WO2019131464A1 - 動力伝達装置の制御方法及び動力伝達装置の制御装置 - Google Patents

動力伝達装置の制御方法及び動力伝達装置の制御装置 Download PDF

Info

Publication number
WO2019131464A1
WO2019131464A1 PCT/JP2018/047111 JP2018047111W WO2019131464A1 WO 2019131464 A1 WO2019131464 A1 WO 2019131464A1 JP 2018047111 W JP2018047111 W JP 2018047111W WO 2019131464 A1 WO2019131464 A1 WO 2019131464A1
Authority
WO
WIPO (PCT)
Prior art keywords
switching
oil
pressure
switching valve
oil chamber
Prior art date
Application number
PCT/JP2018/047111
Other languages
English (en)
French (fr)
Inventor
智普 中野
良平 豊田
弘一 小辻
Original Assignee
日産自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日産自動車株式会社 filed Critical 日産自動車株式会社
Priority to US16/958,234 priority Critical patent/US20200370640A1/en
Priority to CN201880082292.4A priority patent/CN111512073A/zh
Publication of WO2019131464A1 publication Critical patent/WO2019131464A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/0021Generation or control of line pressure
    • F16H61/0025Supply of control fluid; Pumps therefore
    • F16H61/0031Supply of control fluid; Pumps therefore using auxiliary pumps, e.g. pump driven by a different power source than the engine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/66Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing specially adapted for continuously variable gearings
    • F16H61/662Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing specially adapted for continuously variable gearings with endless flexible members
    • F16H61/66272Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing specially adapted for continuously variable gearings with endless flexible members characterised by means for controlling the torque transmitting capability of the gearing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/12Detecting malfunction or potential malfunction, e.g. fail safe; Circumventing or fixing failures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/66Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing specially adapted for continuously variable gearings
    • F16H61/662Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing specially adapted for continuously variable gearings with endless flexible members
    • F16H61/66254Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing specially adapted for continuously variable gearings with endless flexible members controlling of shifting being influenced by a signal derived from the engine and the main coupling
    • F16H61/66259Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing specially adapted for continuously variable gearings with endless flexible members controlling of shifting being influenced by a signal derived from the engine and the main coupling using electrical or electronical sensing or control means

Definitions

  • the present invention relates to a control method of a power transmission device and a control device of the power transmission device.
  • JP 2005-30495 A discloses a belt type continuously variable transmission in which an electric oil pump for shifting is provided in an oil passage communicating a primary pulley oil chamber and a secondary pulley oil chamber.
  • the technology of JP2005-30495A includes a switching valve for using an electric oil pump for shifting as a source pressure.
  • the present invention has been made in view of such problems. While switching the switching valve enables oil in the oil reservoir to be supplied to the primary pulley oil chamber via the electric oil pump for shifting, the switching valve can be switched It is an object of the present invention to provide a control method of a power transmission device and a control device of a power transmission device capable of suppressing the occurrence of slippage in a continuously variable transmission mechanism.
  • a continuously variable transmission mechanism for transmitting power between a drive source and driving wheels, a primary pulley oil chamber and a secondary pulley oil chamber of the continuously variable transmission mechanism It branches from the first oil passage between the communicating first oil passage, the electric oil pump provided in the first oil passage, the electric oil pump and the primary pulley oil chamber, and communicates with the oil reservoir A second oil passage, a switching valve provided at a branch point between the first oil passage and the second oil passage, a branch from the first oil passage between the electric oil pump and the secondary pulley oil chamber And a third oil passage leading to the switching valve, wherein the switching valve has a first position at which the first oil passage is in communication with at least the first oil passage, the second oil passage, and the first oil passage
  • the secondary pulley oil chamber side is in communication, and the third oil passage and the first oil are in communication with each other.
  • the control method of a power transmission device performs switching of the switching valve when a predetermined condition is satisfied, and when switching the switching valve, the primary pulley is more than before the predetermined condition is satisfied. Performing an oil pressure increase that increases the oil pressure of the oil chamber or the secondary pulley oil chamber.
  • a control device of a power transmission device corresponding to the control method of the power transmission device.
  • FIG. 1 is a schematic configuration view showing a main part of a vehicle.
  • FIG. 2A is a first diagram of the switching position of the switching valve.
  • FIG. 2B is a second diagram of the switching position of the switching valve.
  • FIG. 3 is a flowchart showing a first example of control performed by the controller.
  • FIG. 4 is a diagram showing an example of a timing chart corresponding to the first example.
  • FIG. 5A is a first diagram showing the state of the main part of the hydraulic circuit corresponding to the first example.
  • FIG. 5B is a second diagram showing the state of the main part of the hydraulic circuit corresponding to the first example.
  • FIG. 5C is a third diagram showing the state of the main part of the hydraulic circuit corresponding to the first example.
  • FIG. 5A is a first diagram showing the state of the main part of the hydraulic circuit corresponding to the first example.
  • FIG. 5B is a second diagram showing the state of the main part of the hydraulic circuit corresponding to the first example.
  • FIG. 6 is a flowchart showing a second example of control performed by the controller.
  • FIG. 7 is a diagram showing an example of a timing chart corresponding to the second example.
  • FIG. 8A is a first diagram showing the state of the main part of the hydraulic circuit corresponding to the second example.
  • FIG. 8B is a second diagram showing the state of the main part of the hydraulic circuit corresponding to the second example.
  • FIG. 8C is a third diagram showing the state of the main part of the hydraulic circuit corresponding to the second example.
  • FIG. 1 is a schematic configuration view showing a main part of a vehicle.
  • the transmission 1 is a belt-type continuously variable transmission and is mounted on a vehicle together with an engine ENG that constitutes a drive source of the vehicle.
  • the rotation from the engine ENG is input to the transmission 1.
  • the output rotation of the engine ENG is input to the transmission 1 via a torque converter TC or the like having a lockup clutch LU.
  • the transmission 1 outputs the input rotation at a rotation according to the transmission gear ratio.
  • the gear ratio is a value obtained by dividing the input rotation by the output rotation.
  • the transmission 1 has a variator 2 and a hydraulic circuit 3.
  • the variator 2 is provided in a power transmission path connecting the engine ENG and a drive wheel (not shown), and performs power transmission between them.
  • the variator 2 is a belt type continuously variable transmission mechanism having a primary pulley 21, a secondary pulley 22, and a belt 23 wound around the primary pulley 21 and the secondary pulley 22.
  • the variator 2 changes the winding diameter of the belt 23 by changing the groove widths of the primary pulley 21 and the secondary pulley 22 respectively, and performs a speed change.
  • the primary will be referred to as PRI and the secondary will be referred to as SEC.
  • the PRI pulley 21 has a fixed pulley 21a, a movable pulley 21b, and a PRI pulley oil chamber 21c.
  • oil is supplied to the PRI pulley oil chamber 21c.
  • the movable pulley 21b is moved by the oil of the PRI pulley oil chamber 21c, the groove width of the PRI pulley 21 is changed.
  • the SEC pulley 22 has a fixed pulley 22a, a movable pulley 22b, and an SEC pulley oil chamber 22c.
  • oil is supplied to the SEC pulley oil chamber 22c.
  • the movable pulley 22b is moved by the oil of the SEC pulley oil chamber 22c, the groove width of the SEC pulley 22 is changed.
  • the belt 23 has a V-shaped sheave surface formed by the fixed pulley 21a and the movable pulley 21b of the PRI pulley 21 and a V-shaped formed by the fixed pulley 22a and the movable pulley 22b of the SEC pulley 22. It is wound around the sheave surface.
  • the belt 23 is held by a belt clamping force generated by the SEC pressure Psec.
  • the SEC pressure Psec is a pulley pressure of the SEC pulley 22, specifically, the hydraulic pressure of the SEC pulley oil chamber 22c.
  • the hydraulic circuit 3 switches the mechanical oil pump 31, the electric oil pump 32, the check valve 33, the line pressure adjusting valve 34, the line pressure solenoid 35, and the PRI pulley oil chamber 21c and the SEC pulley oil chamber 22c.
  • the mechanical oil pump 31 is connected to the first oil passage R1 via the discharge side oil passage Rout of the mechanical oil pump 31.
  • the mechanical oil pump 31 is a mechanical oil pump driven by the power of the engine ENG, and is coupled to the impeller of the torque converter TC via a power transmission member, as schematically shown in a coupled state by a two-dot broken line.
  • a check valve 33 is provided in the discharge side oil passage Rout.
  • the check valve 33 blocks the flow of oil in the direction of the mechanical oil pump 31 and allows the flow of oil in the opposite direction.
  • a line pressure adjusting valve 34 is connected to a portion of the discharge side oil passage Rout on the downstream side of the check valve 33.
  • the line pressure adjusting valve 34 regulates the oil supplied from the mechanical oil pump 31 to the line pressure PL.
  • the line pressure adjusting valve 34 operates in accordance with the solenoid pressure generated by the line pressure solenoid 35.
  • the line pressure PL is supplied as the SEC pressure Psec to the SEC pulley oil chamber 22c.
  • the line pressure PL constitutes a source pressure of oil used as hydraulic oil in the power transmission device according to the present embodiment configured as described later.
  • An electric oil pump 32 and a switching valve 36 are provided in the first oil passage R1.
  • the electric oil pump 32 is provided at a portion closer to the PRI pulley oil chamber 21c than the first point C1 which is a point to which the discharge side oil passage Rout is connected in the first oil passage R1.
  • the electric oil pump 32 is rotatable in the forward and reverse directions. Specifically, the forward rotation direction is a direction in which oil is supplied to the PRI pulley oil chamber 21c side, and the reverse direction is a direction in which the oil is supplied to the SEC pulley oil chamber 22c side.
  • the switching valve 36 is provided in a portion of the first oil passage R1 between the electric oil pump 32 and the PRI pulley oil chamber 21c.
  • the switching valve 36 includes a first position P1 and a second position P2 as a switching position, and is configured to be able to switch the first position P1 and the second position P2.
  • the switching position of the switching valve 36 will be described later.
  • the electric oil pump 32 communicates with the oil reservoir 37 through the second oil passage R2.
  • the second oil passage R2 is connected to a strainer 37a in the oil reservoir 37.
  • the second oil passage R2 includes an oil passage communicating the oil reservoir 37 with the switching valve 36, and a portion of the first oil passage R1 between the switching valve 36 and the electric oil pump 32.
  • the former oil passage is an oil passage not passing through another oil passage connected to the switching valve 36.
  • Such a switching valve 36 can be grasped as a switching valve provided at a branch point of the first oil passage R1 and the second oil passage R2.
  • the second oil passage R2 is connected to the oil inlet / outlet 32a on the side of the PRI pulley oil chamber 21c of the electric oil pump 32.
  • the portion of the first oil passage R1 between the switching valve 36 and the electric oil pump 32 doubles as a part of the second oil passage R2.
  • the mechanical oil pump 31 is also connected to a portion of the second oil passage R2 closer to the oil reservoir 37 than the switching valve 36 via the suction side oil passage Rin.
  • Such a second oil passage R2 can be grasped as an oil passage which branches from the first oil passage R1 between the electric oil pump 32 and the PRI pulley oil chamber 21c and communicates with the oil reservoir 37.
  • the oil reservoir 37 is an oil reservoir for storing oil supplied by the mechanical oil pump 31 and the electric oil pump 32. The oil is sucked from the oil reservoir 37 via the strainer 37a.
  • the oil reservoir 37 may be composed of a plurality of oil reservoirs.
  • the clutch oil passage RCL includes a portion of the first oil passage R1 between the electric oil pump 32 and the second point C2.
  • the second point C2 is a point on the first oil passage R1 between the electric oil pump 32 and the first point C1.
  • the clutch oil passage RCL further includes an oil passage connecting the second point C2 and the clutch 40.
  • the clutch oil passage R CL is connected to the oil inlet / outlet 32 b on the SEC pulley oil chamber 22 c side of the electric oil pump 32. A portion between the electric oil pump 32 and the second point C2 of the first oil passage R1 also serves as a part of the clutch oil passage R CL.
  • the clutch oil passage RCL is an oil passage not passing through the second oil passage R2.
  • the clutch 40 is engaged by supplying oil to the clutch oil chamber 40a, and released by draining oil from the clutch oil chamber 40a.
  • the clutch 40 together with the variator 2, transmits power between the engine ENG and the drive wheels.
  • the clutch 40 connects and disconnects a power transmission path connecting the engine ENG and the drive wheels.
  • the clutch 40 constitutes a hydraulic device other than the variator 2.
  • a pilot valve 38 is provided at a portion of the clutch oil passage RCL branched from the first oil passage R1.
  • a clutch pressure solenoid 39 is provided in a portion of the clutch oil passage RCL between the pilot valve 38 and the clutch 40.
  • the pilot valve 38 depressurizes the oil supplied from the first oil passage R1.
  • the clutch pressure solenoid 39 adjusts the hydraulic pressure supplied to the clutch 40, that is, the hydraulic pressure P CL of the clutch oil chamber 40a.
  • a PRI oil passage R PRI further branches from the clutch oil passage R CL and communicates with the PRI pulley oil chamber 21 c.
  • PRI oil passage R PRI includes an oil passage connecting the clutch oil passage R CL and the switching valve 36, and a portion of the first oil passage R1 between the switching valve 36 and the PRI pulley oil chamber 21c.
  • the former oil passage is an oil passage not passing through another oil passage connected to the switching valve 36. As a result of the switching valve 36 being provided to connect these, it is further provided in the PRI oil passage RPRI .
  • the PRI oil passage R PRI branches from a portion of the clutch oil passage R CL between the pilot valve 38 and the clutch pressure solenoid 39.
  • a PRI pressure solenoid 42 is provided in the PRI oil passage R PRI .
  • the PRI pressure solenoid 42 is a pressure regulating valve that regulates the oil supplied to the PRI pulley oil chamber 21c, and is provided in a portion of the PRI oil passage RPRI between the switching valve 36 and the clutch oil passage RCL .
  • the portion of the first oil passage R1 between the PRI pulley oil chamber 21c and the switching valve 36 also serves as part of the PRI oil passage RPRI .
  • Such PRI oil passage R PRI together with a part of the clutch oil passage R CL (specifically, the clutch oil passage R CL between the second point C 2 and the point where the PRI oil passage R PRI branches) It can be grasped as a third oil passage R3 which branches from the first oil passage R1 between the pump 32 and the SEC pulley oil chamber 22c and reaches the switching valve 36.
  • the line pressure solenoid 35 generates a solenoid pressure according to the command value of the line pressure PL, and supplies the solenoid pressure to the line pressure adjustment valve 34.
  • the T / C hydraulic system 41 is a hydraulic system of the torque converter TC including the lockup clutch LU, and the oil drained from the line pressure adjusting valve 34 is also supplied to the T / C hydraulic system 41.
  • the mechanical oil pump 31 supplies the SEC pressure Psec to the SEC pulley oil chamber 22c, and the electric oil pump 32 controls oil in and out of the PRI pulley oil chamber 21c.
  • the mechanical oil pump 31 is used to hold the belt 23, and the electric oil pump 32 is used to shift.
  • shifting is performed by moving the oil from one of the PRI pulley oil chamber 21c and the SEC pulley oil chamber 22c to the other by the electric oil pump 32.
  • the vehicle is further provided with a controller 10.
  • the controller 10 is configured to have a transmission controller 11 and an engine controller 12.
  • the transmission controller 11 includes a rotation sensor 51 for detecting the rotation speed on the input side of the variator 2, a rotation sensor 52 for detecting the rotation speed on the output side of the variator 2, and a pressure for detecting the PRI pressure Ppri.
  • the sensor 53 receives a signal from the pressure sensor 54 for detecting the SEC pressure Psec.
  • rotation sensor 51 detects rotational speed Npri of PRI pulley 21.
  • the rotation sensor 52 specifically detects the rotational speed Nsec of the SEC pulley 22.
  • the PRI pressure Ppri is a pulley pressure of the PRI pulley 21, and specifically, is an oil pressure of the PRI pulley oil chamber 21c.
  • the transmission controller 11 can detect the vehicle speed VSP based on the input from the rotation sensor 52.
  • Signals from an accelerator opening sensor 55, a brake sensor 56, a selection range detection switch 57, an engine rotation sensor 58, an oil temperature sensor 59, and an oil pressure sensor 60 are further input to the transmission controller 11.
  • An accelerator opening degree sensor 55 detects an accelerator opening degree APO that represents an operation amount of an accelerator pedal.
  • the brake sensor 56 detects a brake pedal depression force BRK.
  • the selection range detection switch 57 detects the range RNG selected by the shift lever which is a selector.
  • Engine rotation sensor 58 detects rotation speed Ne of engine ENG.
  • the oil temperature sensor 59 detects the oil temperature T OIL of the transmission 1.
  • the oil temperature T OIL is a temperature of oil used as a hydraulic oil in the power transmission device in the present embodiment.
  • the hydraulic pressure sensor 60 detects the hydraulic pressure P CL .
  • the transmission controller 11 is communicably connected to the engine controller 12.
  • Engine torque information Te is input to the transmission controller 11 from the engine controller 12.
  • Signals from the accelerator opening sensor 55 and the engine rotation sensor 58 may be input to the transmission controller 11 via the engine controller 12, for example.
  • the transmission controller 11 generates a control signal including a transmission control signal based on the input signal, and outputs the generated control signal to the hydraulic circuit 3.
  • the electric oil pump 32, the line pressure solenoid 35, the switching valve 36, the clutch pressure solenoid 39, the PRI pressure solenoid 42 and the like are controlled based on a control signal from the transmission controller 11.
  • the transmission ratio of the variator 2 is controlled to the transmission ratio corresponding to the transmission control signal, that is, the target transmission ratio.
  • the controller 10 configured to have the transmission controller 11 and the engine controller 12 constitutes a power transmission device together with the transmission 1.
  • the power transmission apparatus sets the switching position of the switching valve 36 to the first position P1 and uses the electric oil pump 32 for shifting, and sets the switching position of the switching valve 36 to the second position P2 and sets the electric oil pump 32 to the first position. And a second mode used as a source pressure.
  • FIG. 2A and 2B are explanatory diagrams of the switching position of the switching valve 36.
  • FIG. FIG. 2A shows the switching position, that is, the case where the valve position is the first position P1
  • FIG. 2B shows the case where the switching position is the second position P2.
  • 2A and 2B are explanatory views of the first mode and the second mode, in other words.
  • the first position P1 is a switching position where the first oil passage R1 is in communication and the second oil passage R2 is in interruption. Further, at the first position P1, the PRI oil passage R PRI is brought into the shutoff state. As a result, in the case of the first position P1, the mechanical oil pump 31 supplies the oil of the oil reservoir 37 to the SEC pulley oil chamber 22c and the clutch 40, and the electric oil pump 32 controls the oil in and out of the PRI pulley oil chamber 21c. Do.
  • the second position P2 is a switching position where the first oil passage R1 is in the closed state and the second oil passage R2 is in the communication state.
  • the PRI oil passage R PRI is further brought into communication.
  • the electric oil pump 32 is in communication with the clutch 40 and the PRI pulley oil chamber 21c, and supplies the oil of the oil reservoir 37 to the clutch 40 and the PRI pulley oil chamber 21c.
  • the first PRI circuit CT1 is formed at the first position P1.
  • the first PRI circuit CT1 is a first supply / discharge circuit formed at a first position P1 as a circuit for supplying / discharging oil to the PRI pulley oil chamber 21c.
  • the first PRI circuit CT1 is configured to include the electric oil pump 32, the switching valve 36, and the respective oil passages provided between the electric oil pump 32 and the PRI pulley oil chamber 21c.
  • the hydraulic pressure of the first PRI circuit CT1 is a PRI side pressure Pc1 controlled by the electric oil pump 32.
  • the PRI side pressure Pc1 is an oil pressure on the side of the PRI pulley oil chamber 21c of the electric oil pump 32, that is, on the side of the oil inlet / outlet 32a.
  • the PRI side pressure Pc1 is indicated by the hydraulic pressure of a portion between the electric oil pump 32 and the switching valve 36 in the first PRI circuit CT1 during formation and interruption of the first PRI circuit CT1.
  • the second PRI circuit CT2 is a second supply / discharge circuit formed at the second position P2 as a circuit for supplying / discharging the oil to the PRI pulley oil chamber 21c.
  • the second PRI circuit CT2 includes the respective oil passages provided between the electric oil pump 32, the pilot valve 38, the PRI pressure solenoid 42, the switching valve 36, and the electric oil pump 32 and the PRI pulley oil chamber 21c. And is configured.
  • the hydraulic pressure of the second PRI circuit CT2 is set to a SOL pressure Pc2 controlled by the PRI pressure solenoid 42.
  • the SOL pressure Pc2 is an oil pressure on the side of the PRI pulley oil chamber 21c of the PRI pressure solenoid 42, that is, on the downstream side of the PRI pressure solenoid 42.
  • the SOL pressure Pc2 is indicated by the hydraulic pressure of the portion of the second PRI circuit CT2 between the PRI pressure solenoid 42 and the switching valve 36 throughout the formation and cutoff of the second PRI circuit CT2.
  • Such a switching valve 36 brings at least the first position P1 at which the first oil passage R1 is in communication, the second oil passage R2 and the SEC pulley oil chamber 22c side of the first oil passage R1 in communication with each other. It can be grasped as a switching valve which switches two positions, the second position P2 in which the third oil passage R3 and the PRI pulley oil chamber 21c side of the first oil passage R1 communicate with each other.
  • the oil in the oil reservoir 37 can be supplied to the PRI pulley oil chamber 21c through the electric oil pump 32 by switching the switching valve 36.
  • the pulley oil chamber is a generic name of the PRI pulley oil chamber 21c and the SEC pulley oil chamber 22c, and includes being an oil chamber of at least one of the PRI pulley oil chamber 21c and the SEC pulley oil chamber 22c.
  • the position of the switching valve 36 is switched between the first position P1 and the second position P2.
  • a smaller hydraulic pressure is transmitted to the pulley oil chamber as compared to that before switching of the switching valve 36 due to the switching of the switching valve 36.
  • the hydraulic pressure in the pulley oil chamber decreases accordingly and falls below the torque capacity securing pressure PS of the variator 2, there is a concern that slippage may occur in the variator 2.
  • the controller 10 performs the control described below.
  • FIG. 3 is a flowchart showing a first example of control performed by the controller 10.
  • the first example shows an example of control at the time of transition from the second mode to the first mode.
  • the controller 10 is configured to execute the processing of this flowchart, and is configured as a control device of a power transmission device having a first control unit and a second control unit. The same applies to a second example described later.
  • step S1 the controller 10 determines whether the current mode is the second mode.
  • the second mode is applied, for example, at idle stop of the engine ENG.
  • the idle stop is drive source automatic stop control, and is executed when an idle stop condition described later is satisfied. Therefore, for example, the controller 10 can determine whether the current mode is the second mode by determining whether the idle stop condition is satisfied.
  • the idle stop conditions include conditions that the vehicle speed VSP is zero, that the brake pedal is depressed, and that the accelerator pedal is not depressed.
  • the idle stop condition is satisfied when all the conditions included in the idle stop condition are satisfied, and is not satisfied when any of the conditions included in the idle stop condition is not satisfied.
  • engine ENG is started. If a negative determination is made in step S1, the process returns to step S1. If it is affirmation determination by step S1, a process will progress to step S2.
  • step S2 the controller 10 determines whether the idle stop condition is not satisfied. In step S2, it is determined whether or not switching of the mode to the first mode is performed, and therefore switching of the switching valve 36 to the first position P1 is performed. If a negative determination is made in step S2, the process returns to step S3. If it is affirmation determination by step S2, a process will progress to step S3.
  • step S3 the controller 10 increases the hydraulic pressure to increase the PRI pressure Ppri and the SEC pressure Psec.
  • Such an oil pressure increase can be performed by setting an instruction pressure which is an instruction value of the PRI pressure Ppri and an instruction pressure of the SEC pressure Psec.
  • step S3 the controller 10 specifically determines the hydraulic pressure of the pulley oil chamber of the PRI pulley oil chamber 21c and the SEC pulley oil chamber 22c whose hydraulic pressure decreases according to the switching of the switching valve 36 due to the hydraulic pressure of the PRI pressure Ppri.
  • the oil pressure in the pulley oil chamber is increased by the amount corresponding to the decrease.
  • the hydraulic pressure decrease is a hydraulic pressure decrease when the PRI pressure Ppri is not increased.
  • the pulley oil chamber is specifically the PRI pulley oil chamber 21c.
  • the hydraulic pressure of the PRI pulley oil chamber 21c is increased by the hydraulic pressure increase of the PRI pressure Ppri.
  • the controller 10 may increase the hydraulic pressure of the PRI pulley oil chamber 21c by the amount corresponding to the hydraulic pressure decrease or more.
  • step S3 the controller 10 further prevents the high shift of the transmission ratio by increasing the oil pressure of the SEC pressure Psec.
  • step S4 the controller 10 starts switching of the switching valve 36. That is, the switching of the switching valve 36 is performed when the idle stop condition is not satisfied.
  • the specific switching start timing of the switching valve 36 is, for example, after the rotational speed Ne has reached the idle rotational speed.
  • step S5 the controller 10 determines whether or not the switching of the switching valve 36 is completed. Such determination can be performed based on the switching position of the switching valve 36, for example.
  • step S5 the controller 10 determines whether the switching of the switching valve 36 has ended and the current mode has shifted to the first mode.
  • the PRI pressure Ppri is not originally changed according to the stop of the idle stop.
  • the PRI pressure Ppri is higher than before the idle stop condition is not established when the current mode shifts to the first mode. Get higher.
  • the controller 10 specifically sets the PRI pressure Ppri, which has been lowered according to the switching of the switching valve 36, higher than before the idle stop condition is not established. It is determined whether it has become. Such determination can be performed based on the output of the pressure sensor 53, for example. If a negative determination is made in step S5, the process returns to step S5. If the determination in step S5 is affirmative, the process proceeds to step S6.
  • step S6 the controller 10 cancels the increase in hydraulic pressure performed in step S3.
  • the hydraulic pressure increase can be canceled by decreasing the indicated pressure of the PRI pressure Ppri and the indicated pressure of the SEC pressure Psec by an amount corresponding to the increase.
  • the PRI pressure Ppri is set before the idle stop condition is not established until the hydraulic pressure of the increased amount actually decreases. And the transition to the first mode is delayed accordingly.
  • the controller 10 may cancel the hydraulic pressure increase of the PRI pressure Ppri and the SEC pressure Psec after the switching of the switching valve 36 and before the current mode shifts to the first mode.
  • the increase in hydraulic pressure can be canceled as shown in the timing chart described below.
  • FIG. 4 is a diagram showing an example of a timing chart corresponding to the first example.
  • FIG. 5A, FIG. 5B, and FIG. 5C are figures which show the state of the principal part of the hydraulic circuit 3 corresponding to a 1st example.
  • FIG. 4 shows the case where the hydraulic pressure increase is canceled after the switching of the switching valve 36 and before the current mode shifts to the first mode.
  • the rotational speed Nmp indicates the rotational speed of the mechanical oil pump 31.
  • the torque capacity securing pressure PS1 indicates the torque capacity securing pressure PS for the PRI pulley 21.
  • the second mode is from timing T1 to timing T2. Therefore, during this time, as shown in FIG. 5A, the electric oil pump 32 is used for the original pressure, and the PRI pressure Ppri is configured by the SOL pressure Pc2. As shown in FIG. 5A, specifically, a throttle T is branched and connected to the first oil passage R1 between the electric oil pump 32 and the switching valve 36. The throttle T communicates the first oil passage R1 between the electric oil pump 32 and the switching valve 36 with the oil reservoir 37. The reason for providing the aperture T will be described later.
  • the idle stop condition is not satisfied. For this reason, the hydraulic pressure increase of the PRI pressure Ppri and the SEC pressure Psec is performed, whereby the PRI pressure Ppri and the SEC pressure Psec actually start to increase.
  • the hydraulic pressure increase of the PRI pressure Ppri is performed by the command pressure increase of the SOL pressure Pc2.
  • the rotational speed Nmp also starts to rise. That is, the rotational speed Nmp is raised using the mechanical oil pump 31 as a hydraulic pressure source.
  • the rotation speed Nmp becomes the rotation speed Nmp1 according to the idle rotation speed after the PRI pressure Ppri and the SEC pressure Psec become a size according to the command pressure.
  • the rotational speed Nmp is equal to the rotational speed Nmp1, and as indicated by the broken line, switching instruction of the switching valve 36 to the first position P1 is issued, and switching of the switching valve 36 is started.
  • the current mode transitions from the second mode during transition.
  • the communication state of the oil passage in the switching valve 36 does not change, the actual position of the switching valve 36 is made the second position P2 as it is.
  • the rotational direction of the electric oil pump 32 is also switched to the normal direction. As a result, the PRI side pressure Pc1 starts to rise.
  • the switching valve 36 shuts off the oil passage that was in communication at the second position P2.
  • the actual position of the switching valve 36 is not at the second position P2, but at an intermediate position between the first position P1 and the second position P2.
  • the intermediate position is indicated by the progress degree of switching between the first position P1 and the second position P2.
  • FIG. 5B shows a state in which the actual position of the switching valve 36 is in the middle position.
  • FIG. 5C shows a state in which the actual position of the switching valve 36 is at the first position P1.
  • the PRI side pressure Pc1 is increased to become the PRI pressure Ppri before the idle stop condition is not established at the timing T1.
  • the PRI side pressure Pc1 is increased in the first oil passage R1 between the electric oil pump 32 and the switching valve 36 whose volume is smaller than that of the PRI pulley oil chamber 21c.
  • the PRI pressure Ppri is in a reduced state. Then, at timing T4, the reduction of the PRI pressure Ppri can not be stopped by the increased PRI side pressure Pc1 as described above, and the reduction of the PRI pressure Ppri continues as a result of the reduction of the PRI side pressure Pc1. Be done.
  • PRI pressure Ppri is determined after switching of switching valve 36 is completed according to switching of switching valve 36 from second position P2 to first position P1. Also falls.
  • the PRI pressure Ppri decreases according to the switching of the switching valve 36, the PRI pressure Ppri can not faithfully change according to the instruction pressure, and may fall below the torque capacity ensuring pressure PS1.
  • the hydraulic pressure of the PRI pressure Ppri is increased at timing T1.
  • the PRI pressure Ppri is increased in advance at timing T1 by an oil pressure decrease of the PRI pressure Ppri, which decreases according to the switching of the switching valve 36.
  • the PRI pressure Ppri starts to rise at timing T5 before falling below the torque capacity securing pressure PS1.
  • the hydraulic pressure increase at the PRI pressure Ppri and the SEC pressure Psec is canceled near the timing T5, and the SOL pressure Pc2 and the SEC pressure Psec decrease accordingly.
  • the PRI pressure Ppri becomes higher than before the idle stop condition is not satisfied, and the current mode shifts to the first mode.
  • the release of the hydraulic pressure increase of the PRI pressure Ppri as shown in this example can be performed as follows. That is, when switching the switching valve 36 from the second position P2 to the first position P1 as switching of the switching valve 36, the PRI pressure Ppri is configured by the PRI side pressure Pc1 after switching of the switching valve 36.
  • the PRI pressure Ppri can be estimated based on the current value of the electric oil pump 32 and the actual oil pressure of the SEC pressure Psec. Further, according to such deviation between the estimated value of the PRI pressure Ppri and the command value, it is possible to grasp the timing at which the PRI pressure Ppri does not fall below the torque capacity securing pressure PS1 even if the hydraulic pressure increase of the PRI pressure Ppri is cancelled. .
  • the predetermined value is a value for defining the timing at which the PRI pressure Ppri does not fall below the torque capacity ensuring pressure PS1 even if the hydraulic pressure increase of the PRI pressure Ppri is cancelled, and can be set in advance.
  • the reason for providing the aperture T is as follows.
  • the electric oil pump 32 is stopped in a state where the PRI pressure Ppri and the SEC pressure Psec become the same instruction pressure. It is possible to do it.
  • the throttle T generates an oil flow rate within the controllable range of the electric oil pump 32 by releasing the oil in light of the control resolution of the electric oil pump 32, and the range where the electric oil pump 32 can be controlled. It is provided to operate with.
  • FIG. 6 is a flowchart showing a second example of control performed by the controller 10.
  • the second example shows an example of control at the time of transition from the first mode to the second mode.
  • step S11 the controller 10 determines whether the current mode is the first mode.
  • the first mode is applied, for example, when idle stop is not performed. Therefore, for example, the controller 10 can determine whether the current mode is the first mode by determining whether the idle stop condition is not satisfied. If a negative determination is made in step S11, the process returns to step S11. If it is affirmation determination by step S11, a process will progress to step S12.
  • step S12 the controller 10 determines whether the first idle stop condition is satisfied.
  • the first idle stop condition is the same as the above-described idle stop condition, and is a condition under which the drive source automatic stop control is performed. Specifically, the condition is a preparation condition or a basic condition for the execution.
  • the first idle stop condition and the second idle stop condition collectively constitute one idle stop condition.
  • step S12 in other words, it is determined whether or not switching of the mode to the second mode is performed, and thus switching of the switching valve 36 to the second position P2 is performed.
  • the control of the electric oil pump 32 is switched from the shift control according to the target gear ratio to the hydraulic control according to the command pressure. Therefore, in step S12, in other words, it is determined whether the control of the electric oil pump 32 has been switched from the shift control to the hydraulic control.
  • the electric oil pump 32 is controlled in accordance with the command pressure of the PRI pressure Ppri.
  • the command pressure the PRI pressure Ppri before switching to the hydraulic control, such as immediately before switching to the hydraulic control, that is, before the first idle stop condition is satisfied, is used as the command pressure. If a negative determination is made in step S12, the process returns to step S13. If it is affirmation determination by step S12, a process will progress to step S13.
  • step S13 the controller 10 increases the SEC pressure Psec and the hydraulic pressure to increase the PRI pressure Ppri.
  • the controller 10 decreases the hydraulic pressure of the pulley oil chamber in which the hydraulic pressure decreases according to the switching of the switching valve 36 due to the increase of the SEC pressure Psec and the PRI pressure Ppri.
  • the oil pressure in the pulley oil chamber is increased by a minute. This is because the SEC pressure Psec and further the PRI pressure Ppri decrease as described later.
  • the pulley chamber is made into the SEC pulley oil chamber 22c and further the PRI pulley oil chamber 21c.
  • step S14 the controller 10 increases the oil pressure to increase the SOL pressure Pc2 to the magnitude of the PRI pressure Ppri increased by the oil pressure decrease. That is, the controller 10 controls the PRI pressure solenoid 42 to adjust the pressure to the PRI pressure Ppri. This is because the PRI pressure Ppri configured by the PRI side pressure Pc1 is configured by the SOL pressure Pc2 by switching of the switching valve 36. Also, at this time, the PRI pressure Ppri decreases.
  • step S15 the controller 10 starts switching of the switching valve 36.
  • the switching of the switching valve 36 can be performed when the second idle stop condition is satisfied.
  • the second idle stop condition holds in addition to the first idle stop condition, as described later, when the idle stop is ready.
  • step S16 the controller 10 determines whether or not the switching of the switching valve 36 has ended. Specifically, the controller 10 determines whether the switching of the switching valve 36 has ended and the current mode has shifted to the second mode.
  • the PRI pressure Ppri and the SEC pressure Psec are not inherently changed according to the execution of the idle stop. However, if the hydraulic pressure increase performed in step S13 is not canceled, the PRI pressure Ppri and the SEC pressure Psec become higher than before the first idle stop condition is satisfied when the mode is shifted to the second mode.
  • the PRI pressure Ppri and the SEC pressure Psec which are reduced according to the switching of the switching valve 36, of the controller 10 satisfy the first idle stop condition. Determine if it is higher than before. Such determination can be performed based on the outputs of the pressure sensor 53 and the pressure sensor 54, for example. If a negative determination is made in step S16, the process returns to step S16. If it is affirmation determination by step S16, a process will progress to step S17.
  • step S17 the controller 10 cancels the hydraulic pressure increase performed in step S13 and step S14.
  • step S17 the process of this flowchart is temporarily ended.
  • the controller 10 may release the hydraulic pressure increase after the switching of the switching valve 36 and before the current mode shifts to the second mode.
  • the increase in hydraulic pressure can be canceled as shown in the timing chart described below.
  • FIG. 7 is a diagram showing an example of a timing chart corresponding to the second example.
  • FIG. 8A, FIG. 8 and FIG. 8C are diagrams showing the state of the main part of the hydraulic circuit 3 corresponding to the second example.
  • FIG. 7 shows the case where the hydraulic pressure increase is canceled after the switching of the switching valve 36 and before the current mode shifts to the second mode.
  • the torque capacity securing pressure PS2 indicates the torque capacity securing pressure PS for the SEC pulley 22.
  • the first mode is set. Therefore, during this time, as shown in FIG. 8A, the electric oil pump 32 is used for shifting, and the PRI pressure Ppri is configured by the PRI side pressure Pc1.
  • the first idle stop condition is satisfied. For this reason, the SEC pressure Psec and the hydraulic pressure increase of the PRI pressure Ppri are performed, whereby the SEC pressure Psec and the PRI pressure Ppri actually start to increase. Further, the control of the electric oil pump 32 is switched from the shift control to the hydraulic control. At timing T11, the SOL pressure Pc2 is further controlled to the PRI pressure Ppri.
  • the second idle stop condition is satisfied, and a switching command of the switching valve 36 is issued as indicated by a broken line.
  • the second idle stop condition is satisfied when preparation for idle stop is completed, and preparation for idle stop is performed when the SEC pressure Psec is the command pressure and the SOL pressure Pc2 is the PRI pressure Ppri.
  • Whether or not the preparation for idle stop is completed can be determined, for example, based on whether or not a predetermined time set in advance has elapsed from the timing T11 after the first idle stop condition is satisfied.
  • FIG. 8B shows the state when the current mode is in transition.
  • the rotational speed Ne In response to the establishment of the second idle stop condition at the timing T12, the rotational speed Ne actually starts to decrease at the timing T14 at which the current mode transitions to the second mode from the transition. Therefore, the mechanical oil pump 31 functions as a pump for the original pressure during the transition.
  • the rotational direction of the electric oil pump 32 is the normal direction, and the rotational speed of the electric oil pump 32 is instructed to be a constant rotational speed.
  • the first oil passage R1 between the electric oil pump 32 and the switching valve 36 starts communicating with the oil reservoir 37 via the switching valve 36 during transition.
  • a decrease in PRI side pressure Pc1 occurs.
  • the load on the electric oil pump 32 is reduced, and an increase in the rotational speed of the electric oil pump 32 occurs.
  • Such a decrease in the PRI side pressure Pc1 and an increase in the rotational speed of the electric oil pump 32 occur as a temporary change in accordance with the switching of the switching valve 36.
  • the switching valve 36 shuts off the oil passage communicated at the first position P1. As a result, the actual position of the switching valve 36 becomes an intermediate position. As a result, the PRI side pressure Pc1 starts to decrease.
  • FIG. 8C shows a state in which the actual position of the switching valve 36 is at the second position P2.
  • the rotational direction of the electric oil pump 32 is switched to the reverse direction.
  • the PRI side pressure Pc1 becomes zero by the gauge pressure, and the electric oil pump 32 sufficiently functions as a source pressure pump. Therefore, from timing T14, the SEC pressure Psec and the PRI pressure Ppri start to rise.
  • the SEC pressure Psec and the hydraulic pressure increase corresponding to the switching of the switching valve 36 of the PRI pressure Ppri are increased, and the SOL pressure Pc2 is increased to the PRI pressure Ppri. Therefore, at timing T14, the PRI pressure Ppri starts to increase before the torque capacity guarantee pressure PS1 and the SEC pressure Psec starts to fall below the torque capacity guarantee pressure PS2.
  • the hydraulic pressure increase of the PRI pressure Ppri and the SEC pressure Psec is also canceled near the timing T14. Therefore, the rise of the PRI pressure Ppri and the SEC pressure Psec from the timing T14 also includes the influence of the decrease of the PRI pressure Ppri and the SEC pressure Psec according to the release of the increase in the hydraulic pressure.
  • both the PRI pressure Ppri and the SEC pressure Psec become higher than before the first idle stop condition is not established.
  • the current mode shifts to the second mode.
  • Release of the hydraulic pressure increase of the PRI pressure Ppri and the SEC pressure Psec as shown in this example can be performed as follows. That is, when the switching valve 36 is switched from the first position P1 to the second position P2, the SEC pressure Psec after switching of the switching valve 36 can be estimated based on the current value of the electric oil pump 32. Further, according to the difference between the estimated value of the SEC pressure Psec and the indicated value of the SEC pressure Psec, even if the hydraulic pressure increase of the PRI pressure Ppri and the SEC pressure Psec is canceled, the PRI pressure Ppri and the SEC pressure Psec correspond. It is possible to grasp the timing that does not fall below the torque capacity securing pressure PS.
  • the predetermined value is a value for defining the timing at which the PRI pressure Ppri and the SEC pressure Psec do not fall below the corresponding torque capacity securing pressure PS even if the increase in the oil pressure of the SEC pressure Psec is cancelled, and can be set in advance.
  • the control method of the power transmission device includes a variator 2, a first oil passage R1, an electric oil pump 32, a second oil passage R2, a switching valve 36, and a third oil passage R3.
  • the switching valve 36 is used in a power transmission that switches between two positions, a first position P1 and a second position P2.
  • the method of controlling the power transmission device performs switching of the switching valve 36 when the predetermined condition is satisfied, when the idle stop condition is not satisfied, or when the first idle stop condition is satisfied. And, at the time of switching of the switching valve 36, the hydraulic pressure is increased to increase the PRI pressure Ppri or the SEC pressure Psec more than before the predetermined condition is satisfied.
  • the torque capacity ensuring pressure PS is not reduced even if the oil pressure decreases in the pulley oil chamber. It becomes possible. Therefore, the oil in the oil reservoir 37 can be supplied to the PRI pulley oil chamber 21c through the electric oil pump 32 for shifting by switching the switching valve 36, while the belt slip in the variator 2 when switching the switching valve 36. It is possible to suppress the occurrence of
  • the hydraulic pressure of the pulley oil chamber is equal to or more than the hydraulic pressure decrease of the pulley oil chamber of the PRI pulley oil chamber 21c and the SEC pulley oil chamber 22c which decreases according to the switching of the switching valve 36 due to the hydraulic pressure increase. increase. In this way, the hydraulic pressure in the pulley oil chamber can be prevented from falling below the torque capacity securing pressure PS.
  • the control method of the power transmission device further includes canceling the increase in hydraulic pressure after the switching of the switching valve 36 is completed. According to such a method, it is possible to prevent the hydraulic pressure of the pulley oil chamber, which is lowered by switching of the switching valve 36, from falling below the torque capacity securing pressure PS.
  • switching of the switching valve 36 from the second position P2 to the first position P1 is performed as switching of the switching valve 36.
  • the hydraulic pressure of the PRI pulley oil chamber 21c is increased.
  • the switching completion of the switching valve 36 is canceled by canceling the hydraulic pressure increase of the PRI pressure Ppri.
  • the hydraulic pressure increase of the PRI pressure Ppri is canceled.
  • switching of the switching valve 36 from the first position P1 to the second position P2 is performed as switching of the switching valve 36.
  • the hydraulic pressures of the PRI pulley oil chamber 21c and the SEC pulley oil chamber 22c are increased.
  • the hydraulic pressure increase is canceled to thereby After switching ends, the hydraulic pressure increase is released.
  • the hydraulic pressure in the pulley oil chamber can be more reliably prevented from falling below the torque capacity securing pressure PS.
  • a PRI pressure solenoid 42 is further provided in the third oil passage R3, and switching of the switching valve 36 from the first position P1 to the second position P2 is performed as switching of the switching valve 36.
  • the PRI pressure solenoid 42 is controlled to adjust the pressure to the PRI pressure Ppri.
  • the difference between the estimated value of the PRI pressure Ppri estimated based on the current value of the electric oil pump 32 and the actual oil pressure of the SEC pressure Psec falls within a predetermined value In this case, it is possible to cancel the increase in the SEC pressure Psec. In this way, the transition to the first mode is quickened compared to the case where the increase in the oil pressure of the SEC pressure Psec is canceled when the PRI pressure Ppri becomes higher than before the idle stop condition is not satisfied. Can.
  • the switching valve 36 is switched from the first position P1 to the second position P2 as switching of the switching valve 36 in order to cancel the increase in the hydraulic pressure of the SEC pressure Psec, the following may be performed.
  • the hydraulic pressure of the PRI pulley oil chamber 21c and the SEC pulley oil chamber 22c can be increased as the hydraulic pressure increase.
  • the hydraulic pressure increase can be canceled. In this way, the transition to the second mode is performed compared to the case where the hydraulic pressure increase is canceled when each of the PRI pressure Ppri and the SEC pressure Psec becomes higher than before the first idle stop condition is satisfied. It can be early.
  • the hydraulic pressure may be increased as follows.
  • the hydraulic pressure is increased when the hydraulic pressure in the pulley oil chamber of the PRI pulley oil chamber 21c and the SEC pulley oil chamber 22c decreases with the switching of the switching valve 36 falls below the torque capacity guarantee pressure PS.
  • the hydraulic pressure of the pulley oil chamber may be increased by a difference between the hydraulic pressure of the pulley oil chamber and the torque capacity securing pressure PS when the pressure PS is lower than the pressure PS. Specifically, the pulley oil chamber falls below the torque capacity securing pressure PS when the hydraulic pressure is not increased. Even in this case, the hydraulic pressure in the pulley oil chamber can be prevented from falling below the torque capacity securing pressure PS.
  • the mechanical oil pump 31 In the switching of the hydraulic pressure source from the mechanical oil pump 31 to the electric oil pump 32 performed with the switching of the switching valve 36, the mechanical oil pump 31 relates to the situation that the discharge flow rate becomes smaller than the necessary flow rate.
  • the increase in hydraulic pressure causes the rotational speed Nmp to be equal to or less than the threshold as switching of the switching valve 36. It may be performed in the case.
  • the threshold value is an upper limit value of the rotational speed Nmp that permits execution of an increase in the oil pressure of the SEC pressure Psec, and is, for example, the rotational speed Nmp corresponding to the idle rotational speed. Even with this configuration, it is possible to increase the oil pressure of the SEC pressure Psec at an appropriate timing.
  • the threshold may be increased as the oil temperature T OIL is higher. In this way, it is possible to properly carry out the hydraulic increased SEC pressure Psec in accordance with the oil temperature T OIL.
  • the increase in hydraulic pressure corresponds to the actual pressure of the line pressure PL as switching of the switching valve 36. You may make it carry out, when deviation from instruction
  • the hydraulic pressure may be canceled based on the switching position of the switching valve 36. Even in this case, the hydraulic pressure increase can be canceled at an appropriate timing.
  • Such a modification can be applied to, for example, the case where switching of the switching valve 36 from the first position P1 to the second position P2 is performed as switching of the switching valve 36.
  • the switching valve 36 is switched when the predetermined condition is satisfied, including when the idle stop condition is the first idle stop condition, or when the predetermined condition is not satisfied.
  • the switching valve 36 can be switched appropriately.
  • the drive source automatic stop control may be, for example, a drive source automatic stop control such as a coast stop or a sailing stop.
  • the coast stop is executed when a coast stop condition is established.
  • Coast stop conditions are that the vehicle speed VSP is a low vehicle speed (less than a preset vehicle speed), that the accelerator pedal is not depressed, that the brake pedal is depressed, and the forward range is selected in the transmission 1 And the condition is included.
  • the set vehicle speed is, for example, the vehicle speed VSP at which the lockup clutch LU is released.
  • a sailing stop is performed when a sailing stop condition is established.
  • the sailing stop conditions include that the vehicle speed VSP is medium to high speed (more than a preset set vehicle speed), that the accelerator pedal is not depressed, and that the brake pedal is not depressed.
  • the set vehicle speed may be set to a value different from the set vehicle speed set in the coast stop.
  • the coast stop condition is satisfied when all the conditions included in the coast stop condition are satisfied, and is not satisfied when any of the conditions included in the coast stop condition is not satisfied. The same applies to sailing stop conditions.
  • the drive source automatic stop control may be a plurality of drive source automatic stop controls.
  • a plurality of drive source automatic stop controls it is possible to determine whether the current mode is the second mode by determining whether any of the plurality of drive source automatic stop controls is being executed. Further, it is possible to determine whether or not the mode switching to the first mode is performed by determining whether the execution condition of the driving source automatic stop control being executed has not been established.
  • the current mode is the first mode by determining whether all the plurality of drive source automatic stop controls are stopped. Further, it is possible to determine whether mode switching to the second mode is performed by determining whether any of the execution conditions (preparation conditions) of the plurality of drive source automatic stop controls are satisfied.
  • control method of the power transmission device is realized by the controller 10
  • the control method of the power transmission device may be realized by, for example, a single controller such as the transmission controller 11.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Control Of Transmission Device (AREA)

Abstract

動力伝達装置の制御方法は、所定の条件が満たされたときとして、アイドルストップ条件が不成立になったときに、又は第1アイドルストップ条件が成立したときに、切替弁の切り替えを行うことと、切替弁の切り替えの際に、所定の条件が満たされる前よりもPRI圧又はSEC圧を増加させる油圧増加を行うことと、を含む。

Description

動力伝達装置の制御方法及び動力伝達装置の制御装置
 本発明は、動力伝達装置の制御方法及び動力伝達装置の制御装置に関する。
 JP2005-30495Aには、プライマリプーリ油室及びセカンダリプーリ油室を連通する油路に変速用の電動オイルポンプを設けたベルト式無段変速機が開示されている。JP2005-30495Aの技術は、変速用の電動オイルポンプを元圧用として用いるための切替弁を備える。
 上記のような切替弁の切り替えにより、変速用の電動オイルポンプを元圧用として用いて油溜の油をプライマリプーリ油室に供給することが考えられる。
 ところが、切替弁の切り替えの際には、切替弁の切替に起因し、切替弁の切り替え前と比較して小さな油圧がプーリ油室に伝わることになる。そして、これに応じてプーリ油室で油圧が低下し無段変速機構のトルク容量保障圧を下回ると、無段変速機構で滑りが発生する虞がある。
 本発明はこのような課題に鑑みてなされたもので、切替弁の切り替えにより変速用の電動オイルポンプを介して油溜の油をプライマリプーリ油室に供給可能にする一方、切替弁の切り替えの際に無段変速機構における滑りの発生を抑制することが可能な動力伝達装置の制御方法及び動力伝達装置の制御装置を提供することを目的とする。
 本発明のある態様の動力伝達装置の制御方法は、駆動源と駆動輪との間で動力伝達を行う無段変速機構と、前記無段変速機構のプライマリプーリ油室とセカンダリプーリ油室とを連通する第1油路と、前記第1油路に設けられた電動オイルポンプと、前記電動オイルポンプと前記プライマリプーリ油室との間の前記第1油路から分岐して油溜に連通する第2油路と、前記第1油路と前記第2油路との分岐点に設けられた切替弁と、前記電動オイルポンプと前記セカンダリプーリ油室との間の前記第1油路から分岐して前記切替弁に至る第3油路と、を備え、前記切替弁は、少なくとも前記第1油路を連通状態とする第1位置と、前記第2油路と前記第1油路の前記セカンダリプーリ油室側とを連通状態にし、かつ前記第3油路と前記第1油路の前記プライマリプーリ油室側とを連通状態とする第2位置と、の2つの位置を切り替える動力伝達装置で用いられる。動力伝達装置の制御方法は、所定の条件が満たされたときに、前記切替弁の切り替えを行うことと、前記切替弁の切り替えの際に、前記所定の条件が満たされる前よりも前記プライマリプーリ油室又は前記セカンダリプーリ油室の油圧を増加させる油圧増加を行うことと、を含む。
 本発明の別の態様によれば、上記動力伝達装置の制御方法に対応する動力伝達装置の制御装置が提供される。
図1は、車両の要部を示す概略構成図である。 図2Aは、切替弁の切替位置の説明図の第1図である。 図2Bは、切替弁の切替位置の説明図の第2図である。 図3は、コントローラが行う制御の第1の例をフローチャートで示す図である。 図4は、第1の例に対応するタイミングチャートの一例を示す図である。 図5Aは、第1の例に対応する油圧回路の要部の状態を示す第1の図である。 図5Bは、第1の例に対応する油圧回路の要部の状態を示す第2の図である。 図5Cは、第1の例に対応する油圧回路の要部の状態を示す第3の図である。 図6は、コントローラが行う制御の第2の例をフローチャートで示す図である。 図7は、第2の例に対応するタイミングチャートの一例を示す図である。 図8Aは、第2の例に対応する油圧回路の要部の状態を示す第1の図である。 図8Bは、第2の例に対応する油圧回路の要部の状態を示す第2の図である。 図8Cは、第2の例に対応する油圧回路の要部の状態を示す第3の図である。
 以下、添付図面を参照しながら本発明の実施形態について説明する。
 図1は、車両の要部を示す概略構成図である。変速機1は、ベルト式無段変速機であり、車両の駆動源を構成するエンジンENGとともに車両に搭載される。変速機1には、エンジンENGからの回転が入力される。エンジンENGの出力回転は、ロックアップクラッチLUを有するトルクコンバータTC等を介して、変速機1に入力される。変速機1は、入力回転を変速比に応じた回転で出力する。変速比は入力回転を出力回転で割って得られる値である。
 変速機1は、バリエータ2と、油圧回路3とを有する。
 バリエータ2は、エンジンENGと図示しない駆動輪とを結ぶ動力伝達経路に設けられ、これらの間で動力伝達を行う。バリエータ2は、プライマリプーリ21と、セカンダリプーリ22と、プライマリプーリ21及びセカンダリプーリ22に巻き掛けられたベルト23と、を有するベルト式無段変速機構である。
 バリエータ2は、プライマリプーリ21とセカンダリプーリ22との溝幅をそれぞれ変更することで、ベルト23の巻掛け径を変更して変速を行う。以下では、プライマリをPRIと称し、セカンダリをSECと称す。
 PRIプーリ21は、固定プーリ21aと、可動プーリ21bと、PRIプーリ油室21cと、を有する。PRIプーリ21では、PRIプーリ油室21cに油が供給される。PRIプーリ油室21cの油により、可動プーリ21bが移動すると、PRIプーリ21の溝幅が変更される。
 SECプーリ22は、固定プーリ22aと、可動プーリ22bと、SECプーリ油室22cと、を有する。SECプーリ22では、SECプーリ油室22cに油が供給される。SECプーリ油室22cの油により、可動プーリ22bが移動すると、SECプーリ22の溝幅が変更される。
 ベルト23は、PRIプーリ21の固定プーリ21aと可動プーリ21bとにより形成されるV字形状をなすシーブ面と、SECプーリ22の固定プーリ22aと可動プーリ22bとにより形成されるV字形状をなすシーブ面に巻き掛けられる。ベルト23は、SEC圧Psecにより発生するベルト挟持力で保持される。SEC圧Psecは、SECプーリ22のプーリ圧であり、具体的にはSECプーリ油室22cの油圧である。
 油圧回路3は、PRIプーリ油室21c及びSECプーリ油室22cのほか、メカオイルポンプ31と、電動オイルポンプ32と、チェック弁33と、ライン圧調整弁34と、ライン圧ソレノイド35と、切替弁36と、オイルリザーバ37と、パイロット弁38と、クラッチ圧ソレノイド39と、クラッチ40と、T/C油圧システム41と、PRI圧ソレノイド42と、を有する。これらの構成は、油路とともに次のように油圧回路3を構成する。
 PRIプーリ油室21cとSECプーリ油室22cとは、第1油路R1によって連通される。第1油路R1には、メカオイルポンプ31の吐出側油路Routを介してメカオイルポンプ31が接続される。メカオイルポンプ31は、エンジンENGの動力で駆動する機械式オイルポンプであり、二点破線で結合状態を模式的に示すように、トルクコンバータTCのインペラと動力伝達部材を介して結合される。
 吐出側油路Routには、チェック弁33が設けられる。チェック弁33は、メカオイルポンプ31方向への油の流れを阻止し、その逆方向への油の流れを許容する。吐出側油路Routのうちチェック弁33よりも下流側の部分には、ライン圧調整弁34が接続される。
 ライン圧調整弁34は、メカオイルポンプ31から供給される油をライン圧PLに調圧する。ライン圧調整弁34は、ライン圧ソレノイド35が生成するソレノイド圧に応じて動作する。本実施形態では、ライン圧PLは、SEC圧PsecとしてSECプーリ油室22cに供給される。ライン圧PLは、後述するように構成される本実施形態における動力伝達装置で作動油として用いられる油の元圧を構成する。
 第1油路R1には、電動オイルポンプ32と切替弁36とが設けられる。電動オイルポンプ32は、第1油路R1のうち吐出側油路Routが接続する地点である第1地点C1よりもPRIプーリ油室21c側の部分に設けられる。電動オイルポンプ32は、正転及び逆転方向に回転可能とされる。正転方向は具体的には、PRIプーリ油室21c側に油を供給する方向とされ、逆転方向は、SECプーリ油室22c側に油を供給する方向とされる。
 切替弁36は、第1油路R1のうち電動オイルポンプ32とPRIプーリ油室21cとの間の部分に設けられる。切替弁36は、切替位置として第1位置P1及び第2位置P2を含み、第1位置P1及び第2位置P2を切り替え可能に構成される。切替弁36の切替位置については後述する。
 電動オイルポンプ32は、第2油路R2によってオイルリザーバ37と連通する。第2油路R2は具体的には、オイルリザーバ37内のストレーナ37aに接続される。第2油路R2は、オイルリザーバ37と切替弁36とを連通する油路と、第1油路R1のうち切替弁36と電動オイルポンプ32との間の部分とを含む。前者の油路は、切替弁36に接続する他の油路を介さない油路となっている。切替弁36はこれらを接続するように設けられる結果、さらに第2油路R2に設けられたかたちとなっている。このような切替弁36は、第1油路R1と第2油路R2との分岐点に設けられた切替弁として把握することができる。
 第2油路R2は具体的には、電動オイルポンプ32のPRIプーリ油室21c側の油出入口32aに接続される。第1油路R1のうち切替弁36と電動オイルポンプ32との間の部分は、第2油路R2の一部を兼ねる。第2油路R2のうち切替弁36よりもオイルリザーバ37側の部分には吸入側油路Rinを介してメカオイルポンプ31も接続される。
 このような第2油路R2は、電動オイルポンプ32とPRIプーリ油室21cとの間の第1油路R1から分岐してオイルリザーバ37に連通する油路として把握することができる。
 オイルリザーバ37は、メカオイルポンプ31、電動オイルポンプ32が供給する油を貯留する油溜であり、オイルリザーバ37からはストレーナ37aを介して油が吸引される。オイルリザーバ37は、複数の油溜で構成されてもよい。
 電動オイルポンプ32は、クラッチ油路RCLによってクラッチ40、具体的にはクラッチ40のクラッチ油室40aと連通する。クラッチ油路RCLは、第1油路R1のうち電動オイルポンプ32と第2地点C2との間の部分を含む。第2地点C2は、第1油路R1のうち電動オイルポンプ32と第1地点C1との間の地点である。クラッチ油路RCLはさらに、第2地点C2とクラッチ40とを連通する油路を含む。
 クラッチ油路RCLは具体的には、電動オイルポンプ32のSECプーリ油室22c側の油出入口32bに接続される。第1油路R1のうち電動オイルポンプ32と第2地点C2との間の部分は、クラッチ油路RCLの一部を兼ねる。クラッチ油路RCLは、第2油路R2を介さない油路となっている。
 クラッチ40は、クラッチ油室40aに油を供給することで締結され、クラッチ油室40aから油をドレンすることで解放される。クラッチ40は、バリエータ2とともにエンジンENGと駆動輪との間で動力伝達を行う。クラッチ40は、エンジンENGと駆動輪とを結ぶ動力伝達経路の断接を行う。クラッチ40は、バリエータ2以外の油圧機器を構成する。
 クラッチ油路RCLのうち第1油路R1から分岐した部分には、パイロット弁38が設けられる。また、クラッチ油路RCLのうちパイロット弁38とクラッチ40との間の部分には、クラッチ圧ソレノイド39が設けられる。パイロット弁38は、第1油路R1から供給される油を減圧する。クラッチ圧ソレノイド39は、クラッチ40への供給油圧、つまりクラッチ油室40aの油圧PCLを調整する。
 クラッチ油路RCLからはさらに、PRI油路RPRIが分岐してPRIプーリ油室21cに連通する。PRI油路RPRIは、クラッチ油路RCLと切替弁36とを連通する油路と、第1油路R1のうち切替弁36とPRIプーリ油室21cとの間の部分とを含む。前者の油路は、切替弁36に接続する他の油路を介さない油路となっている。切替弁36はこれらを接続するように設けられる結果、さらにPRI油路RPRIに設けられたかたちとなっている。
 PRI油路RPRIは具体的には、クラッチ油路RCLのうちパイロット弁38とクラッチ圧ソレノイド39との間の部分から分岐する。また、PRI油路RPRIにはPRI圧ソレノイド42が設けられる。PRI圧ソレノイド42は、PRIプーリ油室21cに供給される油を調圧する調圧弁であり、PRI油路RPRIのうち切替弁36とクラッチ油路RCLとの間の部分に設けられる。第1油路R1のうちPRIプーリ油室21cと切替弁36との間の部分は、PRI油路RPRIの一部を兼ねる。
 このようなPRI油路RPRIは、クラッチ油路RCLの一部(具体的には、第2地点C2及びPRI油路RPRIが分岐する地点間のクラッチ油路RCL)とともに、電動オイルポンプ32とSECプーリ油室22cとの間の第1油路R1から分岐して切替弁36に至る第3油路R3として把握することができる。
 このほか、油圧回路3では、クラッチ油路RCLのうちパイロット弁38とクラッチ圧ソレノイド39との間の部分から、ライン圧ソレノイド35とT/C油圧システム41とに分岐して接続する油路それぞれが設けられる。
 ライン圧ソレノイド35は、ライン圧PLの指令値に応じたソレノイド圧を生成し、ライン圧調整弁34に供給する。T/C油圧システム41は、ロックアップクラッチLUを含むトルクコンバータTCの油圧システムであり、T/C油圧システム41には、ライン圧調整弁34からドレンされた油も供給される。
 このように構成された油圧回路3では、メカオイルポンプ31がSECプーリ油室22cにSEC圧Psecを供給し、電動オイルポンプ32がPRIプーリ油室21cの油の出入りを制御する。メカオイルポンプ31は、ベルト23の保持に用いられ、電動オイルポンプ32は、変速に用いられる。
 つまり、変速原理としては、電動オイルポンプ32によりPRIプーリ油室21c及びSECプーリ油室22cの一方から他方に油を移動させることで、変速が行われる。
 車両には、コントローラ10がさらに設けられる。コントローラ10は、変速機コントローラ11とエンジンコントローラ12とを有して構成される。
 変速機コントローラ11には、バリエータ2の入力側の回転速度を検出するための回転センサ51、バリエータ2の出力側の回転速度を検出するための回転センサ52、PRI圧Ppriを検出するための圧力センサ53、SEC圧Psecを検出するための圧力センサ54からの信号が入力される。回転センサ51は具体的には、PRIプーリ21の回転速度Npriを検出する。また、回転センサ52は具体的には、SECプーリ22の回転速度Nsecを検出する。PRI圧Ppriは、PRIプーリ21のプーリ圧であり、具体的にはPRIプーリ油室21cの油圧である。変速機コントローラ11は、回転センサ52からの入力に基づき車速VSPを検出できる。
 変速機コントローラ11にはさらに、アクセル開度センサ55、ブレーキセンサ56、選択レンジ検出スイッチ57、エンジン回転センサ58、油温センサ59、油圧センサ60からの信号が入力される。
 アクセル開度センサ55は、アクセルペダルの操作量を表すアクセル開度APOを検出する。ブレーキセンサ56は、ブレーキペダル踏力BRKを検出する。選択レンジ検出スイッチ57は、セレクターであるシフトレバーでセレクト操作されたレンジRNGを検出する。エンジン回転センサ58は、エンジンENGの回転速度Neを検出する。油温センサ59は、変速機1の油温TOILを検出する。油温TOILは、本実施形態における動力伝達装置で作動油として用いられる油の温度である。油圧センサ60は油圧PCLを検出する。
 変速機コントローラ11は、エンジンコントローラ12と相互通信可能に接続される。変速機コントローラ11には、エンジンコントローラ12からエンジントルク情報Teが入力される。アクセル開度センサ55やエンジン回転センサ58からの信号は例えば、エンジンコントローラ12を介して変速機コントローラ11に入力されてもよい。
 変速機コントローラ11は、入力される信号に基づき変速制御信号を含む制御信号を生成し、生成した制御信号を油圧回路3に出力する。油圧回路3では、変速機コントローラ11からの制御信号に基づき、電動オイルポンプ32、ライン圧ソレノイド35、切替弁36、クラッチ圧ソレノイド39、PRI圧ソレノイド42等が制御される。これにより例えば、バリエータ2の変速比が変速制御信号に応じた変速比すなわち目標変速比に制御される。
 本実施形態では、変速機コントローラ11及びエンジンコントローラ12を有して構成されるコントローラ10が、変速機1とともに動力伝達装置を構成する。動力伝達装置は、切替弁36の切替位置を第1位置P1にして電動オイルポンプ32を変速用として用いる第1モードと、切替弁36の切替位置を第2位置P2にして電動オイルポンプ32を元圧用として用いる第2モードとを有する。
 図2A、図2Bは、切替弁36の切替位置の説明図である。図2Aは、切替位置つまりバルブポジションが第1位置P1の場合を示し、図2Bは、切替位置が第2位置P2の場合を示す。図2A、図2Bは換言すれば、第1モード、第2モードの説明図である。
 第1位置P1は、第1油路R1を連通状態とし、第2油路R2を遮断状態とする切替位置である。第1位置P1ではさらに、PRI油路RPRIが遮断状態とされる。結果、第1位置P1の場合には、メカオイルポンプ31がオイルリザーバ37の油をSECプーリ油室22c、クラッチ40に供給し、電動オイルポンプ32がPRIプーリ油室21cの油の出入りを制御する。
 第2位置P2は、第1油路R1を遮断状態とし、第2油路R2を連通状態とする切替位置である。第2位置P2ではさらに、PRI油路RPRIが連通状態とされる。結果、第2位置P2の場合には、電動オイルポンプ32は、クラッチ40及びPRIプーリ油室21cと連通され、オイルリザーバ37の油をクラッチ40及びPRIプーリ油室21cに供給する。
 第2位置P2の場合にはさらに、PRI圧ソレノイド42でクラッチ油路RCLの油を調圧してPRIプーリ油室21cに供給することが可能になる。このため、切替弁36によって第1油路R1が遮断されていても、バリエータ2の変速が可能になる。
 第1位置P1及び第2位置P2についてさらに説明すると、第1位置P1では、第1PRI回路CT1が形成される。第1PRI回路CT1は、PRIプーリ油室21cに油を給排する回路として、第1位置P1で形成される第1給排回路である。第1PRI回路CT1は具体的には、電動オイルポンプ32と、切替弁36と、電動オイルポンプ32及びPRIプーリ油室21c間に設けられた各油路とを有して構成される。
 第1PRI回路CT1の油圧は、電動オイルポンプ32によって制御されるPRI側圧Pc1とされる。PRI側圧Pc1は、電動オイルポンプ32のPRIプーリ油室21c側、つまり油出入口32a側の油圧である。PRI側圧Pc1は具体的には、第1PRI回路CT1の形成時及び遮断時を通じ、第1PRI回路CT1のうち電動オイルポンプ32及び切替弁36間の部分の油圧によって示される。
 第2位置P2では、第2PRI回路CT2が形成される。第2PRI回路CT2は、PRIプーリ油室21cに油を給排する回路として、第2位置P2で形成される第2給排回路である。第2PRI回路CT2は具体的には、電動オイルポンプ32と、パイロット弁38と、PRI圧ソレノイド42と、切替弁36と、電動オイルポンプ32及びPRIプーリ油室21c間に設けられた各油路とを有して構成される。
 第2PRI回路CT2の油圧は、PRI圧ソレノイド42によって制御されるSOL圧Pc2とされる。SOL圧Pc2は、PRI圧ソレノイド42のPRIプーリ油室21c側、つまりPRI圧ソレノイド42の下流側の油圧である。SOL圧Pc2は具体的には、第2PRI回路CT2の形成時及び遮断時を通じ、第2PRI回路CT2のうちPRI圧ソレノイド42及び切替弁36間の部分の油圧によって示される。
 このような切替弁36は、少なくとも第1油路R1を連通状態とする第1位置P1と、第2油路R2と第1油路R1のSECプーリ油室22c側とを連通状態にし、かつ第3油路R3と第1油路R1のPRIプーリ油室21c側とを連通状態とする第2位置P2と、の2つの位置を切り替える切替弁として把握することができる。
 ところで、本実施形態では、図2Bを用いて前述したように、切替弁36の切り替えにより、電動オイルポンプ32を介してオイルリザーバ37の油をPRIプーリ油室21cに供給することができる。
 ところが、切替弁36の切り替えの際には、切替弁36の切り替え前と比較して小さな油圧がプーリ油室に伝わることになる。プーリ油室は、PRIプーリ油室21c及びSECプーリ油室22cの総称であり、PRIプーリ油室21c及びSECプーリ油室22cのうち少なくともいずれかの油室であることを含む。
 切替弁36の切り替えの際には具体的には、切替弁36の位置は第1位置P1と第2位置P2とで切り替えられる。そして、切替弁36の切り替えの際には、切替弁36の切替に起因して、切替弁36の切り替え前と比較して小さな油圧がプーリ油室に伝わることになる。結果、これに応じてプーリ油室で油圧が低下しバリエータ2のトルク容量保障圧PSを下回ると、バリエータ2で滑りが発生することが懸念される。
 このような事情に鑑み、本実施形態ではコントローラ10が次に説明する制御を行う。
 図3は、コントローラ10が行う制御の第1の例をフローチャートで示す図である。第1の例では、第2のモードから第1のモードへの移行時の制御の一例を示す。コントローラ10は、本フローチャートの処理を実行するように構成されることで、第1制御部及び第2制御部を有する動力伝達装置の制御装置として構成される。後述する第2の例についても同様である。
 ステップS1で、コントローラ10は、現在のモードが第2モードか否かを判定する。第2モードは例えば、エンジンENGのアイドルストップ時に適用される。アイドルストップは駆動源自動停止制御であり、後述するアイドルストップ条件が成立した場合に実行される。このため、コントローラ10は例えば、アイドルストップ条件が成立中か否かを判定することで、現在のモードが第2モードか否かを判定することができる。
 アイドルストップ条件は、車速VSPがゼロであること、ブレーキペダルが踏み込まれていること、アクセルペダルが踏み込まれていないこと、を含む条件とされる。アイドルストップ条件は、アイドルストップ条件に含まれる条件のすべてが成立した場合に成立し、アイドルストップ条件に含まれる条件のうちいずれかの条件が不成立の場合に不成立となる。アイドルストップ条件が不成立になると、エンジンENGは始動される。ステップS1で否定判定であれば、処理はステップS1に戻る。ステップS1で肯定判定であれば、処理はステップS2に進む。
 ステップS2で、コントローラ10は、アイドルストップ条件が不成立になったか否かを判定する。ステップS2では、第1モードへのモードの切替が行われるか否か、したがって第1位置P1への切替弁36の切替が行われるか否かが判定される。ステップS2で否定判定であれば、処理はステップS3に戻る。ステップS2で肯定判定であれば、処理はステップS3に進む。
 ステップS3で、コントローラ10は、PRI圧Ppri、さらにはSEC圧Psecを増加させる油圧増加を行う。このような油圧増加は、PRI圧Ppriの指示値である指示圧、及びSEC圧Psecの指示圧の設定により行うことができる。
 ステップS3で、コントローラ10は具体的には、PRI圧Ppriの油圧増加により、PRIプーリ油室21c及びSECプーリ油室22cのうち切替弁36の切り替えに応じて油圧が低下するプーリ油室の油圧低下分、当該プーリ油室の油圧を増加させる。油圧低下分は、PRI圧Ppriの油圧増加を行わない場合の油圧低下分である。
 第1モードに移行する場合、プーリ油室は具体的には、PRIプーリ油室21cとされる。このため、ステップS3では、PRI圧Ppriの油圧増加により、PRIプーリ油室21cの油圧が増加される。ステップS3で、コントローラ10は、油圧低下分以上、PRIプーリ油室21cの油圧を増加させてもよい。
 その一方で、PRI圧Ppriを増加させただけでは、変速比がHIGH側つまり小さくなる方向に変化するハイシフトが発生することになる。このため、ステップS3で、コントローラ10はさらに、SEC圧Psecの油圧増加により変速比のハイシフトを防止する。
 ステップS4で、コントローラ10は、切替弁36の切替を開始する。つまり、切替弁36の切替は、アイドルストップ条件が不成立になった場合に行われる。切替弁36の具体的な切替開始タイミングは例えば、回転速度Neがアイドル回転速度になってからとされる。
 ステップS5で、コントローラ10は、切替弁36の切替が終了したか否かを判定する。このような判定は例えば、切替弁36の切替位置に基づき行うことができる。
 ステップS5で、コントローラ10は具体的には、切替弁36の切替が終了し、且つ現在のモードが第1のモードに移行したか否かを判定する。PRI圧Ppriは本来的には、アイドルストップの停止に応じて変化させない。その一方で、ステップS3で行ったPRI圧Ppriの油圧増加が解除されていないと、現在のモードが第1のモードに移行した場合、PRI圧Ppriは、アイドルストップ条件が不成立になる前よりも高くなる。
 このため、さらに第1のモードへの移行を判定するにあたり、コントローラ10は具体的には、切替弁36の切り替えに応じて低下したPRI圧Ppriが、アイドルストップ条件が不成立になる前よりも高くなったか否かを判定する。このような判定は例えば、圧力センサ53の出力に基づき行うことができる。ステップS5で否定判定であれば、処理はステップS5に戻る。ステップS5で肯定判定であれば、処理はステップS6に進む。
 ステップS6で、コントローラ10は、ステップS3で行った油圧増加を解除する。油圧増加の解除は、PRI圧Ppriの指示圧、さらにはSEC圧Psecの指示圧を増加させた分だけ低下させることで行うことができる。ステップS6の後には、本フローチャートの処理は一旦終了する。
 第1のモードへの移行を判定してからPRI圧Ppriの油圧増加を解除すると、増加させた分の油圧が実際に低下するまでの間、PRI圧Ppriは、アイドルストップ条件が不成立になる前の大きさよりも高くなり、その分第1のモードへの移行が遅くなる。
 このため、コントローラ10は、切替弁36の切替終了後、且つ現在のモードが第1のモードに移行する前にPRI圧Ppri、さらにはSEC圧Psecの油圧増加を解除してもよい。このためには例えば、次に説明するタイミングチャートに示すように油圧増加を解除することができる。
 図4は、第1の例に対応するタイミングチャートの一例を示す図である。図5A、図5B、図5Cは、第1の例に対応する油圧回路3の要部の状態を示す図である。図4では、切替弁36の切替終了後、且つ現在のモードが第1のモードに移行する前に油圧増加を解除する場合について示す。回転速度Nmpは、メカオイルポンプ31の回転速度を示す。トルク容量保障圧PS1は、PRIプーリ21についてのトルク容量保障圧PSを示す。
 タイミングT1からタイミングT2までは、第2のモードになっている。このためこの間は、図5Aに示すように、電動オイルポンプ32は、元圧用に用いられ、PRI圧Ppriは、SOL圧Pc2によって構成される。図5Aに示すように、電動オイルポンプ32及び切替弁36間の第1油路R1には具体的には、絞りTが分岐接続されている。絞りTは、電動オイルポンプ32及び切替弁36間の第1油路R1とオイルリザーバ37とを連通する。絞りTを設けている理由については後述する。
 タイミングT1では、アイドルストップ条件が不成立になる。このため、PRI圧Ppri、さらにはSEC圧Psecの油圧増加が行われ、これによりPRI圧Ppri、さらにはSEC圧Psecが実際に増加し始める。PRI圧Ppriの油圧増加は、SOL圧Pc2の指示圧増加により行われる。
 タイミングT1では、エンジンENGの始動が開始される結果、回転速度Nmpも上昇し始める。つまり、メカオイルポンプ31を油圧源として、回転速度Nmpが立ち上げられる。回転速度Nmpは、PRI圧Ppri、さらにはSEC圧Psecが指示圧に応じた大きさになってからアイドル回転速度に応じた回転速度Nmp1になる。
 タイミングT2では、回転速度Nmpは回転速度Nmp1になっており、破線で示すように、第1位置P1への切替弁36の切替指令が発せられることで、切替弁36の切替が開始される。結果、現在のモードが第2のモードから遷移中に移行する。切替弁36における油路の連通状態が変化しないうちは、切替弁36の実位置はそのまま第2位置P2とされる。タイミングT2では、電動オイルポンプ32の回転方向も正転方向に切り替えられる。結果、PRI側圧Pc1が上昇し始める。
 タイミングT3では、切替弁36が第2位置P2で連通していた油路を遮断する。結果、切替弁36の実位置は第2位置P2ではなくなり、第1位置P1、第2位置P2間の中間位置になる。中間位置では、切替弁36が第1位置P1で連通する油路も遮断した状態になる。図4では、第1位置P1及び第2位置P2間の切替の進行度合いで中間位置を示している。図5Bは、切替弁36の実位置が中間位置のときの状態を示す。
 タイミングT3では、切替弁36が第2位置P2で連通していた油路を遮断する結果、SOL圧Pc2がPRIプーリ油室21cに供給されなくなる。このため、タイミングT3からは、PRI圧Ppriが低下し始める。
 タイミングT4では、切替弁36の実位置が第1位置P1になる。結果、PRI圧PpriがPRI側圧Pc1で構成される。図5Cは、切替弁36の実位置が第1位置P1のときの状態を示す。
 PRI圧PpriがPRI側圧Pc1で構成されてからも、PRI圧Ppriの低下は継続される。これは、次の理由による。
 すなわち、タイミングT3、タイミングT4で、PRI側圧Pc1は、タイミングT1におけるアイドルストップ条件不成立の前のPRI圧Ppriになるように増加されている。この際、PRI側圧Pc1は、図5Bに示すように、PRIプーリ油室21cと比較して容積が小さい電動オイルポンプ32及び切替弁36間の第1油路R1で増加される。
 その一方で、タイミングT4では、PRI圧Ppriは低下状態になっている。そして、タイミングT4では、上記のように増加されるPRI側圧Pc1によっては、PRI圧Ppriの低下を止めることができずに、逆にPRI側圧Pc1が低下される結果、PRI圧Ppriの低下が継続される。
 このため、第2のモードから第1のモードへの移行時において、PRI圧Ppriは、第2位置P2から第1位置P1への切替弁36の切替に応じて、切替弁36の切替完了後も低下する。
 切替弁36の切替に応じたPRI圧Ppriの低下があると、PRI圧Ppriは、指示圧に応じて忠実に変化することができなくなって、トルク容量保障圧PS1を下回り得る。
 但し、この例ではタイミングT1でPRI圧Ppriの油圧増加を行っている。PRI圧Ppriは、切替弁36の切替に応じて低下するPRI圧Ppriの油圧低下分、タイミングT1で予め増加される。
 従って、タイミングT3から切替弁36の切替に応じてPRI圧Ppriが低下しても、その影響は、タイミングT1におけるPRI圧Ppriの油圧増加により相殺されることになる。このため、PRI圧Ppriは、トルク容量保障圧PS1を下回らなくなる。
 結果、PRI圧Ppriはトルク容量保障圧PS1を下回る前に、タイミングT5で上昇し始める。この例では、タイミングT5付近でPRI圧Ppri、さらにはSEC圧Psecの油圧増加の解除も行われ、これに応じてSOL圧Pc2、さらにはSEC圧Psecが低下する。結果、タイミングT6で、PRI圧Ppriがアイドルストップ条件不成立前よりも高くなり、現在のモードが第1のモードに移行する。
 この例に示すようなPRI圧Ppriの油圧増加の解除は、次のようにして行うことができる。すなわち、切替弁36の切り替えとして、第2位置P2から第1位置P1への切替弁36の切り替えを行う場合、PRI圧Ppriは、切替弁36の切替後にPRI側圧Pc1で構成される。そして、このようなPRI圧Ppriは、電動オイルポンプ32の電流値とSEC圧Psecの実油圧とに基づき推定することができる。また、このようなPRI圧Ppriの推定値と指示値との乖離によれば、PRI圧Ppriの油圧増加を解除しても、PRI圧Ppriが、トルク容量保障圧PS1を下回らないタイミングを把握できる。
 このためこの場合には、上記のように推定されるPRI圧Ppriの推定値とPRI圧Ppriの指示値との乖離が所定値以内に収まった場合に、PRI圧Ppriの油圧増加を解除することができる。当該所定値は、PRI圧Ppriの油圧増加を解除しても、PRI圧Ppriがトルク容量保障圧PS1を下回らないタイミングを規定するための値であり、予め設定できる。
 絞りTを設けている理由は、次の通りである。ここで、第1のモードにおいては、PRI圧Ppriの指示圧及びSEC圧Psecの指示圧が同じ場合、PRI圧Ppri及びSEC圧Psecが同じ指示圧になった状態で、電動オイルポンプ32を停止させることが考えられる。
 ところが、停止状態の電動オイルポンプ32では、PRIプーリ油室21cやSECプーリ油室22cでシール等の隙間から少量の油がリークする結果、PRI圧PpriやSEC圧Psecが変化し、変速比が変化し得る。その一方で、電動オイルポンプ32では、その制御分解能に照らし、このようなPRI圧PpriやSEC圧Psecの変化に対応するのは困難となる。
 このため、絞りTは、電動オイルポンプ32の制御分解能に照らし、油を逃がすことで、電動オイルポンプ32が制御可能な範囲内の油の流量を生じさせ、電動オイルポンプ32を制御可能な範囲で作動させるために設けられている。
 図6は、コントローラ10が行う制御の第2の例をフローチャートで示す図である。第2の例では、第1のモードから第2のモードへの移行時の制御の一例を示す。
 ステップS11で、コントローラ10は、現在のモードが第1モードか否かを判定する。第1モードは例えば、アイドルストップが行われていない場合に適用される。このため、コントローラ10は例えば、アイドルストップ条件が成立していないか否かを判定することで、現在のモードが第1モードか否かを判定することができる。ステップS11で否定判定であれば、処理はステップS11に戻る。ステップS11で肯定判定であれば、処理はステップS12に進む。
 ステップS12で、コントローラ10は、第1アイドルストップ条件が成立したか否かを判定する。第1アイドルストップ条件は、前述のアイドルストップ条件と同じであり、駆動源自動停止制御の実行条件であるが、具体的には実行のための準備条件或いは基礎条件とされる。
 つまり、第2モードへの移行の際には、前述のアイドルストップ条件が成立しても、直ちにエンジンENGを停止させず、後述する第2アイドルストップ条件が成立した場合に、エンジンENGを停止させる。このためこの場合は、第1アイドルストップ条件及び第2アイドルストップ条件が全体として一つのアイドルストップ条件を構成する。
 ステップS12では換言すれば、第2のモードへのモードの切替が行われるか否か、したがって第2位置P2への切替弁36の切替が行われるか否かが判定される。本実施形態では、第1アイドルストップ条件が成立すると、電動オイルポンプ32の制御が、目標変速比に応じた変速制御から、指示圧に応じた油圧制御に切り替えられる。このため、ステップS12ではさらに換言すれば、電動オイルポンプ32の制御が変速制御から油圧制御に切り替えられたか否かが判定される。
 油圧制御では、PRI圧Ppriの指示圧に応じて電動オイルポンプ32を制御する。指示圧としては、油圧制御への切り替え直前など油圧制御への切り替え前、つまり第1アイドルストップ条件が成立する前のPRI圧Ppriが指示圧として用いられる。ステップS12で否定判定であれば、処理はステップS13に戻る。ステップS12で肯定判定であれば、処理はステップS13に進む。
 ステップS13で、コントローラ10は、SEC圧Psec、さらにはPRI圧Ppriを増加させる油圧増加を行う。コントローラ10は、第1のモードから第2のモードへの移行時には、SEC圧Psec、さらにはPRI圧Ppriの油圧増加により、切替弁36の切り替えに応じて油圧が低下するプーリ油室の油圧低下分、当該プーリ油室の油圧を増加させる。後述するように、SEC圧Psec、さらにはPRI圧Ppriの低下が発生するためである。第2モードに移行する場合、プーリ室は具体的には、SECプーリ油室22c、さらにはPRIプーリ油室21cとされる。
 ステップS14で、コントローラ10は、油圧低下分増加されたPRI圧Ppriの大きさまでSOL圧Pc2を増加させる油圧増加を行う。つまり、コントローラ10は、PRI圧ソレノイド42を制御してPRI圧Ppriへの調圧を行う。これは、PRI側圧Pc1で構成されていたPRI圧Ppriは、切替弁36の切替によりSOL圧Pc2で構成されるためである。またこのときに、PRI圧Ppriが低下するためである。
 ステップS15で、コントローラ10は、切替弁36の切替を開始する。切替弁36の切替は、第2アイドルストップ条件が成立した場合に行うことができる。第2アイドルストップ条件は、第1アイドルストップ条件に加え、さらに後述するようにアイドルストップの準備が整った場合に成立する。
 ステップS16で、コントローラ10は、切替弁36の切替が終了したか否かを判定する。具体的にはコントローラ10は、切替弁36の切替が終了し、且つ現在のモードが第2のモードに移行したか否かを判定する。PRI圧Ppri及びSEC圧Psecは本来的には、アイドルストップの実行に応じて変化させない。但し、ステップS13で行った油圧増加が解除されていないと、第2のモードに移行した場合、PRI圧Ppri及びSEC圧Psecは、第1アイドルストップ条件が成立する前よりも高くなる。
 このため、第2のモードへの移行を判定するにあたり、コントローラ10はさらに具体的には、切替弁36の切り替えに応じて低下したPRI圧Ppri及びSEC圧Psecが、第1アイドルストップ条件が成立する前よりも高くなったか否かを判定する。このような判定は例えば、圧力センサ53及び圧力センサ54の出力に基づき行うことができる。ステップS16で否定判定であれば、処理はステップS16に戻る。ステップS16で肯定判定であれば、処理はステップS17に進む。
 ステップS17で、コントローラ10は、ステップS13及びステップS14で行った油圧増加を解除する。ステップS17の後には本フローチャートの処理は一旦終了する。
 コントローラ10は、切替弁36の切替終了後、且つ現在のモードが第2のモードに移行する前に油圧増加を解除してもよい。このためには例えば、次に説明するタイミングチャートに示すように油圧増加を解除することができる。
 図7は、第2の例に対応するタイミングチャートの一例を示す図である。図8A、図8、図8Cは、第2の例に対応する油圧回路3の要部の状態を示す図である。図7では、切替弁36の切替終了後、且つ現在のモードが第2のモードに移行する前に油圧増加を解除する場合について示す。トルク容量保障圧PS2は、SECプーリ22についてのトルク容量保障圧PSを示す。
 タイミングT11からタイミングT12までは、第1のモードになっている。このためこの間は、図8Aに示すように、電動オイルポンプ32は、変速用に用いられ、PRI圧Ppriは、PRI側圧Pc1によって構成される。
 タイミングT11では、第1アイドルストップ条件が成立する。このため、SEC圧Psec、さらにはPRI圧Ppriの油圧増加が行われ、これによりSEC圧Psec及びPRI圧Ppriが実際に増加し始める。また、電動オイルポンプ32の制御が変速制御から油圧制御に切り替えられる。タイミングT11ではさらに、SOL圧Pc2がPRI圧Ppriに制御される。
 タイミングT12では、第2アイドルストップ条件が成立し、破線で示すように切替弁36の切替指令が発せられる。第2アイドルストップ条件は、アイドルストップの準備が整った場合に成立し、アイドルストップの準備は、SEC圧Psecが指示圧になっており、且つSOL圧Pc2がPRI圧Ppriになっている場合に成立する。アイドルストップの準備が整ったか否かは例えば、第1アイドルストップ条件が成立してから、つまりタイミングT11から予め設定した所定時間が経過したか否かで判定できる。
 タイミングT12では、破線で示すように、第2位置P2への切替弁36の切替指令が発せられることで、切替弁36の切替が開始される。結果、現在のモードが第1のモードから遷移中に移行する。図8Bは、現在のモードが遷移中のときの状態を示す。
 回転速度Neは、タイミングT12での第2アイドルストップ条件の成立に応じて、現在のモードが遷移中から第2のモードに移行するタイミングT14で実際に低下し始める。したがって、遷移中にはメカオイルポンプ31が元圧用のポンプとして機能する。遷移中には、電動オイルポンプ32の回転方向は、正転方向となっており、電動オイルポンプ32の回転速度は、一定の回転速度に指示されている。
 遷移中には、切替弁36の切替に応じた油圧低下として、SEC圧Psec、さらにはPRI圧Ppriの低下が発生する。これは、次の理由による。
 ここで、電動オイルポンプ32及び切替弁36間の第1油路R1は、遷移中に切替弁36を介してオイルリザーバ37と連通し始める。結果、PRI側圧Pc1の低下が発生する。これにより、電動オイルポンプ32の負荷が軽くなって、電動オイルポンプ32の回転速度の上昇が発生する。このようなPRI側圧Pc1の低下及び電動オイルポンプ32の回転速度の上昇は、切替弁36の切替に応じた一時的な変化として発生する。
 電動オイルポンプ32の回転速度が上昇すると、電動オイルポンプ32から見てSECプーリ油室22c側の油がオイルリザーバ37側に供給されるので、SEC圧Psecが低下する。また遷移中には、PRIプーリ油室21cは、PRI圧ソレノイド42、パイロット弁38を介して、SECプーリ油室22cと連通した状態になっている。このため、SEC圧Psecが低下すると、これに伴いPRI圧Ppriも低下する。
 つまり、油圧低下のメカニズムとしては、SEC圧Psecの低下がまず発生し、これに付随するかたちでPRI圧Ppriも低下することから、SEC圧Psec、さらにはPRI圧Ppriの油圧増加が、前述したタイミングT11で行われる。
 タイミングT13では、切替弁36が第1位置P1で連通していた油路を遮断する。結果、切替弁36の実位置は中間位置になる。結果、PRI側圧Pc1が低下し始める。
 タイミングT14では、切替弁36が第2位置P2に切り替えられる。結果、PRI圧PpriがSOL圧Pc2で構成される。図8Cは、切替弁36の実位置が第2位置P2のときの状態を示す。
 タイミングT14では、電動オイルポンプ32の回転方向が逆転方向に切り替えられる。タイミングT14では、PRI側圧Pc1がゲージ圧でゼロになり、電動オイルポンプ32が元圧用ポンプとして十分機能する。このため、タイミングT14からは、SEC圧Psec及びPRI圧Ppriが上昇し始める。
 この例では、タイミングT11で、SEC圧Psec、さらにはPRI圧Ppriの切替弁36の切替に応じた油圧低下分の油圧増加を行うとともに、SOL圧Pc2をPRI圧Ppriまで増加させている。このため、タイミングT14では、PRI圧Ppriはトルク容量保障圧PS1を、SEC圧Psecはトルク容量保障圧PS2をそれぞれ下回る前に上昇し始める。
 この例では、タイミングT14付近でPRI圧Ppri及びSEC圧Psecの油圧増加の解除も行われる。このため、タイミングT14からのPRI圧Ppri及びSEC圧Psecの上昇には、油圧増加の解除に応じたPRI圧Ppri及びSEC圧Psecの低下の影響も含まれている。
 タイミングT15では、PRI圧Ppri及びSEC圧Psecがともに第1アイドルストップ条件不成立前よりも高くなる。このため、タイミングT15からは、現在のモードが第2のモードに移行する。
 この例に示すようなPRI圧Ppri及びSEC圧Psecの油圧増加の解除は、次のようにして行うことができる。すなわち、第1位置P1から第2位置P2への切替弁36の切り替えを行う場合は、電動オイルポンプ32の電流値に基づき、切替弁36切替後のSEC圧Psecを推定できる。また、このようなSEC圧Psecの推定値とSEC圧Psecの指示値との乖離によれば、PRI圧Ppri及びSEC圧Psecの油圧増加を解除しても、PRI圧Ppri及びSEC圧Psecが対応するトルク容量保障圧PSを下回らないタイミングを把握できる。
 このためこの場合には、上記のように推定されるSEC圧Psecの推定値と指示値との乖離が所定値以内に収まった場合に、SEC圧Psecの油圧増加を解除することができる。当該所定値は、SEC圧Psecの油圧増加を解除しても、PRI圧Ppri及びSEC圧Psecが対応するトルク容量保障圧PSを下回らないタイミングを規定するための値であり、予め設定できる。
 次に、本実施形態の主な作用効果について説明する。
 本実施形態にかかる動力伝達装置の制御方法は、バリエータ2と、第1油路R1と、電動オイルポンプ32と、第2油路R2と、切替弁36と、第3油路R3とを備え、切替弁36が、第1位置P1と第2位置P2と、の2つの位置を切り替える動力伝達装置で用いられる。動力伝達装置の制御方法は、所定の条件が満たされたときとして、アイドルストップ条件が不成立になったときに、又は第1アイドルストップ条件が成立したときに、切替弁36の切り替えを行うことと、切替弁36の切り替えの際に、所定の条件が満たされる前よりもPRI圧Ppri又はSEC圧Psecを増加させる油圧増加を行うことと、を含む。
 このような方法によれば、切替弁36の切り替えの際にPRI圧Ppri又はSEC圧Psecを増加させることで、プーリ油室で油圧が低下してもトルク容量保障圧PSを下回らないようにすることが可能になる。このため、切替弁36の切り替えにより変速用の電動オイルポンプ32を介してオイルリザーバ37の油をPRIプーリ油室21cに供給可能にする一方、切替弁36の切り替えの際にバリエータ2におけるベルト滑りの発生を抑制することが可能になる。
 本実施形態では、油圧増加により、PRIプーリ油室21c及びSECプーリ油室22cのうち切替弁36の切り替えに応じて油圧が低下するプーリ油室の油圧低下分以上、当該プーリ油室の油圧を増加させる。このようにすれば、プーリ油室の油圧がトルク容量保障圧PSを下回らないようにすることができる。
 本実施形態にかかる動力伝達装置の制御方法は、切替弁36の切替終了後に油圧増加を解除することをさらに含む。このような方法によれば、切替弁36の切替により低下するプーリ油室の油圧がトルク容量保障圧PSを下回らないようにすることができる。
 本実施形態では、切替弁36の切り替えとして、第2位置P2から第1位置P1への切替弁36の切り替えを行う。また、油圧増加として、PRIプーリ油室21cの油圧を増加させる。さらに、切替弁36の切り替えに応じて低下したPRI圧Ppriが、アイドルストップ条件が不成立になる前よりも高くなった場合にPRI圧Ppriの油圧増加を解除することで、切替弁36の切替終了後にPRI圧Ppriの油圧増加を解除する。これにより、プーリ油室の油圧がより確実にトルク容量保障圧PSを下回らないようにすることができる。
 本実施形態では、切替弁36の切り替えとして、第1位置P1から第2位置P2への切替弁36の切り替えを行う。また、油圧増加として、PRIプーリ油室21c及びSECプーリ油室22cの油圧を増加させる。さらに、切替弁36の切り替えに応じて低下したPRI圧Ppri及びSEC圧Psecそれぞれが、第1アイドルストップ条件が成立する前よりも高くなった場合に油圧増加を解除することで、切替弁36の切替終了後に油圧増加を解除する。これにより、プーリ油室の油圧がより確実にトルク容量保障圧PSを下回らないようにすることができる。
 本実施形態では、第3油路R3にPRI圧ソレノイド42がさらに設けられ、切替弁36の切り替えとして、第1位置P1から第2位置P2への切替弁36の切り替えを行う。この場合において、本実施形態にかかる動力伝達装置の制御方法は、切替弁36の切り替えの際に、PRI圧ソレノイド42を制御してPRI圧Ppriへの調圧を行う。
 このような方法によれば、第2位置P2への切替弁36の切替の際に電動オイルポンプ32を元圧用ポンプとして用いるようにしても、これに応じたライン圧PLの低下によりPRI圧Ppriがトルク容量保障圧PS1を下回らないようにすることが可能になる。
 SEC圧Psecの油圧増加を解除するにあたり、切替弁36の切り替えとして、第2位置P2から第1位置P1への切替弁36の切り替えを行う場合には、次のようにすることもできる。
 すなわちこの場合には、電動オイルポンプ32の電流値とSEC圧Psecの実油圧とに基づき推定されるPRI圧Ppriの推定値と、PRI圧Ppriの指示値との乖離が所定値以内に収まった場合に、SEC圧Psecの油圧増加を解除することもできる。このようにすれば、アイドルストップ条件が不成立になる前よりもPRI圧Ppriが高くなった場合にSEC圧Psecの油圧増加を解除する場合と比較して、第1のモードへの移行を早めることができる。
 SEC圧Psecの油圧増加を解除するにあたり、切替弁36の切り替えとして、第1位置P1から第2位置P2への切替弁36の切り替えを行う場合には、次のようにすることもできる。
 すなわちこの場合には、油圧増加として、PRIプーリ油室21c及びSECプーリ油室22cの油圧を増加させることができる。また、電動オイルポンプ32の電流値に基づき推定されるSEC圧Psecの推定値とSEC圧Psecの指示値との乖離が所定値以内に収まった場合に、油圧増加を解除することができる。このようにすれば、第1アイドルストップ条件が成立する前よりもPRI圧Ppri及びSEC圧Psecそれぞれが高くなった場合に油圧増加を解除する場合と比較して、第2のモードへの移行を早めることができる。
 次に本実施形態のその他の変形例について説明する。
 油圧増加は次のように行ってもよい。
 すなわち、油圧増加は、PRIプーリ油室21c及びSECプーリ油室22cのうち切替弁36の切り替えに応じて油圧が低下するプーリ油室の油圧がトルク容量保障圧PSを下回る場合に、トルク容量保障圧PSを下回った場合の当該プーリ油室の油圧とトルク容量保障圧PSとの乖離分以上、当該プーリ油室の油圧を増加させるように行ってもよい。当該プーリ油室は具体的には、油圧増加を行わない場合にトルク容量保障圧PSを下回る。このようにしても、プーリ油室の油圧がトルク容量保障圧PSを下回らないようにすることができる。
 切替弁36の切替とともに行われるメカオイルポンプ31から電動オイルポンプ32への油圧源の切替には、メカオイルポンプ31では吐出流量が必要流量よりも小さくなるという事情が関連する。
 このため、切替弁36の切り替えとして、第1位置P1から第2位置P2への切替弁36の切り替えを行う場合、油圧増加は、切替弁36の切り替えの際として、回転速度Nmpが閾値以下の場合に行うようにしてもよい。当該閾値は、SEC圧Psecの油圧増加の実行を許可する回転速度Nmpの上限値であり、例えばアイドル回転速度に応じた回転速度Nmpである。このようにしても、適切なタイミングでSEC圧Psecの油圧増加を行うことができる。
 この場合において、上記閾値は油温TOILが高いほど大きくしてもよい。このようにすれば、油温TOILに応じてSEC圧Psecの油圧増加を適切に行うことができる。
 メカオイルポンプ31の吐出流量が必要流量より小さくなる場合、ライン圧PLの実圧は指示圧に追従することができなくなって、ライン圧PLの実圧と指示圧との乖離が発生する。
 このため、切替弁36の切り替えとして、第1位置P1から第2位置P2への切替弁36の切り替えを行う場合、油圧増加は、切替弁36の切り替えの際として、ライン圧PLの実圧と指示圧との乖離が所定値よりも大きい場合に行うようにしてもよい。このようにしても、適切なタイミングでSEC圧Psecの油圧増加を行うことができる。
 切替弁36の切替終了後に油圧増加を解除するにあたっては、切替弁36の切替位置に基づき油圧増加を解除してもよい。このようにしても、適切なタイミングで油圧増加を解除することができる。このような変形例は例えば、切替弁36の切り替えとして、第1位置P1から第2位置P2への切替弁36の切り替えを行う場合に適用できる。
 切替弁36の切り替えとして、第1位置P1から第2位置P2への切替弁36の切り替えを行う場合、油圧増加と油圧増加解除とについての変形例は、PRI圧Ppriの油圧増加と油圧増加解除とに適用することもできる。
 本実施形態では、所定の条件が満たされたときとして、アイドルストップ条件が第1アイドルストップ条件とされる場合を含め、成立した場合又は不成立になった場合に、切替弁36の切り替えを行う。これにより、アイドルストップが行われる車両で電動オイルポンプ32を元圧用ポンプとして用いるにあたり、切替弁36の切り替えを適切に行うことができる。
 以上、本発明の実施形態について説明したが、上記実施形態は本発明の適用例の一部を示したに過ぎず、本発明の技術的範囲を上記実施形態の具体的構成に限定する趣旨ではない。
 上述した実施形態では、駆動源自動停止制御としてアイドルストップが行われる場合について説明した。しかしながら、駆動源自動停止制御は例えば、コーストストップやセーリングストップ等の駆動源自動停止制御であってもよい。
 コーストストップは、コーストストップ条件が成立した場合に実行される。コーストストップ条件は、車速VSPが低車速(予め設定された設定車速未満)であること、アクセルペダルの踏み込みがないこと、ブレーキペダルの踏み込みがあること、変速機1で前進レンジが選択されていること、を含む条件とされる。設定車速は例えば、ロックアップクラッチLUが解放される車速VSPとされる。
 セーリングストップは、セーリングストップ条件が成立した場合に実行される。セーリングストップ条件は、車速VSPが中高速(予め設定された設定車速以上)であること、アクセルペダルの踏み込みがないこと、ブレーキペダルの踏み込みがないことを含む。設定車速は、コーストストップで設定される設定車速と異なる値に設定されてもよい。
 コーストストップ条件は、コーストストップ条件に含まれる条件のすべてが成立した場合に成立し、コーストストップ条件に含まれる条件のうちいずれかの条件が不成立の場合に不成立となる。セーリングストップ条件についても同様である。
 駆動源自動停止制御は、複数の駆動源自動停止制御であってもよい。複数の駆動源自動停止制御を有する場合、複数の駆動源自動停止制御のうちいずれかが実行中か否かを判定することで、現在のモードが第2のモードか否かを判定できる。また、実行中の駆動源自動停止制御の実行条件が不成立になったか否かを判定することで、第1モードへのモードの切替が行われるか否かを判定できる。
 さらに、複数の駆動源自動停止制御を有する場合、複数の駆動源自動停止制御すべてが停止中か否かを判定することで、現在のモードが第1のモードか否かを判定できる。また、複数の駆動源自動停止制御のうちいずれかの実行条件(準備条件)が成立したか否かを判定することで、第2モードへのモードの切替が行われるか否かを判定できる。
 上述した実施形態では、動力伝達装置の制御方法がコントローラ10で実現される場合について説明した。しかしながら、動力伝達装置の制御方法は例えば、変速機コントローラ11など単一のコントローラで実現されてもよい。
 本願は2017年12月28日に日本国特許庁に出願された特願2017-254764に基づく優先権を主張し、この出願のすべての内容は参照により本明細書に組み込まれる。

Claims (15)

  1.  駆動源と駆動輪との間で動力伝達を行う無段変速機構と、
     前記無段変速機構のプライマリプーリ油室とセカンダリプーリ油室とを連通する第1油路と、
     前記第1油路に設けられた電動オイルポンプと、
     前記電動オイルポンプと前記プライマリプーリ油室との間の前記第1油路から分岐して油溜に連通する第2油路と、
     前記第1油路と前記第2油路との分岐点に設けられた切替弁と、
     前記電動オイルポンプと前記セカンダリプーリ油室との間の前記第1油路から分岐して前記切替弁に至る第3油路と、
    を備え、
     前記切替弁は、
      少なくとも前記第1油路を連通状態とする第1位置と、
      前記第2油路と前記第1油路の前記セカンダリプーリ油室側とを連通状態にし、かつ前記第3油路と前記第1油路の前記プライマリプーリ油室側とを連通状態とする第2位置と、の2つの位置を切り替える動力伝達装置の制御方法であって、
     所定の条件が満たされたときに、前記切替弁の切り替えを行うことと、
     前記切替弁の切り替えの際に、前記所定の条件が満たされる前よりも前記プライマリプーリ油室又は前記セカンダリプーリ油室の油圧を増加させる油圧増加を行うことと、
    を含む動力伝達装置の制御方法。
  2.  請求項1に記載の動力伝達装置の制御方法であって、
     前記油圧増加により、前記プライマリプーリ油室及び前記セカンダリプーリ油室のうち前記切替弁の切り替えに応じて油圧が低下するプーリ油室の油圧低下分以上、当該プーリ油室の油圧を増加させる動力伝達装置の制御方法。
  3.  請求項1に記載の動力伝達装置の制御方法であって、
     前記プライマリプーリ油室及び前記セカンダリプーリ油室のうち前記切替弁の切り替えに応じて油圧が低下するプーリ油室の油圧が前記無段変速機構のトルク容量保障圧を下回る場合には、前記油圧増加により、前記トルク容量保障圧を下回った場合の前記プーリ油室の油圧と前記トルク容量保障圧との乖離分以上、前記プーリ油室の油圧を増加させる動力伝達装置の制御方法。
  4.  請求項1に記載の動力伝達装置の制御方法であって、
     前記第1油路に接続され前記駆動源の動力により駆動する機械式オイルポンプをさらに設け、
     前記切替弁の切り替えとして、前記第1位置から前記第2位置への前記切替弁の切り替えを行い、
     前記切替弁の切り替えの際として、前記機械式オイルポンプの回転速度が閾値以下の場合に、前記油圧増加を行う動力伝達装置の制御方法。
  5.  請求項4に記載の動力伝達装置の制御方法であって、
     油温が高いほど、前記閾値を大きくする動力伝達装置の制御方法。
  6.  請求項1に記載の動力伝達装置の制御方法であって、
     前記切替弁の切り替えとして、前記第1位置から前記第2位置への前記切替弁の切り替えを行い、
     前記切替弁の切り替えの際として、油の元圧であるライン圧の実圧と指示圧との乖離が所定値よりも大きい場合に、前記油圧増加を行う動力伝達装置の制御方法。
  7.  請求項1に記載の動力伝達装置の制御方法であって、
     前記切替弁の切替終了後に前記油圧増加を解除することをさらに含む動力伝達装置の制御方法。
  8.  請求項7に記載の動力伝達装置の制御方法であって、
     前記切替弁の切替位置に基づき前記油圧増加を解除することで、前記切替弁の切替終了後に前記油圧増加を解除する動力伝達装置の制御方法。
  9.  請求項7に記載の動力伝達装置の制御方法であって、
     前記切替弁の切り替えとして、前記第2位置から前記第1位置への前記切替弁の切り替えを行い、
     前記油圧増加として、前記プライマリプーリ油室の油圧を増加させ、
     前記切替弁の切り替えに応じて低下した前記プライマリプーリ油室の油圧が、前記所定の条件が満たされる前よりも高くなった場合に前記油圧増加を解除することで、前記切替弁の切替終了後に前記油圧増加を解除する動力伝達装置の制御方法。
  10.  請求項7に記載の動力伝達装置の制御方法であって、
     前記切替弁の切り替えとして、前記第2位置から前記第1位置への前記切替弁の切り替えを行い、
     前記電動オイルポンプの電流値と前記セカンダリプーリ油室の実油圧とに基づき推定される前記プライマリプーリ油室の油圧推定値と、前記プライマリプーリ油室の油圧指示値との乖離が所定値以内に収まった場合に前記油圧増加を解除することで、前記切替弁の切替終了後に前記油圧増加を解除する動力伝達装置の制御方法。
  11.  請求項7に記載の動力伝達装置の制御方法であって、
     前記切替弁の切り替えとして、前記第1位置から前記第2位置への前記切替弁の切り替えを行い、
     前記油圧増加として、前記プライマリプーリ油室及び前記セカンダリプーリ油室の油圧を増加させ、
     前記切替弁の切り替えに応じて低下した前記プライマリプーリ油室及び前記セカンダリプーリ油室の油圧それぞれが、前記所定の条件が満たされる前よりも高くなった場合に前記油圧増加を解除することで、前記切替弁の切替終了後に前記油圧増加を解除する動力伝達装置の制御方法。
  12.  請求項7に記載の動力伝達装置の制御方法であって、
     前記切替弁の切り替えとして、前記第1位置から前記第2位置への前記切替弁の切り替えを行い、
     前記油圧増加として、前記プライマリプーリ油室及び前記セカンダリプーリ油室の油圧を増加させ、
     前記電動オイルポンプの電流値に基づき推定される前記セカンダリプーリ油室の油圧推定値と、前記セカンダリプーリ油室の油圧指示値との乖離が所定値以内に収まった場合に前記油圧増加を解除することで、前記切替弁の切替終了後に前記油圧増加を解除する動力伝達装置の制御方法。
  13.  請求項1に記載の動力伝達装置の制御方法であって、
     前記第3油路に前記プライマリプーリ油室に供給される油を調圧する調圧弁をさらに設け、
     前記切替弁の切り替えとして、前記第1位置から前記第2位置への前記切替弁の切り替えを行い、
     前記切替弁の切り替えの際に、前記調圧弁を制御して前記プライマリプーリ油室の油圧への調圧を行う動力伝達装置の制御方法。
  14.  請求項1から13いずれか1項に記載の動力伝達装置の制御方法であって、
     前記所定の条件が満たされたときとして、前記駆動源の自動停止制御の実行条件が、準備条件とされる場合を含め、成立した場合又は不成立になった場合に、前記切替弁の切り替えを行う動力伝達装置の制御方法。
  15.  駆動源と駆動輪との間で動力伝達を行う無段変速機構と、
     前記無段変速機構のプライマリプーリ油室とセカンダリプーリ油室とを連通する第1油路と、
     前記第1油路に設けられた電動オイルポンプと、
     前記電動オイルポンプと前記プライマリプーリ油室との間の前記第1油路から分岐して油溜に連通する第2油路と、
     前記第1油路と前記第2油路との分岐点に設けられた切替弁と、
     前記電動オイルポンプと前記セカンダリプーリ油室との間の前記第1油路から分岐して前記切替弁に至る第3油路と、
    を備え、
     前記切替弁は、
      少なくとも前記第1油路を連通状態とする第1位置と、
      前記第2油路と前記第1油路の前記セカンダリプーリ油室側とを連通状態にし、かつ前記第3油路と前記第1油路の前記プライマリプーリ油室側とを連通状態とする第2位置と、の2つの位置を切り替える動力伝達装置の制御装置であって、
     所定の条件が満たされたときに、前記切替弁の切り替えを行う第1制御部と、
     前記切替弁の切り替えの際に、前記所定の条件が満たされる前よりも前記プライマリプーリ油室又は前記セカンダリプーリ油室の油圧を増加させる油圧増加を行う第2制御部と、
    を備える動力伝達装置の制御装置。
PCT/JP2018/047111 2017-12-28 2018-12-20 動力伝達装置の制御方法及び動力伝達装置の制御装置 WO2019131464A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US16/958,234 US20200370640A1 (en) 2017-12-28 2018-12-20 Control method for power transmission device, and control device for power transmission device
CN201880082292.4A CN111512073A (zh) 2017-12-28 2018-12-20 动力传递装置的控制方法以及动力传递装置的控制装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017254764A JP2019120308A (ja) 2017-12-28 2017-12-28 動力伝達装置の制御方法及び動力伝達装置の制御装置
JP2017-254764 2017-12-28

Publications (1)

Publication Number Publication Date
WO2019131464A1 true WO2019131464A1 (ja) 2019-07-04

Family

ID=67063594

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/047111 WO2019131464A1 (ja) 2017-12-28 2018-12-20 動力伝達装置の制御方法及び動力伝達装置の制御装置

Country Status (4)

Country Link
US (1) US20200370640A1 (ja)
JP (1) JP2019120308A (ja)
CN (1) CN111512073A (ja)
WO (1) WO2019131464A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005030495A (ja) * 2003-07-14 2005-02-03 Toyota Motor Corp 電動オイルポンプ機能拡大型車輌用変速駆動装置
JP2005282694A (ja) * 2004-03-29 2005-10-13 Toyota Motor Corp 無段変速機を備えた車両の制御装置
JP2016008631A (ja) * 2014-06-23 2016-01-18 本田技研工業株式会社 油圧制御装置
JP2017223344A (ja) * 2016-06-17 2017-12-21 本田技研工業株式会社 油圧機器用油圧回路

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2661346B2 (ja) * 1989-09-18 1997-10-08 トヨタ自動車株式会社 車両用無段変速機の油圧制御装置
DE19609787A1 (de) * 1996-03-13 1997-09-18 Bosch Gmbh Robert Hydrauliknotsteuerung für ein stufenloses Umschlingungsgetriebe mit erweitertem Handschaltventil
CN100476248C (zh) * 2005-05-31 2009-04-08 丰田自动车株式会社 用于带传动无级变速器的液压控制设备及其控制方法
JP4238895B2 (ja) * 2006-08-11 2009-03-18 トヨタ自動車株式会社 車両用無段変速機の変速制御装置
JP4344380B2 (ja) * 2006-12-26 2009-10-14 ジヤトコ株式会社 無段変速機の制御装置
JP4289407B2 (ja) * 2007-02-27 2009-07-01 トヨタ自動車株式会社 油圧供給装置
JP4678417B2 (ja) * 2008-04-18 2011-04-27 トヨタ自動車株式会社 油圧制御装置
WO2013098922A1 (ja) * 2011-12-26 2013-07-04 トヨタ自動車株式会社 油圧制御装置及び車両制御装置
CN104379911B (zh) * 2013-03-25 2017-02-22 本田技研工业株式会社 车辆的控制装置
US10047860B2 (en) * 2016-06-02 2018-08-14 GM Global Technology Operations LLC Pump switching control systems and methods for continuously variable transmissions
US9970540B2 (en) * 2016-06-02 2018-05-15 GM Global Technology Operations LLC Transmission fluid pressure control systems and methods for continuously variable transmissions

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005030495A (ja) * 2003-07-14 2005-02-03 Toyota Motor Corp 電動オイルポンプ機能拡大型車輌用変速駆動装置
JP2005282694A (ja) * 2004-03-29 2005-10-13 Toyota Motor Corp 無段変速機を備えた車両の制御装置
JP2016008631A (ja) * 2014-06-23 2016-01-18 本田技研工業株式会社 油圧制御装置
JP2017223344A (ja) * 2016-06-17 2017-12-21 本田技研工業株式会社 油圧機器用油圧回路

Also Published As

Publication number Publication date
US20200370640A1 (en) 2020-11-26
CN111512073A (zh) 2020-08-07
JP2019120308A (ja) 2019-07-22

Similar Documents

Publication Publication Date Title
US10507832B2 (en) Vehicle drive control device and control method for vehicle drive control device
JP2017155895A (ja) 車両用無段変速機の制御装置
JP2004124961A (ja) ベルト式無段変速機の変速油圧制御装置
WO2016152333A1 (ja) 変速機の制御装置及び変速機の制御方法
WO2016152290A1 (ja) 変速機の制御装置及び変速機の制御方法
WO2019131464A1 (ja) 動力伝達装置の制御方法及び動力伝達装置の制御装置
EP2902668B1 (en) Continuously variable transmission and control method thereof
WO2019131461A1 (ja) 動力伝達装置
WO2017126475A1 (ja) 車両の制御装置、及び車両の制御方法
JP6891978B2 (ja) 動力伝達装置の制御方法及び動力伝達装置
WO2019131463A1 (ja) 動力伝達装置の制御方法及び動力伝達装置の制御装置
JP2012072801A (ja) 車両用無段変速機の変速制御装置
WO2019131462A1 (ja) 動力伝達装置及び動力伝達装置の制御方法
WO2020261918A1 (ja) 車両の制御装置及び車両の制御方法
WO2017073407A1 (ja) 車両の制御装置、及び車両の制御方法
JP2019157969A (ja) 動力伝達装置及び動力伝達装置の制御方法
JP2004197851A (ja) 車両用動力伝達装置の油圧制御装置
WO2016152332A1 (ja) 変速機の制御装置及び変速機の制御方法
JP2013087883A (ja) 車両用ロックアップクラッチの制御装置
JP7114978B2 (ja) 車両用油圧制御装置
JP2019152258A (ja) 動力伝達装置及び動力伝達装置の制御方法
US10605358B2 (en) Transmission and control method for transmission
JP2022184178A (ja) 車両用動力伝達装置の制御装置
JP5125654B2 (ja) 車両用無段変速機の変速制御装置
WO2017082171A1 (ja) 車両の制御装置及び車両の制御方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18896691

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18896691

Country of ref document: EP

Kind code of ref document: A1