WO2019131461A1 - 動力伝達装置 - Google Patents

動力伝達装置 Download PDF

Info

Publication number
WO2019131461A1
WO2019131461A1 PCT/JP2018/047108 JP2018047108W WO2019131461A1 WO 2019131461 A1 WO2019131461 A1 WO 2019131461A1 JP 2018047108 W JP2018047108 W JP 2018047108W WO 2019131461 A1 WO2019131461 A1 WO 2019131461A1
Authority
WO
WIPO (PCT)
Prior art keywords
oil
oil passage
power transmission
switching valve
passage
Prior art date
Application number
PCT/JP2018/047108
Other languages
English (en)
French (fr)
Inventor
弘一 小辻
智普 中野
良平 豊田
Original Assignee
日産自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日産自動車株式会社 filed Critical 日産自動車株式会社
Priority to CN201880082247.9A priority Critical patent/CN111492157A/zh
Priority to US16/958,242 priority patent/US20200400228A1/en
Publication of WO2019131461A1 publication Critical patent/WO2019131461A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/0021Generation or control of line pressure
    • F16H61/0025Supply of control fluid; Pumps therefore
    • F16H61/0031Supply of control fluid; Pumps therefore using auxiliary pumps, e.g. pump driven by a different power source than the engine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/02Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing characterised by the signals used
    • F16H61/0202Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing characterised by the signals used the signals being electric
    • F16H61/0204Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing characterised by the signals used the signals being electric for gearshift control, e.g. control functions for performing shifting or generation of shift signal
    • F16H61/0206Layout of electro-hydraulic control circuits, e.g. arrangement of valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/66Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing specially adapted for continuously variable gearings
    • F16H61/662Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing specially adapted for continuously variable gearings with endless flexible members
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/66Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing specially adapted for continuously variable gearings
    • F16H61/662Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing specially adapted for continuously variable gearings with endless flexible members
    • F16H61/66272Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing specially adapted for continuously variable gearings with endless flexible members characterised by means for controlling the torque transmitting capability of the gearing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H59/00Control inputs to control units of change-speed-, or reversing-gearings for conveying rotary motion
    • F16H59/74Inputs being a function of engine parameters
    • F16H2059/746Engine running state, e.g. on-off of ignition switch
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/12Detecting malfunction or potential malfunction, e.g. fail safe; Circumventing or fixing failures
    • F16H2061/1256Detecting malfunction or potential malfunction, e.g. fail safe; Circumventing or fixing failures characterised by the parts or units where malfunctioning was assumed or detected
    • F16H2061/126Detecting malfunction or potential malfunction, e.g. fail safe; Circumventing or fixing failures characterised by the parts or units where malfunctioning was assumed or detected the failing part is the controller
    • F16H2061/1264Hydraulic parts of the controller, e.g. a sticking valve or clogged channel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H2312/00Driving activities
    • F16H2312/14Going to, or coming from standby operation, e.g. for engine start-stop operation at traffic lights
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/12Detecting malfunction or potential malfunction, e.g. fail safe; Circumventing or fixing failures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/66Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing specially adapted for continuously variable gearings
    • F16H61/662Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing specially adapted for continuously variable gearings with endless flexible members
    • F16H61/66254Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing specially adapted for continuously variable gearings with endless flexible members controlling of shifting being influenced by a signal derived from the engine and the main coupling
    • F16H61/66259Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing specially adapted for continuously variable gearings with endless flexible members controlling of shifting being influenced by a signal derived from the engine and the main coupling using electrical or electronical sensing or control means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H9/00Gearings for conveying rotary motion with variable gear ratio, or for reversing rotary motion, by endless flexible members
    • F16H9/02Gearings for conveying rotary motion with variable gear ratio, or for reversing rotary motion, by endless flexible members without members having orbital motion
    • F16H9/04Gearings for conveying rotary motion with variable gear ratio, or for reversing rotary motion, by endless flexible members without members having orbital motion using belts, V-belts, or ropes
    • F16H9/12Gearings for conveying rotary motion with variable gear ratio, or for reversing rotary motion, by endless flexible members without members having orbital motion using belts, V-belts, or ropes engaging a pulley built-up out of relatively axially-adjustable parts in which the belt engages the opposite flanges of the pulley directly without interposed belt-supporting members
    • F16H9/16Gearings for conveying rotary motion with variable gear ratio, or for reversing rotary motion, by endless flexible members without members having orbital motion using belts, V-belts, or ropes engaging a pulley built-up out of relatively axially-adjustable parts in which the belt engages the opposite flanges of the pulley directly without interposed belt-supporting members using two pulleys, both built-up out of adjustable conical parts

Definitions

  • the present invention relates to a power transmission device.
  • JP 2005-30495 A discloses a speed change drive including a continuously variable transmission and a clutch, a mechanical oil pump, and an electric oil pump.
  • the mechanical oil pump is driven by the engine and configured to be able to supply the oil of the oil reservoir to the secondary pulley oil chamber and the clutch of the continuously variable transmission.
  • the electric oil pump is provided in an oil passage connecting the primary pulley oil chamber and the secondary pulley oil chamber of the continuously variable transmission, and is configured to be able to supply the oil of the oil reservoir to the clutch.
  • the shifting of the continuously variable transmission is performed by causing the electric oil pump to move oil into and out of the primary pulley oil chamber.
  • the present invention has been made in view of such problems, and it is possible to change the speed of the continuously variable transmission mechanism even when the oil in the oil reservoir is supplied to the hydraulic equipment other than the continuously variable transmission mechanism by the electric oil pump. Power transmission device.
  • a continuously variable transmission mechanism for transmitting power between a drive source and a drive wheel, and a primary pulley oil chamber and a secondary pulley oil chamber of the continuously variable transmission mechanism are communicated.
  • 1 oil passage an electric oil pump provided in the first oil passage, a second oil branched from the first oil passage between the electric oil pump and the primary pulley oil chamber and communicated with an oil reservoir Branch from the first oil passage between the electric oil pump and the secondary pulley oil chamber, a switching valve provided at a branch point between the first oil passage and the second oil passage; And a third oil passage leading to the switching valve.
  • the switching valve brings at least a first position for bringing the first oil passage into communication, and brings the second oil passage and the secondary pulley oil chamber side of the first oil passage into communication, and the third oil Two positions are switched between a second position where the passage and the primary pulley oil chamber side of the first oil passage are in communication.
  • FIG. 1 is a schematic configuration view showing a main part of a vehicle.
  • FIG. 2A is a first diagram of the switching position of the switching valve.
  • FIG. 2B is a second view of the view for explaining the switching position of the switching valve.
  • FIG. 3 is a flowchart showing an example of control at the time of engine automatic stop.
  • FIG. 4 is a flowchart showing an example of control at the time of engine automatic stop recovery.
  • FIG. 5 is a view showing a modification of the power transmission device.
  • FIG. 1 is a schematic configuration view showing a main part of a vehicle.
  • the transmission 1 is a belt-type continuously variable transmission and is mounted on a vehicle together with an engine ENG that constitutes a drive source of the vehicle.
  • the rotation from the engine ENG is input to the transmission 1.
  • the output rotation of the engine ENG is input to the transmission 1 via a torque converter TC or the like having a lockup clutch LU.
  • the transmission 1 outputs the input rotation at a rotation according to the transmission gear ratio.
  • the gear ratio is a value obtained by dividing the input rotation by the output rotation.
  • the transmission 1 has a variator 2 and a hydraulic circuit 3.
  • the variator 2 is provided in a power transmission path connecting the engine ENG and a drive wheel (not shown), and performs power transmission between them.
  • the variator 2 is a belt type continuously variable transmission mechanism having a primary pulley 21, a secondary pulley 22, and a belt 23 wound around the primary pulley 21 and the secondary pulley 22.
  • the variator 2 changes the winding diameter of the belt 23 by changing the groove widths of the primary pulley 21 and the secondary pulley 22 respectively, and performs a speed change.
  • the primary will be referred to as PRI and the secondary will be referred to as SEC.
  • the PRI pulley 21 has a fixed pulley 21a, a movable pulley 21b, and a PRI pulley oil chamber 21c.
  • oil is supplied to the PRI pulley oil chamber 21c.
  • the movable pulley 21b is moved by the oil of the PRI pulley oil chamber 21c, the groove width of the PRI pulley 21 is changed.
  • the SEC pulley 22 has a fixed pulley 22a, a movable pulley 22b, and an SEC pulley oil chamber 22c.
  • oil is supplied to the SEC pulley oil chamber 22c.
  • the movable pulley 22b is moved by the oil of the SEC pulley oil chamber 22c, the groove width of the SEC pulley 22 is changed.
  • the belt 23 has a V-shaped sheave surface formed by the fixed pulley 21a and the movable pulley 21b of the PRI pulley 21 and a V-shaped formed by the fixed pulley 22a and the movable pulley 22b of the SEC pulley 22. It is wound around the sheave surface.
  • the belt 23 is held by a belt clamping force generated by the SEC pressure Psec.
  • the hydraulic circuit 3 switches the mechanical oil pump 31, the electric oil pump 32, the check valve 33, the line pressure adjusting valve 34, the line pressure solenoid 35, and the PRI pulley oil chamber 21c and the SEC pulley oil chamber 22c.
  • the mechanical oil pump 31 is connected to the first oil passage R1 via the discharge side oil passage Rout of the mechanical oil pump 31.
  • the mechanical oil pump 31 is a mechanical oil pump driven by the power of the engine ENG, and is coupled to the impeller of the torque converter TC via a power transmission member, as schematically shown in a coupled state by a two-dot broken line.
  • a check valve 33 is provided in the discharge side oil passage Rout.
  • the check valve 33 blocks the flow of oil in the direction of the mechanical oil pump 31 and allows the flow of oil in the opposite direction.
  • a line pressure adjusting valve 34 is connected to a portion of the discharge side oil passage Rout on the downstream side of the check valve 33.
  • the line pressure adjusting valve 34 regulates the oil supplied from the mechanical oil pump 31 to the line pressure PL.
  • the line pressure adjusting valve 34 operates in accordance with the solenoid pressure generated by the line pressure solenoid 35.
  • the line pressure PL is supplied as the SEC pressure Psec to the SEC pulley oil chamber 22c.
  • An electric oil pump 32 and a switching valve 36 are provided in the first oil passage R1.
  • the electric oil pump 32 is provided at a portion closer to the PRI pulley oil chamber 21c than the first point C1 which is a point to which the discharge side oil passage Rout is connected in the first oil passage R1.
  • the electric oil pump 32 is rotatable in the forward and reverse directions. Specifically, the forward rotation direction is a direction in which oil is supplied to the PRI pulley oil chamber 21c side, and the reverse direction is a direction in which the oil is supplied to the SEC pulley oil chamber 22c side.
  • the switching valve 36 is provided in a portion of the first oil passage R1 between the electric oil pump 32 and the PRI pulley oil chamber 21c.
  • the switching valve 36 includes a first position P1 and a second position P2 as a switching position, and is configured to be able to switch the first position P1 and the second position P2.
  • the switching position of the switching valve 36 will be described later.
  • the electric oil pump 32 communicates with the oil reservoir 37 through the second oil passage R2.
  • the second oil passage R2 is connected to a strainer 37a in the oil reservoir 37.
  • the second oil passage R2 includes an oil passage communicating the oil reservoir 37 with the switching valve 36, and a portion of the first oil passage R1 between the switching valve 36 and the electric oil pump 32.
  • the former oil passage is an oil passage not passing through another oil passage connected to the switching valve 36. As a result of the switching valve 36 being provided to connect these, it is further provided in the second oil passage R2.
  • the second oil passage R2 is connected to the oil inlet / outlet 32a on the side of the PRI pulley oil chamber 21c of the electric oil pump 32.
  • the portion of the first oil passage R1 between the switching valve 36 and the electric oil pump 32 doubles as a part of the second oil passage R2.
  • the mechanical oil pump 31 is also connected to a portion of the second oil passage R2 closer to the oil reservoir 37 than the switching valve 36 via the suction side oil passage Rin.
  • Such a second oil passage R2 and the switching valve 36 can be grasped as follows. That is, the second oil passage R2 can be grasped as an oil passage which branches from the first oil passage R1 between the electric oil pump 32 and the PRI pulley oil chamber 21c and communicates with the oil reservoir 37. Further, the switching valve 36 can be grasped as a switching valve provided at a branch point of the first oil passage R1 and the second oil passage R2.
  • the oil reservoir 37 is an oil reservoir for storing oil supplied by the mechanical oil pump 31 and the electric oil pump 32. The oil is sucked from the oil reservoir 37 via the strainer 37a.
  • the oil reservoir 37 may be composed of a plurality of oil reservoirs.
  • the clutch oil passage RCL includes a portion of the first oil passage R1 between the electric oil pump 32 and the second point C2.
  • the second point C2 is a point on the first oil passage R1 between the electric oil pump 32 and the first point C1.
  • the clutch oil passage RCL further includes an oil passage connecting the second point C2 and the clutch 40.
  • the clutch oil passage R CL is connected to the oil inlet / outlet 32 b on the SEC pulley oil chamber 22 c side of the electric oil pump 32. A portion between the electric oil pump 32 and the second point C2 of the first oil passage R1 also serves as a part of the clutch oil passage R CL.
  • the clutch oil passage RCL is an oil passage not passing through the second oil passage R2.
  • the clutch 40 is engaged by supplying oil to the clutch oil chamber 40a, and released by draining oil from the clutch oil chamber 40a.
  • the clutch 40 together with the variator 2, transmits power between the engine ENG and the drive wheels.
  • the clutch 40 connects and disconnects a power transmission path connecting the engine ENG and the drive wheels.
  • the clutch 40 constitutes a hydraulic device other than the variator 2.
  • a pilot valve 38 is provided at a portion of the clutch oil passage RCL branched from the first oil passage R1.
  • a clutch pressure solenoid 39 is provided in a portion of the clutch oil passage RCL between the pilot valve 38 and the clutch 40.
  • the pilot valve 38 depressurizes the oil supplied from the first oil passage R1.
  • the clutch pressure solenoid 39 adjusts the hydraulic pressure supplied to the clutch 40, that is, the hydraulic pressure P CL of the clutch oil chamber 40a.
  • a PRI oil passage R PRI further branches from the clutch oil passage R CL and communicates with the PRI pulley oil chamber 21 c.
  • PRI oil passage R PRI includes an oil passage connecting the clutch oil passage R CL and the switching valve 36, and a portion of the first oil passage R1 between the switching valve 36 and the PRI pulley oil chamber 21c.
  • the former oil passage is an oil passage not passing through another oil passage connected to the switching valve 36. As a result of the switching valve 36 being provided to connect these, it is further provided in the PRI oil passage RPRI .
  • the PRI oil passage R PRI branches from a portion of the clutch oil passage R CL between the clutch pressure solenoid 39 and the clutch 40.
  • the portion of the first oil passage R1 between the PRI pulley oil chamber 21c and the switching valve 36 also serves as part of the fourth oil passage R4.
  • Such PRI oil passage R PRI together with a part of the clutch oil passage R CL (specifically, the clutch oil passage R CL between the second point C 2 and the point where the PRI oil passage R PRI branches) It can be grasped as a third oil passage R3 which branches from the first oil passage R1 between the pump 32 and the SEC pulley oil chamber 22c and reaches the switching valve 36.
  • the controller 10 configured to have the transmission controller 11 and the engine controller 12 constitutes a power transmission device together with the transmission 1.
  • FIG. 2A and 2B are explanatory diagrams of the switching position of the switching valve 36.
  • FIG. FIG. 2A shows the switching position, that is, the case where the valve position is the first position P1
  • FIG. 2B shows the case where the switching position is the second position P2.
  • the first position P1 is a switching position where the first oil passage R1 is in the communication state and the second oil passage R2 is in the blocking state. Further, at the first position P1, the PRI oil passage R PRI is brought into the shutoff state. As a result, in the case of the first position P1, the mechanical oil pump 31 supplies the oil of the oil reservoir 37 to the SEC pulley oil chamber 22c and the clutch 40, and the electric oil pump 32 controls the oil in and out of the PRI pulley oil chamber 21c. Do.
  • a PRI pressure supply unit capable of pressure-regulating the oil of the clutch oil passage R CL and supplying it to the PRI pulley oil chamber 21c is provided in the third oil passage R3.
  • PRI oil passage R PRI It has a clutch pressure solenoid 39 as a pressure adjustment section for adjusting the oil pressure of the third oil passage R3 between the valve 36 and the valve 36.
  • the pressure adjustment unit that adjusts the oil pressure of the PRI may be a pressure adjustment valve different from the clutch pressure solenoid 39.
  • FIG. 5 is a view showing a modification of the power transmission device.
  • the PRI oil passage R PRI is provided to branch from the portion of the clutch oil passage R CL between the pilot valve 38 and the clutch pressure solenoid 39.
  • a PRI pressure solenoid 42 is provided in the PRI oil passage R PRI .
  • the PRI pressure solenoid 42 is a pressure regulating valve that regulates the oil supplied to the PRI pulley oil chamber 21c, and is provided in a portion of the PRI oil passage RPRI between the switching valve 36 and the clutch oil passage RCL .

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Control Of Transmission Device (AREA)

Abstract

動力伝達装置は、バリエータと、第1油路と、第1油路に設けられた電動オイルポンプと、第2油路と、第1油路と第2油路との分岐点に設けられた切替弁と、第3油路と、を備える。切替弁は、少なくとも第1油路を連通状態とする第1位置と、第2油路と第1油路のSECプーリ油室側とを連通状態にし、かつ第3油路と第1油路のPRIプーリ油室側とを連通状態とする第2位置と、の2つの位置を切り替える。

Description

動力伝達装置
 本発明は、動力伝達装置に関する。
 JP2005-30495Aには、無段変速機及びクラッチと、機械式オイルポンプと、電動オイルポンプと、を備える変速駆動装置が開示されている。
 機械式オイルポンプは、エンジンにより駆動され、オイルリザーバの油を無段変速機のセカンダリプーリ油室及びクラッチに供給可能に構成される。電動オイルポンプは、無段変速機のプライマリプーリ油室及びセカンダリプーリ油室を連通する油路に設けられ、オイルリザーバの油をクラッチに供給可能に構成される。無段変速機の変速は、電動オイルポンプでプライマリプーリ油室に油を出入りさせることで行われる。
 JP2005-30495Aの技術では、電動オイルポンプでオイルリザーバの油をクラッチに供給する際に、プライマリプーリ油室及びセカンダリプーリ油室を連通し電動オイルポンプが設けられる油路、具体的にはプライマリプーリ油室及び電動オイルポンプを連通する油路が、切替弁により遮断状態とされる。結果、特許文献1の技術では、この際に無段変速機を変速することができなくなる。結果、例えばエンジン自動停止後の再始動時における無段変速機の変速比が適切に設定されずに、車両の発進性や再加速性が低下する虞がある。
 本発明はこのような課題に鑑みてなされたもので、電動オイルポンプで油溜の油を無段変速機構以外の油圧機器に供給する場合であっても、無段変速機構の変速を可能にする動力伝達装置を提供することを目的とする。
 本発明のある態様の動力伝達装置は、駆動源と駆動輪との間で動力伝達を行う無段変速機構と、前記無段変速機構のプライマリプーリ油室とセカンダリプーリ油室とを連通する第1油路と、前記第1油路に設けられた電動オイルポンプと、前記電動オイルポンプと前記プライマリプーリ油室との間の前記第1油路から分岐して油溜に連通する第2油路と、前記第1油路と前記第2油路との分岐点に設けられた切替弁と、前記電動オイルポンプと前記セカンダリプーリ油室との間の前記第1油路から分岐して前記切替弁に至る第3油路と、を備える。前記切替弁は、少なくとも前記第1油路を連通状態とする第1位置と、前記第2油路と前記第1油路の前記セカンダリプーリ油室側とを連通状態にし、かつ前記第3油路と前記第1油路の前記プライマリプーリ油室側とを連通状態とする第2位置と、の2つの位置を切り替える。
図1は、車両の要部を示す概略構成図である。 図2Aは、切替弁の切替位置を説明する図の第1図である。 図2Bは、切替弁の切替位置を説明する図の第2図である。 図3は、エンジン自動停止時の制御の一例をフローチャートで示す図である。 図4は、エンジン自動停止復帰時の制御の一例をフローチャートで示す図である。 図5は、動力伝達装置の変形例を示す図である。
 以下、添付図面を参照しながら本発明の実施形態について説明する。
 図1は、車両の要部を示す概略構成図である。変速機1は、ベルト式無段変速機であり、車両の駆動源を構成するエンジンENGとともに車両に搭載される。変速機1には、エンジンENGからの回転が入力される。エンジンENGの出力回転は、ロックアップクラッチLUを有するトルクコンバータTC等を介して、変速機1に入力される。変速機1は、入力回転を変速比に応じた回転で出力する。変速比は入力回転を出力回転で割って得られる値である。
 変速機1は、バリエータ2と、油圧回路3とを有する。
 バリエータ2は、エンジンENGと図示しない駆動輪とを結ぶ動力伝達経路に設けられ、これらの間で動力伝達を行う。バリエータ2は、プライマリプーリ21と、セカンダリプーリ22と、プライマリプーリ21及びセカンダリプーリ22に巻き掛けられたベルト23と、を有するベルト式無段変速機構である。
 バリエータ2は、プライマリプーリ21とセカンダリプーリ22との溝幅をそれぞれ変更することで、ベルト23の巻掛け径を変更して変速を行う。以下では、プライマリをPRIと称し、セカンダリをSECと称す。
 PRIプーリ21は、固定プーリ21aと、可動プーリ21bと、PRIプーリ油室21cと、を有する。PRIプーリ21では、PRIプーリ油室21cに油が供給される。PRIプーリ油室21cの油により、可動プーリ21bが移動すると、PRIプーリ21の溝幅が変更される。
 SECプーリ22は、固定プーリ22aと、可動プーリ22bと、SECプーリ油室22cと、を有する。SECプーリ22では、SECプーリ油室22cに油が供給される。SECプーリ油室22cの油により、可動プーリ22bが移動すると、SECプーリ22の溝幅が変更される。
 ベルト23は、PRIプーリ21の固定プーリ21aと可動プーリ21bとにより形成されるV字形状をなすシーブ面と、SECプーリ22の固定プーリ22aと可動プーリ22bとにより形成されるV字形状をなすシーブ面に巻き掛けられる。ベルト23は、SEC圧Psecにより発生するベルト挟持力で保持される。
 油圧回路3は、PRIプーリ油室21c及びSECプーリ油室22cのほか、メカオイルポンプ31と、電動オイルポンプ32と、チェック弁33と、ライン圧調整弁34と、ライン圧ソレノイド35と、切替弁36と、オイルリザーバ37と、パイロット弁38と、クラッチ圧ソレノイド39と、クラッチ40と、T/C油圧システム41と、を有する。これらの構成は、油路とともに次のように油圧回路3を構成する。
 PRIプーリ油室21cとSECプーリ油室22cとは、第1油路R1によって連通される。第1油路R1には、メカオイルポンプ31の吐出側油路Routを介してメカオイルポンプ31が接続される。メカオイルポンプ31は、エンジンENGの動力で駆動する機械式オイルポンプであり、二点破線で結合状態を模式的に示すように、トルクコンバータTCのインペラと動力伝達部材を介して結合される。
 吐出側油路Routには、チェック弁33が設けられる。チェック弁33は、メカオイルポンプ31方向への油の流れを阻止し、その逆方向への油の流れを許容する。吐出側油路Routのうちチェック弁33よりも下流側の部分には、ライン圧調整弁34が接続される。
 ライン圧調整弁34は、メカオイルポンプ31から供給される油をライン圧PLに調圧する。ライン圧調整弁34は、ライン圧ソレノイド35が生成するソレノイド圧に応じて動作する。本実施形態では、ライン圧PLは、SEC圧PsecとしてSECプーリ油室22cに供給される。
 第1油路R1には、電動オイルポンプ32と切替弁36とが設けられる。電動オイルポンプ32は、第1油路R1のうち吐出側油路Routが接続する地点である第1地点C1よりもPRIプーリ油室21c側の部分に設けられる。電動オイルポンプ32は、正転及び逆転方向に回転可能とされる。正転方向は具体的には、PRIプーリ油室21c側に油を供給する方向とされ、逆転方向は、SECプーリ油室22c側に油を供給する方向とされる。
 切替弁36は、第1油路R1のうち電動オイルポンプ32とPRIプーリ油室21cとの間の部分に設けられる。切替弁36は、切替位置として第1位置P1及び第2位置P2を含み、第1位置P1及び第2位置P2を切り替え可能に構成される。切替弁36の切替位置については後述する。
 電動オイルポンプ32は、第2油路R2によってオイルリザーバ37と連通する。第2油路R2は具体的には、オイルリザーバ37内のストレーナ37aに接続される。第2油路R2は、オイルリザーバ37と切替弁36とを連通する油路と、第1油路R1のうち切替弁36と電動オイルポンプ32との間の部分とを含む。前者の油路は、切替弁36に接続する他の油路を介さない油路となっている。切替弁36はこれらを接続するように設けられる結果、さらに第2油路R2に設けられたかたちとなっている。
 第2油路R2は具体的には、電動オイルポンプ32のPRIプーリ油室21c側の油出入口32aに接続される。第1油路R1のうち切替弁36と電動オイルポンプ32との間の部分は、第2油路R2の一部を兼ねる。第2油路R2のうち切替弁36よりもオイルリザーバ37側の部分には吸入側油路Rinを介してメカオイルポンプ31も接続される。
 このような第2油路R2と切替弁36とは、次のように把握することができる。すなわち、第2油路R2は、電動オイルポンプ32とPRIプーリ油室21cとの間の第1油路R1から分岐してオイルリザーバ37に連通する油路として把握することができる。また、切替弁36は、第1油路R1と第2油路R2との分岐点に設けられた切替弁として把握することができる。
 オイルリザーバ37は、メカオイルポンプ31、電動オイルポンプ32が供給する油を貯留する油溜であり、オイルリザーバ37からはストレーナ37aを介して油が吸引される。オイルリザーバ37は、複数の油溜で構成されてもよい。
 電動オイルポンプ32は、クラッチ油路RCLによってクラッチ40、具体的にはクラッチ40のクラッチ油室40aと連通する。クラッチ油路RCLは、第1油路R1のうち電動オイルポンプ32と第2地点C2との間の部分を含む。第2地点C2は、第1油路R1のうち電動オイルポンプ32と第1地点C1との間の地点である。クラッチ油路RCLはさらに、第2地点C2とクラッチ40とを連通する油路を含む。
 クラッチ油路RCLは具体的には、電動オイルポンプ32のSECプーリ油室22c側の油出入口32bに接続される。第1油路R1のうち電動オイルポンプ32と第2地点C2との間の部分は、クラッチ油路RCLの一部を兼ねる。クラッチ油路RCLは、第2油路R2を介さない油路となっている。
 クラッチ40は、クラッチ油室40aに油を供給することで締結され、クラッチ油室40aから油をドレンすることで解放される。クラッチ40は、バリエータ2とともにエンジンENGと駆動輪との間で動力伝達を行う。クラッチ40は、エンジンENGと駆動輪とを結ぶ動力伝達経路の断接を行う。クラッチ40は、バリエータ2以外の油圧機器を構成する。
 クラッチ油路RCLのうち第1油路R1から分岐した部分には、パイロット弁38が設けられる。また、クラッチ油路RCLのうちパイロット弁38とクラッチ40との間の部分には、クラッチ圧ソレノイド39が設けられる。パイロット弁38は、第1油路R1から供給される油を減圧する。クラッチ圧ソレノイド39は、クラッチ40への供給油圧、つまりクラッチ油室40aの油圧PCLを調整する。
 クラッチ油路RCLからはさらに、PRI油路RPRIが分岐してPRIプーリ油室21cに連通する。PRI油路RPRIは、クラッチ油路RCLと切替弁36とを連通する油路と、第1油路R1のうち切替弁36とPRIプーリ油室21cとの間の部分とを含む。前者の油路は、切替弁36に接続する他の油路を介さない油路となっている。切替弁36はこれらを接続するように設けられる結果、さらにPRI油路RPRIに設けられたかたちとなっている。
 PRI油路RPRIは具体的には、クラッチ油路RCLのうちクラッチ圧ソレノイド39とクラッチ40との間の部分から分岐する。第1油路R1のうちPRIプーリ油室21cと切替弁36との間の部分は、第4油路R4の一部を兼ねる。
 このようなPRI油路RPRIは、クラッチ油路RCLの一部(具体的には、第2地点C2及びPRI油路RPRIが分岐する地点間のクラッチ油路RCL)とともに、電動オイルポンプ32とSECプーリ油室22cとの間の第1油路R1から分岐して切替弁36に至る第3油路R3として把握することができる。
 このほか、油圧回路3では、クラッチ油路RCLのうちパイロット弁38とクラッチ圧ソレノイド39との間の部分から、ライン圧ソレノイド35とT/C油圧システム41とに分岐して接続する油路それぞれが設けられる。
 ライン圧ソレノイド35は、ライン圧PLの指令値に応じたソレノイド圧を生成し、ライン圧調整弁34に供給する。T/C油圧システム41は、ロックアップクラッチLUを含むトルクコンバータTCの油圧システムであり、T/C油圧システム41には、ライン圧調整弁34からドレンされた油も供給される。
 このように構成された油圧回路3では、メカオイルポンプ31がSECプーリ油室22cにSEC圧Psecを供給し、電動オイルポンプ32がPRIプーリ油室21cの油の出入りを制御する。メカオイルポンプ31は、ベルト23の保持に用いられ、電動オイルポンプ32は、変速に用いられる。
 つまり、変速原理としては、電動オイルポンプ32によりPRIプーリ油室21c及びSECプーリ油室22cの一方から他方に油を移動させることで、変速が行われる。
 車両には、コントローラ10がさらに設けられる。コントローラ10は、変速機コントローラ11とエンジンコントローラ12とを有して構成される。
 変速機コントローラ11には、バリエータ2の入力側の回転速度を検出するための回転センサ51、バリエータ2の出力側の回転速度を検出するための回転センサ52、PRIプーリ油室21cの油圧であるPRI圧Ppriを検出するための圧力センサ53、SEC圧Psecを検出するための圧力センサ54からの信号が入力される。回転センサ51は具体的には、PRIプーリ21の回転速度Npriを検出する。また、回転センサ52は具体的には、SECプーリ22の回転速度Nsecを検出する。変速機コントローラ11は、回転センサ52からの入力に基づき車速VSPを検出できる。
 変速機コントローラ11にはさらに、アクセル開度センサ55、ブレーキセンサ56、選択レンジ検出スイッチ57、エンジン回転センサ58、油温センサ59、油圧センサ60からの信号が入力される。
 アクセル開度センサ55は、アクセルペダルの操作量を表すアクセル開度APOを検出する。ブレーキセンサ56は、ブレーキペダル踏力BRKを検出する。選択レンジ検出スイッチ57は、セレクターであるシフトレバーでセレクト操作されたレンジRNGを検出する。エンジン回転センサ58は、エンジンENGの回転速度Neを検出する。油温センサ59は、変速機1の油温TOILを検出する。油温TOILは、バリエータ2で作動油として用いられる油の温度である。油圧センサ60は、油圧PCLを検出する。
 変速機コントローラ11は、エンジンコントローラ12と相互通信可能に接続される。変速機コントローラ11には、エンジンコントローラ12からエンジントルク情報Teが入力される。アクセル開度センサ55やエンジン回転センサ58からの信号は例えば、エンジンコントローラ12を介して変速機コントローラ11に入力されてもよい。
 変速機コントローラ11は、入力される信号に基づき変速制御信号を含む制御信号を生成し、生成した制御信号を油圧回路3に出力する。油圧回路3では、変速機コントローラ11からの制御信号に基づき、電動オイルポンプ32、ライン圧ソレノイド35、切替弁36、クラッチ圧ソレノイド39等が制御される。これにより、例えばバリエータ2の変速比が、変速制御信号に応じた変速比すなわち目標変速比に制御される。
 本実施形態では、変速機コントローラ11及びエンジンコントローラ12を有して構成されるコントローラ10が、変速機1とともに動力伝達装置を構成する。
 次に、切替弁36の切替位置について説明する。
 図2A、図2Bは、切替弁36の切替位置の説明図である。図2Aは、切替位置つまりバルブポジションが第1位置P1の場合を示し、図2Bは、切替位置が第2位置P2の場合を示す。
 図2Aに示すように、第1位置P1は、第1油路R1を連通状態とし、第2油路R2を遮断状態とする切替位置である。第1位置P1ではさらに、PRI油路RPRIが遮断状態とされる。結果、第1位置P1の場合には、メカオイルポンプ31がオイルリザーバ37の油をSECプーリ油室22c、クラッチ40に供給し、電動オイルポンプ32がPRIプーリ油室21cの油の出入りを制御する。
 図2Bに示すように、第2位置P2は、第1油路R1を遮断状態とし、第2油路R2を連通状態とする切替位置である。第2位置P2ではさらに、PRI油路RPRIが連通状態とされる。結果、第2位置P2の場合には、電動オイルポンプ32は、クラッチ40及びPRIプーリ油室21cと連通され、オイルリザーバ37の油をクラッチ40及びPRIプーリ油室21cに供給する。
 第2位置P2の場合にはさらに、クラッチ圧ソレノイド39でクラッチ油路RCLの油を調圧してPRIプーリ油室21cに供給することが可能になる。このため、切替弁36によって第1油路R1が遮断されていても、バリエータ2の変速が可能になる。
 クラッチ圧ソレノイド39は、クラッチ40に供給される油を調圧する調圧弁を構成するとともに、PRI油路RPRIの油圧を調整する調圧部を構成する。PRI油路RPRIとクラッチ圧ソレノイド39とは、クラッチ油路RCLの油を調圧してPRIプーリ油室21cに供給可能なPRI圧供給部を構成する。
 PRI圧供給部を構成するPRI油路RPRIとクラッチ圧ソレノイド39とにより、クラッチ油路RCLの油は、所定油圧PAに調圧される。所定油圧PAは例えば、PRI圧Ppriの指示圧であり、変速の際に供給されるPRI圧Ppriはクラッチ40の締結圧よりも大きい。このため、第2位置P2では、クラッチ40を締結状態としつつバリエータ2の変速を行うことができる。
 このような切替弁36は、第2油路R2と切替弁36とが前述したように把握できることと併せて、次のように把握することができる。すなわち、切替弁36は、少なくとも第1油路R1を連通状態とする第1位置P1と、第2油路R2と第1油路R1のSECプーリ油室22c側とを連通状態にし、かつ第3油路R3と第1油路R1のPRIプーリ油室21c側とを連通状態とする第2位置P2と、の2つの位置を切り替える切替弁として把握することができる。
 クラッチ圧ソレノイド39は換言すれば、第3油路R3に設けられ切替弁36との間の第3油路R3の油圧を調整する調圧部として把握することができる。
 次に、本実施形態でコントローラ10が行う制御について、図3、図4を用いて説明する。
 図3は、エンジンENG自動停止時の制御の一例をフローチャートで示す図である。本フローチャートの処理を行うにあたっては例えば、エンジンコントローラ12でステップS1、ステップS5の処理を行うとともに、変速機コントローラ11でその他の処理を行うようにコントローラ10を構成することができる。
 ステップS1で、コントローラ10は、エンジンENGの自動停止条件が成立したか否かを判定する。エンジンENGの自動停止条件は例えば、アイドルストップ条件である。アイドルストップ条件は例えば、車速VSPがゼロであること、アクセルペダルの踏み込みがないこと、ブレーキペダルの踏み込みがあること、選択レンジがアイドルストップの実行を許可する許可レンジであること、を含む。ステップS1で否定判定であれば、処理は一旦終了し、ステップS1で肯定判定であれば、処理はステップS2に進む。
 ステップS2で、コントローラ10は、切替弁36の切替位置を第2位置P2にする。これにより、エンジンENGの自動停止条件が成立した場合に、切替弁36が第2位置P2に設定される。ステップS2では、電動オイルポンプ32による変速制御も停止される。
 ステップS3で、コントローラ10は、クラッチ圧ソレノイド39で変速制御を行う。この際に、コントローラ10は、クラッチ圧ソレノイド39でクラッチ油路RCLの油を所定油圧PAに調圧する。これにより、所定油圧PAに調整された油が、PRIプーリ油室21cに供給される。
 ステップS4で、コントローラ10は、電動オイルポンプ32でライン圧PLを供給する。これにより、エンジンENGの自動停止条件が成立した場合に、電動オイルポンプ32によりオイルリザーバ37の油がクラッチ40に供給される。
 ステップS5で、コントローラ10は、エンジンENGを自動停止する。ステップS5の後には、処理は一旦終了する。
 図4は、エンジン自動停止復帰時の制御の一例をフローチャートで示す図である。本フローチャートの処理を行うにあたっては例えば、エンジンコントローラ12でステップS11、ステップS12の処理を行うとともに、変速機コントローラ11でその他の処理を行うようにコントローラ10を構成することができる。
 ステップS11で、コントローラ10は、エンジンENG自動停止復帰条件が成立したか否かを判定する。エンジンENG自動停止復帰条件は、成立、不成立がエンジン自動停止条件とは逆の条件とされる。ステップS11で否定判定であれば、処理は一旦終了し、ステップS11で肯定判定であれば、処理はステップS12に進む。
 ステップS12で、コントローラ10は、エンジンENGを自動停止から復帰させる。これにより、メカオイルポンプ31が駆動し、メカオイルポンプ31によるライン圧PLの供給が可能になる。
 ステップS13で、コントローラ10は、電動オイルポンプ32により変速制御準備を行う。変速制御準備では、切替弁36の切替前に電動オイルポンプ32の回転方向を逆転方向から正転方向に切り替える。これにより、切替弁36の切替の際にPRI圧Ppriが低下することが防止される。
 ステップS14で、コントローラ10は、切替弁36の切替位置を第1位置P1にする。これにより、エンジンENGの自動停止復帰条件が成立した場合、したがってエンジンENGの自動停止条件が不成立になった場合に、切替弁36が第1位置P1に設定される。
 ステップS15で、コントローラ10は、電動オイルポンプ32で変速制御を行う。これにより、エンジンENGの自動停止条件が不成立になった場合に、電動オイルポンプ32によりPRIプーリ油室21cの油の出入りが制御される。ステップS15の後には、処理は一旦終了する。
 コントローラ10は、ステップS5、さらにはステップS12の処理を実行するように構成されることで、駆動源停止制御部を有した構成とされる。また、コントローラ10は、ステップS2及びステップS14の処理を実行するように構成されることで、切替弁制御部を有した構成とされる。コントローラ10は、ステップS4及びステップS15の処理、さらにはステップS13の処理を実行するように構成されることで、オイルポンプ制御部を有した構成とされる。
 次に、本実施形態にかかる動力伝達装置の主な作用効果について説明する。
 本実施形態にかかる動力伝達装置は、バリエータ2と、PRIプーリ油室21cとSECプーリ油室22cとを連通する第1油路R1と、第1油路R1に設けられた電動オイルポンプ32と、電動オイルポンプ32とPRIプーリ油室21cとの間の第1油路R1から分岐してオイルリザーバ37に連通する第2油路R2と、第1油路R1と第2油路R2との分岐点に設けられた切替弁36と、電動オイルポンプ32とSECプーリ油室22cとの間の第1油路R1から分岐して切替弁36に至る第3油路R3と、を備える。切替弁36は、少なくとも第1油路R1を連通状態とする第1位置P1と、第2油路R2と第1油路R1のSECプーリ油室22c側とを連通状態にし、かつ第3油路R3と第1油路R1のPRIプーリ油室21c側とを連通状態とする第2位置P2と、の2つの位置を切り替える。
 このような構成によれば、電動オイルポンプ32でオイルリザーバ37の油をクラッチ40に供給する場合であっても、第2位置P2により第2油路R2及び第3油路R3を介してオイルリザーバ37の油をPRIプーリ油室21cに供給できる。このため、このような構成によれば、このような場合に切替弁36が第1油路R1を遮断しても、バリエータ2の変速が可能になる。結果、例えばエンジンENGの自動停止の際にバリエータ2の変速比を適切に設定することが可能になり、車両の発進性や再加速性が向上する。
 コントローラ10は、エンジンENGの自動停止条件が成立するとエンジンENGを停止させるように構成される。また、コントローラ10は、エンジンENGの自動停止復帰条件が成立の場合、したがってエンジンENGの自動停止条件が不成立の場合に切替弁36の切替位置を第1位置P1とし、エンジンENGの自動停止条件が成立の場合に切替弁36の切替位置を第2位置P2とするように構成される。
 このような構成によれば、エンジンENGの自動停止に応じて切替弁36の切替位置を適切に切り替えることができる。
 コントローラ10は、エンジンENGの自動停止条件が不成立の場合に電動オイルポンプ32によりPRIプーリ油室21cの油の出入りを制御し、エンジンENGの自動停止条件が成立の場合に電動オイルポンプ32によりオイルリザーバ37の油をクラッチ40に供給するように構成される。
 このような構成によれば、エンジンENGの作動時にはバリエータ2の変速を電動オイルポンプ32で通常通り行うことができ、且つエンジンENGの停止時でもバリエータ2の変速が可能になる。
 本実施形態では、クラッチ油路RCLの油を調圧してPRIプーリ油室21cに供給可能なPRI圧供給部が、第3油路R3に設けられPRI油路RPRI、具体的には切替弁36との間の第3油路R3の油圧を調整する調圧部としてのクラッチ圧ソレノイド39を有して構成される。
 このような構成によれば、PRI油路RPRIの油圧調整によって、バリエータ2の変速が可能になる。
 PRI油路RPRIの油圧を調整する調圧部としてのクラッチ圧ソレノイド39は、クラッチ40に供給される油を調圧する調圧弁である。
 このような構成によれば、クラッチ40に油を供給する際に経由されるクラッチ圧ソレノイド39をPRI油路RPRIの油圧を調整する調圧部として利用できるので、コスト面で有利である。
 PRI油路RPRIの油圧を調整する調圧部は、クラッチ圧ソレノイド39と異なる調圧弁であってもよい。
 図5は、動力伝達装置の変形例を示す図である。この例では、PRI油路RPRIは、クラッチ油路RCLのうちパイロット弁38とクラッチ圧ソレノイド39との間の部分から分岐するように設けられる。また、PRI油路RPRIにはPRI圧ソレノイド42が設けられる。PRI圧ソレノイド42は、PRIプーリ油室21cに供給される油を調圧する調圧弁であり、PRI油路RPRIのうち切替弁36とクラッチ油路RCLとの間の部分に設けられる。
 このような構成によれば、クラッチ40への供給油圧とは別に、PRIプーリ油室21cへの供給油圧を調整できる。このため、クラッチ40の制御に制限されることなく、所定油圧PAをPRI圧Ppriの指示圧とした調圧を行うことができ、変速制御性が向上する。
 以上、本発明の実施形態について説明したが、上記実施形態は本発明の適用例の一部を示したに過ぎず、本発明の技術的範囲を上記実施形態の具体的構成に限定する趣旨ではない。
 上述した実施形態では、アイドルストップ条件を所定の条件としてエンジンENGを停止させる場合について説明した。しかしながら、所定の条件は例えば、コーストストップ条件であってもよい。コーストストップ条件は、車速VSPが所定車速未満であること、アクセルペダルの踏み込みがないこと、ブレーキペダルの踏み込みがあること、前進レンジが選択されていること、を含む。所定車速は例えば、ロックアップクラッチLUが解放される車速である。
 上述した実施形態では、変速機コントローラ11及びエンジンコントローラ12を含むコントローラ10が制御を行う場合について説明した。しかしながら、例えば単一のコントローラが制御を行うように構成されてもよい。
 本願は2017年12月28日に日本国特許庁に出願された特願2017-254753に基づく優先権を主張し、この出願のすべての内容は参照により本明細書に組み込まれる。

Claims (6)

  1.  駆動源と駆動輪との間で動力伝達を行う無段変速機構と、
     前記無段変速機構のプライマリプーリ油室とセカンダリプーリ油室とを連通する第1油路と、
     前記第1油路に設けられた電動オイルポンプと、
     前記電動オイルポンプと前記プライマリプーリ油室との間の前記第1油路から分岐して油溜に連通する第2油路と、
     前記第1油路と前記第2油路との分岐点に設けられた切替弁と、
     前記電動オイルポンプと前記セカンダリプーリ油室との間の前記第1油路から分岐して前記切替弁に至る第3油路と、
    を備え、
     前記切替弁は、
      少なくとも前記第1油路を連通状態とする第1位置と、
      前記第2油路と前記第1油路の前記セカンダリプーリ油室側とを連通状態にし、かつ前記第3油路と前記第1油路の前記プライマリプーリ油室側とを連通状態とする第2位置と、の2つの位置を切り替える、
    動力伝達装置。
  2.  請求項1に記載の動力伝達装置であって、
     所定の条件が成立すると前記駆動源を停止させる駆動源停止制御部と、
     前記所定の条件が不成立の場合に前記切替弁の切替位置を第1位置とし、前記所定の条件が成立の場合に前記切替弁の切替位置を第2位置とする切替弁制御部と、
    を備える動力伝達装置。
  3.  請求項2に記載の動力伝達装置であって、
     前記所定の条件が不成立の場合に前記電動オイルポンプにより前記プライマリプーリ油室の油の出入りを制御し、前記所定の条件が成立の場合に前記電動オイルポンプにより前記油溜の油を前記無段変速機構以外の油圧機器に供給するオイルポンプ制御部、
    を備える動力伝達装置。
  4.  請求項1から3いずれか1項に記載の動力伝達装置であって、
     前記第3油路に設けられ前記切替弁との間の前記第3油路の油圧を調整する調圧部、を有して構成されるプライマリ圧供給部をさらに備える、
    動力伝達装置。
  5.  請求項4に記載の動力伝達装置であって、
     前記調圧部は、前記無段変速機構以外の油圧機器に供給される油を調圧する調圧弁である、
    動力伝達装置。
  6.  請求項4に記載の動力伝達装置であって、
     前記調圧部は、前記無段変速機構以外の油圧機器に供給される油を調圧する調圧弁と異なる調圧弁である、
    動力伝達装置。
PCT/JP2018/047108 2017-12-28 2018-12-20 動力伝達装置 WO2019131461A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201880082247.9A CN111492157A (zh) 2017-12-28 2018-12-20 动力传递装置
US16/958,242 US20200400228A1 (en) 2017-12-28 2018-12-20 Power transmission device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017254753A JP2019120305A (ja) 2017-12-28 2017-12-28 動力伝達装置
JP2017-254753 2017-12-28

Publications (1)

Publication Number Publication Date
WO2019131461A1 true WO2019131461A1 (ja) 2019-07-04

Family

ID=67063620

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/047108 WO2019131461A1 (ja) 2017-12-28 2018-12-20 動力伝達装置

Country Status (4)

Country Link
US (1) US20200400228A1 (ja)
JP (1) JP2019120305A (ja)
CN (1) CN111492157A (ja)
WO (1) WO2019131461A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022176472A1 (ja) * 2021-02-22 2022-08-25 ジヤトコ株式会社 センサの配置構造

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000110927A (ja) * 1998-10-06 2000-04-18 Fuji Heavy Ind Ltd 無段変速機の制御装置
JP2002523711A (ja) * 1998-08-27 2002-07-30 ギア チェイン インダストリアル ベー.フェー. Vベルト無段変速機のための制御システム
JP2007303485A (ja) * 2006-05-08 2007-11-22 Toyota Central Res & Dev Lab Inc ベルト式無段変速機の駆動装置
JP2010078087A (ja) * 2008-09-26 2010-04-08 Jtekt Corp 無段変速機の油圧ポンプ装置
JP2010078088A (ja) * 2008-09-26 2010-04-08 Jtekt Corp 無段変速機の油圧ポンプ装置
JP2010096287A (ja) * 2008-10-17 2010-04-30 Fuji Heavy Ind Ltd 無段変速機の油圧制御装置

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5708664B2 (ja) * 2011-02-15 2015-04-30 トヨタ自動車株式会社 車両用オイル供給装置の制御装置
JP6000557B2 (ja) * 2012-01-26 2016-09-28 本田技研工業株式会社 変速機の流体圧供給装置
CN105984455B (zh) * 2015-03-19 2018-07-24 本田技研工业株式会社 车辆的控制装置
JP6478756B2 (ja) * 2015-03-26 2019-03-06 ジヤトコ株式会社 車両用油圧制御装置
JP6187548B2 (ja) * 2015-08-06 2017-08-30 トヨタ自動車株式会社 車両制御装置
JP6197842B2 (ja) * 2015-09-02 2017-09-20 トヨタ自動車株式会社 車両制御装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002523711A (ja) * 1998-08-27 2002-07-30 ギア チェイン インダストリアル ベー.フェー. Vベルト無段変速機のための制御システム
JP2000110927A (ja) * 1998-10-06 2000-04-18 Fuji Heavy Ind Ltd 無段変速機の制御装置
JP2007303485A (ja) * 2006-05-08 2007-11-22 Toyota Central Res & Dev Lab Inc ベルト式無段変速機の駆動装置
JP2010078087A (ja) * 2008-09-26 2010-04-08 Jtekt Corp 無段変速機の油圧ポンプ装置
JP2010078088A (ja) * 2008-09-26 2010-04-08 Jtekt Corp 無段変速機の油圧ポンプ装置
JP2010096287A (ja) * 2008-10-17 2010-04-30 Fuji Heavy Ind Ltd 無段変速機の油圧制御装置

Also Published As

Publication number Publication date
US20200400228A1 (en) 2020-12-24
JP2019120305A (ja) 2019-07-22
CN111492157A (zh) 2020-08-04

Similar Documents

Publication Publication Date Title
JP2010190371A (ja) 車両用動力伝達装置の制御装置
US10663061B2 (en) Control apparatus for vehicle drive-force transmitting apparatus
WO2011145222A1 (ja) 車両用変速制御装置
JP2004124961A (ja) ベルト式無段変速機の変速油圧制御装置
WO2019131461A1 (ja) 動力伝達装置
JP5724619B2 (ja) 車両用動力伝達装置の油圧制御回路
JP6446122B2 (ja) 変速機の制御装置及び変速機の制御方法
JP4680615B2 (ja) 無段変速機の変速制御装置
CN108779848B (zh) 无级变速器的控制装置及无级变速器的控制方法
US11454317B2 (en) Method for controlling power transmission device and power transmission device
JP2014185751A (ja) 無段変速機の制御装置及び制御方法
WO2019131462A1 (ja) 動力伝達装置及び動力伝達装置の制御方法
WO2019131463A1 (ja) 動力伝達装置の制御方法及び動力伝達装置の制御装置
JP4129161B2 (ja) 自動変速機のロックアップ制御装置
WO2019131464A1 (ja) 動力伝達装置の制御方法及び動力伝達装置の制御装置
JP5733048B2 (ja) 車両用自動変速機の油圧制御装置
JP2009287781A (ja) 油圧制御装置
JP2019152258A (ja) 動力伝達装置及び動力伝達装置の制御方法
JP7040154B2 (ja) 自動変速機の油圧制御装置
JP2019157969A (ja) 動力伝達装置及び動力伝達装置の制御方法
WO2019102893A1 (ja) 自動変速機の制御方法および制御装置
JP6412449B2 (ja) 自動変速機及び自動変速機の制御方法
JP2016191407A (ja) ベルト式無段変速機の油圧制御装置
JP2022184178A (ja) 車両用動力伝達装置の制御装置
JPWO2019004166A1 (ja) 車両の制御装置及び車両の制御方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18895952

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18895952

Country of ref document: EP

Kind code of ref document: A1