WO2019131943A1 - 光学積層体の製造方法、光学積層体および画像表示装置 - Google Patents

光学積層体の製造方法、光学積層体および画像表示装置 Download PDF

Info

Publication number
WO2019131943A1
WO2019131943A1 PCT/JP2018/048318 JP2018048318W WO2019131943A1 WO 2019131943 A1 WO2019131943 A1 WO 2019131943A1 JP 2018048318 W JP2018048318 W JP 2018048318W WO 2019131943 A1 WO2019131943 A1 WO 2019131943A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
layer
liquid crystal
mass
optical laminate
Prior art date
Application number
PCT/JP2018/048318
Other languages
English (en)
French (fr)
Inventor
柴田 直也
直弥 西村
渉 星野
優壮 藤木
隆 米本
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Priority to CN201880083645.2A priority Critical patent/CN111527424B/zh
Priority to KR1020207018202A priority patent/KR20200090870A/ko
Priority to KR1020237036143A priority patent/KR20230152785A/ko
Priority to JP2019562205A priority patent/JP7109476B2/ja
Publication of WO2019131943A1 publication Critical patent/WO2019131943A1/ja
Priority to US16/911,832 priority patent/US11378838B2/en
Priority to JP2022086713A priority patent/JP2022120853A/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/52Liquid crystal materials characterised by components which are not liquid crystals, e.g. additives with special physical aspect: solvents, solid particles
    • C09K19/60Pleochroic dyes
    • C09K19/601Azoic
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133528Polarisers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/02Physical, chemical or physicochemical properties
    • B32B7/023Optical properties
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • C08J7/042Coating with two or more layers, where at least one layer of a composition contains a polymer binder
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K19/06Non-steroidal liquid crystal compounds
    • C09K19/34Non-steroidal liquid crystal compounds containing at least one heterocyclic ring
    • C09K19/3491Non-steroidal liquid crystal compounds containing at least one heterocyclic ring having sulfur as hetero atom
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K19/06Non-steroidal liquid crystal compounds
    • C09K19/34Non-steroidal liquid crystal compounds containing at least one heterocyclic ring
    • C09K19/3491Non-steroidal liquid crystal compounds containing at least one heterocyclic ring having sulfur as hetero atom
    • C09K19/3497Non-steroidal liquid crystal compounds containing at least one heterocyclic ring having sulfur as hetero atom the heterocyclic ring containing sulfur and nitrogen atoms
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K19/38Polymers
    • C09K19/3833Polymers with mesogenic groups in the side chain
    • C09K19/3842Polyvinyl derivatives
    • C09K19/3852Poly(meth)acrylate derivatives
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/52Liquid crystal materials characterised by components which are not liquid crystals, e.g. additives with special physical aspect: solvents, solid particles
    • C09K19/60Pleochroic dyes
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • G02B5/3016Polarising elements involving passive liquid crystal elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • G02B5/3025Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state
    • G02B5/3033Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state in the form of a thin sheet or foil, e.g. Polaroid
    • G02B5/3041Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state in the form of a thin sheet or foil, e.g. Polaroid comprising multiple thin layers, e.g. multilayer stacks
    • G02B5/305Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state in the form of a thin sheet or foil, e.g. Polaroid comprising multiple thin layers, e.g. multilayer stacks including organic materials, e.g. polymeric layers
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • G02F1/13378Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers by treatment of the surface, e.g. embossing, rubbing or light irradiation
    • G02F1/133784Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers by treatment of the surface, e.g. embossing, rubbing or light irradiation by rubbing
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • G02F1/13378Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers by treatment of the surface, e.g. embossing, rubbing or light irradiation
    • G02F1/133788Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers by treatment of the surface, e.g. embossing, rubbing or light irradiation by light irradiation, e.g. linearly polarised light photo-polymerisation
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1347Arrangement of liquid crystal layers or cells in which the final condition of one light beam is achieved by the addition of the effects of two or more layers or cells
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • G09F9/30Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/02Details
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/8791Arrangements for improving contrast, e.g. preventing reflection of ambient light
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K2019/0444Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit characterized by a linking chain between rings or ring systems, a bridging chain between extensive mesogenic moieties or an end chain group
    • C09K2019/0448Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit characterized by a linking chain between rings or ring systems, a bridging chain between extensive mesogenic moieties or an end chain group the end chain group being a polymerizable end group, e.g. -Sp-P or acrylate
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/52Liquid crystal materials characterised by components which are not liquid crystals, e.g. additives with special physical aspect: solvents, solid particles
    • C09K19/54Additives having no specific mesophase characterised by their chemical composition
    • C09K19/542Macromolecular compounds
    • C09K2019/546Macromolecular compounds creating a polymeric network
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2219/00Aspects relating to the form of the liquid crystal [LC] material, or by the technical area in which LC material are used
    • C09K2219/03Aspects relating to the form of the liquid crystal [LC] material, or by the technical area in which LC material are used in the form of films, e.g. films after polymerisation of LC precursor
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133528Polarisers
    • G02F1/133541Circular polarisers
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2201/00Constructional arrangements not provided for in groups G02F1/00 - G02F7/00
    • G02F2201/08Constructional arrangements not provided for in groups G02F1/00 - G02F7/00 light absorbing layer
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2202/00Materials and properties
    • G02F2202/02Materials and properties organic material
    • G02F2202/022Materials and properties organic material polymeric
    • G02F2202/023Materials and properties organic material polymeric curable
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2202/00Materials and properties
    • G02F2202/04Materials and properties dye
    • G02F2202/043Materials and properties dye pleochroic
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/8791Arrangements for improving contrast, e.g. preventing reflection of ambient light
    • H10K59/8792Arrangements for improving contrast, e.g. preventing reflection of ambient light comprising light absorbing layers, e.g. black layers

Definitions

  • the present invention relates to a method of manufacturing an optical laminate, an optical laminate, and an image display apparatus.
  • OLEDs Organic Light Emitting Diodes
  • the circularly polarizing plate used for preventing the reflection of external light is required to have a high degree of polarization and flexibility.
  • an iodine polarizer is used for a circularly polarizing plate, but iodine polarizer dissolves or adsorbs iodine to a polymer material such as polyvinyl alcohol, and makes the film into a film form with high magnification in one direction. Since it was produced by stretching, it did not have sufficient flexibility.
  • Patent Document 1 proposes a polarizing element having a high dichroic ratio, in which a dichroic azo dye is compatible in a liquid crystal matrix having high orientation.
  • Patent Document 2 proposes a polarizer having a high concentration, a thin film and a high degree of polarization using a dichroic azo dye.
  • Patent Document 3 describes that the orientation of the dichroic dye can be controlled using a photoalignment layer whose orientation is regulated by light irradiation.
  • Patent No. 5923941 gazette Patent No. 5437744 gazette Patent No. 5300776 gazette
  • the present inventors align a photoalignment layer containing a photoactive compound on a support by light irradiation, and then laminate a light absorption anisotropic layer containing a dichroic substance to prepare a polarizer. Study was carried out. As a result of the investigation, the present inventors found that when the surface of the photoalignment layer is rubbed by a transport roll or the like, alignment defects occur in the laminated light absorption anisotropic layer.
  • the present inventors apply a liquid crystal composition containing a dichroic substance and a polymer liquid crystalline compound on the photoalignment layer to form a light absorption anisotropic layer.
  • a liquid crystal composition containing a dichroic substance and a polymer liquid crystalline compound on the photoalignment layer to form a light absorption anisotropic layer.
  • a method for producing an optical laminate which has an optical alignment layer and a light absorption anisotropic layer, and produces an optical laminate having a front transmittance of 60% or less.
  • Method. [5] The production of the optical laminate according to [4], wherein the composition for forming a photoalignment layer contains a compound having a photoreactive group and a crosslinkable group and does not contain a radical polymerization initiator.
  • the light absorption anisotropic layer forming step includes a step of applying a liquid crystal composition on a photoalignment layer to form a coating, and a step of aligning a liquid crystalline component contained in the coating [ The manufacturing method of the optical laminated body in any one of [1]-[5].
  • An optical laminate having a photoalignment layer and a light absorption anisotropic layer, and having a front transmittance of 60% or less,
  • the optical laminated body whose light absorption anisotropic layer is a layer formed from the liquid-crystal composition containing a dichroic substance and a polymeric liquid crystalline compound.
  • the solid content ratio of the polymer liquid crystal compound in the liquid crystal composition is 55% by mass to 95% by mass, and the solid content ratio of the dichroic substance is 2% by mass to 35% by mass
  • the optical laminated body as described in.
  • the solid content ratio of the polymer liquid crystal compound in the liquid crystal composition is 75% by mass to 95% by mass, and the solid content ratio of the dichroic substance is 5% by mass to 25% by mass, [7 ] Or the optical laminated body as described in [8].
  • R represents a hydrogen atom or a methyl group.
  • L represents a single bond or a divalent linking group.
  • B represents a hydrogen atom, a halogen atom, a cyano group, an alkyl group, an alkoxy group, an amino group, an oxycarbonyl group, an acyloxy group, an acylamino group, an alkoxycarbonylamino group, a sulfonylamino group, a sulfamoyl group, a carbamoyl group, an alkylthio group, a flunyl group Represents a group, a sulfinyl group, a ureido group or a crosslinkable group.
  • M represents a mesogen group represented by the following formula (1-1).
  • Ar 11 and Ar 12 each independently represent a phenylene group or a biphenylene group which may have a substituent.
  • L 11 and L 12 each independently represent a single bond or a divalent linking group not containing an azo group.
  • m1 and m2 each independently represent an integer of 1 to 3. When m1 is an integer of 2 to 3, plural Ars 11 may be the same or different, and plural Ls 11 may be the same or different. When m2 is an integer of 2 to 3, a plurality of Ar 12 may be the same or different, and a plurality of L 12 may be the same or different.
  • the liquid crystal composition contains a polymer liquid crystal compound having a repeating unit represented by the following formula (2), The optical laminate according to any one of [7] to [9], wherein in the following formula (2), the difference between the log P value of P1, L1 and SP1 and the log P value of M1 is 4 or more.
  • P1 represents the main chain of the repeating unit
  • L1 represents a single bond or a divalent linking group
  • SP1 represents a spacer group
  • M1 represents a mesogenic group
  • T1 represents a terminal group.
  • M1 has a linking group, it does not contain an azo group as the linking group.
  • the photoalignment layer is a layer formed from a composition containing a compound having a cinnamoyl group and a radically polymerizable group.
  • the photoalignment layer is a photoalignment layer containing a photoactive compound having an azo group as a photoactive group, and the photoactive compound is a low molecular weight compound having a molecular weight of 1000 or less and having no polymerizable group.
  • the present invention it is possible to provide a method of manufacturing an optical laminate, an optical laminate, and an image display device in which alignment defects are less likely to occur in the light absorption anisotropic layer even when the surface of the photoalignment layer is rubbed. .
  • FIG. 1A is a schematic cross-sectional view showing an example of the optical laminate of the present invention.
  • FIG. 1B is a schematic cross-sectional view showing an example of the optical laminate of the present invention.
  • FIG. 1C is a schematic cross-sectional view showing an example of the optical laminate of the present invention.
  • a numerical range represented using “to” means a range including numerical values described before and after “to” as the lower limit value and the upper limit value.
  • each component may be used alone or in combination of two or more types of substances corresponding to each component.
  • the content of the component means the total content of the combined materials unless otherwise specified.
  • (meth) acrylate is a description showing “acrylate” or “methacrylate”
  • (meth) acryl is a description showing “acryl” or “methacryl”
  • (Meth) acryloyl is a notation for" acryloyl "or” methacryloyl ".
  • the method for producing an optical laminate according to the present invention is a method for producing an optical laminate having a photoalignment layer and a light absorption anisotropic layer, and having an optical transmittance of 60% or less in front transmittance.
  • the process for producing an optical laminate of the present invention comprises a step of forming a photoalignment layer on a polymer film, a step of forming a photoalignment layer, and a liquid crystal composition comprising a dichroic substance and a polymer liquid crystalline compound on the photoalignment layer. And applying a substance to form a light absorption anisotropic layer.
  • a liquid crystal composition containing a dichroic substance and a polymer liquid crystalline compound is coated on the photoalignment layer to form a light absorption anisotropic layer.
  • the photoalignment layer formation process which the manufacturing method of the optical layered product of the present invention has is a process of forming a photoalignment layer on a polymer film.
  • the polymer film is not particularly limited, and a commonly used polymer film (for example, a polarizer protective film or the like) can be used.
  • a polymer which comprises a polymer film For example, A cellulose polymer; An acrylic polymer which has acrylic acid ester polymers, such as a polymethyl methacrylate and a lactone ring containing polymer; A thermoplastic norbornene-type polymer; A polycarbonate system Polymers; Polyester-based polymers such as polyethylene terephthalate and polyethylene naphthalate; Styrene-based polymers such as polystyrene and acrylonitrile-styrene copolymer (AS resin); Polyolefin-based polymers such as polyethylene, polypropylene and ethylene-propylene copolymer; Vinyl chloride Based polymers; amide based polymers such as nylon and aromatic polyamides; imide based polymers; sulfone based polymers; polyether sulf
  • a cellulose-based polymer (hereinafter, also referred to as “cellulose acylate”) represented by triacetyl cellulose can be preferably used.
  • cellulose acylate represented by triacetyl cellulose
  • acrylic polymer examples include polymethyl methacrylate, and lactone ring-containing polymers described in paragraphs [0017] to [0107] of JP 2009-98605 A, and the like.
  • a cellulose-based polymer or a polyester-based polymer can be preferably used in the embodiment using a polymer film which can be peeled from the produced optical laminate.
  • the polymer film is preferably transparent.
  • transparent indicates that the transmittance of visible light is 60% or more, preferably 80% or more, and particularly preferably 90% or more.
  • the thickness of the polymer film is not particularly limited, but is preferably 40 ⁇ m or less because the thickness of the optical laminate can be reduced.
  • the lower limit is not particularly limited, but is usually 5 ⁇ m or more.
  • the photoalignment layer formed on the polymer film described above is a photoalignment layer containing a photoactive compound (compound having a photoreactive group).
  • the photoalignment layer is formed by applying a composition containing a compound having a photoreactive group (hereinafter, also abbreviated as “composition for forming a photoalignment layer”) on the above-mentioned polymer film and coating it. Orientation obtained through the steps of: forming the coating, drying the coating by heating, and irradiating the coated film after drying with polarized light or non-polarized light from an oblique direction to the coating surface, It is preferable that it is an orientation layer to which a regulating force is applied.
  • CCC bond carbon-carbon double bond
  • C N bond
  • the group which makes benzene a basic structure is mentioned.
  • These groups may have a substituent such as an alkyl group, an alkoxy group, an aryl group, an allyloxy group, a cyano group, an alkoxycarbonyl group, a hydroxyl group, a sulfonic acid group or a halogenated alkyl group.
  • a cinnamoyl group or an azobenzene group is preferable because the amount of polarized light necessary for photoalignment is relatively small, and a photoalignment layer having excellent thermal stability and temporal stability can be easily obtained.
  • the photoactive compound having an azobenzene group is a photoactive compound represented by the following general formula (I).
  • each of R 21 to R 24 independently represents a hydrogen atom or a substituent, provided that at least one of the groups represented by R 21 to R 24 represents a carboxyl group or a sulfo group; Represents an integer of 1 to 4, n represents an integer of 1 to 4, o represents an integer of 1 to 5, and p represents an integer of 1 to 5, but m, n, o, and p are 2 or more And R 21 to R 24 , which are a plurality of R 21 to R 24, may be the same or different.
  • Examples of the substituent represented by each of R 21 to R 24 in the general formula (I) can include the following groups.
  • a carboxyl group may form a salt with an alkali metal, preferably a salt not forming a salt or a sodium salt forming carboxyl group, more preferably a sodium salt forming carboxyl group
  • a sulfo group (which may form a salt with an alkali metal, preferably a salt not forming or a sodium salt forming sulfo group, more preferably forming a sodium salt)
  • An alkyl group preferably having a carbon number of 1 to 20, more preferably a carbon number of 1 to 12, particularly preferably an alkyl group having a carbon number of 1 to 8), and examples thereof include a methyl group, an ethyl group and an isopropyl group.
  • Alkenyl group (preferably having 2 to 20 carbon atoms, more preferably 2 to 12 carbon atoms, particularly preferably 2 to 8 carbon atoms), and examples thereof include a vinyl group, an aryl group and a 2-butenyl group.
  • alkynyl group preferably having 2 to 20 carbon atoms, more preferably 2 to 12 carbon atoms, and particularly preferably 2 to 8 carbon atoms
  • propargyl group such as propargyl group
  • aryl groups preferably having 6 to 30 carbon atoms, more preferably 6 to 20 carbon atoms, and particularly preferably 6 to 12 carbon atoms, and examples thereof include a phenyl group, 2, and 6-diethylphenyl group, 3,5-ditrifluoromethylphenyl group, naphthyl group, biphenyl group etc.
  • substituted or unsubstituted amino group It is preferably an amino group having 0 to 20 carbon atoms, more preferably 0 to 10 carbon atoms, particularly preferably 0 to 6 carbon atoms, and examples thereof include unsubstituted amino group, methylamino group, dimethylamino group, diethylamino group, and anilino. Groups, etc.),
  • An alkoxy group (preferably having a carbon number of 1 to 20, more preferably a carbon number of 1 to 10, particularly preferably a carbon number of 1 to 6, and examples thereof include a methoxy group, an ethoxy group and a butoxy group), an alkoxycarbonyl group (Preferably 2 to 20 carbon atoms, more preferably 2 to 10 carbon atoms, particularly preferably 2 to 6 carbon atoms, and examples thereof include a methoxycarbonyl group and an ethoxycarbonyl group), an acyloxy group (preferably 2 carbon atoms) It is preferably 20 to 20, more preferably 2 to 10 carbon atoms, particularly preferably 2 to 6 carbon atoms, and includes, for example, an acetoxy group and benzoyloxy group, and an acylamino group (preferably 2 to 20 carbon atoms, more preferably carbon) The number is preferably 2 to 10, particularly preferably 2 to 6 carbon atoms, and examples include acetylamino and benzoylamino.
  • An alkoxycarbonylamino group (preferably having a carbon number of 2 to 20, more preferably a carbon number of 2 to 10, particularly preferably a carbon number of 2 to 6, and examples thereof include a methoxycarbonylamino group and the like), an aryloxy A carbonylamino group (preferably 7 to 20 carbon atoms, more preferably 7 to 16 carbon atoms, particularly preferably 7 to 12 carbon atoms, and examples thereof include a phenyloxycarbonylamino group etc.), a sulfonylamino group (preferably Is a carbon number of 1 to 20, more preferably a carbon number of 1 to 10, particularly preferably a carbon number of 1 to 6, and examples thereof include a methanesulfonylamino group, a benzenesulfonylamino group and the like) and a sulfamoyl group (preferably carbon The number is from 0 to 20, more preferably from 0 to 10, particularly preferably from 0 to 6, For example, s
  • carbamoyl group (preferably having 1 to 20 carbon atoms, more preferably 1 to 10 carbon atoms, particularly preferably Is 1 to 6 carbon atoms, and examples thereof include unsubstituted carbamoyl group, methylcarbamoyl group, diethylcarbamoyl group, phenylcarbamoyl group and the like),
  • An alkylthio group (preferably having a carbon number of 1 to 20, more preferably a carbon number of 1 to 10, particularly preferably a carbon number of 1 to 6, and examples include a methylthio group, an ethylthio group, etc.), an arylthio group (preferably a carbon atom)
  • the carbon number is preferably 6 to 20, more preferably 6 to 16 carbon atoms, particularly preferably 6 to 12 carbon atoms, and examples thereof include a phenylthio group and the like, a sulfonyl group (preferably 1 to 20 carbon atoms, more preferably carbon)
  • the number is preferably 1 to 10, particularly preferably 1 to 6 carbon atoms, and examples thereof include a mesyl group, a tosyl group, etc., a sulfinyl group (preferably 1 to 20 carbon atoms, more preferably 1 to 10 carbon atoms, particularly It preferably has 1 to 6 carbon atoms, and examples thereof include a methanesulf
  • substituents may be further substituted by these substituents. When two or more substituents are present, they may be the same or different. In addition, if possible, they may be combined with each other to form a ring.
  • the group represented by R 21 to R 24 may be a polymerizable group or a substituent containing a polymerizable group.
  • the group represented by R 21 to R 24 is preferably a hydrogen atom, a carboxyl group, a sulfo group, a halogen atom, an alkyl group, an alkoxy group, a cyano group, a nitro group, an alkoxycarbonyl group, A carbamoyl group, more preferably a hydrogen atom, a carboxyl group, a sulfo group, a halogen atom, a halogenated methyl group, a halogenated methoxy group, a cyano group, a nitro group or a methoxycarbonyl group, particularly preferably a hydrogen atom or a carboxyl group , A sulfo group, a halogen atom, a cyano group and a nitro group.
  • At least one of the groups represented by R 21 to R 24 is a carboxyl group or a sulfo group.
  • the substitution position of the carboxyl group or the sulfo group is not particularly limited, but from the viewpoint of photoactivation, it is preferable that at least one R 21 and / or at least one R 22 is a sulfo group, and at least one R 21 And at least one R 22 is more preferably a sulfo group.
  • at least one R 23 and / or at least one R 24 is a carboxyl group, and more preferably at least one R 23 and at least one R 24 is a carboxyl group. More preferably, the carboxyl group is R 23 and R 24 substituted in the meta position relative to the azo group.
  • m represents an integer of 1 to 4
  • n represents an integer of 1 to 4
  • o represents an integer of 1 to 5
  • p represents an integer of 1 to 5.
  • m is an integer of 1 to 2
  • n is an integer of 1 to 2
  • o is an integer of 1 to 2
  • p is an integer of 1 to 2.
  • the photoactive compound having a cinnamoyl group is preferably a polymer because the influence of the contact of the photoalignment layer is small. Moreover, it is preferable that it is a polymer which has a crosslinkable group with a cinnamoyl group from the reason which the influence by the contact of a photo alignment layer becomes smaller further.
  • the crosslinkable group may be a group which crosslinks by causing a crosslinking reaction, and examples thereof include cationic polymerizable groups such as epoxy groups; and radically polymerizable groups such as acrylates and methacrylates.
  • both of the cationic polymerizable group and the radical polymerizable group be included in the film of the photoalignment layer in terms of functional separation. .
  • Photo-alignment copolymer As a polymer having a crosslinkable group with a cinnamoyl group, it has a repeating unit A containing a cinnamoyl group represented by the following formula (A) and a repeating unit B containing a crosslinkable group represented by the following formula (B) And photoalignable copolymers are preferably mentioned.
  • R 1 represents a hydrogen atom or a methyl group.
  • L 1 represents a divalent linking group containing a nitrogen atom and a cycloalkane ring, and a part of carbon atoms constituting the cycloalkane ring is substituted with a hetero atom selected from the group consisting of nitrogen, oxygen and sulfur It may be done.
  • R 2 , R 3 , R 4 , R 5 and R 6 each independently represent a hydrogen atom or a substituent, Two adjacent groups among R 2 , R 3 , R 4 , R 5 and R 6 may be combined to form a ring.
  • R 7 represents a hydrogen atom or a methyl group
  • L 2 represents a divalent linking group
  • X represents a crosslinkable group.
  • a photoalignable copolymer having a repeating unit A containing a cinnamoyl group represented by the above formula (A) and a repeating unit B containing a crosslinkable group represented by the above formula (B)
  • the solvent resistance of the obtained photoalignment layer, and the orientation (hereinafter abbreviated as “liquid crystal orientation”) of the polymer liquid crystalline compound when forming a light absorption anisotropic layer described later are referred to as “liquid crystal orientation”. It becomes good.
  • the divalent linking group represented by L 1 in the above formula (A) contains a nitrogen atom and a cycloalkane ring
  • molecular motion is suppressed by enhancing the hydrogen bonding property and molecular rigidity.
  • the solvent resistance is improved.
  • the divalent linking group represented by L 1 in the above-mentioned formula (A) contains a nitrogen atom and a cycloalkane ring
  • the glass transition temperature of the copolymer is increased, and the obtained photoalignment is obtained.
  • the improvement of the temporal stability of the layer it is considered that the liquid crystal alignment property is improved regardless of the timing of forming the optically anisotropic layer.
  • a divalent linking group represented by L 1 in the formula (A) and containing a nitrogen atom and a cycloalkane ring will be described.
  • part of carbon atoms constituting the cycloalkane ring may be substituted with a hetero atom selected from the group consisting of nitrogen, oxygen and sulfur.
  • a part of carbon atom which comprises a cycloalkane ring is substituted by the nitrogen atom, it does not need to have a nitrogen atom separately from a cycloalkane ring.
  • the cycloalkane ring contained in the divalent linking group represented by L 1 in the above formula (A) is preferably a cycloalkane ring having 6 or more carbon atoms, and as a specific example thereof, a cyclohexane ring, cyclopeptan Rings, cyclooctane rings, cyclododecane rings, cyclodocosan rings and the like.
  • L 1 in the above formula (A) is The divalent linking group represented by any one of the following formulas (1) to (10) is preferable.
  • * 1 represents a bonding position to a carbon atom constituting the main chain in the above formula (A)
  • * 2 represents a carbonyl group in the above formula (A) It represents the bonding position with the constituent carbon atom.
  • the solubility in the solvent used in forming the photoalignment layer, and the solvent resistance of the obtained photoalignment layer It is preferable that it is a bivalent coupling group represented by either of said Formula (2), (3), (7) and (8) from the reason which a balance becomes favorable.
  • R 2 , R 3 , R 4 , R 5 and R 6 in the above-mentioned formula (A) substituents represented by one aspect of R 2 , R 3 , R 4 , R 5 and R 6 in the above-mentioned formula (A) will be described.
  • R 2 , R 3 , R 4 , R 5 and R 6 in the above formula (A) may be not a substituent but a hydrogen atom.
  • the cinnamoyl group easily interacts with the liquid crystal compound, and the liquid crystal alignment is more favorable.
  • a halogen atom a linear, branched or cyclic alkyl group having 1 to 20 carbon atoms, a linear halogenated alkyl group having 1 to 20 carbon atoms, or 1 to 20 carbon atoms.
  • An alkoxy group, The aryl group is preferably an aryl group having 6 to 20 carbon atoms, an aryloxy group having 6 to 20 carbon atoms, a cyano group, an amino group, or a group represented by the following formula (11).
  • * represents a bonding position to the benzene ring in the above formula (A)
  • R 9 represents a monovalent organic group.
  • halogen atom a fluorine atom, a chlorine atom, a bromine atom, an iodine atom etc. are mentioned, for example, Especially, it is preferable that it is a fluorine atom and a chlorine atom.
  • the linear alkyl group is preferably an alkyl group having 1 to 6 carbon atoms, and specifically, for example, a methyl group, Ethyl group, n-propyl group and the like can be mentioned.
  • the branched alkyl group is preferably an alkyl group having a carbon number of 3 to 6, and specific examples thereof include an isopropyl group and a tert-butyl group.
  • the cyclic alkyl group is preferably an alkyl group having a carbon number of 3 to 6, and specific examples thereof include a cyclopropyl group, a cyclopentyl group and a cyclohexyl group.
  • the linear halogenated alkyl group having 1 to 20 carbon atoms is preferably a fluoroalkyl group having 1 to 4 carbon atoms, and specifically, for example, a trifluoromethyl group, a perfluoroethyl group, a perfluoropropyl group And perfluorobutyl group etc., among which trifluoromethyl group is preferable.
  • the alkoxy group having 1 to 20 carbon atoms is preferably an alkoxy group having 1 to 18 carbon atoms, An alkoxy group having 6 to 18 carbon atoms is more preferable, and an alkoxy group having 6 to 14 carbon atoms is more preferable.
  • Preferred examples of the group include n-hexyloxy group, n-octyloxy group, n-decyloxy group, n-dodecyloxy group and n-tetradecyloxy group.
  • the aryl group having 6 to 20 carbon atoms is preferably an aryl group having 6 to 12 carbon atoms, and specific examples thereof include a phenyl group, an ⁇ -methylphenyl group, and a naphthyl group. Among them, a phenyl group is preferable. preferable.
  • the aryloxy group having 6 to 20 carbon atoms is preferably an aryloxy group having 6 to 12 carbon atoms, and specific examples thereof include a phenyloxy group and a 2-naphthyloxy group. Among them, a phenyloxy group is preferable. Is preferred.
  • amino group examples include: primary amino group (—NH 2 ); secondary amino group such as methylamino group; dimethylamino group, diethylamino group, dibenzylamino group, nitrogen-containing heterocyclic compound (eg, pyrrolidine) , And a tertiary amino group such as a group having a nitrogen atom of piperidine, piperazine and the like as a bond;
  • the monovalent organic group represented by R 9 in the above formula (11) for the group represented by the above formula (11) for example, a linear or cyclic alkyl group having 1 to 20 carbon atoms can be mentioned .
  • the linear alkyl group is preferably an alkyl group having a carbon number of 1 to 6, and specific examples thereof include a methyl group, an ethyl group and an n-propyl group. Among them, a methyl group or an ethyl group is preferable. preferable.
  • the cyclic alkyl group is preferably an alkyl group having a carbon number of 3 to 6, and specific examples thereof include a cyclopropyl group, a cyclopentyl group and a cyclohexyl group. A cyclohexyl group is preferred.
  • the monovalent organic group represented by R 9 in the above formula (11) may be a combination of the linear alkyl group and the cyclic alkyl group described above directly or via a single bond. Good
  • R 2 , R 3 , R 4 , R 5 and R 6 in the above formula (A) are preferred because the cinnamoyl group easily interacts with the liquid crystal compound and the liquid crystal alignment becomes better.
  • at least R 4 represents the above-mentioned substituent, and further, the linearity of the obtained photoalignable copolymer is improved, and it becomes easy to interact with the liquid crystal compound, and the liquid crystal alignment is further improved. It is more preferable that all of R 2 , R 3 , R 5 and R 6 represent a hydrogen atom.
  • R 4 in the above-mentioned formula (A) is an electron donating substituent.
  • the electron donating substituent refers to a substituent having a Hammett value (Hammett substituent constant ⁇ p) of 0 or less, and, for example, among the above-mentioned substituents, an alkyl group, A halogenated alkyl group, an alkoxy group, etc. are mentioned. Among them, an alkoxy group is preferable, and an alkoxy group having 6 to 16 carbon atoms is more preferable, and an alkoxy group having 7 to 10 carbon atoms is more preferable because liquid crystal alignment properties are better. Is more preferred.
  • the divalent linking group is preferably a combination of at least two or more groups selected from the group consisting of imino groups (-NH-) which may have a group.
  • the substituent which the alkylene group, the arylene group and the imino group may have, for example, a halogen atom, an alkyl group, an alkoxy group, an aryl group, an aryloxy group, a cyano group, a carboxy group, an alkoxycarbonyl group And hydroxyl groups.
  • a halogen atom a fluorine atom, a chlorine atom, a bromine atom, an iodine atom etc. are mentioned, for example, Especially, it is preferable that it is a fluorine atom and a chlorine atom.
  • alkyl group for example, a linear, branched or cyclic alkyl group having 1 to 18 carbon atoms is preferable, and an alkyl group having 1 to 8 carbon atoms (eg, methyl group, ethyl group, propyl group, isopropyl group) N-butyl group, isobutyl group, sec-butyl group, t-butyl group, cyclohexyl group and the like are more preferable, an alkyl group having 1 to 4 carbon atoms is still more preferable, and a methyl group or an ethyl group is more preferable Is particularly preferred.
  • an alkyl group having 1 to 8 carbon atoms eg, methyl group, ethyl group, propyl group, isopropyl group
  • N-butyl group, isobutyl group, sec-butyl group, t-butyl group, cyclohexyl group and the like are more preferable
  • the alkoxy group is, for example, preferably an alkoxy group having 1 to 18 carbon atoms, more preferably an alkoxy group having 1 to 8 carbon atoms (eg, methoxy group, ethoxy group, n-butoxy group, methoxyethoxy group, etc.) More preferably, it is an alkoxy group of the number 1 to 4, and particularly preferably a methoxy group or an ethoxy group.
  • the aryl group include, for example, aryl groups having 6 to 12 carbon atoms, and specifically, For example, a phenyl group, an ⁇ -methylphenyl group, a naphthyl group and the like can be mentioned, with preference given to a phenyl group.
  • aryloxy group for example, phenoxy, naphthoxy, imidazoyloxy, Benzimidazoyloxy, pyridin-4-yloxy, pyrimidinyloxy, quinazolinyloxy, purinyloxy, thiophen-3-yloxy and the like.
  • alkoxycarbonyl group for example, methoxycarbonyl, ethoxycarbonyl and the like can be mentioned.
  • linear, branched or cyclic alkylene group having 1 to 18 carbon atoms include a methylene group, an ethylene group, a propylene group, a butylene group, a pentylene group, and the like. Hexylene group, decylene group, undecylene group, dodecylene group, tridecylene group, tetradecylene group, pentadecylene group, hexadecylene group, heptadecylene group, octadecylene group and the like.
  • branched alkylene groups include dimethylmethylene, methylethylene, 2,2-dimethylpropylene and 2-ethyl-2-methylpropylene.
  • cyclic alkylene group specifically, for example, cyclopropylene group, cyclobutylene group, cyclopentylene group, cyclohexylene group, cyclooctylene group, cyclodecylene group, adamantane-diyl group, norbornane-diyl group And exo-tetrahydrodicyclopentadiene-diyl group etc., among which cyclohexylene group is preferable.
  • arylene group having 6 to 12 carbon atoms include phenylene group, xylylene group, biphenylene group, naphthylene group, 2,2'-methylenebisphenyl group and the like, among which phenylene group is preferable. .
  • X (crosslinkable group) in the above formula (B) include epoxy group, epoxycyclohexyl group, oxetanyl group, and a functional group having an ethylenically unsaturated double bond.
  • at least one crosslinkable group selected from the group consisting of the following formulas (X1) to (X4) is preferable.
  • * represents a bonding position to L 2 in the above formula (B)
  • R 8 represents any of a hydrogen atom, a methyl group and an ethyl group
  • S represents a functional group having an ethylenically unsaturated double bond.
  • specific examples of the functional group having an ethylenically unsaturated double bond include, for example, a vinyl group, an allyl group, a styryl group, an acryloyl group and a methacryloyl group, and it is an acryloyl group or a methacryloyl group Is preferred.
  • the repeating unit B is preferred because the strength of the optical laminate of the present invention to be described later becomes high, and the handling property at the time of forming another layer using the optical laminate of the present invention to be described becomes good.
  • a repeating unit in which X in the above formula (B) is a crosslinkable group represented by any one of the above formulas (X1) to (X3) (hereinafter also abbreviated as “repeating unit B1”), and the above formula A repeating unit in which X in (B) is a crosslinkable group represented by the above formula (X4) (hereinafter, “repeating unit B It is abbreviated as 2 ".
  • b) are preferably contained.
  • repeating unit A containing a cinnamoyl group represented by the above formula (A) include the repeating units A-1 to A-44 shown below.
  • Me represents a methyl group
  • Et represents an ethyl group.
  • 1,4-cyclohexyl group” contained in the divalent linking group of repeating units A-1 to A-10 may be either a cis form or trans form It is preferably a trans form.
  • repeating unit B (repeating unit B1) containing a crosslinkable group represented by the above formula (B) include the repeating units B-1 to B-17 shown below.
  • repeating unit B (repeating unit B2) containing a crosslinkable group represented by the above formula (B) include repeating units B-18 to B-47 shown below.
  • the content a of the repeating unit A described above and the content b of the repeating unit B described above preferably satisfy the following formula (12) by mass ratio, and the following formula It is more preferable to satisfy (13), still more preferably to satisfy the following formula (14), and it is particularly preferable to satisfy the following formula (15).
  • 0.05 ⁇ a / (a + b) ⁇ 0.2 (15)
  • the photoalignable copolymer has the repeating unit B2 described above together with the repeating unit B1 described above, the optically anisotropic layer including the photoalignment layer while maintaining good liquid crystal alignment and adhesiveness.
  • the content a of the repeating unit A described above, the content b1 of the repeating unit B1 described above, and the content b2 of the repeating unit B2 described above are represented by the following formula (16) in mass ratio It is preferable to satisfy the following equation (17), and it is more preferable to satisfy the following equation (18).
  • the photoalignable copolymer may have other repeating units in addition to the above-described repeating unit A and repeating unit B, as long as the effects of the present invention are not impaired.
  • monomers (radically polymerizable monomers) that form such other repeating units For example, acrylic acid ester compounds, methacrylic acid ester compounds, maleimide compounds, Acrylamide compounds, acrylonitrile, maleic anhydride, styrene compounds, vinyl compounds and the like can be mentioned.
  • the synthesis method of the photoalignable copolymer is not particularly limited.
  • a monomer forming the above-mentioned repeating unit A, a monomer forming the above-mentioned repeating unit B, and a monomer forming any other repeating unit Can be synthesized by polymerization using a radical polymerization initiator in an organic solvent.
  • the weight average molecular weight (Mw) of the photoalignable copolymer is preferably 10,000 to 500,000, and more preferably 30,000 to 300,000 because the liquid crystal alignment is further improved.
  • content of the said photoalignment copolymer in the composition for photoalignment layer formation is not specifically limited, When it contains the organic solvent mentioned later, 100 mass parts of organic solvents are included. The amount is preferably 0.1 to 50 parts by mass, and more preferably 0.5 to 10 parts by mass.
  • the composition for forming a photoalignment layer may contain one or more kinds of additives other than the photoactive compound.
  • the additive is added for the purpose of adjusting the refractive index of the composition for forming a photoalignment layer.
  • the additive is preferably a compound having a hydrophilic group and a (meth) acryloyloxy group from the viewpoint of compatibility with the photoactive compound, and can be added to such an extent that the orientation ability is not significantly reduced.
  • a hydrophilic group a hydroxyl group, a carboxyl group, a sulfo group, an amino group etc. are mentioned.
  • the composition for forming a photoalignment layer preferably contains an organic solvent from the viewpoint of workability for producing the photoalignment layer and the like.
  • an organic solvent specifically, for example, ketones (eg, acetone, 2-butanone, methyl isobutyl ketone, cyclohexanone, etc.), ethers (eg, dioxane, tetrahydrofuran etc.), aliphatic hydrocarbons (Eg, hexane), alicyclic hydrocarbons (eg, cyclohexane), aromatic hydrocarbons (eg, toluene, xylene, trimethylbenzene etc.), halogenated carbons (eg, dichloromethane, dichloroethane, di) Chlorobenzene, chlorotoluene etc., esters (eg methyl acetate, ethyl acetate, butyl acetate etc), water, alcohols (eg ethanol), ethanol,
  • composition for forming a photoalignment layer may contain other components other than those described above.
  • a crosslinking catalyst for example, a heat-reactive acid generator
  • an adhesion improver for example, an adhesion improver
  • a leveling agent for example, a surfactant, and a plastic Agents and the like.
  • the refractive index of the additive is preferably 1.4 to 1.6, and more preferably 1.4 to 1.55.
  • the composition for forming a photoalignment layer is a compound having a photoreactive group and a crosslinkable group (for example, because the adhesion between the photoalignment layer and the light absorption anisotropic layer described later is good). It is preferable that the composition contains the above-described photoalignable copolymer and the like, and does not contain a radical polymerization initiator.
  • Coating process As a method of applying the composition for forming a photoalignment layer on the above-mentioned polymer film, for example, coating methods such as spin coating method, extrusion method, gravure coating method, die coating method, bar coating method and applicator method Well-known methods, such as printing methods, such as and flexo method, are employ
  • coating methods such as spin coating method, extrusion method, gravure coating method, die coating method, bar coating method and applicator method
  • printing methods such as and flexo method
  • printing methods such as a gravure coating method, the die coating method, or a flexo method, are normally employ
  • the method of drying the coated film formed by the application step is not particularly limited, and the drying temperature is preferably in the range of 50 to 180 ° C., and more preferably in the range of 80 to 150 ° C.
  • the drying time is preferably 10 seconds to 10 minutes, more preferably 30 seconds to 5 minutes.
  • a crosslinking catalyst such as a heat-reactive acid generator and a compound having a cationically polymerizable crosslinkable group
  • heat curing cures the coating by a crosslinking reaction in this step. It is preferable to proceed.
  • the polarized light to be irradiated to the coating film after the drying step is not particularly limited, and may be, for example, linearly polarized light, circularly polarized light, elliptically polarized light, etc. Among them, linearly polarized light is preferable.
  • the “oblique direction” for irradiating non-polarized light is not particularly limited as long as it is a direction inclined at a polar angle ⁇ (0 ⁇ ⁇ 90 °) with respect to the normal direction of the coating film surface. Can be selected as appropriate, but preferably ⁇ is 20 to 80 °.
  • linearly polarized radiation and “non-polarized radiation” are operations for causing a photoactive compound to cause a photoreaction.
  • the wavelength of light to be used varies depending on the photoactive compound to be used, and is not particularly limited as long as it is a wavelength necessary for the photoreaction.
  • the peak wavelength of light used for light irradiation is preferably 200 nm to 700 nm, and more preferably ultraviolet light having a peak wavelength of 400 nm or less.
  • the light source used for light irradiation may be a commonly used light source, for example, a lamp such as a tungsten lamp, a halogen lamp, a xenon lamp, a xenon flash lamp, a mercury lamp, a mercury xenon lamp and a carbon arc lamp, various lasers [eg semiconductor laser, helium Neon laser, argon ion laser, helium cadmium laser and YAG (yttrium aluminum garnet) laser], light emitting diode, cathode ray tube and the like can be mentioned.
  • a lamp such as a tungsten lamp, a halogen lamp, a xenon lamp, a xenon flash lamp, a mercury lamp, a mercury xenon lamp and a carbon arc lamp
  • various lasers eg semiconductor laser, helium Neon laser, argon ion laser, helium cadmium laser and YAG (yttrium aluminum garnet) laser
  • a method using a polarizing plate for example, an iodine polarizing plate, a two-color dye polarizing plate, and a wire grid polarizing plate
  • a prism system element for example, Griffson's prism
  • Brewster's angle is used It is possible to employ a method of using a reflective polarizer, or a method of using light emitted from a laser light source having polarization. Alternatively, only light of a required wavelength may be selectively irradiated using a filter, a wavelength conversion element, or the like.
  • the alignment layer is obliquely irradiated with non-polarization.
  • the incident angle is preferably 10 to 80 °, more preferably 20 to 60 °, and still more preferably 30 to 50 °.
  • the irradiation time is preferably 1 minute to 60 minutes, and more preferably 1 minute to 10 minutes.
  • the photoalignment layer used in the present invention is preferably an alignment layer having an average refractive index of 1.55 or more and 1.8 or less at a wavelength of 550 nm.
  • the average refractive index at a wavelength of 550 nm is more preferably 1.55 to 1.7 in order to reduce the difference in refractive index with the light absorption anisotropic layer.
  • the in-plane refractive index anisotropy ⁇ n at a wavelength of 550 nm is preferably 0.05 or more and 0.45 or less. It is more preferably 0.1 or more and 0.4 or less, and still more preferably 0.1 or more and 0.3 or less.
  • the antireflection function can be further improved by appropriately controlling the refractive index anisotropy of the photoalignment layer.
  • the thickness of the photoalignment layer is preferably in the range of 10 nm to 10000 nm, more preferably in the range of 10 nm to 1000 nm, and still more preferably in the range of 10 to 300 nm.
  • interference can be used to further enhance the antireflective performance.
  • the light absorption anisotropic layer forming step included in the method for producing an optical laminate of the present invention comprises applying a liquid crystal composition containing a dichroic substance and a polymer liquid crystalline compound on a photoalignment layer to obtain light absorption difference. Forming an anisotropic layer.
  • the components contained in the liquid crystal composition used to form the light absorption anisotropic layer are described in detail below.
  • the liquid crystal composition used for formation of a light absorption anisotropic layer contains a high molecular liquid crystal compound.
  • the dichroic substance can be aligned with a high degree of orientation while suppressing the precipitation of the dichroic substance.
  • the "polymer liquid crystal compound” refers to a liquid crystal compound having a repeating unit in the chemical structure.
  • the liquid crystal compound in the present invention is a liquid crystal compound which does not exhibit dichroism. Examples of the polymer liquid crystalline compound include thermotropic liquid crystalline polymers described in JP-A-2011-237513.
  • the polymer liquid crystal compound may have a crosslinkable group (for example, an acryloyl group and a methacryloyl group) at an end.
  • the polymer liquid crystal compounds may be used alone or in combination of two or more.
  • the content of the polymer liquid crystalline compound is preferably 75 to 95 parts by mass, more preferably 75 to 90 parts by mass, and further preferably 80 to 90 parts by mass as a solid content ratio. preferable.
  • the degree of alignment of the light absorption anisotropic layer is further improved.
  • R represents a hydrogen atom or a methyl group.
  • L represents a single bond or a divalent linking group.
  • B represents a hydrogen atom, a halogen atom, a cyano group, an alkyl group, an alkoxy group, an amino group, an oxycarbonyl group, an acyloxy group, an acylamino group, an alkoxycarbonylamino group, a sulfonylamino group, a sulfamoyl group, a carbamoyl group, an alkylthio group, a flunyl group Represents a group, a sulfinyl group, a ureido group or a crosslinkable group.
  • M represents a mesogen group represented by the following formula (1-1).
  • Ar 11 and Ar 12 each independently represent a phenylene group or a biphenylene group which may have a substituent.
  • L 11 and L 12 each independently represent a single bond or a divalent linking group not containing an azo group.
  • m1 and m2 each independently represent an integer of 1 to 3. When m1 is an integer of 2 to 3, plural Ars 11 may be the same or different, and plural Ls 11 may be the same or different. When m2 is an integer of 2 to 3, a plurality of Ar 12 may be the same or different, and a plurality of L 12 may be the same or different.
  • the divalent linking group represented by L in the above formula (1) will be described.
  • the divalent linking group include, for example, -O-, -S-, -COO-, -OCO-, -O-CO-O-, -NR N CO-, -CONR N- , an alkylene group, or Examples thereof include divalent groups in which two or more of these groups are combined.
  • R N represents a hydrogen atom or an alkyl group.
  • a divalent group in which one or more types of groups selected from the group consisting of —O—, —COO— and —OCO— and an alkylene group are combined is preferable.
  • the carbon number of the alkylene group is preferably 2 to 16.
  • Ar 11 and Ar 12 each independently represent a phenylene group or a biphenylene group which may have a substituent.
  • the substituent is not particularly limited, and a halogen atom, an alkyl group, an alkyloxy group, an alkylthio group, an oxycarbonyl group, a thioalkyl group, an acyloxy group, an acylamino group, an alkoxycarbonylamino group, a sulfonylamino group, a sulfamoyl group Carbamoyl group, sulfinyl group, and ureido group.
  • L 11 and L 12 each independently represent a single bond or a divalent linking group not containing an azo group.
  • the divalent linking group for example, -O-, -S-, -COO-, -OCO-, -O-CO-O-, -NR N CO-, -CONR N- , an alkylene group Or a divalent group in which two or more of these groups are combined, and the like.
  • R N represents a hydrogen atom or an alkyl group.
  • m1 and m2 each independently represent an integer of 1 to 3.
  • m1 and m2 are preferably a total of 2 to 5 integers, and are preferably a total of 2 to 4 integers.
  • B represents a hydrogen atom, a halogen atom, a cyano group, an alkyl group, an alkoxy group, an amino group, an oxycarbonyl group, an alkoxycarbonyl group, an acyloxy group, a (poly) alkyleneoxy group, an acylamino group, an alkoxycarbonylamino group, a sulfonylamino group , Sulfamoyl group, carbamoyl group, alkylthio group, flunyl group, sulfinyl group, or Represents a ureido group.
  • cyano group, alkyl group, alkoxy group, oxycarbonyl group, alkoxycarbonyl group, (poly) alkyleneoxy group, or alkylthio group from the viewpoint of adjusting phase transition temperature, solubility, etc. It is preferable that it is an alkyl group, an alkoxy group, or a (poly) alkyleneoxy group.
  • a hydrogen atom, a halogen atom, and an alkyl group other than a cyano group preferably have 1 to 20 carbon atoms, from the viewpoint of adjusting phase transition temperature, solubility, and the like. More preferably, it is 1 to 11.
  • B in the said Formula (1) represents a crosslinkable group
  • the crosslinkable group include polymerizable groups described in paragraphs [0040] to [0050] of JP-A-2010-244038, and among them, radically polymerizable groups from the viewpoint of reactivity and synthesis suitability.
  • An acryloyl group, a methacryloyl group, an epoxy group, an oxetanyl group, or a styryl group is preferable, and an acryloyl group or a methacryloyl group (hereinafter, also abbreviated as "(meth) acryloyl group”) is more preferable.
  • the liquid crystallinity of the high molecular weight liquid crystalline compound may be either nematic or smectic, but is preferably at least nematic.
  • the temperature range showing the nematic phase is preferably from room temperature (23 ° C.) to 300 ° C., and from the viewpoint of handling or production suitability, preferably 50 ° C. to 200 ° C.
  • the weight average molecular weight (Mw) of the high molecular weight liquid crystalline compound is preferably 1000 to 100000, and more preferably 2000 to 60000.
  • the number average molecular weight (Mn) is preferably 500 to 80,000, and more preferably 1,000 to 30,000.
  • the weight average molecular weight and the number average molecular weight in the present invention are values measured by gel permeation chromatography (GPC).
  • the maximum absorption wavelength of the polymer liquid crystalline compound is 380 nm or less because the absorption in the visible light region is small and the alignment of the dichroic substance in the visible light region can be more easily maintained. Is preferred.
  • the number of benzene rings contained in the mesogen group of the polymer liquid crystalline compound is preferably 3 or more because the two-color ratio of the light absorption anisotropic layer is further improved.
  • the polymeric liquid crystalline compound represented by following Structural formula is mentioned, for example.
  • R represents a hydrogen atom or a methyl group.
  • the high molecular liquid crystalline compound containing the repeating unit represented by Formula (2) mentioned later is preferable to contain the high molecular liquid crystalline compound containing the repeating unit represented by Formula (2) mentioned later as a further preferable high molecular liquid crystalline compound in this invention.
  • Formula (2) described later log P values of P1 (hereinafter also referred to as “main chain”), L1 and SP1 (hereinafter also referred to as “spacer group”), and M1 (hereinafter referred to as “mesogenic group”) The difference between the above and the log P value is 4 or more.
  • the logP value is an index expressing the hydrophilicity and hydrophobicity of the chemical structure.
  • the repeating unit represented by the formula (2) described later has a structure from the main chain to the spacer group since the log P values of the main chain, L 1 and the spacer group and the log value of the mesogenic group are separated by a predetermined value or more.
  • the compatibility between the compound and the mesogenic group is low.
  • the crystallinity of the high molecular weight liquid crystalline compound is increased, and it is presumed that the degree of alignment of the high molecular weight liquid crystalline compound is high.
  • the degree of orientation of the high molecular weight liquid crystalline compound is high, the compatibility between the high molecular weight liquid crystalline compound and the dichroic substance is reduced (that is, the crystallinity of the dichroic substance is improved), It is presumed that the degree of orientation of the color substance is improved. As a result, it is considered that the degree of orientation of the obtained light absorption anisotropic layer is increased.
  • the high molecular weight liquid crystalline compound preferable in the invention contains a repeating unit represented by the following formula (2) (also referred to as “repeating unit (2)” in the present specification).
  • the difference between the log P value of P1, L1 and SP1 and the log P value of M1 is 4 or more.
  • P1 represents the main chain of the repeating unit
  • L1 represents a single bond or a divalent linking group
  • SP1 represents a spacer group
  • M1 represents a mesogenic group
  • T1 represents a terminal group.
  • M1 has a linking group, it does not contain an azo group as the linking group.
  • Specific examples of the main chain of the repeating unit represented by P 1 include groups represented by the following formulas (P 1 -A) to (P 1 -D). From the viewpoint of diversity and easy handling, a group represented by the following formula (P1-A) is preferable.
  • R 1 , R 2 , R 3 and R 4 are each independently a hydrogen atom, a halogen atom, an alkyl group having 1 to 10 carbon atoms, or Represents an alkoxy group of -10.
  • the alkyl group may be a linear or branched alkyl group or an alkyl group having a cyclic structure (cycloalkyl group).
  • the carbon number of the alkyl group is preferably 1 to 5.
  • the group represented by the formula (P1-A) is preferably one unit of a partial structure of poly (meth) acrylic acid ester obtained by polymerization of (meth) acrylic acid ester.
  • the group represented by the formula (P1-B) is preferably an ethylene glycol unit formed by ring-opening polymerization of an epoxy group of a compound having an epoxy group.
  • the group represented by the formula (P1-C) is preferably a propylene glycol unit formed by ring-opening polymerization of an oxetane group of a compound having an oxetane group.
  • the group represented by the formula (P1-D) is preferably a siloxane unit of a polysiloxane obtained by condensation polymerization of a compound having at least one of an alkoxysilyl group and a silanol group.
  • a compound having at least one of an alkoxysilyl group and a silanol group a compound having a group represented by the formula SiR 4 (OR 5 ) 2 — can be mentioned.
  • R 4 has the same meaning as R 4 in (P 1 -D), and a plurality of R 5 's each independently represent a hydrogen atom or an alkyl group having 1 to 10 carbon atoms.
  • L1 is a single bond or a divalent linking group.
  • the divalent linking group L1 represents, -C (O) O -, - OC (O) -, - O -, - S -, - C (O) NR 3 -, - NR 3 C (O) -, -SO 2- , and -NR 3 R 4- and the like.
  • R 3 and R 4 each independently represent a hydrogen atom or an alkyl group having 1 to 6 carbon atoms which may have a substituent.
  • P1 is a group represented by formula (P1-A)
  • L1 is preferably a group represented by -C (O) O-.
  • P1 is a group represented by the formulas (P1-B) to (P1-D)
  • L1 is preferably a single bond.
  • the spacer group represented by SP 1 is at least one selected from the group consisting of an oxyethylene structure, an oxypropylene structure, a polysiloxane structure, and a fluorinated alkylene structure because of easy expression of liquid crystallinity and availability of raw materials. It is preferred to include the structure of the species.
  • the oxyethylene structure represented by SP1 is preferably a group represented by *-(CH 2 -CH 2 O) n 1- *.
  • n1 represents an integer of 1 to 20, and * represents a bonding position with L1 or M1.
  • the oxypropylene structure represented by SP 1 is preferably a group represented by *-(CH (CH 3 ) -CH 2 O) n 2- *.
  • n2 represents an integer of 1 to 3, and * represents a bonding position with L1 or M1.
  • the polysiloxane structure represented by SP 1 is preferably a group represented by *-(Si (CH 3 ) 2 -O) n 3- *.
  • n3 represents an integer of 6 to 10
  • * represents a bonding position with L1 or M1.
  • the fluorinated alkylene structure represented by SP1 is preferably a group represented by *-(CF 2 -CF 2 ) n 4- *.
  • n4 represents an integer of 6 to 10, and * represents a bonding position with L1 or M1.
  • the mesogenic group represented by M1 is a group showing a main skeleton of liquid crystal molecules contributing to liquid crystal formation. Liquid crystal molecules exhibit liquid crystallinity that is an intermediate state (mesophase) between a crystalline state and an isotropic liquid state.
  • the mesogen group is not particularly limited, and, for example, “Flussige Kristalle in Tabellen II” (VEB Manual Verlag fur Grundstoff Industrie, Leipzig, 1984), in particular, the description of pages 7 to 16 and the edition of the Liquid Crystal Handbook Reference can be made to the Handbook of Liquid Crystals (Maruzen, 2000), especially the description in Chapter 3.
  • the mesogenic group for example, a group having at least one cyclic structure selected from the group consisting of an aromatic hydrocarbon group, a heterocyclic group, and an alicyclic group is preferable.
  • mesogen group a group represented by the following formula (M1-A) or the following formula (M1-B) is preferable from the viewpoint of expression of liquid crystallinity, adjustment of liquid crystal phase transition temperature, availability of raw materials and synthesis suitability.
  • A1 is a divalent group selected from the group consisting of an aromatic hydrocarbon group, a heterocyclic group and an alicyclic group. These groups may be substituted by a substituent such as an alkyl group, a fluorinated alkyl group or an alkoxy group.
  • the divalent group represented by A1 is preferably a 4- to 6-membered ring.
  • the divalent group represented by A1 may be a single ring or a condensed ring. * Represents a bonding position with SP1 or T1.
  • Examples of the divalent aromatic hydrocarbon group represented by A1 include phenylene group, naphthylene group, fluorene-diyl group, anthracene-diyl group and tetracene-diyl group, and the variety of design of mesogen skeleton and acquisition of raw materials From the viewpoint of properties and the like, a phenylene group or a naphthylene group is preferable, and a phenylene group is more preferable.
  • the divalent heterocyclic group represented by A1 may be either aromatic or non-aromatic, but is preferably a divalent aromatic heterocyclic group from the viewpoint of further improving the degree of orientation.
  • atoms other than carbon which comprises a bivalent aromatic heterocyclic group a nitrogen atom, a sulfur atom, and an oxygen atom are mentioned.
  • the aromatic heterocyclic group has a plurality of atoms constituting a ring other than carbon, these may be the same or different.
  • divalent aromatic heterocyclic group examples include, for example, pyridylene group (pyridine-diyl group), pyridazine-diyl group, imidazole-diyl group, thienylene (thiophene-diyl group), quinolylene group (quinoline-diyl group) ), Isoquinolylene group (isoquinoline-diyl group), oxazole-diyl group, thiazole-diyl group, oxadiazole-diyl group, benzothiazole-diyl group, benzothiadiazole-diyl group, phthalimido-diyl group, thienothiazole-diyl group And thiazolothiazole-diyl group, thienothiophene-diyl group, and thienooxazole-diyl group.
  • pyridylene group pyridine-
  • divalent alicyclic group represented by A1 examples include a cyclopentylene group and a cyclohexylene group.
  • a1 represents an integer of 1 to 10. When a1 is 2 or more, a plurality of A1 may be the same or different.
  • A2 and A3 are each independently a divalent group selected from the group consisting of an aromatic hydrocarbon group, a heterocyclic group and an alicyclic group. Specific examples and preferable embodiments of A2 and A3 are the same as A1 of Formula (M1-A), and thus the description thereof is omitted.
  • a2 represents an integer of 1 to 10, and when a2 is 2 or more, plural A2 may be the same or different, and plural A3 may be the same or different Well, several LA1 may be the same or different.
  • LA1 when a2 is 1, LA1 is a divalent linking group.
  • each of the plurality of LA1 is independently a single bond or a divalent linking group, and at least one of the plurality of LA1 is a divalent linking group.
  • the terminal group represented by T1 is a hydrogen atom, a halogen atom, a cyano group, a nitro group, a hydroxy group, an alkyl group having 1 to 10 carbon atoms, an alkoxy group having 1 to 10 carbon atoms, an alkylthio group having 1 to 10 carbon atoms, An oxycarbonyl group having 1 to 10 carbon atoms, an acyloxy group having 1 to 10 carbon atoms, an acylamino group having 1 to 10 carbon atoms, an alkoxycarbonyl group having 1 to 10 carbon atoms, an alkoxycarbonylamino group having 1 to 10 carbon atoms, carbon A sulfonylamino group of 1 to 10, a sulfamoyl group of 1 to 10 carbons, a carbamoyl group of 1 to 10 carbons, a sulfinyl group of 1 to 10 carbons, a ureido group of 1 to 10 carbons and the like can be mentioned
  • the number of atoms in the main chain of T1 is preferably 1 to 20, more preferably 1 to 15, still more preferably 1 to 10, and particularly preferably 1 to 7.
  • the "main chain” in T1 means the longest molecular chain that bonds to M1, and hydrogen atoms are not counted in the number of atoms in the main chain of T1. For example, when T1 is an n-butyl group, the number of atoms in the main chain is 4, and when T1 is a sec-butyl group, the number of atoms in the main chain is 3.
  • the content of the repeating unit (2) is preferably 20 to 100% by mass, more preferably 30 to 99.9% by mass, and more preferably 40 to 99% by mass with respect to 100% by mass of all the repeating units of the polymer liquid crystalline compound. 0 mass% is more preferable.
  • the content of each repeating unit contained in the polymer liquid crystal compound is calculated based on the preparation amount (mass) of each monomer used to obtain each repeating unit.
  • the repeating unit (2) may be contained singly or in combination of two or more kinds in the polymer liquid crystal compound.
  • the high molecular weight liquid crystalline compound contains two or more repeating units (2), the solubility of the high molecular weight liquid crystalline compound in the solvent is improved, and the adjustment of the liquid crystal phase transition temperature is facilitated. is there.
  • the total amount is in the said range.
  • a repeating unit (2) containing no polymerizable group at T1 and a repeating unit (2) containing a polymerizable group at T1 may be used in combination. Thereby, the curability of the light absorption anisotropic layer is further improved.
  • the repeating unit (2)) having no polymerizable group in (2) / T1 is preferably 0.005 to 4 in mass ratio, and more preferably 0.01 to 2.4. When the mass ratio is 4 or less, there is an advantage that the degree of orientation is excellent. When the mass ratio is 0.05 or more, the curability of the light absorption anisotropic layer is further improved.
  • log P 1 log P 1
  • log P 2 log P 2
  • log P 1 log P 1
  • log P 2 log P 2
  • the log P value is an index expressing the hydrophilicity and hydrophobicity of the chemical structure, and may be referred to as a lipophilicity parameter.
  • the logP value can be calculated using software such as ChemBioDraw Ultra or HSPiP (Ver.4.1.07).
  • OECD Guidelines for the Testing of Chemicals, Sections 1, Test No. It can also be determined experimentally by the method of 117.
  • the value calculated by inputting the structural formula of the compound into HSPiP (Ver.4.1.07) is adopted as the logP value.
  • the above log P 1 means log P values of P 1, L 1 and SP 1 as described above.
  • the “log P value of P1, L1 and SP1” means a log P value of a structure in which P1, L1 and SP1 are integrated, and is not the sum of the log P values of P1, L1 and SP1, specifically thereof include, logP 1 is a series of structural formula up P1 ⁇ SP1 in the formula (2) is calculated by inputting the above software.
  • P1 when P1 is obtained by polymerization of ethylene glycol, it is ethylene glycol, and when P1 is obtained by polymerization of propylene glycol, it is propylene glycol.
  • P1 when P1 is obtained by polycondensation of silanol, it is a compound represented by silanol (the formula Si (R 2 ) 3 (OH).
  • a plurality of R 2 each independently represent a hydrogen atom or an alkyl group, provided that And at least one of R 2 s represents an alkyl group).
  • logP 1 as long the difference between logP 2 described above is four or more, may be lower than the logP 2, may be higher than the logP 2.
  • the log P value (log P 2 described above) of a general mesogenic group tends to be in the range of 4 to 6.
  • the value of logP 1 is preferably 1 or less, 0 or less is more preferable.
  • the value of logP 1 is preferably 8 or more, 9 or more is more preferable.
  • the log P value of SP 1 in the above formula (2) is 0.7 or less Is preferably 0.5 or less.
  • P1 in the formula (2) is (meth) obtained by polymerization of acrylic acid esters, and, when logP 1 is higher than the logP 2, the logP value of SP1 in the formula (2), 3. Seven or more are preferable and 4.2 or more are more preferable.
  • a structure whose logP value is 1 or less an oxyethylene structure, an oxypropylene structure, etc. are mentioned, for example.
  • Examples of the structure having a log P value of 6 or more include a polysiloxane structure and a fluorinated alkylene structure.
  • the polymer liquid crystalline compound used in the present invention contains a repeating unit (3) represented by the following formula (3) in addition to the repeating unit (2) represented by the above formula (2): It is preferable from the viewpoint of improving the film strength of the absorption anisotropic layer and strengthening the adhesion between the light absorption anisotropic layer and the light alignment layer.
  • P2 represents a main chain of a repeating unit.
  • L2 represents a single bond, a divalent alicyclic group which may have a substituent, or a divalent aromatic group which may have a substituent.
  • SP2 represents an alkylene group having 10 or more atoms in its main chain.
  • R 21 to R 28 each independently represent a hydrogen atom, a halogen atom, a cyano group, a nitro group or a linear or branched alkyl group having 1 to 10 carbon atoms.
  • the hydrogen atom contained in one or more of —CH 2 — constituting the alkylene group represented by SP 2 is a halogen atom, a cyano group, a nitro group, a hydroxyl group, a linear alkyl group having 1 to 10 carbon atoms, and carbon It may be replaced by at least one group (hereinafter also referred to as “group 2H”) selected from the group consisting of several 1-10 branched alkyl groups.
  • T2 represents a hydrogen atom, methyl group, hydroxyl group, carboxy group, sulfonic acid group, phosphoric acid group, boronic acid group, amino group, cyano group, nitro group, vinyl group, acryloyloxy group, methacryloyloxy
  • divalent alicyclic group which may have a substituent represented by L 2 are the same as the divalent alicyclic group described for A 1 in formula (M 1 -A), and I omit explanation. Further, examples of the substituent include the below-mentioned substituent W.
  • a bivalent aromatic group which may have a substituent which L2 represents, a bivalent aromatic hydrocarbon group and a bivalent aromatic heterocyclic group are mentioned.
  • divalent aromatic hydrocarbon group examples are the same as the divalent aromatic hydrocarbon group described for A1 in formula (M1-A), and thus the description thereof is omitted.
  • divalent aromatic heterocyclic group examples are the same as the divalent aromatic heterocyclic group described for A1 in Formula (M1-A), and thus the description thereof is omitted.
  • substituent examples include the below-mentioned substituent W.
  • L 2 a single bond is preferable from the viewpoint that the effects of the present invention are more exhibited.
  • SP2 represents an alkylene group having 10 or more atoms in the main chain, and one or more -CH 2- constituting the alkylene group may be replaced by the group 2C described above; one constituting the alkylene group
  • the hydrogen atom contained in the above -CH 2- may be replaced by the group 2H described above.
  • the number of atoms of the main chain of SP2 is 10 or more, preferably 15 or more, and more preferably 19 or more, from the viewpoint of obtaining a light absorption anisotropic layer excellent in adhesion and surface uniformity.
  • the upper limit of the number of atoms of the main chain of SP2 is preferably 70 or less, more preferably 60 or less, and particularly preferably 50 or less, from the viewpoint that a light absorption anisotropic layer excellent in degree of orientation can be obtained.
  • the "main chain” in SP2 means a partial structure necessary for directly connecting L2 and T2, and "the number of atoms in the main chain” means the number of atoms constituting the partial structure. means.
  • the "main chain” in SP2 is a partial structure in which the number of atoms connecting L2 and T2 is the shortest.
  • the frame represented by a dotted square corresponds to SP2
  • the number of atoms in the main chain of SP2 is 11. .
  • the alkylene group represented by SP2 may be linear or branched.
  • the carbon number of the alkylene group represented by SP 2 is preferably 8 to 80, preferably 15 to 80, more preferably 25 to 70, from the viewpoint that a light absorption anisotropic layer excellent in degree of orientation can be obtained. Particularly preferred.
  • One or more of —CH 2 — constituting the alkylene group represented by SP 2 is replaced by the above-mentioned group 2C from the viewpoint that a light absorption anisotropic layer having excellent adhesion and surface uniformity can be obtained. Is preferred.
  • part of the plurality of —CH 2 — is obtained because a light absorption anisotropic layer having excellent adhesion and surface uniformity can be obtained. More preferably, only is substituted by the group 2C.
  • the hydrogen atom contained in one or more of —CH 2 — constituting the alkylene group represented by SP 2 may be replaced by the aforementioned group 2H.
  • one or more of the hydrogen atoms contained in —CH 2 — may be replaced by the group 2H. That is, only one of the hydrogen atoms contained in -CH 2- may be replaced by the group 2H, or all (two) of the hydrogen atoms contained in -CH 2- may be replaced by the group 2H It is also good.
  • the group 2H is selected from the group consisting of a halogen atom, a cyano group, a nitro group, a hydroxyl group, a linear alkyl group having 1 to 10 carbon atoms and a branched alkyl group having 1 to 10 carbon atoms as described above. And at least one group selected from the group consisting of a hydroxyl group, a linear alkyl group having 1 to 10 carbon atoms, and a branched alkyl group having 1 to 10 carbon atoms, More preferred is a hydroxyl group.
  • T2 represents a hydrogen atom, methyl group, hydroxyl group, carboxy group, sulfonic acid group, phosphoric acid group, boronic acid group, amino group, cyano group, nitro group, vinyl group, acryloyloxy group, methacryloyloxy group , An epoxy group, an oxetanyl group or a maleimide group.
  • T2 is a hydroxyl group, a carboxy group, a sulfonic acid group, a phosphoric acid group, from the viewpoint that adhesion is improved by crosslinking and / or interaction with an underlayer (for example, a base material or an alignment film).
  • a boronic acid group, an amino group, a cyano group, a nitro group, a vinyl group, an acryloyloxy group, a methacryloyloxy group, an epoxy group, an oxetanyl group or a maleimide group is preferable, and the light absorption anisotropic layer itself is crosslinked to obtain light absorption.
  • a vinyl group, an acryloyloxy group, a methacryloyloxy group, an epoxy group, an oxetanyl group or a maleimide group is more preferable.
  • the ratio of the repeating unit (3) to the mass of the whole polymer liquid crystal is preferably 5% to 30%, more preferably 8% to 20%. preferable.
  • repeating unit (3) includes, for example, the following structures.
  • n1 represents an integer of 2 or more
  • n2 represents an integer of 1 or more.
  • the liquid crystal composition used to form the light absorption anisotropic layer contains a dichroic substance.
  • the dichroic substance is not particularly limited, and visible light absorbing substance (dichroic pigment), light emitting substance (fluorescent substance, phosphor substance), ultraviolet ray absorbing substance, infrared ray absorbing substance, nonlinear optical substance, carbon nanotube, inorganic substance ( For example, quantum rods) and the like can be used, and conventionally known dichroic substances (dichroic dyes) can be used.
  • dichroic substance is not particularly limited, and visible light absorbing substance (dichroic pigment), light emitting substance (fluorescent substance, phosphor substance), ultraviolet ray absorbing substance, infrared ray absorbing substance, nonlinear optical substance, carbon nanotube, inorganic substance ( For example, quantum rods) and the like can be used, and conventionally known dichroic substances (dichroic dyes) can be used.
  • two or more dichroic substances may be used in combination, for example, from the viewpoint of bringing the light absorption anisotropic layer close to black, at least one type having a maximum absorption wavelength in the range of 370 to 550 nm. It is preferable to use in combination the dye compound of the above (first dichroic dye) and at least one dye compound having a maximum absorption wavelength in the range of 500 to 700 nm (second dichroic dye).
  • the dichroic substance has a crosslinkable group because the pressure resistance is further improved.
  • a crosslinkable group a (meth) acryloyl group, an epoxy group, oxetanyl group, a styryl group etc. are mentioned, for example, Especially, a (meth) acryloyl group is preferable.
  • the content of the dichroic substance contained in the liquid crystal composition is 2 to 35% by mass as a solid content ratio from the viewpoint that balance between the degree of orientation and uniformity of the light absorption anisotropic layer is good. Is preferable, 5 to 25% by mass is more preferable, 5 to 20% by mass is more preferable, and 10 to 15% by mass is particularly preferable.
  • the liquid crystal composition preferably contains a dichroic substance represented by the following formula (4) (hereinafter, also abbreviated as “specific dichroic dye compound”).
  • a 1 , A 2 and A 3 each independently represent a divalent aromatic group which may have a substituent.
  • L 1 and L 2 each independently represent a substituent.
  • m represents an integer of 1 to 4, and when m is an integer of 2 to 4, the plurality of A 2 may be the same or different.
  • M is preferably 1 or 2.
  • the “divalent aromatic group which may have a substituent” represented by A 1 , A 2 and A 3 will be described.
  • substituents include, for example, Substituent Group G described in paragraphs [0237] to [0240] of JP-A-2011-237513, and among them, a halogen atom, an alkyl group, an alkoxy group, an alkoxycarbonyl group (For example, methoxycarbonyl, ethoxycarbonyl and the like), aryloxycarbonyl group (for example, phenoxycarbonyl, 4-methylphenoxycarbonyl, 4-methoxyphenylcarbonyl and the like) and the like are suitably mentioned, and an alkyl group is more preferable.
  • a bivalent aromatic group a bivalent aromatic hydrocarbon group and a bivalent aromatic heterocyclic group are mentioned, for example.
  • the divalent aromatic hydrocarbon group include arylene groups having 6 to 12 carbon atoms, and specific examples include phenylene group, cumenylene group, mesitylene group, tolylene group, xylylene group and the like. Among them, phenylene is preferred.
  • the bivalent aromatic heterocyclic group the group derived from a monocyclic or bicyclic heterocyclic ring is preferable.
  • atoms other than carbon which comprises an aromatic heterocyclic group a nitrogen atom, a sulfur atom, and an oxygen atom are mentioned.
  • the aromatic heterocyclic group has a plurality of atoms constituting a ring other than carbon, these may be the same or different.
  • Specific examples of the aromatic heterocyclic group include pyridylene group (pyridine-diyl group), quinolylene group (quinoline-diyl group), isoquinolylene group (isoquinoline-diyl group), benzothiadiazole-diyl group, phthalimido-diyl group And thienothiazole-diyl groups (hereinafter, abbreviated as "thienothiazole groups”) and the like.
  • divalent aromatic groups divalent aromatic hydrocarbon groups are preferable.
  • any one of A 1 , A 2 and A 3 is a divalent thienothiazole group which may have a substituent.
  • the specific example of the substituent of a bivalent thienothiazole group is the same as the substituent in "the bivalent aromatic group which may have a substituent" mentioned above, and its preferable aspect is also the same.
  • a 2 is more preferably a divalent thienothiazole group. In this case, A 1 and A 2 represent a divalent aromatic group which may have a substituent.
  • a 2 is a divalent thienothiazole group
  • at least one of A 1 and A 2 is preferably a divalent aromatic hydrocarbon group which may have a substituent
  • the “substituent” represented by L 1 and L 2 in the above formula (4) will be described.
  • transduced in order to carry out is preferable.
  • the substituent is an alkyl group (preferably an alkyl group having 1 to 20 carbon atoms, more preferably 1 to 12 carbon atoms, particularly preferably an alkyl group having 1 to 8 carbon atoms, and examples thereof include methyl, ethyl and isopropyl Group, tert-butyl group, n-octyl group, n-decyl group, n-hexadecyl group, cyclopropyl group, cyclopentyl group, cyclohexyl group etc., alkenyl group (preferably having 2 to 20 carbon atoms, more preferably Is an alkenyl group having 2 to 12 carbon atoms, particularly preferably 2 to 8 carbon atoms, and examples thereof include a vinyl group, an aryl group, a 2-butenyl group, a 3-pentenyl group and the like, an alkynyl group (preferably carbon) And an alkynyl group having a carbon number of 2 to 20, more
  • a methanesulfonylamino group, a benzenesulfonylamino group and the like can be mentioned, a sulfamoyl group (preferably having 0 to 20 carbon atoms, more preferably 0 to 10 carbon atoms, and particularly preferably 0 to 6 carbon atoms. Sulfamoyl group, methylsulfamoyl group, dimethylsulfamoyl group, phenylsulfamoyl group etc.
  • a carbamoyl group (preferably having a carbon number of 1 to 20, more preferably a carbon number of 1 to 10, particularly preferably a carbon number of 1 to 6); for example, unsubstituted carbamoyl group, methylcarbamoyl group, diethylcarbamoyl group , A phenylcarbamoyl group, etc., an alkylthio group (preferably having a carbon number of 1 to 20, more preferably a carbon number of 1 to 10, particularly preferably a carbon number of 1 to 6, for example, a methylthio group, an ethylthio group, etc.
  • Arylthio group (preferably having 6 to 20 carbon atoms, more preferably 6 to 16 carbon atoms, and particularly preferably 6 to 12 carbon atoms, and examples thereof include a phenylthio group), a sulfonyl group (preferably It has 1 to 20 carbon atoms, more preferably 1 to 10 carbon atoms, and particularly preferably 1 to 6 carbon atoms.
  • a sulfinyl group (preferably having a carbon number of 1 to 20, more preferably a carbon number of 1 to 10, particularly preferably a carbon number of 1 to 6, for example, a methanesulfinyl group, a benzenesulfinyl group Ureido group (preferably having a carbon number of 1 to 20, more preferably having a carbon number of 1 to 10, particularly preferably a carbon number of 1 to 6); for example, unsubstituted ureido group, methyl ureido group, phenyl Ureido group and the like), phosphoric acid amide group (preferably having a carbon number of 1 to 20, more preferably a carbon number of 1 to 10, particularly preferably a carbon number of 1 to 6, for example, diethyl phosphoric acid amide group, phenyl Phosphoric acid amide group etc., hydroxy group, mercapto group, halogen atom (eg fluor
  • a silyl group (preferably having 3 to 40 carbon atoms, more preferably 3 to 30 carbon atoms, and particularly preferably 3 to 24 carbon atoms.
  • a silyl group preferably having 3 to 40 carbon atoms, more preferably 3 to 30 carbon atoms, and particularly preferably 3 to 24 carbon atoms.
  • trimethylsilyl group, triphenylsilyl group and the like can be mentioned.
  • These substituents may be further substituted by these substituents.
  • it may be same or different.
  • they may be combined with each other to form a ring.
  • the substituent represented by L 1 and L 2 is preferably an alkyl group which may have a substituent, an alkenyl group which may have a substituent, an alkynyl group which may have a substituent, a substituent An aryl group which may have a group, an alkoxy group which may have a substituent, an oxycarbonyl group which may have a substituent, an acyloxy group which may have a substituent, a substituent An acylamino group which may have a substituent, an amino group which may have a substituent, an alkoxycarbonylamino group which may have a substituent, a sulfonylamino group which may have a substituent, a substituent A sulfamoyl group which may have a group, a carbamoyl group which may have a substituent, an alkylthio group which may have a substituent, a sulfonyl group which may have a substituent, and Have A
  • L 1 and L 2 contains a crosslinkable group (polymerizable group), and more preferably, both L 1 and L 2 contain a crosslinkable group.
  • the crosslinkable group include polymerizable groups described in paragraphs [0040] to [0050] of JP-A-2010-244038, and from the viewpoint of reactivity and synthesis suitability, an acryloyl group, A methacryloyl group, an epoxy group, an oxetanyl group, and a styryl group are preferable, and an acryloyl group and a methacryloyl group are preferable.
  • L 1 and L 2 include an alkyl group substituted by the crosslinkable group, a dialkylamino group substituted by the crosslinkable group, and an alkoxy group substituted by the crosslinkable group.
  • the liquid crystal composition preferably contains a dichroic azo dye represented by the following formula (5) from the viewpoint of achieving a high degree of alignment on the long wave side.
  • C 1 and C 2 each independently represent a monovalent substituent. However, at least one of C 1 and C 2 represents a crosslinkable group.
  • M 1 and M 2 each independently represent a divalent linking group. However, at least one of M 1 and M 2 has 4 or more atoms in its main chain.
  • Ar 1 and Ar 2 each independently have a phenylene group which may have a substituent, a naphthylene group which may have a substituent, and a substituent Represents any group of good biphenylene groups.
  • E represents any of nitrogen atom, oxygen atom and sulfur atom.
  • R 1 represents a hydrogen atom or a substituent.
  • R 2 represents a hydrogen atom or an alkyl group which may have a substituent.
  • n represents 0 or 1. However, n is 1 when E is a nitrogen atom, and n is 0 when E is an oxygen atom or a sulfur atom.
  • the monovalent substituent represented by C 1 and C 2 will be described.
  • a group introduced to increase the solubility or nematic liquid crystallinity of the azo compound an electron donating property or electron introduced to adjust the color tone as a dye
  • a group having aspiration property or a crosslinkable group (polymerizable group) introduced to fix the orientation is preferred.
  • the substituent is an alkyl group (preferably an alkyl group having 1 to 20 carbon atoms, more preferably 1 to 12 carbon atoms, particularly preferably an alkyl group having 1 to 8 carbon atoms, and examples thereof include methyl, ethyl and isopropyl Group, tert-butyl group, n-octyl group, n-decyl group, n-hexadecyl group, cyclopropyl group, cyclopentyl group, cyclohexyl group, etc., alkenyl group (preferably having 2 to 20 carbon atoms, More preferably, it is an alkenyl group having 2 to 12 carbon atoms, particularly preferably 2 to 8 carbon atoms, and examples thereof include a vinyl group, an aryl group, a 2-butenyl group, and a 3-pentenyl group), an alkynyl group (Preferably an alkynyl group having 2 to 20 carbon atoms, more methyl,
  • an oxycarbonyl group preferably having a carbon number of 2 to 20, more preferably a carbon number of 2 to 15, particularly preferably 2 to 10, for example, a methoxycarbonyl group, an ethoxycarbonyl group And a phenoxycarbonyl group and the like
  • an acyloxy group preferably having a carbon number of 2 to 20, more preferably a carbon number of 2 to 10, and particularly preferably 2 to 6
  • an acetoxy group preferably a carbon number of 2 to 20, more preferably a carbon number of 2 to 10, and particularly preferably 2 to 6
  • an acylamino group (preferably having 2 to 20 carbon atoms, more preferably 2 to 10 carbon atoms, particularly preferably 2 to 6 carbon atoms, and, for example, an acetylamino group, And a benzoylamino group etc., an alkoxycarbonylamino group (preferably The carbon number is 2 to 20, more preferably 2 to 10, particularly preferably 2 to 6, and examples thereof include a methoxycarbonylamino group and the like, an aryloxycarbonylamino group (preferably a carbon number of 7 to 6) 20, more preferably 7 to 16 carbon atoms, particularly preferably 7 to 12 carbon atoms, and examples thereof include a phenyloxycarbonylamino group and the like, a sulfonylamino group (preferably 1 to 20 carbon atoms, more preferably It has 1 to 10 carbon atoms, particularly preferably 1 to 6 carbon atoms, and examples thereof include a methanesulfonylamino group and a
  • carbamoyl group preferably having 1 to 20 carbon atoms, more preferably 1 to 10 carbon atoms, particularly preferably 1 to 6 carbon atoms
  • carbamoyl group preferably having 1 to 20 carbon atoms, more preferably 1 to 10 carbon atoms, particularly preferably 1 to 6 carbon atoms
  • alkylthio groups preferably having 1 to 20 carbon atoms, more preferably 1 to 10 carbon atoms.
  • the carbon number is 1 to 6, and examples thereof include a methylthio group and an ethylthio group, and an arylthio group (preferably having a carbon number of 6 to 20, more preferably a carbon number of 6 to 16, particularly preferably carbon
  • the number 6 to 12 and examples thereof include a phenylthio group and the like, a sulfonyl group (preferably The prime number is 1 to 20, more preferably 1 to 10 carbon atoms, and particularly preferably 1 to 6 carbon atoms, and examples thereof include a mesyl group and a tosyl group, and a sulfinyl group (preferably 1 to 20 carbon atoms).
  • 1 to 10 carbon atoms particularly preferably 1 to 6 carbon atoms, and examples thereof include a methanesulfinyl group and a benzenesulfinyl group and the like, and a ureido group (preferably having a carbon number of 1 to 20).
  • the number is from 1 to 20, more preferably from 1 to 10 carbon atoms, particularly preferably from 1 to 6 carbon atoms, and examples thereof include diethyl phosphate amide group, and phenyl Acid amide group etc., hydroxy group, mercapto group, halogen atom (eg, fluorine atom, chlorine atom, bromine atom and iodine atom), cyano group, nitro group, hydroxamic acid group, sulfino group, hydrazino Group, an imino group, an azo group, a heterocyclic group (preferably a heterocyclic group having 1 to 30, preferably 1 to 12 carbon atoms), for example, a hetero atom having a hetero
  • silyl groups (preferably having 3 to 40 carbon atoms, more preferably 3 to 30 carbon atoms, and particularly preferably Ku is a silyl group having 3 to 24 carbon atoms, e.g., trimethylsilyl group, and, like triphenylsilyl group) are included. These substituents may be further substituted by these substituents. Moreover, when it has 2 or more of substituents, it may be same or different. In addition, if possible, they may be combined with each other to form a ring.
  • C 1 and C 2 represents a crosslinkable group, and from the viewpoint that the durability of the light absorption anisotropic layer is more excellent, both C 1 and C 2 are crosslinkable groups.
  • the crosslinkable group include polymerizable groups described in paragraphs [0040] to [0050] of JP-A-2010-244038, and from the viewpoint of reactivity and synthesis suitability, an acryloyl group, A methacryloyl group, an epoxy group, an oxetanyl group or a styryl group is preferable, and an acryloyl group or a methacryloyl group is preferable.
  • divalent linking group represented by M 1 and M 2 examples include, for example, -O-, -S-, -CO-, -COO-, -OCO-, -O-CO-O-, -CO-NR N- , -O-CO- NR N- , -SO 2- , -SO-, an alkylene group, a cycloalkylene group, an alkenylene group, and a combination of two or more of these groups and the like can be mentioned.
  • an alkylene group -O-, -S-, -CO-, -COO-, -OCO-, -O-CO-O-, -CO-NR N- , -O-CO-NR N
  • R N represents a hydrogen atom or an alkyl group.
  • At least one of M 1 and M 2 has 4 or more, preferably 7 or more, and more preferably 10 or more atoms in the main chain.
  • the upper limit of the number of atoms in the main chain is preferably 20 or less, more preferably 15 or less.
  • the “main chain” in M 1 refers to a portion necessary to directly connect “C 1 ” and “Ar 1 ” in the formula (5), and “the number of atoms in the main chain” is , Refers to the number of atoms constituting the part.
  • the “main chain” in M 2 refers to a portion necessary to directly connect “C 2 ” and “E” in Formula (5), and “the number of atoms in the main chain” means It refers to the number of atoms that make up the part.
  • the “number of atoms in the main chain” does not include the number of branched atoms described later.
  • the number of main chain atoms of M1 is 6 (the number of atoms in the dotted line frame on the left side of the following formula (D7)), and the atoms of main chain of M2 The number of is seven (the number of atoms in the dotted line frame on the right side of the following formula (D7)).
  • At least one of M 1 and M 2 may be a group having 4 or more atoms in the main chain, and the number of atoms in one main chain of M 1 and M 2 is 4 or more If it is, the number of atoms in the other main chain may be 3 or less.
  • the total number of atoms in the main chain of M 1 and M 2 is preferably 5 to 30, and more preferably 7 to 27.
  • the dichroic substance is more easily polymerized, and when the total number of atoms in the main chain is 30 or less, the degree of orientation is excellent.
  • a light absorbing anisotropic layer can be obtained, or the melting point of a dichroic substance can be raised to obtain a light absorbing anisotropic layer having excellent heat resistance.
  • M 1 and M 2 may have a branched chain.
  • the “branched chain” in M 1 refers to a portion other than the portion necessary for directly linking C 1 and Ar 1 in Formula (5).
  • “branched chain” in M 2 refers to a portion other than the portion necessary for directly linking C 2 and E in Formula (5).
  • the number of branched atoms is preferably 3 or less. When the number of atoms of the branched chain is 3 or less, there is an advantage that the degree of orientation of the light absorption anisotropic layer is further improved. Note that the number of branched atoms does not include the number of hydrogen atoms.
  • M 1 and M 2 Illustrate preferred structure of M 1 and M 2 are shown below, but the invention is not limited thereto.
  • “*” represents a linking portion between C 1 and Ar 1 or a linking portion between C 2 and E.
  • the phenylene group which may have a substituent the “naphtylene group which may have a substituent,” represented by Ar 1 and Ar 2 in the formula (5), and “having a substituent
  • the "optionally substituted biphenylene group” will be described.
  • the substituent is not particularly limited, and halogen atoms, alkyl groups, alkyloxy groups, alkylthio groups, oxycarbonyl groups, thioalkyl groups, acyloxy groups, acylamino groups, alkoxycarbonylamino groups, sulfonylamino groups, sulfamoyl groups, carbamoyl groups And sulfinyl groups and ureido groups.
  • Ar 1 and Ar 2 each represent a phenylene group which may have a substituent, a naphthylene group which may have a substituent, or a biphenylene group which may have a substituent; It is preferable that it is a phenylene group from the viewpoint of the availability of the raw material which may have and the degree of orientation.
  • "M 1" for coupling the Ar 1 and "N” is preferably located in the para position of Ar 1.
  • “E” and “N” linked to Ar 2 are preferably located at the para position in Ar 1 .
  • E represents any one of a nitrogen atom, an oxygen atom and a sulfur atom, and is preferably a nitrogen atom from the viewpoint of synthesis suitability. Further, from the viewpoint of facilitating the dichroic substance to be one having absorption on the short wavelength side (for example, one having a maximum absorption wavelength in the vicinity of 500 to 530 nm), E in the above formula (5) is And oxygen atom is preferable. On the other hand, E in the above-mentioned formula (5) is nitrogen from the viewpoint that it becomes easy to make a dichroic substance into one having absorption on the long wavelength side (for example, one having a maximum absorption wavelength around 600 nm) It is preferably an atom.
  • R 1 represents a hydrogen atom or a substituent.
  • Specific examples and preferred embodiments of the “substituent” represented by R 1 are the same as the substituents in Ar 1 and Ar 2 described above, and preferred embodiments are also the same, and thus the description thereof is omitted.
  • R 2 represents a hydrogen atom or an alkyl group which may have a substituent, and is preferably an alkyl group which may have a substituent.
  • substituent include a halogen atom, a hydroxyl group, an ester group, an ether group, and a thioether group.
  • alkyl group include linear, branched or cyclic alkyl groups having 1 to 8 carbon atoms. Among them, a linear alkyl group having 1 to 6 carbon atoms is preferable, a linear alkyl group having 1 to 3 carbon atoms is more preferable, and a methyl group or an ethyl group is more preferable.
  • n represents 0 or 1. However, n is 1 when E is a nitrogen atom, and n is 0 when E is an oxygen atom or a sulfur atom.
  • dichroic substance Specific examples of the dichroic substance are shown below, but the present invention is not limited thereto.
  • the liquid crystal composition preferably contains a dichroic azo dye represented by the following formula (6) from the viewpoint that a high degree of alignment can be achieved on the short wave side.
  • a and B each independently represent a crosslinkable group.
  • L 1 represents a monovalent substituent
  • L 2 represents a monovalent substituent
  • L 2 represents a single bond or a divalent linking group.
  • Ar 1 represents a (n 1 +2) valent aromatic hydrocarbon group or a heterocyclic group
  • Ar 2 represents a (n 2 + 2) valent aromatic hydrocarbon group or a heterocyclic group
  • Ar 3 represents n3 + 2) represents an aromatic hydrocarbon group or a heterocyclic group having a valence of 2
  • R 1 , R 2 and R 3 each independently represent a monovalent substituent.
  • n 1 2 2 plural R 1 s may be the same as or different from each other, and when n 2 2 2, plural R 2 s may be the same as or different from each other; And R 3 s may be the same or different.
  • k represents an integer of 1 to 4.
  • the plurality of Ar 2 may be the same as or different from each other, and the plurality of R 2 may be the same as or different from each other.
  • Examples of the crosslinkable group represented by A and B in the formula (6) include polymerizable groups described in paragraphs [0040] to [0050] of JP-A-2010-244038.
  • acryloyl group, methacryloyl group, epoxy group, oxetanyl group, and styryl group are preferable from the viewpoint of improvement of reactivity and synthesis suitability, and acryloyl group and methacryloyl group are preferable from the viewpoint that solubility can be further improved. More preferable.
  • a and b each independently represent 0 or 1, but a + b ⁇ 1. That is, the dichroic substance has at least one crosslinkable group at the end.
  • both a and b be 1; that is, a crosslinkable group be introduced at both ends of the dichroic substance.
  • the monovalent substituent represented by L 1 and L 2 is a group introduced to increase the solubility of the dichroic substance, or an electron donating property or electron introduced to adjust the color tone as a dye.
  • Groups having aspiration properties are preferred.
  • An alkyl group preferably an alkyl group having 1 to 20 carbon atoms, more preferably 1 to 12 carbon atoms, particularly preferably 1 to 8 carbon atoms, and examples thereof include a methyl group, an ethyl group, an isopropyl group, a tert-butyl group, n-octyl group, n-decyl group, n-hexadecyl group, cyclopropyl group, cyclopentyl group, cyclohexyl group etc.
  • An alkenyl group (preferably having 2 to 20 carbon atoms, more preferably 2 to 12 carbon atoms, and particularly preferably 2 to 8 carbon atoms; for example, vinyl, allyl, 2-butenyl, 3-pentenyl Groups, etc.),
  • An alkynyl group (preferably an alkynyl group having 2 to 20 carbon atoms, more preferably 2 to 12 carbon atoms, and particularly preferably 2 to 8 carbon atoms, and examples thereof include propargyl and 3-pentynyl)
  • An aryl group (preferably an aryl group having 6 to 30 carbon atoms, more preferably 6 to 20 carbon atoms, and particularly preferably 6 to 12 carbon atoms, and examples thereof include phenyl, 2,6-diethylphenyl, 3,5 -Ditrifluoromethylphenyl group, naphthyl group, and biphenyl group etc.),
  • a substituted or unsubstituted amino group (preferably an amino group having a carbon number
  • substituents may be further substituted by these substituents. Moreover, when it has 2 or more of substituents, it may be same or different. In addition, if possible, they may be combined with each other to form a ring.
  • substituents include an R B- (O- RA ) na -group in which an alkoxy group is substituted by an alkyl group.
  • R A represents an alkylene group of 1 to 5 carbon atoms
  • R B represents an alkyl group of 1 to 5 carbon atoms
  • na is 1 to 10 (preferably 1 to 5, more preferably 1) Represents an integer of ⁇ 3).
  • an alkyl group, an alkenyl group, an alkoxy group, and a group in which these groups are further substituted by these groups (for example, R B described above -(O-R A ) na -group) is preferable, and an alkyl group, an alkoxy group, and a group in which these groups are further substituted by these groups (eg, R B- (O-R A ) na as described above -Group is more preferable.
  • Examples of the divalent linking group represented by L 1 and L 2 include, for example, -O-, -S-, -CO-, -COO-, -OCO-, -O-CO-O-, -CO-NR N -, -O-CO-NR N- , -NR N -CO-NR N- , -SO 2- , -SO-, an alkylene group, a cycloalkylene group, and an alkenylene group, and two of these groups Groups obtained by combining the above and the like can be mentioned.
  • R N represents a hydrogen atom or an alkyl group.
  • the plurality of RN may be identical to or different from each other.
  • the number of atoms of the main chain of at least one of L 1 and L 2 is preferably 3 or more, and more preferably 5 or more.
  • the number is preferably 7 or more, more preferably 10 or more.
  • the upper limit of the number of atoms in the main chain is preferably 20 or less, more preferably 12 or less.
  • the number of atoms of the main chain of at least one of L 1 and L 2 is preferably 1 to 5.
  • the "number of the main chain of atoms" in L 1 refers to the number of L 1 containing no branched chain atoms. If B is not present, the "number of the main chain of atoms" in L 2, refers to the number of L 2 containing no branched chain atoms.
  • the number of main chain atoms of L 1 is five (atoms of the dotted frame on the left side of the formula (D1)), the main chain of L 2
  • the number of atoms of is five (the number of atoms in the dotted line frame on the right side of the following formula (D1)).
  • the main chain of seven numbers of atoms of L 1 is (formula (number of atoms in a dotted frame on the left side of D10)), the main chain atoms of L 2 The number is five (the number of atoms in the dotted line frame on the right side of the following formula (D10)).
  • L 1 and L 2 may have a branched chain.
  • A is present in the formula (6) directly connected to the "branched” in L 1, and "O" atoms connecting the L 1 in formula (6), "A”, a refers to parts other than those necessary to
  • B in Equation (6) is directly connected to the "branched” in L 2
  • B the Refers to parts other than those necessary to
  • a "branched” in L 1 the longest atomic chain (or main extending starting from the "O" atoms connecting the L 1 in formula (6) Chain refers to the part other than chain).
  • a "branched" in L 2 is connected to the L 2 in formula (6) "O" atoms longest atomic chain extending starting (i.e. Main chain means parts other than
  • the number of branched atoms is preferably 3 or less.
  • the number of branched atoms does not include the number of hydrogen atoms.
  • Ar 1 is (n 1 +2) valence (eg, trivalent when n 1 is 1)
  • Ar 2 is (n 2 + 2) valence (eg, trivalent when n 2 is 1)
  • Ar 3 Represents an aromatic hydrocarbon group or a heterocyclic group having (n3 + 2) valence (for example, trivalent when n3 is 1).
  • Ar 1 to Ar 3 can be replaced by a divalent aromatic hydrocarbon group or a divalent heterocyclic group substituted by n 1 to n 3 substituents (R 1 to R 3 described later), respectively.
  • the divalent aromatic hydrocarbon group represented by Ar 1 to Ar 3 may be a single ring or may have a condensed ring structure of two or more rings.
  • the number of rings of the divalent aromatic hydrocarbon group is preferably 1 to 4, more preferably 1 to 2, and still more preferably 1 (that is, a phenylene group), from the viewpoint of further improving the solubility.
  • the divalent aromatic hydrocarbon group include phenylene group, azulene-diyl group, naphthylene group, fluorene-diyl group, anthracene-diyl group and tetracene-diyl group, etc., and the solubility is further improved. From the viewpoint of that, a phenylene group and a naphthylene group are preferable, and a phenylene group is more preferable.
  • the divalent heterocyclic group may be either aromatic or non-aromatic, but is preferably a divalent aromatic heterocyclic group from the viewpoint of further improving the degree of orientation.
  • the divalent aromatic heterocyclic group may be a single ring or may have a condensed ring structure of two or more rings.
  • atoms other than carbon which comprises an aromatic heterocyclic group a nitrogen atom, a sulfur atom, and an oxygen atom are mentioned.
  • the aromatic heterocyclic group has a plurality of atoms constituting a ring other than carbon, these may be the same or different.
  • aromatic heterocyclic group examples include, for example, pyridylene group (pyridine-diyl group), thienylene (thiophene-diyl group), quinolylene group (quinoline-diyl group), isoquinolylene group (isoquinoline-diyl group), thiazole- Examples include diyl group, benzothiadiazole-diyl group, phthalimido-diyl group, thienothiazole-diyl group (referred to as "thienothiazole group" in the present invention), thienothiophene-diyl group, thienooxazole-diyl group and the like. .
  • divalent aromatic heterocyclic group a group having a condensed ring structure of a single ring or a bicyclic ring represented by the following structural formula can be preferably used.
  • "*" indicates the bonding position to the azo group or oxygen atom in the general formula (6).
  • Ar 1 to Ar 3 are preferably divalent aromatic hydrocarbon groups, and more preferably phenylene groups.
  • Ar 1 is a phenylene group
  • the oxygen atom bonded to Ar 1 and the azo group are preferably located at the meta or para position, and are preferably located at the para position.
  • the degree of orientation of the light absorption anisotropic layer is further improved.
  • Ar 2 is a phenylene group
  • two azo groups bonded to Ar 2 are preferably located at the meta or para position, and preferably located at the para position.
  • Ar 3 is a phenylene group
  • the oxygen atom bonded to Ar 3 and the azo group are preferably located at the meta or para position, and preferably located at the para position.
  • the longitudinal direction of the structure represented by the formula (6) means the direction in which the structure represented by the formula (6) extends, and specifically, bonding to Ar 1 , Ar 2 and Ar 3
  • a fused ring structure represented by the formula (Ar-1) as a specific example of an embodiment in which all of a plurality of rings constituting the fused ring structure are connected along the longitudinal direction of the structure represented by the formula (6) Is shown below. That is, when Ar 1 , Ar 2 and Ar 3 are fused ring structures, they preferably have a fused ring structure represented by the following Formula (A-1).
  • Ar x , Ar Y and Ar Z each independently represent a benzene ring or a single ring heterocycle.
  • n represents an integer of 0 or more.
  • * represents a bonding position to an azo group or oxygen atom in the general formula (6).
  • the monocyclic heterocyclic ring in the above formula (Ar-1) is preferably a monocyclic aromatic heterocyclic ring.
  • the atoms other than carbon which constitute the monocyclic aromatic heterocyclic group include nitrogen atom, sulfur atom and oxygen atom.
  • Specific examples of the monocyclic aromatic heterocycle include a pyridine ring, a thiophene ring, a thiazole ring and an oxazole ring.
  • Ar X , Ar Y and Ar Z may have a substituent.
  • a substituent monovalent substituents in R 1 to R 3 described later can be mentioned.
  • n represents an integer of 0 or more, preferably 0 to 2, more preferably 0 to 1, and still more preferably 0.
  • R 1 , R 2 and R 3 each independently represent a monovalent substituent.
  • the monovalent substituent represented by R 1 , R 2 and R 3 is a halogen atom, a cyano group, a hydroxy group, an alkyl group, an alkoxy group, a fluorinated alkyl group, -O- (C 2 H 4 O) m-R ', -O- (C 3 H 6 O) m-R', alkylthio group, oxycarbonyl group, thioalkyl group, acyloxy group, acylamino group, alkoxycarbonylamino group, sulfonylamino group, sulfamoyl group, carbamoyl group, sulfinyl group Or a ureido group is preferred.
  • R ′ represents a hydrogen atom, a methyl group or an ethyl group
  • m represents an integer of 1 to 6.
  • the monovalent substituent represented by R 1 , R 2 and R 3 is a fluorine atom, a chlorine atom, a methyl group, an ethyl group, a propyl group from the viewpoint that the solubility of the dichroic substance is further improved.
  • the number of atoms in the main chain is 1 to 5 from the viewpoint of the balance between the solubility of the dichroic substance and the orientation of the light absorption anisotropic layer.
  • the number of atoms in the main chain means the number of atoms of R 1 , R 2 or R 3 which do not contain a branched chain.
  • branched chain refers to a portion other than the longest atomic chain (ie, main chain) extending starting from any of Ar 1 to Ar 3 in the formula (6).
  • Ar 1 is a phenylene group
  • R 1 is located at an ortho position relative to the azo group bonded to Ar 1
  • R2 is located at an ortho position relative to at least one azo group when Ar 2 is a phenylene group
  • conditions (R3), when Ar 3 is a phenylene group include aspect R 3 is located in an ortho position relative to the azo group bonded to Ar 3.
  • k represents an integer of 1 to 4.
  • k is preferably 2 or more from the viewpoint of securing excellent solubility and also excellent light resistance.
  • k is preferably 1 from the viewpoint of being more excellent in the solubility of the dichroic substance.
  • n1, n2 and n3 each independently represent an integer of 0 to 4, preferably 0 to 3.
  • k 1, n1 + n2 + n3 ⁇ 0. That is, when Formula (6) has a bisazo structure, sufficient solubility can be obtained regardless of the presence or absence of a substituent (R 1 to R 3 of Formula (6)), but the solubility is further improved. From the viewpoint, it is preferable to have a substituent.
  • k ⁇ 2 n1 + n2 + n3 ⁇ 1.
  • Formula (6) when Formula (6) has a trisazo structure, a tetrakisazo structure, or a pentakisazo structure, it has at least one substituent (R 1 to R 3 of Formula (6)).
  • R 1 to R 3 of Formula (6) When k ⁇ 2, n1 + n2 + n3 is preferably 1 to 9, and more preferably 1 to 5.
  • n represents an integer of 1 to 10.
  • the dichroic substance means a substance having different absorbance depending on the direction.
  • the dichroic substance may or may not exhibit liquid crystallinity. When the dichroic substance exhibits liquid crystallinity, it may exhibit either nematic or smectic properties.
  • the temperature range indicating the liquid crystal phase is preferably room temperature (about 20 ° C. to 28 ° C.) to 300 ° C., and more preferably 50 ° C. to 200 ° C. from the viewpoint of handleability and manufacturing suitability.
  • the liquid crystal composition may contain one kind of dichroic substance alone, or may contain two or more kinds.
  • the liquid crystal composition used to form the light absorption anisotropic layer preferably contains a low molecular weight liquid crystal compound in addition to the high molecular weight liquid crystal compound from the viewpoint of adhesion between the light alignment layer and the light absorption anisotropic layer.
  • the "low molecular weight liquid crystalline compound” refers to a liquid crystalline compound having no repeating unit in the chemical structure.
  • a low molecular weight liquid crystal compound for example, a liquid crystal compound described in JP 2013-228706 A, a formula (M1) described in paragraph [0030] to [0033] of JP 2014-077068 A And compounds represented by (M2) or (M3), low molecular weight liquid crystal compounds described in paragraphs [0043] to [0050] of WO 2018/199096, and the like.
  • a radically polymerizable group is preferable, and an acryloyl group, methacryloyl group, epoxy group, oxetanyl group, or styryl group is preferable, and an acryloyl group or methacryloyl group is more preferable.
  • the molecular weight of the low molecular weight liquid crystal compound is preferably less than 5,000, more preferably 200 to 2,000, and still more preferably 200 or more and less than 1,500.
  • the content of the low molecular weight liquid crystal compound is preferably 3 to 30 parts by mass with respect to 100 parts by mass of the above-mentioned high molecular liquid crystal compound, More preferably, it is part by mass.
  • the liquid crystal composition used to form the light absorption anisotropic layer preferably contains an interface modifier.
  • the smoothness of the coated surface is improved, and the improvement of the in-plane uniformity is expected by improving the degree of orientation, suppressing repelling and unevenness.
  • the interface improver it is preferable to make the liquid crystal compound horizontal on the coated surface side, and compounds described in paragraphs [0155] to [0170] of WO 2016/009648 and JP 2011-237513 The compounds (horizontal alignment agents) described in paragraphs [0253] to [0293] of the publication can be used.
  • the content of the interface modifier is 0.001 to 1000 parts by mass with respect to a total of 100 parts by mass of the dichroic substance and the polymer liquid crystal compound in the liquid crystal composition. 5 parts by mass is preferable, and 0.01 to 3 parts by mass is preferable.
  • the liquid crystal composition used to form the light absorption anisotropic layer may contain a polymerization initiator.
  • the polymerization initiator is not particularly limited, but is preferably a photosensitive compound, that is, a photopolymerization initiator.
  • Various compounds can be used without particular limitation as the photopolymerization initiator.
  • Examples of the photopolymerization initiator include ⁇ -carbonyl compounds (US Pat. Nos. 2,367,661 and 2367670), acyloin ether (US Pat. No. 24,488,28), ⁇ -hydrocarbon substituted aromatic acyloin Compound (U.S. Pat. No. 2,272,512), Polynuclear quinone compounds (U.S. Pat. Nos.
  • a photopolymerization initiator commercially available products may be used, and examples thereof include Irgacure 184, Irgacure 907, Irgacure 369, Irgacure 651, Irgacure 819, Irgacure OXE-01, and the like manufactured by BASF.
  • the content of the polymerization initiator is 0.01 to 30 parts by mass with respect to a total of 100 parts by mass of the dichroic substance and the liquid crystal compound in the liquid crystal composition. Part is preferable, and 0.1 to 15 parts by mass is preferable.
  • the content of the polymerization initiator is 0.01 parts by mass or more, the curability of the light absorption anisotropic layer becomes good, and when the content is 30 parts by mass or less, the alignment of the light absorption anisotropic layer is good It becomes.
  • the liquid crystal composition used to form the light absorption anisotropic layer preferably contains a solvent from the viewpoint of workability and the like.
  • a solvent for example, ketones (eg, acetone, 2-butanone, methyl isobutyl ketone, cyclopetantanone, cyclohexanone etc.), ethers (eg, dioxane, tetrahydrofuran, 2-methyltetrahydrofuran, cyclopentyl methyl ether, tetrahydropyran, Aliphatic hydrocarbons (eg, hexane etc.), alicyclic hydrocarbons (eg, cyclohexane etc.), aromatic hydrocarbons (eg benzene, toluene, xylene, trimethylbenzene etc.), halogenated Carbons (eg, dichloromethane, trichloromethane, dichloroethane, dichlorobenzene, chlorotoluen
  • One of these solvents may be used alone, or two or more thereof may be used in combination.
  • ketones especially cyclopentanone, cyclohexanone
  • ethers especially tetrahydrofuran, cyclopentyl methyl ether, tetrahydropyran, dioxolane
  • amides especially, from the viewpoint of taking advantage of excellent solubility
  • Dimethylformamide, dimethylacetamide, N-methylpyrrolidone, N-ethylpyrrolidone are preferable.
  • the content of the solvent is preferably 60 to 99% by mass, and more preferably 70 to 95% by mass, with respect to the total mass of the coloring composition. More preferably, it is 70 to 90% by mass.
  • the content is preferably 80 to 99% by mass, more preferably 83 to 97% by mass, and still more preferably 85 to 95% by mass.
  • the formation method of the light absorption anisotropic layer using the liquid crystal composition mentioned above is not specifically limited, The process of apply
  • the coating film forming step is a step of applying a liquid crystal composition on the photoalignment layer to form a coating film. It is easy to apply the liquid crystal composition on the photoalignment layer by using the liquid crystal composition containing the above-mentioned solvent or by using the liquid crystal composition as a liquid such as a molten liquid by heating or the like. become.
  • a method of applying the liquid crystal composition for example, roll coating method, gravure printing method, spin coating method, wire bar coating method, extrusion coating method, direct gravure coating method, reverse gravure coating method, die coating method And spray methods, and known methods such as inkjet methods.
  • An orientation process is a process which orientates the liquid crystalline component contained in a coating film. Thereby, a light absorption anisotropic layer is obtained.
  • a liquid crystalline component is a component containing not only the liquid crystalline compound mentioned above but the dichroic substance which has liquid crystallinity, when the dichroic substance mentioned above has liquid crystallinity.
  • the orientation step may have a drying process. By the drying process, components such as a solvent can be removed from the coating.
  • the drying process may be performed by a method of leaving the coating film at room temperature for a predetermined time (for example, natural drying), or may be performed by a method of heating and / or blowing air.
  • the liquid crystalline component contained in the liquid crystal composition may be aligned by the above-described coating film forming step or drying treatment.
  • the coating film is dried to remove the solvent from the coating film, whereby the coating film having light absorption anisotropy (that is, light absorption) An anisotropic layer is obtained.
  • the drying process is performed at a temperature higher than the transition temperature of the liquid crystal component contained in the coating film to the liquid crystal phase, the heat treatment described later may not be performed.
  • the transition temperature of the liquid crystalline component contained in the coating film to the liquid crystal phase is preferably 10 to 250 ° C., more preferably 25 to 190 ° C., from the viewpoint of production suitability and the like. It is preferable that the transition temperature is 10 ° C. or higher, because a cooling process or the like for lowering the temperature to a temperature range exhibiting a liquid crystal phase is not necessary. Further, when the transition temperature is 250 ° C. or less, high temperature is not required even when the liquid phase is once brought into the isotropic liquid state higher than the temperature range exhibiting the liquid crystal phase, and waste of thermal energy and substrate It is preferable because deformation and deterioration can be reduced.
  • the orientation step preferably includes heat treatment. Since the liquid crystalline component contained in a coating film can be orientated by this, the coating film after heat processing can be used suitably as a light absorption anisotropic layer.
  • the heat treatment is preferably 10 to 250 ° C., more preferably 25 to 190 ° C., from the viewpoint of production suitability and the like.
  • the heating time is preferably 1 to 300 seconds, and more preferably 1 to 60 seconds.
  • the orientation step may have a cooling process performed after the heat treatment.
  • the cooling treatment is a treatment for cooling the coating after heating to about room temperature (20 to 25 ° C.).
  • the orientation of the liquid crystalline component contained in the coating can be fixed. It does not specifically limit as a cooling means, It can implement by a well-known method.
  • the light absorption anisotropic layer can be obtained by the above steps.
  • drying treatment and heat treatment are mentioned, but the method is not limited thereto, and it can be carried out by known orientation treatment.
  • the method of forming the light absorption anisotropic layer may have a step of curing the light absorption anisotropic layer (hereinafter, also referred to as a “curing step”) after the orientation step.
  • the curing step is performed, for example, by heating and / or light irradiation (exposure) when the light absorption anisotropic layer has a crosslinkable group (polymerizable group).
  • the curing step is preferably carried out by light irradiation.
  • the photoalignment layer contains a compound having a photoreactive radically polymerizable group
  • exposure is carried out in a method in which a radical polymerization initiator is not contained in the photoalignment layer, or in an environment with high oxygen concentration.
  • An unreacted radically polymerizable group can be left on the surface of the photoalignment layer by a method or the like.
  • a light source used for curing various light sources such as infrared light, visible light or ultraviolet light can be used, but ultraviolet light is preferable.
  • ultraviolet radiation may be applied while heating at the time of curing, or ultraviolet radiation may be applied through a filter that transmits only a specific wavelength.
  • the heating temperature at the time of exposure depends on the transition temperature of the liquid crystalline component contained in the light absorption anisotropic layer to the liquid crystal phase, but is preferably 25 to 140.degree.
  • the exposure may also be performed under a nitrogen atmosphere. In the case where curing of the light absorption anisotropic layer proceeds by radical polymerization, inhibition of polymerization by oxygen is reduced, so exposure in a nitrogen atmosphere is preferable.
  • the thickness of the light absorption anisotropic layer is not particularly limited, and is preferably 0.1 to 5.0 ⁇ m, and more preferably 0.3 to 1.5 ⁇ m.
  • the surface of the photoalignment layer is rubbed to increase the probability, and the photoalignment layer forming step described above and the light absorption anisotropy described above are performed because the usefulness of the present invention is enhanced. It is preferable that the surface on the side which apply
  • the optical laminate of the present invention is an optical laminate having a photoalignment layer and a light absorption anisotropic layer, and having a front transmittance of 60% or less.
  • the optical laminate of the present invention is a layer in which the light absorption anisotropic layer is formed of a liquid crystal composition containing a dichroic substance and a high molecular liquid crystal compound.
  • the optical laminate of the present invention assumes a polarizer, and the frontal transmittance is 60% or less, preferably 25% to 60%, and more preferably 35% to 55%.
  • the optical laminate of the present invention may have a transparent polymer film and / or an oxygen blocking layer on the side of the photoalignment layer.
  • FIGS. 1A and 1B show schematic cross-sectional views showing an example of the optical laminate of the present invention.
  • the optical laminate 100 shown in FIG. 1A has a layer configuration having a transparent polymer film 12, an oxygen blocking layer 14, a photoalignment layer 16 and a light absorption anisotropic layer 18 in this order (hereinafter also referred to as “configuration A").
  • an optical laminate 200 shown in FIG. 1B is an optical laminate having a layer configuration (hereinafter also referred to as “configuration B”) having a transparent support 12, a photoalignment layer 16 and a light absorption anisotropic layer 18 in this order. is there.
  • configuration C has a layer configuration having a transparent support 12, a light alignment layer 16, a light absorption anisotropic layer 18, a hardened layer 20, and an oxygen blocking layer 14 in this order (hereinafter referred to as “configuration C (Abbreviated as “the optical laminate”).
  • configuration C Abbreviated as “the optical laminate”.
  • the optional oxygen blocking layer etc. which the optical layered product of the present invention has are explained in full detail.
  • the photoalignment layer and the light absorption anisotropic layer of the optical laminate of the present invention are the same as those described in the above-mentioned method of producing an optical laminate of the present invention.
  • the optical layered body of the present invention has a thickness of 100 nm or less on the opposite side of the light absorption anisotropic layer to the light alignment layer in order to reduce the difference in refractive index between the light absorption anisotropic layer and the adjacent layer. It may have a layer.
  • a hardened layer is not particularly limited, and various known ones can be used. For example, a layer containing a liquid crystal compound or a layer obtained by curing a composition containing a polyfunctional monomer can be mentioned. It is preferable to have a refractive index capable of performing index matching with the light absorption anisotropic layer.
  • oxygen blocking layer In the optical laminate of the present invention, for the purpose of improving light resistance, either the side opposite to the light absorption anisotropic layer of the photo alignment layer or the side opposite to the light alignment layer of the light absorption anisotropic layer or Both may have an oxygen barrier layer.
  • oxygen blocking layer 1 the oxygen blocking layer on the opposite side to the light absorption anisotropic layer of the photoalignment layer
  • oxygen blocking layer 2 the opposite side to the light alignment layer of the light absorption anisotropic layer 2.
  • the “oxygen blocking layer” is an oxygen blocking film having an oxygen blocking function, and specific examples thereof include polyvinyl alcohol, polyethylene vinyl alcohol, polyvinyl ether, polyvinyl pyrrolidone, polyacrylamide, polyacrylic acid, cellulose ether, polyamide, polyimide And layers containing organic compounds such as styrene / maleic acid copolymer, gelatin, vinylidene chloride, and cellulose nanofibers.
  • the oxygen blocking function is not limited to the state in which oxygen can not pass at all, but also includes the state in which oxygen is slightly passed according to the target performance.
  • the degree of saponification in the oxygen blocking layer is enhanced It is preferable to use 95 mol% or more of polyvinyl alcohol or a modified polyvinyl alcohol having a saponification degree of 95 mol% or more.
  • the thin layer which consists of metal compounds is also mentioned.
  • any method can be used as long as it can form a target thin layer.
  • a sputtering method, a vacuum evaporation method, an ion plating method, a plasma CVD (Chemical Vapor Deposition) method, etc. are suitable, and more specifically, Japanese Patent No. 3400324, Japanese Patent Laid-Open No. 2002-322561, Japanese Patent Laid-Open No. 2002- The formation method described in each publication can be adopted.
  • the component contained in the metal compound thin layer is not particularly limited as long as it can exhibit an oxygen blocking function, and is selected from, for example, Si, Al, In, Sn, Zn, Ti, Cu, Ce, or Ta 1
  • An oxide, a nitride, an oxynitride, or the like containing a metal of a kind or more can be used.
  • oxides, nitrides and oxynitrides of metals selected from Si, Al, In, Sn, Zn and Ti are preferable, and metal oxides and nitrides selected from Si, Al, Sn and Ti are particularly preferable.
  • oxynitride is preferred. These may contain other elements as secondary components.
  • the oxygen blocking layer may be prepared, for example, from US Pat. No. 6,413,645, JP-A-2015-226995, JP-A-2013-202971, JP-A-2003-335880, JP-B-53-12953, JP-A-58.
  • JP-217344A a form in which a layer containing the above organic material and a thin layer of a metal compound are laminated may be used, as described in WO 2011/11836, JP2013-248832A.
  • a layer in which an organic compound and an inorganic compound are hybridized may be used.
  • the optical laminate of the present invention has a ⁇ / 4 plate to be described later, and the ⁇ / 4 plate is a retardation film in which an optically anisotropic layer having a ⁇ / 4 function is provided on a support
  • the blocking layer may also serve as the alignment film of the optically anisotropic layer having the ⁇ / 4 function.
  • the thickness of the oxygen blocking layer is preferably 0.1 to 10 ⁇ m in the case of a layer containing an organic compound, and more preferably 0.5 to 5.5 ⁇ m.
  • the film thickness of the oxygen blocking layer is preferably 5 nm to 500 nm, and more preferably 10 nm to 200 nm.
  • an adhesive layer When the optical laminate of the present invention has the side opposite to the light alignment layer of the light absorption anisotropic layer described above, or the oxygen blocking layer 2 described above, the light absorption anisotropy of the oxygen shield layer 2 described above From the viewpoint of bonding another functional layer (for example, a ⁇ / 4 plate to be described later, etc.) on the side opposite to the sex layer side, an adhesive layer may be provided.
  • Examples of the pressure-sensitive adhesive contained in the pressure-sensitive adhesive layer include rubber-based pressure-sensitive adhesives, acrylic pressure-sensitive adhesives, silicone-based pressure-sensitive adhesives, urethane-based pressure-sensitive adhesives, vinyl alkyl ether-based pressure-sensitive adhesives, polyvinyl alcohol-based pressure-sensitive adhesives, polyvinylpyrrolidone-based pressure-sensitive adhesives And polyacrylamide-based pressure-sensitive adhesives and cellulose-based pressure-sensitive adhesives.
  • acrylic pressure-sensitive adhesives are preferable from the viewpoints of transparency, weather resistance, heat resistance and the like.
  • the adhesive layer is, for example, a method of applying a solution of an adhesive on a release sheet and drying it, and then transferring the solution to the surface of the transparent resin layer; apply the solution of the adhesive directly to the surface of the transparent resin layer, and dry And the like.
  • the solution of the pressure-sensitive adhesive is prepared, for example, as a solution of about 10 to 40% by mass in which the pressure-sensitive adhesive is dissolved or dispersed in a solvent such as toluene or ethyl acetate.
  • the coating method may be reverse coating, roll coating such as gravure coating, spin coating, screen coating, fountain coating, dipping, spraying or the like.
  • release sheet for example, synthetic resin films such as polyethylene, polypropylene and polyethylene terephthalate; rubber sheet; paper; cloth; non-woven fabric; It can be mentioned.
  • synthetic resin films such as polyethylene, polypropylene and polyethylene terephthalate; rubber sheet; paper; cloth; non-woven fabric; It can be mentioned.
  • the thickness of the optional adhesive layer is not particularly limited, but is preferably 3 ⁇ m to 50 ⁇ m, more preferably 4 ⁇ m to 40 ⁇ m, and still more preferably 5 ⁇ m to 30 ⁇ m.
  • [Functional layer] It is preferable to have a functional layer having a function of reducing short wave light on the viewing side of the light absorption anisotropic layer. By reducing the short wave light, it is possible to suppress the photodecomposition of the dye compound and to provide an optical laminate excellent in light resistance.
  • the above-mentioned adhesive layer or oxygen blocking layer preferably has a function of reducing short wave light.
  • the method of reducing short wave light is not particularly limited, and a method of using light absorption by an absorbent or the like and a method of using wavelength selective reflection by a multilayer film are exemplified.
  • the aforementioned short wave light refers to light of wavelength 430 nm or less.
  • the optical laminate of the present invention may have a ⁇ / 4 plate on the side opposite to the light absorption anisotropic layer or the oxygen blocking layer 2 side of the adhesive layer described above.
  • the “ ⁇ / 4 plate” is a plate having a ⁇ / 4 function, and specifically, a function to convert linearly polarized light of a specific wavelength into circularly polarized light (or circularly polarized light into linearly polarized light) It is a board which has Specific examples of the ⁇ / 4 plate include, for example, US Patent Application Publication 2015/0277006.
  • the ⁇ / 4 plate has a single layer structure
  • a stretched polymer film a retardation film in which an optically anisotropic layer having a ⁇ / 4 function is provided on a support, and the like can be mentioned.
  • the ⁇ / 4 plate has a multilayer structure, a wide band ⁇ / 4 plate formed by laminating the ⁇ / 4 plate and the ⁇ / 2 plate can be mentioned.
  • a retardation film provided with an optically anisotropic layer having a ⁇ / 4 function is a liquid crystalline compound (a disc-like liquid crystal, a rod-like liquid crystalline compound, etc.) formed by polymerizing a liquid crystal monomer expressing a nematic liquid crystal layer or a smectic liquid crystal layer. It is more preferable that it is a retardation film of one or more layers containing at least one of. Further, it is further preferable to use a liquid crystal compound having reverse wavelength dispersion as a ⁇ / 4 plate excellent in optical performance. Specifically, the liquid crystal compound of the general formula (II) described in International Publication No. WO 2017/043438 is preferably used. The description of Examples 1 to 10 of WO 2017/043438 and Example 1 of JP-A 2016-91022 can also be referred to for a method of producing a ⁇ / 4 plate using a liquid crystal compound having reverse wavelength dispersion.
  • the optical laminate of the present invention can be used as a polarizing element (polarizing plate), and specifically, for example, can be used as a linear polarizing plate or a circularly polarizing plate.
  • polarizing plate polarizing plate
  • the optical laminate of the present invention does not have an optical anisotropic layer such as the ⁇ / 4 plate, the optical laminate can be used as a linear polarizing plate.
  • the optical laminate of the present invention has the ⁇ / 4 plate, the optical laminate can be used as a circularly polarizing plate.
  • the image display apparatus of the present invention has the optical laminate of the present invention described above.
  • the display element used in the image display device of the present invention is not particularly limited, and examples thereof include a liquid crystal cell, an organic electroluminescence (hereinafter abbreviated as “EL”) display panel, and a plasma display panel.
  • a liquid crystal cell or an organic EL display panel is preferable, and a liquid crystal cell is more preferable.
  • the image display device of the present invention is preferably a liquid crystal display device using a liquid crystal cell as a display element, and an organic EL display device using an organic EL display panel as a display element. More preferable.
  • the liquid crystal display device which is an example of the image display device of the present invention, is a liquid crystal display device having the above-described optical laminate of the present invention (excluding the ⁇ / 4 plate) and a liquid crystal cell.
  • the optical laminate of the present invention among the optical laminates provided on both sides of the liquid crystal cell, it is preferable to use the optical laminate of the present invention as a polarizing element on the front side, and the polarizing elements of the present invention as polarizing elements on the front side and rear side. It is more preferable to use an optical laminate.
  • the liquid crystal cell constituting the liquid crystal display device will be described in detail.
  • the liquid crystal cell used for the liquid crystal display device is preferably a VA (Vertical Alignment) mode, an OCB (Optically Compensated Bend) mode, an IPS (In-Plane-Switching) mode, or a TN (Twisted Nematic) mode. It is not limited to In the TN mode liquid crystal cell, rod-like liquid crystalline molecules (rod-like liquid crystalline compounds) are substantially horizontally aligned when no voltage is applied, and are further twisted at 60 to 120 °.
  • the TN mode liquid crystal cell is most frequently used as a color TFT liquid crystal display device, and is described in many documents.
  • VA mode liquid crystal cell rod-like liquid crystalline molecules are substantially vertically aligned when no voltage is applied.
  • a narrow definition VA mode liquid crystal cell in which rod-like liquid crystalline molecules are substantially vertically aligned when no voltage is applied and substantially horizontally aligned when a voltage is applied
  • a liquid crystal cell in the form of MVA mode (Multi-domain Vertical Alignment)) (SID 97; Digest of tech. 28 (1997) 845)
  • n-ASM Alxially symmetric aligned microcell
  • Liquid Crystal Cell 59 59 (1998) and (4) SURVIVAL mode liquid crystal cells (presented at LCD (International Liquid Crystal Display) International 98).
  • LCD International Liquid Crystal Display
  • any of PVA (Pattered Vertical Alignment) type, optical alignment type (Optical Alignment), and PSA (Polymer-Sustained Alignment) may be used. The details of these modes are described in detail in JP-A-2006-215326 and JP-A-2008-538819.
  • rod-like liquid crystalline molecules are aligned substantially in parallel to the substrate, and the liquid crystal molecules respond in a planar manner by applying an electric field parallel to the substrate surface.
  • Japanese Patent Application Laid-Open Nos. 10-54982, 11-202323 and 9-292522 are methods for reducing the leaked light during black display in an oblique direction using an optical compensation sheet to improve the viewing angle. No. 11-133408, 11-305217, 10-307291 and the like.
  • the optical laminate of the present invention As an organic EL display device which is an example of the image display device of the present invention, for example, the above-described optical laminate of the present invention (including an adhesive layer and a ⁇ / 4 plate) described above The aspect which has and in this order is mentioned suitably.
  • the optical laminate is a transparent support that is optionally removed from the viewing side, a transparent oxygen blocking layer, an alignment layer that is optionally provided, a light absorption anisotropic layer, and A transparent oxygen blocking layer, an adhesive layer, and a ⁇ / 4 plate, which are provided accordingly, are disposed in this order.
  • the optical laminate is a transparent oxygen blocking layer provided as needed, a hardened layer provided as needed, a light absorption anisotropic layer as needed from the viewing side
  • the alignment layer to be removed, the transparent support optionally to be removed, the adhesive layer, and the ⁇ / 4 plate are arranged in this order.
  • the organic EL display panel is a display panel configured using an organic EL element in which an organic light emitting layer (organic electroluminescent layer) is held between electrodes (between a cathode and an anode).
  • the configuration of the organic EL display panel is not particularly limited, and a known configuration is adopted.
  • composition E1 for Forming Photoalignment Layer was prepared according to the following composition, dissolved with stirring for 1 hour, and filtered through a 0.45 ⁇ m filter.
  • Composition E1 for forming a photoalignment layer ⁇ -Photoactive compound E-1 described below: 0.3 parts by mass-2butoxyethanol 41.6 parts by mass-dipropylene glycol monomethyl ether 41.6 parts by mass-pure water 16.5 parts by mass--------- ⁇
  • composition E2 for Forming Photoalignment Layer A composition E2 for forming a photoalignment layer was prepared in the same manner as the composition E1 for forming a photoalignment layer except that the photoactive compound E-1 was changed to the following photoactive compound E-2.
  • composition E3 for Forming Photoalignment Layer The composition E3 for forming a photoalignment layer was prepared according to the following composition, dissolved with stirring for 1 hour, and filtered through a 0.45 ⁇ m filter. ⁇ Composition E3 for forming a photoalignment layer ⁇ -Photoactive compound E-3: 2.0 parts by mass, 1,1,2-trichloroethane 98.0 parts by mass------------------------ ⁇
  • Photoactive compound E-3 (weight average molecular weight: 48000)
  • composition E4 for Forming Photoalignment layer was prepared according to the following composition, dissolved while stirring for 1 hour, and filtered through a 0.45 ⁇ m filter.
  • Composition E4 for forming a photoalignment layer ⁇ -Photoactive compound E-4 5.0 parts by mass-Cyclopentanone 95.0 parts by mass--------------------------- ⁇
  • Photoactive compound E-4 weight average molecular weight; 51000
  • composition E5 for Forming Photoalignment Layer The composition E5 for forming a photoalignment layer was prepared according to the following composition, dissolved while stirring for 1 hour, and filtered with a 0.45 ⁇ m filter. ⁇ Composition E5 for forming a photoalignment layer ⁇ -Photoactive compound E-5 below 2.5 parts by mass-Tetrahydrofuran 97.5 parts by mass--------------------------------------------- ---
  • Photoactive compound E-5 (weight average molecular weight: 28700)
  • the weight average molecular weight Mw of the polyorganosiloxane having this epoxy group was 2,200, and the epoxy equivalent was 186 g / mol.
  • an acrylic group-containing carboxylic acid Toagosei Co., Ltd., trade name "ALONIX M-5300", acrylic acid ⁇ - 0.5 parts by mass of carboxypolycaprolactone (degree of polymerization n ⁇ 2), 20 parts by mass of butyl acetate, 1.5 parts by mass of a cinnamic acid derivative obtained by the method of Synthesis Example 1 of JP-A-2015-26050, Then, 0.3 parts by mass of tetrabutylammonium bromide was charged, and the resulting mixture was stirred at 90 ° C.
  • composition E6 for Forming Photoalignment Layer The following components were mixed to prepare a composition E6 for forming a photoalignment layer.
  • the above-mentioned polymer E-6 10.67 parts by mass
  • the following low molecular compound R-1 5.17 parts by mass
  • the following additives (B-1) 0.53 parts by mass butyl acetate 8287.37 parts by mass Propylene glycol Monomethyl ether acetate 2071.85 parts by mass-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
  • Additive (B-1) TA-60B manufactured by San-Apro (refer to the structural formula below)
  • Liquid Crystal Composition P1 A liquid crystal composition P1 was prepared according to the following composition, dissolved by heating at 50 ° C. for 3 hours while stirring, and filtered through a 0.45 ⁇ m filter.
  • ⁇ Liquid crystal composition P1 ⁇ -The following dichroic substance D1 2.1 parts by mass-The following dichroic substance D2 9.3 parts by mass-The following high molecular weight liquid crystalline compound M1 72.2 parts by mass-Polymerization initiator IRGACURE 819 (manufactured by BASF) 0.8
  • the following interface modifier F-1 0.6 parts by mass Cyclopentanone 457.5 parts by mass Tetrahydrofuran 457.5 parts by mass------------------------------------------------------------- ⁇
  • Liquid crystal compositions P2 to P14 were prepared by changing the dichroic substance and the liquid crystal compound as shown in Table 1 in the same manner as P1.
  • Liquid Crystal Composition P15 A liquid crystal composition P15 was prepared according to the following composition, dissolved by heating at 80 ° C. for 2 hours with stirring, and filtered through a 0.45 ⁇ m filter.
  • ⁇ Liquid crystal composition P15 ⁇ -2.7 parts by mass of the dichroic substance D5-2.7 parts by mass of the dichroic substance D 6-2.7 parts by mass of the dichroic substance D 7-73.0 parts by mass of the polymeric liquid crystalline compound
  • M1- Polymerization initiator IRGACURE 369 manufactured by BASF
  • BYK 361N manufactured by Bick Chemie Japan
  • Liquid Crystal Composition P16 A liquid crystal composition P16 was prepared according to the following composition, dissolved by heating at 80 ° C. for 2 hours while stirring, and filtered through a 0.45 ⁇ m filter.
  • ⁇ Liquid crystal composition P16 ⁇ -2.7 parts by mass of the dichroic substance D5-2.7 parts by mass of the dichroic substance D 6-2.7 parts by mass of the dichroic substance D 7-73.0 parts by mass of the liquid crystalline compound M
  • the liquid crystal composition P1 described above was applied on the obtained photoalignment layer 1 with a wire bar. It was then heated at 140 ° C. for 90 seconds and cooled to room temperature (23 ° C.). It was then heated to 80 ° C. for 60 seconds and cooled again to room temperature. After that, a light absorption anisotropic layer having a thickness of 0.6 ⁇ m was formed by irradiating for 60 seconds under an irradiation condition of an illuminance of 28 mW / cm 2 using a high pressure mercury lamp, and the optical laminate 1 of Preparation Example 1 was produced. . The degree of orientation was measured by the following method to be 0.95, and the front transmittance was 60% or less.
  • Optical laminates 2 to 25 of Preparation Examples 2 to 25 in the same manner as the optical laminate 1 of Preparation Example 1 except that the composition for forming a photoalignment layer and the liquid crystal composition are changed to those shown in Table 2 below.
  • the application amount of the composition was adjusted so that the application amount of the dichroic substance was the same as in Preparation Example 1.
  • the application amount of the composition is adjusted so that E1 and E2 are 0.03 ⁇ m, E3 and E4 are 0.1 ⁇ m, E5 is 0.2 ⁇ m, and E6 is 0.3 ⁇ m. did.
  • the front transmittance of each of the produced optical laminates 2 to 25 was 60% or less.
  • the surface of the photoalignment layer is roll-transferred by applying a surface pressure of 100 N / 300 mm so as to touch the coated surface, and then a light absorption anisotropic layer is formed to form a laminate for evaluation of alignment defects.
  • the coated surface-touched portion was overlapped with a deflector and placed on a sheet, and the presence or absence of an orientation defect was visually observed and evaluated according to the following criteria. The results are shown in Table 2 below. (Defect evaluation criteria) A: no orientation defects are visible B: orientation defects are slightly visible but practically no problem C: orientation defects are visible and problematic
  • the surface of the photoalignment layer is subjected to a roll pressure so as to touch the coated surface with a surface pressure of 200 N / 300 mm, and then a light absorption anisotropic layer is formed. , A laminate for forced evaluation of orientation defects was produced.
  • the coated surface was overlapped with the polarizer and placed on a sheet of glass, and the presence or absence of an alignment defect was visually observed and evaluated according to the following criteria. The results are shown in Table 3 below.
  • Coating Solution 1 for Optically Anisotropic Layer The coating solution 1 for optically anisotropic layer of the following composition was prepared.
  • ⁇ Coating solution 1 for optically anisotropic layer ⁇ Liquid crystal compound L-3 42.00 parts by mass Liquid crystal compound L-4 42.00 parts by mass Polymerizable compound A-1 16.00 parts by mass Low molecular compound B-2 6.00 Mass parts ⁇ 0.50 mass parts of the following polymerization initiator S-1 (oxime type) ⁇ 0.20 mass parts of the leveling agent G ⁇ 0.20 mass parts of Hisorb MTEM (manufactured by Toho Chemical Industry Co., Ltd.) ⁇ NK ester A -200 (manufactured by Shin-Nakamura Chemical Co., Ltd.) 1.00 parts by mass ⁇ methyl ethyl ketone 424.8 parts by mass------------------------ ⁇ The group adjacent to the acryloyloxy group of the following liquid crystal compounds L-3 and L-4 represents a propylene group (a group
  • Coating Solution 2 for Optically Anisotropic Layer The coating solution 2 for optically anisotropic layer of the following composition was prepared.
  • ⁇ Coating solution 2 for optically anisotropic layer ⁇ Liquid crystal compound L-5 below 24.0 parts by mass Liquid crystal compound L-6 below 6.0 parts by mass Polymerization initiator IRGACURE 369 (manufactured by BASF Japan) 1.0 parts by mass Polymerization initiator OXE-03 ( BASF Japan) 0.9 parts by mass, polymerization initiator Adeka Cruz NCI-831 (manufactured by Adeka) 0.9 parts by mass, BYK 361N (manufactured by Bick Chemie Japan) 0.2 parts by mass, N-methyl-2-pyrrolidone 25 .0 parts by mass
  • the film was further dried by conveying between rolls of a heat treatment apparatus to prepare an optical film having a thickness of 40 ⁇ m, and this was used as a cellulose acylate film 1.
  • the in-plane retardation of the obtained cellulose acylate film 1 was 0 nm.
  • ⁇ Preparation of ⁇ / 4 retardation film 1> The composition E6 for each photoalignment layer prepared above was applied to a surface on one side of the produced cellulose acylate film 1 with a bar coater. After the application, the solvent was removed by drying on a hot plate at 120 ° C. for 1 minute to form a 0.3 ⁇ m thick photoisomerization composition layer. The obtained photoisomerization composition layer was irradiated with polarized ultraviolet light (10 mJ / cm 2 , using an ultra-high pressure mercury lamp) to form a photoalignment layer. Next, the coating solution for the optically anisotropic layer prepared above was coated on the photoalignment layer with a bar coater to form a composition layer.
  • the composition layer thus formed was heated to 110 ° C. on a hot plate and then cooled to 60 ° C. to stabilize the orientation. Thereafter, the temperature is maintained at 60 ° C., and the orientation is fixed by ultraviolet irradiation (500 mJ / cm 2 , using an ultra-high pressure mercury lamp) under nitrogen atmosphere (oxygen concentration 100 ppm) to form a 2.3 ⁇ m thick optically anisotropic layer , ⁇ / 4 retardation film 1 was produced.
  • the in-plane retardation of the obtained optical laminate was 140 nm.
  • composition E4 for the photoalignment layer prepared above was coated on one side of the produced cellulose acylate film 1 using a bar coater. After the application, the solvent was removed by drying on a hot plate at 80 ° C. for 1 minute to form a 0.3 ⁇ m thick photoisomerization composition layer. The obtained photoisomerization composition layer was irradiated with polarized ultraviolet light (90 mJ / cm 2 , using an ultra-high pressure mercury lamp) to form a photoalignment layer. Next, the coating solution 2 for an optically anisotropic layer prepared above was coated on the photoalignment layer with a bar coater to form a composition layer.
  • the composition layer thus formed was heated to 120 ° C. on a hot plate and then cooled to 60 ° C. to stabilize the orientation. After that, keeping the temperature at 60 ° C., the orientation is fixed by ultraviolet irradiation (800 mJ / cm 2, using ultra-high pressure mercury lamp) under nitrogen atmosphere (oxygen concentration 100 ppm) to form a 2.3 ⁇ m thick optically anisotropic layer, ⁇ / 4 retardation film 2 was produced.
  • the in-plane retardation of the obtained ⁇ / 4 retardation film 2 was 143 nm.
  • a commercially available triacetyl cellulose film “Z-TAC” (manufactured by Fujifilm Corporation) was used as a temporary support (this is referred to as “cellulose acylate film 2”).
  • cellulose acylate film 2 After passing the cellulose acylate film 2 through a dielectric heating roll at a temperature of 60 ° C. and raising the surface temperature of the film to 40 ° C., an alkaline solution of the composition shown below is coated on one side of the film using a bar coater The solution was applied at 14 ml / m 2 , heated to 110 ° C., and transferred for 10 seconds under a steam-type far-infrared heater manufactured by Noritake Co., Ltd. Limited.
  • a coating solution for forming an alignment layer having the following composition was continuously coated using a # 8 wire bar. The resultant was dried for 60 seconds with warm air at 60 ° C. and for 120 seconds with warm air at 100 ° C. to form an alignment layer.
  • ⁇ ⁇ ⁇ Composition of coating solution for forming alignment layer ⁇ ⁇ ⁇ ⁇ Polyvinyl alcohol (Kuraray, PVA103) 2.4 parts by mass Isopropyl alcohol 1.6 parts by mass Methanol 36 parts by mass Water 60 parts by mass ⁇ ⁇ ⁇
  • the GALAXY S5 manufactured by SAMSUNG Co., Ltd. mounted with an organic EL panel (organic EL display element) is disassembled, the touch panel with a circularly polarizing plate is peeled from the organic EL display device, and the circularly polarizing plate is further peeled from the touch panel. And circular polarizers were isolated respectively. Then, the isolated touch panel was again bonded to the organic EL display element, and the above-produced circularly polarizing plate was bonded onto the touch panel so that the positive C plate side was the panel side, to fabricate an organic EL display device.
  • Composition E7 for Forming Photo Alignment Layer The following components were mixed to prepare Composition E7 for forming an alignment layer.
  • ⁇ ⁇ ⁇ Polymer E-7 below 100.00 parts by mass Acid generator below Sanide SI-B2A 5.00 parts by mass Acid generator below CPI-110TF 0.005 parts by mass Xylene 700.00 parts by mass Methyl isobutyl ketone 70.00 parts by mass ⁇ ⁇ ⁇
  • compositions E8 to E12 for forming a photoalignment layer were prepared in the same manner as in the composition E7 for forming a photoalignment layer except that the polymer E-7 was changed to polymers E-8 to E-12.
  • Liquid Crystal Composition P17 A liquid crystal composition P17 was prepared according to the following composition, dissolved by heating at 50 ° C. for 3 hours while stirring, and filtered through a 0.45 ⁇ m filter.
  • Liquid Crystal Composition P18 A liquid crystal composition P18 was prepared according to the following composition, dissolved by heating at 50 ° C. for 3 hours while stirring, and filtered through a 0.45 ⁇ m filter.
  • Liquid Crystal Composition P19 A liquid crystal composition P19 was prepared according to the following composition, dissolved by heating at 50 ° C. for 3 hours while stirring, and filtered through a 0.45 ⁇ m filter.
  • M2- Polymerization initiator IRGACUREOXE-02 manufactured by BASF
  • the above interface modifier F-2 0.025 parts by mass ⁇ cyclopentanone 47.50 parts by mass ⁇ tetrahydrofuran 47.50 parts by mass---- ⁇
  • Liquid Crystal Composition P20 A liquid crystal composition P17 was prepared according to the following composition, dissolved by heating at 50 ° C. for 3 hours while stirring, and filtered through a 0.45 ⁇ m filter.
  • ⁇ Composition of Liquid Crystal Composition P20 --------------------- ⁇ 0.36 parts by mass of the above dichroic substance D 3 ⁇ 0.53 parts by mass of the above dichroic substance D 4 ⁇ 0.31 parts by mass of the following dichroic substance D 8 ⁇ 3.58 parts by mass of the above polymeric liquid crystalline compound
  • Coating solution K2 for cured layer formation was prepared with the following composition, and was stirred and dissolved.
  • Photopolymerization initiator I-1 0.05 parts by mass ⁇ Surfactant F- 3 0.21 parts by mass ⁇ 297 parts by mass of methyl isobutyl ketone---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
  • the liquid crystal composition P17 described above was continuously applied using a wire bar to form an application layer P17. Subsequently, the application layer P17 was heated at 140 ° C. for 30 seconds, and the application layer P1 was cooled to room temperature (23 ° C.). It was then heated to 90 ° C. for 60 seconds and cooled again to room temperature. Then, the light absorption anisotropic layer P17 was produced on the orientation layer 40 by irradiating for 2 seconds on the irradiation conditions of illumination intensity of 200 mW / cm ⁇ 2 > using LED lamp (center wavelength 365 nm). The film thickness of the formed light absorption anisotropic layer was 0.4 ⁇ m.
  • the composition K1 for forming a cured layer described above was continuously applied using a wire bar to form a cured layer K1.
  • the hardened layer K1 is dried at room temperature, and then irradiated for 15 seconds under an irradiation condition of an illuminance of 20 mW / cm 2 using a high pressure mercury lamp under a room temperature environment to form the hardened layer K1 on the light absorption anisotropic layer P1.
  • the film thickness of the hardened layer K1 was 50 nm.
  • ⁇ Formation of oxygen blocking layer B1> The coating liquid of the following composition was continuously applied with a wire bar on the cured layer K1. Thereafter, by drying for 2 minutes with warm air at 90 ° C., a laminated film B1 having a 1.0 ⁇ m thick polyvinyl alcohol (PVA) alignment layer formed on the cured layer K1 is formed, and an optical laminate 40 is produced. did. In addition, the front transmittance
  • Optical laminates 41 to 48 of Production Examples 41 to 48 are prepared in the same manner as the optical laminate 40 except that the compositions used for forming the photoalignment layer, the light absorption anisotropic layer and the cured layer are changed to the compositions shown in Table 4 below. Made. The front transmittance of each of the produced optical laminates 41 to 48 was 60% or less.
  • the prepared optical laminates 40 to 48 are cut to a size of 25 mm ⁇ 150 mm, and 1 kg of adhesive tape consisting of a laminate of adhesive SK2057 (made by Soken Chemical Co., Ltd.) and TJ40UL on the surface of the oxygen blocking layer B1 of the laminate. After pasting using a roller, the support of the optical laminate was peeled off. The same pressure-sensitive adhesive tape was attached to the peeled surface and then peeled off. A maximum load required for peeling was measured, and an n10 average value was taken and evaluated according to the following criteria. The results are shown in Table 4 below.
  • AAA 4.0 N / 10 mm or more AA: 3.0 N / 10 mm or more and less than 4.0 N / 10 mm A: 2.0 N / 10 mm or more and less than 3.0 N / 10 mm B: 1.0 N / 10 mm or more and less than 2.0 N / 10 mm C: less than 1.0 N / 10 mm
  • An optical laminate having a photoalignment layer formed of a composition for forming a photoalignment layer containing a polymer has an adhesion between the light absorption anisotropic layer and the photoalignment layer, in addition to having few orientation defects. It was also confirmed that the
  • Preparation Examples 49 to 57 A low reflective surface protective film was produced with reference to sample No. 1 of Example 1 of JP-A-2008-262187.
  • the support side of the surface protective film is attached using a 20 ⁇ m thick SK 2057 (manufactured by Soken Chemical Co., Ltd.) as an adhesive N1, and a TJ40 film Only the light absorption anisotropic layer-carrying surface protective films 40 to 48 were produced.
  • ⁇ Preparation of circularly polarizing plate> The optically anisotropic layer side of the positive C plate film 1 prepared above is bonded to the optically anisotropic layer side of the ⁇ / 4 retardation film 2 prepared above via the adhesive N1, and a cellulose acylate is produced. Film 1 and the photoalignment layer were removed. Furthermore, the surface protection film 40 with the light absorption anisotropic layer is provided on the side of the optically anisotropic layer of the ⁇ / 4 retardation film 2 (the surface side exposed by removing the light alignment layer) via the adhesive N1. The photoalignment layer side of ⁇ 48 was laminated, and the cellulose acylate film 2 and the orientation layer were removed to obtain a surface protective film 40 ⁇ 48 with a circularly polarizing plate.
  • the GALAXY S5 manufactured by SAMSUNG Co., Ltd. mounted with an organic EL panel (organic EL display element) is disassembled, the touch panel with a circularly polarizing plate is peeled from the organic EL display device, and the circularly polarizing plate is further peeled from the touch panel. And circular polarizers were isolated respectively. Then, the isolated touch panel is bonded again to the organic EL display element, and the surface protection film with a circularly polarizing plate prepared above is further bonded on the touch panel so that the positive C plate side is the panel side, and the organic EL display device Was produced.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Nonlinear Science (AREA)
  • Organic Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Optics & Photonics (AREA)
  • Mathematical Physics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Manufacturing & Machinery (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Theoretical Computer Science (AREA)
  • Liquid Crystal (AREA)
  • Polarising Elements (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)
  • Electroluminescent Light Sources (AREA)
  • Holo Graphy (AREA)

Abstract

本発明は、光配向層の表面が擦られても光吸収異方性層に配向欠陥が生じ難い光学積層体の製造方法、光学積層体、および、画像表示装置を提供することを課題とする。本発明の光学積層体の製造方法は、光配向層および光吸収異方性層を有する、正面透過率が60%以下の光学積層体を作製する光学積層体の製造方法であって、ポリマーフィルム上に、光配向層を形成する光配向層形成工程と、光配向層上に、二色性物質および高分子液晶性化合物を含有する液晶組成物を塗布して光吸収異方性層を形成する光吸収異方性層形成工程とを有する、光学積層体の製造方法である。

Description

光学積層体の製造方法、光学積層体および画像表示装置
 本発明は、光学積層体の製造方法、光学積層体および画像表示装置に関する。
 近年、有機発光ダイオード(Organic Light Emitting Diode:OLED)の開発が進んでおり、使用される各部材に対してフレキシブル化が進んでいる。中でも、外光の反射防止のために使用されている円偏光板は、高い偏光度とフレキシブル性が求められる。
 従来、円偏光板にはヨウ素偏光子が使用されているが、ヨウ素偏光子は、ヨウ素をポリビニルアルコールのような高分子材料に溶解又は吸着させ、その膜を一方向にフィルム状に高倍率に延伸することで作製されるため、十分なフレキブル性がなかった。
 そのため、透明フィルムなどの基板上に二色性色素を塗布し、分子間相互作用などを利用して配向させた偏光子が検討されている。
 例えば、特許文献1には、二色性アゾ色素を高い配向性有する液晶マトリクス中に相溶させ、高い二色比を有する偏光素子が提案されている。
 また、特許文献2には、二色性アゾ色素を用いて高濃度かつ薄膜で高い偏光度を有する偏光子が提案されている。
 更に、特許文献3には、光照射により配向を規制する光配向層を用いて二色性色素の配向を制御できることが記載されている。
特許第5923941号公報 特許第5437744号公報 特許第5300776号公報
 本発明者らは、支持体上に、光活性化合物を含む光配向層を光照射により配向させた後、二色性物質を含有する光吸収異方性層を積層させて偏光子を作製する検討を行った。
 検討の結果、本発明者らは、光配向層の表面が、搬送ロール等によって擦られた場合には、積層させた光吸収異方性層に配向欠陥が生じることを見出した。
 そこで、本発明は、光配向層の表面が擦られても光吸収異方性層に配向欠陥が生じ難い光学積層体の製造方法、光学積層体、および、画像表示装置を提供することを課題とする。
 本発明者らは、上記課題を達成すべく鋭意検討した結果、光配向層上に、二色性物質および高分子液晶性化合物を含有する液晶組成物を塗布して光吸収異方性層を形成することにより、光配向層の表面が擦られても光吸収異方性層に配向欠陥が生じ難くなることを見出し、本発明を完成させた。
 すなわち、本発明者らは、以下の構成により上記課題が解決できることを見出した。
 [1] 光配向層および光吸収異方性層を有する、正面透過率が60%以下の光学積層体を作製する光学積層体の製造方法であって、
 ポリマーフィルム上に、光配向層を形成する光配向層形成工程と、
 光配向層上に、二色性物質および高分子液晶性化合物を含有する液晶組成物を塗布して光吸収異方性層を形成する光吸収異方性層形成工程とを有する、光学積層体の製造方法。
 [2] 光配向層形成工程と、光吸収異方性層形成工程との間に、光配向層の液晶組成物を塗布する側の表面が、搬送ロールに接触する工程を有する、[1]に記載の光学積層体の製造方法。
 [3] 光配向層形成工程と、光吸収異方性層形成工程との間に、光配向層が形成されたポリマーフィルムを巻き取る工程を有する、[1]または[2]に記載の光学積層体の製造方法。
 [4] 光配向層形成工程が、光反応性基を有する化合物を含有する光配向層形成用組成物をポリマーフィルム上に塗布して塗膜を形成する工程と、塗膜を加熱により乾燥させる工程と、乾燥後の塗膜に対して偏光または塗膜表面に対して斜め方向から非偏光を照射する工程とを有する、[1]~[3]のいずれかに記載の光学積層体の製造方法。
 [5] 光配向層形成用組成物が、光反応性基および架橋性基を有する化合物を含有し、ラジカル重合開始剤を含有しない組成物である、[4]に記載の光学積層体の製造方法。
 [6] 光吸収異方性層形成工程が、液晶組成物を光配向層上に塗布して塗膜を形成する工程と、塗膜に含まれる液晶性成分を配向させる工程とを有する、[1]~[5]のいずれかに記載の光学積層体の製造方法。
 [7] 光配向層および光吸収異方性層を有する、正面透過率が60%以下の光学積層体であって、
 光吸収異方性層が、二色性物質および高分子液晶性化合物を含有する液晶組成物から形成された層である、光学積層体。
 [8] 液晶組成物における高分子液晶性化合物の固形分割合が55質量%以上95質量%以下であり、二色性物質の固形分割合が2質量%以上35質量%以下である、[7]に記載の光学積層体。
 [9] 液晶組成物における高分子液晶性化合物の固形分割合が75質量%以上95質量%以下であり、二色性物質の固形分割合が5質量%以上25質量%以下である、[7]または[8]に記載の光学積層体。
 [10] 液晶組成物が、下記式(1)で表される繰り返し単位を有する高分子液晶性化合物を含有する、[7]~[9]のいずれかに記載の光学積層体。
Figure JPOXMLDOC01-appb-C000004
 ここで、上記式(1)中、
 Rは、水素原子またはメチル基を表す。
 Lは、単結合または2価の連結基を表す。
 Bは、水素原子、ハロゲン原子、シアノ基、アルキル基、アルコキシ基、アミノ基、オキシカルボニル基、アシルオキシ基、アシルアミノ基、アルコキシカルボニルアミノ基、スルホニルアミノ基、スルファモイル基、カルバモイル基、アルキルチオ基、フルホニル基、スルフィニル基、ウレイド基または架橋性基を表す。
 Mは、下記式(1-1)で表されるメソゲン基を表す。
Figure JPOXMLDOC01-appb-C000005
 ここで、上記式(1-1)中、
 Ar11およびAr12は、それぞれ独立に、置換基を有していてもよいフェニレン基またはビフェニレン基を表す。
 L11およびL12は、それぞれ独立に、単結合、または、アゾ基を含まない2価の連結基を表す。
 Yは、イミノ基、-OCO-CH=CH-基、または、-CH=CH-CO-基を表す。
 m1およびm2は、それぞれ独立に、1~3の整数を表す。
 m1が2~3の整数の場合、複数のAr11はそれぞれ同一であっても異なっていてもよく、複数のL11はそれぞれ同一であっても異なっていてもよい。
 m2が2~3の整数の場合、複数のAr12はそれぞれ同一であっても異なっていてもよく、複数のL12はそれぞれ同一であっても異なっていてもよい。
 [11] 液晶組成物が、下記式(2)で表される繰り返し単位を有する高分子液晶性化合物を含有し、
 下記式(2)において、P1、L1およびSP1のlogP値と、M1のlogP値との差が、4以上である、[7]~[9]のいずれかに記載の光学積層体。
Figure JPOXMLDOC01-appb-C000006
 ここで、上記式(2)中、
 P1は、繰り返し単位の主鎖を表し、L1は、単結合または2価の連結基を表し、SP1は、スペーサー基を表し、M1は、メソゲン基を表し、T1は、末端基を表す。
 ただし、M1が連結基を有する場合、連結基としてアゾ基を含まない。
 [12] 液晶組成物が、ラジカル重合性基を有する高分子液晶性化合物を含有する、[7]~[11]のいずれかに記載の光学積層体。
 [13] 液晶組成物が、ラジカル重合性基を有する低分子液晶性化合物を含有する、[7]~[12]のいずれかに記載の光学積層体。
 [14] 光配向層が、シンナモイル基を有する化合物を含有する組成物から形成された層である、[7]~[13]のいずれかに記載の光学積層体。
 [15] 光配向層が、シンナモイル基および架橋基を有する化合物を含有する組成物から形成された層である、[7]~[14]のいずれかに記載の光学積層体。
 [16] 光配向層が、シンナモイル基およびラジカル重合性基を有する化合物を含有する組成物から形成された層である、[7]~[15]のいずれかに記載の光学積層体。
 [17] 光配向層が、光活性基としてアゾ基を有する光活性化合物を含む光配向層であり、光活性化合物が、分子量1000以下の重合性基を持たない低分子化合物である、[7]~[13]のいずれかに記載の光学積層体。
 [18] 更に、λ/4板を有する、[7]~[17]のいずれかに記載の光学積層体。
 [19] [7]~[18]のいずれかに記載の光学積層体を有する画像表示装置。
 本発明によれば、光配向層の表面が擦られても光吸収異方性層に配向欠陥が生じ難い光学積層体の製造方法、光学積層体、および、画像表示装置を提供することができる。
図1Aは、本発明の光学積層体の一例を示す模式的な断面図である。 図1Bは、本発明の光学積層体の一例を示す模式的な断面図である。 図1Cは、本発明の光学積層体の一例を示す模式的な断面図である。
 以下、本発明について詳細に説明する。
 以下に記載する構成要件の説明は、本発明の代表的な実施態様に基づいてなされることがあるが、本発明はそのような実施態様に限定されるものではない。
 なお、本明細書において、「~」を用いて表される数値範囲は、「~」の前後に記載される数値を下限値および上限値として含む範囲を意味する。
 また、本明細書において、各成分は、各成分に該当する物質を1種単独でも用いても、2種以上を併用してもよい。ここで、各成分について2種以上の物質を併用する場合、その成分についての含有量とは、特段の断りが無い限り、併用した物質の合計の含有量を指す。
 また、本明細書において、「(メタ)アクリレート」は、「アクリレート」または「メタクリレート」を表す表記であり、「(メタ)アクリル」は、「アクリル」または「メタクリル」を表す表記であり、「(メタ)アクリロイル」は、「アクリロイル」または「メタクリロイル」を表す表記である。
[光学積層体の製造方法]
 本発明の光学積層体の製造方法は、光配向層および光吸収異方性層を有する、正面透過率が60%以下の光学積層体を作製する光学積層体の製造方法である。
 本発明の光学積層体の製造方法は、ポリマーフィルム上に、光配向層を形成する光配向層形成工程と、光配向層上に、二色性物質および高分子液晶性化合物を含有する液晶組成物を塗布して光吸収異方性層を形成する光吸収異方性層形成工程とを有する。
 本発明の光学積層体の製造方法においては、上述した通り、光配向層上に、二色性物質および高分子液晶性化合物を含有する液晶組成物を塗布して光吸収異方性層を形成することにより、光配向層の表面が擦られていても光吸収異方性層における配向欠陥の発生を抑制することができる。
 この理由の詳細は未だ明らかになっていないが、本発明者らは以下の理由によるものと推測している。
 まず、光配向層は、表面が擦られると、その部分の配向に局所的な乱れが生じると考えられる。
 そのため、二色性物質および高分子液晶性化合物を含有する液晶組成物を用いると、高分子液晶性化合物が有する多数のメソゲン部位により、光配向層に付与された配向規制力を周囲に伝播することができ、その結果、光配向層に存在する局所的な配向の乱れに影響されずに周囲と同じ配向が実現できていると推察できる。
 次に、本発明の光学積層体の製造方法が有する光配向層形成工程および光吸収異方性層形成工程ならびに任意の他の工程について詳述する。
 〔光配向層形成工程〕
 本発明の光学積層体の製造方法が有する光配向層形成工程は、ポリマーフィルム上に、光配向層を形成する工程である。
 <ポリマーフィルム>
 ポリマーフィルムは、特に限定されず、通常用いるポリマーフィルム(例えば、偏光子保護フィルムなど)を用いることができる。
 ポリマーフィルムを構成するポリマーとしては、具体的には、例えば、セルロース系ポリマー;ポリメチルメタクリレート、ラクトン環含有重合体等のアクリル酸エステル重合体を有するアクリル系ポリマー;熱可塑性ノルボルネン系ポリマー;ポリカーボネート系ポリマー;ポリエチレンテレフタレート、ポリエチレンナフタレート等のポリエステル系ポリマー;ポリスチレン、アクリロニトリル・スチレン共重合体(AS樹脂)等のスチレン系ポリマー;ポリエチレン、ポリプロピレン、エチレン・プロピレン共重合体等のポリオレフィン系ポリマー;塩化ビニル系ポリマー;ナイロン、芳香族ポリアミド等のアミド系ポリマー;イミド系ポリマー;スルホン系ポリマー;ポリエーテルスルホン系ポリマー;ポリエーテルエーテルケトン系ポリマー;ポリフェニレンスルフィド系ポリマー;塩化ビニリデン系ポリマー;ビニルアルコール系ポリマー;ビニルブチラール系ポリマー;アリレート系ポリマー;ポリオキシメチレン系ポリマー;エポキシ系ポリマー;またはこれらのポリマーを混合したポリマーが挙げられる。
 これらのうち、トリアセチルセルロースに代表される、セルロース系ポリマー(以下、「セルロースアシレート」ともいう。)を好ましく用いることができる。
 また、加工性および光学性能の観点から、アクリル系ポリマーを用いるのも好ましい。
 アクリル系ポリマーとしては、ポリメチルメタクリレートや、特開2009-98605号公報の段落[0017]~[0107]に記載されるラクトン環含有重合体等が挙げられる。
 本発明においては、作製される光学積層体から剥離可能なポリマーフィルムを用いる態様では、セルロース系ポリマーまたはポリエステル系ポリマーを好ましく用いることができる。
 また、本発明においては、上記ポリマーフィルムは、透明であることが好ましい。
 ここで、本発明でいう「透明」とは、可視光の透過率が60%以上であることを示し、好ましくは80%以上であり、特に好ましくは90%以上である。
 ポリマーフィルムの厚さは特に限定されないが、光学積層体の厚みを薄くできる等の理由から40μm以下が好ましい。下限は特に限定されないが通常5μm以上である。
 <光配向層>
 上述したポリマーフィルム上に形成される光配向層は、光活性化合物(光反応性基を有する化合物)を含有する光配向層である。
 本発明においては、光配向層は、光反応性基を有する化合物を含有する組成物(以下、「光配向層形成用組成物」とも略す。)を上述したポリマーフィルム上に塗布して塗膜を形成する工程と、塗膜を加熱により乾燥させる工程と、乾燥後の塗膜に対して偏光または塗膜表面に対して斜め方向から非偏光を照射する工程とを経ることによって得られる、配向規制力が付与された配向層であることが好ましい。
 光反応性基とは、光を照射することにより液晶配向能を生じる基をいう。具体的には、光を照射することで生じる分子(光活性化合物と呼ぶ)の配向誘起又は異性化反応、二量化反応、光架橋反応、あるいは光分解反応のような、液晶配向能の起源となる光反応を生じるものである。
 光反応性基としては、不飽和結合、特に二重結合を有するものが好ましく、炭素-炭素二重結合(C=C結合)、炭素-窒素二重結合(C=N結合)、窒素-窒素二重結合(N=N結合)及び炭素-酸素二重結合(C=O結合)からなる群より選ばれる少なくとも一つを有する基が挙げられる。
 C=C結合を有する光反応性基としては、例えば、ビニル基、ポリエン基、スチルベン基、スチルバゾ-ル基、スチルバゾリウム基、カルコン基及びシンナモイル基が挙げられる。
 C=N結合を有する光反応性基としては、例えば、芳香族シッフ塩基及び芳香族ヒドラゾン等の構造を有する基が挙げられる。
 C=O結合を有する光反応性基としては、例えば、ベンゾフェノン基、クマリン基、アントラキノン基及びマレイミド基が挙げられる。
 N=N結合を有する光反応性基(以下、「アゾ基」とも略す。)としては、例えば、アゾベンゼン基、アゾナフタレン基、芳香族複素環アゾ基、ビスアゾ基及びホルマザン基などや、アゾキシベンゼンを基本構造とする基が挙げられる。
 これらの基は、アルキル基、アルコキシ基、アリール基、アリルオキシ基、シアノ基、アルコキシカルボニル基、ヒドロキシル基、スルホン酸基又はハロゲン化アルキル基等の置換基を有していてもよい。
 これらの基の中でも、シンナモイル基またはアゾベンゼン基は、光配向に必要な偏光照射量が比較的少なく、かつ、熱安定性や経時安定性に優れる光配向層が得られやすいため好ましい。
 アゾベンゼン基を有する光活性化合物としては、特に好ましいのは下記一般式(I)で表されることを特徴とする光活性化合物である。
 一般式(I)
Figure JPOXMLDOC01-appb-C000007
 式中、R21~R24はそれぞれ独立に、水素原子又は置換基を表すが、但し、R21~R24で表される基の少なくとも一つは、カルボキシル基又はスルホ基を表し;mは1~4の整数を表し、nは1~4の整数を表し、oは1~5の整数を表し、pは1~5の整数を表すが、m、n、o、及びpが2以上の整数を表すとき、複数個ある、R21~R24は、同一でも異なっていてもよい。
 一般式(I)中、R21~R24でそれぞれ表される置換基としては以下の基を挙げることができる。
 カルボキシル基(アルカリ金属と塩を形成していてもよく、好ましくは塩を形成していないか、ナトリウム塩を形成しているカルボキシル基であり、より好ましくはナトリウム塩を形成しているカルボキシル基である)、スルホ基(アルカリ金属と塩を形成していてもよく、好ましくは塩を形成していないか、ナトリウム塩を形成しているスルホ基であり、より好ましくはナトリウム塩を形成しているスルホ基である)、アルキル基(好ましくは炭素数1~20、より好ましくは炭素数1~12、特に好ましくは炭素数1~8のアルキル基であり、例えば、メチル基、エチル基、イソプロピル基、tert-ブチル基、n-オクチル基、n-デシル基、n-ヘキサデシル基、シクロプロピル基、シクロペンチル基、シクロヘキシル基などが挙げられる)、アルケニル基(好ましくは炭素数2~20、より好ましくは炭素数2~12、特に好ましくは炭素数2~8のアルケニル基であり、例えば、ビニル基、アリール基、2-ブテニル基、3-ペンテニル基などが挙げられる)、アルキニル基(好ましくは炭素数2~20、より好ましくは炭素数2~12、特に好ましくは炭素数2~8のアルキニル基であり、例えば、プロパルギル基、3-ペンチニル基などが挙げられる)、アリール基(好ましくは炭素数6~30、より好ましくは炭素数6~20、特に好ましくは炭素数6~12のアリール基であり、例えば、フェニル基、2,6-ジエチルフェニル基、3,5-ジトリフルオロメチルフェニル基、ナフチル基、ビフェニル基などが挙げられる)、置換もしくは無置換のアミノ基(好ましくは炭素数0~20、より好ましくは炭素数0~10、特に好ましくは炭素数0~6のアミノ基であり、例えば、無置換アミノ基、メチルアミノ基、ジメチルアミノ基、ジエチルアミノ基、アニリノ基などが挙げられる)、
 アルコキシ基(好ましくは炭素数1~20、より好ましくは炭素数1~10、特に好ましくは炭素数1~6であり、例えば、メトキシ基、エトキシ基、ブトキシ基などが挙げられる)、アルコキシカルボニル基(好ましくは炭素数2~20、より好ましくは炭素数2~10、特に好ましくは2~6であり、例えば、メトキシカルボニル基、エトキシカルボニル基などが挙げられる)、アシルオキシ基(好ましくは炭素数2~20、より好ましくは炭素数2~10、特に好ましくは2~6であり、例えば、アセトキシ基、ベンゾイルオキシ基などが挙げられる)、アシルアミノ基(好ましくは炭素数2~20、より好ましくは炭素数2~10、特に好ましくは炭素数2~6であり、例えばアセチルアミノ基、ベンゾイルアミノ基などが挙げられる)、アルコキシカルボニルアミノ基(好ましくは炭素数2~20、より好ましくは炭素数2~10、特に好ましくは炭素数2~6であり、例えば、メトキシカルボニルアミノ基などが挙げられる)、アリールオキシカルボニルアミノ基(好ましくは炭素数7~20、より好ましくは炭素数7~16、特に好ましくは炭素数7~12であり、例えば、フェニルオキシカルボニルアミノ基などが挙げられる)、スルホニルアミノ基(好ましくは炭素数1~20、より好ましくは炭素数1~10、特に好ましくは炭素数1~6であり、例えば、メタンスルホニルアミノ基、ベンゼンスルホニルアミノ基などが挙げられる)、スルファモイル基(好ましくは炭素数0~20、より好ましくは炭素数0~10、特に好ましくは炭素数0~6であり、例えば、スルファモイル基、メチルスルファモイル基、ジメチルスルファモイル基、フェニルスルファモイル基などが挙げられる)、カルバモイル基(好ましくは炭素数1~20、より好ましくは炭素数1~10、特に好ましくは炭素数1~6であり、例えば、無置換のカルバモイル基、メチルカルバモイル基、ジエチルカルバモイル基、フェニルカルバモイル基などが挙げられる)、
 アルキルチオ基(好ましくは炭素数1~20、より好ましくは炭素数1~10、特に好ましくは炭素数1~6であり、例えば、メチルチオ基、エチルチオ基などが挙げられる)、アリールチオ基(好ましくは炭素数6~20、より好ましくは炭素数6~16、特に好ましくは炭素数6~12であり、例えば、フェニルチオ基などが挙げられる)、スルホニル基(好ましくは炭素数1~20、より好ましくは炭素数1~10、特に好ましくは炭素数1~6であり、例えば、メシル基、トシル基などが挙げられる)、スルフィニル基(好ましくは炭素数1~20、より好ましくは炭素数1~10、特に好ましくは炭素数1~6であり、例えば、メタンスルフィニル基、ベンゼンスルフィニル基などが挙げられる)、ウレイド基(好ましくは炭素数1~20、より好ましくは炭素数1~10、特に好ましくは炭素数1~6であり、例えば、無置換のウレイド基、メチルウレイド基、フェニルウレイド基などが挙げられる)、リン酸アミド基(好ましくは炭素数1~20、より好ましくは炭素数1~10、特に好ましくは炭素数1~6であり、例えば、ジエチルリン酸アミド基、フェニルリン酸アミド基などが挙げられる)、ヒドロキシ基、メルカプト基、ハロゲン原子(例えばフッ素原子、塩素原子、臭素原子、ヨウ素原子)、シアノ基、ニトロ基、ヒドロキサム酸基、スルフィノ基、ヒドラジノ基、イミノ基、ヘテロ環基(好ましくは炭素数1~30、より好ましくは1~12のヘテロ環基であり、例えば、窒素原子、酸素原子、硫黄原子等のヘテロ原子を有するヘテロ環基であり、例えば、イミダゾリル基、ピリジル基、キノリル基、フリル基、ピペリジル基、モルホリノ基、ベンゾオキサゾリル基、ベンズイミダゾリル基、ベンズチアゾリル基などが挙げられる)、シリル基(好ましくは、炭素数3~40、より好ましくは炭素数3~30、特に好ましくは、炭素数3~24のシリル基であり、例えば、トリメチルシリル基、トリフェニルシリル基などが挙げられる)が含まれる。
 これらの置換基はさらにこれらの置換基によって置換されていてもよい。また、置換基が二つ以上有する場合は、同じでも異なってもよい。また、可能な場合には互いに結合して環を形成していてもよい。R21~R24で表される基は、重合性基又は重合性基を含む置換基であってもよい。
 一般式(I)中、R21~R24で表される基としては、好ましくは水素原子、カルボキシル基、スルホ基、ハロゲン原子、アルキル基、アルコキシ基、シアノ基、ニトロ基、アルコキシカルボニル基、カルバモイル基であり、より好ましくは水素原子、カルボキシル基、スルホ基、ハロゲン原子、ハロゲン化メチル基、ハロゲン化メトキシ基、シアノ基、ニトロ基、メトキシカルボニル基であり、特に好ましくは水素原子、カルボキシル基、スルホ基、ハロゲン原子、シアノ基、ニトロ基である。
 R21~R24で表される基の少なくとも一つは、カルボキシル基又はスルホ基である。カルボキシル基又はスルホ基の置換位置については特に制限はないが、光活性作用の観点では、少なくとも1つのR21及び/又は少なくとも1つのR22がスルホ基であるのが好ましく、少なくとも1つのR21及び少なくとも1つのR22がスルホ基であるのがより好ましい。また、同観点から、少なくとも1つのR23及び/又は少なくとも1つのR24がカルボキシル基であるのが好ましく、少なくとも1つのR23及び少なくとも1つのR24がカルボキシル基であるのがより好ましい。カルボキシル基は、アゾ基に対してメタ位に置換したR23及びR24であるのがさらに好ましい。
 一般式(I)において、mは1~4の整数を表し、nは1~4の整数を表し、oは1~5の整数を表し、pは1~5の整数を表す。好ましくは、mは1~2の整数、nは1~2の整数、oは1~2の整数、pは1~2の整数である。
 以下に、一般式(I)で表される化合物の具体例を挙げるが、以下の具体例に制限されるものではない。
Figure JPOXMLDOC01-appb-C000008
 本発明においては、配向度に優れる理由から、窒素-窒素二重結合(N=N結合)を有するアゾ基(特に、アゾベンゼン基)を有する化合物としては、上述したE-1~E-17などで表される、分子量1000以下の重合性基を持たない低分子量の化合物であることが好ましい。
 一方、シンナモイル基を有する光活性化合物としては、光配向層の接触による影響が小さい理由から、ポリマーであることが好ましい。
 また、光配向層の接触による影響が更に小さくなるい理由から、シンナモイル基とともに架橋性基を有するポリマーであることが好ましい。
 架橋性基は、架橋反応を起こして架橋する基であればよいが、例えば、エポキシ基等のカチオン性重合性基;アクリレート、メタクリレート等のラジカル重合性基;などが挙げられる。
 一方、後述する密着性改良のためには、光配向層の硬膜には、機能分離して用いることができる点で、カチオン性重合性基とラジカル重合性基をどちらも有することがさらに好ましい。
 (光配向性共重合体)
 シンナモイル基とともに架橋性基を有するポリマーとしては、下記式(A)で表されるシンナモイル基を含む繰り返し単位Aと、下記式(B)で表される架橋性基を含む繰り返し単位Bとを有する、光配向性共重合体が好適に挙げられる。
Figure JPOXMLDOC01-appb-C000009
 上記式(A)中、Rは、水素原子またはメチル基を表す。Lは、窒素原子とシクロアルカン環とを含む2価の連結基を表し、シクロアルカン環を構成する炭素原子の一部が、窒素、酸素および硫黄からなる群から選択されるヘテロ原子で置換されていてもよい。
、R、R、RおよびRは、それぞれ独立に、水素原子または置換基を表し、
、R、R、RおよびRのうち、隣接する2つの基が結合して環を形成していてもよい。
 上記式(B)中、Rは、水素原子またはメチル基を表し、Lは、2価の連結基を表し、Xは、架橋性基を表す。
 本発明においては、上記式(A)で表されるシンナモイル基を含む繰り返し単位Aと、上記式(B)で表される架橋性基を含む繰り返し単位Bとを有する光配向性共重合体を用いることにより、得られる光配向層の耐溶剤性、および、後述する光吸収異方性層を形成する際の高分子液晶性化合物の配向性(以下、「液晶配向性」と略す。)が良好となる。
 これは、詳細には明らかではないが、本発明者らは以下のように推測している。
 すなわち、上記式(A)中のLで表される2価の連結基が、窒素原子とシクロアルカン環とを含むことにより、水素結合性および分子剛直性が高まることで分子運動が抑制され、その結果、耐溶剤性が向上したと考えられる。
 同様に、上記式(A)中のLで表される2価の連結基が、窒素原子とシクロアルカン環とを含むことにより、共重合体のガラス転移温度が上昇し、得られる光配向層の経時安定性が向上した結果、光学異方性層を形成するタイミングに寄らず、液晶配向性が良好になったと考えられる。
 次に、上記式(A)中のLが表す、窒素原子とシクロアルカン環とを含む2価の連結基について説明する。なお、本発明においては、上述した通り、シクロアルカン環を構成する炭素原子の一部は、窒素、酸素および硫黄からなる群から選択されるヘテロ原子で置換されていてもよい。また、シクロアルカン環を構成する炭素原子の一部が窒素原子で置換されている場合は、シクロアルカン環とは別に窒素原子を有していなくてもよい。
 また、上記式(A)中のLが表す2価の連結基に含まれるシクロアルカン環は、炭素数6以上のシクロアルカン環であることが好ましく、その具体例としては、シクロヘキサン環、シクロペプタン環、シクロオクタン環、シクロドデカン環、シクロドコサン環等が挙げられる。
 本発明においては、液晶配向性がより良好となる理由から、上記式(A)中のLが、
下記式(1)~(10)のいずれかで表される2価の連結基であることが好ましい。
Figure JPOXMLDOC01-appb-C000010
 上記式(1)~(10)中、*1は、上記式(A)中の主鎖を構成する炭素原子との結合位置を表し、*2は、上記式(A)中のカルボニル基を構成する炭素原子との結合位置を表す。
 上記式(1)~(10)のいずれかで表される2価の連結基のうち、光配向層を形成する際に用いる溶媒に対する溶解性と、得られる光配向層の耐溶剤性とのバランスが良好となる理由から、上記式(2)、(3)、(7)および(8)のいずれかで表される2価の連結基であることが好ましい。
 次に、上記記式(A)中のR、R、R、RおよびRの一態様が表す置換基について説明する。なお、上記式(A)中のR、R、R、RおよびRが、置換基ではなく水素原子であってもよいことは上述した通りである。
 上記式(A)中のR、R、R、RおよびRの一態様が表す置換基は、シンナモイル基が液晶性化合物と相互作用しやすくなり、液晶配向性がより良好となる理由から、それぞれ独立に、ハロゲン原子、炭素数1~20の直鎖状、分岐状もしくは環状のアルキル基、炭素数1~20の直鎖状のハロゲン化アルキル基、炭素数1~20のアルコキシ基、
炭素数6~20のアリール基、炭素数6~20のアリールオキシ基、シアノ基、アミノ基、または、下記式(11)で表される基であることが好ましい。
Figure JPOXMLDOC01-appb-C000011
 ここで、上記式(11)中、*は、上記式(A)中のベンゼン環との結合位置を表し、
は、1価の有機基を表す。
 ハロゲン原子としては、例えば、フッ素原子、塩素原子、臭素原子、ヨウ素原子などが挙げられ、中でも、フッ素原子、塩素原子であるのが好ましい。
 炭素数1~20の直鎖状、分岐状もしくは環状のアルキル基について、直鎖状のアルキル基としては、炭素数1~6のアルキル基が好ましく、具体的には、例えば、メチル基、
エチル基、n-プロピル基などが挙げられる。
 分岐状のアルキル基としては、炭素数3~6のアルキル基が好ましく、具体的には、例えば、イソプロピル基、tert-ブチル基などが挙げられる。
 環状のアルキル基としては、炭素数3~6のアルキル基が好ましく、具体的には、例えば、シクロプロピル基、シクロペンチル基、シクロヘキシル基などが挙げられる。
 炭素数1~20の直鎖状のハロゲン化アルキル基としては、炭素数1~4のフルオロアルキル基が好ましく、具体的には、例えば、トリフルオロメチル基、パーフルオロエチル基、パーフルオロプロピル基、パーフルオロブチル基などが挙げられ、中でも、トリフルオロメチル基が好ましい。
 炭素数1~20のアルコキシ基としては、炭素数1~18のアルコキシ基が好ましく、
炭素数6~18のアルコキシ基がより好ましく、炭素数6~14のアルコキシ基が更に好ましい。具体的には、例えば、メトキシ基、エトキシ基、n-ブトキシ基、メトキシエトキシ基、n-ヘキシルオキシ基、n-オクチルオキシ基、n-デシルオキシ基、n-ドデシルオキシ基、n-テトラデシルオキシ基などが好適に挙げられ、中でも、n-ヘキシルオキシ基、n-オクチルオキシ基、n-デシルオキシ基、n-ドデシルオキシ基、n-テトラデシルオキシ基がより好ましい。
 炭素数6~20のアリール基としては、炭素数6~12のアリール基が好ましく、具体的には、例えば、フェニル基、α-メチルフェニル基、ナフチル基などが挙げられ、中でも、フェニル基が好ましい。
 炭素数6~20のアリールオキシ基としては、炭素数6~12のアリールオキシ基が好ましく、具体的には、例えば、フェニルオキシ基、2-ナフチルオキシ基などが挙げられ、中でも、フェニルオキシ基が好ましい。
 アミノ基としては、例えば、第1級アミノ基(-NH);メチルアミノ基などの第2級アミノ基;ジメチルアミノ基、ジエチルアミノ基、ジベンジルアミノ基、含窒素複素環化合物(例えば、ピロリジン、ピペリジン、ピペラジンなど)の窒素原子を結合手とした基などの第3級アミノ基;が挙げられる。
 上記式(11)で表される基について、上記式(11)中のRが表す1価の有機基としては、例えば、炭素数1~20の直鎖状または環状のアルキル基が挙げられる。
 直鎖状のアルキル基としては、炭素数1~6のアルキル基が好ましく、具体的には、例えば、メチル基、エチル基、n-プロピル基などが挙げられ、中でも、メチル基またはエチル基が好ましい。
 環状のアルキル基としては、炭素数3~6のアルキル基が好ましく、具体的には、例えば、シクロプロピル基、シクロペンチル基、シクロヘキシル基などが挙げられ、中でも、
シクロヘキシル基が好ましい。
 なお、上記式(11)中のRが表す1価の有機基としては、上述した直鎖状のアルキル基および環状のアルキル基を直接または単結合を介して複数組み合わせたものであってもよい。
 本発明においては、シンナモイル基が液晶性化合物と相互作用しやすくなり、液晶配向性がより良好となる理由から、上記式(A)中のR、R、R、RおよびRのうち、
少なくともRが上述した置換基を表していることが好ましく、更に、得られる光配向性共重合体の直線性が向上し、液晶性化合物と相互作用しやすくなり、液晶配向性が更に良好となる理由から、R、R、RおよびRがいずれも水素原子を表すことがより好ましい。
 本発明においては、得られる光配向層に光照射した際に反応効率が向上する理由から、
上記式(A)中のRが電子供与性の置換基であることが好ましい。
 ここで、電子供与性の置換基(電子供与性基)とは、ハメット値(Hammett置換基定数σp)が0以下の置換基のことをいい、例えば、上述した置換基のうち、アルキル基、ハロゲン化アルキル基、アルコキシ基などが挙げられる。
 これらのうち、アルコキシ基であることが好ましく、液晶配向性がより良好となる理由から、炭素数が6~16のアルコキシ基であることがより好ましく、炭素数7~10のアルコキシ基であることが更に好ましい。
 次に、上記式(B)中のLが表す2価の連結基について説明する。
 2価の連結基としては、シンナモイル基が液晶性化合物と相互作用しやすくなり、液晶配向性がより良好となる理由から、置換基を有していてもよい炭素数1~18の直鎖状、分岐状または環状のアルキレン基、置換基を有していてもよい炭素数6~12のアリーレン基、エーテル基(-O-)、カルボニル基(-C(=O)-)、および、置換基を有していてもよいイミノ基(-NH-)からなる群から選択される少なくとも2以上の基を組み合わせた2価の連結基であることが好ましい。
 ここで、アルキレン基、アリーレン基およびイミノ基が有していてもよい置換基としては、例えば、ハロゲン原子、アルキル基、アルコキシ基、アリール基、アリールオキシ基、シアノ基、カルボキシ基、アルコキシカルボニル基および水酸基などが挙げられる。
 ハロゲン原子としては、例えば、フッ素原子、塩素原子、臭素原子、ヨウ素原子などが挙げられ、中でも、フッ素原子、塩素原子であるのが好ましい。
 アルキル基としては、例えば、炭素数1~18の直鎖状、分岐鎖状または環状のアルキル基が好ましく、炭素数1~8のアルキル基(例えば、メチル基、エチル基、プロピル基、イソプロピル基、n-ブチル基、イソブチル基、sec-ブチル基、t-ブチル基、シクロヘキシル基等)がより好ましく、炭素数1~4のアルキル基であることが更に好ましく、メチル基またはエチル基であるのが特に好ましい。
 アルコキシ基としては、例えば、炭素数1~18のアルコキシ基が好ましく、炭素数1~8のアルコキシ基(例えば、メトキシ基、エトキシ基、n-ブトキシ基、メトキシエトキシ基等)がより好ましく、炭素数1~4のアルコキシ基であることが更に好ましく、メトキシ基またはエトキシ基であるのが特に好ましい。
 アリール基としては、例えば、炭素数6~12のアリール基が挙げられ、具体的には、
例えば、フェニル基、α-メチルフェニル基、ナフチル基などが挙げられ、中でも、フェニル基が好ましい。
 アリールオキシ基としては、例えば、フェノキシ、ナフトキシ、イミダゾイルオキシ、
ベンゾイミダゾイルオキシ、ピリジン-4-イルオキシ、ピリミジニルオキシ、キナゾリニルオキシ、プリニルオキシ、チオフェン-3-イルオキシなどが挙げられる。
 アルコキシカルボニル基としては、例えば、メトキシカルボニル、エトキシカルボニルなどが挙げられる。
 炭素数1~18の直鎖状、分岐状または環状のアルキレン基について、直鎖状のアルキレン基としては、具体的には、例えば、メチレン基、エチレン基、プロピレン基、ブチレン基、ペンチレン基、ヘキシレン基、デシレン基、ウンデシレン基、ドデシレン基、トリデシレン基、テトラデシレン基、ペンタデシレン基、ヘキサデシレン基、ヘプタデシレン基、オクタデシレン基などが挙げられる。
 また、分岐状のアルキレン基としては、具体的には、例えば、ジメチルメチレン基、メチルエチレン基、2,2-ジメチルプロピレン基、2-エチル-2-メチルプロピレン基などが挙げられる。
 また、環状のアルキレン基としては、具体的には、例えば、シクロプロピレン基、シクロブチレン基、シクロペンチレン基、シクロヘキシレン基、シクロオクチレン基、シクロデシレン基、アダマンタン-ジイル基、ノルボルナン-ジイル基、exo-テトラヒドロジシクロペンタジエン-ジイル基などが挙げられ、中でも、シクロヘキシレン基が好ましい。
 炭素数6~12のアリーレン基としては、具体的には、例えば、フェニレン基、キシリレン基、ビフェニレン基、ナフチレン基、2,2’-メチレンビスフェニル基などが挙げられ、中でも、フェニレン基が好ましい。
 次に、上記式(B)中のXが表す架橋性基について説明する。
 上記式(B)中のX(架橋性基)としては、具体的には、例えば、エポキシ基、エポキシシクロヘキシル基、オキセタニル基、および、エチレン性不飽和二重結合を有する官能基などが挙げられ、中でも、下記式(X1)~(X4)からなる群から選択される少なくとも1種の架橋性基であることが好ましい。
Figure JPOXMLDOC01-appb-C000012
 上記式(X1)~(X4)中、*は、上記式(B)中のLとの結合位置を表し、Rは、水素原子、メチル基およびエチル基のいずれかを表し、上記式(X4)中、Sは、エチレン性不飽和二重結合を有する官能基を表す。
 ここで、エチレン性不飽和二重結合を有する官能基としては、具体的には、例えば、ビニル基、アリル基、スチリル基、アクリロイル基、メタクリロイル基が挙げられ、アクリロイル基またはメタクリロイル基であることが好ましい。
 本発明においては、後述する本発明の光学積層体の強度が高くなり、後述する本発明の光学積層体を用いて他の層を形成する際のハンドリング性が良好となる理由から、繰り返し単位Bが、上記式(B)中のXが上記式(X1)~(X3)のいずれかで表される架橋性基である繰り返し単位(以下、「繰り返し単位B1」とも略す。)と、上記式(B)中のXが上記式(X4)で表される架橋性基である繰り返し単位(以下、「繰り返し単位B
2」とも略す。)とを含んでいることが好ましい。
 上記式(A)表されるシンナモイル基を含む繰り返し単位Aとしては、具体的には、例えば、以下に示す繰り返し単位A-1~A-44が挙げられる。なお、下記式中、Meはメチル基を表し、Etはエチル基を表す。なお、以下の具体例中、繰り返し単位A-1~A-10の2価の連結基に含まれる「1,4-シクロヘキシル基」は、シス体およびトランス体のいずれであってもよいが、トランス体であることが好ましい。
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-I000014
Figure JPOXMLDOC01-appb-I000015
Figure JPOXMLDOC01-appb-I000016
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-I000018
Figure JPOXMLDOC01-appb-I000019
Figure JPOXMLDOC01-appb-I000020
Figure JPOXMLDOC01-appb-I000021
Figure JPOXMLDOC01-appb-I000022
 一方、上記式(B)表される架橋性基を含む繰り返し単位B(繰り返し単位B1)としては、具体的には、例えば、以下に示す繰り返し単位B-1~B-17が挙げられる。
Figure JPOXMLDOC01-appb-C000023
Figure JPOXMLDOC01-appb-I000024
Figure JPOXMLDOC01-appb-I000025
 また、上記式(B)表される架橋性基を含む繰り返し単位B(繰り返し単位B2)としては、具体的には、例えば、以下に示す繰り返し単位B-18~B-47が挙げられる。
Figure JPOXMLDOC01-appb-C000026
Figure JPOXMLDOC01-appb-I000027
Figure JPOXMLDOC01-appb-I000028
Figure JPOXMLDOC01-appb-I000029
 上記光配向性共重合体は、上述した繰り返し単位Aの含有量aと、上述した繰り返し単位Bの含有量bとが、質量比で下記式(12)を満たしていることが好ましく、下記式(13)を満たしていることがより好ましく、下記式(14)を満たしていることが更に好ましく、下記式(15)を満たしていることが特に好ましい。
 0.03 ≦ a/(a+b) ≦ 0.5 ・・・(12)
 0.03 ≦ a/(a+b) ≦ 0.3 ・・・(13)
 0.03 ≦ a/(a+b) ≦ 0.2 ・・・(14)
 0.05 ≦ a/(a+b) ≦ 0.2 ・・・(15)
 また、上記光配向性共重合体は、上述した繰り返し単位B1とともに上述した繰り返し単位B2を有する場合、良好な液晶配向性、密着性を維持しつつ、光配向層を含む光学異方性層の強度をより高められる理由から、上述した繰り返し単位Aの含有量aと、上述した繰り返し単位B1の含有量b1と、上述した繰り返し単位B2の含有量b2とが、質量比で下記式(16)を満たしていることが好ましく、下記式(17)を満たしていることがより好ましく、下記式(18)を満たしていることが更に好ましい。
 0.05 ≦ b2/(a+b1+b2) ≦ 0.7 ・・・(16)
 0.10 ≦ b2/(a+b1+b2) ≦ 0.5 ・・・(17)
 0.12 ≦b2/ (a+b1+b2) ≦ 0.35 ・・・(18)
 上記光配向性共重合体は、本発明の効果を阻害しない限り、上述した繰り返し単位Aおよび繰り返し単位B以外に、他の繰り返し単位を有していてもよい。
 このような他の繰り返し単位を形成するモノマー(ラジカル重合性単量体)としては、
例えば、アクリル酸エステル化合物、メタクリル酸エステル化合物、マレイミド化合物、
アクリルアミド化合物、アクリロニトリル、マレイン酸無水物、スチレン化合物、ビニル化合物等が挙げられる。
 上記光配向性共重合体の合成法は特に限定されず、例えば、上述した繰り返し単位Aを形成するモノマー、上述した繰り返し単位Bを形成するモノマー、および、任意の他の繰り返し単位を形成するモノマーを混合し、有機溶剤中で、ラジカル重合開始剤を用いて重合することにより合成することができる。
 上記光配向性共重合体の重量平均分子量(Mw)は、液晶配向性がより向上する理由から、10000~500000が好ましく、30000~300000がより好ましい。
 上記光配向性共重合体を用いる場合、光配向層形成用組成物における上記光配向性共重合体の含有量は特に限定されないが、後述する有機溶媒を含有する場合、有機溶媒100質量部に対して0.1~50質量部であるのが好ましく、0.5~10質量部であるのがより好ましい。
 (添加剤)
 光配向層形成用組成物は、光活性化合物以外の他の添加剤の1種以上を含んでいてもよい。例えば、添加剤は、光配向層形成用組成物の屈折率調整の目的として添加される。添加剤としては、光活性化合物との相溶性の観点から親水性基と(メタ)アクリロイルオキシ基を有する化合物が好ましく、配向能を著しく低下させない程度添加することができる。親水性基としては、ヒドロキシル基、カルボキシル基、スルホ基、アミノ基等が挙げられる。
 (有機溶媒)
 光配向層形成用組成物は、光配向層を作製する作業性等の観点から、有機溶媒を含有するのが好ましい。
 有機溶媒としては、具体的には、例えば、ケトン類(例えば、アセトン、2-ブタノン、メチルイソブチルケトン、シクロヘキサノン、シクロペンタノンなど)、エーテル類(例えば、ジオキサン、テトラヒドロフランなど)、脂肪族炭化水素類(例えば、ヘキサンなど)、脂環式炭化水素類(例えば、シクロヘキサンなど)、芳香族炭化水素類(例えば、トルエン、キシレン、トリメチルベンゼンなど)、ハロゲン化炭素類(例えば、ジクロロメタン、ジクロロエタン、ジクロロベンゼン、クロロトルエンなど)、エステル類(例えば、酢酸メチル、酢酸エチル、酢酸ブチルなど)、水、アルコール類(例えば、エタノール、イソプロパノール、ブタノール、シクロヘキサノールなど)、セロソルブ類(例えば、メチルセロソルブ、エチルセロソルブなど)、セロソルブアセテート類、スルホキシド類(例えば、ジメチルスルホキシドなど)、アミド類(例えば、ジメチルホルムアミド、ジメチルアセトアミドなど)等が挙げられ、これらを1種単独で用いてもよく、2種類以上を併用してもよい。
 光配向層形成用組成物は、上記以外の他の成分を含有してもよく、例えば、架橋触媒(例えば、熱反応性の酸発生剤)、密着改良剤、レベリング剤、界面活性剤、可塑剤などが挙げられる。
 添加剤を、光配向層形成用組成物の屈折率調整の目的で用いる場合には、添加剤の屈折率は1.4~1.6が好ましく、1.4~1.55がより好ましい。
 本発明においては、光配向層と後述する光吸収異方性層との密着性が良好となる理由から、光配向層形成用組成物が、光反応性基および架橋性基を有する化合物(例えば、上述した光配向性共重合体など)を含有し、ラジカル重合開始剤を含有しない組成物であることが好ましい。
 (塗布工程)
 光配向層形成用組成物を上述したポリマーフィルム上に塗布する方法としては、例えば、スピンコ-ティング法、エクストルージョン法、グラビアコーティング法、ダイコーティング法、バーコーティング法及びアプリケータ法等の塗布法や、フレキソ法等の印刷法などの公知の方法が採用される。
 なお、光学積層体の製造を、RolltoRoll形式の連続的製造方法により実施する場合、塗布方法としては、通常、グラビアコーティング法、ダイコーティング法又はフレキソ法等の印刷法が採用される。
 (乾燥工程)
 上記塗布工程により形成された塗膜を加熱により乾燥させる方法は特に限定されず、乾燥温度は、50~180℃の範囲が好ましく、80~150℃の範囲がより好ましい。
 乾燥時間は、10秒間~10分間が好ましく、30秒間~5分間がより好ましい。
 光配向層形成用組成物が、熱反応性の酸発生剤等の架橋触媒およびカチオン重合性の架橋性基を有する化合物を含有する場合は、この工程で、熱により塗膜の架橋反応による硬化を進めることが好ましい。
 (光照射工程)
 上記乾燥工程後の塗膜に対して照射する偏光は特に制限はなく、例えば、直線偏光、円偏光、楕円偏光などが挙げられ、中でも、直線偏光が好ましい。
 また、非偏光を照射する「斜め方向」とは、塗膜表面の法線方向に対して極角θ(0<θ<90°)傾けた方向である限り、特に制限はなく、目的に応じて適宜選択することができるが、θが20~80°であることが好ましい。
 本明細書において、「直線偏光の照射」および「非偏光の照射」は、光活性化合物に光反応を生じせしめるための操作である。用いる光の波長は、用いる光活性化合物により異なり、その光反応に必要な波長であれば特に限定されるものではない。光照射に用いる光のピーク波長は、200nm~700nmが好ましく、光のピーク波長が400nm以下の紫外光がより好ましい。
 光照射に用いる光源は、通常使われる光源、例えばタングステンランプ、ハロゲンランプ、キセノンランプ、キセノンフラッシュランプ、水銀ランプ、水銀キセノンランプおよびカーボンアークランプ等のランプ、各種のレーザー[例、半導体レーザー、ヘリウムネオンレーザー、アルゴンイオンレーザー、ヘリウムカドミウムレーザーおよびYAG(イットリウム・アルミニウム・ガーネット)レーザー]、発光ダイオード、ならびに、陰極線管などを挙げることができる。
 直線偏光を得る手段としては、偏光板(例えば、ヨウ素偏光板、2色色素偏光板、および、ワイヤーグリッド偏光板)を用いる方法、プリズム系素子(例えば、グラントムソンプリズム)もしくはブリュースター角を利用した反射型偏光子を用いる方法、または、偏光を有するレーザー光源から出射される光を用いる方法が採用できる。また、フィルタまたは波長変換素子等を用いて必要とする波長の光のみを選択的に照射してもよい。
 照射する光は、直線偏光の場合には、配向層に対して上面、又は裏面から配向層表面に対して垂直、又は斜めから光を照射する方法が採用される。光の入射角度は、光活性化合物によって異なるが、0~90°(垂直)が好ましく、40~90°が好ましい。
 非偏光の場合には、配向層に対して、斜めから非偏光を照射する。その入射角度は、10~80°が好ましく、20~60°がより好ましく、30~50°が更に好ましい。
 照射時間は、1分~60分が好ましく、1分~10分がより好ましい。
 パターン化が必要な場合には、フォトマスクを用いた光照射をパターン作製に必要な回数施す方法、または、レーザー光走査によるパターンの書き込みによる方法を採用できる。
 本発明に用いられる光配向層は、波長550nmにおける平均屈折率が1.55以上1.8以下である配向層であることが好ましい。より反射防止性能を向上させるという観点で、光吸収異方性層との屈折率差を小さくするため、波長550nmにおける平均屈折率は1.55~1.7であることがさらに好ましい。
 また、本発明に用いられる光配向層は、波長550nmにおける面内の屈折率異方性Δnが0.05以上0.45以下であることが好ましい。0.1以上0.4以下であることがより好ましく、0.1以上0.3以下であることがさらに好ましい。
 光配向層の屈折率異方性を適切に制御することで、より反射防止機能を向上させることができる。
 本発明において、光配向層の厚さは、10nm~10000nmの範囲であることが好ましく、10nm~1000nmの範囲であることがより好ましく、10~300nmの範囲であることが更に好ましい。光配向層の厚さを適切に制御することで、干渉を利用し、さらに反射防止性能を高めることができる。
 〔光吸収異方性層形成工程〕
 本発明の光学積層体の製造方法が有する光吸収異方性層形成工程は、光配向層上に、二色性物質および高分子液晶性化合物を含有する液晶組成物を塗布して光吸収異方性層を形成する工程である。
 以下に、光吸収異方性層の形成に用いられる液晶組成物に含まれる各成分について詳述する。
 <高分子液晶性化合物>
 光吸収異方性層の形成に用いられる液晶組成物は、高分子液晶性化合物を含有する。高分子液晶性化合物を含むことで、二色性物質の析出を抑止しながら、二色性物質を高い配向度で配向させることができる。
 ここで、「高分子液晶性化合物」とは、化学構造中に繰り返し単位を有する液晶性化合物のことをいう。本発明における液晶性化合物とは、二色性を示さない液晶性化合物である。
 高分子液晶性化合物としては、例えば、特開2011-237513号公報に記載されているサーモトロピック液晶性高分子が挙げられる。また、高分子液晶性化合物は、末端に架橋性基(例えば、アクリロイル基およびメタクリロイル基)を有していてもよい。
 高分子液晶性化合物は、1種単独で使用してもよいし、2種以上を併用してもよい。
 高分子液晶性化合物を含有する場合において、高分子液晶性化合物の含有量は、固形分比率として、75~95質量部が好ましく、75~90質量部がより好ましく、80~90質量部がさらに好ましい。高分子液晶性化合物の含有量が上記範囲内にあることで、光吸収異方性層の配向度がより向上する。
 高分子液晶性化合物の構造としては、下記式(1)で表される繰り返し単位を含む高分子液晶性化合物を含有することが好ましい。
Figure JPOXMLDOC01-appb-C000030
 ここで、上記式(6)中、
 Rは、水素原子またはメチル基を表す。
 Lは、単結合または2価の連結基を表す。
 Bは、水素原子、ハロゲン原子、シアノ基、アルキル基、アルコキシ基、アミノ基、オキシカルボニル基、アシルオキシ基、アシルアミノ基、アルコキシカルボニルアミノ基、スルホニルアミノ基、スルファモイル基、カルバモイル基、アルキルチオ基、フルホニル基、スルフィニル基、ウレイド基または架橋性基を表す。
 Mは、下記式(1-1)で表されるメソゲン基を表す。
Figure JPOXMLDOC01-appb-C000031
 ここで、上記式(1-1)中、
 Ar11およびAr12は、それぞれ独立に、置換基を有していてもよいフェニレン基またはビフェニレン基を表す。
 L11およびL12は、それぞれ独立に、単結合、または、アゾ基を含まない2価の連結基を表す。
 Yは、イミノ基、-OCO-CH=CH-基、または、-CH=CH-CO2-基を表す。
 m1およびm2は、それぞれ独立に、1~3の整数を表す。
 m1が2~3の整数の場合、複数のAr11はそれぞれ同一であっても異なっていてもよく、複数のL11はそれぞれ同一であっても異なっていてもよい。
 m2が2~3の整数の場合、複数のAr12はそれぞれ同一であっても異なっていてもよく、複数のL12はそれぞれ同一であっても異なっていてもよい。
 上記式(1)中のLが表す2価の連結基について説明する。
 2価の連結基としては、例えば、-O-、-S-、-COO-、-OCO-、-O-CO-O-、-NRNCO-、-CONRN-、アルキレン基、または、これらの基を2以上組み合わせた2価の基などが挙げられる。なお、RNは、水素原子またはアルキル基を表す。
 これらのうち、-O-、-COO-および-OCO-からなる群から選択される1種以上の基とアルキレン基とを組み合わせた2価の基であることが好ましい。
 また、アルキレン基の炭素数は、2~16であることが好ましい。
 上記式(1)中のMが表す、上記式(1-1)で表されるメソゲン基について説明する。なお、上記式(1-1)中、*は、上記式(1)中のLまたはBとの結合位置を表す。
 上記式(1-1)中、Ar11およびAr12は、それぞれ独立に、置換基を有していてもよいフェニレン基またはビフェニレン基を表す。
 ここで、置換基としては、特に限定されず、ハロゲン原子、アルキル基、アルキルオキシ基、アルキルチオ基、オキシカルボニル基、チオアルキル基、アシルオキシ基、アシルアミノ基、アルコキシカルボニルアミノ基、スルホニルアミノ基、スルファモイル基、カルバモイル基、スルフィニル基、および、ウレイド基などが挙げられる。
 上記式(1-1)中、L11およびL12は、それぞれ独立に、単結合またはアゾ基を含まない2価の連結基を表す。
 ここで、2価の連結基としては、例えば、-O-、-S-、-COO-、-OCO-、-O-CO-O-、-NRCO-、-CONR-、アルキレン基、または、これらの基を2以上組み合わせた2価の基などが挙げられる。なお、Rは、水素原子またはアルキル基を表す。
 上記式(1-1)中、Yは、イミノ基、-OCO-CH=CH-基、または、-CH=CH-CO2-基を表す。
 上記式(1-1)中、m1およびm2は、それぞれ独立に、1~3の整数を表す。
 ここで、m1およびm2は、合計して2~5の整数であることが好ましく、合計して2~4の整数であることが好ましい。
 上記式(1)中のBについて説明する。
 Bは、水素原子、ハロゲン原子、シアノ基、アルキル基、アルコキシ基、アミノ基、オキシカルボニル基、アルコキシカルボニル基、アシルオキシ基、(ポリ)アルキレンオキシ基、アシルアミノ基、アルコキシカルボニルアミノ基、スルホニルアミノ基、スルファモイル基、カルバモイル基、アルキルチオ基、フルホニル基、スルフィニル基、または、
ウレイド基を表す。
 これらのうち、相転移温度調整の観点、および、溶解性の観点などから、シアノ基、アルキル基、アルコキシ基、オキシカルボニル基、アルコキシカルボニル基、(ポリ)アルキレンオキシ基、または、アルキルチオ基であることが好ましく、アルキル基、アルコキシ基、または、(ポリ)アルキレンオキシ基であることがより好ましい。
 また、Bのうち、水素原子、ハロゲン原子およびシアノ基以外のアルキル基等は、相転移温度調整の観点、および、溶解性の観点などから、炭素原子数が1~20であることが好ましく、1~11であることがより好ましい。
 上記式(1)中のBが架橋性基を表す場合について説明する。
 架橋性基としては、例えば、特開2010-244038号公報の[0040]~[0050]段落に記載された重合性基が挙げられ、中でも、反応性および合成適性の観点から、ラジカル重合性基であることが好ましく、アクリロイル基、メタクリロイル基、エポキシ基、オキセタニル基、または、スチリル基が好ましく、アクリロイル基またはメタクリロイル基(以下、「(メタ)アクリロイル基」とも略す。)がより好ましい。
 上記高分子液晶性化合物の液晶性は、ネマチック性およびスメクチック性のいずれを示してもよいが、少なくともネマチック性を示すことが好ましい。
 ネマチック相を示す温度範囲は、室温(23℃)~300℃であることが好ましく、取り扱いまたは製造適性の観点から、50℃~200℃であることが好ましい。
 さらに、本発明においては、上記高分子液晶性化合物の重量平均分子量(Mw)が、1000~100000であることが好ましく、2000~60000であることがより好ましい。また、数平均分子量(Mn)が、500~80000であることが好ましく、1000~30000であることがより好ましい。
 ここで、本発明における重量平均分子量および数平均分子量は、ゲル浸透クロマトグラフ(GPC)法により測定された値である。
 ・溶媒(溶離液):テトラヒドロフラン
 ・装置名:TOSOH HLC-8220GPC
 ・カラム:TOSOH TSKgel Super HZM-H(4.6mm×15cm)を3本接続して使用
 ・カラム温度:25℃
 ・試料濃度:0.1質量%
 ・流速:0.35ml/min
 ・校正曲線:TOSOH製TSK標準ポリスチレン Mw=2800000~1050(Mw/Mn=1.03~1.06)までの7サンプルによる校正曲線を使用
 本発明においては、可視光領域での吸収が少なく、可視光領域での二色性物質の配向をより維持しやすくなる理由から、上記高分子液晶性化合物の極大吸収波長が380nm以下であることが好ましい。
 また、本発明においては、光吸収異方性層の2色比がより向上する理由から、上記高分子液晶性化合物のメソゲン基に含まれるベンゼン環の数が3個以上であることが好ましい。
 上記式(1)で表される繰り返し単位を有する高分子液晶性化合物としては、具体的には、例えば、下記構造式で表される高分子液晶性化合物が挙げられる。なお、下記構造式中、Rは、水素原子またはメチル基を表す。
Figure JPOXMLDOC01-appb-C000032
Figure JPOXMLDOC01-appb-C000033
 本発明においてさらに好ましい高分子液晶性化合物としては、後述する式(2)で表される繰り返し単位を含む高分子液晶性化合物を含有することが好ましい。後述する式(2)において、P1(以下、「主鎖」ともいう。)、L1、およびSP1(以下、「スペーサー基」ともいう。)のlogP値と、M1(以下、「メソゲン基」ともいう。)のlogP値との差が、4以上である。
 上記高分子液晶性化合物を用いることで、配向度の高い光吸収異方性層を形成できる。この理由の詳細は明らかではないが、概ね以下のように推定している。
 logP値は、化学構造の親水性および疎水性の性質を表現する指標である。後述する式(2)で表される繰り返し単位は、主鎖、L1およびスペーサー基のlogP値と、メソゲン基のlog値と、が所定値以上離れているので、主鎖からスペーサー基までの構造とメソゲン基との相溶性が低い状態にある。これにより、高分子液晶性化合物の結晶性が高くなり、高分子液晶性化合物の配向度が高い状態にあると推測される。このように、高分子液晶性化合物の配向度が高いと、高分子液晶性化合物と二色性物質との相溶性が低下して(すなわち、二色性物質の結晶性が向上する)、二色性物質の配向度が向上すると推測される。その結果、得られる光吸収異方性層の配向度が高くなると考えられる。
 本発明において好ましい高分子液晶性化合物は、下記式(2)で表される繰り返し単位(本明細書において、「繰り返し単位(2)」ともいう。)を含む。また、繰り返し単位(2)において、P1、L1およびSP1のlogP値と、M1のlogP値との差が4以上である。
Figure JPOXMLDOC01-appb-C000034
 式(2)中、P1は繰り返し単位の主鎖を表し、L1は単結合または2価の連結基を表し、SP1はスペーサー基を表し、M1はメソゲン基を表し、T1は末端基を表す。
 ただし、M1が連結基を有する場合、連結基としてアゾ基を含まない。
 P1が表す繰り返し単位の主鎖としては、具体的には、例えば、下記式(P1-A)~(P1-D)で表される基が挙げられ、なかでも、原料となる単量体の多様性および取り扱いが容易である観点から、下記式(P1-A)で表される基が好ましい。
Figure JPOXMLDOC01-appb-C000035
 式(P1-A)~(P1-D)において、「*」は、式(2)におけるL1との結合位置を表す。
 式(P1-A)~(P1-D)において、R、R、RおよびRはそれぞれ独立に、水素原子、ハロゲン原子、炭素数1~10のアルキル基、または、炭素数1~10のアルコキシ基を表す。上記アルキル基は、直鎖または分岐のアルキル基であってもよいし、環状構造を有するアルキル基(シクロアルキル基)であってもよい。また、上記アルキル基の炭素数は、1~5が好ましい。
 式(P1-A)で表される基は、(メタ)アクリル酸エステルの重合によって得られるポリ(メタ)アクリル酸エステルの部分構造の一単位であることが好ましい。
 式(P1-B)で表される基は、エポキシ基を有する化合物のエポキシ基を開環重合して形成されるエチレングリコール単位であることが好ましい。
 式(P1-C)で表される基は、オキセタン基を有する化合物のオキセタン基を開環重合して形成されるプロピレングリコール単位であることが好ましい。
 式(P1-D)で表される基は、アルコキシシリル基およびシラノール基の少なくとも一方の基を有する化合物の縮重合によって得られるポリシロキサンのシロキサン単位であることが好ましい。ここで、アルコキシシリル基およびシラノール基の少なくとも一方の基を有する化合物としては、式SiR(OR-で表される基を有する化合物が挙げられる。式中、Rは、(P1-D)におけるRと同義であり、複数のRはそれぞれ独立に、水素原子または炭素数1~10のアルキル基を表す。
 L1は、単結合または2価の連結基である。
 L1が表す2価の連結基としては、-C(O)O-、-OC(O)-、-O-、-S-、-C(O)NR-、-NRC(O)-、-SO-、および、-NR-などが挙げられる。式中、RおよびRはそれぞれ独立に、水素原子、置換基を有していてもよい炭素数1~6のアルキル基を表わす。
 P1が式(P1-A)で表される基である場合には、L1は-C(O)O-で表される基が好ましい。
 P1が式(P1-B)~(P1-D)で表される基である場合には、L1は単結合が好ましい。
 SP1が表すスペーサー基は、液晶性を発現しやすいことや、原材料の入手性などの理由から、オキシエチレン構造、オキシプロピレン構造、ポリシロキサン構造およびフッ化アルキレン構造からなる群より選択される少なくとも1種の構造を含むことが好ましい。
 ここで、SP1が表すオキシエチレン構造は、*-(CH-CHO)n1-*で表される基が好ましい。式中、n1は1~20の整数を表し、*はL1またはM1との結合位置を表す。
 また、SP1が表すオキシプロピレン構造は、*-(CH(CH)-CHO)n2-*で表される基が好ましい。式中、n2は1~3の整数を表し、*はL1またはM1との結合位置を表す。
 また、SP1が表すポリシロキサン構造は、*-(Si(CH-O)n3-*で表される基が好ましい。式中、n3は6~10の整数を表し、*はL1またはM1との結合位置を表す。
 また、SP1が表すフッ化アルキレン構造は、*-(CF-CFn4-*で表される基が好ましい。式中、n4は6~10の整数を表し、*はL1またはM1との結合位置を表す。
 M1が表すメソゲン基とは、液晶形成に寄与する液晶分子の主要骨格を示す基である。液晶分子は、結晶状態と等方性液体状態の中間の状態(メソフェーズ)である液晶性を示す。メソゲン基については特に制限はなく、例えば、「Flussige Kristalle in Tabellen II」(VEB Deutsche Verlag furGrundstoff Industrie,Leipzig、1984年刊)、特に第7頁~第16頁の記載、および、液晶便覧編集委員会編、液晶便覧(丸善、2000年刊)、特に第3章の記載、を参照することができる。
 メソゲン基としては、例えば、芳香族炭化水素基、複素環基、および脂環式基からなる群より選択される少なくとも1種の環状構造を有する基が好ましい。
 メソゲン基としては、液晶性の発現、液晶相転移温度の調整、原料入手性および合成適性という観点から、下記式(M1-A)または下記式(M1-B)で表される基が好ましい。
Figure JPOXMLDOC01-appb-C000036
 式(M1-A)中、A1は、芳香族炭化水素基、複素環基および脂環式基からなる群より選択される2価の基である。これらの基は、アルキル基、フッ化アルキル基またはアルコキシ基などの置換基で置換されていてもよい。
 A1で表される2価の基は、4~6員環であることが好ましい。また、A1で表される2価の基は、単環でも、縮環であってもよい。
 *は、SP1またはT1との結合位置を表す。
 A1が表す2価の芳香族炭化水素基としては、フェニレン基、ナフチレン基、フルオレン-ジイル基、アントラセン-ジイル基およびテトラセン-ジイル基などが挙げられ、メソゲン骨格の設計の多様性や原材料の入手性などの観点から、フェニレン基またはナフチレン基が好ましく、フェニレン基がより好ましい。
 A1が表す2価の複素環基としては、芳香族または非芳香族のいずれであってもよいが、配向度がより向上するという観点から、2価の芳香族複素環基であることが好ましい。
 2価の芳香族複素環基を構成する炭素以外の原子としては、窒素原子、硫黄原子および酸素原子が挙げられる。芳香族複素環基が炭素以外の環を構成する原子を複数有する場合、これらは同一であっても異なっていてもよい。
 2価の芳香族複素環基の具体例としては、例えば、ピリジレン基(ピリジン-ジイル基)、ピリダジン-ジイル基、イミダゾール-ジイル基、チエニレン(チオフェン-ジイル基)、キノリレン基(キノリン-ジイル基)、イソキノリレン基(イソキノリン-ジイル基)、オキサゾール-ジイル基、チアゾール-ジイル基、オキサジアゾール-ジイル基、ベンゾチアゾール-ジイル基、ベンゾチアジアゾール-ジイル基、フタルイミド-ジイル基、チエノチアゾール-ジイル基、チアゾロチアゾール-ジイル基、チエノチオフェン-ジイル基、および、チエノオキサゾール-ジイル基などが挙げられる。
 A1が表す2価の脂環式基の具体例としては、シクロペンチレン基およびシクロへキシレン基などが挙げられる。
 式(M1-A)中、a1は1~10の整数を表す。a1が2以上である場合には、複数のA1は同一でも異なっていてもよい。
 式(M1-B)中、A2およびA3はそれぞれ独立に、芳香族炭化水素基、複素環基および脂環式基からなる群より選択される2価の基である。A2およびA3の具体例および好適態様は、式(M1-A)のA1と同様であるので、その説明を省略する。
 式(M1-B)中、a2は1~10の整数を表し、a2が2以上である場合には、複数のA2は同一でも異なっていてもよく、複数のA3は同一でも異なっていてもよく、複数のLA1は同一でも異なっていてもよい。
 式(M1-B)中、a2が1である場合には、LA1は2価の連結基である。a2が2以上である場合には、複数のLA1はそれぞれ独立に、単結合または2価の連結基であり、複数のLA1のうち少なくとも1つが2価の連結基である。
 式(M1-B)中、LA1が表す2価の連結基としては、-O-、-(CH-、-(CF-、-Si(CH-、-(Si(CHO)-、-(OSi(CH-(gは1~10の整数を表す。)、-N(Z)-、-C(Z)=C(Z’)-、-C(Z)=N-、-N=C(Z)-、-C(Z)-C(Z’)-、-C(O)-、-OC(O)-、-C(O)O-、-O-C(O)O-、-N(Z)C(O)-、-C(O)N(Z)-、-C(Z)=C(Z’)-C(O)O-、-O-C(O)-C(Z)=C(Z’)-、-C(Z)=N-、-N=C(Z)-、-C(Z)=C(Z’)-C(O)N(Z”)-、-N(Z”)-C(O)-C(Z)=C(Z’)-、-C(Z)=C(Z’)-C(O)-S-、-S-C(O)-C(Z)=C(Z’)-(Z、Z’、Z”は独立に、水素、C1~C4アルキル基、シクロアルキル基、アリール基、シアノ基、または、ハロゲン原子を表す。)、-C≡C-、-S-、-S(O)-、-S(O)(O)-、-(O)S(O)O-、-O(O)S(O)O-、-SC(O)-、および、-C(O)S-などが挙げられる。LA1は、これらの基を2つ以上組み合わせた基であってもよい。
 なお、LA1が表す2価の連結基としては、アゾ基は含む場合は、可視光領域での吸収が高く好ましくない。
 M1の具体例としては、例えば以下の構造が挙げられる。なお、下記具体例において、「Ac」は、アセチル基を表す。
Figure JPOXMLDOC01-appb-C000037
Figure JPOXMLDOC01-appb-C000038
 T1が表す末端基としては、水素原子、ハロゲン原子、シアノ基、ニトロ基、ヒドロキシ基、炭素数1~10のアルキル基、炭素数1~10のアルコキシ基、炭素数1~10のアルキルチオ基、炭素数1~10のオキシカルボニル基、炭素数1~10のアシルオキシ基、炭素数1~10のアシルアミノ基、炭素数1~10のアルコキシカルボニル基、炭素数1~10のアルコキシカルボニルアミノ基、炭素数1~10のスルホニルアミノ基、炭素数1~10のスルファモイル基、炭素数1~10のカルバモイル基、炭素数1~10のスルフィニル基、および、炭素数1~10のウレイド基などが挙げられる。これらの末端基は、これらの基、または、特開2010-244038号公報に記載の重合性基によって、さらに置換されていてもよい。
 T1の主鎖の原子数は、1~20が好ましく、1~15がより好ましく、1~10がさらに好ましく、1~7が特に好ましい。T1の主鎖の原子数が20以下であることで、光吸収異方性層の配向度がより向上する。ここで、T1おける「主鎖」とは、M1と結合する最も長い分子鎖を意味し、水素原子はT1の主鎖の原子数にカウントしない。例えば、T1がn-ブチル基である場合には主鎖の原子数は4であり、T1がsec-ブチル基である場合の主鎖の原子数は3である。
 繰り返し単位(2)の含有量は、高分子液晶性化合物が有する全繰り返し単位100質量%に対して、20~100質量%が好ましく、30~99.9質量%がより好ましく、40~99.0質量%がさらに好ましい。
 本発明において、高分子液晶性化合物に含まれる各繰り返し単位の含有量は、各繰り返し単位を得るために使用される各単量体の仕込み量(質量)に基づいて算出される。
 繰り返し単位(2)は、高分子液晶性化合物中において、1種単独で含まれていてもよいし、2種以上含まれていてもよい。高分子液晶性化合物が繰り返し単位(2)を2種以上含むと、高分子液晶性化合物の溶媒に対する溶解性が向上すること、および、液晶相転移温度の調整が容易になることなどの利点がある。繰り返し単位(2)を2種以上含む場合には、その合計量が上記範囲内であることが好ましい。
 繰り返し単位(2)を2種以上含む場合には、T1に重合性基を含まない繰り返し単位(2)と、T1に重合性基を含む繰り返し単位(2)と、を併用してもよい。これにより、光吸収異方性層の硬化性がより向上する。
 この場合、高分子液晶性化合物中における、T1に重合性基を含まない繰り返し単位(2)に対する、T1に重合性基を含む繰り返し単位(2)の割合(T1に重合性基を含む繰り返し単位(2)/T1に重合性基を含まない繰り返し単位(2))が、質量比で0.005~4が好ましく、0.01~2.4がより好ましい。質量比が4以下であると、配向度に優れるという利点がある。質量比が0.05以上であると、光吸収異方性層の硬化性がより向上する。
 (logP値)
 式(2)において、P1、L1およびSP1のlogP値(以下、「logP」ともいう。)と、M1のlogP値(以下、「logP」ともいう。)との差(|logP-logP|)が4以上であり、光吸収異方性層の配向度がより向上する観点から、4.25以上が好ましく、4.5以上がより好ましい。
 また、上記差の上限値は、液晶相転移温度の調整および合成適性という観点から、15以下が好ましく、12以下がより好ましく、10以下がさらに好ましい。
 ここで、logP値は、化学構造の親水性および疎水性の性質を表現する指標であり、親疎水パラメータと呼ばれることがある。logP値は、ChemBioDraw UltraまたはHSPiP(Ver.4.1.07)などのソフトウェアを用いて計算できる。また、OECD Guidelines for the Testing of Chemicals,Sections 1,Test No.117の方法などにより、実験的に求めることもできる。本発明では特に断りのない限り、HSPiP(Ver.4.1.07)に化合物の構造式を入力して算出される値をlogP値として採用する。
 上記logPは、上述したように、P1、L1およびSP1のlogP値を意味する。「P1、L1およびSP1のlogP値」とは、P1、L1およびSP1を一体とした構造のlogP値を意味しており、P1、L1およびSP1のそれぞれのlogP値を合計したものではない、具体的には、logPは、式(2)におけるP1~SP1までの一連の構造式を上記ソフトウェアに入力することで算出される。
 ただし、logPの算出にあたって、P1~SP1までの一連の構造式のうち、P1で表される基の部分に関しては、P1で表される基そのものの構造(例えば、上述した式(P1-A)~式(P1-D)など)を用いてもよいし、式(2)で表される繰り返し単位を得るために使用する単量体を重合した後にP1になりうる基の構造を用いてもよい。
 ここで、後者(P1になりうる基)の具体例は、次の通りである。P1が(メタ)アクリル酸エステルの重合によって得られる場合には、CH=C(R)-で表される基(Rは、水素原子またはメチル基を表す。)である。また、P1がエチレングリコールの重合によって得られる場合にはエチレングリコールであり、P1がプロピレングリコールの重合により得られる場合にはプロピレングリコールである。また、P1がシラノールの重縮合により得られる場合にはシラノール(式Si(R(OH)で表される化合物。複数のRはそれぞれ独立に、水素原子またはアルキル基を表す。ただし、複数のRの少なくとも1つはアルキル基を表す。)である。
 logPは、上述したlogPとの差が4以上であれば、logPよりも低くてもよいし、logPよりも高くてもよい。
 ここで、一般的なメソゲン基のlogP値(上述したlogP)は、4~6の範囲内になる傾向がある。このとき、logPがlogPよりも低い場合には、logPの値は、1以下が好ましく、0以下がより好ましい。一方で、logPがlogPよりも高い場合には、logPの値は、8以上が好ましく、9以上がより好ましい。
 上記式(2)におけるP1が(メタ)アクリル酸エステルの重合によって得られ、かつ、logPがlogPよりも低い場合には、上記式(2)におけるSP1のlogP値は、0.7以下が好ましく、0.5以下がより好ましい。一方、上記式(2)におけるP1が(メタ)アクリル酸エステルの重合によって得られ、かつ、logPがlogPよりも高い場合には、上記式(2)におけるSP1のlogP値は、3.7以上が好ましく、4.2以上がより好ましい。
 なお、logP値が1以下の構造としては、例えば、オキシエチレン構造およびオキシプロピレン構造などが挙げられる。logP値が6以上の構造としては、ポリシロキサン構造およびフッ化アルキレン構造などが挙げられる。
 本発明に用いられる高分子液晶性化合物は、上記式(2)で表される繰り返し単位(2)に加えて、下記式(3)で表される繰り返し単位(3)を含むことが、光吸収異方性層の膜強度向上および光吸収異方性層と光配向層間の密着強化の観点で好ましい。
Figure JPOXMLDOC01-appb-C000039
 式(3)中、P2は、繰り返し単位の主鎖を表す。
 式(3)中、L2は、単結合、置換基を有していてもよい2価の脂環式基または置換基を有していてもよい2価の芳香族基を表す。
 式(3)中、SP2は、主鎖の原子数が10以上のアルキレン基を表す。ただし、SP2が表すアルキレン基を構成する1個以上の-CH-は、-O-、-S-、-N(R21)-、-C(=O)-、-C(=S)-、-C(R22)=C(R23)-、アルキニレン基、-Si(R24)(R25)-、-N=N-、-C(R26)=N-N=C(R27)-、-C(R28)=N-および-S(=O)-からなる群より選択される少なくとも一種の基(以下、「基2C」ともいう。)によって置き換えられていてもよく、R21~R28はそれぞれ独立に、水素原子、ハロゲン原子、シアノ基、ニトロ基または炭素数1~10の直鎖状もしくは分岐状のアルキル基を表す。また、SP2が表すアルキレン基を構成する1個以上の-CH-に含まれる水素原子は、ハロゲン原子、シアノ基、ニトロ基、水酸基、炭素数1~10の直鎖状のアルキル基および炭素数1~10の分岐状のアルキル基からなる群より選択される少なくとも1種の基(以下、「基2H」ともいう。)によって置き換えられていてもよい。
 式(3)中、T2は、水素原子、メチル基、水酸基、カルボキシ基、スルホン酸基、リン酸基、ボロン酸基、アミノ基、シアノ基、ニトロ基、ビニル基、アクリロイルオキシ基、メタクリロイルオキシ基、エポキシ基、置換基を有していても良いオキセタニル基、置換基を有していてもよいフェニル基またはマレイミド基を表す。
 P2の具体例および好適態様は、式(2)のP1と同様であるので、その説明を省略する。
 L2が表す置換基を有していてもよい2価の脂環式基の具体例としては、式(M1-A)におけるA1で説明した2価の脂環式基と同様であるので、その説明を省略する。また、置換基としては、後述の置換基Wが挙げられ、なかでも、フッ素原子、塩素原子、アルキル基、シアノ基、ヒドロキシ基、カルボキシ基、アルコキシ基、ニトロ基、アシルオキシ基、アミノ基、メルカプト基、アルキルチオ基、アルキルスルホニル基、アルキルスルホニルアミノ基、スルホ基、アルキルスルフィニル基、エポキシシクロアルキル基またはアルコキシカルボニル基が好ましい。
 L2が表す置換基を有していてもよい2価の芳香族基としては、2価の芳香族炭化水素基および2価の芳香族複素環基が挙げられる。2価の芳香族炭化水素基の具体例および好適態様は、式(M1-A)におけるA1で説明した2価の芳香族炭化水素基と同様であるので、その説明を省略する。また、2価の芳香族複素環基の具体例および好適態様は、式(M1-A)におけるA1で説明した2価の芳香族複素環基と同様であるので、その説明を省略する。また、置換基としては、後述の置換基Wが挙げられ、なかでも、フッ素原子、塩素原子、アルキル基、シアノ基、ヒドロキシ基、カルボキシ基、アルコキシ基、ニトロ基、アシルオキシ基、アミノ基、メルカプト基、アルキルチオ基、アルキルスルホニル基、アルキルスルホニルアミノ基、スルホ基、アルキルスルフィニル基またはアルコキシカルボニル基が好ましい。
 L2としては、本発明の効果がより発揮される点から、単結合が好ましい。
 SP2は、主鎖の原子数が10以上のアルキレン基を表し、アルキレン基を構成する1個以上の-CH-は上述の基2Cによって置き換えられていてもよく、アルキレン基を構成する1個以上の-CH-に含まれる水素原子は上述の基2Hによって置き換えられていてもよい。
 SP2の主鎖の原子数は、10以上であり、密着性および面状均一性により優れた光吸収異方性層が得られる点から、15以上が好ましく、19以上がより好ましい。また、SP2の主鎖の原子数の上限は、配向度により優れた光吸収異方性層が得られる点から、70以下が好ましく、60以下がより好ましく、50以下が特に好ましい。
 ここで、SP2における「主鎖」とは、L2とT2とを直接連結するために必要な部分構造を意味し、「主鎖の原子数」とは、上記部分構造を構成する原子の個数を意味する。換言すれば、SP2における「主鎖」は、L2とT2を連結する原子の数が最短になる部分構造である。例えば、SP2が3,7-ジメチルデカニル基である場合の主鎖の原子数は10であり、SP2が4,6-ジメチルドデカニル基の場合の主鎖の原子数は12である。また、下記式(2-1)においては、点線の四角形で表す枠内がSP2に相当し、SP2の主鎖の原子数(点線の丸で囲った原子の合計数に相当)は11である。
Figure JPOXMLDOC01-appb-C000040
 SP2が表すアルキレン基は、直鎖状であっても分岐状であってもよい。
 SP2が表すアルキレン基の炭素数は、配向度により優れた光吸収異方性層が得られる点から、8~80が好ましく、15~80が好ましく、25~70がより好ましく、25~60が特に好ましい。
 SP2が表すアルキレン基を構成する1個以上の-CH-は、密着性および面状均一性により優れた光吸収異方性層が得られる点から、上述の基2Cによって置き換えられているのが好ましい。
 また、SP2が表すアルキレン基を構成する-CH-が複数ある場合、密着性および面状均一性により優れた光吸収異方性層が得られる点から、複数の-CH-の一部のみが基2Cによって置き換えられていることがより好ましい。
 基2Cは、上述したように、-O-、-S-、-N(R21)-、-C(=O)-、-C(=S)-、-C(R22)=C(R23)-、アルキニレン基、-Si(R24)(R25)-、-N=N-、-C(R26)=N-N=C(R27)-、-C(R28)=N-および-S(=O)-からなる群より選択される少なくとも一種の基であり、密着性および面状均一性により優れた光吸収異方性層が得られる点から、-O-、-N(R21)-、-C(=O)-および-S(=O)-からなる群より選択される少なくとも一種の基が好ましく、-O-、-N(R21)-および-C(=O)-からなる群より選択される少なくとも1種の基がより好ましい。
 特に、SP2は、アルキレン基を構成する1個以上の-CH-が-O-によって置き換えられたオキシアルキレン構造、アルキレン基を構成する1個以上の-CH-CH-が-O-および-C(=O)-によって置き換えられたエステル構造、ならびに、アルキレン基を構成する1個以上の-CH-CH-CH-が-O-、-C(=O)-および-NH-によって置き換えられたウレタン結合からなる群より選択される少なくとも1つを含む基であるのが好ましい。
 SP2が表すアルキレン基を構成する1個以上の-CH-に含まれる水素原子は、上述の基2Hによって置き換えられていてもよい。この場合、-CH-に含まれる水素原子の1個以上が基2Hに置き換えられていればよい。すなわち、-CH-に含まれる水素原子の1個のみが基2Hによって置き換えられていてもよいし、-CH-に含まれる水素原子の全て(2個)が基2Hによって置き換えられていてもよい。
 基2Hは、上述したように、ハロゲン原子、シアノ基、ニトロ基、水酸基、炭素数1~10の直鎖状のアルキル基および炭素数1~10の分岐状のアルキル基からなる群より選択される少なくとも1種の基であり、水酸基、炭素数1~10の直鎖状のアルキル基および炭素数1~10の分岐状のアルキル基からなる群より選択される少なくとも1種の基が好ましく、水酸基がより好ましい。
 T2は、上述したように、水素原子、メチル基、水酸基、カルボキシ基、スルホン酸基、リン酸基、ボロン酸基、アミノ基、シアノ基、ニトロ基、ビニル基、アクリロイルオキシ基、メタクリロイルオキシ基、エポキシ基、オキセタニル基またはマレイミド基を表す。
 これらの中でも、架橋、および/または、下地層(例えば、基材または配向膜)との相互作用によって密着性が向上する点から、T2は、水酸基、カルボキシ基、スルホン酸基、リン酸基、ボロン酸基、アミノ基、シアノ基、ニトロ基、ビニル基、アクリロイルオキシ基、メタクリロイルオキシ基、エポキシ基、オキセタニル基またはマレイミド基が好ましく、光吸収異方性層自体が架橋することによって、光吸収異方性層の凝集破壊をより抑制できる結果、密着性がより向上する点から、ビニル基、アクリロイルオキシ基、メタクリロイルオキシ基、エポキシ基、オキセタニル基またはマレイミド基がより好ましい。
上記のように繰り返し単位(3)が架橋性基を有する場合は、高分子液晶全体の質量に対するに対する繰り返し単位(3)の比率が、5%~30%が好ましく、8%~20%がより好ましい。
 繰り返し単位(3)の具体例としては、例えば以下の構造が挙げられる。なお、下記具体例において、n1は2以上の整数を表し、n2は1以上の整数を表す。
Figure JPOXMLDOC01-appb-C000041
 <二色性物質>
 光吸収異方性層の形成に用いられる液晶組成物は、二色性物質を含有する。
 二色性物質は、特に限定されず、可視光吸収物質(二色性色素)、発光物質(蛍光物質、燐光物質)、紫外線吸収物質、赤外線吸収物質、非線形光学物質、カーボンナノチューブ、無機物質(例えば量子ロッド)、などが挙げられ、従来公知の二色性物質(二色性色素)を使用することができる。
 具体的には、例えば、特開2013-228706号公報の[0067]~[0071]段落、特開2013-227532号公報の[0008]~[0026]段落、特開2013-209367号公報の[0008]~[0015]段落、特開2013-14883号公報の[0045]~[0058]段落、特開2013-109090号公報の[0012]~[0029]段落、特開2013-101328号公報の[0009]~[0017]段落、特開2013-37353号公報の[0051]~[0065]段落、特開2012-63387号公報の[0049]~[0073]段落、特開平11-305036号公報の[0016]~[0018]段落、特開2001-133630号公報の[0009]~[0011]段落、特開2011-215337号公報の[0030]~[0169]、特開2010-106242号公報の[0021]~[0075]段落、特開2010-215846号公報の[0011]~[0025]段落、特開2011-048311号公報の[0017]~[0069]段落、特開2011-213610号公報の[0013]~[0133]段落、特開2011-237513号公報の[0074]~[0246]段落、特開2016-006502号公報の[0005]~[0051]段落、WO2016/060173号公報の[0005]~[0041]段落、WO2016/136561号公報の[0008]~[0062]段落、国際公開第2017/154835号の[0014]~[0033]段落、国際公開第2017/154695号の[0014]~[0033]段落、国際公開第2017/195833号の[0013]~[0037]段落、国際公開第2018/164252号の[0014]~[0034]段落などに記載されたものが挙げられる。
 本発明においては、2種以上の二色性物質を併用してもよく、例えば、光吸収異方性層を黒色に近づける観点から、波長370~550nmの範囲に極大吸収波長を有する少なくとも1種の色素化合物(第1の二色性色素)と、波長500~700nmの範囲に極大吸収波長を有する少なくとも1種の色素化合物(第2の二色性色素)とを併用することが好ましい。
 本発明においては、耐押圧性がより良好となる理由から、二色性物質が架橋性基を有していることが好ましい。
 架橋性基としては、具体的には、例えば、(メタ)アクリロイル基、エポキシ基、オキセタニル基、スチリル基などが挙げられ、中でも、(メタ)アクリロイル基が好ましい。
 本発明においては、液晶組成物に含まれる二色性物質の含有量は、光吸収異方性層の配向度および均一性のバランスが良好となる観点から、固形分割合として2~35質量%であることが好ましく、5~25質量%であることがより好ましく、5~20質量%であることが更に好ましく、10~15質量%であることが特に好ましい。
 液晶組成物は、下記式(4)で表される二色性物質(以下、「特定二色性色素化合物」とも略す。)を含有することが好ましい。
Figure JPOXMLDOC01-appb-C000042
 ここで、式(4)中、A、AおよびAは、それぞれ独立に、置換基を有していてもよい2価の芳香族基を表す。
 また、式(4)中、LおよびLは、それぞれ独立に、置換基を表す。
 また、式(4)中、mは、1~4の整数を表し、mが2~4の整数の場合、複数のAは互いに同一でも異なっていてもよい。なお、mは、1または2であることが好ましい。
 上記式(4)中、A、AおよびAが表す「置換基を有していてもよい2価の芳香族基」について説明する。
 上記置換基としては、例えば、特開2011-237513号公報の[0237]~[0240]段落に記載された置換基群Gが挙げられ、中でも、ハロゲン原子、アルキル基、アルコキシ基、アルコキシカルボニル基(例えば、メトキシカルボニル、エトキシカルボニルなど)、アリールオキシカルボニル基(例えば、フェノキシカルボニル、4-メチルフェノキシカルボニル、4-メトキシフェニルカルボニルなど)等が好適に挙げられ、アルキル基がより好適に挙げられ、炭素数1~5のアルキル基がさらに好適に挙げられる。
 一方、2価の芳香族基としては、例えば、2価の芳香族炭化水素基および2価の芳香族複素環基が挙げられる。
 上記2価の芳香族炭化水素基としては、例えば、炭素数6~12のアリーレン基が挙げられ、具体的には、フェニレン基、クメニレン基、メシチレン基、トリレン基、キシリレン基等が挙げられる。中でもフェニレン基が好ましい。
 また、上記2価の芳香族複素環基としては、単環または2環性の複素環由来の基が好ましい。芳香族複素環基を構成する炭素以外の原子としては、窒素原子、硫黄原子および酸素原子が挙げられる。芳香族複素環基が炭素以外の環を構成する原子を複数有する場合、これらは同一であっても異なっていてもよい。芳香族複素環基としては、具体的には、ピリジレン基(ピリジン-ジイル基)、キノリレン基(キノリン-ジイル基)、イソキノリレン基(イソキノリン-ジイル基)、ベンゾチアジアゾール-ジイル基、フタルイミド-ジイル基、チエノチアゾール-ジイル基(以下、「チエノチアゾール基」と略す。)等が挙げられる。
 上記2価の芳香族基の中でも、2価の芳香族炭化水素基が好ましい。
 ここで、A、AおよびAのうちいずれか1つが、置換基を有していてもよい2価のチエノチアゾール基であることも好ましい。なお、2価のチエノチアゾール基の置換基の具体例は、上述した「置換基を有していてもよい2価の芳香族基」における置換基と同じであり、好ましい態様も同じである。
 また、A、AおよびAのうち、Aが2価のチエノチアゾール基であることがより好ましい。この場合には、AおよびAは、置換基を有していてもよい2価の芳香族基を表す。
 Aが2価のチエノチアゾール基である場合には、AおよびAの少なくとも一方が置換基を有していてもよい2価の芳香族炭化水素基であることが好ましく、AおよびAの両方が置換基を有していてもよい2価の芳香族炭化水素基であることが好ましい。
 上記式(4)中、LおよびLが表す「置換基」について説明する。
 上記置換基としては、溶解性やネマティック液晶性を高めるために導入される基、色素としての色調を調節するために導入される電子供与性や電子吸引性を有する基、または、配向を固定化するために導入される架橋性基(重合性基)を有する基が好ましい。
 例えば、置換基としては、アルキル基(好ましくは炭素数1~20、より好ましくは炭素数1~12、特に好ましくは炭素数1~8のアルキル基であり、例えば、メチル基、エチル基、イソプロピル基、tert-ブチル基、n-オクチル基、n-デシル基、n-ヘキサデシル基、シクロプロピル基、シクロペンチル基、シクロヘキシル基などが挙げられる)、アルケニル基(好ましくは炭素数2~20、より好ましくは炭素数2~12、特に好ましくは炭素数2~8のアルケニル基であり、例えば、ビニル基、アリール基、2-ブテニル基、3-ペンテニル基などが挙げられる)、アルキニル基(好ましくは炭素数2~20、より好ましくは炭素数2~12、特に好ましくは炭素数2~8のアルキニル基であり、例えば、プロパルギル基、3-ペンチニル基などが挙げられる)、アリール基(好ましくは炭素数6~30、より好ましくは炭素数6~20、特に好ましくは炭素数6~12のアリール基であり、例えば、フェニル基、2,6-ジエチルフェニル基、3,5-ジトリフルオロメチルフェニル基、スチリル基、ナフチル基、ビフェニル基などが挙げられる)、置換もしくは無置換のアミノ基(好ましくは炭素数0~20、より好ましくは炭素数0~10、特に好ましくは炭素数0~6のアミノ基であり、例えば、無置換アミノ基、メチルアミノ基、ジメチルアミノ基、ジエチルアミノ基、アニリノ基などが挙げられる)、アルコキシ基(好ましくは炭素数1~20、より好ましくは炭素数1~15であり、例えば、メトキシ基、エトキシ基、ブトキシ基などが挙げられる)、オキシカルボニル基(好ましくは炭素数2~20、より好ましくは炭素数2~15、特に好ましくは2~10であり、例えば、メトキシカルボニル基、エトキシカルボニル基、フェノキシカルボニル基などが挙げられる)、アシルオキシ基(好ましくは炭素数2~20、より好ましくは炭素数2~10、特に好ましくは2~6であり、例えば、アセトキシ基、ベンゾイルオキシ基、アクリロイル基およびメタクリロイル基などが挙げられる)、アシルアミノ基(好ましくは炭素数2~20、より好ましくは炭素数2~10、特に好ましくは炭素数2~6であり、例えばアセチルアミノ基、ベンゾイルアミノ基などが挙げられる)、アルコキシカルボニルアミノ基(好ましくは炭素数2~20、より好ましくは炭素数2~10、特に好ましくは炭素数2~6であり、例えば、メトキシカルボニルアミノ基などが挙げられる)、アリールオキシカルボニルアミノ基(好ましくは炭素数7~20、より好ましくは炭素数7~16、特に好ましくは炭素数7~12であり、例えば、フェニルオキシカルボニルアミノ基などが挙げられる)、スルホニルアミノ基(好ましくは炭素数1~20、より好ましくは炭素数1~10、特に好ましくは炭素数1~6であり、例えば、メタンスルホニルアミノ基、ベンゼンスルホニルアミノ基などが挙げられる)、スルファモイル基(好ましくは炭素数0~20、より好ましくは炭素数0~10、特に好ましくは炭素数0~6であり、例えば、スルファモイル基、メチルスルファモイル基、ジメチルスルファモイル基、フェニルスルファモイル基などが挙げられる)、カルバモイル基(好ましくは炭素数1~20、より好ましくは炭素数1~10、特に好ましくは炭素数1~6であり、例えば、無置換のカルバモイル基、メチルカルバモイル基、ジエチルカルバモイル基、フェニルカルバモイル基などが挙げられる)、アルキルチオ基(好ましくは炭素数1~20、より好ましくは炭素数1~10、特に好ましくは炭素数1~6であり、例えば、メチルチオ基、エチルチオ基などが挙げられる)、アリールチオ基(好ましくは炭素数6~20、より好ましくは炭素数6~16、特に好ましくは炭素数6~12であり、例えば、フェニルチオ基などが挙げられる)、スルホニル基(好ましくは炭素数1~20、より好ましくは炭素数1~10、特に好ましくは炭素数1~6であり、例えば、メシル基、トシル基などが挙げられる)、スルフィニル基(好ましくは炭素数1~20、より好ましくは炭素数1~10、特に好ましくは炭素数1~6であり、例えば、メタンスルフィニル基、ベンゼンスルフィニル基などが挙げられる)、ウレイド基(好ましくは炭素数1~20、より好ましくは炭素数1~10、特に好ましくは炭素数1~6であり、例えば、無置換のウレイド基、メチルウレイド基、フェニルウレイド基などが挙げられる)、リン酸アミド基(好ましくは炭素数1~20、より好ましくは炭素数1~10、特に好ましくは炭素数1~6であり、例えば、ジエチルリン酸アミド基、フェニルリン酸アミド基などが挙げられる)、ヒドロキシ基、メルカプト基、ハロゲン原子(例えばフッ素原子、塩素原子、臭素原子、ヨウ素原子)、シアノ基、ニトロ基、ヒドロキサム酸基、スルフィノ基、ヒドラジノ基、イミノ基、アゾ基、ヘテロ環基(好ましくは炭素数1~30、より好ましくは1~12のヘテロ環基であり、例えば、窒素原子、酸素原子、硫黄原子等のヘテロ原子を有するヘテロ環基であり、例えば、エポキシ基、オキセタニル基、イミダゾリル基、ピリジル基、キノリル基、フリル基、ピペリジル基、モルホリノ基、ベンゾオキサゾリル基、ベンズイミダゾリル基、ベンズチアゾリル基などが挙げられる)、シリル基(好ましくは、炭素数3~40、より好ましくは炭素数3~30、特に好ましくは、炭素数3~24のシリル基であり、例えば、トリメチルシリル基、トリフェニルシリル基などが挙げられる)が含まれる。
 これらの置換基はさらにこれらの置換基によって置換されていてもよい。また、置換基を2つ以上有する場合は、同じでも異なってもよい。また、可能な場合には互いに結合して環を形成していてもよい。
 LおよびLが表す置換基として好ましくは、置換基を有していてもよいアルキル基、置換基を有していてもよいアルケニル基、置換基を有していてもよいアルキニル基、置換基を有していてもよいアリール基、置換基を有していてもよいアルコキシ基、置換基を有していてもよいオキシカルボニル基、置換基を有していてもよいアシルオキシ基、置換基を有していてもよいアシルアミノ基、置換基を有していてもよいアミノ基、置換基を有していてもよいアルコキシカルボニルアミノ基、置換基を有していてもよいスルホニルアミノ基、置換基を有していてもよいスルファモイル基、置換基を有していてもよいカルバモイル基、置換基を有していてもよいアルキルチオ基、置換基を有していてもよいスルホニル基、置換基を有していてもよいウレイド基、ニトロ基、ヒドロキシ基、シアノ基、イミノ基、アゾ基、ハロゲン原子、および、ヘテロ環基であり、より好ましくは、置換基を有していてもよいアルキル基、置換基を有していてもよいアルケニル基、置換基を有していてもよいアリール基、置換基を有していてもよいアルコキシ基、置換基を有していてもよいオキシカルボニル基、置換基を有していてもよいアシルオキシ基、置換基を有していてもよいアミノ基、ニトロ基、イミノ基、および、アゾ基である。
 LおよびLの少なくとも一方は、架橋性基(重合性基)を含むことが好ましく、LおよびLの両方に架橋性基を含むことがより好ましい。
 架橋性基としては、具体的には、特開2010-244038号公報の[0040]~[0050]段落に記載された重合性基が挙げられ、反応性および合成適性の観点から、アクリロイル基、メタクリロイル基、エポキシ基、オキセタニル基、および、スチリル基が好ましく、アクリロイル基およびメタクリロイル基が好ましい。
 LおよびLの好適な態様としては、上記架橋性基で置換されたアルキル基、上記架橋性基で置換されたジアルキルアミノ基、および、上記架橋性基で置換されたアルコキシ基が挙げられる。
 (第2の二色性色素)
 液晶組成物は、長波側で高い配向度を達成できるという観点で、下記式(5)で表される二色性アゾ色素を含有することが好ましい。
Figure JPOXMLDOC01-appb-C000043
 上記式(5)中、CおよびCは、それぞれ独立に、1価の置換基を表す。ただし、CおよびCの少なくとも一方は、架橋性基を表す。
 上記式(5)中、MおよびMは、それぞれ独立に、2価の連結基を表す。ただし、MおよびMの少なくとも一方は、主鎖の原子の数が4個以上である。
 上記式(5)中、ArおよびArは、それぞれ独立に、置換基を有していてもよいフェニレン基、置換基を有していてもよいナフチレン基および置換基を有していてもよいビフェニレン基のいずれかの基を表す。
 上記式(5)中、Eは、窒素原子、酸素原子および硫黄原子のいずれかの原子を表す。
 上記式(5)中、Rは、水素原子または置換基を表す。
 上記式(5)中、Rは、水素原子または置換基を有していてもよいアルキル基を表す。
 上記式(5)中、nは、0または1を表す。ただし、Eが窒素原子である場合には、nは1であり、Eが酸素原子または硫黄原子である場合には、nは0である。
 式(5)において、CおよびCが表す1価の置換基について説明する。
 CおよびCが表す1価の置換基としては、アゾ化合物の溶解性またはネマチック液晶性を高めるために導入される基、色素としての色調を調節するために導入される電子供与性や電子吸引性を有する基、または、配向を固定化するために導入される架橋性基(重合性基)が好ましい。
 例えば、置換基としては、アルキル基(好ましくは炭素数1~20、より好ましくは炭素数1~12、特に好ましくは炭素数1~8のアルキル基であり、例えば、メチル基、エチル基、イソプロピル基、tert-ブチル基、n-オクチル基、n-デシル基、n-ヘキサデシル基、シクロプロピル基、シクロペンチル基、および、シクロヘキシル基などが挙げられる)、アルケニル基(好ましくは炭素数2~20、より好ましくは炭素数2~12、特に好ましくは炭素数2~8のアルケニル基であり、例えば、ビニル基、アリール基、2-ブテニル基、および、3-ペンテニル基などが挙げられる)、アルキニル基(好ましくは炭素数2~20、より好ましくは炭素数2~12、特に好ましくは炭素数2~8のアルキニル基であり、例えば、プロパルギル基、および、3-ペンチニル基などが挙げられる)、アリール基(好ましくは炭素数6~30、より好ましくは炭素数6~20、特に好ましくは炭素数6~12のアリール基であり、例えば、フェニル基、2,6-ジエチルフェニル基、3,5-ジトリフルオロメチルフェニル基、スチリル基、ナフチル基、および、ビフェニル基などが挙げられる)、置換もしくは無置換のアミノ基(好ましくは炭素数0~20、より好ましくは炭素数0~10、特に好ましくは炭素数0~6のアミノ基であり、例えば、無置換アミノ基、メチルアミノ基、ジメチルアミノ基、ジエチルアミノ基、および、アニリノ基などが挙げられる)、アルコキシ基(好ましくは炭素数1~20、より好ましくは炭素数1~15であり、例えば、メトキシ基、エトキシ基、および、ブトキシ基などが挙げられる)、オキシカルボニル基(好ましくは炭素数2~20、より好ましくは炭素数2~15、特に好ましくは2~10であり、例えば、メトキシカルボニル基、エトキシカルボニル基、および、フェノキシカルボニル基などが挙げられる)、アシルオキシ基(好ましくは炭素数2~20、より好ましくは炭素数2~10、特に好ましくは2~6であり、例えば、アセトキシ基、ベンゾイルオキシ基、アクリロイル基、および、メタクリロイル基などが挙げられる)、アシルアミノ基(好ましくは炭素数2~20、より好ましくは炭素数2~10、特に好ましくは炭素数2~6であり、例えば、アセチルアミノ基、および、ベンゾイルアミノ基などが挙げられる)、アルコキシカルボニルアミノ基(好ましくは炭素数2~20、より好ましくは炭素数2~10、特に好ましくは炭素数2~6であり、例えば、メトキシカルボニルアミノ基などが挙げられる)、アリールオキシカルボニルアミノ基(好ましくは炭素数7~20、より好ましくは炭素数7~16、特に好ましくは炭素数7~12であり、例えば、フェニルオキシカルボニルアミノ基などが挙げられる)、スルホニルアミノ基(好ましくは炭素数1~20、より好ましくは炭素数1~10、特に好ましくは炭素数1~6であり、例えば、メタンスルホニルアミノ基、および、ベンゼンスルホニルアミノ基などが挙げられる)、スルファモイル基(好ましくは炭素数0~20、より好ましくは炭素数0~10、特に好ましくは炭素数0~6であり、例えば、スルファモイル基、メチルスルファモイル基、ジメチルスルファモイル基、および、フェニルスルファモイル基などが挙げられる)、カルバモイル基(好ましくは炭素数1~20、より好ましくは炭素数1~10、特に好ましくは炭素数1~6であり、例えば、無置換のカルバモイル基、メチルカルバモイル基、ジエチルカルバモイル基、および、フェニルカルバモイル基などが挙げられる)、アルキルチオ基(好ましくは炭素数1~20、より好ましくは炭素数1~10、特に好ましくは炭素数1~6であり、例えば、メチルチオ基、および、エチルチオ基などが挙げられる)、アリールチオ基(好ましくは炭素数6~20、より好ましくは炭素数6~16、特に好ましくは炭素数6~12であり、例えば、フェニルチオ基などが挙げられる)、スルホニル基(好ましくは炭素数1~20、より好ましくは炭素数1~10、特に好ましくは炭素数1~6であり、例えば、メシル基、および、トシル基などが挙げられる)、スルフィニル基(好ましくは炭素数1~20、より好ましくは炭素数1~10、特に好ましくは炭素数1~6であり、例えば、メタンスルフィニル基、および、ベンゼンスルフィニル基などが挙げられる)、ウレイド基(好ましくは炭素数1~20、より好ましくは炭素数1~10、特に好ましくは炭素数1~6であり、例えば、無置換のウレイド基、メチルウレイド基、および、フェニルウレイド基などが挙げられる)、リン酸アミド基(好ましくは炭素数1~20、より好ましくは炭素数1~10、特に好ましくは炭素数1~6であり、例えば、ジエチルリン酸アミド基、および、フェニルリン酸アミド基などが挙げられる)、ヒドロキシ基、メルカプト基、ハロゲン原子(例えば、フッ素原子、塩素原子、臭素原子、および、ヨウ素原子)、シアノ基、ニトロ基、ヒドロキサム酸基、スルフィノ基、ヒドラジノ基、イミノ基、アゾ基、ヘテロ環基(好ましくは炭素数1~30、より好ましくは1~12のヘテロ環基であり、例えば、窒素原子、酸素原子、硫黄原子等のヘテロ原子を有するヘテロ環基であり、例えば、エポキシ基、オキセタニル基、イミダゾリル基、ピリジル基、キノリル基、フリル基、ピペリジル基、モルホリノ基、ベンゾオキサゾリル基、ベンズイミダゾリル基、および、ベンズチアゾリル基などが挙げられる)、および、シリル基(好ましくは、炭素数3~40、より好ましくは炭素数3~30、特に好ましくは、炭素数3~24のシリル基であり、例えば、トリメチルシリル基、および、トリフェニルシリル基などが挙げられる)が含まれる。
 これらの置換基はさらにこれらの置換基によって置換されていてもよい。また、置換基を2つ以上有する場合は、同じでも異なってもよい。また、可能な場合には互いに結合して環を形成していてもよい。
 式(5)において、CおよびCの少なくとも一方は、架橋性基を表し、光吸収異方性層の耐久性がより優れるという点から、CおよびCの両方が架橋性基であることが好ましい。
 架橋性基としては、具体的には、特開2010-244038号公報の[0040]~[0050]段落に記載された重合性基が挙げられ、反応性および合成適性の観点から、アクリロイル基、メタクリロイル基、エポキシ基、オキセタニル基、または、スチリル基が好ましく、アクリロイル基またはメタクリロイル基が好ましい。
 式(5)において、MおよびMが表す2価の連結基について説明する。
 2価の連結基としては、例えば、-O-、-S-、-CO-、-COO-、-OCO-、-O-CO-O-、-CO-NR-、-O-CO-NR-、-SO-、-SO-、アルキレン基、シクロアルキレン基、および、アルケニレン基、ならびに、これらの基を2つ以上組み合わせた基などが挙げられる。
 これらの中でも、アルキレン基と、-O-、-S-、-CO-、-COO-、-OCO-、-O-CO-O-、-CO-NR-、-O-CO-NR-、-SO-および-SO-からなる群より選択される1種以上の基と、を組み合わせた基が好ましい。なお、Rは、水素原子またはアルキル基を表す。
 また、MおよびMの少なくとも一方は、主鎖の原子の数が4個以上であり、7個以上であることが好ましく、10個以上であることがより好ましい。また、主鎖の原子の数の上限値は、20個以下であることが好ましく、15個以下であることがより好ましい。
 ここで、Mにおける「主鎖」とは、式(5)における「C」と「Ar」とを直接連結するために必要な部分を指し、「主鎖の原子の数」とは、上記部分を構成する原子の個数のことを指す。同様に、Mにおける「主鎖」とは、式(5)における「C」と「E」とを直接連結するために必要な部分を指し、「主鎖の原子の数」とは、上記部分を構成する原子の数のことを指す。なお、「主鎖の原子の数」には、後述する分岐鎖の原子の数は含まない。
 具体的には、下記式(D7)においては、M1の主鎖の原子の数は6個(下記式(D7)の左側の点線枠内の原子の数)であり、M2の主鎖の原子の数は7個(下記式(D7)の右側の点線枠内の原子の数)である。
Figure JPOXMLDOC01-appb-C000044
 本発明においては、MおよびMの少なくとも一方が、主鎖の原子の数が4個以上の基であればよく、MおよびMの一方の主鎖の原子の数が4個以上であれば、他方の主鎖の原子数は3個以下であってもよい。
 MおよびMの主鎖の原子の数の合計は、5~30個が好ましく、7~27個がより好ましい。主鎖の原子の数の合計が5個以上であることで、二色性物質がより重合しやすくなり、主鎖の原子の数の合計が30個以下であることで、配向度に優れた光吸収異方性層が得られたり、二色性物質の融点が上がり耐熱性に優れた光吸収異方性層が得られたりする。
 MおよびMは、分岐鎖を有していてもよい。ここで、Mにおける「分岐鎖」とは、式(5)におけるCとArとを直接連結するために必要な部分以外の部分をいう。同様に、Mにおける「分岐鎖」とは、式(5)におけるCとEとを直接連結するために必要な部分以外の部分をいう。
 分岐鎖の原子の数は、3個以下であることが好ましい。分岐鎖の原子の数が3個以下であることで、光吸収異方性層の配向度がより向上するなどの利点がある。なお、分岐鎖の原子の数には、水素原子の数は含まれない。
 以下にMおよびMの好ましい構造を例示するが、本発明はこれらに限定されるものではない。なお、下記構造中「*」は、CとArとの連結部、または、CとEとの連結部を表す。
Figure JPOXMLDOC01-appb-C000045
 式(5)におけるArおよびArが表す、「置換基を有していてもよいフェニレン基」、「置換基を有していてもよいナフチレン基」、および、「置換基を有していてもよいビフェニレン基」について説明する。
 置換基としては、特に限定されず、ハロゲン原子、アルキル基、アルキルオキシ基、アルキルチオ基、オキシカルボニル基、チオアルキル基、アシルオキシ基、アシルアミノ基、アルコキシカルボニルアミノ基、スルホニルアミノ基、スルファモイル基、カルバモイル基、スルフィニル基、および、ウレイド基などが挙げられる。これらの置換基はさらにこれらの置換基で置換されていてもよい。これらの中でも、アルキル基が好ましく、炭素数1~5のアルキル基がさらに好ましく、原材料の入手が容易であることおよび配向度の観点から、メチル基およびエチル基が好ましい。
 ArおよびArは、置換基を有していてもよいフェニレン基、置換基を有していてもよいナフチレン基、または、置換基を有していてもよいビフェニレン基であるが、置換基を有していてもよい原材料の入手が容易であることおよび配向度の観点から、フェニレン基であることが好ましい。
 式(5)において、Arと連結する「M」および「N」は、Arにおけるパラ位に位置することが好ましい。また、Arと連結する「E」および「N」は、Arにおけるパラ位に位置することが好ましい。
 上記式(5)中、Eは、窒素原子、酸素原子および硫黄原子のいずれかの原子を表し、合成適性の観点からは窒素原子であることが好ましい。
 また、二色性物質を短波長側に吸収を持つもの(例えば、500~530nm付近に極大吸収波長を持つもの)にすることが容易になるという観点からは、上記式(5)におけるEは、酸素原子であることが好ましい。
 一方、二色性物質を長波長側に吸収を持つもの(例えば、600nm付近に極大吸収波長を持つもの)にすることが容易になるという観点からは、上記式(5)におけるEは、窒素原子であることが好ましい。
 上記式(5)中、Rは、水素原子または置換基を表す。
 Rが表す「置換基」の具体例および好適態様は、上述したArおよびArにおける置換基と同じであり、好ましい態様も同じであるので、その説明を省略する。
 上記式(5)中、Rは、水素原子または置換基を有していてもよいアルキル基を表し、置換基を有していてもよいアルキル基であることが好ましい。
 置換基としては、例えば、ハロゲン原子、水酸基、エステル基、エーテル基、および、チオエーテル基等が挙げられる。
 アルキル基としては、炭素数1~8の直鎖状、分岐鎖状または環状のアルキル基が挙げられる。中でも、炭素数1~6の直鎖状のアルキル基が好ましく、炭素数1~3の直鎖状のアルキル基がより好ましく、メチル基またはエチル基がさらに好ましい。
 なお、Rは、Eが窒素原子である場合に式(5)中で存在する基となる(すなわち、n=1の場合を意味する)。一方で、Rは、Eが酸素原子または硫黄原子である場合、式(5)中で存在しない基となる(すなわち、n=0の場合を意味する)。
 上記式(5)中、nは、0または1を表す。ただし、Eが窒素原子である場合には、nは1であり、Eが酸素原子または硫黄原子である場合には、nは0である。
 以下に、二色性物質の具体例を示すが、本発明はこれらに限定されるものではない。
Figure JPOXMLDOC01-appb-C000046
 (第1の二色性色素)
 液晶組成物は、短波側で高い配向度を達成できるという観点で、下記式(6)で表される二色性アゾ色素を含有することが好ましい。
Figure JPOXMLDOC01-appb-C000047
 式(6)中、AおよびBは、それぞれ独立に、架橋性基を表す。
 式(6)中、aおよびbは、それぞれ独立に、0または1を表す。ただし、a+b≧1である。
 式(6)中、a=0の場合にはLは1価の置換基を表し、a=1の場合にはLは単結合または2価の連結基を表す。また、b=0の場合にはLは1価の置換基を表し、b=1の場合にはLは単結合または2価の連結基を表す。
 式(6)中、Arは(n1+2)価の芳香族炭化水素基または複素環基を表し、Arは(n2+2)価の芳香族炭化水素基または複素環基を表し、Arは(n3+2)価の芳香族炭化水素基または複素環基を表す。
 式(6)中、R、RおよびRは、それぞれ独立に、1価の置換基を表す。n1≧2である場合には複数のRは互いに同一でも異なっていてもよく、n2≧2である場合には複数のRは互いに同一でも異なっていてもよく、n3≧2である場合には複数のRは互いに同一でも異なっていてもよい。
 式(6)中、kは、1~4の整数を表す。k≧2の場合には、複数のArは互いに同一でも異なっていてもよく、複数のRは互いに同一でも異なっていてもよい。
 式(6)中、n1、n2およびn3は、それぞれ独立に、0~4の整数を表す。ただし、k=1の場合にはn1+n2+n3≧0であり、k≧2の場合にはn1+n2+n3≧1である。
 式(6)において、AおよびBが表す架橋性基としては、例えば、特開2010-244038号公報の[0040]~[0050]段落に記載された重合性基が挙げられる。これらの中でも、反応性および合成適性の向上の観点から、アクリロイル基、メタクリロイル基、エポキシ基、オキセタニル基、および、スチリル基が好ましく、溶解性をより向上できるという観点から、アクリロイル基およびメタクリロイル基がより好ましい。
 式(6)において、aおよびbはそれぞれ独立に、0または1を表すが、a+b≧1である。すなわち、二色性物質は、末端に少なくとも1つの架橋性基を有する。
 ここで、aおよびbは両方が1であること、すなわち架橋性基が二色性物質の両末端に導入されていることが好ましい。これにより、二色性物質の溶解性がより向上したり、光吸収異方性層の耐久性が向上するという利点がある。
 式(6)において、a=0の場合にはLは1価の置換基を表し、a=1の場合にはLは単結合または2価の連結基を表す。また、b=0の場合にはLは1価の置換基を表し、b=1の場合にはLは単結合または2価の連結基を表す。
 LおよびLは、両方が単結合または2価の連結基であることが好ましく、両方が2価の連結基であることが好ましい。これにより、二色性物質の溶解性がより向上する。
 LおよびLが表す1価の置換基としては、二色性物質の溶解性を高めるために導入される基、または、色素としての色調を調節するために導入される電子供与性や電子吸引性を有する基が好ましい。
 例えば、置換基としては、
 アルキル基(好ましくは炭素数1~20、より好ましくは炭素数1~12、特に好ましくは炭素数1~8のアルキル基であり、例えば、メチル基、エチル基、イソプロピル基、tert-ブチル基、n-オクチル基、n-デシル基、n-ヘキサデシル基、シクロプロピル基、シクロペンチル基、シクロヘキシル基などが挙げられる)、
 アルケニル基(好ましくは炭素数2~20、より好ましくは炭素数2~12、特に好ましくは炭素数2~8のアルケニル基であり、例えば、ビニル基、アリル基、2-ブテニル基、3-ペンテニル基などが挙げられる)、
 アルキニル基(好ましくは炭素数2~20、より好ましくは炭素数2~12、特に好ましくは炭素数2~8のアルキニル基であり、例えば、プロパルギル基、3-ペンチニル基などが挙げられる)、
 アリール基(好ましくは炭素数6~30、より好ましくは炭素数6~20、特に好ましくは炭素数6~12のアリール基であり、例えば、フェニル基、2,6-ジエチルフェニル基、3,5-ジトリフルオロメチルフェニル基、ナフチル基、および、ビフェニル基などが挙げられる)、
 置換もしくは無置換のアミノ基(好ましくは炭素数0~20、より好ましくは炭素数0~10、特に好ましくは炭素数0~6のアミノ基であり、例えば、無置換アミノ基、メチルアミノ基、ジメチルアミノ基、ジエチルアミノ基、アニリノ基などが挙げられる)、
 アルコキシ基(好ましくは炭素数1~20、より好ましくは炭素数1~15であり、例えば、メトキシ基、エトキシ基、ブトキシ基などが挙げられる)、
 オキシカルボニル基(好ましくは炭素数2~20、より好ましくは炭素数2~15、特に好ましくは2~10であり、例えば、メトキシカルボニル基、エトキシカルボニル基、フェノキシカルボニル基などが挙げられる)、
 アシルオキシ基(好ましくは炭素数2~20、より好ましくは炭素数2~10、特に好ましくは2~6であり、例えば、アセトキシ基およびベンゾイルオキシ基などが挙げられる)、
 アシルアミノ基(好ましくは炭素数2~20、より好ましくは炭素数2~10、特に好ましくは炭素数2~6であり、例えばアセチルアミノ基およびベンゾイルアミノ基などが挙げられる)、
 アルコキシカルボニルアミノ基(好ましくは炭素数2~20、より好ましくは炭素数2~10、特に好ましくは炭素数2~6であり、例えば、メトキシカルボニルアミノ基などが挙げられる)、
 アリールオキシカルボニルアミノ基(好ましくは炭素数7~20、より好ましくは炭素数7~16、特に好ましくは炭素数7~12であり、例えば、フェニルオキシカルボニルアミノ基などが挙げられる)、
 スルホニルアミノ基(好ましくは炭素数1~20、より好ましくは炭素数1~10、特に好ましくは炭素数1~6であり、例えば、メタンスルホニルアミノ基、ベンゼンスルホニルアミノ基などが挙げられる)、
 スルファモイル基(好ましくは炭素数0~20、より好ましくは炭素数0~10、特に好ましくは炭素数0~6であり、例えば、スルファモイル基、メチルスルファモイル基、ジメチルスルファモイル基、フェニルスルファモイル基などが挙げられる)、
 カルバモイル基(好ましくは炭素数1~20、より好ましくは炭素数1~10、特に好ましくは炭素数1~6であり、例えば、無置換のカルバモイル基、メチルカルバモイル基、ジエチルカルバモイル基、フェニルカルバモイル基などが挙げられる)、
 アルキルチオ基(好ましくは炭素数1~20、より好ましくは炭素数1~10、特に好ましくは炭素数1~6であり、例えば、メチルチオ基、エチルチオ基などが挙げられる)、
 アリールチオ基(好ましくは炭素数6~20、より好ましくは炭素数6~16、特に好ましくは炭素数6~12であり、例えば、フェニルチオ基などが挙げられる)、
 スルホニル基(好ましくは炭素数1~20、より好ましくは炭素数1~10、特に好ましくは炭素数1~6であり、例えば、メシル基、トシル基などが挙げられる)、
 スルフィニル基(好ましくは炭素数1~20、より好ましくは炭素数1~10、特に好ましくは炭素数1~6であり、例えば、メタンスルフィニル基、ベンゼンスルフィニル基などが挙げられる)、
 ウレイド基(好ましくは炭素数1~20、より好ましくは炭素数1~10、特に好ましくは炭素数1~6であり、例えば、無置換のウレイド基、メチルウレイド基、フェニルウレイド基などが挙げられる)、
 リン酸アミド基(好ましくは炭素数1~20、より好ましくは炭素数1~10、特に好ましくは炭素数1~6であり、例えば、ジエチルリン酸アミド基、フェニルリン酸アミド基などが挙げられる)、
 ヘテロ環基(好ましくは炭素数1~30、より好ましくは1~12のヘテロ環基であり、例えば、窒素原子、酸素原子、硫黄原子等のヘテロ原子を有するヘテロ環基であり、例えば、イミダゾリル基、ピリジル基、キノリル基、フリル基、ピペリジル基、モルホリノ基、ベンゾオキサゾリル基、ベンズイミダゾリル基、ベンズチアゾリル基などが挙げられる)、
 シリル基(好ましくは、炭素数3~40、より好ましくは炭素数3~30、特に好ましくは、炭素数3~24のシリル基であり、例えば、トリメチルシリル基、トリフェニルシリル基などが挙げられる)、
 ハロゲン原子(例えばフッ素原子、塩素原子、臭素原子、ヨウ素原子)、
 ヒドロキシ基、メルカプト基、シアノ基、ニトロ基、ヒドロキサム酸基、スルフィノ基、ヒドラジノ基、イミノ基、および、アゾ基、などを用いることができる。
 これらの置換基はさらにこれらの置換基によって置換されていてもよい。また、置換基を2つ以上有する場合は、同じでも異なってもよい。また、可能な場合には互いに結合して環を形成していてもよい。
 上記置換基がさらに上記置換基によって置換された基としては、例えば、アルコキシ基がアルキル基で置換された基である、R-(O-Rna-基が挙げられる。ここで、式中、Rは炭素数1~5のアルキレン基を表し、Rは炭素数1~5のアルキル基を表し、naは1~10(好ましくは1~5、より好ましくは1~3)の整数を表す。
 これらの中でも、LおよびLが表す1価の置換基としては、アルキル基、アルケニル基、アルコキシ基、および、これらの基がさらにこれらの基によって置換された基(例えば、上述したR-(O-Rna-基)が好ましく、アルキル基、アルコキシ基、および、これらの基がさらにこれらの基によって置換された基(例えば、上述したR-(O-Rna-基)がより好ましい。
 LおよびLが表す2価の連結基としては、例えば、-O-、-S-、-CO-、-COO-、-OCO-、-O-CO-O-、-CO-NR-、-O-CO-NR-、-NR-CO-NR-、-SO-、-SO-、アルキレン基、シクロアルキレン基、および、アルケニレン基、ならびに、これらの基を2つ以上組み合わせた基などが挙げられる。
 これらの中でも、アルキレン基と、-O-、-COO-、-OCO-および-O-CO-O-からなる群より選択される1種以上の基と、を組み合わせた基が好ましい。
 ここで、Rは、水素原子またはアルキル基を表す。Rが複数存在する場合には、複数のRは互いに同一でも異なっていてもよい。
 二色性物質の溶解性がより向上するという観点からは、LおよびLの少なくとも一方の主鎖の原子の数は、3個以上であることが好ましく、5個以上であることがより好ましく、7個以上であることがさらに好ましく、10個以上であることが特に好ましい。また、主鎖の原子の数の上限値は、20個以下であることが好ましく、12個以下であることがより好ましい。
 一方で、光吸収異方性層の配向度がより向上するという観点からは、LおよびLの少なくとも一方の主鎖の原子の数は、1~5個であることが好ましい。
 ここで、式(6)におけるAが存在する場合には、Lにおける「主鎖」とは、Lと連結する「O」原子と、「A」と、を直接連結するために必要な部分を指し、「主鎖の原子の数」とは、上記部分を構成する原子の個数のことを指す。同様に、式(6)におけるBが存在する場合には、Lにおける「主鎖」とは、Lと連結する「O」原子と、「B」と、を直接連結するために必要な部分を指し、「主鎖の原子の数」とは、上記部分を構成する原子の数のことを指す。なお、「主鎖の原子の数」には、後述する分岐鎖の原子の数は含まない。
 また、Aが存在しない場合には、Lにおける「主鎖の原子の数」とは、分岐鎖を含まないLの原子の個数のことをいう。Bが存在しない場合には、Lにおける「主鎖の原子の数」とは、分岐鎖を含まないLの原子の個数のことをいう。
 具体的には、下記式(D1)においては、Lの主鎖の原子の数は5個(下記式(D1)の左側の点線枠内の原子の数)であり、Lの主鎖の原子の数は5個(下記式(D1)の右側の点線枠内の原子の数)である。また、下記式(D10)においては、Lの主鎖の原子の数は7個(下記式(D10)の左側の点線枠内の原子の数)であり、Lの主鎖の原子の数は5個(下記式(D10)の右側の点線枠内の原子の数)である。
Figure JPOXMLDOC01-appb-C000048
 LおよびLは、分岐鎖を有していてもよい。
 ここで、式(6)においてAが存在する場合には、Lにおける「分岐鎖」とは、式(6)におけるLと連結する「O」原子と、「A」と、を直接連結するために必要な部分以外の部分をいう。同様に、式(6)においてBが存在する場合には、Lにおける「分岐鎖」とは、式(6)におけるLと連結する「O」原子と、「B」と、を直接連結するために必要な部分以外の部分をいう。
 また、式(6)においてAが存在しない場合には、Lにおける「分岐鎖」とは、式(6)におけるLと連結する「O」原子を起点として延びる最長の原子鎖(すなわち主鎖)以外の部分をいう。同様に、式(6)においてBが存在しない場合には、Lにおける「分岐鎖」とは、式(6)におけるLと連結する「O」原子を起点として延びる最長の原子鎖(すなわち主鎖)以外の部分をいう。
 分岐鎖の原子の数は、3以下であることが好ましい。分岐鎖の原子の数が3以下であることで、光吸収異方性層の配向度がより向上するなどの利点がある。なお、分岐鎖の原子の数には、水素原子の数は含まれない。
 式(6)において、Arは(n1+2)価(例えば、n1が1である時は3価)、Arは(n2+2)価(例えば、n2が1である時は3価)、Arは(n3+2)価(例えば、n3が1である時は3価)、の芳香族炭化水素基または複素環基を表す。ここで、Ar~Arはそれぞれ、n1~n3個の置換基(後述するR~R)で置換された2価の芳香族炭化水素基または2価の複素環基と換言できる。
 Ar~Arが表す2価の芳香族炭化水素基としては、単環であっても、2環以上の縮環構造を有していてもよい。2価の芳香族炭化水素基の環数は、溶解性がより向上するという観点から、1~4が好ましく、1~2がより好ましく、1(すなわちフェニレン基であること)がさらに好ましい。
 2価の芳香族炭化水素基の具体例としては、フェニレン基、アズレン-ジイル基、ナフチレン基、フルオレン-ジイル基、アントラセン-ジイル基およびテトラセン-ジイル基などが挙げられ、溶解性がより向上するという観点から、フェニレン基およびナフチレン基が好ましく、フェニレン基がより好ましい。
 2価の複素環基としては、芳香族または非芳香族のいずれであってもよいが、配向度がより向上するという観点から、2価の芳香族複素環基であることが好ましい。
 2価の芳香族複素環基は、単環であってもよいし、2環以上の縮環構造を有していてもよい。芳香族複素環基を構成する炭素以外の原子としては、窒素原子、硫黄原子および酸素原子が挙げられる。芳香族複素環基が炭素以外の環を構成する原子を複数有する場合、これらは同一であっても異なっていてもよい。
 芳香族複素環基の具体例としては、例えば、ピリジレン基(ピリジン-ジイル基)、チエニレン(チオフェン-ジイル基)、キノリレン基(キノリン-ジイル基)、イソキノリレン基(イソキノリン-ジイル基)、チアゾール-ジイル基、ベンゾチアジアゾール-ジイル基、フタルイミド-ジイル基、チエノチアゾール-ジイル基(本発明において、「チエノチアゾール基」という。)、チエノチオフェン-ジイル基、および、チエノオキサゾール-ジイル基等が挙げられる。
 上記の中でも、2価の芳香族複素環基としては、単環または下記構造式で表される2環の縮環構造を有する基が好ましく用いることができる。なお、下記構造式において、「*」は、一般式(6)におけるアゾ基または酸素原子との結合位置を示す。
Figure JPOXMLDOC01-appb-C000049
 式(6)において、Ar~Arは、2価の芳香族炭化水素基が好ましく、フェニレン基が好ましい。
 ここで、Arがフェニレン基である場合には、Arに結合する酸素原子とアゾ基とが、メタ位またはパラ位に位置することが好ましく、パラ位に位置することが好ましい。これにより、光吸収異方性層の配向度がより向上する。同様の観点から、Arがフェニレン基である場合には、Arに結合する2つのアゾ基が、メタ位またはパラ位に位置することが好ましく、パラ位に位置することが好ましい。同様に、Arがフェニレン基である場合には、Arに結合する酸素原子とアゾ基とが、メタ位またはパラ位に位置することが好ましく、パラ位に位置することが好ましい。
 式(6)において、Ar、ArおよびArが縮環構造である場合には、縮環構造を構成する複数の環がいずれも、式(6)で表される構造の長手方向に沿って連結していることが好ましい。これにより、二色性物質の分子が長手方向と交差する方向(短手方向)に嵩高くなることを抑制できるので、分子の配向性が良好となり、光吸収異方性層の配向度がより向上する。
 ここで、式(6)で表される構造の長手方向とは、式(6)で表される構造の延びる方向のことをいい、具体的には、Ar、ArおよびArに結合するアゾ基の結合手およびエーテル結合(酸素原子)の結合手が延びる方向のことをいう。
 縮環構造を構成する複数の環の全てが式(6)で表される構造の長手方向に沿って連結している態様の具体例として、式(Ar-1)で表される縮環構造を以下に示す。すなわち、Ar、ArおよびArが縮環構造である場合には、以下の式(A-1)で表される縮環構造を有していることが好ましい。
Figure JPOXMLDOC01-appb-C000050
 上記式(Ar-1)において、Ar、ArおよびArは、それぞれ独立に、ベンゼン環または単環の複素環を表す。nは、0以上の整数を表す。*は、一般式(6)におけるアゾ基または酸素原子との結合位置を表す。
 上記式(Ar-1)における単環の複素環としては、単環の芳香族複素環が好ましい。単環の芳香族複素環基を構成する炭素以外の原子としては、窒素原子、硫黄原子および酸素原子が挙げられる。単環の芳香族複素環としては、具体的には、ピリジン環、チオフェン環、チアゾール環およびオキサゾール環等が挙げられる。
 また、Ar、ArおよびArは、置換基を有していてもよい。このような置換基としては、後述するR~Rにおける1価の置換基が挙げられる。
 nは、0以上の整数を表すが、0~2が好ましく、0~1がより好ましく、0がさらに好ましい。
 式(6)において、R、RおよびRは、それぞれ独立に、1価の置換基を表す。
 R、RおよびRが表す1価の置換基は、ハロゲン原子、シアノ基、ヒドロキシ基、アルキル基、アルコキシ基、フッ化アルキル基、-O-(CO)m-R’、-O-(CO)m-R’、アルキルチオ基、オキシカルボニル基、チオアルキル基、アシルオキシ基、アシルアミノ基、アルコキシカルボニルアミノ基、スルホニルアミノ基、スルファモイル基、カルバモイル基、スルフィニル基、または、ウレイド基が好ましい。ここで、R’は水素原子、メチル基またはエチル基を表し、mは1~6の整数を表す。これらの置換基は、さらにこれらの置換基で置換されていてもよい。
 これらの中でも、R、RおよびRが表す1価の置換基は、二色性物質の溶解性がより向上するという観点から、フッ素原子、塩素原子、メチル基、エチル基、プロピル基、メトキシ基、エトキシ基、プロポキシ基、ヒドロキシ基、トリフルオロメチル基、-O-(CO)m-R’、または、-O-(CO)m-R’が好ましく、トリフルオロメチル基、メトキシ基、ヒドロキシ基、-O-(CO)m-R’、または、-O-(CO)m-R’がより好ましい。
 R、RおよびRが表す1価の置換基において、主鎖の原子の数は、二色性物質の溶解性および光吸収異方性層の配向性のバランスの観点から、1~15が好ましく、1~12がより好ましい。ここで、R、RおよびRが表す1価の置換基において、「主鎖の原子の数」とは、分岐鎖を含まないR、RまたはRの原子の個数のことをいう。また、「分岐鎖」とは、式(6)におけるAr~Arのいずれかを起点として延びる最長の原子鎖(すなわち主鎖)以外の部分をいう。
 上記式(6)がR、RおよびRから選択される少なくとも1つ以上の置換基を有する場合において、下記条件(R1)~条件(R3)から選択される少なくとも1つの条件を満たすことが好ましい。これにより、二色性物質の溶解性がより向上する。
 条件(R1):Arにおいて、少なくとも1つのRと、アゾ基と、が隣り合う位置にあること
 条件(R2):Arにおいて、少なくとも1つのRと、少なくとも1つのアゾ基と、が隣り合う位置にあること
 条件(R3):Arにおいて、少なくとも1つのRと、アゾ基と、が隣り合う位置にあること
 条件(R1)の具体例としては、Arがフェニレン基である場合に、Arに結合するアゾ基に対するオルト位にRが位置する態様が挙げられる。条件(R2)の具体例としては、Arがフェニレン基である場合に、少なくとも1つのアゾ基に対するオルト位にRが位置する態様が挙げられる。条件(R3)の具体例としては、Arがフェニレン基である場合において、Arに結合するアゾ基に対するオルト位にRが位置する態様が挙げられる。
 式(6)において、kは1~4の整数を表す。ここで、優れた溶解性を担保しつつ、耐光性にも優れるという観点からはkが2以上であることが好ましい。一方で、二色性物質の溶解性により優れるという観点からは、kが1であることが好ましい。
 式(6)において、n1、n2およびn3は、それぞれ独立に、0~4の整数を表すが、0~3が好ましい。
 ここで、k=1の場合にはn1+n2+n3≧0である。すなわち、式(6)がビスアゾ構造を有する場合には、置換基(式(6)のR~R)の有無に関わらず、十分な溶解性が得られるが、溶解性をより向上する観点からは置換基を有していることが好ましい。
 k=1の場合には、n1+n2+n3は、0~9が好ましく、1~9がより好ましく、1~5がさらに好ましい。
 一方で、k≧2の場合にはn1+n2+n3≧1である。すなわち、式(6)がトリスアゾ構造、テトラキスアゾ構造、またはペンタキスアゾ構造を有する場合には、置換基(式(6)のR~R)を少なくとも1つ有する。
 k≧2の場合には、n1+n2+n3は、1~9が好ましく、1~5がより好ましい。
 以下に、上記式(6)で表される二色性物質の具体例を示すが、本発明はこれらに限定されるものではない。なお、下記具体例中、nは、1~10の整数を表す。
Figure JPOXMLDOC01-appb-C000051
Figure JPOXMLDOC01-appb-C000052
 本発明において、二色性物質とは、方向によって吸光度が異なる物質を意味する。
 二色性物質は、液晶性を示してもよいし、液晶性を示さなくてもよい。
 二色性物質が液晶性を示す場合には、ネマチック性またはスメクチック性のいずれを示してもよい。液晶相を示す温度範囲は、室温(約20℃~28℃)~300℃が好ましく、取扱い性および製造適性の観点から、50℃~200℃であることがより好ましい。
 液晶組成物は、二色性物質を1種単独で含有していてもよいし、2種以上含有していてもよい。
 <低分子液晶性化合物>
 光吸収異方性層の形成に用いられる液晶組成物は、光配向層と光吸収異方性層との密着の観点で高分子液晶性化合物に加えて低分子液晶性化合物を含むことが好ましい。ここで、「低分子液晶性化合物」とは、化学構造中に繰り返し単位を有さない液晶性化合物のことをいう。
 低分子液晶性化合物としては、例えば、特開2013-228706号公報に記載されている液晶性化合物、特開2014-077068号公報の段落[0030]~[0033]に記載された式(M1)、(M2)、または(M3)で表される化合物、国際公開第2018/199096号の[0043]~[0050]段落に記載されている低分子液晶性化合物などが挙げられる。
 これらのうち、反応性および合成適性の観点から、ラジカル重合性基であることが好ましく、アクリロイル基、メタクリロイル基、エポキシ基、オキセタニル基、または、スチリル基が好ましく、アクリロイル基またはメタクリロイル基がより好ましい。
 (分子量)
 低分子液晶性化合物の分子量は、5000未満であることが好ましく、200~2000であることがより好ましく、200以上1500未満であることが更に好ましい。
 (含有量)
 液晶組成物が低分子液晶性化合物を含有する場合、低分子液晶性化合物の含有量は、上記高分子液晶性化合物100質量部に対して3~30質量部であることが好ましく、5~20質量部であることがより好ましい。
 <界面改良剤>
 光吸収異方性層の形成に用いられる液晶組成物は、界面改良剤を含むことが好ましい。界面改良剤を含むことにより、塗布表面の平滑性が向上し、配向度の向上や、ハジキおよびムラを抑制して、面内の均一性の向上が見込まれる。
 界面改良剤としては、液晶性化合物を塗布表面側で水平にさせるものが好ましく、国際公開第2016/009648号の[0155]~[0170]段落に記載されている化合物や特開2011-237513号公報の[0253]~[0293]段落に記載の化合物(水平配向剤)を用いることができる。
 液晶組成物が界面改良剤を含有する場合、界面改良剤の含有量は、液晶組成物中の上記二色性物質と上記高分子液晶性化合物との合計100質量部に対し、0.001~5質量部が好ましく、0.01~3質量部が好ましい。
 <重合開始剤>
 光吸収異方性層の形成に用いられる液晶組成物は、重合開始剤を含有してもよい。
 重合開始剤としては特に制限はないが、感光性を有する化合物、すなわち光重合開始剤であることが好ましい。
 光重合開始剤としては、各種の化合物を特に制限なく使用できる。光重合開始剤の例には、α-カルボニル化合物(米国特許第2367661号、同2367670号の各明細書)、アシロインエーテル(米国特許第2448828号明細書)、α-炭化水素置換芳香族アシロイン化合物(米国特許第2722512号明細書)、多核キノン化合物(米国特許第3046127号および同2951758号の各明細書)、トリアリールイミダゾールダイマーとp-アミノフェニルケトンとの組み合わせ(米国特許第3549367号明細書)、アクリジンおよびフェナジン化合物(特開昭60-105667号公報および米国特許第4239850号明細書)、オキサジアゾール化合物(米国特許第4212970号明細書)、o-アシルオキシム化合物(特開2016-27384号公報段落[0065])および、アシルフォスフィンオキシド化合物(特公昭63-40799号公報、特公平5-29234号公報、特開平10-95788号公報および特開平10-29997号公報)等が挙げられる。
 このような光重合開始剤としては、市販品も用いることができ、BASF社製のイルガキュア184、イルガキュア907、イルガキュア369、イルガキュア651、イルガキュア819およびイルガキュアOXE-01等が挙げられる。
 液晶組成物が重合開始剤を含有する場合、重合開始剤の含有量は、液晶組成物中の上記二色性物質と上記液晶性化合物との合計100質量部に対し、0.01~30質量部が好ましく、0.1~15質量部が好ましい。重合開始剤の含有量が0.01質量部以上であることで、光吸収異方性層の硬化性が良好となり、30質量部以下であることで、光吸収異方性層の配向が良好となる。
 <溶媒>
 光吸収異方性層の形成に用いられる液晶組成物は、作業性等の観点から、溶媒を含有するのが好ましい。
 溶媒としては、例えば、ケトン類(例えば、アセトン、2-ブタノン、メチルイソブチルケトン、シクロペタンタノン、シクロヘキサノンなど)、エーテル類(例えば、ジオキサン、テトラヒドロフラン、2-メチルテトラヒドロフラン、シクロペンチルメチルエーテル、テトラヒドロピラン、ジオキソランなど)、脂肪族炭化水素類(例えば、ヘキサンなど)、脂環式炭化水素類(例えば、シクロヘキサンなど)、芳香族炭化水素類(例えば、ベンゼン、トルエン、キシレン、トリメチルベンゼンなど)、ハロゲン化炭素類(例えば、ジクロロメタン、トリクロロメタン、ジクロロエタン、ジクロロベンゼン、クロロトルエンなど)、エステル類(例えば、酢酸メチル、酢酸エチル、酢酸ブチル、乳酸エチルなど)、アルコール類(例えば、エタノール、イソプロパノール、ブタノール、シクロヘキサノール、イソペンチルアルコール、ネオペンチルアルコール、ジアセトンアルコール、ベンジルアルコールなど)、セロソルブ類(例えば、メチルセロソルブ、エチルセロソルブ、1,2-ジメトキシエタンなど)、セロソルブアセテート類、スルホキシド類(例えば、ジメチルスルホキシドなど)、アミド類(例えば、ジメチルホルムアミド、ジメチルアセトアミド、N-メチルピロリドン、N-エチルピロリドンなど)、および、ヘテロ環化合物(例えば、ピリジンなど)などの有機溶媒、ならびに、水が挙げられる。これの溶媒は、1種単独で用いてもよく、2種以上を併用してもよい。
 これらの溶媒のうち、溶解性に優れるという効果を活かす観点から、ケトン類(特にシクロペンタノン、シクロヘキサノン)、エーテル類(特にテトラヒドロフラン、シクロペンチルメチルエーテル、テトラヒドロピラン、ジオキソラン)、および、アミド類(特に、ジメチルホルムアミド、ジメチルアセトアミド、N-メチルピロリドン、N-エチルピロリドン)が好ましい。
 着色組成物が溶媒を含有する場合において、溶媒の含有量は、着色組成物の全質量に対して、60~99質量%であることが好ましく、70~95質量%であることがより好ましく、70~90質量%であることが更に好ましい。また、80~99質量%であることが好ましく、83~97質量%であることがより好ましく、85~95質量%であることが更に好ましい。
 <形成方法>
 上述した液晶組成物を用いた光吸収異方性層の形成方法は特に限定されず、上記液晶組成物を光配向層上に塗布して塗膜を形成する工程(以下、「塗膜形成工程」ともいう。)と、塗膜に含まれる液晶性成分を配向させる工程(以下、「配向工程」ともいう。)と、をこの順に含む方法が挙げられる。
 (塗膜形成工程)
 塗膜形成工程は、液晶組成物を光配向層上に塗布して塗膜を形成する工程である。
 上述した溶媒を含有する液晶組成物を用いたり、液晶組成物を加熱などによって溶融液などの液状物としたものを用いたりすることにより、光配向層上に液晶組成物を塗布することが容易になる。
 液晶組成物の塗布方法としては、具体的には、例えば、ロールコーティング法、グラビア印刷法、スピンコート法、ワイヤーバーコーティング法、押し出しコーティング法、ダイレクトグラビアコーティング法、リバースグラビアコーティング法、ダイコーティング法、スプレー法、および、インクジェット法などの公知の方法が挙げられる。
 (配向工程)
 配向工程は、塗膜に含まれる液晶性成分を配向させる工程である。これにより、光吸収異方性層が得られる。
 なお、液晶性成分とは、上述した液晶性化合物だけでなく、上述した二色性物質が液晶性を有している場合は、液晶性を有する二色性物質も含む成分である。
 配向工程は、乾燥処理を有していてもよい。乾燥処理によって、溶媒などの成分を塗膜から除去することができる。乾燥処理は、塗膜を室温下において所定時間放置する方法(例えば、自然乾燥)によって行われてもよいし、加熱および/または送風する方法によって行われてもよい。
 ここで、液晶組成物に含まれる液晶性成分は、上述した塗膜形成工程または乾燥処理によって、配向する場合がある。例えば、液晶組成物が溶媒を含む塗布液として調製されている態様では、塗膜を乾燥して、塗膜から溶媒を除去することで、光吸収異方性を持つ塗膜(すなわち、光吸収異方性層)が得られる。
 乾燥処理が塗膜に含まれる液晶性成分の液晶相への転移温度以上の温度により行われる場合には、後述する加熱処理は実施しなくてもよい。
 塗膜に含まれる液晶性成分の液晶相への転移温度は、製造適性等の面から10~250℃が好ましく、25~190℃がより好ましい。上記転移温度が10℃以上であると、液晶相を呈する温度範囲にまで温度を下げるための冷却処理等が必要とならず、好ましい。また、上記転移温度が250℃以下であると、一旦液晶相を呈する温度範囲よりもさらに高温の等方性液体状態にする場合にも高温を要さず、熱エネルギーの浪費、ならびに、基板の変形および変質等を低減できるため、好ましい。
 配向工程は、加熱処理を有することが好ましい。これにより、塗膜に含まれる液晶性成分を配向させることができるため、加熱処理後の塗膜を光吸収異方性層として好適に使用できる。
 加熱処理は、製造適性等の面から10~250℃が好ましく、25~190℃がより好ましい。また、加熱時間は、1~300秒が好ましく、1~60秒がより好ましい。
 配向工程は、加熱処理後に実施される冷却処理を有していてもよい。冷却処理は、加熱後の塗膜を室温(20~25℃)程度まで冷却する処理である。これにより、塗膜に含まれる液晶性成分の配向を固定することができる。冷却手段としては、特に限定されず、公知の方法により実施できる。
 以上の工程によって、光吸収異方性層を得ることができる。
 なお、本態様では、塗膜に含まれる液晶性成分を配向する方法として、乾燥処理および加熱処理などを挙げているが、これに限定されず、公知の配向処理によって実施できる。
 (他の工程)
 光吸収異方性層の形成方法は、上記配向工程後に、光吸収異方性層を硬化させる工程(以下、「硬化工程」ともいう。)を有していてもよい。
 硬化工程は、例えば、光吸収異方性層が架橋性基(重合性基)を有している場合には、加熱および/または光照射(露光)によって実施される。このなかでも、硬化工程は光照射によって実施されることが好ましい。
 また、光配向層が、光反応性のラジカル重合性基を有する化合物を含有している場合、ラジカル重合開始剤を光配向層に含ませない方法、または、酸素濃度の高い環境で露光を行う方法などで光配向層の表面に未反応のラジカル重合性基を残存させることができる。この光配向層の表面に存在する未反応のラジカル重合性基と、光吸収異方性層のラジカル重合性基とを「硬化工程」で反応させることにより、光配向層と光吸収異方性層との密着性を高めることが可能となる。
 硬化に用いる光源は、赤外線、可視光または紫外線など、種々の光源を用いることが可能であるが、紫外線であることが好ましい。また、硬化時に加熱しながら紫外線を照射してもよいし、特定の波長のみを透過するフィルタを介して紫外線を照射してもよい。
 露光が加熱しながら行われる場合、露光時の加熱温度は、光吸収異方性層に含まれる液晶性成分の液晶相への転移温度にもよるが、25~140℃であることが好ましい。
 また、露光は、窒素雰囲気下で行われてもよい。ラジカル重合によって光吸収異方性層の硬化が進行する場合において、酸素による重合の阻害が低減されるため、窒素雰囲気下で露光することが好ましい。
 本発明においては、光吸収異方性層の厚みは特に限定されず、0.1~5.0μmであることが好ましく、0.3~1.5μmであることがより好ましい。
 本発明の光学積層体の製造方法は、光配向層の表面が擦られ蓋然性が高くなり、本発明の有用性が高まる理由から、上述した光配向層形成工程と、上述した光吸収異方性層形成工程との間に、光配向層の液晶組成物を塗布する側の表面が、搬送ロールに接触する工程を有していることが好ましい。
 また、同様の理由から、上述した光配向層形成工程と、上述した光吸収異方性層形成工程との間に、光配向層が形成されたポリマーフィルムを巻き取る工程を有していることが好ましい。
[光学積層体]
 本発明の光学積層体は、光配向層および光吸収異方性層を有する、正面透過率が60%以下の光学積層体である。
 また、本発明の光学積層体は、光吸収異方性層が、二色性物質および高分子液晶性化合物を含有する液晶組成物から形成された層である。
 更に、本発明の光学積層体は、偏光子を想定しており、正面透過率は60%以下であり、25%~60%が好ましく、35%~55%がさらに好ましい。
 更にまた、本発明の光学積層体は、透明ポリマーフィルムおよび/または酸素遮断層を光配向層の側に存在してもよい。
 図1Aおよび図1Bに、本発明の光学積層体の一例を示す模式的な断面図を示す。
 ここで、図1Aに示す光学積層体100は、透明ポリマーフィルム12、酸素遮断層14、光配向層16および光吸収異方性層18をこの順に有する層構成(以下、「構成A」とも略す。)の光学積層体である。
 また、図1Bに示す光学積層体200は、透明支持体12、光配向層16および光吸収異方性層18をこの順に有する層構成(以下、「構成B」とも略す)の光学積層体である。
 また、図1Cに示す光学積層体300は、透明支持体12、光配向層16および光吸収異方性層18、硬化層20、酸素遮断層14をこの順に有する層構成(以下、「構成C」とも略す)の光学積層体である。
 以下に、本発明の光学積層体が有する任意の酸素遮断層などについて詳述する。なお、本発明の光学積層体が有する光配向層および光吸収異方性層については、上述した本発明の光学積層体の製造方法において説明したものと同様である。
 〔硬化層〕
 本発明の光学積層体は、光吸収異方性層と隣接層の間の屈折率差を小さくする目的で、光吸収異方性層の光配向層とは反対側に、厚み100nm以下の硬化層を有していてもよい。
 このような硬化層は、特に限定はなく、各種公知のものを使用できる。例えば、液晶性化合物を含む層や、多官能モノマーを含む組成物を硬化させた層があげられる。光吸収異方性層とインデックスマッチングを行えるような屈折率を有することが好ましい。
 〔酸素遮断層〕
 本発明の光学積層体は、耐光性を向上させる目的で、光配向層の光吸収異方性層とは反対側および光吸収異方性層の光配向層とは反対側のいずれか一方あるいは両方に、酸素遮断層を有していてもよい。なお、以下の説明において、光配向層の光吸収異方性層とは反対側に有する酸素遮断層を「酸素遮断層1」とも略し、光吸収異方性層の光配向層とは反対側に有する酸素遮断層を「酸素遮断層2」とも略す。
 「酸素遮断層」とは、酸素遮断機能のある酸素遮断膜であり、具体例としては、ポリビニルアルコール、ポリエチレンビニルアルコール、ポリビニルエーテル、ポリビニルピロリドン、ポリアクリルアミド、ポリアクリル酸、セルロースエーテル、ポリアミド、ポリイミド、スチレン/マレイン酸共重合体、ゼラチン、塩化ビニリデン、および、セルロースナノファイバー、などの有機化合物を含む層が挙げられる。
 なお、本明細書において酸素遮断機能とは、酸素を全く通さない状態に限らず、目的の性能に応じて若干酸素を通す状態も含む。
 透明ポリマーフィルム上に酸素遮断層を設け、その上に前述した一般式(I)で表されるアゾベンゼン化合物を有する光配向層を設ける場合は、配向性を高める観点から、酸素遮断層に鹸化度95mol%以上のポリビニルアルコールまたは鹸化度95mol%以上の変性ポリビニルアルコールを用いることが好ましい。
 また、金属化合物からなる薄層(金属化合物薄層)も挙げられる。金属化合物薄層の形成方法は、目的の薄層を形成できる方法であればいかなる方法でも用いることができる。例えば、スパッタリング法、真空蒸着法、イオンプレーティング法、および、プラズマCVD(Chemical Vapor Deposition)法などが適しており、具体的には特許第3400324号、特開2002-322561号、特開2002-361774号各公報記載の形成方法を採用することができる。
 金属化合物薄層に含まれる成分は、酸素遮断機能を発揮できるものであれば特に限定されないが、例えば、Si、Al、In、Sn、Zn、Ti、Cu、Ce、またはTa等から選ばれる1種以上の金属を含む酸化物、窒化物もしくは酸化窒化物などを用いることができる。これらの中でも、Si、Al、In、Sn、ZnおよびTiから選ばれる金属の酸化物、窒化物もしくは酸化窒化物が好ましく、特に、Si、Al、SnおよびTiから選ばれる金属酸化物、窒化物もしくは酸化窒化物が好ましい。これらは、副次的な成分として他の元素を含有してもよい。
 また酸素遮断層は、例えば米国特許第6413645号公報、特開2015-226995号公報、特開2013-202971号公報、特開2003-335880号公報、特公昭53-12953号公報、特開昭58-217344号公報、に記載されているように、上記の有機素材を含む層と金属化合物薄層の積層した形態であってもよいし、国際公開2011/11836号公報、特開2013-248832号公報、特許第3855004号公報、に記載されているように、有機化合物と無機化合物とをハイブリッドした層であってもよい。
 本発明の光学積層体が、後述するλ/4板を有し、λ/4板が支持体上にλ/4機能を有する光学異方性層を設けた位相差フィルムである場合、上記酸素遮断層がλ/4機能を有する光学異方性層の配向膜を兼ねてもよい。そのような場合、ポリビニルアルコール、ポリアミド、またはポリイミドを含む酸素遮断層であることが好ましい。
 酸素遮断層の膜厚は、有機化合物を含む層の場合は、0.1~10μmが好ましく、0.5~5.5μmがより好ましい。金属化合物薄層の場合は、酸素遮断層の膜厚は、5nm~500nmが好ましく、10nm~200nmがより好ましい。
 〔粘着層〕
 本発明の光学積層体は、上述した光吸収異方性層の光配向層とは反対側、または、上述した酸素遮断層2を有する場合には、上述した酸素遮断層2の光吸収異方性層側とは反対側に、他の機能層(例えば、後述するλ/4板など)を貼合する観点から、粘着層を有していてもよい。
 粘着層に含まれる粘着剤としては、例えば、ゴム系粘着剤、アクリル系粘着剤、シリコーン系粘着剤、ウレタン系粘着剤、ビニルアルキルエーテル系粘着剤、ポリビニルアルコール系粘着剤、ポリビニルピロリドン系粘着剤、ポリアクリルアミド系粘着剤、セルロース系粘着剤等が挙げられる。
 これらのうち、透明性、耐候性、耐熱性などの観点から、アクリル系粘着剤(感圧粘着剤)であるのが好ましい。
 粘着層は、例えば、粘着剤の溶液を離型シート上に塗布し、乾燥した後に後、透明樹脂層の表面に転写する方法;粘着剤の溶液を透明樹脂層の表面に直接塗布し、乾燥させる方法;等により形成することができる。
 粘着剤の溶液は、例えば、トルエンや酢酸エチル等の溶剤に、粘着剤を溶解または分散させた10~40質量%程度の溶液として調製される。
 塗布法は、リバースコーティング、グラビアコーティング等のロールコーティング法、スピンコーティング法、スクリーンコーティング法、ファウンテンコーティング法、ディッピング法、スプレー法などを採用できる。
 また、離型シートの構成材料としては、例えば、ポリエチレン、ポリプロピレン、ポリエチレンテレフタレートなどの合成樹脂フィルム;ゴムシート;紙;布;不織布;ネット;発泡シート;金属箔;等の適宜な薄葉体等が挙げられる。
 本発明においては、任意の粘着層の厚みは特に限定されないが、3μm~50μmであることが好ましく、4μm~40μmであることがより好ましく、5μm~30μmであることが更に好ましい。
 〔機能層〕
 光吸収異方性層よりも視認側に、短波光を低減する機能を有する機能層を有することが好ましい。短波光を低減することで、色素化合物の光分解を抑制し、耐光性に優れた光学積層体が提供できる。
 一態様としては、前述の粘着層もしくは酸素遮断層が、短波光を低減する機能を有することが好ましい。
 また別の一態様として、光吸収異方性層よりも視認側に、新たに短波光を低減する機能を有する層を設けることも好ましい。
 短波光を低減する方法は特に限定されず、吸収剤等による光吸収を用いる方法、および多層膜による波長選択反射を用いる方法が例示される。
 前述の短波光とは430nm以下の波長の光を指す。430nm以下の波長の光を低減することで、太陽光もしくはJIS B 7751およびJIS B 7754の耐光性試験にて使用される光源光による色素化合物の光分解を抑制できる。
 また可視光における偏光子の性能に影響を与えないために、450nm以上波長域では透明であることが好ましい。
 〔λ/4板〕
 本発明の光学積層体は、上述した粘着層の光吸収異方性層または酸素遮断層2側とは反対側にλ/4板を有していてもよい。
 ここで、「λ/4板」とは、λ/4機能を有する板であり、具体的には、ある特定の波長の直線偏光を円偏光に(または円偏光を直線偏光に)変換する機能を有する板である。
 λ/4板の具体例としては、例えば米国特許出願公開2015/0277006号などが挙げられる。
 例えば、λ/4板が単層構造である態様としては、具体的には、延伸ポリマーフィルムや、支持体上にλ/4機能を有する光学異方性層を設けた位相差フィルム等が挙げられ、また、λ/4板が複層構造である態様としては、具体的には、λ/4板とλ/2板とを積層してなる広帯域λ/4板が挙げられる。
 λ/4機能を有する光学異方性層を設けた位相差フィルムは、ネマチック液晶層またはスメクチック液晶層を発現する液晶モノマーを重合して形成した液晶性化合物(円盤状液晶、棒状液晶性化合物など)の少なくともひとつを含む1層以上の位相差フィルムであることがより好ましい。
 また、光学性能に優れたλ/4板として、逆波長分散性の液晶性化合物を用いることもさらに好ましい。具体的には、国際公開番号WO2017/043438に記載の一般式(II)の液晶性化合物が好ましく用いられる。逆波長分散性の液晶性化合物を用いたλ/4板の作成方法についても、WO2017/043438の実施例1~10や特開2016-91022の実施例1の記載を参考にできる。
 〔用途〕
 本発明の光学積層体は、偏光素子(偏光板)として使用でき、具体的には、例えば、直線偏光板または円偏光板として使用できる。
 本発明の光学積層体が上記λ/4板などの光学異方性層を有さない場合には、光学積層体は直線偏光板として使用できる。一方、本発明の光学積層体が上記λ/4板を有する場合には、光学積層体は円偏光板として使用できる。
[画像表示装置]
 本発明の画像表示装置は、上述した本発明の光学積層体を有する。
 本発明の画像表示装置に用いられる表示素子は特に限定されず、例えば、液晶セル、有機エレクトロルミネッセンス(以下、「EL」と略す。)表示パネル、および、プラズマディスプレイパネル等が挙げられる。
 これらのうち、液晶セルまたは有機EL表示パネルであるのが好ましく、液晶セルであるのがより好ましい。すなわち、本発明の画像表示装置としては、表示素子として液晶セルを用いた液晶表示装置、表示素子として有機EL表示パネルを用いた有機EL表示装置であるのが好ましく、液晶表示装置であるのがより好ましい。
 〔液晶表示装置〕
 本発明の画像表示装置の一例である液晶表示装置としては、上述した本発明の光学積層体(ただし、λ/4板を含まない)と、液晶セルと、を有する液晶表示装置である。
 なお、本発明においては、液晶セルの両側に設けられる光学積層体のうち、フロント側の偏光素子として本発明の光学積層体を用いるのが好ましく、フロント側およびリア側の偏光素子として本発明の光学積層体を用いるのがより好ましい。
 以下に、液晶表示装置を構成する液晶セルについて詳述する。
 <液晶セル>
 液晶表示装置に利用される液晶セルは、VA(Vertical Alignment)モード、OCB(Optically Compensated Bend)モード、IPS(In-Plane-Switching)モード、またはTN(Twisted Nematic)であることが好ましいが、これらに限定されるものではない。
 TNモードの液晶セルでは、電圧無印加時に棒状液晶性分子(棒状液晶性化合物)が実質的に水平配向し、更に60~120゜にねじれ配向している。TNモードの液晶セルは、カラーTFT液晶表示装置として最も多く利用されており、多数の文献に記載がある。
 VAモードの液晶セルでは、電圧無印加時に棒状液晶性分子が実質的に垂直に配向している。VAモードの液晶セルには、(1)棒状液晶性分子を電圧無印加時に実質的に垂直に配向させ、電圧印加時に実質的に水平に配向させる狭義のVAモードの液晶セル(特開平2-176625号公報記載)に加えて、(2)視野角拡大のため、VAモードをマルチドメイン化した(MVAモード(Multi-domain Vertical Alignment)の)液晶セル(SID97、Digest of tech.Papers(予稿集)28(1997)845記載)、(3)棒状液晶性分子を電圧無印加時に実質的に垂直配向させ、電圧印加時にねじれマルチドメイン配向させるモード(n-ASM(Axially symmetric aligned microcell)モード)の液晶セル(日本液晶討論会の予稿集58~59(1998)記載)および(4)SURVIVALモードの液晶セル(LCD(liquid crystal display)インターナショナル98で発表)が含まれる。また、PVA(Patterned Vertical Alignment)型、光配向型(Optical Alignment)、およびPSA(Polymer-Sustained Alignment)のいずれであってもよい。これらのモードの詳細については、特開2006-215326号公報、および特表2008-538819号公報に詳細な記載がある。
 IPSモードの液晶セルは、棒状液晶性分子が基板に対して実質的に平行に配向しており、基板面に平行な電界が印加することで液晶分子が平面的に応答する。IPSモードは電界無印加時で黒表示となり、上下一対の偏光板の吸収軸は直交している。光学補償シートを用いて、斜め方向での黒表示時の漏れ光を低減させ、視野角を改良する方法が、特開平10-54982号公報、特開平11-202323号公報、特開平9-292522号公報、特開平11-133408号公報、特開平11-305217号公報、特開平10-307291号公報などに開示されている。
 〔有機EL表示装置〕
 本発明の画像表示装置の一例である有機EL表示装置としては、例えば、視認側から、上述した本発明の光学積層体(ただし、粘着層およびλ/4板を含む)と、有機EL表示パネルと、をこの順で有する態様が好適に挙げられる。構成Aの態様においては、光学積層体は、視認側から、必要に応じて除去される透明支持体、透明酸素遮断層、必要に応じて設けられる配向層、光吸収異方性層、必要に応じて設けられる透明酸素遮断層、粘着層、および、λ/4板の順に配置されている。
 一方、構成B,Cの態様においては、光学積層体は、視認側から、必要に応じて設けられる透明酸素遮断層、必要に応じて設けられる硬化層、光吸収異方性層、必要に応じて除去される配向層、必要に応じて除去される透明支持体、粘着層、および、λ/4板の順に配置されている。
 また、有機EL表示パネルは、電極間(陰極および陽極間)に有機発光層(有機エレクトロルミネッセンス層)を挟持してなる有機EL素子を用いて構成された表示パネルである。有機EL表示パネルの構成は特に制限されず、公知の構成が採用される。
 以下に実施例に基づいて本発明をさらに詳細に説明する。以下の実施例に示す材料、使用量、割合、処理内容、処理手順等は、本発明の趣旨を逸脱しない限り適宜変更することができる。したがって、本発明の範囲は以下に示す実施例により限定的に解釈されるべきものではない。
[作製例1~22]
 〔光配向層形成用組成物E1~E6の調製〕
 <光配向層形成用組成物E1の調製>
 下記の組成にて、光配向層形成用組成物E1を調製し、攪拌しながら1時間溶解し、0.45μmフィルターでろ過した。
―――――――――――――――――――――――――――――――――
光配向層形成用組成物E1
―――――――――――――――――――――――――――――――――
・下記光活性化合物E-1               0.3質量部
・2-ブトキシエタノール              41.6質量部
・ジプロピレングリコールモノメチルエーテル     41.6質量部
・純水                       16.5質量部
―――――――――――――――――――――――――――――――――
 光活性化合物E-1
Figure JPOXMLDOC01-appb-C000053
 <光配向層形成用組成物E2の調製>
 光活性化合物E-1を、下記光活性化合物E-2に変更した以外は、光配向層形成用組成物E1と同様の方法で光配向層形成用組成物E2を調製した。
 光活性化合物E-2
Figure JPOXMLDOC01-appb-C000054
 <光配向層形成用組成物E3の調製>
 下記の組成にて、光配向層形成用組成物E3を調製し、攪拌しながら1時間溶解し、0.45μmフィルターでろ過した。
――――――――――――――――――――――――――――――――
光配向層形成用組成物E3
――――――――――――――――――――――――――――――――
・下記光活性化合物E-3              2.0質量部
・1,1,2-トリクロロエタン          98.0質量部
――――――――――――――――――――――――――――――――
 光活性化合物E-3(重量平均分子量:48000)
Figure JPOXMLDOC01-appb-C000055
 <光配向層形成用組成物E4の調製>
 下記の組成にて、光配向層形成用組成物E4を調製し、攪拌しながら1時間溶解し、0.45μmフィルターでろ過した。
――――――――――――――――――――――――――――――――
光配向層形成用組成物E4
――――――――――――――――――――――――――――――――
・下記光活性化合物E-4              5.0質量部
・シクロペンタノン                95.0質量部
――――――――――――――――――――――――――――――――
 光活性化合物E-4(重量平均分子量;51000)
Figure JPOXMLDOC01-appb-C000056
 <光配向層形成用組成物E5の調製>
 下記の組成にて、光配向層形成用組成物E5を調製し、攪拌しながら1時間溶解し、0.45μmフィルターでろ過した。
――――――――――――――――――――――――――――――――
光配向層形成用組成物E5
――――――――――――――――――――――――――――――――
・下記光活性化合物E-5              2.5質量部
・テトラヒドロフラン               97.5質量部
――――――――――――――――――――――――――――――――
 光活性化合物E-5(重量平均分子量:28700)
Figure JPOXMLDOC01-appb-C000057
 <光配向層形成用組成物E6の調製>
 (重合体E-6の合成)
 撹拌機、温度計、滴下漏斗および還流冷却管を備えた反応容器に、2-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン100.0質量部、メチルイソブチルケトン500質量部、および、トリエチルアミン10.0質量部を仕込み、室温で混合物を撹拌した。次に、脱イオン水100質量部を滴下漏斗より30分かけて得られた混合物に滴下した後、還流下で混合物を混合しつつ、80℃で6時間反応させた。反応終了後、有機相を取り出し、0.2質量%硝酸アンモニウム水溶液により洗浄後の水が中性になるまで有機相を洗浄した。その後、得られた有機相から減圧下で溶媒および水を留去し、エポキシ基を有するポリオルガノシロキサンを粘調な透明液体として得た。
 このエポキシ基を有するポリオルガノシロキサンについて、H-NMR(Nuclear Magnetic Resonance)分析を行ったところ、化学シフト(δ)=3.2ppm付近にオキシラニル基に基づくピークが理論強度どおりに得られ、反応中にエポキシ基の副反応が起こっていないことが確認された。このエポキシ基を有するポリオルガノシロキサンの重量平均分子量Mwは2,200、エポキシ当量は186g/モルであった。
 次に、100mLの三口フラスコに、上記で得たエポキシ基を有するポリオルガノシロキサン10.1質量部、アクリル基含有カルボン酸(東亜合成株式会社、商品名「アロニックスM-5300」、アクリル酸ω-カルボキシポリカプロラクトン(重合度n≒2))0.5質量部、酢酸ブチル20質量部、特開2015-26050号公報の合成例1の方法で得られた桂皮酸誘導体1.5質量部、および、テトラブチルアンモニウムブロミド0.3質量部を仕込み、得られた混合物を90℃で12時間撹拌した。撹拌後、得られた混合物と等量(質量)の酢酸ブチルで混合物を希釈し、さらに希釈された混合物を3回水洗した。得られた混合物を濃縮し、酢酸ブチルで希釈する操作を2回繰り返し、最終的に、シンナモイル基を有するポリオルガノシロキサン(下記重合体E-6)を含む溶液を得た。この重合体E-6の重量平均分子量Mwは9,000であった。また、H-NMR分析の結果、重合体E-6中のシンナメート基を有する成分は23.7質量%であった。
 重合体E-6
Figure JPOXMLDOC01-appb-C000058
 (光配向層形成用組成物E6の調製)
 以下の成分を混合して、光配向層形成用組成物E6を調製した。
―――――――――――――――――――――――――――――――――
・上記重合体E-6                10.67質量部
・下記低分子化合物R-1              5.17質量部
・下記添加剤(B-1)               0.53質量部
・酢酸ブチル                 8287.37質量部
・プロピレングリコールモノメチルエーテルアセテート
                       2071.85質量部
―――――――――――――――――――――――――――――――――
 低分子化合物R-1
Figure JPOXMLDOC01-appb-C000059
 添加剤(B-1):サンアプロ社製TA-60B(以下、構造式参照)
Figure JPOXMLDOC01-appb-C000060
 〔液晶組成物P1~P16の調製〕
 <液晶組成物P1の調製>
 下記の組成にて、液晶組成物P1を調製し、攪拌しながら50℃で3時間加熱溶解し、0.45μmフィルターでろ過した。
――――――――――――――――――――――――――――――――
液晶組成物P1
――――――――――――――――――――――――――――――――
・下記二色性物質D1                2.1質量部
・下記二色性物質D2                9.3質量部
・下記高分子液晶性化合物M1           72.2質量部
・重合開始剤IRGACURE819(BASF社製) 0.8質量部
・下記界面改良剤F-1               0.6質量部
・シクロペンタノン               457.5質量部
・テトラヒドロフラン              457.5質量部
――――――――――――――――――――――――――――――――
 二色性物質D1
Figure JPOXMLDOC01-appb-C000061
 二色性物質D2
Figure JPOXMLDOC01-appb-C000062
 高分子液晶性化合物M1(重量平均分子量:16000)
Figure JPOXMLDOC01-appb-C000063
 界面改良剤F-1
Figure JPOXMLDOC01-appb-C000064
 <液晶組成物P2~P14の調製>
 P1と同様にして、下記表1のように、二色性物質および液晶性化合物を変更し、液晶組成物P2~P14を調製した。
Figure JPOXMLDOC01-appb-T000065
 上記表1中の二色性物質D3などの構造を以下に示す。
 二色性物質D3
Figure JPOXMLDOC01-appb-C000066
 二色性物質D4
Figure JPOXMLDOC01-appb-C000067
 二色性物質D5
Figure JPOXMLDOC01-appb-C000068
 二色性物質D6
Figure JPOXMLDOC01-appb-C000069
 二色性物質D7
Figure JPOXMLDOC01-appb-C000070
 高分子液晶性化合物M2(平均分子量:15000)
Figure JPOXMLDOC01-appb-C000071
 高分子液晶性化合物M3(平均分子量:18000)
Figure JPOXMLDOC01-appb-C000072
 液晶性化合物M4(化合物A/化合物B=75/25で混合)
 (化合物A)
Figure JPOXMLDOC01-appb-C000073
 (化合物B)
Figure JPOXMLDOC01-appb-C000074
 <液晶組成物P15の調製>
 下記の組成にて、液晶組成物P15を調製し、攪拌しながら80℃で2時間加熱溶解し、0.45μmフィルターでろ過した。
――――――――――――――――――――――――――――――――
液晶組成物P15
――――――――――――――――――――――――――――――――
・上記二色性物質D5                2.7質量部
・上記二色性物質D6                2.7質量部
・上記二色性物質D7                2.7質量部
・上記高分子液晶性化合物M1           73.0質量部
・重合開始剤IRGACURE369(BASF社製) 3.0質量部
・BYK361N(ビックケミージャパン社製)    0.9質量部
・シクロペンタノン               925.0質量部
――――――――――――――――――――――――――――――――
 <液晶組成物P16の調製>
 下記の組成にて、液晶組成物P16を調製し、攪拌しながら80℃で2時間加熱溶解し、0.45μmフィルターでろ過した。
――――――――――――――――――――――――――――――――
液晶組成物P16
――――――――――――――――――――――――――――――――
・上記二色性物質D5                2.7質量部
・上記二色性物質D6                2.7質量部
・上記二色性物質D7                2.7質量部
・上記液晶性化合物M4              73.0質量部
・重合開始剤IRGACURE369(BASF社製) 3.0質量部
・BYK361N(ビックケミージャパン社製)    0.9質量部
・シクロペンタノン               925.0質量部
――――――――――――――――――――――――――――――――
 〔作製例1の光学積層体1の作製〕
 <光配向層の作成>
 上述した光配向層形成用組成物E1をポリエチレンテレフタレートフイルム(コスモシャイン、東洋紡社製)上に塗布し、60℃で2分間乾燥した。
 その後、得られた塗膜に、偏光紫外線露光装置を用いて直線偏光紫外線(照度4.5mW、照射量500mJ/cm)を照射し、厚み0.03μmの光配向層1を作製した。
 <光吸収異方性層の形成>
 得られた光配向層1上に、上述した液晶組成物P1をワイヤーバーで塗布した。
 次いで、140℃で90秒間加熱し、室温(23℃)になるまで冷却した。
 次いで、80℃で60秒間加熱し、再び室温になるまで冷却した。
 その後、高圧水銀灯を用いて照度28mW/cmの照射条件で60秒間照射することにより、厚み0.6μmの光吸収異方性層を形成し、作製例1の光学積層体1が作製できた。配向度を下記の方法にて測定すると、0.95であり、また、正面透過率は、60%以下であった。
 〔作製例2~25の光学積層体2~25の作製〕
 光配向層形成用組成物および液晶組成物を下記表2に示すものに変更した以外は、作製例1の光学積層体1と同様の方法で、作製例2~25の光学積層体2~25を作製した。
 ただし、二色性物質の塗布量が作製例1と同じになるように組成物の塗布量を調整した。
 また、光配向層の厚みについては、E1およびE2は0.03μm、E3およびE4は0.1μm、E5は0.2μm、ならびに、E6は0.3μmとなるように組成物の塗布量を調整した。
 なお、作製した光学積層体2~25の正面透過率は、いずれも60%以下であった。
 <配向欠陥の評価>
 光学積層体の作製時に、光配向層の表面を100N/300mmの面圧をかけて塗布面タッチするようにしてロール搬送した後に光吸収異方性層を形成し、配向欠陥の評価用積層体を作製した。
 塗布面タッチした部分を偏向子と重ねてシャーカステンに載せ、配向欠陥の有無を目視にて観察し、以下の基準で評価した。結果を下記表2に示す。
 (欠陥評価基準)
 A:配向欠陥が全く見えない
 B:配向欠陥がわずかに見えるが実用上問題なし
 C:配向欠陥が見えて問題である
Figure JPOXMLDOC01-appb-T000075
 上記表2に示す結果から、光吸収異方性層の形成に、二色性物質とともに高分子液晶性化合物を配合した液晶組成物を用いた場合には、光配向層の表面を擦られても光吸収異方性層に配向欠陥が生じにくいことが分かった。
 <配向欠陥の強制評価>
 作製例13および20~22の光学積層体の作製時に、光配向層の表面を200N/300mmの面圧をかけて塗布面タッチするようにしてロール搬送した後に光吸収異方性層を形成し、配向欠陥の強制評価用積層体を作製した。
 塗布面タッチした部分を偏光子と重ねてシャーカステンに載せ、配向欠陥の有無を目視にて観察し、以下の基準で評価した。結果を下記表3に示す。
 (欠陥評価基準)
 AAA:200N/300mmの面圧および100N/300mmの面圧のいずれの面圧で塗布面をタッチした場合にも配向欠陥が見えない
 AA:200N/300mmの面圧で塗布面をタッチした場合に配向欠陥がわずかに見え、100N/300mmの面圧のいずれの面圧で塗布面をタッチした場合には配向欠陥が見えない
 A:200N/300mmの面圧で塗布面をタッチした場合に配向欠陥が見えるが、100N/300mmの面圧のいずれの面圧で塗布面をタッチした場合には配向欠陥が見えない
Figure JPOXMLDOC01-appb-T000076
 上記表3に示す結果から、作製例13と作製例20および21とを比較すると、アゾベンゼン基を有する光活性化合物を用いた光配向層よりも、シンナメート基を有する光活性化合物を用いた光配向層の方が、配向欠陥が生じ難いことが分かった。
 また、作製例20および21と作製例22とを比較すると、光活性化合物として、シンナモイル基を含む繰り返し単位Aと、架橋性基を含む繰り返し単位Bとを有する、光配向性共重合体を用いた光配向層の方が、更に配向欠陥が生じ難いことが分かった。
[作製例26~32]
 作製例1、2、3、8、13、20および22と同様にして作製した光学積層体を、真空成膜装置内に設置し、下記条件にてプラズマCVD法により、光吸収異方性層の表面上に、厚さ20nmのSiOxCyで表される酸化珪素からなる酸素遮断層を形成し、光吸収異方性層上に酸素遮断層が形成された積層体26~32を作製した。
 使用ガス:ヘキサメチルジシロキサン(HMDSO)5sccm/酸素50sccmの混合ガス
 印加周波数:13.56MHz
 印加電力:0.5kW
 <耐光性の評価>
 上記作製した積層体26~32の支持体側から、スーパーキセノンウェザーメーター“SX-75”(スガ試験機社製、60℃、50%RH条件)にて、キセノン光を150W/m2(300-400nm)で300時間照射した。所定時間の経過後、積層体の配向度の変化を測定した。作製例26~32で作製した、光吸収異方性層上に酸素遮断層が形成された積層体は、作製例1~25で作製した積層体に比べて、配向度の低下が抑えられていた。
[作製例33~39]
 〔λ/4位相差フィルム1の作製〕
 <光学異方性層用塗布液1の調製>
 下記組成の光学異方性層用塗布液1を調製した。
―――――――――――――――――――――――――――――――――
光学異方性層用塗布液1
―――――――――――――――――――――――――――――――――
・下記液晶性化合物L-3             42.00質量部
・下記液晶性化合物L-4             42.00質量部
・下記重合性化合物A-1             16.00質量部
・下記低分子化合物B-2              6.00質量部
・下記重合開始剤S-1(オキシム型)        0.50質量部
・下記レベリング剤G-1              0.20質量部
・ハイソルブMTEM(東邦化学工業社製)      2.00質量部
・NKエステルA-200(新中村化学工業社製)   1.00質量部
・メチルエチルケトン               424.8質量部
―――――――――――――――――――――――――――――――――
 なお、下記液晶性化合物L-3およびL-4のアクリロイルオキシ基に隣接する基は、プロピレン基(メチル基がエチレン基に置換した基)を表し、下記液晶性化合物L-3およびL-4は、メチル基の位置が異なる位置異性体の混合物を表す。
Figure JPOXMLDOC01-appb-C000077
Figure JPOXMLDOC01-appb-C000078
Figure JPOXMLDOC01-appb-C000079
Figure JPOXMLDOC01-appb-C000080
Figure JPOXMLDOC01-appb-C000081
 <光学異方性層用塗布液2の調製>
 下記組成の光学異方性層用塗布液2を調製した。
―――――――――――――――――――――――――――――――――
光学異方性層用塗布液2
―――――――――――――――――――――――――――――――――
・下記液晶性化合物L-5              24.0質量部
・下記液晶性化合物L-6               6.0質量部
・重合開始剤イルガキュア369(BASFジャパン製) 1.0質量部
・重合開始剤OXE-03(BASFジャパン製)    0.9質量部
・重合開始剤アデカクルーズNCI-831(アデカ製) 0.9質量部
・BYK361N(ビックケミージャパン社製)     0.2質量部
・N-メチル-2-ピロリドン            25.0質量部
・シクロペンタノン                 42.0質量部
―――――――――――――――――――――――――――――――――
Figure JPOXMLDOC01-appb-C000082
Figure JPOXMLDOC01-appb-I000083
 <セルロースアシレートフィルム1の作製>
 (コア層セルロースアシレートドープの作製)
 下記の組成物をミキシングタンクに投入し、撹拌して、各成分を溶解し、コア層セルロースアシレートドープとして用いるセルロースアセテート溶液を調製した。
─────────────────────────────────
コア層セルロースアシレートドープ
─────────────────────────────────
・アセチル置換度2.88のセルロースアセテート    100質量部
・特開2015-227955号公報の実施例に記載された
ポリエステル化合物B                  12質量部
・下記化合物F                      2質量部
・メチレンクロライド(第1溶媒)           430質量部
・メタノール(第2溶剤)                64質量部
─────────────────────────────────
 化合物F
Figure JPOXMLDOC01-appb-C000084
 (外層セルロースアシレートドープの作製)
 上記のコア層セルロースアシレートドープ90質量部に下記のマット剤溶液を10質量部加え、外層セルロースアシレートドープとして用いるセルロースアセテート溶液を調製した。
─────────────────────────────────
マット剤溶液
─────────────────────────────────
・平均粒子サイズ20nmのシリカ粒子
(AEROSIL R972、日本アエロジル(株)製)    2質量部
・メチレンクロライド(第1溶媒)            76質量部
・メタノール(第2溶剤)                11質量部
・上記のコア層セルロースアシレートドープ         1質量部
─────────────────────────────────
 (セルロースアシレートフィルム1の作製)
 上記コア層セルロースアシレートドープと上記外層セルロースアシレートドープを平均孔径34μmのろ紙および平均孔径10μmの焼結金属フィルターでろ過した後、上記コア層セルロースアシレートドープとその両側に外層セルロースアシレートドープとを3層同時に流延口から20℃のドラム上に流延した(バンド流延機)。
 次いで、溶剤含有率略20質量%の状態で剥ぎ取り、フィルムの幅方向の両端をテンタークリップで固定し、横方向に延伸倍率1.1倍で延伸しつつ乾燥した。
 その後、熱処理装置のロール間を搬送することにより、更に乾燥し、厚み40μmの光学フィルムを作製し、これをセルロースアシレートフィルム1とした。得られたセルロースアシレートフィルム1の面内レターデーションは0nmであった。
 <λ/4位相差フィルム1の作製>
 作製したセルロースアシレートフィルム1の片側の面に、先に調製した各光配向層用組成物E6をバーコーターで塗布した。
 塗布後、120℃のホットプレート上で1分間乾燥して溶剤を除去し、厚さ0.3μmの光異性化組成物層を形成した。
 得られた光異性化組成物層を偏光紫外線照射(10mJ/cm、超高圧水銀ランプ使用)することで、光配向層を形成した。
 次いで、光配向層上に、先に調製した光学異方性層用塗布液をバーコーターで塗布し、組成物層を形成した。
 形成した組成物層をホットプレート上でいったん110℃まで加熱した後、60℃に冷却させて配向を安定化させた。
 その後、60℃に保ち、窒素雰囲気下(酸素濃度100ppm)で紫外線照射(500mJ/cm、超高圧水銀ランプ使用)によって配向を固定化し、厚さ2.3μmの光学異方性層を形成し、λ/4位相差フィルム1を作製した。得られた光学積層体の面内レターデーションは140nmであった。
 〔λ/4位相差フィルム2の作製〕
 作製したセルロースアシレートフィルム1の片側の面に、先に調製した光配向層用組成物E4をバーコーターで塗布した。
 塗布後、80℃のホットプレート上で1分間乾燥して溶剤を除去し、厚さ0.3μmの光異性化組成物層を形成した。
 得られた光異性化組成物層を偏光紫外線照射(90mJ/cm、超高圧水銀ランプ使用)することで、光配向層を形成した。
 次いで、光配向層上に、先に調製した光学異方性層用塗布液2をバーコーターで塗布し、組成物層を形成した。
 形成した組成物層をホットプレート上でいったん120℃まで加熱した後、60℃に冷却させて配向を安定化させた。
 その後、60℃に保ち、窒素雰囲気下(酸素濃度100ppm)で紫外線照射(800mJ/cm2、超高圧水銀ランプ使用)によって配向を固定化し、厚さ2.3μmの光学異方性層を形成し、λ/4位相差フィルム2を作製した。得られたλ/4位相差フィルム2の面内レターデーションは143nmであった。
 〔ポジティブCプレート膜2の作製〕
 仮支持体として、市販されているトリアセチルセルロースフィルム「Z-TAC」(富士フイルム社製)を用いた(これをセルロースアシレートフィルム2とする)。セルロースアシレートフィルム2を温度60℃の誘電式加熱ロールを通過させ、フィルム表面温度を40℃に昇温した後に、フィルムの片面に下記に示す組成のアルカリ溶液を、バーコーターを用いて塗布量14ml/mで塗布し、110℃に加熱し、(株)ノリタケカンパニーリミテド製のスチーム式遠赤外ヒーターの下に、10秒間搬送した。
 次いで、同じくバーコーターを用いて、純水を3ml/m塗布した。
 次いで、ファウンテンコーターによる水洗とエアナイフによる水切りを3回繰り返した後に、70℃の乾燥ゾーンに10秒間搬送して乾燥し、アルカリ鹸化処理したセルロースアシレートフィルム2を作製した。
─────────────────────────────────
アルカリ溶液の組成(質量部)
─────────────────────────────────
水酸化カリウム                    4.7質量部
水                         15.8質量部
イソプロパノール                  63.7質量部
含フッ素界面活性剤SF-1
(C1429O(CHCH2O20H)          1.0質量部
プロピレングリコール                14.8質量部
─────────────────────────────────
 上記アルカリ鹸化処理されたセルロースアシレートフィルム2を用い、下記の組成の配向層形成用塗布液を#8のワイヤーバーで連続的に塗布した。60℃の温風で60秒、さらに100℃の温風で120秒乾燥し、配向層を形成した。
─────────────────────────────────
配向層形成用塗布液の組成
─────────────────────────────────
ポリビニルアルコール(クラレ製、PVA103)    2.4質量部
イソプロピルアルコール                1.6質量部
メタノール                       36質量部
水                           60質量部
─────────────────────────────────
 上記で作成した配向層を有するセルロースアシレートフィルム2上に、下記塗布液Nを塗布し、60℃60秒間熟成させた後に、空気下にて70mW/cmの空冷メタルハライドランプ(アイグラフィックス(株)製)を用いて1000mJ/cmの紫外線を照射して、その配向状態を固定化することにより、重合性棒状液晶性化合物を垂直配向させ、ポジティブCプレート膜1を作製した。波長550nmにおいてRthが-60nmであった。
─────────────────────────────────
光学異方性膜用塗布液Nの組成
─────────────────────────────────
下記液晶性化合物L-1                 80質量部
下記液晶性化合物L-2                 20質量部
下記垂直配液晶性化合物向剤(S01)           1質量部
エチレンオキサイド変成トリメチロールプロパントリアクリレート
(V#360、大阪有機化学(株)製)           8質量部
イルガキュアー907(BASF製)            3質量部
カヤキュアーDETX(日本化薬(株)製)         1質量部
下記化合物B03                   0.4質量部
メチルエチルケトン                  170質量部
シクロヘキサノン                    30質量部
─────────────────────────────────
Figure JPOXMLDOC01-appb-C000085
Figure JPOXMLDOC01-appb-C000086
Figure JPOXMLDOC01-appb-C000087
 <円偏光板の作製>
 λ/4位相差フィルム1の光学異方性層側に、粘着剤を介して上記で作製したポジティブCプレート膜2の光学異方性層側を貼り合わせ、セルロースアシレートフィルム2および配向層を除去した。
 さらに、λ/4位相差フィルム側に粘着剤を介して作製例26~32で作製した光学積層体26~32を貼り合わせて円偏光板を得た。通常の円偏光板(約110μm)に比べて非常に薄い円偏光板(約50μm)が得られた。
 有機ELパネル(有機EL表示素子)搭載のSAMSUNG社製GALAXY S5を分解し、有機EL表示装置から、円偏光板付きタッチパネルを剥離し、さらにタッチパネルから円偏光板を剥がし、有機EL表示素子、タッチパネルおよび円偏光板をそれぞれ単離した。次いで、単離したタッチパネルを有機EL表示素子と再度貼合し、さらに上記作製した円偏光板をポジティブCプレート側がパネル側になるようにタッチパネル上に貼合し、有機EL表示装置を作製した。
 作製した有機EL表示装置について、λ/4板として、ピュアエースWR(帝人株式会社製)を用いた場合と同様の評価を行ったところ、λ/4板として、λ/4位相差フィルム1とポジティブCプレート膜2の光学積層体を用いた場合でも同様の効果が発揮されることを確認した。
[作製例40~48]
 〔光配向層形成用組成物E7~E12の調製〕
 <光配向層形成用組成物E7の調整>
 以下の成分を混合して、配向層形成用組成物E7を調製した。
─────────────────────────────────
下記重合体E-7                100.00質量部
下記酸発生剤サンエイドSI-B2A         5.00質量部
下記酸発生剤CPI-110TF          0.005質量部
キシレン                    700.00質量部
メチルイソブチルケトン              70.00質量部
─────────────────────────────────
 重合体E-7
Figure JPOXMLDOC01-appb-C000088
 上記式中、重合体E-7~E-12におけるa、b1およびb2の質量比率を以下に示す。
 E-7:a/b1/b2 = 8/77/15
 E-8:a/b1/b2 = 12/88/0
 E-9:a/b1/b2 = 8/84/8
 E-10:a/b1/b2 = 8/70/22
 E-11:a/b1/b2 = 8/62/30
 E-12:a/b1/b2 = 8/42/50
 酸発生剤サンエイドSI-B2A
Figure JPOXMLDOC01-appb-C000089
 酸発生剤CPI-110F
Figure JPOXMLDOC01-appb-C000090
 <光配向層形成用組成物E8~E12の調整>
 重合体E-7を重合体E-8~E-12に変えた以外は、光配向層形成用組成物E7と同様の方法で、光配向層形成用組成物E8~E12を調製した。
 〔液晶組成物P17~P20の調製〕
 <液晶組成物P17の調製>
 下記の組成にて、液晶組成物P17を調製し、撹拌しながら50℃で3時間加熱溶解し、0.45μmフィルターでろ過した。
――――――――――――――――――――――――――――――――
液晶組成物P17の組成
――――――――――――――――――――――――――――――――
・上記二色性物質D3               0.36質量部
・上記二色性物質D4               0.53質量部
・下記二色性物質D8               0.31質量部
・下記高分子液晶性化合物M5           3.59質量部
・重合開始剤
 IRGACUREOXE-02(BASF社製) 0.050質量部
・下記界面改良剤F-2             0.025質量部
・シクロペンタノン               47.50質量部
・テトラヒドロフラン              47.50質量部
――――――――――――――――――――――――――――――――
 D-8
Figure JPOXMLDOC01-appb-C000091
 M-5(重量平均分子量:18000)
Figure JPOXMLDOC01-appb-C000092
 F-2
Figure JPOXMLDOC01-appb-C000093
 <液晶組成物P18の調製>
 下記の組成にて、液晶組成物P18を調製し、撹拌しながら50℃で3時間加熱溶解し、0.45μmフィルターでろ過した。
――――――――――――――――――――――――――――――――
液晶組成物P18の組成
――――――――――――――――――――――――――――――――
・上記二色性物質D3               0.36質量部
・上記二色性物質D4               0.53質量部
・上記二色性物質D8               0.31質量部
・上記高分子液晶性化合物M5           3.23質量部
・下記液晶性化合物M6              0.36質量部
・重合開始剤
 IRGACUREOXE-02(BASF社製) 0.050質量部
・上記界面改良剤F-2             0.025質量部
・シクロペンタノン               47.50質量部
・テトラヒドロフラン              47.50質量部
――――――――――――――――――――――――――――――――
 液晶性化合物M6
Figure JPOXMLDOC01-appb-C000094
 <液晶組成物P19の調製>
 下記の組成にて、液晶組成物P19を調製し、撹拌しながら50℃で3時間加熱溶解し、0.45μmフィルターでろ過した。
――――――――――――――――――――――――――――――――
液晶組成物P19の組成
――――――――――――――――――――――――――――――――
・上記二色性物質D3               0.36質量部
・上記二色性物質D4               0.53質量部
・上記二色性物質D8               0.31質量部
・上記高分子液晶性化合物M2           3.59質量部
・重合開始剤
 IRGACUREOXE-02(BASF社製) 0.050質量部
・上記界面改良剤F-2             0.025質量部
・シクロペンタノン               47.50質量部
・テトラヒドロフラン              47.50質量部
――――――――――――――――――――――――――――――――
 <液晶組成物P20の調製>
 下記の組成にて、液晶組成物P17を調製し、撹拌しながら50℃で3時間加熱溶解し、0.45μmフィルターでろ過した。
―――――――――――――――――――――――――――――――――
液晶組成物P20の組成
―――――――――――――――――――――――――――――――――
・上記二色性物質D3                0.36質量部
・上記二色性物質D4                0.53質量部
・下記二色性物質D8                0.31質量部
・上記高分子液晶性化合物M5            3.58質量部
・Poly(ethylene oxide)
(平均分子量 ~800万:シグマ・アルドリッチ社製)0.01質量部
・重合開始剤
 IRGACUREOXE-02(BASF社製)  0.050質量部
・下記界面改良剤F-2              0.025質量部
・シクロペンタノン                45.00質量部
・テトラヒドロフラン               45.00質量部
・ベンジルアルコール                5.00質量部
―――――――――――――――――――――――――――――――――
 〔硬化層形成用塗布液K1~K2の調製〕
 <硬化層形成用塗布液K1の調製>
 下記の組成にて、硬化層形成用塗布液K1を調製し、撹拌溶解した。
――――――――――――――――――――――――――――――――
・下記棒状液晶性化合物の混合物L-6       2.61質量部
・下記変性トリメチロールプロパントリアクリレート 0.10質量部
・下記光重合開始剤I-1             0.05質量部
・上記界面改良剤F-1              0.03質量部
・ポリエチレングリコールジアクリレート
(新中村化学工業 A-400)          0.21質量部
・メチルイソブチルケトン              297質量部
――――――――――――――――――――――――――――――――
 <硬化層形成用塗布液K2の調製>
 下記の組成にて、硬化層形成用塗布液K2を調製し、撹拌溶解した。
――――――――――――――――――――――――――――――――
・下記棒状液晶性化合物の混合物L-6       2.63質量部
・下記変性トリメチロールプロパントリアクリレート 0.11質量部
・下記光重合開始剤I-1             0.05質量部
・下記界面活性剤F-3              0.21質量部
・メチルイソブチルケトン              297質量部
――――――――――――――――――――――――――――――――
 棒状液晶性正化合物の混合物L-6(下記式中の数値は質量%を表し、Rは酸素原子で結合する基を表す。)
Figure JPOXMLDOC01-appb-C000095
 変性トリメチロールプロパントリアクリレート
Figure JPOXMLDOC01-appb-C000096
 光重合開始剤I-1
Figure JPOXMLDOC01-appb-C000097
 界面活性剤F-3
Figure JPOXMLDOC01-appb-C000098
 〔作製例40の光学積層体40の作製〕
 <光配向層40の形成>
 上述した光配向層形成用組成物E7を、ワイヤーバーで連続的にTACフィルムTJ40UL(厚み40μm、富士フイルム社製)上に塗布した。塗膜が形成された支持体を140℃の温風で120秒間乾燥し、続いて、塗膜に対して偏光紫外線照射(10mJ/cm、超高圧水銀ランプ使用)することで、光配向層40を形成し、光配向層付きTACフィルムを得た。光配向層の膜厚は1.0μmであった。
 <光吸収異方性層P17の形成>
 得られた光配向層40上に、上述した液晶組成物P17をワイヤーバーで連続的に塗布し、塗布層P17を形成した。
 次いで、塗布層P17を140℃で30秒間加熱し、塗布層P1を室温(23℃)になるまで冷却した。
 次いで、90℃で60秒間加熱し、再び室温になるまで冷却した。
 その後、LED灯(中心波長365nm)を用いて照度200mW/cmの照射条件で2秒間照射することにより、配向層40上に光吸収異方性層P17を作製した。形成した光吸収異方性層の膜厚は0.4μmであった。
 <硬化層K1の形成>
 得られた光吸収異方性層P17上に、上述した硬化層形成用組成物K1をワイヤーバーで連続的に塗布し、硬化層K1を形成した。
 次いで、硬化層K1を室温乾燥させ、次いで、室温環境下で高圧水銀灯を用いて照度20mW/cmの照射条件で15秒間照射することにより、光吸収異方性層P1上に硬化層K1を作製した。硬化層K1の膜厚は、50nmであった。
 <酸素遮断層B1の形成>
 硬化層K1上に、下記の組成の塗布液をワイヤーバーで連続的に塗布した。
 その後、90℃の温風で2分間乾燥することにより、硬化層K1上に、厚み1.0μmのポリビニルアルコール(PVA)配向層が形成された積層フィルムB1を形成し、光学積層体40を作製した。なお、作製した光学積層体40の正面透過率は、60%以下であった。
――――――――――――――――――――――――――――――――
酸素遮断層形成用組成物B1の組成
――――――――――――――――――――――――――――――――
・下記の変性ポリビニルアルコール         3.80質量部
・開始剤Irg2959              0.20質量部
・水                         70質量部
・メタノール                     30質量部
――――――――――――――――――――――――――――――――
 変性ポリビニルアルコール
Figure JPOXMLDOC01-appb-C000099
 〔作製例41~48の光学積層体41~48の作製〕
 光配向層、光吸収異方性層および硬化層の形成に用いる組成物を下記表4に示す組成物に変更した以外は、光学積層体40と同様の方法で、光学積層体41~48を作製した。
 なお、作製した光学積層体41~48の正面透過率は、いずれも60%以下であった。
 <配向欠陥の強制評価>
 作製した光学積層体40~48について、作製例13および20~22で作製した光学積層体と同様、配向欠陥の強制評価を行った。結果を下記表4に示す。
 <密着性の評価>
 作製した光学積層体40~48を25mm×150mmの大きさに裁断し、積層体の酸素遮断層B1表面に、粘着剤SK2057(総研化学社製)とTJ40ULの積層体からなる粘着テープを1kgのローラーを用いて貼りつけた後、光学積層体の支持体を剥離した。剥離面に同様の粘着テープを貼合したあと引き剥がす試験を行い、引き剥がし時に必要な荷重の最大値を測定し、n10平均値をとって以下の基準に沿って評価した。結果を下記表4に示す。
 AAA:4.0N/10mm以上
 AA:3.0N/10mm以上4.0N/10mm未満
 A:2.0N/10mm以上3.0N/10mm未満
 B:1.0N/10mm以上2.0N/10mm未満
 C:1.0N/10mm未満
Figure JPOXMLDOC01-appb-T000100
 上記表4に示す結果から、ラジカル重合性基を有する高分子液晶性化合物を含有する液晶組成物から形成された光吸収異方性層と、シンナモイル基およびラジカル重合性基を有する光配向性共重合体を含有する光配向層形成用組成物から形成された光配向層とを有する光学積層体は、配向欠陥が少ないことに加えて、光吸収異方性層と光配向層との密着性にも優れることが確認できた。
[作製例49~57]
 特開2008-262187号公報の実施例1の試料No1を参考に低反射表面保護フィルムを作製した。
 作製例40~48で作製した光学積層体の酸素遮断層B1上に、粘着剤N1として厚み20μmのSK2057(総研化学社製)を用いて、上記表面保護フィルムの支持体側を貼り合わせ,TJ40フィルムのみを除去し、光吸収異方性層付き表面保護フィルム40~48を作製した。
 <円偏光板の作製>
 上記で作製したλ/4位相差フィルム2の光学異方性層側に、上記粘着剤N1を介して上記で作成したポジティブCプレート膜1の光学異方性層側を貼り合わせ、セルロースアシレートフィルム1および光配向層を除去した。
 さらに、λ/4位相差フィルム2の光学異方性層側(光配向層を除去して露出した表面側)に上記粘着剤N1を介して、上記光吸収異方性層付き表面保護フィルム40~48の光配向層側を貼り合わせ、セルロースアシレートフィルム2および配向層を除去して円偏光板付き表面保護フィルム40~48を得た。
 有機ELパネル(有機EL表示素子)搭載のSAMSUNG社製GALAXY S5を分解し、有機EL表示装置から、円偏光板付きタッチパネルを剥離し、さらにタッチパネルから円偏光板を剥がし、有機EL表示素子、タッチパネルおよび円偏光板をそれぞれ単離した。次いで、単離したタッチパネルを有機EL表示素子と再度貼合し、さらに上記作製した円偏光板付き表面保護フィルムをポジティブCプレート側がパネル側になるようにタッチパネル上に貼合し、有機EL表示装置を作製した。
 作製した有機EL表示装置について、λ/4板として、ピュアエースWR(帝人株式会社製)を用いた場合と同様の評価を行ったところ、λ/4板として、λ/4位相差フィルム1とポジティブCプレート膜2の光学積層体を用いた場合でも同様の効果が発揮されることを確認した。
 100、200、300 光学積層体
 12 透明ポリマーフィルム
 14 酸素遮断層
 16 光配向層
 18 光吸収異方性層
 20 硬化層

Claims (19)

  1.  光配向層および光吸収異方性層を有する、正面透過率が60%以下の光学積層体を作製する光学積層体の製造方法であって、
     ポリマーフィルム上に、光配向層を形成する光配向層形成工程と、
     前記光配向層上に、二色性物質および高分子液晶性化合物を含有する液晶組成物を塗布して光吸収異方性層を形成する光吸収異方性層形成工程とを有する、光学積層体の製造方法。
  2.  前記光配向層形成工程と、前記光吸収異方性層形成工程との間に、前記光配向層の前記液晶組成物を塗布する側の表面が、搬送ロールに接触する工程を有する、請求項1に記載の光学積層体の製造方法。
  3.  前記光配向層形成工程と、前記光吸収異方性層形成工程との間に、前記光配向層が形成されたポリマーフィルムを巻き取る工程を有する、請求項1または2に記載の光学積層体の製造方法。
  4.  前記光配向層形成工程が、光反応性基を有する化合物を含有する光配向層形成用組成物を前記ポリマーフィルム上に塗布して塗膜を形成する工程と、前記塗膜を加熱により乾燥させる工程と、乾燥後の前記塗膜に対して偏光または前記塗膜表面に対して斜め方向から非偏光を照射する工程とを有する、請求項1~3のいずれか1項に記載の光学積層体の製造方法。
  5.  前記光配向層形成用組成物が、光反応性基および架橋性基を有する化合物を含有し、ラジカル重合開始剤を含有しない組成物である、請求項4に記載の光学積層体の製造方法。
  6.  前記光吸収異方性層形成工程が、前記液晶組成物を前記光配向層上に塗布して塗膜を形成する工程と、前記塗膜に含まれる液晶性成分を配向させる工程とを有する、請求項1~5のいずれか1項に記載の光学積層体の製造方法。
  7.  光配向層および光吸収異方性層を有する、正面透過率が60%以下の光学積層体であって、
     前記光吸収異方性層が、二色性物質および高分子液晶性化合物を含有する液晶組成物から形成された層である、光学積層体。
  8.  前記液晶組成物における前記高分子液晶性化合物の固形分割合が55質量%以上95質量%以下であり、前記二色性物質の固形分割合が2質量%以上35質量%以下である、請求項7に記載の光学積層体。
  9.  前記液晶組成物における前記高分子液晶性化合物の固形分割合が75質量%以上95質量%以下であり、前記二色性物質の固形分割合が5質量%以上25質量%以下である、請求項7または8に記載の光学積層体。
  10.  前記液晶組成物が、下記式(1)で表される繰り返し単位を有する高分子液晶性化合物を含有する、請求項7~9のいずれか1項に記載の光学積層体。
    Figure JPOXMLDOC01-appb-C000001
     ここで、前記式(1)中、
     Rは、水素原子またはメチル基を表す。
     Lは、単結合または2価の連結基を表す。
     Bは、水素原子、ハロゲン原子、シアノ基、アルキル基、アルコキシ基、アミノ基、オキシカルボニル基、アシルオキシ基、アシルアミノ基、アルコキシカルボニルアミノ基、スルホニルアミノ基、スルファモイル基、カルバモイル基、アルキルチオ基、フルホニル基、スルフィニル基、ウレイド基または架橋性基を表す。
     Mは、下記式(1-1)で表されるメソゲン基を表す。
    Figure JPOXMLDOC01-appb-C000002
     ここで、前記式(1-1)中、
     Ar11およびAr12は、それぞれ独立に、置換基を有していてもよいフェニレン基またはビフェニレン基を表す。
     L11およびL12は、それぞれ独立に、単結合、または、アゾ基を含まない2価の連結基を表す。
     Yは、イミノ基、-OCO-CH=CH-基、または、-CH=CH-CO-基を表す。
     m1およびm2は、それぞれ独立に、1~3の整数を表す。
     m1が2~3の整数の場合、複数のAr11はそれぞれ同一であっても異なっていてもよく、複数のL11はそれぞれ同一であっても異なっていてもよい。
     m2が2~3の整数の場合、複数のAr12はそれぞれ同一であっても異なっていてもよく、複数のL12はそれぞれ同一であっても異なっていてもよい。
  11.  前記液晶組成物が、下記式(2)で表される繰り返し単位を有する高分子液晶性化合物を含有し、
     下記式(2)において、P1、L1およびSP1のlogP値と、M1のlogP値との差が、4以上である、請求項7~9のいずれか1項に記載の光学積層体。
    Figure JPOXMLDOC01-appb-C000003
     ここで、前記式(2)中、
     P1は、繰り返し単位の主鎖を表し、L1は、単結合または2価の連結基を表し、SP1は、スペーサー基を表し、M1は、メソゲン基を表し、T1は、末端基を表す。
     ただし、M1が連結基を有する場合、連結基としてアゾ基を含まない。
  12.  前記液晶組成物が、ラジカル重合性基を有する高分子液晶性化合物を含有する、請求項7~11のいずれか1項に記載の光学積層体。
  13.  前記液晶組成物が、ラジカル重合性基を有する低分子液晶性化合物を含有する、請求項7~12のいずれか1項に記載の光学積層体。
  14.  前記光配向層が、シンナモイル基を有する化合物を含有する組成物から形成された層である、請求項7~13のいずれか1項に記載の光学積層体。
  15.  前記光配向層が、シンナモイル基および架橋基を有する化合物を含有する組成物から形成された層である、請求項7~14のいずれか1項に記載の光学積層体。
  16.  前記光配向層が、シンナモイル基およびラジカル重合性基を有する化合物を含有する組成物から形成された層である、請求項7~15のいずれか1項に記載の光学積層体。
  17.  前記光配向層が、光活性基としてアゾ基を有する光活性化合物を含む光配向層であり、前記光活性化合物が、分子量1000以下の重合性基を持たない低分子化合物である、請求項7~13のいずれか1項に記載の光学積層体。
  18.  更に、λ/4板を有する、請求項7~17のいずれか1項に記載の光学積層体。
  19.  請求項7~18のいずれか1項に記載の光学積層体を有する画像表示装置。
PCT/JP2018/048318 2017-12-28 2018-12-27 光学積層体の製造方法、光学積層体および画像表示装置 WO2019131943A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
CN201880083645.2A CN111527424B (zh) 2017-12-28 2018-12-27 光学层叠体的制造方法、光学层叠体及图像显示装置
KR1020207018202A KR20200090870A (ko) 2017-12-28 2018-12-27 광학 적층체의 제조 방법, 광학 적층체 및 화상 표시 장치
KR1020237036143A KR20230152785A (ko) 2017-12-28 2018-12-27 광학 적층체의 제조 방법, 광학 적층체 및 화상 표시 장치
JP2019562205A JP7109476B2 (ja) 2017-12-28 2018-12-27 光学積層体の製造方法、光学積層体および画像表示装置
US16/911,832 US11378838B2 (en) 2017-12-28 2020-06-25 Method for manufacturing optical laminate, optical laminate, and image display device
JP2022086713A JP2022120853A (ja) 2017-12-28 2022-05-27 光学積層体の製造方法、光学積層体および画像表示装置

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2017254390 2017-12-28
JP2017-254390 2017-12-28
JP2018-233812 2018-12-13
JP2018233812 2018-12-13

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/911,832 Continuation US11378838B2 (en) 2017-12-28 2020-06-25 Method for manufacturing optical laminate, optical laminate, and image display device

Publications (1)

Publication Number Publication Date
WO2019131943A1 true WO2019131943A1 (ja) 2019-07-04

Family

ID=67067464

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/048318 WO2019131943A1 (ja) 2017-12-28 2018-12-27 光学積層体の製造方法、光学積層体および画像表示装置

Country Status (5)

Country Link
US (1) US11378838B2 (ja)
JP (2) JP7109476B2 (ja)
KR (2) KR20200090870A (ja)
CN (1) CN111527424B (ja)
WO (1) WO2019131943A1 (ja)

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020095139A (ja) * 2018-12-12 2020-06-18 富士フイルム株式会社 液晶組成物、光吸収異方性膜、積層体および画像表示装置
WO2020179873A1 (ja) * 2019-03-07 2020-09-10 富士フイルム株式会社 共重合体、光配向膜用組成物、光配向膜、光学異方性素子および偏光素子
JPWO2020179864A1 (ja) * 2019-03-07 2020-09-10
WO2021045192A1 (ja) * 2019-09-05 2021-03-11 富士フイルム株式会社 組成物、偏光子層、積層体、および画像表示装置
JPWO2021060021A1 (ja) * 2019-09-26 2021-04-01
JPWO2021065612A1 (ja) * 2019-09-30 2021-04-08
JPWO2019225632A1 (ja) * 2018-05-25 2021-05-13 富士フイルム株式会社 光配向性共重合体、光配向膜および光学積層体
JP2021092687A (ja) * 2019-12-11 2021-06-17 住友化学株式会社 円偏光板
WO2021182626A1 (ja) * 2020-03-13 2021-09-16 富士フイルム株式会社 液晶層の製造方法
WO2021182625A1 (ja) * 2020-03-13 2021-09-16 富士フイルム株式会社 液晶層の製造方法
WO2021182627A1 (ja) * 2020-03-13 2021-09-16 富士フイルム株式会社 液晶層の製造方法
JPWO2021246148A1 (ja) * 2020-06-05 2021-12-09
WO2021256199A1 (ja) * 2020-06-15 2021-12-23 住友化学株式会社 偏光膜、偏光板、光学積層体、楕円偏光板、有機el表示装置およびフレキシブル画像表示装置
CN114761842A (zh) * 2019-12-02 2022-07-15 富士胶片株式会社 层叠体、光学装置及显示装置
WO2023276668A1 (ja) * 2021-06-30 2023-01-05 住友化学株式会社 化合物、組成物、膜、積層体および表示装置
WO2023276667A1 (ja) * 2021-06-30 2023-01-05 住友化学株式会社 化合物、組成物、膜、積層体および表示装置
JP7314170B2 (ja) 2018-12-14 2023-07-25 富士フイルム株式会社 光吸収異方性膜、積層体および画像表示装置
US11906828B2 (en) 2020-09-30 2024-02-20 Sioptica Gmbh Switchable light filter and use thereof

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4244304A1 (en) * 2020-11-10 2023-09-20 Transitions Optical, Ltd. Method for preparing a coated article

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001091737A (ja) * 1999-09-27 2001-04-06 Nippon Mitsubishi Oil Corp 紫外線偏光フィルムおよび偏光照射装置
KR20050000572A (ko) * 2003-06-24 2005-01-06 엘지.필립스 엘시디 주식회사 위상차 필름의 제조방법 및 이를 이용한 액정표시장치의제조방법
JP2006285197A (ja) * 2004-12-27 2006-10-19 Dainippon Ink & Chem Inc 光配向膜の製造方法
JP2011526321A (ja) * 2008-06-27 2011-10-06 トランジションズ オプティカル, インコーポレイテッド メソゲン含有化合物を含む液晶組成物
JP2014066964A (ja) * 2012-09-27 2014-04-17 Dainippon Printing Co Ltd パターン位相差フィルム及びその製造方法
JP2015227947A (ja) * 2014-05-30 2015-12-17 富士フイルム株式会社 積層体およびその製造方法、偏光板、液晶表示装置、有機el表示装置
JP2017102479A (ja) * 2011-07-07 2017-06-08 住友化学株式会社 偏光素子、円偏光板及びそれらの製造方法
WO2017154907A1 (ja) * 2016-03-08 2017-09-14 富士フイルム株式会社 着色組成物、光吸収異方性膜、積層体および画像表示装置
WO2017170036A1 (ja) * 2016-03-31 2017-10-05 富士フイルム株式会社 着色組成物、光吸収異方性膜、積層体および画像表示装置

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53776B2 (ja) 1973-10-15 1978-01-12
JPS5437744B2 (ja) 1974-07-12 1979-11-16
JPS5923941B2 (ja) 1980-01-30 1984-06-06 株式会社牧野フライス製作所 加工間隙制御方法及び装置
JP2007009120A (ja) 2005-07-01 2007-01-18 Fujifilm Holdings Corp 液晶組成物、液晶素子、及びシロキサンポリマー架橋体
JP5437744B2 (ja) 2009-08-28 2014-03-12 富士フイルム株式会社 二色性色素組成物、偏光膜、液晶セル、及び表示装置
JP5300776B2 (ja) * 2010-03-31 2013-09-25 富士フイルム株式会社 偏光フィルム、表示装置、及びその製造方法
JP5566160B2 (ja) * 2010-03-31 2014-08-06 富士フイルム株式会社 液晶性化合物、液晶性組成物、光吸収異方性膜、及び液晶表示装置
WO2013031462A1 (ja) * 2011-08-29 2013-03-07 シャープ株式会社 液晶表示装置の製造方法
JP5923941B2 (ja) 2011-11-18 2016-05-25 住友化学株式会社 偏光膜、円偏光板及びそれらを用いた有機el画像表示装置
JP2016138941A (ja) * 2015-01-26 2016-08-04 Jxエネルギー株式会社 液晶フィルムの製造方法、液晶フィルム、積層体、偏光板および画像表示装置
KR101964968B1 (ko) 2016-03-28 2019-04-03 엘지전자 주식회사 태양 전지 패널
KR102387633B1 (ko) * 2017-06-08 2022-04-18 삼성디스플레이 주식회사 염료 화합물, 이를 포함하는 조성물 및 염료 화합물을 이용한 표시 장치

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001091737A (ja) * 1999-09-27 2001-04-06 Nippon Mitsubishi Oil Corp 紫外線偏光フィルムおよび偏光照射装置
KR20050000572A (ko) * 2003-06-24 2005-01-06 엘지.필립스 엘시디 주식회사 위상차 필름의 제조방법 및 이를 이용한 액정표시장치의제조방법
JP2006285197A (ja) * 2004-12-27 2006-10-19 Dainippon Ink & Chem Inc 光配向膜の製造方法
JP2011526321A (ja) * 2008-06-27 2011-10-06 トランジションズ オプティカル, インコーポレイテッド メソゲン含有化合物を含む液晶組成物
JP2017102479A (ja) * 2011-07-07 2017-06-08 住友化学株式会社 偏光素子、円偏光板及びそれらの製造方法
JP2014066964A (ja) * 2012-09-27 2014-04-17 Dainippon Printing Co Ltd パターン位相差フィルム及びその製造方法
JP2015227947A (ja) * 2014-05-30 2015-12-17 富士フイルム株式会社 積層体およびその製造方法、偏光板、液晶表示装置、有機el表示装置
WO2017154907A1 (ja) * 2016-03-08 2017-09-14 富士フイルム株式会社 着色組成物、光吸収異方性膜、積層体および画像表示装置
WO2017170036A1 (ja) * 2016-03-31 2017-10-05 富士フイルム株式会社 着色組成物、光吸収異方性膜、積層体および画像表示装置

Cited By (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2019225632A1 (ja) * 2018-05-25 2021-05-13 富士フイルム株式会社 光配向性共重合体、光配向膜および光学積層体
JP7033198B2 (ja) 2018-05-25 2022-03-09 富士フイルム株式会社 光配向性共重合体、光配向膜および光学積層体
JP2020095139A (ja) * 2018-12-12 2020-06-18 富士フイルム株式会社 液晶組成物、光吸収異方性膜、積層体および画像表示装置
JP7314170B2 (ja) 2018-12-14 2023-07-25 富士フイルム株式会社 光吸収異方性膜、積層体および画像表示装置
JP7181376B2 (ja) 2019-03-07 2022-11-30 富士フイルム株式会社 共重合体、光配向膜用組成物、光配向膜、光学異方性素子および偏光素子
JP7317939B2 (ja) 2019-03-07 2023-07-31 富士フイルム株式会社 偏光素子および画像表示装置
WO2020179864A1 (ja) * 2019-03-07 2020-09-10 富士フイルム株式会社 偏光素子および画像表示装置
JPWO2020179864A1 (ja) * 2019-03-07 2020-09-10
WO2020179873A1 (ja) * 2019-03-07 2020-09-10 富士フイルム株式会社 共重合体、光配向膜用組成物、光配向膜、光学異方性素子および偏光素子
JPWO2020179873A1 (ja) * 2019-03-07 2021-12-02 富士フイルム株式会社 共重合体、光配向膜用組成物、光配向膜、光学異方性素子および偏光素子
WO2021045192A1 (ja) * 2019-09-05 2021-03-11 富士フイルム株式会社 組成物、偏光子層、積層体、および画像表示装置
CN114341274B (zh) * 2019-09-05 2023-08-11 富士胶片株式会社 组合物、偏振器层、层叠体及图像显示装置
CN114341274A (zh) * 2019-09-05 2022-04-12 富士胶片株式会社 组合物、偏振器层、层叠体及图像显示装置
JPWO2021060021A1 (ja) * 2019-09-26 2021-04-01
WO2021060021A1 (ja) * 2019-09-26 2021-04-01 富士フイルム株式会社 偏光子および画像表示装置
JP7320069B2 (ja) 2019-09-26 2023-08-02 富士フイルム株式会社 偏光子および画像表示装置
CN114450607A (zh) * 2019-09-26 2022-05-06 富士胶片株式会社 偏振器及图像显示装置
JPWO2021065612A1 (ja) * 2019-09-30 2021-04-08
JP7352644B2 (ja) 2019-09-30 2023-09-28 富士フイルム株式会社 光学積層体、有機el表示装置及び折りたたみ式デバイス
CN114502996A (zh) * 2019-09-30 2022-05-13 富士胶片株式会社 光学层叠体、有机el显示装置及折叠式器件
WO2021065612A1 (ja) * 2019-09-30 2021-04-08 富士フイルム株式会社 光学積層体、有機el表示装置及び折りたたみ式デバイス
CN114761842A (zh) * 2019-12-02 2022-07-15 富士胶片株式会社 层叠体、光学装置及显示装置
JP7374744B2 (ja) 2019-12-11 2023-11-07 住友化学株式会社 円偏光板
JP2021092687A (ja) * 2019-12-11 2021-06-17 住友化学株式会社 円偏光板
JPWO2021182625A1 (ja) * 2020-03-13 2021-09-16
JPWO2021182627A1 (ja) * 2020-03-13 2021-09-16
WO2021182627A1 (ja) * 2020-03-13 2021-09-16 富士フイルム株式会社 液晶層の製造方法
WO2021182625A1 (ja) * 2020-03-13 2021-09-16 富士フイルム株式会社 液晶層の製造方法
US11740512B2 (en) 2020-03-13 2023-08-29 Fujifilm Corporation Method of manufacturing liquid crystal layer
WO2021182626A1 (ja) * 2020-03-13 2021-09-16 富士フイルム株式会社 液晶層の製造方法
WO2021246148A1 (ja) * 2020-06-05 2021-12-09 富士フイルム株式会社 光吸収異方性膜、積層体および画像表示装置
JPWO2021246148A1 (ja) * 2020-06-05 2021-12-09
JP7402332B2 (ja) 2020-06-05 2023-12-20 富士フイルム株式会社 光吸収異方性膜、積層体および画像表示装置
US11960182B2 (en) 2020-06-05 2024-04-16 Fujifilm Corporation Light absorption anisotropic film, laminate, and image display device
WO2021256199A1 (ja) * 2020-06-15 2021-12-23 住友化学株式会社 偏光膜、偏光板、光学積層体、楕円偏光板、有機el表示装置およびフレキシブル画像表示装置
US11906828B2 (en) 2020-09-30 2024-02-20 Sioptica Gmbh Switchable light filter and use thereof
WO2023276667A1 (ja) * 2021-06-30 2023-01-05 住友化学株式会社 化合物、組成物、膜、積層体および表示装置
WO2023276668A1 (ja) * 2021-06-30 2023-01-05 住友化学株式会社 化合物、組成物、膜、積層体および表示装置

Also Published As

Publication number Publication date
US11378838B2 (en) 2022-07-05
JPWO2019131943A1 (ja) 2021-01-07
CN111527424B (zh) 2022-11-29
JP7109476B2 (ja) 2022-07-29
CN111527424A (zh) 2020-08-11
KR20230152785A (ko) 2023-11-03
US20200326590A1 (en) 2020-10-15
KR20200090870A (ko) 2020-07-29
JP2022120853A (ja) 2022-08-18

Similar Documents

Publication Publication Date Title
WO2019131943A1 (ja) 光学積層体の製造方法、光学積層体および画像表示装置
JP6794422B2 (ja) 光学積層体および画像表示装置
JP6811846B2 (ja) 偏光素子、円偏光板および画像表示装置
US11407944B2 (en) Light-absorbing anisotropic film, optical laminate, and image display device
JP7402332B2 (ja) 光吸収異方性膜、積層体および画像表示装置
US20200355847A1 (en) Laminate
JP7109485B2 (ja) 積層体、積層体の製造方法および画像表示装置
WO2021065673A1 (ja) 光学積層体及び画像表示装置
JP2024026152A (ja) 光吸収異方性層、積層体、光学フィルム、画像表示装置、バックライトモジュール
US20200139691A1 (en) Laminate, manufacturing method of laminate, and image display device
JP7457739B2 (ja) 偏光素子、円偏光板および画像表示装置
JP7352644B2 (ja) 光学積層体、有機el表示装置及び折りたたみ式デバイス
JP7367036B2 (ja) 組成物、偏光子層、積層体、および画像表示装置
JP7481425B2 (ja) 光学積層体および表示装置
US11822108B2 (en) Polarizing element, circularly polarizing plate, and image display device
JP7454695B2 (ja) 光配向膜用組成物、光配向膜および光学積層体
JP7453354B2 (ja) 光配向膜、積層体、画像表示装置およびアゾ化合物

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18896845

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019562205

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20207018202

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18896845

Country of ref document: EP

Kind code of ref document: A1