204以及第二导磁元件1206形成的磁回路中,音圈1210在所述磁回路中的磁场作用下,可以产生交变的感应磁场A(也可以被称为“第一交变感应磁场”),所述感应磁场A的方向为逆时针方向(如A所示)。所述交变的感应磁场A会使得音圈1210内产生反向的感应电流,从而减小音圈1210内电流。第一导电元件1208在所述交变的感应磁场A作用下可以产生交变感应电流,所述交变感应电流在所述磁回路中的磁场作用下,可以产生交变的感应磁场B(也可以被称为“第二交变感应磁场”)。所述感应磁场B的方向为逆时针方向(如B所示)。由于感应磁场A与感应磁场B的方向相反,从而使得音圈1210内的反向感应电流减小,即音圈1210内的感抗减小,增大音圈1210内的电流。
上对磁路组件1200的结构的描述仅仅是具体的示例,不应被视为是唯一可行的实施方案。显然,对于本领域的专业人员来说,在了解骨传导扬声器的基本原理后,可能在不背离这一原理的情况下,对实施磁路组件1200的具体方式与步骤进行形 式和细节上的各种修正和改变,但是这些修正和改变仍在以上描述的范围之内。例如,第一导电元件1208可以设置于音圈1210附近,例如音圈1210的内壁、外壁、上表面和/或下表面。
图12B是根据本申请的一些实施例所示的图12A所示的磁路组件1200中导电元件对音圈中感抗的影响曲线。其中,曲线a对应未设置第一导电元件1208的磁路组件1200,曲线b对应设置第一导电元件1208的磁路组件1200。横坐标为音圈1210内交变电流频率,纵坐标为音圈1210内感抗。如图12B所示,当交变电流频率增大至1200HZ左右,音圈1210内感抗随交变电流频率的增大而增大,在设置第一导电元件1208的情况下,音圈内的感抗显著低于未设置第一导电元件1208时的音圈内的感抗(如曲线b对应的感抗低于曲线a对应的感抗)。
图13A是根据本申请的一些实施例所示的一种磁路组件1300的结构示意图。如图所示,磁路组件1300可以包括第一磁性元件1302、第一导磁元件1304、第二导磁元件1306以及第一导电元件1318。第一磁性元件1302、第一导磁元件1304、第二导磁元件1306以及第一导电元件1318可以参考本申请中的相关描述。第一导电元件1318可以连接第一导磁元件1304的上表面。第一导电元件1318的形状可以是片状、环状、网状、孔板等。
第一磁性元件1302、第一导磁元件1304以及第二导磁元件1306可以形成磁间隙。音圈1328可以放置于所述磁间隙中。音圈1328的横截面形状可以是圆形或非圆形。所述非圆形可以包括椭圆形、三角形、四边形、五边形、其它多边形或其它不规则形状。
以上对磁路组件1300的结构的描述仅仅是具体的示例,不应被视为是唯一可行的实施方案。显然,对于本领域的专业人员来说,在了解磁路组件的基本原理后,可能在不背离这一原理的情况下,对实施磁路组件1300的具体方式与步骤进行形式和细节上的各种修正和改变,但是这些修正和改变仍在以上描述的范围之内。例如,第一导电元件1318可以设置于音圈1328附近,例如音圈1328的内壁、外壁、上表面和/或下表面。
图13B是根据本申请的一些实施例所示的图13A所示的磁路组件1300中导磁元件对音圈中感抗的影响曲线。其中,曲线a对应未设置第一导电元件1318的磁路组件1300,曲线b对应设置第一导电元件1318的磁路组件1300。横坐标为音圈1110内交变电流频率,纵坐标为音圈1110内感抗。如图13B所示,当交变电流频率增大至 1200HZ左右,音圈1110内感抗随交变电流频率的增大而增大,在设置第一导电元件1318的情况下,音圈1110内的感抗显著低于未设置第一导电元件1318时的音圈内的感抗(如曲线b对应的感抗低于曲线a对应的感抗)。
图14A是根据本申请的一些实施例所示的一种磁路组件1400的结构示意图。如图所示,磁路组件1400可以包括第一磁性元件1402、第一导磁元件1404、第二导磁元件1406、第一导电元件1418、第二导电元件1420以及第三导电元件1422。第一磁性元件1402、第一导磁元件1404、第二导磁元件1406、第一导电元件1418、第二导电元件1420、第三导电元件1422可以参考本申请图3F的相关描述。第一磁性元件1302、第一导磁元件1304以及第二导磁元件1306可以形成磁间隙。音圈1428可以放置于所述磁间隙中。音圈1428的横截面形状可以是圆形或非圆形。所述非圆形可以包括椭圆形、三角形、四边形、五边形、其它多边形或其它不规则形状。
以上对磁路组件1400的结构的描述仅仅是具体的示例,不应被视为是唯一可行的实施方案。显然,对于本领域的专业人员来说,在了解磁路组件的基本原理后,可能在不背离这一原理的情况下,对实施磁路组件1400的具体方式与步骤进行形式和细节上的各种修正和改变,但是这些修正和改变仍在以上描述的范围之内。例如,第一导电元件1418可以设置于音圈1428附近,例如音圈1428的内壁、外壁、上表面和/或下表面。
图14B是根据本申请的一些实施例所示的图14A所示的磁路组件1420中导电元件数量对音圈中感抗的影响曲线。曲线m对应未设置导电元件的磁路组件,曲线n对应设置一个导电元件的磁路组件(如图12A所示的磁路组件1200),曲线l对应设置多个导电元件的磁路组件(如图14A所示的磁路组件1400)。横坐标为音圈内交变电流频率,所纵坐标为音圈内感抗。如图14B所示,当交变电流频率增大至1200HZ左右,音圈内感抗随交变电流频率的增大而增大,在设置一个或多个导电元件的情况下,音圈内的感抗显著低于未设置导电元件时音圈内的感抗(如曲线n以及l对应的感抗低于曲线m对应的感抗)。在设置多个导电元件的情况下,音圈内的感抗显著低于设置一个导电元件时的音圈内的感抗(如曲线l对应的感抗低于曲线n对应的感抗)。
图15A是根据本申请的一些实施例所示的一种磁路组件1500的结构示意图。如图所示,磁路组件1500可以包括第一磁性元件1502、第一导磁元件1504、第一环形元件1506、第一环形磁性元件1508、第二环形磁性元件1510、第三环形磁性元件 1512、导磁罩1514以及第二磁性元件1516。第一磁性元件1502、第一导磁元件1504、第一环形元件1506、第一环形磁性元件1508、第二环形磁性元件1510、第三环形磁性元件1512、导磁罩1514以及第二磁性元件1516可以参考本申请图4A、4B、4C、4D、4E、4F、4G、4H和/或4M中的详细描述。
第一磁性元件1502、第一导磁元件1504、第二磁性元件1516、第二环形磁性元件1510和/或第三环形磁性元件1512可以形成磁间隙。音圈1528可以放置于所述磁间隙中。音圈1528可以是圆形或非圆形。所述非圆形可以包括椭圆形、三角形、四边形、五边形、其它多边形或其它不规则形状。
以上对磁路组件1500的结构的描述仅仅是具体的示例,不应被视为是唯一可行的实施方案。显然,对于本领域的专业人员来说,在了解磁路组件的基本原理后,可能在不背离这一原理的情况下,对实施磁路组件1500的具体方式与步骤进行形式和细节上的各种修正和改变,但是这些修正和改变仍在以上描述的范围之内。例如,磁路组件1500可以进一步包括一个或多个导电元件,所述导电元件可以设置于音圈1528附近,例如音圈1528的内壁、外壁、上表面和/或下表面。在一些实施例中,所述导电元件可以连接第一磁性元件1502、第二磁性元件1516、第一环形磁性元件1508、第二环形磁性元件1510和/或第三环形磁性元件1512。又例如,磁路组件1500可以进一步包括第三导磁元件,所述第三导磁元件连接第二磁性元件1516。
图15B是根据本申请的一些实施例所示的音圈所受安培力与图15A所示磁路组件1500中磁性元件厚度的关系曲线。其中,横坐标为第一厚度比,纵坐标为音圈受到的归一化安培力,所述归一化安培力可以指音圈所受到的实际安培力与在单磁性磁路组件中受到的最大安培力的比值。所述单磁性磁路组件可以包括一个磁性元件,例如,所述单磁路组件可以包括第一磁性元件、第一导磁元件以及第二导磁元件。所述单磁性磁路组件中第一磁性元件的体积与磁路组件1500中的第一磁性元件1502及第二磁性元件1516的体积之和相同。所述第一厚度比以及所述第二厚度比可以参考本申请附图9B中的详细描述。如图15B所示,对于任意的第二厚度比k,纵坐标值大于1,即在磁路组件1500中,音圈1528受到的安培力大于单磁性磁路组件中音圈所受的安培力。当第二厚度比k保持不变时,随着第一厚度比的增大,音圈1528受到的安培力逐渐降低。当第一厚度比保持不变时,随着第二厚度比k的降低,音圈1528内受到的安培力逐渐增大。当第一厚度比的范围在0.1-0.3之间或第二厚度比k的范围在0.2-0.7之间,音圈1528所受安培力相比于单磁性磁路组件中音圈受的安培力提高了50%-60%。
图16是根据本申请的一些实施例所示的一种骨传导扬声器1600的结构示意图。如图所示,骨传导扬声器1600可以包括第一磁性元件1602、第一导磁元件1604、第二导磁元件1606、第二磁性元件1608、音圈1610、第三导磁元件1612、支架1614以及连接件1616。第一磁性元件1602、第一导磁元件1604、第二导磁元件1606、第二磁性元件1608、音圈1610和/或第三导磁元件1612可以参考本申请中其它附图的相关描述。
第一磁性元件1602的上表面可以连接第一导磁元件1604的下表面。第二磁性元件1608的下表面可以连接第一导磁元件1604的上表面。第二导磁元件1606可以包括第一底板以及第一侧壁。第一磁性元件1602的下表面可以连接所述第一底板的上表面。第二导磁元件1606的侧壁与第一磁性元件1602、第一导磁元件1604和/或第二磁性元件1608的侧壁形成磁间隙。支架1614可以包括第二底板以及第二侧壁。支架1614与音圈1610连接后,音圈1610可以设置于所述磁间隙中。音圈1610可以连接所述第二侧壁。音圈1610的上表面与所述第二底板之间可以形成侧缝。当音圈1610置于所述磁间隙后,第三导磁元件1612可以穿过所述侧缝连接第二磁性元件1608的上表面以及第二导磁元件1606的第一侧壁,从而使得第三导磁元件1612与第二导磁元件1606形成封闭腔体。第一磁性元件1602、第一导磁元件1604、第二导磁元件1606、第二磁性元件1608、音圈1610和/或第三导磁元件1612等各元件之间的连接可以通过本申请中描述的任意一种或几种连接方式。在一些实施例中,第一磁性元件1602、第一导磁元件1604、第二导磁元件1606、第二磁性元件1608、第三导磁元件1612和/或支架1614上可以设置一个或多个孔状结构(例如,销孔、螺纹孔等)。所述孔状结构可以设置于第一磁性元件1602、第一导磁元件1604、第二导磁元件1606、第二磁性元件1608、第三导磁元件1612和/或支架1614的中心、四周或其它位置。连接件1616可以贯穿所述孔状结构,并连接各个元件。例如,连接件1616可以是管销。可以利用冲压头穿过支架1614将管销1616冲压变形,从而固定骨传导扬声器1600中的各个部件。
以上对骨传导扬声器1600的结构的描述仅仅是具体的示例,不应被视为是唯一可行的实施方案。显然,对于本领域的专业人员来说,在了解磁路组件的基本原理后,可能在不背离这一原理的情况下,对实施骨传导扬声器1600的具体方式与步骤进行形式和细节上的各种修正和改变,但是这些修正和改变仍在以上描述的范围之内。例如,骨传导扬声器1600可以包括一个或多个导电元件,所述一个或多个导电元件设 置于音圈1610的内侧壁、外壁、顶部和/或底部。又例如,骨传导扬声器1600可以进一步包括一个或多个环形磁性元件,所述一个或多个环形磁性元件可以连接第二导磁元件1606的侧壁的上表面或固定于磁间隙中。
图17是根据本申请的一些实施例所示的一种骨传导扬声器1700的结构示意图。如图所示,骨传导扬声器1700可以包括第一磁性元件1702、第一导磁元件1704、第二导磁元件1706、第二磁性元件1708、音圈1710、第三导磁元件1712、支架1714、连接件1716、支架连杆1718以及垫圈1720。第一磁性元件1702的上表面可以连接第一导磁元件1706的下表面。第二磁性元件1708的下表面可以连接第一导磁元件1706的上表面。第二导磁元件1706可以包括第一底板与第一侧壁,所述第一侧壁可以是由所述底板沿着垂直于底板方向延伸形成的。第一磁性元件1702的下表面可以连接第二导磁元件1706的底板的上表面。第二导磁元件1706的侧壁与第一磁性元件1702、第一导磁元件1704和/或第二磁性元件1708的侧壁形成磁间隙。支架连杆1718的四周可以设置一个或多个杆状结构。音圈1710可以连接支架连杆1718。支架连杆1718与音圈1710连接后,音圈1710可以设置于所述磁间隙中。第三导磁元件1712可以包括第二底板以及第二侧壁,所述第二侧壁可以是由所述第二底板延伸形成,所述第二侧壁可以设置一个或多个第一孔状结构,所述第一孔状结构与支架连杆1718的杆状结构对应,支架连杆1718的杆状结构可以贯穿所述第三导磁元件1712的第一孔状结构。当音圈1710置于所述磁间隙中后,第三导磁元件1712的第二侧壁可以通过所述第一孔状结构连接支架连杆1718的杆状结构,第二底板可以连接第二磁性元件1708的上表面。第一磁性元件1702、第一导磁元件1704、第二导磁元件1706、第二磁性元件1708、音圈1710和/或第三导磁元件1712等各元件之间的连接可以通过本申请中描述的任意一种或几种连接方式。在一些实施例中,第一磁性元件1702、第一导磁元件1704、第二导磁元件1706、第二磁性元件1708、第三导磁元件1712和/或支架1714的中心、四周或其它位置可以设置第二孔状结构。连接件1716可以贯穿所述孔状结构,并连接各个元件。例如,连接件1716可以是管销。可以利用冲压头穿过支架1714将管销1716冲压变形,从而固定第一磁性元件1702、第一导磁元件1704、第二导磁元件1706、第二磁性元件1708以及第三导磁元件1712。支架1914可以连接支架栏杆1718,垫圈1920可以进一步连接第三导磁元件1712的第二侧壁以及第二导磁元件1706的第一侧壁,从而进一步固定第二导磁元件1706以及第三导磁元件1712。在一些实施例中,所述垫圈1720可以通过振动板与支架1714连接。
以上对骨传导扬声器1700的结构的描述仅仅是具体的示例,不应被视为是唯一可行的实施方案。显然,对于本领域的专业人员来说,在了解磁路组件的基本原理后,可能在不背离这一原理的情况下,对实施骨传导扬声器1700的具体方式与步骤进行形式和细节上的各种修正和改变,但是这些修正和改变仍在以上描述的范围之内。例如,骨传导扬声器1700可以包括一个或多个导电元件,所述一个或多个导电元件设置于音圈1710的内侧壁、外壁、顶部和/或底部。又例如,骨传导扬声器1700可以进一步包括一个或多个环形磁性元件,所述一个或多个环形磁性元件可以连接第二导磁元件1706的侧壁的上表面或固定于磁间隙中。
图18是根据本申请的一些实施例所示的一种骨传导扬声器1800的结构示意图。如图所示,骨传导扬声器1800可以包括第一磁性元件1802、第一导磁元件1804、第二导磁元件1806、垫圈1808、音圈1810、第一振动板1812、支架1814、第二振动板1816以及振动面板1818。第一磁性元件1802的下表面连接第二导磁元件1806的内壁。第一磁性元件1802的上表面连接第一导磁元件1804的上表面。第一磁性元件1802、第一导磁元件1804与第二导磁元件1806之可以形成磁间隙。音圈1810可放置于所述磁间隙中。在一些实施例中,音圈1810可以是圆形或非圆形结构,例如三角形、长方形、正方形、椭圆形、五边形或其它不规则形状。音圈1810连接支架1814,支架1814连接第一振动板1812,第一振动板1812通过垫圈1808与第二导磁元件1806连接。第二振动板1816的下表面与支架1814连接,第二振动板1816的上表面与振动面板1818连接。在一些实施例中,第一磁性元件1802、第一导磁元件1804、第二导磁元件1806、垫圈1808、音圈1810、第一振动板1812、支架1814、第二振动板11016和/或振动面板1818中各元件之间可以通过本申请中描述的任意一种或几种连接方式连接。例如,第一磁性元件1802可以通过焊接的方式与第一导磁元件1804和/或第二导磁元件1806连接。又例如,第一磁性元件1802、第一导磁元件1804和/或第二导磁元件1806等元件可设置孔状结构,第一磁性元件1802、第一导磁元件1804和/或第二导磁元件1806可以通过管销冲压变形连接。在一些实施例中,第一振动板1812和/或第二振动板1816可以设置为一个或多个共轴的圆环体,所述多个圆环体内设置有向中心辐辏的多个支杆,其辐辏中心与第一振动板1812和/或第二振动板1816的中心一致。所述多个支杆错开设置。
以上对骨传导扬声器1800的结构的描述仅仅是具体的示例,不应被视为是唯一可行的实施方案。显然,对于本领域的专业人员来说,在了解磁路组件的基本原理 后,可能在不背离这一原理的情况下,对实施骨传导扬声器1800的具体方式与步骤进行形式和细节上的各种修正和改变,但是这些修正和改变仍在以上描述的范围之内。例如,骨传导扬声器1800可以包括一个或多个导电元件,所述一个或多个导电元件设置于音圈1810的内侧壁、外壁、顶部和/或底部。又例如,骨传导扬声器18000可以进一步包括一个或多个环形磁性元件,所述一个或多个环形磁性元件可以连接第二导磁元件1806的侧壁的上表面或固定于磁间隙中。在一些实施例中,骨传导扬声器可以进一步包括第二磁性元件和/或第三导磁元件。
图19是根据本申请的一些实施例所示的一种骨传导扬声器1900的结构示意图。如图所示,骨传导扬声器1900可以包括第一磁性元件1902、第一导磁元件1910、第二磁性元件1904、第三磁性元件1906、第二导磁元件1908、垫圈1914、音圈1912、第一振动板1916、支架1918、第二振动板1920以及振动面板1922。第一磁性元件1902的下表面连接第二导磁元件1908的内壁。第一磁性元件1902的上表面连接第一导磁元件1910的下表面。第二磁性元件1904的外壁连接第二导磁元件1908内侧壁。第三磁性元件1906在第二磁性元件1904的下方,同时,第三磁性元件1906的外壁连接第二导磁元件1908的内侧壁;第三磁性元件1906的内侧壁连接第一磁性元件1902的外壁;第三磁性元件1906的下表面连接第二导磁元件1908的内壁;第一磁性元件1902、第一导磁元件1910与第二磁性元件1904、第三磁性元件1906之间可以形成磁间隙。音圈1912可放置于所述磁间隙中。在一些实施例中,音圈1912可以是图19所示的跑道形,也可以是其他几何形状,例如三角形、长方形、正方形、椭圆形、五边形或其它不规则形状。音圈1912连接支架1918,支架1918连接第一振动板1916,第一振动板1916通过垫圈1914与第二导磁元件1908连接。第二振动板1920的下表面与支架1918连接,第二振动板1920的上表面与振动面板1922连接。在一些实施例中,第二磁性元件1904可以由多块磁性元件组成,如图19所示的其可由4块磁性元件19041,19042,19043,19044组成。多块磁性元件围成的形状可以是图19所示的跑道形,也可以是其他几何形状,例如三角形、长方形、正方形、椭圆形、五边形或其它不规则形状。第三磁性元件1906可以由多块磁性元件组成,如图19所示的其可由4块磁性元件19061,19062,19063,19064组成。多块磁性元件围成的形状可以是图19所示的跑道形,也可以是其他几何形状,例如三角形、长方形、正方形、椭圆形、五边形或其它不规则形状。如本申请中其他实施例中所描述的,第二磁性元件1904或第三磁性元件1906可以被替换成多个相互连接的磁化方向不同的磁性元 件,所述多个相互连接的磁化方向不同的磁性元件可以提高骨传导扬声器1900中磁间隙处的磁场强度,从而提高骨传导扬声器1900的灵敏度。
在一些实施例中,第一磁性元件1902、第一导磁元件1910、第二磁性元件1904、第三磁性元件1906、第二导磁元件1908、垫圈1914、音圈1912、第一振动板1916、支架1918、第二振动板1920和/或振动面板1922中各元件之间可以通过本申请中描述的任意一种或几种连接方式连接。例如,第一磁性元件1902,第二磁性元件1904,第三磁性元件1906可以通过粘接的方式与第一导磁元件1910和/或第二导磁元件1908连接。又例如,垫圈1914可以通过倒扣结构与第二导磁元件1908连接,进一步地,垫圈1914可以通过倒扣结构加粘接的方式与第二导磁元件1908和/或第二磁性元件1904连接。在一些实施例中,第一振动板1916和/或第二振动板1920可以设置为一个或多个共轴的环体,所述多个环体内设置有向中心辐辏的多个支杆,其辐辏中心与第一振动板1916和/或第二振动板1920的中心一致。所述多个支杆错开设置。所述多个支杆为直杆或者弯杆或者部分为直杆部分为弯杆,优选地,所述多个支杆为弯杆。在一些实施例中,振动面板1922的外表面可以为平面,也可以为曲面。例如振动面板1922的外表面为图19所示的外凸形弧面。
以上对骨传导扬声器1900的结构的描述仅仅是具体的示例,不应被视为是唯一可行的实施方案。显然,对于本领域的专业人员来说,在了解磁路组件的基本原理后,可在不背离这一原理的情况下,对实施骨传导扬声器1900的具体方式与步骤进行形式和细节上的各种修正和改变,但是这些修正和改变仍在以上描述的范围之内。例如,骨传导扬声器1900可以包括一个或多个导电元件,所述一个或多个导电元件设置于音圈1912的内侧壁、外壁、顶部和/或底部。又例如,骨传导扬声器1900可以进一步包括一个或多个环形磁性元件,所述一个或多个环形磁性元件可以连接第二磁性元件1904的下表面和第三磁性元件1906的上表面。在一些实施例中,骨传导扬声器可以进一步包括如本申请中其他实施例中所描述的第五磁性元件和/或第三导磁元件。
上文已对基本概念做了描述,显然,对于本领域技术人员来说,上述发明披露仅仅作为示例,而并不构成对本申请的限定。虽然此处并没有明确说明,本领域技术人员可能会对本申请进行各种修改、改进和修正。该类修改、改进和修正在本申请中被建议,所以该类修改、改进、修正仍属于本申请示范实施例的精神和范围。
同时,本申请使用了特定词语来描述本申请的实施例。如“一个实施例”、“一实施例”和/或“一些实施例”意指与本申请至少一个实施例相关的某一特征、结构或 特点。因此,应强调并注意的是,本说明书中在不同位置两次或多次提及的“一实施例”或“一个实施例”或“一替代性实施例”并不一定是指同一实施例。此外,本申请的一个或多个实施例中的某些特征、结构或特点可以进行适当的组合。
此外,本领域技术人员可以理解,本申请的各方面可以通过若干具有可专利性的种类或情况进行说明和描述,包括任何新的和有用的工序、机器、产品或物质的组合或对他们的任何新的和有用的改进。相应地,本申请的各个方面可以完全由硬件执行、可以完全由软件(包括固件、常驻软件、微码等)执行、也可以由硬件和软件组合执行。以上硬件或软件均可被称为“数据块”、“模块”、“引擎”、“单元”、“组件”或“系统”。此外,本申请的各方面可能表现为位于一个或多个计算机可读介质中的计算机产品,该产品包括计算机可读程序编码。
此外,除非权利要求中明确说明,本申请所述处理元素和序列的顺序、数字字母的使用或其他名称的使用,并非用于限定本申请流程和方法的顺序。尽管上述披露中通过各种示例讨论了一些目前认为有用的发明实施例,但应当理解的是,该类细节仅起到说明的目的,附加的权利要求并不仅限于披露的实施例,相反,权利要求旨在覆盖所有符合本申请实施例实质和范围的修正和等价组合。例如,虽然以上所描述的系统组件可以通过硬件设备实现,但是也可以只通过软件的解决方案得以实现,如在现有的服务器或移动设备上安装所描述的系统。
同理,应当注意的是,为了简化本申请披露的表述,从而帮助对一个或多个发明实施例的理解,前文对本申请实施例的描述中,有时会将多种特征归并至一个实施例、附图或对其的描述中。但是,这种披露方法并不意味着本申请对象所需要的特征比权利要求中提及的特征多。实际上,实施例的特征要少于上述披露的单个实施例的全部特征。
一些实施例中使用了描述成分、属性数量的数字,应当理解的是,此类用于实施例描述的数字,在一些示例中使用了修饰词“大约”、“近似”或“大体上”等来修饰。除非另外说明,“大约”、“近似”或“大体上”表明所述数字允许有±20%的变化。相应地,在一些实施例中,说明书和权利要求中使用的数值数据均为近似值,该近似值根据个别实施例所需特点可以发生改变。在一些实施例中,数值数据应考虑规定的有效数位并采用一般位数保留的方法。尽管本申请一些实施例中用于确认其范围广度的数值域和数据为近似值,在具体实施例中,此类数值的设定在可行范围内尽可能精确。
最后,应当理解的是,本申请中所述实施例仅用以说明本申请实施例的原则。其他的变形也可能属于本申请的范围。因此,作为示例而非限制,本申请实施例的替代 配置可视为与本申请的教导一致。相应地,本申请的实施例不仅限于本申请明确介绍和描述的实施例。

Claims (105)

  1. 一种骨传导扬声器的磁路组件,所述磁路组件产生第一磁场,所述磁路组件包括:
    第一磁性元件,所述第一磁性元件产生第二磁场;
    第一导磁元件;以及
    至少一个第二磁性元件,所述至少一个第二磁性元件环绕所述第一磁性元件,并与所述第一磁性元件之间形成磁间隙,所述第一磁场在所述磁间隙内的磁场强度大于所述第二磁场在所述磁间隙内的磁场强度。
  2. 权利要求1所述的磁路组件,所述至少一个第二磁性元件的磁化方向与所述第一磁性元件的磁化方向之间的夹角在45度与135度之间。
  3. 权利要求2所述的磁路组件,所述至少一个第二磁性元件的磁化方向与所述第一磁性元件的磁化方向之间的夹角不小于90度。
  4. 权利要求1所述的磁路组件,进一步包括:
    第二导磁元件;以及
    至少一个第三磁性元件,其中,所述至少一个第三磁性元件连接所述第二导磁元件和所述至少一个第二磁性元件。
  5. 权利要求4所述的磁路组件,所述至少一个第三磁性元件的磁化方向与所述第一磁性元件的磁化方向之间的夹角在45度与135度之间。
  6. 权利要求5所述的磁路组件,所述至少一个第三磁性元件的磁化方向与所述第一磁性元件的磁化方向之间的夹角不小于90度。
  7. 权利要求5所述的磁路组件,进一步包括:
    至少一个第四磁性元件,其中,所述至少一个第四磁性元件位于所述磁间隙的下方并连接所述第一磁性元件以及所述第二导磁元件。
  8. 权利要求7所述的磁路组件,所述至少一个第四磁性元件的磁化方向与所述第 一磁性元件的磁化方向之间的夹角在45度与135度之间。
  9. 权利要求8所述的磁路组件,所述至少一个第四磁性元件的磁化方向与所述第一磁性元件的磁化方向之间的夹角不大于90度。
  10. 权利要求4所述的磁路组件,进一步包括:
    至少一个第五磁性元件,其中,所述至少一个第五磁性元件连接所述第一导磁元件的上表面。
  11. 权利要求10所述的磁路组件,所述至少一个第五磁性元件的磁化方向与所述第一磁性元件的磁化方向的夹角在150度与180度之间。
  12. 权利要求10所述的磁路组件,所述第一磁性元件的厚度与所述第一磁性元件、所述至少一个第五磁性元件以及所述第一导磁元件的厚度之和的比值范围为0.4-0.6。
  13. 权利要求10所述的磁路组件,所述至少一个第五磁性元件的厚度等于所述第一磁性元件的厚度。
  14. 权利要求10所述的磁路组件,所述至少一个第五磁性元件的厚度小于所述第一磁性元件的厚度。
  15. 权利要求10所述的磁路组件,进一步包括:
    第三导磁元件,其中,所述第三导磁元件连接所述第五磁性元件的上表面,所述第三导磁元件被配置为抑制所述第一磁场的场强泄露。
  16. 权利要求4所述的磁路组件,所述第一导磁元件连接所述第一磁性元件的上表面,所述第二导磁元件包括底板和侧壁,以及所述第一磁性元件连接所述第二导磁元件的底板。
  17. 权利要求4所述的磁路组件,进一步包括:
    至少一个导电元件,其中,所述导电元件连接所述第一磁性元件、所述第一 导磁元件,或所述第二导磁元件中的至少一个元件。
  18. 一种骨传导扬声器的磁路组件,所述磁性组件产生第一磁场,所述磁路组件包括:
    第一磁性元件,所述第一磁性元件产生第二磁场;
    第一导磁元件;
    第二导磁元件,所述第二导磁元件环绕所述第一磁性元件,并与所述第一磁性元件之间形成磁间隙;以及
    至少一个第二磁性元件,所述至少一个第二磁性元件置于所述磁间隙的下方,所述第一磁场在所述磁间隙内的磁场强度大于所述第二磁场在所述磁间隙内的磁场强度。
  19. 权利要求18所述的磁路组件,所述至少一个第二磁性元件的磁化方向与所述第一磁性元件的磁化方向之间的夹角在45度与135度之间。
  20. 权利要求19所述的磁路组件,所述至少一个第二磁性元件的磁化方向与所述第一磁性元件的磁化方向之间的夹角不大于90度。
  21. 权利要求18所述的磁路组件,进一步包括:
    至少一个第三磁性元件,所述第三磁性元件连接所述第二导磁元件。
  22. 权利要求21所述的磁路组件,所述至少一个第三磁性元件的磁化方向与所述第一磁性元件的磁化方向之间的夹角在45度与135度之间。
  23. 权利要求22所述的磁路组件,所述至少一个第三磁性元件的磁化方向与所述第一磁性元件的磁化方向之间的夹角不小于90度。
  24. 权利要求21所述的磁路组件,进一步包括:
    至少一个第四磁性元件,所述至少一个第四磁性元件位于所述第二导磁元件与所述至少一个第三磁性元件之间。
  25. 权利要求24所述的磁路组件,所述至少一个第四磁性元件的磁化方向与所述第 一磁性元件的磁化方向之间的夹角在45度与135度之间。
  26. 权利要求25所述的磁路组件,所述至少一个第四磁性元件的磁化方向与所述第一磁性元件的磁化方向之间的夹角不小于90度。
  27. 权利要求18-26中任一权利要求所述的磁路组件,进一步包括:
    导磁罩,所述导磁罩环绕所述第一磁性元件,所述第一导磁元件,所述第二导磁元件以及所述第二磁性元件。
  28. 权利要求18所述的磁路组件,其中,所述第二导磁元件与所述至少一个第二磁性元件相连接,所述连接面包括楔形截面。
  29. 权利要求18所述的磁路组件,进一步包括:
    至少一个第五磁性元件,所述至少一个第五磁性元件连接所述第一导磁元件的上表面。
  30. 权利要求29所述的磁路组件,所述至少一个第五磁性元件的磁化方向与所述第一磁性元件的磁化方向的夹角在150度与180度之间。
  31. 权利要求29所述的磁路组件,所述至少一个第五磁性元件的厚度与所述第一磁性元件、所述至少一个第五磁性元件以及所述第一导磁元件的厚度之和的比值范围为0.4-0.6。
  32. 权利要求29所述的磁路组件,所述第五磁性元件的厚度等于所述第一磁性元件的厚度。
  33. 权利要求18所述的磁路组件,进一步包括:
    至少一个导电元件,其中,所述导电元件连接所述第一磁性元件、所述第一导磁元件,或所述第二磁性元件中的至少一个元件。
  34. 一种骨传导扬声器的磁路组件,所述磁路组件产生第一磁场,所述磁路组件包括:
    第一磁性元件,所述第一磁性元件产生第二磁场;
    第一导磁元件;
    第二导磁元件,至少部分的所述第二导磁元件环绕所述第一磁性元件,并与所述第一磁性元件之间形成磁间隙;以及
    至少一个第二磁性元件,所述至少一个第二磁性元件连接所述第一导磁元件上表面,所述第一磁场在所述磁间隙内的磁场强度大于所述第二磁场在所述磁间隙内的磁场强度。
  35. 权利要求34所述的磁路组件,所述至少一个第二磁性元件的磁化方向与所述第一磁性元件的磁化方向的夹角在150度与180度之间。
  36. 权利要求34所述的磁路组件,所述第一磁性元件的厚度与所述第一磁性元件、所述至少一个第二磁性元件以及所述第一导磁元件的厚度之和的比值范围为0.4-0.6。
  37. 权利要求34所述的磁路组件,所述至少一个第二磁性元件的厚度等于所述第一磁性元件的厚度。
  38. 权利要求34所述的磁路组件,所述至少一个第二磁性元件的厚度小于所述第一磁性元件的厚度。
  39. 权利要求34所述的磁路组件,进一步包括,
    至少一个第三磁性元件,所述至少一个第三磁性元件环绕所述至少一个第二磁性元件。
  40. 权利要求39所述的磁路组件,所述至少一个第三磁性元件的磁化方向与所述第一磁性元件的磁化方向之间的夹角在45度与135度之间。
  41. 权利要求40所述的磁路组件,所述至少一个第三磁性元件的磁化方向与所述第一磁性元件的磁化方向之间的夹角不小于90度。
  42. 权利要39所述的磁路组件,进一步包括:
    至少一个第四磁性元件,其中,所述至少一个第四磁性元件连接所述第二导磁元件和所述至少一个第三磁性元件。
  43. 权利要求42所述的磁路组件,所述至少一个第四磁性元件的磁化方向与所述第一磁性元件的磁化方向之间的夹角在45度与135度之间。
  44. 权利要求43所述的磁路组件,所述至少一个第四磁性元件的磁化方向与所述第一磁性元件的磁化方向之间的夹角不小于90度。
  45. 权利要求34所述的磁路组件,进一步包括:
    至少一个第五磁性元件,其中,所述至少一个第五磁性元件位于所述磁间隙的下方并连接所述第一磁性元件以及所述第二导磁元件。
  46. 权利要求45所述的磁路组件,所述至少一个第五磁性元件的磁化方向与所述第一磁性元件的磁化方向之间的夹角在45度与135度之间。
  47. 权利要求46所述的磁路组件,所述至少一个第五磁性元件的磁化方向与所述第一磁性元件的磁化方向之间的夹角不大于90度。
  48. 权利要求46所述的磁路组件,进一步包括:
    第三导磁元件,所述第三导磁元件连接所述至少一个第二磁性元件。
  49. 一种骨传导扬声器的磁路组件,所述磁路组件包括:
    第一磁性元件,所述第一磁性元件产生第一磁场;
    第一导磁元件;以及
    至少一个第二磁性元件,所述至少一个第二磁性元件环绕所述第一磁性元件,并与所述第一磁性元件之间形成磁间隙,所述第二磁性元件产生第二磁场,所述第二磁场提高所述第一磁场在所述磁间隙处的磁场强度。
  50. 权利要求49所述的磁路组件,所述至少一个第二磁性元件的磁化方向与所述第一磁性元件的磁化方向之间的夹角不小于90度。
  51. 权利要求49所述的磁路组件,进一步包括:
    第二导磁元件;以及
    至少一个第三磁性元件,其中,所述至少一个第三磁性元件连接所述第二导磁元件和所述至少一个第二磁性元件,所述至少一个第三磁性元件产生第三磁场,所述第三磁场提高所述第一磁场在所述磁间隙处的磁场强度。
  52. 权利要求51所述的磁路组件,所述至少一个第三磁性元件的磁化方向与所述第一磁性元件的磁化方向之间的夹角不小于90度。
  53. 权利要求51所述的磁路组件,进一步包括:
    至少一个第四磁性元件,其中,所述至少一个第四磁性元件置于所述磁间隙的下方并连接所述第一磁性元件以及所述第二导磁元件,所述至少一个第四磁性元件产生第四磁场,所述第四磁场提高所述第一磁场在所述磁间隙处的磁场强度。
  54. 权利要求53所述的磁路组件,所述至少一个第四磁性元件的磁化方向与所述第一磁性元件的磁化方向之间的在45度与135度之间。
  55. 权利要求51所述的磁路组件,进一步包括:
    至少一个第五磁性元件,其中,所述至少一个第五磁性元件连接所述第一导磁元件的上表面,所述至少一个第五磁性元件产生第五磁场,所述第五磁场提高所述第一磁场在所述磁间隙处的磁场强度。
  56. 权利要求55所述的磁路组件,所述至少一个第五磁性元件的磁化方向与所述第一磁性元件的磁化方向的夹角在150度与180度之间。
  57. 权利要求55所述的磁路组件,所述第一磁性元件的厚度与所述第一磁性元件、所述至少一个第五磁性元件以及所述第一导磁元件的厚度之和的比值范围为0.4-0.6。
  58. 权利要求55所述的磁路组件,所述至少一个第五磁性元件的厚度等于所述第一磁性元件的厚度。
  59. 权利要求55所述的磁路组件,所述至少一个第五磁性元件的厚度小于所述第一磁性元件的厚度。
  60. 权利要求55所述的磁路组件,进一步包括:
    第三导磁元件,其中,所述第三导磁元件连接所述第五磁性元件的上表面,所述第三导磁元件被配置为抑制所述第一磁场和所述第二磁场的场强泄露。
  61. 权利要求55所述的磁路组件,所述第一导磁元件连接所述第一磁性元件的上表面,所述第二导磁元件包括底板和侧壁,以及所述第一磁性元件连接所述第二导磁元件的底板。
  62. 权利要求55所述的磁路组件,进一步包括:
    至少一个导电元件,其中,所述导电元件连接所述第一磁性元件、所述第一导磁元件,或所述第二导磁元件中的至少一个元件。
  63. 一种骨传导扬声器的磁路组件,所述磁路组件包括:
    第一磁性元件,所述第一磁性元件产生第一磁场;
    第一导磁元件;
    第二导磁元件,所述第二导磁元件环绕所述第一磁性元件,并与所述第一磁性元件之间形成磁间隙;以及
    至少一个第二磁性元件,所述至少一个第二磁性元件置于所述磁间隙下方,所述至少一个第二磁性元件产生第二磁场,所述第二磁场提高所述第一磁场在所述磁间隙处的磁感应强度。
  64. 权利要求63所述的磁路组件,所述至少一个第二磁性元件的磁化方向与所述第一磁性元件的磁化方向之间的夹角在45度与135度之间。
  65. 权利要求63所述的磁路组件,进一步包括:
    至少一个第三磁性元件,其中,所述第三磁性元件连接所述第二导磁元件,所述至少一个第三磁性元件产生第三磁场,所述第三磁场提高所述第一磁场在所述磁间隙处的磁场强度。
  66. 权利要求65所述的磁路组件,所述至少一个第三磁性元件的磁化方向与所述第一磁性元件的磁化方向之间的夹角不小于90度。
  67. 权利要求63所述的磁路组件,进一步包括:
    至少一个第四磁性元件,所述至少一个第四磁性元件位于所述第二导磁元件与所述至少一个第三磁性元件之间。
  68. 权利要求67所述的磁路组件,所述至少一个第四磁性元件的磁化方向与所述第一磁性元件的磁化方向之间的夹角不小于90度。
  69. 权利要求63-68中任一权利要求所述的磁路组件,进一步包括:
    导磁罩,所述导磁罩环绕所述第一磁性元件,所述第一导磁元件,所述第二导磁元件以及所述第二磁性元件。
  70. 权利要求63所述的磁路组件,其中,所述第二导磁元件与所述至少一个第二磁性元件相连接,所述连接面包括楔形截面。
  71. 权利要求63所述的磁路组件,进一步包括:
    至少一个第五磁性元件,其中,所述至少一个第五磁性元件连接所述第一导磁元件的上表面,所述至少一个第五磁性元件产生第五磁场,所述第五磁场提高所述第一磁场在所述磁间隙处的磁场强度。
  72. 权利要求71所述的磁路组件,所述至少一个第五磁性元件的磁化方向与所述第一磁性元件的磁化方向的夹角在150度与180度之间。
  73. 权利要求71所述的磁路组件,所述至少一个第五磁性元件的厚度与所述第一磁性元件、所述至少一个第五磁性元件以及所述第一导磁元件的厚度之和的比值范围为0.4-0.6。
  74. 权利要求71所述的磁路组件,所述第五磁性元件的厚度小于或等于所述第一磁性元件的厚度。
  75. 权利要求71所述的磁路组件,进一步包括:
    第三导磁元件,其中,所述第三导磁元件连接所述第五磁性元件的上表面,所述第三导磁元件被配置为抑制所述第一磁场和第二磁场的场强泄露。
  76. 权利要求63所述的磁路组件,进一步包括:
    至少一个导电元件,其中,所述导电元件连接所述第一磁性元件、所述第一导磁元件,或所述第二磁性元件中的至少一个元件。
  77. 一种骨传导扬声器的磁路组件,所述磁路组件包括:
    第一磁性元件,所述第一磁性元件产生第一磁场;
    第一导磁元件;
    第二导磁元件,至少部分的所述第二导磁元件环绕所述第一磁性元件,并与所述第一磁性元件之间形成磁间隙;以及
    至少一个第二磁性元件,所述至少一个第二磁性元件连接所述第一导磁元件上表面,所述至少一个第二磁性元件产生第二磁场,所述第二磁场提高所述第一磁场在所述磁间隙内的磁场强度。
  78. 权利要求77所述的磁路组件,所述至少一个第二磁性元件的磁化方向与所述第一磁性元件的磁化方向的夹角在150度与180度之间。
  79. 权利要求77所述的磁路组件,所述第一磁性元件的厚度与所述第一磁性元件、所述至少一个第二磁性元件以及所述第一导磁元件的厚度之和的比值范围为0.4-0.6。
  80. 权利要求77所述的磁路组件,所述至少一个第二磁性元件的厚度等于所述第一磁性元件的厚度。
  81. 权利要求77所述的磁路组件,所述至少一个第二磁性元件的厚度小于所述第一磁性元件的厚度。
  82. 权利要求77所述的磁路组件,进一步包括,
    至少一个第三磁性元件,所述至少一个第三磁性元件环绕所述至少一个第二 磁性元件。
  83. 权利要求82所述的磁路组件,所述至少一个第三磁性元件的磁化方向与所述第一磁性元件的磁化方向之间的夹角在45度与135度之间。
  84. 权利要求83所述的磁路组件,所述至少一个第三磁性元件的磁化方向与所述第一磁性元件的磁化方向之间的夹角不小于90度。
  85. 权利要82所述的磁路组件,进一步包括:
    至少一个第四磁性元件,其中,所述至少一个第四磁性元件连接所述第二导磁元件和所述至少一个第三磁性元件。
  86. 权利要求85所述的磁路组件,所述至少一个第四磁性元件的磁化方向与所述第一磁性元件的磁化方向之间的夹角在45度与135度之间。
  87. 权利要求86所述的磁路组件,所述至少一个第四磁性元件的磁化方向与所述第一磁性元件的磁化方向之间的夹角不小于90度。
  88. 权利要求77所述的磁路组件,进一步包括:
    至少一个第五磁性元件,其中,所述至少一个第五磁性元件位于所述磁间隙的下方并连接所述第一磁性元件以及所述第二导磁元件。
  89. 权利要求88所述的磁路组件,所述至少一个第五磁性元件的磁化方向与所述第一磁性元件的磁化方向之间的夹角在45度与135度之间。
  90. 权利要求89所述的磁路组件,所述至少一个第五磁性元件的磁化方向与所述第一磁性元件的磁化方向之间的夹角不大于90度。
  91. 权利要求89所述的磁路组件,进一步包括:
    第三导磁元件,所述第三导磁元件连接所述至少一个第二磁性元件
  92. 一种骨传导扬声器的磁路组件,所述磁性组件产生第一磁场,所述磁路组件包 括:
    第一磁性元件,所述第一磁性元件产生第二磁场;
    第一导磁元件;
    第二导磁元件,所述第二导磁元件包括底板和侧壁,所述第二导磁元件底板连接所述第一磁性元件;
    至少一个第二磁性元件,所述至少一个第二磁性元件连接所述第二导磁元件侧壁,并与所述第一磁性元件之间形成磁间隙;以及
    至少一个第三磁性元件,所述至少一个第三磁性元件连接所述第二导磁元件的底板及侧壁,所述第一磁场在所述磁间隙内的磁场强度大于所述第二磁场在所述磁间隙内的磁场强度。
  93. 权利要求92所述的磁路组件,所述至少一个第二磁性元件的磁化方向与所述第一磁性元件的磁化方向之间的夹角不小于90度。
  94. 权利要求92所述的磁路组件,所述至少一个第三磁性元件的磁化方向与所述第一磁性元件的磁化方向之间的夹角不小于90度。
  95. 权利要求92所述的磁路组件,进一步包括:
    至少一个第四磁性元件,其中,所述至少一个第四磁性元件连接所述至少一个第二磁性元件的上表面以及所述第二导磁元件的侧壁。
  96. 权利要求95所述的磁路组件,所述至少一个第四磁性元件的磁化方向与所述第一磁性元件的磁化方向之间的夹角不小于90度。
  97. 权利要求92所述的磁路组件,进一步包括:
    至少一个第五磁性元件,其中,所述至少一个第五磁性元件连接所述第一导磁元件的上表面。
  98. 权利要求97所述的磁路组件,所述至少一个第五磁性元件的磁化方向与所述第一磁性元件的磁化反向的夹角在150度与180度之间。
  99. 权利要求97所述的磁路组件,所述第一磁性元件的厚度与所述第一磁性元件、 所述至少一个第五磁性元件以及所述第一导磁元件的厚度之和的比值范围为0.4-0.6。
  100. 权利要求97所述的磁路组件,所述至少一个第五磁性元件的厚度小于或等于所述第一磁性元件的厚度。
  101. 权利要求97所述的磁路组件,进一步包括:
    第三导磁元件,其中,所述第三导磁元件连接所述第五磁性元件的上表面,所述第三导磁元件被配置为抑制所述第一磁场的场强泄露。
  102. 权利要求92所述的磁路组件,进一步包括:
    至少一个导电元件,其中,所述导电元件连接所述第一磁性元件、所述第一导磁元件,或所述第二导磁元件中的至少一个元件。
  103. 一种骨传导扬声器,所述骨传导扬声器包括:
    振动组件,所述振动组件包括音圈以及至少一个振动板;
    磁路组件,所述磁路组件包括:
    第一磁性元件,所述第一磁性元件产生第一磁场;
    第一导磁元件;以及
    至少一个第二磁性元件,所述至少一个第二磁性元件环绕所述第一磁性元件,并与所述第一磁性元件之间形成磁间隙,所述音圈位于所述磁间隙中,所述至少一个第二磁性元件产生第二磁场,所述第一磁场与所述第二磁场提高所述第一磁场在所述音圈处的磁场强度。
  104. 权利要求103所述的骨传导扬声器,所述音圈的形状包括椭圆形或长方形。
  105. 权利要求103所述的骨传导扬声器,所述磁路组件包括:
    第二导磁元件,所述第二导磁元件连接所述第二磁性元件。
PCT/CN2018/104934 2018-01-08 2018-09-11 一种骨传导扬声器 WO2019134387A1 (zh)

Priority Applications (14)

Application Number Priority Date Filing Date Title
MX2020007457A MX2020007457A (es) 2018-01-08 2018-09-11 Altavoz de conducción ósea.
BR112020013968A BR112020013968A8 (pt) 2018-01-08 2018-09-11 Alto-falante de condução óssea
RU2020126339A RU2766828C2 (ru) 2018-01-08 2018-09-11 Репродуктор костной проводимости
EP18897956.1A EP3723388A4 (en) 2018-01-08 2018-09-11 BONE CONDUCTIVE SPEAKER
JP2020538036A JP7093415B2 (ja) 2018-01-08 2018-09-11 骨伝導スピーカ
KR1020207022679A KR102460744B1 (ko) 2018-01-08 2018-09-11 골전도 스피커
US16/923,015 US11310602B2 (en) 2018-01-08 2020-07-07 Bone conduction speaker
US17/170,897 US11197100B2 (en) 2018-01-08 2021-02-09 Bone conduction speaker
US17/170,908 US11172309B2 (en) 2018-01-08 2021-02-09 Bone conduction speaker
US17/450,454 US11765510B2 (en) 2018-01-08 2021-10-08 Bone conduction speaker
US17/453,643 US11778384B2 (en) 2018-01-08 2021-11-04 Bone conduction speaker
US17/649,358 US11711654B2 (en) 2018-01-08 2022-01-29 Bone conduction speaker
JP2022071579A JP2022106837A (ja) 2018-01-08 2022-04-25 骨伝導スピーカ
US18/452,080 US20230396928A1 (en) 2018-01-08 2023-08-18 Bone conduction speaker

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CNPCT/CN2018/071751 2018-01-08
PCT/CN2018/071751 WO2019134162A1 (zh) 2018-01-08 2018-01-08 一种骨传导扬声器

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/923,015 Continuation US11310602B2 (en) 2018-01-08 2020-07-07 Bone conduction speaker

Publications (1)

Publication Number Publication Date
WO2019134387A1 true WO2019134387A1 (zh) 2019-07-11

Family

ID=67143569

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/CN2018/071751 WO2019134162A1 (zh) 2018-01-08 2018-01-08 一种骨传导扬声器
PCT/CN2018/104934 WO2019134387A1 (zh) 2018-01-08 2018-09-11 一种骨传导扬声器

Family Applications Before (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/071751 WO2019134162A1 (zh) 2018-01-08 2018-01-08 一种骨传导扬声器

Country Status (8)

Country Link
US (9) US11310602B2 (zh)
EP (1) EP3723388A4 (zh)
JP (2) JP7093415B2 (zh)
KR (1) KR102460744B1 (zh)
BR (1) BR112020013968A8 (zh)
MX (1) MX2020007457A (zh)
RU (1) RU2766828C2 (zh)
WO (2) WO2019134162A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111076805A (zh) * 2019-12-18 2020-04-28 天津大学 一种基于折叠薄膜的全柔性电磁式振动传感器

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019134162A1 (zh) 2018-01-08 2019-07-11 深圳市韶音科技有限公司 一种骨传导扬声器
WO2021218709A1 (zh) * 2020-04-29 2021-11-04 深圳市韶音科技有限公司 声学装置及其磁路组件
WO2022153915A1 (ja) * 2021-01-18 2022-07-21 BoCo株式会社 骨伝導デバイス
CN113297726B (zh) * 2021-04-29 2023-06-06 益阳市信维声学科技有限公司 一种扬声器磁感强度曲线的生成方法及终端

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008054063A (ja) * 2006-08-24 2008-03-06 Cosmo Gear Kk 骨伝導スピーカー
CN102497611A (zh) * 2011-12-23 2012-06-13 深圳市韶音科技有限公司 一种减小体积的骨传导扬声器驱动器
CN202488645U (zh) * 2012-01-06 2012-10-10 瑞声光电科技(常州)有限公司 骨传导器件和骨传导耳机
CN104936108A (zh) * 2015-06-11 2015-09-23 胡锦翔 一种骨传导扬声器装置
CN106507252A (zh) * 2016-09-26 2017-03-15 歌尔股份有限公司 多谐振系统骨传导扬声器单体

Family Cites Families (63)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5946197U (ja) 1982-09-17 1984-03-27 石黒 芳松 トイレツト用甲板付ペ−パ−ストツカ−
JPS5948197U (ja) * 1982-09-21 1984-03-30 松下電器産業株式会社 スピ−カ
JPS6175696U (zh) * 1984-10-23 1986-05-21
US4892633A (en) 1988-11-14 1990-01-09 Vac-Tec Systems, Inc. Magnetron sputtering cathode
DE69535049T2 (de) 1994-04-25 2007-05-10 Matsushita Electric Industrial Co., Ltd., Kadoma Ausgedehnter Lautsprecher
US5687248A (en) 1996-05-02 1997-11-11 Industrial Technology Research Institute Light weight and low magnetic leakage loudspeaker
JPH10155198A (ja) 1996-11-20 1998-06-09 Sony Corp スピーカ装置
CN2302625Y (zh) 1997-06-11 1998-12-30 上海声泰音响制造有限公司 双磁路电动式扬声器
JP4125458B2 (ja) 1999-10-28 2008-07-30 松下電器産業株式会社 光ディスク装置
JP2001128287A (ja) * 1999-10-28 2001-05-11 Fujitsu Ten Ltd スピーカ
US6671385B2 (en) 2000-08-24 2003-12-30 Matsushita Electric Industrial Co., Ltd. Speaker and magnetic circuit used for the speaker
GB2371165B (en) 2001-01-16 2004-12-22 Kh Technology Magnet system for loudspeakers
US20030002232A1 (en) 2001-06-29 2003-01-02 Storage Technology Corporation Apparatus and method of making a reduced sensitivity spin valve sensor apparatus in which a flux carrying capacity is increased
JP4443075B2 (ja) 2001-08-14 2010-03-31 アルパイン株式会社 スピーカの磁気回路
JP4594562B2 (ja) 2001-08-21 2010-12-08 アルパイン株式会社 スピーカの磁気回路
JP2004006098A (ja) 2002-05-31 2004-01-08 Sanyo Tekunika:Kk 車両用前照灯
US6940992B2 (en) 2002-11-05 2005-09-06 Step Technologies Inc. Push-push multiple magnetic air gap transducer
US6996247B2 (en) 2002-11-05 2006-02-07 Step Technologies, Inc. Push-push multiple magnetic air gap transducer
CN1253056C (zh) 2003-01-20 2006-04-19 王兴荣 平面串联磁路和采用该磁路的电-机-声换能器
JP4118863B2 (ja) * 2004-06-18 2008-07-16 株式会社テムコジャパン 骨伝導デバイス及びその振動板
JP4463048B2 (ja) * 2004-08-27 2010-05-12 アルパイン株式会社 スピーカー
EP1686832B1 (en) 2005-01-26 2008-04-09 Harman Becker Automotive Systems GmbH Electroacoustic transducer
JP2007189270A (ja) * 2005-12-22 2007-07-26 Matsushita Electric Works Ltd スピーカ装置
JP2007189269A (ja) * 2005-12-22 2007-07-26 Matsushita Electric Works Ltd スピーカ装置
JP4961740B2 (ja) 2005-12-28 2012-06-27 住友化学株式会社 化合物半導体エピタキシャル基板の製造方法
JP2007306214A (ja) * 2006-05-10 2007-11-22 Fujitsu Ten Ltd スピーカ磁気回路
CN201015225Y (zh) 2007-02-15 2008-01-30 甘肃新天电子科技有限公司 音频振子装置
JP4967892B2 (ja) * 2007-07-25 2012-07-04 パナソニック株式会社 スピーカとそれを用いた電子機器
JP4967891B2 (ja) 2007-07-25 2012-07-04 パナソニック株式会社 スピーカとそれを用いた電子機器
FR2921224B1 (fr) 2007-09-18 2009-12-04 Orkidia Audio Structure magnetique pour moteur sans fer de haut-parleur electrodynamique, moteurs et haut-parleurs
US7848536B2 (en) 2007-11-02 2010-12-07 Onkyo Corporation Voice coil assembly, loudspeaker using the same, and method for producing the same
CN101911726B (zh) 2008-01-04 2014-04-02 空中客车作业有限公司 用于平板扬声器的激振器、平板扬声器和交通工具
DE102008055172A1 (de) 2008-12-29 2010-07-01 Sennheiser Electronic Gmbh & Co. Kg Schallwandler
JP5659426B2 (ja) 2010-02-16 2015-01-28 日本電産セイミツ株式会社 振動発生装置
CN101909234B (zh) 2010-08-04 2013-06-12 宁波音王电声股份有限公司 一种复合磁路扬声器
CN102497612B (zh) * 2011-12-23 2013-05-29 深圳市韶音科技有限公司 一种骨传导扬声器及其复合振动装置
CN103503480A (zh) 2012-01-20 2014-01-08 松下电器产业株式会社 扬声器用磁回路及使用该扬声器用磁回路的扬声器
CN202713600U (zh) 2012-07-31 2013-01-30 郑全录 双磁稀土扬声器
EP2932733B1 (de) * 2012-12-12 2021-03-10 Norman Gerkinsmeyer Magnetsystem für einen lautsprecher, magnetisierungsvorrichtung, verfahren zur herstellung eines magnetsystems und lautsprecher
JP2016103664A (ja) 2013-03-08 2016-06-02 パナソニック株式会社 スピーカおよびこのスピーカを用いた電子機器
CN104105033A (zh) 2013-04-09 2014-10-15 李景海 一种利用头皮听声的音响装置
CN203261475U (zh) 2013-05-10 2013-10-30 揭阳市天籁高科电子有限公司 一种提升高频频宽和灵敏度的超高音扬声器
JP6074344B2 (ja) * 2013-09-20 2017-02-01 株式会社東芝 圧力センサ、マイクロフォン、血圧センサ及びタッチパネル
JP6211866B2 (ja) * 2013-09-20 2017-10-11 株式会社東芝 圧力センサ、マイクロフォン、血圧センサおよびタッチパネル
CN203747990U (zh) 2013-12-11 2014-07-30 瑞声光电科技(常州)有限公司 扬声器
JP6295764B2 (ja) 2014-03-25 2018-03-20 三光金型株式会社 骨伝導デバイス
CN105661982A (zh) 2014-11-21 2016-06-15 宁波大风车教育器材有限公司 一种多功能椅子
US10057686B2 (en) 2014-12-12 2018-08-21 Panasonic Intellectual Property Management Co., Ltd. Loudspeaker, electronic apparatus using loudspeaker, and mobile body device
JP6455806B2 (ja) 2015-04-15 2019-01-23 Tdk株式会社 磁気抵抗効果発振器
US9571936B2 (en) * 2015-05-01 2017-02-14 Apple Inc. Audio speaker having a high-saturation magnetic insert
CN104936104B (zh) * 2015-06-11 2018-06-26 深圳市喜声多媒体技术有限公司 一种小体积的振动扬声器振子装置
CN105072541B (zh) * 2015-07-17 2018-09-25 歌尔股份有限公司 一种用于扬声器的磁路系统及扬声器
CN105142077B (zh) 2015-08-13 2017-05-31 深圳市韶音科技有限公司 一种改善骨传导扬声器漏音的方法及骨传导扬声器
PL3337185T3 (pl) 2015-08-13 2022-01-10 Shenzhen Voxtech Co., Ltd Głośnik z przewodnictwem kostnym
CN205017570U (zh) 2015-09-28 2016-02-03 歌尔声学股份有限公司 音圈及设有该音圈的扬声器
US9996162B2 (en) 2015-12-21 2018-06-12 Intel Corporation Wearable sensor system for providing a personal magnetic field and techniques for horizontal localization utilizing the same
CN105681982A (zh) * 2016-01-08 2016-06-15 费艳锋 一种新型骨导扬声器及骨导耳机
CN205596326U (zh) 2016-03-01 2016-09-21 歌尔股份有限公司 骨传导扬声器单体、扬声器模组以及耳机
JP6715101B2 (ja) 2016-06-20 2020-07-01 株式会社東芝 振動発電機、振動発電ユニット、振動発電モジュールおよび電気機器
CN206136279U (zh) 2016-09-19 2017-04-26 万魔声学科技有限公司 平面振膜喇叭
WO2019134162A1 (zh) 2018-01-08 2019-07-11 深圳市韶音科技有限公司 一种骨传导扬声器
US10805718B1 (en) 2019-06-27 2020-10-13 Facebook Technologies, Llc Multi-degree of freedom transducer vibration isolation system
CN216795282U (zh) * 2022-03-04 2022-06-21 深圳市亿音科技有限公司 一种新型骨传导振子以及骨传导蓝牙耳机

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008054063A (ja) * 2006-08-24 2008-03-06 Cosmo Gear Kk 骨伝導スピーカー
CN102497611A (zh) * 2011-12-23 2012-06-13 深圳市韶音科技有限公司 一种减小体积的骨传导扬声器驱动器
CN202488645U (zh) * 2012-01-06 2012-10-10 瑞声光电科技(常州)有限公司 骨传导器件和骨传导耳机
CN104936108A (zh) * 2015-06-11 2015-09-23 胡锦翔 一种骨传导扬声器装置
CN106507252A (zh) * 2016-09-26 2017-03-15 歌尔股份有限公司 多谐振系统骨传导扬声器单体

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111076805A (zh) * 2019-12-18 2020-04-28 天津大学 一种基于折叠薄膜的全柔性电磁式振动传感器

Also Published As

Publication number Publication date
BR112020013968A2 (pt) 2020-12-01
US20220248140A1 (en) 2022-08-04
KR102460744B1 (ko) 2022-10-31
JP7093415B2 (ja) 2022-06-29
US20220150640A1 (en) 2022-05-12
US11765515B2 (en) 2023-09-19
US11711654B2 (en) 2023-07-25
US20230396928A1 (en) 2023-12-07
US20210168511A1 (en) 2021-06-03
EP3723388A4 (en) 2020-12-23
US20220060834A1 (en) 2022-02-24
RU2020126339A (ru) 2022-02-10
US20200336840A1 (en) 2020-10-22
JP2021510476A (ja) 2021-04-22
RU2022102718A (ru) 2022-04-04
US11765510B2 (en) 2023-09-19
EP3723388A1 (en) 2020-10-14
RU2020126339A3 (zh) 2022-02-10
US20200336839A1 (en) 2020-10-22
WO2019134162A1 (zh) 2019-07-11
KR20200108013A (ko) 2020-09-16
RU2766828C2 (ru) 2022-03-16
US11304008B2 (en) 2022-04-12
US20210168510A1 (en) 2021-06-03
US11778384B2 (en) 2023-10-03
MX2020007457A (es) 2020-11-12
US11197100B2 (en) 2021-12-07
JP2022106837A (ja) 2022-07-20
US20220030357A1 (en) 2022-01-27
US11310602B2 (en) 2022-04-19
US11172309B2 (en) 2021-11-09
BR112020013968A8 (pt) 2023-02-07

Similar Documents

Publication Publication Date Title
CN110022516B (zh) 一种骨传导扬声器
US20220264218A1 (en) Loudspeaker apparatus
WO2019134387A1 (zh) 一种骨传导扬声器
CN117395572A (zh) 一种骨传导扬声器
CN108184196B (zh) 一种骨传导扬声器
RU2803722C2 (ru) Репродуктор костной проводимости
KR102629489B1 (ko) 음향장치 및 그 자기회로조립체
CN207783124U (zh) 一种骨传导扬声器
CN114982253A (zh) 声学装置及其磁路组件
CN107948882A (zh) 一种骨传导扬声器
CN108347675A (zh) 一种骨传导扬声器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18897956

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020538036

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018897956

Country of ref document: EP

Effective date: 20200707

ENP Entry into the national phase

Ref document number: 20207022679

Country of ref document: KR

Kind code of ref document: A

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112020013968

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112020013968

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20200708

ENPC Correction to former announcement of entry into national phase, pct application did not enter into the national phase

Ref document number: 112020013968

Country of ref document: BR

Kind code of ref document: A2

Free format text: ANULADA A PUBLICACAO CODIGO 1.3 NA RPI NO 2604 DE 01/12/2020 POR TER SIDO INDEVIDA.

REG Reference to national code

Ref country code: BR

Ref legal event code: B01E

Ref document number: 112020013968

Country of ref document: BR

Kind code of ref document: A2

Free format text: EXPLIQUE, EM ATE 60 (SESSENTA) DIAS, COM DOCUMENTOS COMPROBATORIOS SE NECESSARIO, A INCLUSAO DO DEPOSITANTE ?.SHENZHEN VOXTECH CO., LTD.? CONSTANTE NO FORMULARIO DA PETICAO INICIAL E NAO EXISTENTE NO PEDIDO INTERNACIONAL.

ENP Entry into the national phase

Ref document number: 112020013968

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20200708