WO2019124539A1 - オンデマンド既定ルート自動走行車両フリートコントロール装置 - Google Patents

オンデマンド既定ルート自動走行車両フリートコントロール装置 Download PDF

Info

Publication number
WO2019124539A1
WO2019124539A1 PCT/JP2018/047199 JP2018047199W WO2019124539A1 WO 2019124539 A1 WO2019124539 A1 WO 2019124539A1 JP 2018047199 W JP2018047199 W JP 2018047199W WO 2019124539 A1 WO2019124539 A1 WO 2019124539A1
Authority
WO
WIPO (PCT)
Prior art keywords
default route
automatic traveling
information
vehicle
demand default
Prior art date
Application number
PCT/JP2018/047199
Other languages
English (en)
French (fr)
Other versions
WO2019124539A8 (ja
Inventor
北斗 藤井
渡辺 仁
吉田 睦
Original Assignee
ヤマハ発動機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ヤマハ発動機株式会社 filed Critical ヤマハ発動機株式会社
Priority to JP2019560589A priority Critical patent/JP7026136B2/ja
Priority to EP18892554.9A priority patent/EP3731210A4/en
Publication of WO2019124539A1 publication Critical patent/WO2019124539A1/ja
Priority to US16/907,150 priority patent/US20200320882A1/en
Publication of WO2019124539A8 publication Critical patent/WO2019124539A8/ja

Links

Images

Classifications

    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/123Traffic control systems for road vehicles indicating the position of vehicles, e.g. scheduled vehicles; Managing passenger vehicles circulating according to a fixed timetable, e.g. buses, trains, trams
    • G08G1/127Traffic control systems for road vehicles indicating the position of vehicles, e.g. scheduled vehicles; Managing passenger vehicles circulating according to a fixed timetable, e.g. buses, trains, trams to a central station ; Indicators in a central station
    • G08G1/13Traffic control systems for road vehicles indicating the position of vehicles, e.g. scheduled vehicles; Managing passenger vehicles circulating according to a fixed timetable, e.g. buses, trains, trams to a central station ; Indicators in a central station the indicator being in the form of a map
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W60/00Drive control systems specially adapted for autonomous road vehicles
    • B60W60/001Planning or execution of driving tasks
    • B60W60/0025Planning or execution of driving tasks specially adapted for specific operations
    • B60W60/00253Taxi operations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/18Conjoint control of vehicle sub-units of different type or different function including control of braking systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/20Conjoint control of vehicle sub-units of different type or different function including control of steering systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/08Active safety systems predicting or avoiding probable or impending collision or attempting to minimise its consequences
    • B60W30/095Predicting travel path or likelihood of collision
    • B60W30/0956Predicting travel path or likelihood of collision the prediction being responsive to traffic or environmental parameters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/10Path keeping
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W40/00Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models
    • B60W40/08Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models related to drivers or passengers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W60/00Drive control systems specially adapted for autonomous road vehicles
    • B60W60/001Planning or execution of driving tasks
    • B60W60/0024Planning or execution of driving tasks with mediation between passenger and vehicle requirements, e.g. decision between dropping off a passenger or urgent vehicle service
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0287Control of position or course in two dimensions specially adapted to land vehicles involving a plurality of land vehicles, e.g. fleet or convoy travelling
    • G05D1/0291Fleet control
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0287Control of position or course in two dimensions specially adapted to land vehicles involving a plurality of land vehicles, e.g. fleet or convoy travelling
    • G05D1/0291Fleet control
    • G05D1/0297Fleet control by controlling means in a control room
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/02Reservations, e.g. for tickets, services or events
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/06Resources, workflows, human or project management; Enterprise or organisation planning; Enterprise or organisation modelling
    • G06Q10/063Operations research, analysis or management
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q50/00Information and communication technology [ICT] specially adapted for implementation of business processes of specific business sectors, e.g. utilities or tourism
    • G06Q50/40Business processes related to the transportation industry
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/123Traffic control systems for road vehicles indicating the position of vehicles, e.g. scheduled vehicles; Managing passenger vehicles circulating according to a fixed timetable, e.g. buses, trains, trams
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/20Monitoring the location of vehicles belonging to a group, e.g. fleet of vehicles, countable or determined number of vehicles
    • G08G1/202Dispatching vehicles on the basis of a location, e.g. taxi dispatching
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/02Services making use of location information
    • H04W4/021Services related to particular areas, e.g. point of interest [POI] services, venue services or geofences
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/30Services specially adapted for particular environments, situations or purposes
    • H04W4/40Services specially adapted for particular environments, situations or purposes for vehicles, e.g. vehicle-to-pedestrians [V2P]

Definitions

  • the present invention relates to an on-demand default route automatic traveling vehicle fleet control apparatus.
  • the on-demand default route automatic traveling vehicle fleet control device is configured to be able to transmit and receive information with a plurality of on-demand default route automatic traveling vehicles.
  • the on-demand default route automatic traveling vehicle fleet control device is configured to be able to transmit and receive information with a plurality of on-demand default route automatic traveling vehicles, and controls the traveling of the plurality of on-demand default route automatic traveling vehicles.
  • the on-demand predetermined route automatic traveling vehicle automatically travels on a predetermined predetermined route in a drivable area.
  • the on-demand default route automatic traveling vehicle fleet control device transmits a command signal generated by the on-demand default route automatic traveling vehicle fleet control device to the on-demand default route automatic traveling vehicle when acquiring the usage request from the user . Then, the on-demand default route automatic traveling vehicle fleet control device distributes the on-demand default route automatic traveling vehicle to a position where the user intends to get on the vehicle.
  • the on-demand predetermined route automatic traveling vehicle fleet control device controls the traveling of a plurality of on-demand predetermined route automatic traveling vehicles.
  • the on-demand default route automatic traveling vehicle traveling on the default route is restricted in traveling in the travelable area.
  • an automatic traveling vehicle traveling on a route other than the predetermined route can freely travel in the area where it can travel.
  • the on-demand default route automatic traveling vehicle traveling on the default route consumes energy consumption per vehicle for traveling from the start point to the end point of the default route as compared with the automatic traveling vehicle traveling on a route other than the default route There is a tendency to be less.
  • the on-demand default route automatic route vehicle may travel in a loop. If the default route is a ring, it is possible to make a plurality of on-demand default route automatic traveling vehicles circulate at all times. If the default route is a loop, it is possible to distribute and drive a plurality of on-demand default route automatic traveling vehicles on the default route.
  • Patent Document 1 discloses an on-demand default route automatic traveling vehicle fleet control device for allocating a plurality of on-demand default route automatic traveling vehicles traveling on a ring-shaped default route.
  • a plurality of on-demand default route automatic traveling vehicles circulate on a ring-shaped default route at all times.
  • the on-demand default route automatic traveling vehicle is constantly dispatched by the on-demand default route automatic traveling vehicle fleet control device in response to the user's use request. Ru. This reduces the waiting time of the user who has requested the use of the on-demand default route automatic traveling vehicle.
  • the on-demand default route automatic traveling vehicle departs from the ring-shaped default route and travels on the non-default route when the user gets on the vehicle.
  • the on-demand default route automatic traveling vehicle on which the user rides stops by operating the stop key at a position where the user wants to stop while traveling on the ring default route.
  • the on-demand default route automatic traveling vehicle fleet control device is used in a limited area.
  • the on-demand default route automatic traveling vehicle fleet control device is required to be a general-purpose device meeting characteristics of various areas.
  • the general purpose on-demand default route automatic traveling vehicle fleet control device which has been suitable for various area characteristics, requires a large amount of hardware resources.
  • the on-demand default route automatic traveling vehicle fleet control device of the present invention is intended to be available in various areas and to suppress an increase in hardware resources.
  • an on-demand default route automatic traveling vehicle fleet control device can be used in various areas.
  • the inventors of the present application examined various areas in detail, and found that the characteristics such as the predetermined route, the number of vehicles, the upper limit number of usage requests, and the usage purpose of the user are different for each area.
  • the on-demand default route automatic traveling vehicle fleet control device is to be a versatile device adapted to the characteristics of various areas, it is necessary to design in consideration of these characteristics of various areas. That is, it is designed to be able to manage the traveling of the on-demand default route automatic traveling vehicle with one general-purpose on-demand default route automatic traveling vehicle fleet control device for the entire plurality of areas. Alternatively, it is designed to manage the traveling of the on-demand default route automatic traveling vehicle with one versatile on-demand default route automatic traveling vehicle fleet control device for each of various areas.
  • the size of the area where the on-demand default route automatic traveling vehicle fleet control device is used is limited. Therefore, the default route, the number of vehicles, and the upper limit number of usage requests do not differ extremely depending on the area.
  • the purpose of use of the user varies greatly depending on the area.
  • the hardware resources necessary to cope with the difference between the areas of the default route, the number of vehicles, and the upper limit number of utilization requests are the hardware necessary to cope with the differences between the utilization purpose areas of the user. Less than resources. Therefore, in addition to the on-demand default route automatic traveling vehicle fleet control device, it was considered to provide a usage request management device for managing the usage request of the user according to the usage purpose of the user.
  • the usage request management device is configured to be able to transmit and receive information with the on-demand default route automatic traveling vehicle fleet control device. Then, the on-demand default route automatic traveling vehicle fleet control device is configured to control the traveling of the on-demand default route automatic traveling vehicle based on the usage request of the user acquired from the usage request management device. That is, the hardware resources of the on-demand default route automatic traveling vehicle fleet control device are only hardware resources necessary to cope with the difference between the default route, the number of vehicles, and the upper limit number of usage requests. Then, hardware resources necessary for coping with differences between areas of usage purpose of users are provided in hardware resources of the usage request management apparatus. As a result, it is possible to suppress an increase in hardware resources of the on-demand default route automatic traveling vehicle fleet control device while matching the characteristics of the area.
  • the on-demand default route automatic traveling vehicle fleet control device comprises: (i) a plurality of on-demand default routes which automatically travel on a predetermined default route in a travelable area regardless of the presence or absence of an occupant It is configured to be able to transmit and receive information with a route automatic traveling vehicle, and (ii) when obtaining a usage request from a user, at least one of the plurality of on-demand default route automatic traveling vehicles is turned on
  • the on-demand default route automatic traveling vehicle fleet control device controls the traveling of the plurality of on-demand default route automatic traveling vehicles such that the demand default route automatic traveling vehicle is allocated to a position where the user is to get on.
  • A at least one annular predetermined route, and at least one contact connected to the annular predetermined route so as to be able to move back and forth Route information related to the route of the default route which is a ring connection default route having a default route
  • B the ring connection default route transmitted by the plurality of on-demand default routes automatic traveling vehicles on the ring connection default route
  • Vehicle position information related to the current position of the plurality of on-demand predetermined route automatic traveling vehicles above
  • C an occupant related to the presence or absence of an occupant of the plurality of on-demand predetermined route automatic traveling vehicles on the ring connection predetermined route
  • At least one usage request management device configured to transmit / receive information to / from the presence / absence information
  • D the information terminal and the on-demand default route automatic traveling vehicle fleet control device transmits the usage request of the user from the information terminal.
  • Information acquisition processing for acquiring use request information related to the use request of the user including the information on the planned boarding position where the user is scheduled to get on, the acquired route information, the vehicle position information, Dispatched vehicle selection processing for selecting a vehicle to be dispatched to the expected boarding position among the plurality of on-demand default route automatic traveling vehicles based on the occupant presence / absence information and the use request information; and the plurality of on-demand default routes Dispatching of a vehicle allocated to the planned boarding position selected from among automatically traveling vehicles is instructed to travel toward the planned boarding position of the user included in the utilization request received by the utilization request management device Allocation command signal generation processing for generating an instruction signal, and whether the generated allocation instruction signal is among the plurality of on-demand default route automatic traveling vehicles And a processor configured or programmed to execute transmission processing for transmitting to the vehicle to be dispatched to the selected boarding scheduled position.
  • the on-demand default route self-traveling vehicle travels a ring connection default route having at least one ring default route and at least one connection default route that can travel to the ring default route.
  • the on-demand default route automatic traveling vehicle fleet control device acquires the usage request of the user from at least one usage request management device configured to transmit and receive information to and from the information terminal.
  • the information terminal may be possessed by the user, or may be placed at the on-off / on location of the on-demand default route automatic traveling vehicle.
  • the usage request management device is provided separately from the on-demand default route automatic traveling vehicle fleet control device.
  • the usage request management device can be provided for each area. Therefore, a plurality of usage request management devices can be provided in various areas.
  • the user transmits a use request from the information terminal to a use request management device configured to be able to transmit and receive the on-demand default route automatic traveling vehicle fleet control device.
  • a plurality of usage request management devices can be provided for one on-demand predetermined route automatic traveling vehicle fleet control device. That is, it is possible to provide, for each area, a usage request management device that manages usage requests of the user according to the usage purpose of the user. Then, the usage request management apparatus can be configured according to the usage purpose of the user largely different depending on the area.
  • the on-demand default route automatic traveling vehicle fleet control device can receive the usage request of the user from the information terminal possessed by the user via a plurality of usage request management devices provided in various areas.
  • the area size of the ring connection predetermined route in which the on-demand predetermined route automatic traveling vehicle fleet control device is used is limited. Therefore, the default route, the number of vehicles, and the upper limit number of usage requests do not differ extremely depending on the area.
  • the purpose of use of the user varies greatly depending on the area.
  • a usage request management device that manages usage requests of the user according to the usage purpose of the user is provided.
  • the on-demand default route automatic traveling vehicle fleet control device is configured to control the traveling of the on-demand default route automatic traveling vehicle based on the usage request of the user acquired from the usage request management device.
  • the hardware resources of the on-demand default route automatic traveling vehicle fleet control device are configured only by the hardware resources necessary to cope with the difference between the default route, the number of vehicles, and the upper limit number of usage requests.
  • the hardware resources necessary to cope with the difference between the areas of utilization purpose of the user are configured by the hardware resources of the utilization request management device.
  • the on-demand predetermined route automatic traveling vehicle fleet control device of the present invention has the following configuration in addition to the configuration of the above (1).
  • the on-demand default route automatic traveling vehicle fleet control device is distributed to the use request management device or the information terminal at the scheduled boarding position selected from among the plurality of on-demand default route automatic traveling vehicles.
  • a processor configured or programmed to further execute dispatching schedule transmission processing for transmitting dispatching schedule information related to a schedule of dispatching the vehicle to the scheduled boarding position of the vehicle.
  • the vehicle allocation schedule information is acquired by the use request management device or the information terminal. Then, it is possible to use, in the usage request management device or the information terminal, information related to the schedule of dispatching to the planned boarding position according to the usage purpose of the user. For example, the usage request management device or the information terminal displays information related to the schedule of dispatch to the expected boarding position, or displays service information for the user based on the information related to the schedule of dispatch to the expected boarding position You can do it. Thereby, the usage request management device can manage the usage request of the user according to the usage purpose of the user which differs depending on the area. Therefore, the on-demand default route automatic traveling vehicle fleet control device of the present invention can be made available in more various areas and can suppress an increase in hardware resources.
  • the on-demand default route automatic traveling vehicle fleet control apparatus of the present invention preferably has the following configuration in addition to the configuration of the above (1) or (2). .
  • the vehicle allocation command signal can receive the vehicle allocation command signal because no passenger is on the vehicle allocated to the boarding scheduled position selected from the plurality of on-demand default route automatic traveling vehicles.
  • the speed of the standby state is higher than the speed of the allocated state when changing from the standby state, which is the normal state, to the distributed state, which is traveling toward the expected boarding position based on the allocation command signal. It is a signal instructing to become smaller.
  • the on-demand default route self-traveling vehicle travels a ring connection default route having at least one ring default route and at least one connection default route that can travel to the ring default route.
  • the ring default route and the possible connection default routes can be increased.
  • the on-demand default route automatic traveling vehicle fleet control device makes the speed in the standby state smaller than the speed in the vehicle allocation state when changing from the standby state in which no occupant is on to the vehicle allocation state based on the vehicle allocation command signal. It generates a dispatch command signal for commanding the traveling of the on-demand default route automatic traveling vehicle.
  • the dispatch instruction signal is generated by the on-demand default route automatic traveling vehicle fleet control device based on the route information, the vehicle position information, the occupant presence / absence information, and the use request information.
  • the on-demand default route automatic traveling vehicle selected according to the presence or absence of the occupant is distributed to the planned boarding position. Since the ring connection default route has the ring default route and the connection default route which can travel back and forth, the on-demand default route automatic route traveling without a passenger is dispersed on the ring default route without constantly circulating the vehicle. It can be made to stand by. As a result, it is possible to reduce the energy consumption of the on-demand default route automatic traveling vehicle in a standby state in which no occupant is aboard. That is, it is possible to control the traveling of the on-demand default route automatic traveling vehicle so as to suppress energy consumption. That is, it is possible to lower the total energy consumption of a plurality of on-demand default route automatic traveling vehicles.
  • the on-demand default route automatic traveling vehicle fleet control device of the present invention can be made available in various areas and can further suppress an increase in hardware resources.
  • the on-demand default route automatic traveling vehicle fleet control apparatus of the present invention has the following configuration in addition to the configuration of any of the above (1) to (3). Is preferred.
  • the information acquisition process further acquires predicted boarding position information related to a predicted boarding position which is a position expected to be the boarding planned position on the ring connection preset route
  • the vehicle selection process further includes: In a state where the vehicle allocation command signal among the plurality of on-demand default route automatic traveling vehicles is not received based on the acquired route information, the vehicle position information, the occupant presence / absence information, and the predicted boarding position information
  • the vehicle is selected in advance from the vehicles to the predicted boarding position, and the processor is arranged to preliminarily allocate the predicted boarding position information selected from the plurality of on-demand default route automatic traveling vehicles.
  • the advance allocation command signal instructing movement to the predicted riding position, the acquired route information, the vehicle position information, the occupant presence / absence information And is further configured or programmed to execute advance dispatching command signal generation processing to be generated based on the predicted boarding position information, and the transmission processing further includes generating the advance dispatching signal generated according to the plurality of on-demand operations.
  • This route is transmitted to a vehicle that is pre-dispatched to the predicted boarding position selected from among the default route automatic traveling vehicles.
  • the on-demand default route self-traveling vehicle travels a ring connection default route having at least one ring default route and at least one connection default route that can travel to the ring default route.
  • the ring default route and the possible connection default routes can be increased.
  • the on-demand default route automatic traveling vehicle fleet control device moves to a predicted riding position expected to be a scheduled riding position where a user is scheduled to get on the ring-connected default route based on the advance dispatch command signal.
  • a pre-allocation command signal is generated that instructs the on-demand route automatic traveling vehicle to travel.
  • the advance dispatching command signal is generated by the on-demand default route automatic traveling vehicle fleet control device based on the route information, the vehicle position information, the occupant presence / absence information, and the predicted riding position.
  • energy efficient vehicle operation control is performed compared to the case where the on-demand default route automatic traveling vehicle is not pre-dispatched and the dispatching signal is received. It becomes possible.
  • the control of the energy efficient vehicle operation is, for example, the following case.
  • the on-demand default route automatic traveling vehicle that receives the advance allocation command signal is controlled to travel at a speed with a low energy consumption or travel along a route that does not cause traffic congestion.
  • the on-demand default route automatic traveling vehicle fleet control device of the present invention has the following configuration in addition to the configuration of the above (4).
  • the predicted boarding position information includes information related to the user including the user's past usage results and the user's current position, and the destination when the on-demand default route automatic traveling vehicle is used in the user's past It is generated based on at least one piece of information related to the destination including, or information related to the environment of the ring connection predetermined route.
  • the on-demand default route automatic traveling vehicle is generated based on the predicted riding position information generated based on at least one of the information related to the user, the information related to the destination, and the information related to the environment. Will be distributed in advance to the expected boarding position.
  • the ring connection default route is a predetermined default route in the drivable area. That is, the area of the ring connection predetermined route is limited to the area in which it can travel, and is relatively small. For this reason, the information related to the users in the area of the ring connection predetermined route is limited to the area in which the user can travel and is easy to collect because the number is relatively small.
  • the information related to the destination in the area of the ring connection default route is limited to the area in which it can travel and is easy to collect because it is relatively small in number.
  • Information related to the environment in the area of the ring connection default route is limited to the area in which it can travel and is easy to collect because it is relatively small in number.
  • the information related to the user includes information on the user's past usage results and information on the current position of the user.
  • the information on the user's past usage results is, for example, information on the user's past boarding position and boarding date and time, and information on the aboarding position and boarding date and time.
  • the information related to the destination includes the destination when using the on-demand default route automatic traveling vehicle in the past of the user.
  • the information related to the destination is, for example, information on the place of the destination, information on the business day and hours of the store, and information on the day and time of the event.
  • the information related to the user and the information related to the destination are, for example, statistical information on check-in and check-out of the accommodation facility.
  • the information related to the environment is, for example, information on weather such as rain. Then, the area of the ring connection default route is limited to the area in which the user can travel, and it is relatively easy to predict the position where the user is expected to get in. Therefore, the on-demand default route automatic traveling vehicle can control the operation of the vehicle with higher energy efficiency as compared to the case where the vehicle travels after receiving the allocation command signal.
  • the traveling of the on-demand default route automatic traveling vehicle can be controlled so as to suppress the energy consumption. That is, it is possible to lower the total energy consumption of a plurality of on-demand default route automatic traveling vehicles. And the number of times of energy supply of a plurality of on-demand default route automatic traveling vehicles can be reduced. And, it is possible to suppress an increase in hardware resources of the on-demand default route automatic traveling vehicle fleet control device. Therefore, the on-demand default route automatic traveling vehicle fleet control device of the present invention can be made available in various areas and can further suppress an increase in hardware resources.
  • the on-demand default route automatic traveling vehicle fleet control device of the present invention preferably has the following configuration in addition to the configuration of (4) or (5) above.
  • the predicted boarding position information includes information on a predicted boarding position utilization request time which is a time at which the predicted use position and the predicted use position of the user having the predicted boarding position as the boarding planned position are predicted to be performed.
  • the advance dispatching instruction signal indicates that the predicted riding position is at the predicted riding position use request time.
  • the on-demand default route automatic traveling vehicle is distributed in advance to the predicted boarding position based on the predicted boarding position information and the predicted boarding position utilization request time.
  • the ring connection default route is a predetermined default route in the drivable area. That is, the area of the ring connection predetermined route is limited to the area in which it can travel, and is relatively small. For this reason, the area of the ring connection default route is limited to the area in which the user can travel, and the expected boarding position use request time is a time at which the user's use request is expected to be made relatively at the expected boarding position. Is easy to predict.
  • the on-demand default route automatic traveling vehicle when the on-demand default route automatic traveling vehicle is pre-dispatched, the vehicle operation with better energy efficiency is performed as compared with the case where the on-demand default route automatic traveling vehicle is not pre-dispatched and the dispatching instruction signal is received. Control of the As a result, it is possible to further reduce the energy consumption of the on-demand default route automatic traveling vehicle in a state where the vehicle allocation command signal is not received. Thereby, the traveling of the on-demand default route automatic traveling vehicle can be controlled so as to suppress the energy consumption. That is, it is possible to lower the total energy consumption of a plurality of on-demand default route automatic traveling vehicles. And the number of times of energy supply of a plurality of on-demand default route automatic traveling vehicles can be reduced. And, it is possible to suppress an increase in hardware resources of the on-demand default route automatic traveling vehicle fleet control device. Therefore, the on-demand default route automatic traveling vehicle fleet control device of the present invention can be made available in various areas and can further suppress an increase in hardware resources.
  • the on-demand default route automatic traveling vehicle fleet control device of the present invention has the following configuration in addition to the configuration of any of the above (1) to (6). Is preferred.
  • the ring connection default route includes a first connection default route, and a first connection default route connected to the first connection default route at a first connection, and the processor is configured to determine the route information and the vehicle position information.
  • the first on-demand default route automatic traveling vehicle and the second on demand Default route When it is determined that the automatic traveling vehicle is in a state where control related to the presence of an obstacle in the forward direction of the vehicle is not performed, or the first connection default route
  • control related to the presence of an obstacle in which the first on-demand default route automatic traveling vehicle and the second on-demand default route automatic traveling vehicle are in the forward direction of the vehicle is performed If it is determined that the first on-demand route is determined to pass through the first connection based on the route information, the vehicle position information, the occupant presence / absence information, and the use request information.
  • the first on demand already performed when traveling toward the first connection portion such that the automatically traveling vehicle travels behind the second on demand predetermined route automatic traveling vehicle.
  • Arbitration command signal generation for generating an arbitration command signal instructing the speed of the route automatic traveling vehicle to be lower than the speed of the second on-demand default route automatic traveling vehicle when traveling toward the first connection portion
  • the transmission process further transmits the generated arbitration command signal to the first on-demand default route automatic traveling vehicle.
  • the first route travels the first annular default route toward the first connection portion (1)
  • On-demand default route The autonomous traveling vehicle decelerates or stops based on the received arbitration command signal. That is, when there is a second on-demand default route automatic traveling vehicle traveling the first connection default route toward the first connection portion, the first on-demand travels the first annular default route toward the first connection portion The default route automatic traveling vehicle waits based on the arbitration command signal so that the order of passing through the first connection portion is after the second on-demand default route automatic traveling vehicle.
  • the second on-demand default route automatic traveling vehicle traveling on the first connection default route toward the first connection portion is a first on-demand default route automatic traveling vehicle traveling on the first annular default route toward the first connection portion Pass the first connection earlier than before.
  • the first on-demand route traveling on the first connection default route toward the first connection portion decelerates or stops based on the received arbitration command signal.
  • the first on-demand route traveling on the first connection default route toward the first connection portion waits based on the arbitration command signal so that the order of passing through the first connection portion is after the second on-demand default route automatic traveling vehicle.
  • the second on-demand default route automatic traveling vehicle traveling on the first annular predetermined route toward the first connection portion is a first on-demand default route automatic traveling vehicle traveling on the first connection default route toward the first connection portion Pass the first connection earlier than before.
  • the arbitration command signal is transmitted to the first on-demand route automatic traveling vehicle, for example, in the following case.
  • the first on-demand default route automatic traveling vehicle is a vehicle in a standby state
  • the second on-demand default route automatic traveling vehicle is a vehicle on which an occupant is on the vehicle or a vehicle in a distributed condition.
  • the first on-demand default route automatic traveling vehicle is a vehicle in a distributed state
  • the second on-demand default route automatic traveling vehicle is a vehicle on which a passenger is aboard.
  • both the first on-demand default route automatic traveling vehicle and the second on-demand default route automatic traveling vehicle are vehicles in a deployed state or vehicles on which a passenger is riding, from the first connection portion
  • the distance from the first connection to the planned on-coming position to which the on-demand route automatic traveling vehicle is heading is shorter than the distance to the on-boarding position to which the on-demand default route automatic traveling vehicle is heading is there.
  • both the first on-demand default route automatic traveling vehicle and the second on-demand default route automatic traveling vehicle are vehicles in a standby state, vehicles in a dispatch state, or vehicles on which a passenger is on the vehicle, and the first connection
  • the distance from the unit to the current position of the on-demand default route automatic traveling vehicle is longer than the distance from the first connection portion to the current position of the second on-demand default route automatic traveling vehicle.
  • the remaining energy amount of the first on-demand default route automatic traveling vehicle is larger than the energy remaining amount of the second on-demand default route automatic traveling vehicle.
  • the first on-demand default route automatic traveling vehicle traveling on the first annular default route toward the first connection portion and the on-demand default route automatic traveling vehicle traveling on the first connection default route toward the first connection portion These two on-demand default route automatic traveling vehicles can be smoothly passed through the first connection section when there is a. As a result, even if the number of connection default routes connected to the ring default route is increased, traveling of a plurality of on-demand default route automatic traveling vehicles can be smoothly performed. And, it is possible to increase the number of on-demand default route automatic traveling vehicles which can travel on the ring connection default route.
  • the on-demand default route automatic traveling vehicle fleet control device of the present invention can be made available in various areas and can further suppress an increase in hardware resources.
  • the on-demand default route automatic traveling vehicle fleet control device of the present invention has the following configuration in addition to the configuration of any of the above (1) to (7). Is preferred. In the on-demand default route automatic traveling vehicle, the maximum number of occupants who can get on the vehicle is eight or less.
  • the weight of the on-demand default route automatic traveling vehicle is reduced as compared with the case where the maximum number of occupants who can get on is more than eight.
  • the weight of the entire vehicle when the occupant gets on the on-demand default route automatic traveling vehicle becomes lighter than when the maximum number of occupants who can get on is more than eight.
  • the energy efficiency per on-demand default route automatic traveling vehicle can be improved. That is, it is possible to lower the total energy consumption of a plurality of on-demand default route automatic traveling vehicles. And the number of times of energy supply of a plurality of on-demand default route automatic traveling vehicles can be reduced. And, it is possible to suppress an increase in hardware resources of the on-demand default route automatic traveling vehicle fleet control device. Therefore, the on-demand default route automatic traveling vehicle fleet control device of the present invention can be made available in various areas and can further suppress an increase in hardware resources.
  • the on-demand default route automatic traveling vehicle fleet control apparatus of the present invention has the following configuration in addition to the configuration of any of the above (1) to (8). Is preferred.
  • the allocation command signal is allocated to the planned boarding position selected from among the plurality of on-demand default route automatic traveling vehicles such that the speed while traveling toward the planned boarding position is 40 km / hour or less. Control the running of the vehicle.
  • the on-demand default route is compared with the case where traveling is controlled such that the speed of the dispatching state is greater than 40 km / hr.
  • the air resistance of the autonomous vehicle is low.
  • the energy consumption of the on-demand default route automatic traveling vehicle per vehicle can be reduced. That is, it is possible to lower the total energy consumption of a plurality of on-demand default route automatic traveling vehicles. And the number of times of energy supply of a plurality of on-demand default route automatic traveling vehicles can be reduced. And, it is possible to suppress an increase in hardware resources of the on-demand default route automatic traveling vehicle fleet control device. Therefore, the on-demand default route automatic traveling vehicle fleet control device of the present invention can be made available in various areas and can further suppress an increase in hardware resources.
  • the on-demand default route automatic traveling vehicle fleet control device of the present invention has the following configuration in addition to the configuration of any of the above (1) to (9) Is preferred.
  • the information acquisition process relates to the route information, the vehicle position information, the occupant presence / absence information, the use request information, and the remaining energy levels of the plurality of on-demand default route automatic traveling vehicles on the ring connection default route.
  • Energy information is acquired, and the vehicle selection processing is performed based on the acquired route information, the vehicle position information, the occupant presence / absence information, the use request information, and the energy information, the plurality of on-demand default route automatic traveling
  • the vehicle to be allocated to the expected boarding position is selected from the vehicles, and the allocation command signal generation process is performed based on the acquired route information, the vehicle position information, the occupant presence / absence information, the use request information, and the energy information. And generates the dispatch command signal.
  • the on-demand default route traveling vehicle is selected from among the plurality of on-demand default route automatic traveling vehicles.
  • a vehicle to be allocated is selected.
  • the on-demand default route automatic traveling vehicle having an energy remaining amount sufficiently larger than the energy required to travel from the current position to the expected riding position can be obtained by the on-demand default route automatic traveling vehicle fleet control device. It is selected as a vehicle to be dispatched to That is, the on-demand default route automatic traveling vehicle with a large amount of energy is preferentially allocated to the planned boarding position.
  • the on-demand default route automatic traveling vehicle fleet control device of the present invention can be made available in various areas and can further suppress an increase in hardware resources.
  • the on-demand default route automatic traveling vehicle fleet control device of the present invention has the following configuration in addition to the configuration of the above (10).
  • the energy information is information related to the remaining amount of energy of the vehicle transmitted by the plurality of on-demand default route automatic traveling vehicles on the ring connection default route.
  • the plurality of on-demand default route automatic traveling vehicles on the ring connection default route transmit the information related to the energy remaining amount of the own vehicle to the on-demand default route automatic traveling vehicle fleet control device. Then, based on the more accurate remaining energy levels of the plurality of on-demand default route automatic traveling vehicles transmitted to the on-demand default route automatic traveling vehicle fleet control device, boarding is scheduled from among the plurality of on-demand default route automatic traveling vehicles A vehicle to be allocated to the position is selected. For example, the on-demand default route automatic traveling vehicle having an energy remaining amount sufficiently larger than the energy required to travel from the current position to the expected riding position can be obtained by the on-demand default route automatic traveling vehicle fleet control device. It is more accurately selected as the vehicle to be dispatched to.
  • the on-demand default route automatic traveling vehicle with a large amount of energy is preferentially allocated to the planned boarding position.
  • count of replenishing the energy of several on-demand default route automatic traveling vehicles can be reduced more correctly.
  • the on-demand default route automatic traveling vehicle fleet control device of the present invention has the following configuration in addition to the configuration of either (10) or (11) above. Is preferred.
  • the use request information includes information on the planned exit position for the user to get off.
  • the dispatch instruction signal is generated by the on-demand default route automatic traveling vehicle fleet control device based on the route information, the vehicle position information, the occupant presence / absence information, the use request information and the energy information.
  • the use request information includes information on the planned boarding position and the planned boarding position. That is, the on-demand default route automatic traveling vehicle fleet control device calculates the on-demand default route automatic traveling vehicle based on the current positions, the planned boarding positions, the expected exit positions, and the remaining energy of the plurality of on-demand default route automatic traveling vehicles. It can be distributed to the planned boarding position.
  • the on-demand default route automatic traveling vehicle having the remaining energy necessary to travel from the current position to the alighting planned position via the scheduled boarding position is scheduled to get on the on-demand default route automatic traveling vehicle fleet control device. It can be distributed to the position.
  • the energy efficiency of the plurality of on-demand default route automatic traveling vehicles can be improved. That is, it is possible to lower the total energy consumption of a plurality of on-demand default route automatic traveling vehicles. And the number of times of energy supply of a plurality of on-demand default route automatic traveling vehicles can be reduced. And, it is possible to suppress an increase in hardware resources of the on-demand default route automatic traveling vehicle fleet control device. Therefore, the on-demand default route automatic traveling vehicle fleet control device of the present invention can be made available in various areas and can further suppress an increase in hardware resources.
  • the on-demand default route automatic traveling vehicle fleet control device of the present invention has the following configuration in addition to the configuration of any of the above (1) to (12). Is preferred.
  • the ring connection default route includes a first ring default route, a second ring default route, and at least one first connection default route, and the first ring default route and the second ring default route are at least one. Connectable back and forth via one first connection default route.
  • a plurality of ring-shaped predetermined routes are included in the ring-connected predetermined route traveled by the on-demand predetermined route automatic traveling vehicle. Then, the number of on-demand default route automatic traveling vehicles that can travel on the ring connection default route can be increased.
  • the distance from the current position of the on-demand default route automatic traveling vehicle in the standby state to the planned boarding position may be shortened. Thereby, the energy consumption of the on-demand default route automatic traveling vehicle per vehicle can be further reduced. That is, it is possible to lower the total energy consumption of a plurality of on-demand default route automatic traveling vehicles.
  • the on-demand default route automatic traveling vehicle fleet control device of the present invention can be made available in various areas and can further suppress an increase in hardware resources.
  • the present invention may be directed to an on-demand predetermined route automatic traveling vehicle.
  • the on-demand predetermined route automatic traveling vehicle automatically travels on a predetermined predetermined route in a drivable area.
  • the on-demand default route automatic traveling vehicle is configured to be able to transmit and receive information with the on-demand default route automatic traveling vehicle fleet control device.
  • the on-demand default route automatic traveling vehicle fleet control device is configured to be able to transmit and receive information with a plurality of on-demand default route automatic traveling vehicles, and controls the traveling of the plurality of on-demand default route automatic traveling vehicles.
  • the on-demand default route automatic traveling vehicle is based on the dispatching command signal received from the on-demand default route automatic traveling vehicle fleet control device when the on-demand default route automatic traveling vehicle fleet control device acquires the usage request from the user. Are dispatched to the position where the user is going to get on.
  • the on-demand default route automatic traveling vehicle traveling on the default route is restricted in traveling in the travelable area.
  • an automatic traveling vehicle traveling on a route other than the predetermined route can freely travel in the area where it can travel.
  • the on-demand default route automatic traveling vehicle traveling on the default route consumes energy consumption per vehicle for traveling from the start point to the end point of the default route as compared with the automatic traveling vehicle traveling on a route other than the default route There is a tendency to be less.
  • the on-demand default route automatic route vehicle may travel in a loop. If the default route is a ring, it is possible to make a plurality of on-demand default route automatic traveling vehicles circulate at all times. If the default route is a loop, it is possible to distribute and drive a plurality of on-demand default route automatic traveling vehicles on the default route.
  • Patent Document 1 discloses a plurality of on-demand predetermined route automatic traveling vehicles traveling on a ring predetermined route.
  • a plurality of on-demand default route automatic traveling vehicles circulate on a ring-shaped default route at all times.
  • the on-demand default route automatic traveling vehicle is constantly dispatched by the on-demand default route automatic traveling vehicle fleet control device in response to the user's use request. Ru. This reduces the waiting time of the user who has requested the use of the on-demand default route automatic traveling vehicle.
  • the on-demand default route automatic traveling vehicle departs from the ring-shaped default route and travels on the non-default route when the user gets on the vehicle.
  • the on-demand default route automatic traveling vehicle on which the user rides stops by operating the stop key at a position where the user wants to stop while traveling on the ring default route.
  • the on-demand default route automatic traveling vehicle is used in a limited area.
  • the on-demand default route automatic traveling vehicle is required to be available in accordance with the characteristics of various areas.
  • the energy load of the on-demand default route automatic traveling vehicle is determined from the energy consumption.
  • the design freedom of the on-demand default route automatic traveling vehicle is restricted according to the energy loading amount. It is desirable for the on-demand default route automatic traveling vehicle to reduce the energy load and to increase the degree of freedom in vehicle design while shortening the waiting time of the user who has made the usage request.
  • the present invention makes it possible to use the on-demand default route automatic traveling vehicle in various areas and reduce the waiting time of the user who made the usage request while reducing the energy load and the freedom of design of the vehicle.
  • the purpose is to be able to improve.
  • patent document 1 in order to reduce the waiting time of the user who has requested the use of the on-demand default route automatic traveling vehicle, a plurality of on-demand default route automatic traveling vehicles are cyclically traveling on a ring-shaped default route at all times. . And a small vehicle with small energy consumption is used as an on-demand default route automatic traveling vehicle. That is, in Patent Document 1, while giving priority to reducing the waiting state of the user who has requested use of the on-demand default route automatic traveling vehicle, the increase in the energy consumption of the entire on-demand default route automatic traveling vehicle is I'm holding back.
  • Patent Document 1 since energy consumption is always generated by circulating and traveling, even if the number of on-demand default route automatic traveling vehicles traveling on the annular predetermined route is increased, the energy loading amount per vehicle is maintained Be done. Therefore, the inventors of the present application considered reducing the waiting time of the user who made the use request, giving priority to reducing the energy loading amount per unit.
  • connection default route when the connection default route is connected to the loop default route so as to be able to travel back and forth, the area of the default route becomes wider, and the on-demand default route automatic traveling vehicle can be used in various areas.
  • the on-demand default route automatic traveling vehicle of the present invention comprises a plurality of wheels, a drive mechanism for applying a driving force for causing the vehicle to travel to at least one of the wheels, and a braking force for decelerating the vehicle.
  • a braking mechanism applied to at least one of the wheels a traveling direction control mechanism for controlling a traveling direction of at least one of the wheels when the vehicle travels, and (a) an on-demand default route automatic traveling vehicle fleet control device It is configured to be able to transmit and receive information between each other, and (b) automatically travels on a predetermined route determined in a travelable area regardless of the presence or absence of a passenger, and acquires a usage request from the user
  • the on-demand scheduled route automatic traveling vehicle automatic reception vehicle fleet control device generates a ride schedule when the user is to get on when receiving the dispatch command signal
  • a vehicle-mounted control device for controlling the drive mechanism, the braking mechanism, and the traveling direction control mechanism so as to be deployed on the vehicle, and traveling toward the expected boarding position;
  • the dispatch command signal generated by the on-demand default route automatic traveling vehicle fleet control device And the driving mechanism, the braking mechanism, and the driving mechanism so as to travel toward the user's planned boarding position included in the usage request received by the usage request management device based on the dispatch command signal.
  • An on-demand default route automatic traveling vehicle characterized by controlling a traveling direction control mechanism.
  • the on-demand default route automatic traveling vehicle travels a ring connection default route having at least one ring default route and at least one connection default route that can travel with the ring default route.
  • the on-demand default route automatic traveling vehicle fleet control device acquires the usage request of the user from at least one usage request management device configured to transmit and receive information to and from the information terminal.
  • the information terminal may be possessed by the user, or may be placed at the on-off / on location of the on-demand default route automatic traveling vehicle.
  • the usage request management device is provided separately from the on-demand default route automatic traveling vehicle fleet control device.
  • the usage request management device can be provided in various areas.
  • the user transmits a use request from the information terminal to a use request management device configured to be able to transmit and receive the on-demand default route automatic traveling vehicle fleet control device.
  • a plurality of usage request management devices can be provided for one on-demand predetermined route automatic traveling vehicle fleet control device. That is, it is possible to provide, for each area, a usage request management device that manages usage requests of the user according to the usage purpose of the user. Then, the usage request management apparatus can be configured according to the usage purpose of the user largely different depending on the area.
  • the on-demand default route automatic traveling vehicle fleet control device can receive the usage request of the user from the information terminal possessed by the user via a plurality of usage request management devices provided in various areas. The ring default route and the possible connection default routes can be increased.
  • the on-vehicle control device controls the drive mechanism, the braking mechanism, and the traveling direction control mechanism so as to travel toward the user's planned boarding position included in the usage request received by the usage request management device.
  • the dispatch instruction signal is generated by the on-demand default route automatic traveling vehicle fleet control device based on the route information, the vehicle position information, the occupant presence / absence information, and the use request information. That is, the on-demand default route automatic traveling vehicle selected according to the presence or absence of the occupant is distributed to the planned boarding position. Since the ring connection default route has the ring default route and the connection default route that can travel back and forth, the on-demand default route auto-traveling vehicle without an occupant is distributed and made to stand by on the ring default route without circulating constantly. be able to.
  • the on-demand default route automatic traveling vehicle of the present invention can be used in various areas, and while reducing the waiting time of the user who made the use request, the energy loading amount is reduced and the degree of freedom in designing the vehicle Can be improved.
  • the on-demand default route automatic traveling vehicle of the present invention has the following configuration in addition to the configuration of the above (14). Dispatch schedule information related to a schedule of dispatch to the boarding scheduled position is transmitted to the use request management device or the information terminal.
  • the vehicle allocation schedule information is acquired by the use request management device or the information terminal. Then, it is possible to use, in the usage request management device or the information terminal, information related to the schedule of dispatching to the planned boarding position according to the usage purpose of the user. For example, it is possible to display information relating to a schedule of dispatching to a planned boarding position on the usage request management device or the information terminal. Further, for example, service information such as destination information for the user can be displayed on the information terminal based on the information related to the schedule of dispatch to the expected boarding position.
  • the usage request management device can manage the usage request of the user according to the usage purpose of the user which differs depending on the area. Therefore, the on-demand default route automatic traveling vehicle of the present invention can be used in more various areas, and while reducing the waiting time of the user who made the use request, the energy loading amount can be reduced and the vehicle freedom of design can be achieved. The degree can be improved.
  • the on-demand default route automatic traveling vehicle of the present invention preferably has the following configuration in addition to the configuration of the above (14) or (15).
  • the vehicle-mounted control device is traveling from the standby state, in which no occupant is on the vehicle and capable of receiving the dispatch command signal, toward the planned boarding position based on the dispatch command signal.
  • the drive mechanism, the braking mechanism, and the traveling direction control mechanism are controlled such that the speed of the standby state becomes smaller than the speed of the allocation state when changing to the allocation state.
  • the on-demand default route automatic traveling vehicle travels a ring connection default route having at least one ring default route and at least one connection default route that can travel with the ring default route.
  • the ring default route and the possible connection default routes can be increased.
  • the vehicle-mounted control device controls the drive mechanism, the braking mechanism, and the traveling direction control mechanism so that the speed in the standby state becomes smaller than the speed in the vehicle allocation state when changing from the standby state to the vehicle allocation state based on the allocation command signal.
  • the dispatch instruction signal is generated by the on-demand default route automatic traveling vehicle fleet control device based on the route information, the vehicle position information, the occupant presence / absence information, and the use request information.
  • the on-demand default route automatic traveling vehicle selected according to the presence or absence of the occupant is distributed to the planned boarding position. Since the ring connection default route has the ring default route and the connection default route which can travel back and forth, the on-demand default route automatic route traveling without a passenger is dispersed on the ring default route without constantly circulating the vehicle. It can be made to stand by. As a result, it is possible to reduce the energy consumption of the on-demand default route automatic traveling vehicle in a standby state in which no occupant is aboard. As a result, the energy loading amount per vehicle can be reduced to increase the degree of freedom in vehicle design.
  • the on-demand default route automatic traveling vehicle in a standby state in which no occupant is on can be dispersed and kept on standby in the ring connection default route. Therefore, it is possible to increase the number of on-demand default route automatic traveling vehicles that can travel on the ring connected default route without constantly circulating the on-demand default route automatic traveling vehicle on the annular predetermined route. Then, the on-demand default route automatic traveling vehicle in a standby state in which no occupant is on can be dispersed and kept on standby in the ring connected default route. This can shorten the waiting time of the user. Therefore, the on-demand default route automatic traveling vehicle of the present invention can be used in various areas, and while reducing the waiting time of the user who made the use request, the energy loading amount is reduced and the degree of freedom in designing the vehicle Can be improved.
  • the on-demand default route automatic traveling vehicle of the present invention preferably has the following configuration in addition to the configuration of any of the above (14) to (16). .
  • the vehicle-mounted control device further includes the route information, the vehicle position information, the occupant presence / absence information, and an expected boarding position which is a position expected to be the boarding scheduled position on the ring connection predetermined route.
  • the on-demand default route automatic traveling vehicle fleet control based on the route information, the vehicle position information, the occupant presence / absence information, and the predicted boarding position information when it is selected as a vehicle to be distributed to the predicted boarding position in advance.
  • the on-demand default route automatic traveling vehicle travels a ring connection default route having at least one ring default route and at least one connection default route that can travel with the ring default route.
  • the ring default route and the possible connection default routes can be increased.
  • the on-vehicle control device is configured to move to a predicted riding position expected to be the expected riding position where the user on the ring connection default route is scheduled to get on the basis of the pre-allocation command signal. Control mechanism and direction control mechanism.
  • the advance dispatching instruction signal is generated by the on-demand default route automatic traveling vehicle fleet control device based on the route information, the vehicle position information, the occupant presence / absence information, and the predicted boarding position information.
  • the on-demand default route automatic traveling vehicle When the on-demand default route automatic traveling vehicle is pre-dispatched, energy efficient vehicle operation control is performed compared to the case where the on-demand default route automatic traveling vehicle is not pre-dispatched and the dispatching signal is received. It becomes possible.
  • the control of the energy efficient vehicle operation is, for example, the following case.
  • the on-demand default route automatic traveling vehicle that receives the advance allocation command signal is controlled to travel at a speed with a low energy consumption or travel along a route that does not cause traffic congestion. This makes it possible to reduce the energy consumption of the on-demand default route automatic traveling vehicle that has received the advance allocation command signal. As a result, the energy loading amount per vehicle can be reduced to increase the degree of freedom in vehicle design.
  • the on-demand default route automatic traveling vehicle in a state where no occupant is aboard and does not receive a dispatch command signal is waiting in advance at a position where a user is expected to get on the ring connection default route or in the vicinity thereof. It can be done. This can shorten the waiting time of the user. Therefore, the on-demand default route automatic traveling vehicle of the present invention can be used in various areas, and while reducing the waiting time of the user who made the use request, the energy loading amount is reduced and the degree of freedom in designing the vehicle Can be improved.
  • the on-demand default route automatic traveling vehicle of the present invention has the following configuration in addition to the configuration of the above (17).
  • the predicted boarding position information includes information related to the user including the user's past usage results and the user's current position, and the destination when the on-demand default route automatic traveling vehicle is used in the user's past It is generated based on at least one piece of information related to the destination including, or information related to the environment of the ring connection predetermined route.
  • the on-demand default route automatic traveling vehicle is generated based on the predicted riding position information generated based on at least one of the information related to the user, the information related to the destination, and the information related to the environment. Will be distributed in advance to the expected boarding position.
  • the ring connection default route is a predetermined default route in the drivable area. That is, the area of the ring connection predetermined route is limited to the area in which it can travel, and is relatively small. For this reason, the information related to the users in the area of the ring connection predetermined route is limited to the area in which the user can travel and is easy to collect because the number is relatively small.
  • the information related to the destination in the area of the ring connection default route is limited to the area in which it can travel and is easy to collect because it is relatively small in number.
  • Information related to the environment in the area of the ring connection default route is limited to the area in which it can travel and is easy to collect because it is relatively small in number.
  • the information related to the user includes information on the user's past usage results and information on the current position of the user.
  • the information on the user's past usage results is, for example, information on the user's past boarding position and boarding date and time, and information on the aboarding position and boarding date and time.
  • the information related to the destination includes the destination when using the on-demand default route automatic traveling vehicle in the past of the user.
  • the information related to the destination is, for example, information on the place of the destination, information on the business day and hours of the store, and information on the day and time of the event.
  • the information related to the user and the information related to the destination are, for example, statistical information on check-in and check-out of the accommodation facility.
  • the information related to the environment is, for example, information on weather such as rain. Then, the area of the ring connection default route is limited to the area in which the user can travel, and it is relatively easy to predict the position where the user is expected to get in.
  • the vehicle operation with better energy efficiency is performed as compared with the case where the on-demand default route automatic traveling vehicle is not pre-dispatched and the dispatching instruction signal is received.
  • Control of the it is possible to further reduce the energy consumption of the on-demand default route automatic traveling vehicle in a state where the vehicle allocation command signal is not received.
  • the on-demand default route automatic traveling vehicle in a state in which no occupant is on the vehicle and has not received the dispatch instruction signal is made to wait in advance at a position where the probability of the user getting on the ring connection default route is high. be able to.
  • the waiting time of the user can be further shortened. Therefore, the on-demand default route automatic traveling vehicle according to the present invention can be used in various areas, and can shorten the waiting time of the user making the use request while reducing the energy load and designing the vehicle. The degree of freedom can be further improved.
  • the on-demand default route automatic traveling vehicle of the present invention preferably has the following configuration in addition to the configuration of the above (17) or (18).
  • the predicted boarding position information includes information on a predicted boarding position utilization request time which is a time at which the predicted use position and the predicted use position of the user having the predicted boarding position as the boarding planned position are predicted to be performed.
  • the vehicle-mounted control device controls the drive mechanism, the braking mechanism, and the travel direction control mechanism based on the advance allocation command signal so that the estimated ride position use request time is at the expected ride position. Do.
  • the on-demand default route automatic traveling vehicle is distributed to the predicted boarding position before the predicted boarding position using time based on the predicted boarding position and the predicted boarding position utilization time.
  • the ring connection default route is a predetermined default route in the drivable area. That is, the area of the ring connection predetermined route is limited to the area in which it can travel, and is relatively small. For this reason, the area of the ring connection default route is limited to the area in which travel is possible, and the expected travel position is used at a time when it is predicted that a request for use will be made relative to the predicted travel position. Request time is easy to predict.
  • the vehicle operation with better energy efficiency is performed as compared with the case where the on-demand default route automatic traveling vehicle is not pre-dispatched and the dispatching instruction signal is received.
  • Control of the it is possible to further reduce the energy consumption of the on-demand default route automatic traveling vehicle in a state where the vehicle allocation command signal is not received.
  • the on-demand default route automatic traveling vehicle in a state in which no occupant is on the vehicle and has not received the dispatch instruction signal is made to wait in advance at a position where the probability of the user getting on the ring connection default route is high. be able to.
  • the waiting time of the user can be further shortened. Therefore, the on-demand default route automatic traveling vehicle according to the present invention can be used in various areas, and can shorten the waiting time of the user making the use request while reducing the energy load and designing the vehicle. The degree of freedom can be further improved.
  • the on-demand default route automatic traveling vehicle of the present invention preferably has the following configuration in addition to the configuration of any of the above (14) to (19). .
  • the ring connection preset route includes a first ring preset route and a first connection preset route connected to the first ring preset route at a first connection portion, and the on-vehicle control device is provided in front of the vehicle ahead of the host vehicle Driving the first annular predetermined route towards the first connection in a state where the control of the drive mechanism, the braking mechanism and the travel direction control mechanism related to the presence of an obstacle in a direction is not performed And there is a second on-demand default route automatic traveling vehicle traveling toward the first connection portion with the first connection default route, or the first connection default route is connected to the first connection route.
  • the route information when there is a second on-demand default route automatic traveling vehicle traveling toward the unit and traveling toward the first connection portion on the first annular predetermined route
  • the on-demand default route automatic traveling vehicle fleet control device generated on the basis of the vehicle position information, the occupant presence / absence information and the use request information, the order of passing through the first connection portion is the second on-demand default route automatic
  • An arbitration command signal instructing to be after the traveling vehicle is received, and a speed at which the vehicle travels toward the first connection portion based on the arbitration command signal is the second on-demand default route automatic traveling vehicle
  • the drive mechanism, the braking mechanism, and the traveling direction control mechanism are controlled so as to be lower than the speed when traveling toward the first connection portion.
  • the travel on the first annular default route toward the first connection portion is turned on.
  • the on-demand route automatic traveling vehicle decelerates or stops based on the received arbitration command signal. That is, when there is a second on-demand default route automatic traveling vehicle traveling the first connection default route toward the first connection portion, the on-demand default route travels the first annular default route toward the first connection portion
  • the automatically traveling vehicle waits based on the arbitration command signal so that the order of passing through the first connection portion is after the second on-demand default route traveling vehicle.
  • the second on-demand default route automatic traveling vehicle traveling on the first connection default route toward the first connection portion is more than the on-demand default route automatic traveling vehicle traveling on the first annular default route toward the first connection portion First pass through the first connection.
  • the on-demand default route travels the first connection default route toward the first connection portion.
  • the autonomous traveling vehicle decelerates or stops based on the received arbitration command signal. That is, when there is a second on-demand default route automatic traveling vehicle that travels the first annular default route toward the first connection portion, the on-demand default route travels the first connection default route toward the first connection portion.
  • the automatically traveling vehicle waits based on the arbitration command signal so that the order of passing through the first connection portion is after the second on-demand default route traveling vehicle.
  • the second on-demand default route automatic traveling vehicle traveling on the first annular predetermined route toward the first connection portion is more than the on-demand default route automatic traveling vehicle traveling on the first connection predetermined route toward the first connection portion First pass through the first connection.
  • the arbitration command signal is transmitted to the on-demand default route automatic traveling vehicle, for example, in the following case.
  • the on-demand default route automatic traveling vehicle is a vehicle in a standby state
  • the second on-demand default route automatic traveling vehicle is a case in which a passenger is on the vehicle or a vehicle in a distributed condition.
  • the on-demand default route automatic traveling vehicle is a vehicle in a distributed state
  • the second on-demand default route automatic traveling vehicle is a vehicle on which a passenger is aboard.
  • the on-demand from the first connection portion In this case, the distance from the first connection section to the planned on-board position at which the second on-demand route automatic traveling vehicle is heading is shorter than the distance at which the default route automatic traveling vehicle is traveling.
  • both the on-demand default route automatic traveling vehicle and the second on-demand default route automatic traveling vehicle are vehicles in a standby state, vehicles in a dispatch state, or vehicles on which an occupant is riding, from the first connection portion
  • the distance to the current position of the on-demand default route automatic traveling vehicle is longer than the distance from the first connection portion to the current position of the second on-demand default route automatic traveling vehicle.
  • the remaining energy amount of the on-demand default route automatic traveling vehicle is larger than the energy remaining amount of the second on-demand default route automatic traveling vehicle.
  • an on-demand default route automatic traveling vehicle traveling on the first annular default route toward the first connection portion and an on-demand default route automatic traveling vehicle traveling on the first connection default route toward the first connection portion there is an on-demand default route automatic traveling vehicle traveling on the first annular default route toward the first connection portion and an on-demand default route automatic traveling vehicle traveling on the first connection default route toward the first connection portion.
  • the two on-demand default route automatic traveling vehicles can be smoothly passed through the first connection portion.
  • traveling of a plurality of on-demand default route automatic traveling vehicles can be smoothly performed.
  • connection default routes connected to the ring default route it is possible to increase the number of on-demand default route automatic traveling vehicles in a standby state waiting on the connection default route. Then, the distance from the current position of the on-demand default route automatic traveling vehicle in the standby state to the planned boarding position may be short. Thereby, the energy consumption of the on-demand default route automatic traveling vehicle per vehicle can be further reduced. Therefore, the on-demand default route automatic traveling vehicle of the present invention can be used in various areas, and while reducing the waiting time of the user making the use request while reducing the energy loading amount, the vehicle can be designed freely. The degree can be further improved.
  • the on-demand default route automatic traveling vehicle of the present invention preferably has the following configuration in addition to the configuration of any of the above (14) to (20). .
  • the maximum number of occupants who can get on the vehicle is eight or less.
  • the weight of the on-demand default route automatic traveling vehicle is reduced as compared with the case where the maximum number of occupants who can get on is more than eight.
  • the weight of the entire vehicle when the occupant gets on the on-demand default route automatic traveling vehicle becomes lighter than when the maximum number of occupants who can get on is more than eight.
  • the energy efficiency of the on-demand default route automatic traveling vehicle per vehicle can be improved. That is, the amount of energy loading of the on-demand default route automatic traveling vehicle per vehicle can be reduced to increase the degree of freedom in designing the vehicle. Therefore, the on-demand default route automatic traveling vehicle of the present invention can be used in various areas, and while reducing the waiting time of the user making the usage request, the energy loading amount can be further reduced and the design freedom of the vehicle can be achieved. The degree can be further improved.
  • the on-demand default route automatic traveling vehicle of the present invention preferably has the following configuration in addition to the configuration of any of the above (14) to (21). .
  • the on-vehicle control device controls the drive mechanism, the braking mechanism, and the traveling direction control mechanism such that the speed while traveling toward the expected boarding position is 40 km / hr or less.
  • the on-demand default route is compared with the case where traveling is controlled such that the speed of the dispatching state is greater than 40 km / hr.
  • the air resistance of the autonomous vehicle is low.
  • the energy consumption of the on-demand default route automatic traveling vehicle per vehicle can be reduced.
  • traveling is controlled such that the speed of the dispatching state is 40 km / hr or less
  • the on-demand default route automatic traveling is performed as compared to the case where traveling is controlled such that the speed of the dispatching state is greater than 40 km / hr. It takes a long time for the vehicle to travel from the current position to the expected boarding position.
  • the on-demand default route automatic traveling vehicle of the present invention can be used in various areas, and while reducing the waiting time of the user making the usage request, the energy loading amount can be further reduced and the design freedom of the vehicle can be achieved. The degree can be further improved.
  • the on-demand default route automatic traveling vehicle of the present invention preferably has the following configuration in addition to the configuration of any of the above (14) to (22) .
  • the on-vehicle control device may use the route information, the vehicle position information, the occupant presence / absence information, the usage request information, and the remaining energy levels of the plurality of on-demand default route automatic traveling vehicles on the ring connection default route.
  • the route information when the on-demand default route automatic traveling vehicle fleet control device is selected as the vehicle to be allocated to the expected boarding position among the plurality of on-demand default route automatic traveling vehicles based on the related energy information The vehicle allocation command signal generated by the on-demand default route automatic traveling vehicle fleet control device is received based on the vehicle position information, the occupant presence / absence information, the use request information, and the energy information.
  • the on-demand default route automatic traveling vehicle fleet control device makes the on-board scheduled position among the plurality of on-demand default route automatic traveling vehicles based on the remaining energy levels of the plurality of on-demand default route automatic traveling vehicles.
  • a vehicle to be allocated is selected.
  • the on-demand default route automatic traveling vehicle having an energy remaining amount sufficiently larger than the energy required to travel from the current position to the expected riding position can be obtained by the on-demand default route automatic traveling vehicle fleet control device. It is selected as a vehicle to be dispatched to That is, the on-demand default route automatic traveling vehicle with a large amount of energy is preferentially allocated to the planned boarding position. And the number of times of energy supply of a plurality of on-demand default route automatic traveling vehicles can be reduced.
  • the energy efficiency of the plurality of on-demand default route automatic traveling vehicles can be improved.
  • the energy loading amount of the on-demand default route automatic traveling vehicle per vehicle can be reduced to increase the degree of freedom in designing the vehicle. Therefore, the on-demand default route automatic traveling vehicle of the present invention can be used in various areas, and while reducing the waiting time of the user making the usage request, the energy loading amount can be further reduced and the design freedom of the vehicle can be achieved. The degree can be further improved.
  • the on-demand default route automatic traveling vehicle of the present invention has the following configuration in addition to the configuration of (23).
  • the on-vehicle control device transmits information related to the remaining energy level of the vehicle to the on-demand default route automatic traveling vehicle fleet control device.
  • the on-demand default route automatic traveling vehicle transmits information related to the energy remaining amount of the vehicle to the on-demand default route automatic traveling vehicle fleet control device. Then, based on the more accurate remaining energy levels of the plurality of on-demand default route automatic traveling vehicles transmitted to the on-demand default route automatic traveling vehicle fleet control device, boarding is scheduled from among the plurality of on-demand default route automatic traveling vehicles A vehicle to be allocated to the position is selected. For example, the on-demand default route automatic traveling vehicle having an energy remaining amount sufficiently larger than the energy required to travel from the current position to the expected riding position can be obtained by the on-demand default route automatic traveling vehicle fleet control device. It is more accurately selected as the vehicle to be dispatched to.
  • the on-demand default route automatic traveling vehicle with a large amount of remaining energy is preferentially allocated more accurately.
  • count of replenishing the energy of several on-demand default route automatic traveling vehicles can be reduced more correctly.
  • the energy efficiency of the plurality of on-demand default route automatic traveling vehicles can be further improved.
  • the on-demand default route automatic traveling vehicle of the present invention preferably has the following configuration in addition to the configuration of the above (23) or (24).
  • the use request information includes information on the planned exit position for the user to get off.
  • the dispatch instruction signal is generated by the on-demand default route automatic traveling vehicle fleet control device based on the route information, the vehicle position information, the occupant presence / absence information, the use request information and the energy information.
  • the use request information includes information on a planned boarding position and a planned boarding position. That is, the on-demand default route automatic traveling vehicle fleet control device selects the on-demand default route automatic traveling selected based on the current positions, the planned boarding positions, the expected exit positions and the remaining energy levels of the plurality of on-demand default route automatic traveling vehicles.
  • the vehicle is allocated to the planned boarding position.
  • the on-demand default route automatic traveling vehicle having the remaining energy necessary to travel from the current position to the alighting planned position via the scheduled boarding position is scheduled to get on the on-demand default route automatic traveling vehicle fleet control device. It can be distributed to the position. Thereby, the energy efficiency of the plurality of on-demand default route automatic traveling vehicles can be improved. Then, the energy loading amount of the on-demand default route automatic traveling vehicle per vehicle can be reduced to increase the degree of freedom in designing the vehicle. Therefore, the on-demand default route automatic traveling vehicle according to the present invention can be used in various areas, and can shorten the waiting time of the user making the use request while reducing the energy load and designing the vehicle. The degree of freedom can be further improved.
  • the on-demand default route automatic traveling vehicle of the present invention preferably has the following configuration in addition to the configuration of any of the above (23) to (25).
  • the ring connection default route includes a first ring default route, a second ring default route, and at least one first connection default route, and the first ring default route and the second ring default route are at least one. Connectable back and forth via one first connection default route.
  • a plurality of ring-shaped predetermined routes are included in the ring-connected predetermined route traveled by the on-demand predetermined route automatic traveling vehicle. Then, the number of on-demand default route automatic traveling vehicles that can travel on the ring connection default route can be increased. Thereby, the waiting time of the user can be further shortened.
  • the number of on-demand default route automatic traveling vehicles capable of traveling on the ring connection default route is increased, the distance from the current position of the on-demand default route automatic traveling vehicle in the standby state to the expected boarding position may be shortened. Thereby, the energy consumption of the on-demand default route automatic traveling vehicle per vehicle can be further reduced. Therefore, the on-demand default route automatic traveling vehicle according to the present invention can be used in various areas, and can shorten the waiting time of the user making the use request while reducing the energy load and designing the vehicle. The degree of freedom can be further improved.
  • the drive mechanism means a device that applies a driving force to the wheel.
  • the drive mechanism includes, for example, a device capable of applying a driving force such as an engine, a motor, a hybrid system combining an engine and a motor, and the like. Also, it may include a reduction gear, a speed increase gear or a transmission.
  • the braking mechanism means a device that applies a braking force to the wheel.
  • the braking mechanism may be, for example, a mechanical brake that converts kinetic energy such as a disk brake, a drum brake, an engine brake, etc. into thermal energy.
  • the braking mechanism includes an electric brake that converts kinetic energy such as an electromagnetic brake or a regenerative brake by a generator with a motor function into electric energy.
  • the traveling direction control mechanism means a device that controls the traveling direction of the vehicle.
  • the heading control mechanism may, for example, be a steering wheel operated by the occupant to change the orientation of at least one wheel.
  • the traveling direction control mechanism controls the traveling direction of the vehicle, for example, by controlling the rotational speed of the left wheel disposed on the left side of the vehicle and the rotational speed of the right wheel disposed on the right side of the vehicle differently. It may be an apparatus.
  • the “travelable area” is an area on which the on-demand default route automatic traveling vehicle can travel. Further, the “travelable area” is preferably an area on which the on-demand default route automatic traveling vehicle can travel exclusively. That is, it is preferable that the “travelable area” is an area not assuming the presence of a vehicle other than the on-demand default route automatic traveling vehicle. That is, it is preferable that the “travelable area” is an area not assuming that vehicles other than the on-demand default route automatic traveling vehicle and the on-demand default route automatic traveling vehicle are mixed and travel. Further, in the present invention, the "predetermined default route in the drivable area" is a predetermined default route included in the area of a part of the area on which the on-demand default route automatic traveling vehicle can travel. is there.
  • the "on-demand default route automatic traveling vehicle” is a vehicle that automatically travels on a predetermined default route in a drivable area in accordance with a user's usage request.
  • the "predetermined route” is a route of a predetermined on-demand default route automatic traveling vehicle.
  • the default route is a travel reference line which is a guide for the on-demand default route automatic traveling vehicle to travel on a travelable lane on which the on-demand default route automatic traveling vehicle can travel.
  • a travelable lane may or may not have a lane mark (eg, a white line) at its edge.
  • the driving reference line is not a physically existing line.
  • the term "automatic traveling” refers to traveling without an operation of speed and steering by the operator.
  • the operator includes an occupant and a person who performs remote operation.
  • Automatic travel also includes autonomous travel.
  • the autonomous traveling refers to traveling while avoiding an obstacle without an operation of speed and steering by the operator.
  • the on-demand default route automatic traveling vehicle is automatically traveled by the on-vehicle control device and / or the on-demand default route automatic traveling vehicle fleet control device.
  • the on-demand default route automatic traveling vehicle includes, for example, a motorized small vehicle such as a golf car (golf cart).
  • the "on-demand default route automatic traveling vehicle fleet control device" is configured to be able to transmit / receive information to / from a plurality of on-demand default route automatic traveling vehicles, and to drive a plurality of on-demand default route automatic traveling vehicles. It is a device to control.
  • the on-demand default route automatic traveling vehicle fleet control device when the on-demand default route automatic traveling vehicle fleet control device "allocates" the on-demand default route automatic traveling vehicle to the planned placement position, the on-demand default route automatic traveling vehicle fleet control device on-demand default route automatic traveling It means controlling to make the vehicle travel toward a designated position (for example, a planned boarding position).
  • the “annular connection default route” is a default route having at least one cyclic default route and at least one connection default route connected to the at least one cyclic default route back and forth.
  • the "cyclic default route” is a predetermined cyclic default route.
  • the annular predetermined route may have any shape as long as a plurality of vehicles can be circulated at all times, and may have various shapes without being limited to a circle.
  • the “connection default route” is a predetermined default route that is connected to the ring default route at a connection on the ring default route.
  • connection default route is connected to a ring default route
  • a connection default route means that it is possible to travel from a ring default route to a connection default route and travel from a connection default route to a ring default route. Say that it is possible to do.
  • route information is information related to a route of a ring connection predetermined route on which a plurality of on-demand predetermined route automatic traveling vehicles travel.
  • the route information is, for example, map information indicating a route of a ring connection default route.
  • the "vehicle position information” relates to the position on the ring connection default route of a plurality of on-demand default route automated vehicles configured to be able to transmit and receive information with the on-demand default route automatic traveling vehicle fleet control device.
  • the vehicle position information may be information on an absolute position on the ring connection predetermined route or may be information on a relative position on the ring connection predetermined route.
  • the "occupant presence / absence information" relates to the presence or absence of a plurality of on-demand default route automatic traveling vehicles configured to be able to transmit and receive information with the on-demand default route automatic traveling vehicle fleet control device. It is information.
  • the occupant presence / absence information may include not only the information on the presence or absence of the occupant on each of the plurality of on-demand default route automatic traveling vehicles, but also the information on the number of occupants on each of the plurality of on-demand predefined route automatic traveling vehicles.
  • the "use request information" is information related to the use request of the user acquired by the on-demand default route automatic traveling vehicle fleet control device.
  • the use request information includes information on a planned boarding position where the user is to board.
  • the use request information may be, for example, a planned exit position for the user to get off, a travel route that the user wants to travel, a planned via position for the user to stop on the way, and the number of users who plan to ride. It may include information such as the planned number of passengers, scheduled boarding time which is the time when the user is scheduled to board at the scheduled boarding position, and a cancellation request for the user to cancel the use.
  • the “expected boarding position information” is information related to a position expected to be a planned boarding position on the ring connection predetermined route.
  • the predicted boarding position information is, for example, a position at which the number of times of having a planned boarding position in the past is greater than or equal to a reference number among arbitrary positions on the ring connection predetermined route.
  • the predicted boarding position information is, for example, a position where the number of users is equal to or more than a predetermined number of positions on an annular connection predetermined route.
  • a state where it is possible to receive a dispatch command signal means that, even if the dispatch command signal is received, an on-demand default route automatic traveling vehicle is directed to a planned boarding position based on the dispatch command signal. Means that it is possible to travel. In other words, even if the dispatch command signal is received, the on-demand default route automatic travel based on the dispatch command signal does not interfere with the control of the on-demand default route automatic traveling vehicle based on the command signal other than the dispatch command signal. It means that the vehicle can be controlled.
  • the speed of the standby state when changing from the standby state to the allocation state based on the allocation command signal means that the on-demand default route automatic traveling vehicle changes from the standby state to the allocation state It is the speed of the waiting state just before changing.
  • the speed of the dispatch state when changing from the standby state to the dispatch state based on the dispatch command signal means that the on-demand default route automatic traveling vehicle has changed from the standby state to the dispatch state It is the speed of the dispatch state immediately after.
  • the “maximum number of occupants that can be taken” is the maximum number of adults of average height that can get on the on-demand route automatic traveling vehicle.
  • the on-demand default route automatic traveling vehicle of the present invention not only an adult passenger but also a child passenger and a wheelchair passenger may get on the vehicle.
  • the residual energy is the residual energy of the secondary battery. More specifically, it refers to the remaining capacity of the secondary battery expressed in units such as Ah or Wh.
  • the remaining energy amount is the remaining amount of the mounted fuel. More specifically, it refers to the remaining volume of the fuel, expressed in volume or weight etc.
  • the fuel specifically includes, for example, gasoline, light oil, hydrogen, LNG, LPG or gas fuel.
  • the drive mechanism of the vehicle is a hybrid drive mechanism of an engine and a motor
  • the remaining energy amount may be both the remaining amount of the secondary battery and the remaining amount of fuel.
  • the energy information related to the remaining amount of energy is not limited to the information directly indicating the remaining amount of energy described above.
  • information indicating the remaining energy amount may be used as long as it indicates a function that can be obtained by the remaining energy amount such as a time that can be traveled by the remaining energy amount and a distance that can be traveled.
  • the remaining energy related information may include an SOC indicating a direct remaining energy amount.
  • the energy information related to the remaining energy may include the voltage of the secondary battery and the current of the secondary battery, which are information capable of estimating the remaining energy of the secondary battery. Note that the remaining energy amount can be estimated by calculating the open circuit voltage or the consumption of energy from the voltage of the secondary battery and the current of the secondary battery.
  • the processor includes a microcontroller, central processing unit (CPU), graphics processing unit (GPU), microprocessor, multiprocessor, application specific integrated circuit (ASIC), programmable logic circuit (PLC), field programmable Included are gate arrays (FPGAs) and any other circuitry capable of performing the processes described herein.
  • the processor may be an ECU (Electronic Control Unit).
  • information means a signal in digital form which can be handled by a computer and which consists of a set of symbols and characters.
  • the information terminal means an information device such as a smartphone, a mobile phone, a tablet, a data communication terminal, etc. configured to be able to transmit and receive information.
  • the information terminal may be possessed by the user, or may be placed at the on-off / on location of the on-demand default route automatic traveling vehicle.
  • the storage unit can store various data.
  • the storage unit may be one storage device, part of a storage area of one storage device, or may include a plurality of storage devices.
  • the storage unit may include, for example, a random access memory (RAM).
  • the RAM temporarily stores various data when the processor executes a program.
  • the storage unit may or may not include, for example, a ROM (Read Only Memory).
  • the ROM stores a program to be executed by the processor.
  • the storage unit does not include a buffer (buffer storage device) that the processor has.
  • the buffer is a device that temporarily stores data.
  • hardware resources mean devices such as processors and storage devices.
  • reducing hardware resources means reducing the number of processors or storage devices, reducing the processing power required for the processors, reducing the capacity of storage devices, and the like.
  • acquiring, generating or controlling based on certain information may be acquiring, generating or controlling based only on this information, and acquiring or generating based on this information and other information. Or it may be control. This definition also applies to operations other than acquisition, generation or control.
  • obtaining from A includes both obtaining directly from A and obtaining from A to B.
  • the terms mounted, connected, coupled and supported are used broadly. Specifically, it includes not only direct attachment, connection, coupling and support but also indirect attachment, connection, coupling and support. Furthermore, connected and coupled are not limited to physical or mechanical connection / coupling. They also include direct or indirect electrical connections / couplings.
  • At least one of the plurality of options includes all combinations considered from the plurality of options.
  • At least one of the plurality of options may be any one of the plurality of options, or may be all of the plurality of options.
  • at least one of A, B and C may be A only, B only, C only or A and B, and A and C It may be, B and C may be present, and A, B and C may be present.
  • the term “preferred” is non-exclusive. “Preferred” means “preferably but not limited to”. In the present specification, the configuration described as “preferred” exhibits at least the above-described effect obtained by the configuration of the above (1). Also, as used herein, the term “may” is non-exclusive. “You may” means “may be, but not limited to”. In the present specification, the configuration described as “may” has at least the above-described effect obtained by the configuration of the above (1).
  • the present invention may have a plurality of such components. . Also, the present invention may have only one such component.
  • the present invention does not limit the combination of the preferred configurations described above.
  • the present invention is not limited to the details of construction and arrangement of components set forth in the following description or illustrated in the drawings.
  • the present invention is also possible in embodiments other than the embodiments described later.
  • the present invention is also possible in an embodiment in which various modifications are made to the embodiments described later.
  • the present invention can be implemented by appropriately combining the embodiments, specific examples, and modifications described later.
  • the on-demand default route automatic traveling vehicle fleet control apparatus of the present invention can be used in various areas and can suppress an increase in hardware resources.
  • FIG. 12B is a diagram showing an example of an on-demand default route automatic traveling vehicle fleet control device and usage request management device configured based on the logical architecture of FIG. 12A.
  • the on-demand default route automatic traveling vehicle fleet control device 501 is configured to be able to transmit and receive information with a plurality of on-demand default route automatic traveling vehicles 100.
  • a plurality of on-demand default route automatic traveling vehicles 100 are an on-demand default route automatic traveling vehicle 100A, an on-demand default route automatic traveling vehicle 100B, an on-demand default route automatic traveling vehicle 100C, an on-demand default route automatic traveling It is a vehicle 100D.
  • the plurality of on-demand default route automatic traveling vehicles 100A, 100B, 100C, and 100D automatically travel on a predetermined default route 30 in the travelable area regardless of the presence or absence of a passenger.
  • the on-demand default route automatic traveling vehicle fleet control device 501 controls the traveling of a plurality of on-demand default route automatic traveling vehicles 100A, 100B, 100C, and 100D.
  • the on-demand default route automatic traveling vehicle fleet control device 501 acquires the usage request from the user, the on-demand default route automatic traveling vehicles 100A, 100B, 100C, and 100D at least one of the plurality of on-demand default route automatic traveling vehicles Distributes the default route automatic traveling vehicle to the position where the user plans to get on.
  • the on-demand default route automatic traveling vehicle fleet control device 501 performs information acquisition processing S1, dispatch vehicle selection processing S2, dispatch command signal generation processing S3, and transmission processing S4.
  • Information acquisition processing S1 acquires route information, vehicle position information, occupant presence / absence information, and use request information.
  • the route information is information related to the route of the default route 30, which is a ring connection default route.
  • the ring connection default route 30 has at least one ring default route 31 and at least one connection default route 32 connected to the ring default route 31 so as to be able to travel back and forth.
  • the vehicle position information is information related to the current positions of a plurality of on-demand default route automatic traveling vehicles 100A, 100B, 100C, 100D on the ring connection default route 30.
  • a plurality of on-demand default route automatic traveling vehicles 100A, 100B, 100C, 100D on the ring connection default route 30 transmit the vehicle position information to the on-demand default route automatic traveling vehicle fleet control device 501.
  • the passenger presence / absence information is information related to the presence / absence of a plurality of on-demand default route automatic traveling vehicles 100A, 100B, 100C, and 100D on the ring connection default route 30.
  • the usage request information is usage request information related to the usage request of the user 701.
  • the use request information includes information on the planned boarding position P on which the user 701A is to board.
  • the user 701 is the user 701A and the user 701B.
  • the usage request management device 601 is configured to be able to transmit and receive information with the information terminal 720 possessed by the user 701 and the on-demand default route automatic traveling vehicle fleet control device 501. In the present embodiment, each user 701 holds the information terminal 720.
  • the information terminal 720A is owned by the user 701A.
  • the information terminal 720B is owned by the user 701B. Further, in the present embodiment, it is assumed that there is a request for using the user 701A.
  • the usage request information is transmitted to the on-demand default route automatic traveling vehicle fleet control device 501 when the at least one usage request management device 601 receives a usage request of the user 701 from the information terminal 720.
  • the dispatch vehicle selection processing S2 selects a vehicle to be dispatched to the planned boarding position P among the plurality of on-demand default route automatic traveling vehicles 100A, 100B, 100C, and 100D based on the acquired information.
  • the acquired information is route information, vehicle position information, occupant presence / absence information, and use request information.
  • the on-demand default route automatic traveling vehicle 100A is selected as the vehicle to be allocated to the expected boarding position P from the plurality of on-demand default route automatic traveling vehicles 100A, 100B, 100C, and 100D. explain.
  • the dispatching instruction signal generation process S3 generates a dispatching instruction signal based on the acquired route information, vehicle position information, occupant presence / absence information, and use request information.
  • the allocation command signal includes the vehicle 100A allocated to the planned boarding position P selected from the plurality of on-demand default route automatic traveling vehicles 100A, 100B, 100C, and 100D in the use request received by the use request management device 601. It is a signal for distributing to the expected boarding position P. That is, the dispatch command signal causes the vehicle 100A to be dispatched to the planned boarding position P selected from among the plurality of on-demand default route automatic traveling vehicles 100A, 100B, 100C, 100D toward the planned boarding position P. It is a signal to instruct.
  • the transmission processing S4 transmits the generated allocation command signal to the vehicle 100A for allocating the planned on-board position P selected from among the plurality of on-demand default route automatic traveling vehicles 100A, 100B, 100C, and 100D.
  • the on-demand default route automatic traveling vehicle fleet control device 501 of this embodiment has such a configuration, it has the following effects.
  • the on-demand default route automatic traveling vehicle 100 travels a ring connection default route 30 having at least one ring default route 31 and at least one connection default route 32 that can travel to the ring default route 31.
  • the on-demand default route automatic traveling vehicle fleet control device 501 acquires the usage request of the user 701 from at least one usage request management device 601 configured to transmit and receive information to and from the information terminal 720 possessed by the user 701. .
  • the usage request management device 601 is provided separately from the on-demand default route automatic traveling vehicle fleet control device 501.
  • the usage request management device 601 can be provided for each area. Therefore, a plurality of usage request management devices 601 can be provided in various areas.
  • the user 701 transmits a use request from the information terminal 720 to the on-demand default route automatic traveling vehicle fleet control device 501 and the use request management device 601 configured to be able to transmit and receive.
  • a plurality of usage request management devices 601 can be provided for one on-demand default route automatic traveling vehicle fleet control device 501. That is, the use request management device 601 that manages the use request of the user 701 according to the use purpose of the user 701 can be provided for each area. Then, the use request management device 601 can be configured in accordance with the use purpose of the user 701 which largely varies depending on the area.
  • the on-demand default route automatic traveling vehicle fleet control device 501 receives a usage request of the user 701 from the information terminal 720 possessed by the user 701 via a plurality of usage request management devices 601 provided in various areas. be able to.
  • the area size of the ring connection predetermined route 30 in which the on-demand predetermined route automatic traveling vehicle fleet control device 501 is used is limited. Therefore, the default route, the number of vehicles, and the upper limit number of usage requests do not differ extremely depending on the area.
  • the purpose of use of the user 701 largely differs depending on the area.
  • a usage request management device 601 is provided which manages usage requests of the user 701 according to the usage purpose of the user 701.
  • the on-demand default route automatic traveling vehicle fleet control device 501 is configured to control the traveling of the on-demand default route automatic traveling vehicle 100 based on the usage request of the user 701 acquired from the usage request management device 601. Ru.
  • the hardware resources of the on-demand default route automatic traveling vehicle fleet control device 501 are configured only by the hardware resources necessary to cope with the difference between the default route, the number of vehicles, and the upper limit number of usage requests. .
  • the hardware resources necessary for coping with the difference between the areas of utilization purpose of the user 701 are configured by the hardware resources of the utilization request management device 601. As a result, it is possible to suppress an increase in hardware resources of the on-demand default route automatic traveling vehicle fleet control device 501 while matching the characteristics of the area.
  • the on-demand default route automatic traveling vehicle fleet control device 501 for controlling the traveling of the on-demand default route automatic traveling vehicle 100 according to the present embodiment can be used in various areas and suppress an increase in hardware resources. Can.
  • the on-demand default route automatic traveling vehicle 100 includes a plurality of wheels 111, a drive mechanism 112, a braking mechanism 113, a traveling direction control mechanism 114, and a vehicle mounting control device 115.
  • the plurality of on-demand default route automatic traveling vehicles 100 are an on-demand default route automatic traveling vehicle 100A and an on-demand default route automatic traveling vehicle 100B.
  • the drive mechanism 112 applies a driving force for causing the vehicle to travel to at least one wheel 111.
  • the braking mechanism 113 applies a braking force to the at least one wheel 111 to decelerate the vehicle.
  • the traveling direction control mechanism 114 controls the traveling direction of at least one wheel 111 when the vehicle travels.
  • the on-vehicle control device 115 is configured to be able to transmit and receive information with the on-demand default route automatic traveling vehicle fleet control device 501.
  • the on-vehicle control device 115 controls the drive mechanism 112, the braking mechanism 113, and the traveling direction control mechanism 114 so that the vehicle automatically travels a predetermined route 30 in the travelable area regardless of the presence or absence of the occupant. Do.
  • on-demand default route automatic traveling vehicle fleet control device 501 receives a dispatch request signal generated by on-demand default route automatic traveling vehicle fleet control device 501, user on board ride control device 115 gets on the vehicle.
  • the drive mechanism 112, the braking mechanism 113, and the traveling direction control mechanism 114 are controlled so as to be distributed to the planned boarding planned position, and travel toward the planned boarding position.
  • the on-vehicle control device 115 transmits information on the current position of the vehicle on the predetermined route 30 to the on-demand predetermined route automatic traveling vehicle fleet control device 501.
  • the default route 30 is a ring connection default route 30 having at least one ring default route 31 and at least one connection default route 32 connected to the at least one ring default route 31 in a back and forth manner.
  • the on-vehicle default control device 115 transmits a dispatch command signal To receive.
  • the on-demand default route automatic traveling vehicle fleet control device 501 sets a scheduled onboard position among a plurality of on-demand default route automatic traveling vehicles 100A and 100B based on route information, vehicle position information, occupant presence / absence information, and use request information. Select the vehicle to be allocated.
  • the dispatch instruction signal is generated by the on-demand default route automatic traveling vehicle fleet control device 501 based on the route information, the vehicle position information, the occupant presence / absence information, and the use request information. In the present embodiment, it is assumed that the on-demand default route automatic traveling vehicle 100A is selected as the vehicle to be allocated to the planned boarding position P.
  • the route information is information related to the route of the ring connection default route 30.
  • the vehicle position information is information on the current position of a plurality of on-demand default route automatic traveling vehicles on the ring connection default route 30.
  • the vehicle position information includes information on the current position of the vehicle transmitted from the on-demand default route automatic traveling vehicles 100A and 100B.
  • the occupant presence / absence information is information related to the presence / absence of the occupants of the plurality of on-demand default route automatic traveling vehicles 100A and 100B on the ring connection default route 30.
  • the use request information is information related to the use request of the user 701.
  • the use request information includes information on the planned boarding position P.
  • the use request information includes information on the planned boarding position P on which the user 701A is to board.
  • the user 701 is the user 701A and the user 701B.
  • the usage request management device 601 is configured to be able to transmit and receive information with the information terminal 720 possessed by the user 701 and the on-demand default route automatic traveling vehicle fleet control device 501.
  • each user 701 holds the information terminal 720.
  • the information terminal 720A is owned by the user 701A.
  • the information terminal 720B is owned by the user 701B. Further, in the present embodiment, it is assumed that there is a request for using the user 701A.
  • the usage request information is transmitted to the on-demand default route automatic traveling vehicle fleet control device 501 when the usage request of the user 701 received from the usage request management device 601 is received.
  • the usage request management device 601 is configured to be able to transmit and receive information with the information terminal 720 possessed by the user 701.
  • the on-vehicle control device 115 drives the driving mechanism 112, the braking mechanism 113, and the like so as to travel toward the boarding scheduled position of the user 701 included in the usage request received by the usage request management device 601 based on the dispatch command signal.
  • the traveling direction control mechanism 114 is controlled.
  • the on-demand default route automatic traveling vehicle 100 of this embodiment has such a configuration, it has the following effects.
  • the on-demand default route automatic traveling vehicle 100 travels a ring connection default route 30 having at least one ring default route 31 and at least one connection default route 32 that can travel to the ring default route 31.
  • the on-demand default route automatic traveling vehicle fleet control device 501 acquires the usage request of the user 701 from at least one usage request management device 601 configured to transmit and receive information to and from the information terminal 720 possessed by the user 701. .
  • the usage request management device 601 is provided separately from the on-demand default route automatic traveling vehicle fleet control device 501.
  • the usage request management device 601 can be provided for each area. Therefore, a plurality of usage request management devices 601 can be provided in various areas.
  • the user 701 transmits a use request from the information terminal 720 to the on-demand default route automatic traveling vehicle fleet control device 501 and the use request management device 601 configured to be able to transmit and receive.
  • a plurality of usage request management devices 601 can be provided for one on-demand default route automatic traveling vehicle fleet control device 501. That is, the use request management device 601 that manages the use request of the user 701 according to the use purpose of the user 701 can be provided for each area. Then, the use request management device 601 can be configured in accordance with the use purpose of the user 701 which largely varies depending on the area.
  • the on-demand default route automatic traveling vehicle fleet control device 501 receives a usage request of the user 701 from the information terminal 720 possessed by the user 701 via a plurality of usage request management devices 601 provided in various areas. be able to.
  • the cyclic default route 31 and the communicable connection default route 32 can be increased.
  • the on-vehicle control device 115 controls the drive mechanism 112, the braking mechanism 113, and the traveling direction control mechanism 114 so as to travel toward the boarding scheduled position of the user 701 included in the use request received by the use request management device 601. Do.
  • the dispatch instruction signal is generated by the on-demand default route automatic traveling vehicle fleet control device 501 based on the route information, the vehicle position information, the occupant presence / absence information, and the use request information. That is, the on-demand default route automatic traveling vehicle 100 selected according to the presence or absence of the occupant is distributed to the planned boarding position.
  • the on-demand default route automatic traveling vehicle 100 on which no passenger is riding is not always circulated in the ring connection default route 30. It can be distributed and made to stand by. As a result, the energy consumption of the on-demand default route automatic traveling vehicle 100 in which no occupant is on can be reduced. As a result, the energy loading amount per vehicle can be reduced to increase the degree of freedom in vehicle design.
  • the on-demand default route automatic traveling vehicle 100 in which no occupant is on can be dispersed and kept on standby in the ring connection default route 30. Therefore, it is possible to increase the number of on-demand default route automatic traveling vehicles 100 that can travel on the ring connected default route 30 without constantly circulating on the on-demand default route automatic traveling vehicle 100 along the annular predetermined route 31. Then, the on-demand default route automatic traveling vehicle 100 in which no occupant is on can be dispersed and kept on standby in the ring connection default route 30. Thereby, the waiting time of the user 701 can be shortened.
  • the on-demand default route automatic traveling vehicle 100 can be used in various areas, and reduces the energy load while reducing the waiting time of the user 701 who made the usage request. Design freedom can be improved.
  • the specific example of the on-demand default route automatic traveling vehicle of the embodiment is an example in which the on-demand default route automatic traveling vehicle of the present invention is applied to a golf car.
  • the description of the same parts as those of the embodiment of the present invention described above is omitted.
  • the specific example of the on-demand default route automatic traveling vehicle of the embodiment of the present invention has all the features of the on-demand default route automatic traveling vehicle of the embodiment of the present invention described above.
  • the specific example of the on-demand default route automatic traveling vehicle fleet control device of the embodiment of the present invention has all the features of the on-demand default route automatic traveling vehicle fleet control device of the embodiment of the present invention described above. doing.
  • the vertical direction means the vertical direction of the vehicle unless otherwise specified.
  • the vertical direction of the vehicle is a direction orthogonal to the road surface when the on-demand default route automatic traveling vehicle 100 is disposed on a horizontal road surface.
  • the longitudinal direction refers to the longitudinal direction of the vehicle unless otherwise specified.
  • the longitudinal direction of the vehicle is a direction orthogonal to the vertical direction of the vehicle, and the traveling direction of the vehicle when the vehicle goes straight is the forward direction of the vehicle.
  • the left-right direction is the left-right direction of the vehicle.
  • the left-right direction of the vehicle is a direction orthogonal to the vertical direction and the front-rear direction.
  • the left-right direction of the vehicle is also the vehicle width direction of the on-demand default route automatic traveling vehicle 100.
  • Arrow F, arrow B, arrow U, arrow D, arrow L, and arrow R shown in the drawings respectively indicate the forward direction, backward direction, upward direction, downward direction, left direction, and right direction.
  • FIGS. 3A and 3B are diagrams schematically showing a ring connection predetermined route 130 on which the on-demand predetermined route automatic traveling vehicle 100 of the present example travels.
  • the ring connection default route 130 has one ring default route 131 and one connection default route 132.
  • the connection default route 132 is connected to the ring default route 131 at the first connection portion 131 a and the second connection portion 131 b on the ring default route 131.
  • four on-demand default route automatic traveling vehicles 100A, 100B, 100C, and 100D are running.
  • the on-demand default route automatic traveling vehicle can travel in one direction.
  • the first connection portion 131 a is a junction where the ring-shaped default route 131 and the connection default route 132 merge.
  • the second connection portion 131 b is a branch portion from which the ring predetermined route 131 and the connection predetermined route 132 branch.
  • the ring connection default route 130 is a predetermined default route in the travelable area 140.
  • the ring connection default route 130 is a default route included in a part of the travelable area 140.
  • the travelable area 140 is an area on which the on-demand default route automatic traveling vehicle 100 can travel exclusively.
  • the drivable area 140 is an area where it is not assumed that vehicles other than the on-demand default route automatic traveling vehicle 100 exist. That is, the travelable area 140 is an area that is not assumed that vehicles other than the on-demand default route automatic traveling vehicle 100 and the on-demand default route automatic traveling vehicle 100 coexist and travel.
  • a city area or a resort area having a size of about several kilometers for an ordinary user including an elderly person, a child, a wheelchair user, etc. is assumed as the area 140 which can be run.
  • the user 701 exists in the travelable area 140.
  • the user 701A is at the location P1 of the ring connection default route 130.
  • the plurality of users 701 B to 701 D are different from the place P 1 where the user 701 A is located, and are concentrated in the vicinity of the specific place P 2 of the ring connection predetermined route 130.
  • the user 701 may be in a specific place of the ring default route 131 or in a specific place of the connection default route 132.
  • Each user 701 possesses an information terminal 720.
  • the user 701A holds an information terminal 720A.
  • the user 701B holds an information terminal 720B.
  • the user 701C holds an information terminal 720C.
  • the user 701D holds an information terminal 720D.
  • FIG. 4 is a side view of the on-demand default route automatic traveling vehicle 100 according to a specific example of the embodiment.
  • FIG. 5 is a block diagram showing a configuration of a vehicle-mounted control device 115 of the on-demand default route automatic traveling vehicle 100 according to a specific example of the embodiment.
  • the on-demand default route automatic traveling vehicle 100 includes four wheels 111 and a vehicle body 109.
  • the four wheels 111 include two front wheels 111f.
  • the two front wheels 111f are arranged in the left and right direction at the front of the vehicle body 109.
  • the four wheels 111 include two rear wheels 111r.
  • the two rear wheels 111r are disposed in the rear of the vehicle body 109 side by side in the left-right direction.
  • the on-demand default route automatic traveling vehicle 100 travels by rotating the four wheels 111.
  • the on-demand default route automatic traveling vehicle 100 includes a seat 102.
  • a plurality of occupants can be seated on the seat 102.
  • the seat 102 includes a front seat 102f and a rear seat 102r.
  • the front seat 102 f and the rear seat 102 r are supported by the vehicle body 109 side by side in the front-rear direction.
  • On the front seat 102f and the rear seat 102r two adults of average height can be seated respectively.
  • the front seat 102f is disposed in front of the rear seat 102r. That is, the maximum number of occupants who can get on the on-demand default route automatic traveling vehicle 100 is four.
  • the vehicle body 109 has a roof portion 109a at the top.
  • the roof portion 109a is disposed on the front seat 102f and the rear seat 102r.
  • the seat 102 is provided with a seating detection unit (not shown) for sensing the seating of the occupant. More specifically, the seating detection unit includes two seating sensors disposed at positions where two occupants of front seat 102f are seated, and two seatings disposed at positions where two occupants of rear seat 102r are seated. Includes a sensor.
  • the seating sensor is, for example, a pressure sensor, and is disposed in the seat 102.
  • the seating sensor detects a load due to seating of the occupant and detects that the occupant is seated on the seat 102.
  • the seating sensor detects seating of the occupant, assuming that the occupant is seated on the seat 102, when detecting a load caused by seating the occupant for a predetermined time or more.
  • the seating detection unit is connected to the transmission / reception unit 153.
  • the seating detection unit detects the number of occupants seated on the front seat 102f and the rear seat 102r based on the number of seating sensors that detect seating of the occupant among the four seating sensors. Then, the seating detection unit outputs information on the number of occupants seated on the seat 102 to the transmission / reception unit 153 as occupant presence / absence information.
  • the transmitting / receiving unit 153 transmits energy information to the on-demand default route automatic traveling vehicle fleet control device 501 when the number of seated occupants detected by the seating detection unit changes.
  • the on-demand default route automatic traveling vehicle 100 includes a drive mechanism 112, a braking mechanism 113, and a travel direction control mechanism 114.
  • the driving mechanism 112 can apply a driving force to the on-demand default route automatic traveling vehicle 100.
  • the braking mechanism 113 can apply a braking force to the on-demand default route automatic traveling vehicle 100.
  • the drive mechanism 112 and the braking mechanism 113 control the speed in the traveling direction of the on-demand default route automatic traveling vehicle 100.
  • the drive mechanism 112 can apply a driving force to the two rear wheels 111r.
  • the driving force may include negative driving force as well as positive driving force. When a positive driving force is applied to the two rear wheels 111r, the on-demand default route automatic traveling vehicle 100 accelerates. When negative driving force is applied to the two rear wheels 111r, the on-demand default route automatic traveling vehicle 100 is decelerated.
  • the drive mechanism 112 includes, for example, a drive motor M and a battery B.
  • the on-demand default route automatic traveling vehicle 100 is an electric vehicle, and the drive motor M is an electric motor.
  • the drive motor M is connected to the battery B.
  • the battery B supplies power for driving the on-demand default route automatic traveling vehicle 100 to the drive motor M.
  • Battery B is connected to vehicle-mounted control device 115.
  • the on-vehicle control device 115 acquires energy information related to the remaining amount of energy of the battery B.
  • the drive motor M drives two rear wheels 111r.
  • the braking mechanism 113 can apply a braking force to the four wheels 111. When braking forces are applied to the four wheels 111, the on-demand default route automatic traveling vehicle 100 is decelerated.
  • the braking mechanism 113 is configured of, for example, four disk brake devices. Four disc brake devices are provided on the four wheels 111 respectively. The four disc brake devices brake the four wheels 111.
  • the on-demand default route automatic traveling vehicle 100 includes an accelerator pedal and a brake pedal (not shown).
  • the on-demand default route automatic traveling vehicle 100 of the present embodiment is normally traveled in the automatic operation mode.
  • the on-vehicle control device 115 controls the drive mechanism 112 and the braking mechanism 113 regardless of the operation of the accelerator pedal and the brake pedal to control the speed of the on-demand default route automatic traveling vehicle 100.
  • the on-demand default route automatic traveling vehicle 100 can switch to the manual driving mode and travel.
  • the drive mechanism 112 and the braking mechanism 113 control the speed of the on-demand default route automatic traveling vehicle 100.
  • the accelerator pedal is operated by the occupant to cause the on-demand default route automatic traveling vehicle 100 to travel.
  • the accelerator pedal is connected to the drive mechanism 112.
  • a sensor for detecting the operation amount of the accelerator pedal is provided, and the on-vehicle control device 115 controls the drive mechanism 112 based on the signal of the sensor.
  • the brake pedal is operated by the occupant in order to brake the on-demand default route automatic traveling vehicle 100.
  • the brake pedal is connected to the braking mechanism 113.
  • a sensor for detecting the amount of operation of the brake pedal is provided, and the on-vehicle control device 115 controls the braking mechanism 113 based on the signal of the sensor.
  • the traveling direction control mechanism 114 can steer the two front wheels 111f. By steering the two front wheels 111f, the traveling direction of the on-demand default route automatic traveling vehicle 100 is controlled.
  • the on-demand default route automatic traveling vehicle 100 includes a steering wheel 104.
  • the steering wheel 104 is connected to the travel direction control mechanism 114.
  • the steering wheel 104 can also be removed.
  • the steering wheel 104 is disposed in front of an occupant sitting on the front seat 102f.
  • the on-demand default route automatic traveling vehicle 100 of the present embodiment normally travels in an automatic operation mode.
  • the on-demand control mechanism 114 controls the advancing direction of the on-demand default route automatic traveling vehicle 100 by the on-vehicle control device 115 controlling the advancing direction control mechanism 114 regardless of the operation of the steering wheel 104. Do. Further, the on-demand default route automatic traveling vehicle 100 can switch to the manual driving mode and travel.
  • the traveling direction control mechanism 114 controls the traveling direction of the on-demand default route automatic traveling vehicle 100.
  • the steering wheel 104 is operated by the occupant in order to change the traveling direction of the on-demand default route automatic traveling vehicle 100.
  • the rotation of the steering wheel 104 steers the two front wheels 111f. By steering the two front wheels 111f, the traveling direction of the on-demand default route automatic traveling vehicle 100 is controlled.
  • the on-demand default route automatic traveling vehicle 100 includes a vehicle position detection device 120.
  • the vehicle position detection device 120 includes a camera 121, a light 122, and a Global Navigation Satellite System (GNSS) reception unit 123.
  • the camera 121 and the light 122 are disposed to face the bottom of the vehicle body 109 downward.
  • the camera 121 captures an image of the road surface of the ring connection default route 130 on which the on-demand default route automatic traveling vehicle 100 travels.
  • the camera 121 is, for example, a monocular camera.
  • the monocular camera may be an area camera or a line scan camera.
  • Two lights 122 are disposed in the vicinity of the camera 121. One light 122 may be installed.
  • the light 122 emits light to the road surface of the ring connection predetermined route 30.
  • the camera 121 captures at least a part of the illumination range of the road surface by the light 122.
  • the camera 121 may have a polarization filter in order to suppress the influence of light reflection by the light 122.
  • the vehicle position detection device 120 outputs the image of the road surface captured by the camera 121 to the vehicle mounting control device 115.
  • the GNSS receiving unit 123 generates current position information using radio waves transmitted from GNSS satellites.
  • the information on the current position of the on-demand default route automatic traveling vehicle 100 generated using the GNSS is based on the radio wave transmitted from the GNSS satellite and the signal of a sensor that detects the behavior of the on demand default route automatic traveling vehicle 100. Generated.
  • the information on the current position generated using the GNSS is information on the absolute position.
  • the sensor for detecting the behavior of the on-demand default route automatic traveling vehicle 100 may be a sensor provided in the GNSS receiving unit 123 or another sensor that the on-demand default route automatic traveling vehicle 100 has Good.
  • the information on the current position of the on-demand default route automatic traveling vehicle 100 generated using the GNSS may be generated based only on radio waves transmitted from the GNSS satellites.
  • the own vehicle position detection device 120 outputs the current position of the own vehicle generated by the GNSS reception unit 123 to the on-vehicle control device 115.
  • the on-demand default route automatic traveling vehicle 100 includes a front obstacle detection device 118.
  • the front obstacle detection device 118 detects an obstacle that exists in the forward direction of the on-demand default route automatic traveling vehicle 100.
  • the front obstacle detection device 118 is a sensor such as, for example, LIDAR (Laser Imaging Detection and Ranging).
  • LIDAR Laser Imaging Detection and Ranging
  • the front obstacle detection device 118 outputs a front obstacle detection signal to the on-vehicle control device 115 when an obstacle existing in the forward direction of the on-demand default route automatic traveling vehicle 100 is detected.
  • the vehicle-mounted control device 115 includes a processor 151, a storage unit 152, and a transmission / reception unit 153.
  • the transmission / reception unit 153 is configured to be able to transmit / receive information to / from the on-demand default route automatic traveling vehicle fleet control device 501.
  • the transmitting and receiving unit 153 is, for example, an antenna such as a dipole antenna.
  • Vehicle-mounted control device 115 may be physically configured as one device or may be configured as a plurality of devices. When the vehicle-mounted control device 115 is physically configured as a plurality of devices, each device includes an arithmetic unit and a storage unit.
  • the transmission / reception unit 153 receives a dispatch instruction signal, an advance dispatch signal and an arbitration command signal from the on-demand default route automatic traveling vehicle fleet control device 501.
  • the dispatch command signal, the advance dispatch command signal, and the arbitration command signal are generated by the on-demand default route automatic traveling vehicle fleet control device 501.
  • the allocation command signal is generated by the on-demand default route automatic traveling vehicle fleet control device 501 that has acquired the usage request from the user 701.
  • the use request from the user 701 is transmitted from the information terminal 720 possessed by the user 701 to the use request management device 601. Then, when the usage request management device 601 receives a usage request of the user 701 from the information terminal 720, the usage request management device 601 transmits a usage request from the user 701 to the on-demand default route automatic traveling vehicle fleet control device 501.
  • the information terminal 720 is possessed for each user 701.
  • the information terminal 720 is configured to be able to transmit and receive information with the usage request management device 601.
  • the usage request management device 601 is configured to be able to transmit and receive information with the on-demand default route automatic traveling vehicle fleet control device 501.
  • the plurality of usage request management devices 601 can transmit and receive information to and from one on-demand default route automatic traveling vehicle fleet control device 501.
  • one information terminal 720 may be configured to be able to transmit and receive information with one usage request management device 601, and may be configured to be able to transmit and receive information with a plurality of usage request management devices 601.
  • the vehicle allocation command signal is received by the on-demand default route automatic traveling vehicle fleet control device 501 as a vehicle selected as a vehicle to be dispatched to the planned boarding position among the plurality of on-demand default route automatic traveling vehicles 100A to 100D.
  • the allocation command signal is a signal that instructs traveling toward the boarding planned position on the predetermined route.
  • the on-demand default route automatic traveling vehicle fleet control device 501 gets on among the plurality of on-demand default route automatic traveling vehicles 100A to 100D based on route information, vehicle position information, occupant presence / absence information, use request information, and energy information. Select a vehicle to be allocated to the planned position.
  • the dispatch instruction signal is generated by the on-demand default route automatic traveling vehicle fleet control device 501 based on the route information, the vehicle position information, the occupant presence / absence information, the use request information, and the energy information.
  • the energy information is information related to the remaining energy levels of a plurality of on-demand default route automatic traveling vehicles 100A to 100D on the ring connection default route 130.
  • the use request information includes information on the planned boarding position and information on the planned boarding position.
  • the advance allocation command signal is generated by the on-demand default route automatic traveling vehicle fleet control device 501.
  • the advance dispatching instruction signal is received by the on-demand default route automatic traveling vehicle fleet control device 501 that is selected as a vehicle to be dispatched in advance to the expected boarding position among the plurality of on-demand default route automatic traveling vehicles 100A to 100D. .
  • the vehicles pre-dispatched to the predicted boarding position are selected from vehicles having no occupant and no dispatch command signal received by the on-demand default route automatic traveling vehicle fleet control device 501.
  • the advance dispatching instruction signal is a signal instructing to travel toward the expected riding position on the predetermined route.
  • the on-demand default route automatic traveling vehicle fleet control device 501 is selected from among a plurality of on-demand default route automatic traveling vehicles 100A to 100D based on route information, vehicle position information, occupant presence / absence information, predicted riding position information, and energy information. Select a vehicle to be allocated in advance to the expected boarding position.
  • the advance dispatching instruction signal is generated by the on-demand default route automatic traveling vehicle fleet control device 501 based on the route information, the vehicle position information, the occupant presence / absence information, the predicted riding position information, and the energy information.
  • the predicted boarding position information is information related to a predicted boarding position, which is a position expected to be a planned boarding position on the ring connection predetermined route 130.
  • the predicted boarding position information includes information on the predicted boarding position and information on the predicted alighting position.
  • the arbitration command signal is generated by the on-demand default route automatic traveling vehicle fleet control device 501 based on the route information, the vehicle position information, the occupant presence / absence information, the use request information, and the energy information.
  • the arbitration command signal is a signal instructing to wait for passage of the connection portion 131a to which the ring preset route 131 and the connection preset route 132 are connected.
  • the arbitration command signal is an on-demand default route automatic traveling vehicle on which the on-demand default route automatic traveling vehicle fleet control device 501 travels the connection default route 132 toward the first connection portion 131a based on the route information and the vehicle position information.
  • the arbitration command signal is a signal for arbitrating the passage of the connection portion 131 a of the two on-demand predetermined route automatic traveling vehicles 100.
  • the arbitration command signal is based on route information, vehicle position information, occupant status information, use request information, energy information, and the on-demand default route automatic traveling vehicle fleet control device 501 controls the two on-demand default route automatic traveling vehicles 100.
  • the first on-demand default route automatic traveling vehicle 100 is selected as a vehicle whose traveling is controlled for arbitration.
  • the arbitration command signal is not transmitted to the second on-demand default route automatic traveling vehicle 100 among the two on-demand default route automatic traveling vehicles 100.
  • the first on-demand default route automatic traveling vehicle is the on-demand default route automatic traveling vehicle 100C.
  • the second on-demand default route automatic traveling vehicle is an on-demand default route automatic traveling vehicle 100B.
  • the arbitration command signal is a signal that instructs the first on-demand default route automatic traveling vehicle to follow the second on-demand default route automatic traveling vehicle in the order of passing through the first connection portion 131a.
  • the arbitration command signal is, for example, a signal for instructing a deceleration of the speed of the on-demand default route automatic traveling vehicle 100C or a stop at a position before the first connection portion 131a of the connection default route 132.
  • the arbitration command signal is a driving mechanism 112 and a braking mechanism 113 related to the presence of an obstacle in which the first on-demand default route automatic traveling vehicle 100 and the second on-demand default route automatic traveling vehicle 100 are in the forward direction of the vehicle.
  • it is transmitted from the on-demand default route automatic traveling vehicle fleet control device 501 to the first on-demand default route automatic traveling vehicle 100.
  • the arbitration command signal is transmitted to the first on-demand default route automatic traveling vehicle 100 in a state where the on-vehicle control device 115 does not obtain the previous obstacle detection signal from the previous obstacle detection device 118. It is transmitted from the autonomous traveling vehicle fleet control device 501.
  • the transmission / reception unit 153 When acquiring the front obstacle detection signal from the front obstacle detection device 118, the transmission / reception unit 153 transmits the front obstacle detection signal to the on-demand default route automatic traveling vehicle fleet control device 501. When acquiring the front obstacle detection signal, the transmission / reception unit 153 transmits the front obstacle detection signal to the on-demand default route automatic traveling vehicle fleet control device 501.
  • the transmission / reception unit 153 transmits energy information related to the remaining energy amount of the battery B to the on-demand default route automatic traveling vehicle fleet control device 501.
  • the transmission / reception unit 153 transmits the energy information to the on-demand default route automatic traveling vehicle fleet control device 501 at predetermined intervals.
  • the predetermined interval may be an interval of a predetermined time or an interval of a predetermined travel distance. The predetermined interval can be set arbitrarily.
  • the transmission / reception unit 153 transmits information on the number of occupants seated on the seat 102 to the on-demand default route automatic traveling vehicle fleet control device 501 as occupant presence / absence information related to the presence / absence of the occupant.
  • the transmission / reception unit 153 transmits the passenger presence / absence information to the on-demand default route automatic traveling vehicle fleet control device 501 at predetermined intervals.
  • the on-vehicle control device 115 receives an image of a road surface captured by the camera 121 and the current position of the vehicle generated by the GNSS reception unit 123 from the vehicle position detection device 120.
  • the storage unit 152 of the on-vehicle control device 115 stores the pre-acquired image, which is an image of the road surface of the ring connection preset route 130 acquired in advance, in association with the absolute position of the ring connection preset route 130 at which the pre-acquired image is captured.
  • the previously acquired image is an image of the road surface of the annular connection predetermined route 130 captured in a range 130P indicated by an alternate long and short dash line in FIG. 3A.
  • the on-vehicle control device 115 refers to the current position of the vehicle generated by the GNSS reception unit 123 and compares the previously acquired image stored in the storage unit 152 with the image of the road surface captured by the camera 121.
  • the on-vehicle control device 115 compares the previously acquired image in the vicinity of the current position of the vehicle generated by the GNSS reception unit 123 with the image of the road surface captured by the camera 121.
  • the on-vehicle control device 115 obtains a more accurate current position of the on-demand default route automatic traveling vehicle 100 based on the absolute position associated with the previously acquired image that matches the image of the road surface captured by the camera 121.
  • the previously acquired image that matches the image of the road surface captured by the camera 121 includes a previously acquired image that is not only completely matched but partially matched.
  • the transmitting / receiving unit 153 transmits the obtained current position of the on-demand default route automatic traveling vehicle 100 to the on-demand default route automatic traveling vehicle fleet control device 501 as current position information.
  • the transmission / reception unit 153 transmits the current position information to the on-demand default route automatic traveling vehicle fleet control device 501 at predetermined intervals.
  • the storage unit 152 of the on-vehicle control device 115 stores the position of the ring connection default route 130 and the traveling direction of the on-demand default route automatic traveling vehicle 100 in association with each other.
  • the position of the ring connection default route 130 and the traveling direction of the on-demand default route automatic traveling vehicle 100 trace a predetermined ring connection default route 130 in an area where the on-demand default route automatic traveling vehicle 100 can travel. It is linked and stored so that it can run.
  • the absolute position of the annular connection preset route 130 and the steering angle for changing the traveling direction of the on-demand preset route automatic traveling vehicle 100 at the absolute position are associated and stored.
  • the on-vehicle control device 115 sets the traveling direction of the on-demand default route automatic traveling vehicle 100 corresponding to the current position of the on-demand default route automatic traveling vehicle 100.
  • the on-vehicle control device 115 controls the traveling direction control mechanism 114 based on the set traveling direction of the on-demand default route automatic traveling vehicle 100. That is, the on-vehicle control device 115 controls the traveling direction control mechanism 114 such that the traveling direction of the on-demand default route automatic traveling vehicle 100 is in the set traveling direction.
  • the on-vehicle control device 115 controls the traveling direction control mechanism 114 so as to automatically travel on a predetermined route 130 in a travelable area regardless of the presence or absence of a passenger.
  • the on-vehicle control device 115 sets the traveling direction of the annular predetermined route 131 of the annular connection predetermined route 130 and the connection portion 131 b of the predetermined connection route 132 based on the passing route information.
  • the passing route information is included in a dispatch instruction signal received from the on-demand default route automatic traveling vehicle fleet control device 501.
  • the dispatch instruction signal includes passing route information.
  • the passing route information includes information as to whether to travel along the ring default route 131 or the connection default route 132 after passing through the connection portion 131 b which is a branch portion.
  • the vehicle-mounted control device 115 controls the traveling direction control mechanism 114 when passing through the connection portion 131 b based on the traveling direction set based on the passing route information.
  • the storage unit 152 of the on-vehicle control device 115 stores the traveling state of the on-demand default route automatic traveling vehicle 100 and the speed of the on-demand default route automatic traveling vehicle 100 in association with each other.
  • the vehicle-mounted control device 115 sets the speed of the on-demand default route automatic traveling vehicle 100 corresponding to the traveling state of the on-demand default route automatic traveling vehicle 100.
  • the traveling state of the on-demand default route automatic traveling vehicle 100 includes a dispatching state, a prior allocation state, a standby state, a destination traveling state, and an arbitration state.
  • the vehicle allocation state is a state in which the on-demand default route automatic traveling vehicle 100 is traveling toward the expected boarding position based on the dispatch instruction signal received from the on-demand default route automatic traveling vehicle fleet control device 501.
  • the advance dispatching state is a state in which the on-demand default route automatic traveling vehicle 100 is traveling toward the expected riding position based on the advance dispatch command signal received from the on-demand default route automatic traveling vehicle fleet control device 501. .
  • the prior allocation state no occupant is on the on-demand default route automatic traveling vehicle 100.
  • the standby state no occupant is on the on-demand default route automatic traveling vehicle 100, and the on-demand default route automatic traveling vehicle 100 receives the advance dispatch signal or dispatch command signal from the on-demand default route automatic traveling vehicle fleet control device 501. It is possible to receive.
  • the mediation state is a state in which the on-demand default route automatic traveling vehicle 100 is traveling by receiving an arbitration command signal from the on-demand default route automatic traveling vehicle fleet control device 501.
  • the speed of the on-demand default route automatic traveling vehicle 100 in the standby state is set to a speed V1.
  • the speed of the on-demand default route automatic traveling vehicle 100 in the allocation state is set to a speed V2.
  • the speed of the on-demand default route automatic traveling vehicle 100 in the destination traveling state is set to a speed V3.
  • the speed of the on-demand default route automatic traveling vehicle 100 in the mediation state is set to a speed V4.
  • the speed of the on-demand default route automatic traveling vehicle 100 in the pre-dispatched state is set to a speed V5.
  • the velocity V1 is smaller than the velocity V2 and the velocity V3.
  • the velocity V1 may be zero.
  • the velocity V4 is smaller than the velocity V2, the velocity V3 and the velocity V5.
  • the velocity V4 may be zero.
  • the speed V5 is preferably set at a speed with low energy consumption.
  • the velocity V2, the velocity V3 and the velocity V5 may be the same or all different.
  • the speeds V1 to V5 are set at 40 km / hour or less. For example, the velocity V2, the velocity V3 and the velocity V5 are 20 km per hour.
  • the on-vehicle control device 115 controls the drive mechanism 112 and the braking mechanism 113 based on the set speed of the on-demand default route automatic traveling vehicle 100. That is, the on-vehicle control device 115 controls the drive mechanism 112 and the braking mechanism 113 such that the speed of the on-demand default route automatic traveling vehicle 100 becomes the set speed.
  • the on-vehicle control device 115 controls the drive mechanism 112 and the braking mechanism 113. Then, the speed of the on-demand default route automatic traveling vehicle 100 is increased to travel at the speed V5.
  • speed V1 is zero
  • on-demand default route automatic traveling vehicle 100 in the standby state controls drive mechanism 112 and braking mechanism 113 when on-demand default route automatic traveling vehicle 100 receives an advance dispatch signal.
  • the on-demand default route automatic traveling vehicle 100 starts traveling and travels at a speed V5.
  • the on-demand control device 115 controls the drive mechanism 112 and the braking mechanism 113 to perform on-demand.
  • the default route automatic traveling vehicle 100 is caused to travel at a speed V2.
  • vehicle on-board control device 115 controls drive mechanism 112 and braking mechanism 113 to turn on.
  • the speed of the demand default route automatic traveling vehicle 100 is increased to travel at the speed V2.
  • the on-vehicle default control route automatic traveling vehicle 100 in the standby state controls the drive mechanism 112 and the braking mechanism 113 when the on-demand default route automatic traveling vehicle 100 receives the dispatch instruction signal.
  • the on-demand default route automatic traveling vehicle 100 starts traveling and travels at the speed V2.
  • the on-vehicle control device 115 drives the driving mechanism 112 and the braking mechanism. Control 113 to stop the vehicle.
  • the on-demand control device 115 controls the drive mechanism 112 and the braking mechanism 113 to drive the on-demand default route automatic traveling vehicle 100 when the user gets in at a planned boarding position and becomes a destination travel state. Start and run at speed V3.
  • the on-demand default route automatic traveling vehicle 100 in the destination traveling state controls the drive mechanism 112 and the braking mechanism 113 when the on-demand default route automatic traveling vehicle 100 arrives at the user's expected drop-off position included in the dispatch instruction signal.
  • the on-demand default route automatic traveling vehicle 100 is stopped.
  • the vehicle-mounted control device 115 controls the drive mechanism 112 and the braking mechanism 113 to start traveling of the on-demand default route automatic traveling vehicle 100 when the user gets off at the planned exit position and enters the standby state. , Run at speed V1.
  • the on-vehicle control device 115 controls the drive mechanism 112 and the braking mechanism 113 to set the on-demand default route automatic traveling vehicle.
  • the vehicle 100 may travel at a speed V1 so as to move 100 to the connection default route 132.
  • the speed V1 is zero
  • the vehicle-mounted control device 115 controls the drive mechanism 112 and the braking mechanism 113 when the user gets off at the expected getting-off position and enters the standby state, and the on-demand operation is performed.
  • the default route automatic traveling vehicle 100 is stopped.
  • the on-vehicle control device 115 controls the drive mechanism 112 and the braking mechanism 113 to set the on-demand default route automatic traveling vehicle. 100 may be moved to the connection default route 132 and then stopped.
  • the on-vehicle control device 115 controls the drive mechanism 112 and the braking mechanism 113 to stop the on-demand default route automatic traveling vehicle 100.
  • FIG. 6 is a block diagram showing the configuration of an on-demand default route automatic traveling vehicle fleet control device 501 according to a specific example of the embodiment.
  • FIG. 7 is a flowchart showing the procedure of processing of the on-demand default route automatic traveling vehicle fleet control device 501 according to a specific example of the embodiment.
  • the on-demand default route automatic traveling vehicle fleet control device 501 includes a processor 502, a storage unit 503, and a transmission / reception unit 504.
  • the transmitting and receiving unit 504 is configured to be able to transmit and receive information with the on-demand default route automatic traveling vehicles 100A to 100D.
  • the transmitting and receiving unit 504 is an antenna such as a dipole antenna, for example.
  • Vehicle-mounted control device 115 may be physically configured as one device or may be configured as a plurality of devices. When the on-demand default route automatic traveling vehicle fleet control device 501 is physically configured as a plurality of devices, each device includes an operation unit and a storage unit.
  • the transmission / reception unit 504 receives the use request from the user 701 transmitted from the use request management device 601.
  • the information terminal 720 possessed by the user 701 transmits the use request from the user 701 to the use request management device 601.
  • the information terminal 720 is, for example, a portable terminal.
  • the information terminal 720 includes a touch panel 721 and a GNSS reception unit 750.
  • the touch panel 721 can display information or can input information by an operation of the user 701.
  • the GNSS receiving unit 750 generates information on the current position of the information terminal 720 using radio waves transmitted from GNSS satellites.
  • the information on the current position of the information terminal 720 generated using the GNSS is generated based on the radio wave transmitted from the GNSS satellite and the signal of a sensor that detects the behavior of the information terminal 720.
  • the information on the current position of the information terminal 720 generated using GNSS is information on absolute position.
  • the sensor that detects the behavior of the information terminal 720 is a sensor provided in the information terminal 720. Then, the information terminal 720 can obtain the current position by the GNSS receiving unit 750.
  • Information on the current position of the information terminal 720 generated using GNSS may be generated based only on radio waves transmitted from GNSS satellites.
  • the information terminal 720 transmits the current position of the information terminal 720 at predetermined intervals to the on-demand default route automatic traveling vehicle fleet control device 501.
  • FIG. 8 illustrates, as a use case, information transmitted and received between the information terminal 720 of the user 701, the usage request management device 601, and the on-demand default route automatic traveling vehicle fleet control device 501.
  • the information terminal uses information on use request, information on destination indication, information on alight off request, and information on cancel request as information related to the use request of the user 701.
  • the request is transmitted from 720 to the usage request management device 601.
  • Information on the use request, information on the destination instruction, information on the alighting request, and information on the cancellation request are input by the user 701 at the information terminal 720 and transmitted to the use request management device 601.
  • the information of the usage request, the information of the destination instruction, the information of the getting-off request, and the information of the cancellation request received by the usage request management device 601 are transmitted to the on-demand default route automatic traveling vehicle fleet control device 501.
  • the use request is also referred to as a Vehicle Request.
  • the destination input is also called Drive to Destination.
  • the request for getting off is also referred to as Get off.
  • the cancellation request is also referred to as Cancel Order.
  • calculation of scheduled dispatch time is also called Calculate Travel Time.
  • arrival notification is also called Arrival Notification.
  • the setting of the destination is also called Set Destination.
  • the information of the use request is information of the use request of the on-demand default route automatic traveling vehicle 100 of the user 701.
  • the information related to the usage request transmitted to the usage request management device 601 includes information on the planned boarding position.
  • the planned boarding position is a position where the user 701 is scheduled to board.
  • the information of the use request inputted by the user 701 is information to the effect that a mere use of the on-demand default route automatic traveling vehicle 100 is requested.
  • the information of the use request inputted by the user 701 is information to the effect that a mere use of the on-demand default route automatic traveling vehicle 100 is requested.
  • the user 701 taps the boarding button 722a displayed on the touch panel 721 of the information terminal 720, information indicating that a mere use is requested is input.
  • the information of the planned boarding position created based on the information of the current position of the information terminal 720 generated by the GNSS receiving unit 750 when the information indicating that the mere use is requested is input is the use request management. It is sent to the device 601.
  • the current position of the information terminal 720 generated by the GNSS receiving unit 750 is in the ring connection default route 130 when the mere request for use is input, the current position of the information terminal 720 is taken as the expected boarding position, It is transmitted to the usage request management device 601.
  • the current position of the information terminal 720 generated by the GNSS receiving unit 750 when information simply requesting use is input is in the vicinity of the ring connection default route 130, the ring connection closest to the current position of the information terminal 720 The position of the default route 130 is transmitted to the usage request management device 601 as information on the planned boarding position.
  • the information of the use request inputted by the user 701 is of the boarding designated position designated by the user 701 on the map displayed on the touch panel 721 of the information terminal 720 based on the route information of the ring connection default route 130 It is information. Specifically, as shown in FIG. 9B, the user 701 taps an arbitrary position 723b on the map 723a of the ring connection default route displayed on the touch panel 721 of the information terminal 720, thereby the user on the map Information on the boarding designated position designated by 701 is input to the information terminal 720.
  • the position on the map 723a of the ring connection predetermined route and the absolute position information of the ring connection predetermined route 130 are stored in association with each other.
  • absolute position information corresponding to the boarding designated position designated by the user 701 on the map 723a is transmitted to the use request management device 601 as a boarding planned position.
  • the use request information may include information on the number of people planning to get on the on-demand default route automatic traveling vehicle 100.
  • the user 701 inputs the number of people scheduled to get on the vehicle from the touch panel 721 of the information terminal 720. Specifically, as shown in FIG.
  • the user 701 inputs the number of people scheduled to get in the passenger number input column 722b displayed on the touch panel 721 of the information terminal 720.
  • the information of the use request may include information of a time when the on-demand default route automatic traveling vehicle 100 is to get on the vehicle.
  • the user 701 inputs the time to get on the vehicle from the touch panel 721 of the information terminal 720.
  • the user 701 inputs the time to get on the vehicle in the boarding time input field 722c displayed on the touch panel 721 of the information terminal 720.
  • the destination instruction information is information on a destination that the user 701 wants to reach using the on-demand default route automatic traveling vehicle 100.
  • the destination instruction information transmitted to the usage request management device 601 includes the planned alighting position.
  • the planned exit position is a position where the user 701 is scheduled to exit.
  • the information on the destination instruction input by the user 701 is information on the destination selected by the user 701 from among the candidates of the destination.
  • information on candidate destinations may be stored in the storage unit 725 of the information terminal 720 and displayed on the touch panel 721.
  • information on candidate destinations may be transmitted from the usage request management device 601 and displayed on the touch panel 721 of the information terminal 720.
  • a candidate of a destination may be displayed on the touch panel 721 of the information terminal 720.
  • candidates for the destination may be displayed on the touch panel 721 of the information terminal 720 according to genre. Specifically, as shown in FIG.
  • restaurants A, B and C which are candidates for destinations common to genres (restaurants), are destination buttons 724a corresponding to the restaurant A.
  • the destination button 724 b corresponding to the restaurant B and the destination button 724 c corresponding to the restaurant C are displayed.
  • the information of the candidate of the destination displayed on the touch panel 721 may display not only destinations having a common genre but various destinations.
  • restaurants A to C which are candidates for the destination, are stored in association with the absolute position information of the ring connection predetermined route 130. In this case, the absolute position information corresponding to any one of the restaurants A to C input by the user 701 as a destination instruction is transmitted to the use request management device 601 as an expected exit position.
  • the destination designation information input by the user 701 is the exit designation position designated by the user 701 on the map displayed on the touch panel 721 of the information terminal 720 based on the route information of the ring connection default route 130 Information.
  • the user 701 taps an arbitrary position 723b on the map 723a of the ring connection default route displayed on the touch panel 721 of the information terminal 720, thereby the user on the map Information on the alight-off designation position designated by 701 is input to the information terminal 720.
  • the position on the map 723a of the ring connection predetermined route and the absolute position information of the ring connection predetermined route 130 are stored in association with each other. In this case, the absolute position information corresponding to the get-off designation position designated by the user 701 on the map is transmitted to the use request management device 601 as the get-off scheduled position.
  • the information on the destination instruction may include information on the traveling route in addition to the information on the planned exit position.
  • the travel route is a route that the user desires to travel.
  • the information of the traveling route input by the user 701 is the information of the designated traveling route designated by the user 701 on the map displayed on the touch panel 721 of the information terminal 720 based on the route information of the ring connection default route 130 Yes (not shown).
  • the route on the map 723a of the ring connection default route and the route information of the ring connection default route 130 are stored in association with each other. In this case, route information corresponding to the designated travel route designated by the user 701 on the map is transmitted to the usage request management device 601 as a travel route.
  • the information on the destination instruction may include information on the planned transit position.
  • the planned passing position is a position where the user wants to stop on the way.
  • the information on the planned transit position inputted by the user 701 is the information on the designated transit position designated by the user 701 on the map displayed on the touch panel 721 of the information terminal 720 based on the route information of the ring connection default route 130 It is.
  • the user 701 taps an arbitrary position 723b on the map 723a of the ring connection default route displayed on the touch panel 721 of the information terminal 720, thereby the user on the map Information on the designated route position designated by 701 is input.
  • the position on the map 723a of the ring connection default route is stored in association with the route information of the ring connection default route 130.
  • absolute position information corresponding to the designated transit position designated by the user 701 on the map is transmitted to the use request management device 601 as a planned transit position.
  • the information on the getting-off request is information for the user to request the getting-off from the on-demand default route automatic traveling vehicle 100.
  • the information on the getting-off request is information that simply requests getting off. Specifically, when the user 701 taps the get-off button displayed on the touch panel 721 of the information terminal 720, a get-off request is input to the information terminal 720. In this case, when the getting-off request is input, information on the getting-off request is transmitted to the usage request management device 601.
  • the information on the current position of the information terminal 720 generated by the GNSS receiving unit of the information terminal 720 may include the information on the alighting request.
  • the information of the cancellation request is information of a request for canceling the use of the on-demand default route automatic traveling vehicle 100 by the user who has made the use request.
  • the information on the cancellation request is information that simply requests cancellation. Specifically, when the user 701 taps the cancel button displayed on the touch panel 721 of the information terminal 720, a cancel request is input. In this case, when a cancellation request is input, information on the cancellation request is transmitted to the usage request management device 601.
  • the information terminal 720 displays the planned dispatching time of the on-demand default route automatic traveling vehicle 100 calculated based on the input usage request of the user 701 on the touch panel 721. Good.
  • the calculation of the planned vehicle allocation time may be performed by the information terminal 720 or may be calculated by the usage request management device 601 and acquired by the information terminal 720.
  • the scheduled dispatching time may be calculated by the on-demand default route automatic traveling vehicle fleet control device 501, acquired by the usage request management device 601, and transmitted to the information terminal 720.
  • the information terminal 720 may display the current position on the ring connection default route 130 of the on-demand default route automatic traveling vehicle 100 generated based on the input usage request of the user 701 on the touch panel 721. .
  • the transmission / reception unit 504 receives the information on the current position of the vehicle and the energy information related to the remaining energy of the battery B, which the on-demand default route automatic traveling vehicles 100A to 100D have transmitted.
  • the transmission / reception unit 504 receives the front obstacle detection signal transmitted by the on-demand default route automatic traveling vehicles 100A to 100D.
  • the transmitting / receiving unit 504 transmits the vehicle allocation command signal and the arbitration command signal generated by the processor 502 to the on-demand default route automatic traveling vehicles 100A to 100D.
  • the processor 502 has a vehicle allocation function 520, an arbitration function 521 and a management function 522.
  • the dispatch function 520 performs advance dispatch vehicle selection processing, advance dispatch signal generation processing, dispatch vehicle selection processing, and dispatch signal generation processing.
  • the arbitration function 521 performs arbitration signal generation processing.
  • the management function 522 performs information acquisition processing and transmission processing. That is, the processor 502 is configured or programmed to execute an advance vehicle selection process, an advance signal generation process, an allocated vehicle selection process, an allocation signal generation process, an arbitration signal generation process, an information acquisition process, and a transmission process. .
  • the allocation function 520 and the management function 522 do not perform processing independently, but perform processing in coordination with each other.
  • the arbitration function 521 and the management function 522 do not perform processing alone, but perform processing in cooperation with each other.
  • the allocation function 520 and the arbitration function 521 may perform processing independently or may perform processing in coordination with each other.
  • the procedure of the process shown in FIG. 7 is one of the processes executed by the processor 502 of the on-demand default route automatic traveling vehicle fleet control apparatus 501. That is, the processor 502 of the on-demand default route automatic traveling vehicle fleet control device 501 executes processing other than the processing of FIG. 7.
  • the on-demand default route automatic traveling vehicle fleet control device 501 executes an information acquisition process S101.
  • the on-demand default route automatic traveling vehicle fleet control device 501 acquires information (step S101).
  • the information acquired by the on-demand default route automatic traveling vehicle fleet control device 501 is route information, vehicle position information, occupant presence / absence information, predicted boarding position information, use request information and energy information.
  • the route information is map information of the ring connection default route 130, and is stored in advance in the storage unit 503.
  • the vehicle position information is information on the current position of a plurality of on-demand default route automatic traveling vehicles 100 on the ring connection default route 130.
  • the vehicle position information is transmitted from each of the plurality of on-demand default route automatic traveling vehicles 100, and is received by the transmission / reception unit 504.
  • Vehicle position information is transmitted from a plurality of on-demand default route automatic traveling vehicles 100 on the ring connection default route 130 at predetermined intervals.
  • the passenger presence / absence information is information related to the presence / absence of a plurality of on-demand default route automatic traveling vehicles 100 on the ring connection default route 130.
  • the occupant presence / absence information is transmitted from each of the plurality of on-demand default route automatic traveling vehicles 100, and is received by the transmission / reception unit 504.
  • the occupant presence / absence information transmitted by the plurality of on-demand default route automatic traveling vehicles 100 is information on the number of occupants seated on the sheets 102 of the on-demand default route automatic traveling vehicles 100.
  • the on-demand default route automatic traveling vehicle fleet control device 501 there is no occupant when there are no occupants sitting on the seat 102, and there are occupants when there are 1 to 4 occupants sitting on the seat 102.
  • the occupant presence / absence information is transmitted from the plurality of on-demand default route automatic traveling vehicles 100 on the ring connection default route 130 when the number of seated occupants detected by the seating detection unit disposed on the seat 102 changes.
  • the predicted boarding position information is information related to the predicted boarding position expected to be the planned boarding position on the ring connection predetermined route 130.
  • the predicted boarding position information is generated at predetermined intervals in the usage request management device 601 based on at least one of information related to the user 701, information related to the destination, and information related to the environment.
  • the information related to the user includes the past usage record of the user 701 and the current position of the user 701.
  • the information on the past usage record of the user 701 is, for example, information on the past riding position and boarding date and time of the user 701, and information on the getting off position and getting off date and time.
  • the information related to the destination includes the destination when the on-demand default route automatic traveling vehicle 100 is used in the past of the user 701 or the destination to which the user 701 may go.
  • the information related to the destination is, for example, information on the place of the destination, information on the business day and hours of the store, and information on the day and time of the event.
  • the information related to the user and the information related to the destination are, for example, statistical information on check-in and check-out of the accommodation facility.
  • the information related to the environment is information on the environment of the ring connection default route 130.
  • the information on the environment is, for example, information on weather such as rain.
  • the predicted boarding position information includes information of a predicted boarding position utilization request time which is a time when a request for use of the user 701 is expected to be made.
  • the expected boarding position use request time is generated at predetermined intervals by the use request management device 601 based on at least one of information related to the user 701, information related to the destination, and information related to the environment. Ru.
  • the predicted boarding position information includes information of a predicted alighting position, which is a position where the user 701 is expected to be the expected alighting position.
  • the expected getting-off position is generated based on the past usage result of the user 701 corresponding to the expected getting-in position.
  • the position where the number of users 701 is the predetermined number or more at the current time is generated as the expected riding position.
  • the current time is generated as the expected riding position utilization request time.
  • a position where the number of times the user has been in the boarding position in the past predetermined day of the week and the predetermined time zone obtained from the past usage results of the user 701 is generated as the predicted boarding position Ru.
  • the predetermined day of the week and the predetermined time zone are generated as the expected boarding position utilization request time.
  • the vicinity of the event venue is generated as the expected riding position.
  • the said specific date is produced
  • the vicinity of the front of the accommodation facility is generated as the expected boarding position.
  • the predetermined day of the week and the predetermined time zone are generated as the expected boarding position utilization request time.
  • the vicinity of the location of the destination is generated as the expected riding position.
  • the predetermined time has elapsed since the user 701 used the on-demand default route automatic traveling vehicle 100 to the destination, it is generated as the expected boarding position use request time.
  • the use request information is information related to the use request of the user including information on the planned boarding position where the user 701 is to get on.
  • information related to the usage request is transmitted from the information terminal 720 as usage request information, and the usage request management device 601 receives it.
  • the information terminal associated with the usage request transmitted from the usage request management device 601 to the on-demand default route automatic traveling vehicle fleet control device 501 is an information terminal when it is input that a mere usage is requested and a mere usage is requested.
  • the current position is 720.
  • the information relating to the usage request transmitted from the usage request management device 601 to the on-demand default route automatic traveling vehicle fleet control device 501 includes absolute position information corresponding to the boarding designated position designated by the user 701.
  • information on destination indication may be transmitted from the information terminal 720 as usage request information, and may be received by the usage request management device 601.
  • the destination instruction information transmitted from the use request management device 601 to the on-demand default route automatic traveling vehicle fleet control device 501 is the absolute position information corresponding to the destination designated by the user 701 or the alighting designated by the user 701 It is absolute position information corresponding to the designated position.
  • the usage request information is transmitted to the usage request management device 601 when the information related to the usage request is input to the information terminal 720 by the user 701.
  • the energy information is information related to the remaining energy level of a plurality of on-demand default route automatic traveling vehicles 100 on the ring connection default route 130.
  • the energy information is transmitted from each of the plurality of on-demand predetermined route automatic traveling vehicles 100, and is received by the transmission / reception unit 504.
  • the information relates to the remaining amount of energy of the battery B of the energy information on demand default route automatic traveling vehicle 100.
  • the energy information is transmitted from the plurality of on-demand default route automatic traveling vehicles 100 on the ring connection default route 130 at predetermined intervals.
  • the on-demand default route automatic traveling vehicle fleet control device 501 performs advance vehicle selection processing.
  • the on-demand default route automatic traveling vehicle fleet control device 501 performs a plurality of on-demand default route automatic traveling vehicles based on the acquired route information, the vehicle position information, the occupant presence / absence information and the predicted riding position information. From 100, select a vehicle to be allocated in advance to the expected boarding position. The vehicle pre-dispatched to the expected riding position is selected from among the vehicles of the on-demand default route automatic traveling vehicles 100 in a state where no occupant is on and no dispatch command signal is received ( Step S102).
  • the on-demand default route automatic traveling vehicle fleet control device 501 has the remaining energy necessary to travel to the expected getting-off position via the expected getting-in position when the expected getting-off position is obtained.
  • the selected vehicle is selected as the on-demand default route automatic traveling vehicle 100 to be allocated to the expected riding position.
  • the on-demand default route automatic traveling vehicle fleet control device 501 performs advance dispatching instruction signal generation processing.
  • the on-demand default route automatic traveling vehicle fleet control device 501 generates an advance allocation command signal based on the acquired route information, vehicle position information, occupant presence / absence information, and predicted boarding position information.
  • the advance dispatching instruction signal causes the vehicle to be dispatched in advance to the predicted boarding position information selected from among the plurality of on-demand default route automatic traveling vehicles 100 toward the predicted boarding position to use the predicted boarding position utilization request time. This is a signal instructing to be at the expected riding position (step S103).
  • the on-demand default route automatic traveling vehicle fleet control device 501 performs transmission processing. In the transmission process, the on-demand default route automatic traveling vehicle fleet control device 501 distributes the generated advance dispatch command signal to a predicted riding position selected in advance from among the plurality of on-demand default route automatic traveling vehicles 100. It transmits (step S104).
  • the on-demand default route automatic traveling vehicle fleet control device 501 When usage request information is input from the information terminal 720 possessed by the user 701 (step S105: YES), the on-demand default route automatic traveling vehicle fleet control device 501 performs dispatch vehicle selection processing S106 to S107. If the use request information is not input from the information terminal 720 possessed by the user 701 (step S105: NO), the on-demand default route automatic traveling vehicle fleet control device 501 does not perform the dispatch vehicle selection processing S106 to S107. In the dispatch vehicle selection process, the on-demand default route automatic traveling vehicle fleet control device 501 performs a plurality of on-demand default route automatic traveling based on the acquired route information, vehicle position information, occupant presence / absence information, use request information and energy information. The on-demand default route automatic traveling vehicle 100 to be allocated to the planned boarding position included in the use request information is selected from the vehicles 100 (step S106).
  • the on-demand default route automatic traveling vehicle fleet control device 501 is a vehicle capable of receiving an allocation command signal without an occupant from among the plurality of on-demand default route automatic traveling vehicles 100. , It is selected as an on-demand default route automatic traveling vehicle 100 to be allocated to a planned boarding position. Vehicles that can not receive a passenger and can receive a dispatch command signal include vehicles in a pre-dispatched state. When there are a plurality of vehicles capable of receiving a dispatch command signal without an occupant, the on-demand default route automatic traveling vehicle fleet control device 501 is, for example, at the planned boarding position as follows. The on-demand default route automatic traveling vehicle 100 to be allocated is selected.
  • the on-demand default route automatic traveling vehicle fleet control device 501 is an on-demand default route automatic traveling vehicle 100 which allocates a vehicle having the remaining energy necessary to travel to the expected riding position to the expected riding position. select. Also, for example, the on-demand default route automatic traveling vehicle fleet control device 501 distributes a vehicle having an amount of energy remaining by a predetermined value or more than the energy required to travel to the planned boarding position to the planned boarding position. A demand default route automatic traveling vehicle 100 is selected. Also, for example, when the on-demand default route automatic traveling vehicle fleet control device 501 acquires the planned exit position, the vehicle has an amount of energy remaining to travel to the planned exit position via the planned boarding position.
  • the selected vehicle is selected as the on-demand default route automatic traveling vehicle 100 to be allocated to the planned boarding position.
  • the on-demand default route automatic traveling vehicle fleet control device 501 selects a vehicle having a remaining energy amount larger than a predetermined amount as the on-demand default route automatic traveling vehicle 100.
  • the on-demand default route automatic traveling vehicle fleet control device 501 selects the on-demand default route automatic traveling vehicle 100 which allocates the vehicle closest to the planned boarding position to the planned boarding position.
  • the on-demand default route automatic traveling vehicle fleet control device 501 may select the on-demand default route automatic traveling vehicle 100 to be allocated to the planned boarding position based on the energy remaining amount and the current position.
  • the on-demand default route automatic traveling vehicle fleet control device 501 selects the on-demand default route automatic traveling vehicle 100 to be allocated to the expected boarding position from among the vehicles in which the occupants are aboard.
  • the on-demand default route automatic traveling vehicle fleet control device 501 is a vehicle on which the current position is closest to the expected exit position among the on-demand default route automatic traveling vehicles 100 traveling based on the allocation command signal. Is selected as the on-demand default route automatic traveling vehicle 100 to which the vehicle is to be allocated at the expected boarding position.
  • the on-demand default route automatic traveling vehicle fleet control device 501 selects the vehicle on which the expected departure position is closest to the planned arrival position among the on-demand default route automatic traveling vehicles 100 traveling based on the allocation command signal. , It is selected as an on-demand default route automatic traveling vehicle 100 to be allocated to a planned boarding position.
  • the on-demand default route automatic traveling vehicle fleet control device 501 may select the on-demand default route automatic traveling vehicle 100 to be allocated to the expected boarding position based on the current position, the expected exit position, and the expected boarding position.
  • the on-demand default route automatic traveling vehicle fleet control device 501 selects the on-demand default route automatic traveling vehicle 100 to be allocated to the expected boarding position based on the remaining energy, the current position, the expected exit position, and the expected boarding position. Good.
  • the on-demand default route automatic traveling vehicle fleet control device 501 determines that the number of planned boarding persons is greater than the maximum number of people who can ride on the one on-demand default route automatic traveling vehicle 100 based on the acquired occupant presence / absence information. In this case, among the plurality of on-demand default route automatic traveling vehicles 100, a plurality of on-demand default route automatic traveling vehicles 100 to be allocated to the planned boarding position included in the usage request information is selected.
  • the on-demand default route automatic traveling vehicle fleet control device 501 assigns a dispatch instruction to the on-demand predetermined route automatic traveling vehicle 100 to be allocated to the expected boarding position.
  • a signal is generated (step S107).
  • the dispatch instruction signal is generated based on the acquired route information, vehicle position information, occupant presence / absence information, use request information, and energy information.
  • the dispatching instruction signal is a signal for dispatching the vehicle to be dispatched to the boarding scheduled position selected from among the plurality of on-demand default route automatic traveling vehicles 100 to the boarding scheduled position.
  • the dispatching instruction signal is based on the current position information of the on-demand default route automatic traveling vehicle 100 to be dispatched to the scheduled boarding position and the information on the scheduled boarding position, the on-demand default route automatic traveling vehicle 100 to be dispatched to the scheduled boarding position It includes a command for causing the vehicle to travel from the position to the planned boarding position and stopping at the planned boarding position.
  • the dispatch command signal is, when the user 701 inputs information on the planned departure position to the information terminal 720, the on-demand default route automatic traveling vehicle 100 to be dispatched to the planned boarding position is scheduled to disembark from the planned boarding position. It includes a command for causing the vehicle to travel to the position and stopping at the planned exit position.
  • the on-demand default route automatic traveling vehicle 100 to be dispatched to the boarding scheduled position is scheduled to board the vehicle from the current position. It includes a command for causing the designated traveling route to travel when traveling to the position.
  • the vehicle allocation command signal causes the on-demand default route automatic traveling vehicle 100 to be distributed to the planned vehicle position from the current position.
  • the command includes a command for stopping at the designated via planned position while traveling to the planned position.
  • the dispatch instruction signal waits when changing from the standby state to the dispatch state. This is a signal instructing that the speed of the state be lower than the speed of the dispatch state.
  • the vehicle-mounted control device 115 of the on-demand default route automatic traveling vehicle 100 sets the speed of the on-demand default route automatic traveling vehicle 100 in the standby state to V1. Further, the on-demand control route automatic traveling vehicle 100 vehicle-mounted control device 115 sets the speed of the on-demand default route automatic traveling vehicle 100 in the allocation state to V2.
  • the velocity V1 is smaller than the velocity V2.
  • the on-demand default route automatic traveling vehicle 100 selected as the vehicle to be dispatched to the planned boarding position receives the dispatch instruction signal
  • the speed of the standby state is the speed of the dispatch state when changing from the standby state to the dispatch state. It is controlled to be smaller than that.
  • the dispatching instruction signal changes from the destination traveling state to the dispatching state when the on-demand default route automatic traveling vehicle 100 selected as the vehicle to be dispatched to the planned boarding position is a vehicle in the destination traveling state with a passenger on
  • the speed of the destination traveling state at the time of driving is a signal indicating that it may be the same as or different from the speed of the dispatching state.
  • the vehicle-mounted control device 115 of the on-demand default route automatic traveling vehicle 100 sets the speed of the on-demand default route automatic traveling vehicle 100 in the destination travel state to V3.
  • the velocity V3 may be the same as or different from the velocity V2.
  • the on-demand default route automatic traveling vehicle 100 that distributes to the planned boarding position receives the allocation instruction signal, and changes the speed of the destination traveling state to the speed of the allocation state when changing from the destination traveling state to the allocation state. It is controlled to be the same or different.
  • the on-demand default route automatic traveling vehicle fleet control device 501 consumes energy according to the energy remaining amount of the on-demand default route automatic traveling vehicle 100 for the speed V1 of the on-demand default route automatic traveling vehicle 100 in the standby state. It may control to become the speed which suppresses
  • the on-demand default route automatic traveling vehicle fleet control device 501 is configured to wait for the on-demand default route automatic in the standby state with respect to the on-demand default route automatic traveling vehicle 100 determined to have a small energy remaining based on the energy information. Control is performed so that the speed V1 of the traveling vehicle 100 becomes zero.
  • the on-demand default route automatic traveling vehicle fleet control device 501 receives the information related to the cancellation request from the information terminal 720 possessed by the user 701 who has made the usage request, as a vehicle to be dispatched to the planned boarding position.
  • the selected on-demand default route automatic traveling vehicle 100 is controlled to be changed from the allocation state to the standby state.
  • the on-demand default route automatic traveling vehicle fleet control device 501 receives the information of the getting-off request from the information terminal 720 possessed by the user 701 who made the use request, the destination 701 traveled by the user 701 Control is performed to stop the traveling of the on-demand default route automatic traveling vehicle 100 traveling.
  • the on-demand default route automatic traveling vehicle fleet control device 501 executes the transmission process S105 when the allocation command signal generation process S104 is performed.
  • the on-demand default route automatic traveling vehicle fleet control device 501 transmits the generated dispatch command signal to the on-demand default route automatic traveling vehicle 100 selected as the vehicle to be dispatched to the planned boarding position (step S108).
  • the on-demand default route automatic traveling vehicle fleet control device 501 executes dispatching schedule transmission processing S109.
  • the on-demand default route automatic traveling vehicle fleet control device 501 transmits the dispatch schedule information of the on-demand default route automatic traveling vehicle 100 selected as the vehicle to be dispatched to the planned boarding position to the usage request management device 601 (step S109).
  • the use request management device 601 that has received the vehicle allocation schedule information transmits the vehicle allocation schedule information to the information terminal 720 for which the use request information has been input.
  • the dispatch schedule information is information related to a schedule of dispatch to a scheduled boarding position of a vehicle to be dispatched to a scheduled boarding position selected from among a plurality of on-demand default route automatic traveling vehicles 100.
  • the allocation schedule information may be, for example, the time to arrive at the planned boarding position, the time required to arrive at the planned boarding position, the current position of the on-demand default route automatic traveling vehicle 100 selected as the vehicle to be allocated to the planned boarding position. Information such as is included.
  • the vehicle allocation schedule information is generated based on the acquired route information, vehicle position information, occupant presence / absence information, use request information, and energy information.
  • the on-demand default route automatic traveling vehicle fleet control device 501 moves on the on-demand default route automatic traveling vehicle 100 and the first connection portion 131a traveling on the annular default route 131 toward the first connection portion 131a.
  • the arbitration command signal generation processing S107 is executed.
  • the on-demand default route automatic traveling vehicle fleet control device 501 determines whether or not to execute the arbitration command signal generation process S107 based on the acquired route information, vehicle position information, occupant presence / absence information, use request information and energy information. .
  • the on-demand default route automatic traveling vehicle fleet control device 501 It is determined that there is an on-demand default route automatic traveling vehicle 100 traveling on the annular default route 131 toward the first connection portion 131a.
  • the on-demand default route automatic traveling vehicle fleet control device 501 It is determined that there is an on-demand default route automatic traveling vehicle 100 traveling on the connection default route 132 toward the first connection portion 131a.
  • the predetermined distance is a distance greater than the distance by which the on-demand default route automatic traveling vehicle 100 detects an obstacle in the forward direction of the vehicle by the front obstacle detection device 118.
  • the on-demand default route automatic traveling vehicle fleet control device 501 is configured such that the two on-demand default route automatic traveling vehicles 100 traveling toward the first connection portion 131a are directed forward by the front obstacle detection device 118. In the case where the obstacle in the above is not detected and the control related to the presence of the obstacle is not performed, the arbitration command signal generation process S111 is executed. The on-demand default route automatic traveling vehicle fleet control device 501 causes a failure when the front obstacle detection signal is not received from the on-demand default route automatic traveling vehicle 100 traveling toward the first connection portion 131a. It is determined that control related to the presence of an object is not performed.
  • the on-demand default route automatic traveling vehicle 100 ⁇ / b> A travels on the ring default route 131 toward the first connection portion 131 a on the ring connection default route 130. Further, the on-demand default route automatic traveling vehicle 100B travels on the connection default route 132 toward the first connection portion 131a on the ring connection default route 130.
  • the on-demand default route automatic traveling vehicle fleet control device 501 executes an arbitration command signal generation process S107 when the following conditions are satisfied.
  • the first condition is that the on-demand default route automatic traveling vehicle fleet control device 501 enters the on-demand default route automatic traveling vehicle 100A and the on-demand default route automatic traveling vehicle 100B within a predetermined distance from the first connection portion 131a. If you decide that you
  • the second condition is that the on-demand default route automatic traveling vehicle fleet control device 501 does not receive a front obstacle detection signal from the on-demand default route automatic traveling vehicle 100A and the on-demand default route automatic traveling vehicle 100B. is there.
  • the on-demand default route automatic traveling vehicle fleet control device 501 performs arbitration command based on the acquired route information, vehicle position information, occupant presence / absence information, predicted riding position information, use request information and energy information. Generate a signal.
  • the arbitration command signal is a signal for determining the order in which the two on-demand default route automatic traveling vehicles 100 traveling toward the first connection portion 131a pass the first connection portion.
  • the on-demand default route automatic traveling vehicle fleet control device 501 determines the order of passing through the first connection part as follows, based on the traveling state of the on-demand default route automatic traveling vehicle 100, for example. For example, two on-demand default route automatic traveling vehicles 100 traveling toward the first connection portion 131a are in the on-demand default route automatic traveling vehicle 100 in the allocated condition and on-demand default route automatic traveling vehicle in the pre-allocated condition. In the case of 100, the first connection portion 131a passes the on-demand default route automatic traveling vehicle 100 in the pre-dispatched state after the on-demand default route automatic traveling vehicle 100 in the dismounted state.
  • two on-demand default route automatic traveling vehicles 100 traveling toward the first connection portion 131a are on-demand default route automatic traveling vehicles 100 for the destination travel state and on-demand default of the pre-allocation status.
  • the first connection portion 131a is made to pass the on-demand default route automatic traveling vehicle 100 in the advance allocation state after the on-demand default route automatic traveling vehicle 100 in the destination travel state.
  • the two on-demand default route automatic traveling vehicles 100 traveling toward the first connection portion 131a are in the on-demand default route automatic traveling vehicle 100 in the allocation state and the on-demand default route automatic traveling vehicle 100 in the standby state.
  • the on-demand default route automatic traveling vehicle 100 in the standby state is passed after the on-demand default route automatic traveling vehicle 100 in the distributed state.
  • two on-demand default route automatic traveling vehicles 100 traveling toward the first connection portion 131a are the on-demand default route automatic traveling vehicle 100 in the destination traveling state and the on-demand default route in the standby state.
  • the first connection portion 131a is made to pass the on-demand default route automatic traveling vehicle 100 in the standby state after the on-demand default route automatic traveling vehicle 100 in the destination traveling state.
  • the two on-demand default route automatic traveling vehicles 100 traveling toward the first connection portion 131a are in the on-demand default route automatic traveling vehicle 100 in the allocation state and the on-demand default route automatic traveling vehicle 100 in the destination travel state.
  • the on-demand default route automatic traveling vehicle 100 in the allocation state is passed after the on-demand default route automatic traveling vehicle 100 in the destination traveling state.
  • the first connection portion 131a is The on-demand default route automatic traveling vehicle 100 with a shorter distance from the first connection portion 131a to the expected boarding position, and the on-demand default route automatic traveling vehicle 100 with a longer distance from the first connection portion 131a to the expected boarding position Pass after.
  • the first connection portion 131a is 1
  • the on-demand default route automatic traveling vehicle 100 with a shorter distance from the connection portion 131a to the expected riding position and the on-demand default route automatic traveling vehicle 100 with a longer distance from the first connection portion 131a to the expected riding position Let pass later.
  • the first connection portion 131a In the case of the two on-demand default route automatic traveling vehicles 100 traveling toward the first connection portion 131a both being the on-demand default route automatic traveling vehicle 100 in the destination travel state, the first connection portion 131a , The on-demand default route automatic traveling vehicle 100 having a shorter distance from the first connection portion 131a to the expected departure position, and the longer on-demand default route vehicle having a long distance from the first connection portion 131a to the expected departure position Pass after 100.
  • the first connection portion 131a is 1
  • the on-demand default route automatic traveling vehicle 100 having a longer distance from the connection portion 131a to the current position passes after the on-demand default route automatic traveling vehicle 100 having a shorter distance from the first connection portion 131a to the current position
  • the first connection portion 131a is turned on when the remaining energy amount is larger.
  • the on-demand default route automatic traveling vehicle 100 is passed after the on-demand default route automatic traveling vehicle 100 on which the remaining amount of energy is low.
  • the arbitration command signal is an on-demand default route automatic travel route in which the order of passing the first connection portion is the second among the two on-demand default route automatic traveling vehicles 100 traveling toward the first connection portion 131a. This is a signal for instructing the speed of the vehicle 100 to be lower than the speed of the on-demand default route automatic traveling vehicle 100 in which the order of passing through the first connection portion is the first.
  • the on-demand default route automatic traveling vehicle 100A travels on the ring default route 131 toward the first connection portion 131a on the ring connection default route 130.
  • the on-demand default route automatic traveling vehicle 100 ⁇ / b> C travels on the connection default route 132 toward the first connection portion 131 a on the ring connection default route 130.
  • the on-demand default route automatic traveling vehicle 100D travels in a distributed state by receiving a dispatch instruction signal generated based on a usage request of the user 701C.
  • the on-demand default route automatic traveling vehicle 100C is traveling in a standby state.
  • the on-demand default route automatic traveling vehicle fleet control device 501 causes the on-demand default route automatic traveling vehicle 100C in the standby state to pass through the first connection portion 131a after the on-demand default route automatic traveling vehicle 100D in the deployed state. And generates an arbitration command signal for the on-demand default route automatic traveling vehicle 100C in the standby state.
  • the arbitration command signal prevents the on-demand default route automatic traveling vehicle 100C in the standby state from entering the first connection portion 131a when the on-demand default route automatic traveling vehicle 100D in the allocation state passes the first connection portion 131a.
  • These are signals for setting the speed V4 of the on-demand default route automatic traveling vehicle 100 in the mediation state.
  • the on-demand default route automatic traveling vehicle fleet control device 501 executes transmission processing S108 when the arbitration command signal generation processing S111 is executed.
  • the on-demand default route automatic traveling vehicle fleet control device 501 connects the generated arbitration command signal to the first of the two on-demand default route automatic traveling vehicles 100 traveling toward the first connection portion 131a. It transmits with respect to the on-demand default route automatic traveling vehicle 100 whose turn which passes a part is the 2nd (step S112).
  • the on-demand default route automatic traveling vehicle fleet control device 501 transmits the generated arbitration command signal to the on-demand default route automatic traveling vehicle 100C in the standby state.
  • the management function 522 of the on-demand default route automatic traveling vehicle fleet control device 501 shown in FIG. 6 is based on the acquired route information, vehicle position information, occupant presence / absence information, predicted boarding position information, use request information and energy information. A process of controlling the travel of the entire on-demand default route traveling vehicle 100 traveling on the ring connection default route 130 is performed.
  • the management function 522 of the on-demand default route automatic traveling vehicle fleet control device 501 performs a plurality of on-demand default route automatic routes traveling on the ring connection default route 130 by the processing of the dispatch function 520 and the arbitration function 521 being performed. The following processing is performed when the planned travel route of at least one on-demand default route automatic traveling vehicle 100 in the traveling vehicle 100 is changed.
  • the management function 522 of the on-demand default route automatic traveling vehicle fleet control device 501 makes a plurality of on-demand default routes traveling on the ring connection default route 130 based on the changed planned traveling route of the on-demand default route automatic traveling vehicle 100. A process of controlling the traveling of the entire autonomous traveling vehicle 100 is performed.
  • the management function 522 of the on-demand default route automatic traveling vehicle fleet control device 501 causes the on-demand default route automatic traveling vehicle 100 to travel when the user gets off at the planned exit position and enters the standby state. It may be controlled to start and move to the connection default route 132. Also, for example, the management function 522 of the on-demand default route automatic traveling vehicle fleet control device 501 travels the vehicle in a case where a destination is not set after arriving at the planned boarding position and allowing the passenger to board. You may control to make it stop.
  • the management function 522 of the on-demand default route automatic traveling vehicle fleet control device 501 sets the on-demand other than the vehicle in the case where the destination is not set after arriving at the expected placement position and allowing the occupant to enter.
  • the route automatic traveling vehicle 100 may be adjusted to avoid the route traveled and controlled to start traveling.
  • the processor 502 of the on-demand default route automatic traveling vehicle fleet control device 501 has a charge management function (not shown).
  • the charge management function energy replenishment processing is performed based on the energy information of the plurality of on-demand default route automatic traveling vehicles 100 acquired by the on-demand default route automatic traveling vehicle fleet control device 501.
  • the energy replenishment process when the on-demand default route automatic traveling vehicle fleet control device 501 detects the on-demand default route automatic traveling vehicle 100 having the energy remaining amount equal to or less than the predetermined value, the energy remaining amount is equal to or less than the predetermined value.
  • the traveling of this vehicle is controlled. Specifically, the on-demand default route automatic traveling vehicle fleet control device 501 controls the on-demand default route automatic traveling vehicle 100 whose energy remaining amount is equal to or less than a predetermined value to travel toward the charging station.
  • FIG. 11 is a block diagram showing configurations of an on-demand default route automatic traveling vehicle fleet control device 501 and a usage request management device according to a specific example of the embodiment.
  • the usage request management device 601 is configured to be able to transmit and receive information with the on-demand default route automatic traveling vehicle fleet control device 501.
  • the on-demand default route automatic traveling vehicle fleet control device 501 is also referred to as a fleet control system.
  • the usage request management device 601 is also referred to as a mass system (Maas System).
  • the on-demand default route automatic traveling vehicle fleet control device 501 and the usage request management device 601 are configured to be communicable by a Web API (Application Programming Interface).
  • the use request management device 601 is configured to be able to transmit and receive information with the information terminals 720 (720A to 720C) possessed by the user 701 (701A, 701B, 701C).
  • the on-demand default route automatic traveling vehicle fleet control device 501 and the usage request management device 601 constitute a controller server system 610.
  • the controller server system 610 is physically composed of a plurality of devices: an on-demand default route automatic traveling vehicle fleet control device 501 and a usage request management device 601.
  • one on-demand default route automatic traveling vehicle fleet control device 501 is configured to be able to transmit and receive information to and from one usage request management device 601 in FIG. 11, the present invention is not limited thereto.
  • One on-demand default route automatic traveling vehicle fleet control device 501 may be configured to be able to transmit and receive information with a plurality of usage request management devices 601.
  • the plurality of usage request management devices 601 may be configured to be able to transmit and receive information with the information terminals 720 possessed by the plurality of users 701, respectively.
  • the usage request management device 601 includes a processor, a storage unit, and a transmission / reception unit (not shown).
  • the transmission and reception unit is configured to be able to transmit and receive information with the on-demand default route automatic traveling vehicle fleet control device 501 and the information terminal 720.
  • the transmitting and receiving unit is, for example, an antenna such as a dipole antenna.
  • the usage request management device 601 may be physically configured as one device or may be configured as a plurality of devices. When the usage request management device 601 is physically configured as a plurality of devices, each device includes an operation unit and a storage unit.
  • the usage request management device 601 is connected to the operation terminal 650 so as to transmit and receive information.
  • the operation terminal 650 is operated by the operator 651.
  • the usage request management device 601 stores the management application 630 and the service application 631 in the storage unit, and is executed by the processor.
  • the management application 630 is an application for managing exchange of information between the on-demand default route automatic traveling vehicle fleet control device 501 and the usage request management device 601, and providing the information to the operation terminal 650.
  • the management application 630 exchanges information with the management function 522 of the on-demand default route automatic traveling vehicle fleet control device 501.
  • the information acquired by the management application 630 can be arbitrarily set by the operator 651 who operates the usage request management device 601.
  • the management application 630 can provide information to the operation terminal 650 according to the purpose of use of the usage request management apparatus 601.
  • the service application 631 is an application for providing various services to the user 701 via the information terminal 720.
  • the management application 630 exchanges information with the dispatch function 520 of the on-demand default route automatic traveling vehicle fleet control device 501.
  • the service application 631 receives the use request of the user 701 input from the information terminal 720, the service application 631 transmits use request information to the on-demand default route automatic traveling vehicle fleet control apparatus 501.
  • information related to the usage request of the user 701 shown in FIG. 8 is transmitted and received between the information terminal 720 and the usage request management device 601.
  • the usage request management device 601 transmits, as usage request information, information related to the usage request of the user 701 exchanged with the information terminal 720 to the on-demand default route automatic traveling vehicle fleet control device 501.
  • the service application 631 can set information that can be input from the operation terminal 650 and information that can be provided, according to the purpose of using the usage request management apparatus 601.
  • the usage request management device 601 generates predicted boarding position information at predetermined intervals based on at least one of information related to the user 701, information related to the destination, and information related to the environment.
  • the usage request management device 601 transmits the generated predicted riding position information to the on-demand default route automatic traveling vehicle fleet control device 501.
  • the on-demand default route automatic traveling vehicle fleet control device 501 acquires the expected riding position information generated and transmitted by the usage request management device 601 in the information acquisition processing S101 shown in FIG.
  • the usage request management device 601 receives usage request information when the user 701 inputs information related to the usage request to the information terminal 720.
  • the usage request management device 601 transmits the received usage request information to the on-demand default route automatic traveling vehicle fleet control device 501.
  • the on-demand default route automatic traveling vehicle fleet control apparatus 501 acquires use request information from the use request management apparatus 601 in the information acquisition process S101 shown in FIG. 7.
  • the on-demand default route automatic traveling vehicle fleet control device 501 travels toward the user's planned boarding position included in the usage request received by the usage request management device 601 in the dispatch command signal generation process S104 shown in FIG. 7.
  • a dispatch instruction signal is generated that instructs traveling of a vehicle to be dispatched to a planned boarding position selected from among the plurality of on-demand default route automatic traveling vehicles 100.
  • the on-demand default route automatic traveling vehicle 100 receives the allocation command signal from the fleet control device 501 and controls the on-demand default route automatic traveling vehicle 100 as follows.
  • the on-demand default route automatic traveling vehicle 100 on-vehicle control device 115 travels toward the user's planned boarding position included in the usage request received by the usage request management device 601 based on the dispatch command signal.
  • the drive mechanism 112, the braking mechanism 113, and the advancing direction control mechanism 114 are controlled.
  • FIG. 12A An example of the logical architecture of the on-demand default route automatic traveling vehicle fleet control device 501 and the usage request management device 601 is shown in FIG. 12A.
  • the on-demand default route automatic traveling vehicle fleet control device 501 is connected to a plurality of usage request management devices 601 by API, and is configured to be able to transmit and receive information.
  • the on-demand default route automatic traveling vehicle fleet control device 501 performs processing divided into three layers. And it is comprised so that the several information which has a different characteristic can be processed in parallel.
  • the on-demand default route automatic traveling vehicle 100 and the on-demand default route automatic traveling vehicle fleet control device 501 relates to an arbitration command signal transmitted to a plurality of on-demand default route automatic traveling vehicles 100.
  • Information is processed at high speed by Speed Layer Data Base and Speed Event.
  • Speed Layer Data Base and Speed Event the processing load on the on-demand default route automatic traveling vehicle fleet control device 501 can be reduced and the processing can be performed at high speed.
  • FIG. 12B An example of the on-demand default route automatic traveling vehicle fleet control device 501 and the usage request management device 601 configured based on the logical architecture of FIG. 12A is shown in FIG. 12B.
  • the logical architecture of FIG. 12A is configured on PaaS (Platform as a Service) of the cloud.
  • PaaS Platinum as a Service
  • Speed Layer Database and Speed Event are configured on PaaS to perform processing at high speed.
  • the waiting time of the user 701 who has requested use of the on-demand default route automatic traveling vehicle 100 can be shortened.
  • various control of traveling of the on-demand default route automatic traveling vehicle 100 is possible. Note that it is preferable that information can be transmitted and received between the on-demand default route automatic traveling vehicle 100 and the on-demand default route automatic traveling vehicle fleet control device 501, for example, by a VPC (Virtual Private Cloud) having high security. . Thereby, the hacking of the on-demand default route automatic traveling vehicle 100 can be prevented.
  • VPC Virtual Private Cloud
  • the operation terminal 650 receives various information from the usage request management device 601. You can get it.
  • the information that can be acquired by the operation terminal 650 is, for example, information such as the authentication of the user 701, various instructions for the on-demand default route automatic traveling vehicle 100, and the usage status of the on demand default route automatic traveling vehicle 100.
  • the service application 631 is an application for distributing the on-demand default route automatic traveling vehicle 100 by the on-demand default route automatic traveling vehicle fleet control device 501 in response to the use request of the user 701.
  • the service application 631 has an authentication function of the user 701.
  • 13A to 13C show an example of the flow of use request and authentication information of the user 701 in the service application 631.
  • 13A to 13C show an example of the flow of usage request and authentication information of the user 701 in the information terminal 720 of the user 701, the usage request management device 601, and the on-demand default route automatic traveling vehicle fleet control device 501.
  • the authentication of the user 701 is authentication based on the identification number of the user 701.
  • the usage request management device 601A and the on-demand default route automatic traveling vehicle fleet control device 501A are connected by an API so as to be able to transmit and receive information.
  • the information related to the identification information of the user 701 is stored in advance in the on-demand default route automatic traveling vehicle fleet control device 501.
  • the information related to the identification information of the user 701 may include the identification information of the user 701, and information of billing based on the usage record of the user 701.
  • the usage request of the user 701 is transmitted from the information terminal 720 to the usage request management device 601.
  • the usage request information is transmitted from the usage request management device 601 to the on-demand default route automatic traveling vehicle fleet control device 501 via the API.
  • the identification information of the user 701 is transmitted from the information terminal 720 to the on-demand default route automatic traveling vehicle fleet control device 501. Then, authentication of the user 701 (“user authentication” in FIG. 13A) is performed between the information terminal 720 and the on-demand default route automatic traveling vehicle fleet control device 501.
  • the on-demand default route automatic traveling vehicle fleet control device 501 acquires usage request information including information on the current position of the user from the usage request management device 601 through the API. Then, the on-demand default route automatic traveling vehicle fleet control device 501 allocates the on-demand default route automatic traveling vehicle 100.
  • the usage request management device 601B and the on-demand default route automatic traveling vehicle fleet control device 501B are connected by an API so as to be able to transmit and receive information.
  • information relating to the identification information of the user 701 is stored in advance in the usage request management device 601.
  • the usage request of the user 701 and the identification information of the user 701 are transmitted from the information terminal 720 to the usage request management device 601.
  • authentication of the user 701 (“user authentication" in FIG. 13B) is performed between the information terminal 720 and the usage request management device 601.
  • the on-demand default route automatic traveling vehicle fleet control device 501 acquires usage request information including information on the current position of the user from the usage request management device 601 through the API. Then, the on-demand default route automatic traveling vehicle fleet control device 501 allocates the on-demand default route automatic traveling vehicle 100.
  • the usage request management device 601C and the on-demand default route automatic traveling vehicle fleet control device 501C are connected by an API so as to be able to transmit and receive information.
  • the information related to the identification information of the usage request management device 601C is stored in advance in the on-demand default route automatic traveling vehicle fleet control device 501.
  • the usage request of the user 701 is transmitted from the information terminal 720 to the usage request management device 601.
  • the usage request information is transmitted from the usage request management device 601 to the on-demand default route automatic traveling vehicle fleet control device 501 via the API.
  • the identification information of the usage request management device 601C is transmitted from the usage request management device 601 to the on-demand default route automatic traveling vehicle fleet control device 501.
  • authentication of the usage request management device 601C (“user authentication” in FIG. 13C) is performed between the usage request management device 601 and the on-demand default route automatic traveling vehicle fleet control device 501.
  • the on-demand default route automatic traveling vehicle fleet control device 501 acquires usage request information including information on the current position of the user from the usage request management device 601 via the API. .
  • the on-demand default route automatic traveling vehicle fleet control device 501 allocates the on-demand default route automatic traveling vehicle 100.
  • the management application 630 is an application for acquiring information from the on-demand default route automatic traveling vehicle fleet control device 501 that manages the on-demand default route automatic traveling vehicle 100.
  • the management application 630 displays the information acquired from the on-demand default route automatic traveling vehicle fleet control device 501 on the display screen 652 of the operation terminal 650.
  • FIG. 14A shows an example of acquiring and displaying vehicle information of the on-demand default route automatic traveling vehicle 100 from the on-demand default route automatic traveling vehicle fleet control device 501.
  • the management application 630 displays the vehicle list 661 and the vehicle operation map 662 of the on-demand default route automatic traveling vehicle 100 managed by the on-demand default route automatic traveling vehicle fleet control device 501 as vehicle information.
  • the vehicle list 661 displays information including a vehicle ID and a vehicle state (traveling state of the vehicle).
  • the vehicle operation map 662 includes a map 663 schematically showing the ring connection predetermined route 130.
  • the position of the plurality of on-demand default route automatic traveling vehicles 100 on the ring connection default route 130 is shown as a vehicle position display 664 with respect to the map 663.
  • FIG. 14B shows an example of acquiring and displaying the usage details of the on-demand default route automatic traveling vehicle 100 from the on-demand default route automatic traveling vehicle fleet control device 501.
  • the management application 630 displays the usage details 672 of the on-demand default route automatic traveling vehicle 100 managed by the on-demand default route automatic traveling vehicle fleet control device 501 on the display screen 652 as usage statement information.
  • usage details 672 usage records of the on-demand default route automatic traveling vehicle 100 in the on-demand default route automatic traveling vehicle fleet control device 501 are displayed.
  • the utilization result of the on-demand default route automatic traveling vehicle 100 the number of times of use and the cumulative time for each on-demand default route automatic traveling vehicle 100 are displayed.
  • the cumulative time is a total of times when the on-demand default route automatic traveling vehicle 100 is used.
  • FIG. 14B it is displayed that there are twenty-three on-demand default route automatic traveling vehicles 100 managed by the on-demand default route automatic traveling vehicle fleet control device 501.
  • the utilization result of the on-demand default route automatic traveling vehicle 100 can be searched in a predetermined range of utilization date input by the operator 651.
  • the utilization result of the on-demand default route automatic traveling vehicle 100 can be searched within a predetermined range of the accumulated time input by the operator 651.
  • FIG. 14C shows an example of acquiring and displaying user information using the on-demand default route automatic traveling vehicle 100 from the on-demand default route automatic traveling vehicle fleet control device 501.
  • the management application 630 displays a user list 680 of the user 701 who uses the on-demand default route automatic traveling vehicle 100 on the display screen 652 as user information.
  • the user ID the age, the gender, the number of times of use of the vehicle allocation service, the vehicle use time, the date and time of use of the latest vehicle allocation service, and the latest destination are displayed.
  • the user ID is an example of identification information of the user 701.
  • the allocation service utilization frequency is the number of times the user 701 has transmitted a utilization request to the on-demand default route automatic traveling vehicle fleet control device 501.
  • the vehicle use time is the total time when the user 701 has been on the on-demand default route automatic traveling vehicle 100.
  • the latest dispatching service utilization date is the time at which the user 701 last transmitted a utilization request to the on-demand default route automatic traveling vehicle fleet control device 501.
  • the latest destination is the planned alighting position included in the use request last transmitted by the user 701.
  • the on-demand default route automatic traveling vehicle fleet control device 501 of the above-described embodiment of the present invention Play.
  • the vehicle allocation schedule information is acquired by the usage request management device 601 and the information terminal 720. Then, in the usage request management device 601 and the information terminal 720, it is possible to use the information related to the schedule of dispatch to the planned boarding position according to the usage purpose of the user 701. For example, the usage request management device 601 and the information terminal 720 display information related to the schedule of dispatching to the planned boarding position, or service information for the user based on information related to the schedule of dispatching to the planned boarding position. Can be displayed. As a result, the use request management device 601 can manage the use request of the user 701 according to the use purpose of the user 701 which differs depending on the area. Therefore, the on-demand default route automatic traveling vehicle fleet control device 501 of this example can be used in more various areas and can suppress an increase in hardware resources.
  • the on-demand default route automatic traveling vehicle 100 travels a ring connection default route 130 having at least one ring default route 131 and at least one connection default route 132 that can travel to the ring default route 131.
  • the loop default route 131 and the possible connection default route 132 can be increased.
  • the on-demand default route automatic traveling vehicle fleet control device 501 changes from the standby state in which no occupant is on to the vehicle allocation state based on the vehicle allocation command signal, the speed in the standby state becomes smaller than the speed in the vehicle allocation state. , And generates a dispatch command signal for commanding the traveling of the on-demand default route automatic traveling vehicle 100.
  • the dispatch instruction signal is generated by the on-demand default route automatic traveling vehicle fleet control device 501 based on the route information, the vehicle position information, the occupant presence / absence information, and the use request information. That is, the on-demand default route automatic traveling vehicle 100 selected according to the presence or absence of the occupant is distributed to the planned boarding position. Since the ring connection default route 130 has the ring default route 131 and the connection default route 132 which can travel back and forth, the on-line default route automatic traveling vehicle 100 in a standby state in which no occupant is riding does not circulate constantly. The route 130 can be distributed and made to stand by. As a result, it is possible to reduce the energy consumption of the on-demand default route automatic traveling vehicle 100 in a standby state in which no occupant is on the vehicle.
  • the travel of the on-demand default route automatic traveling vehicle 100 can be controlled to suppress energy consumption. That is, the total energy consumption of the plurality of on-demand default route automatic traveling vehicles 100 can be reduced. And the number of times of energy supply of a plurality of on-demand default route automatic traveling vehicles 100 can be reduced. Then, an increase in hardware resources of the on-demand default route automatic traveling vehicle fleet control device 501 can be suppressed. Therefore, the on-demand default route automatic traveling vehicle fleet control device 501 of this example can be used in various areas and can further suppress an increase in hardware resources.
  • the on-demand default route automatic traveling vehicle 100 travels a ring connection default route 130 having at least one ring default route 131 and at least one connection default route 132 that can travel to the ring default route 131.
  • the loop default route 131 and the possible connection default route 132 can be increased.
  • the on-demand default route automatic traveling vehicle fleet control device 501 is set to an expected entry position where the user 701 on the ring connection default route 130 is expected to be on the basis of a pre-allocation command signal. In order to move, a pre-allocation command signal is generated that instructs the on-demand default route automatic traveling vehicle 100 to travel.
  • the advance dispatching instruction signal is generated by the on-demand default route automatic traveling vehicle fleet control device 501 based on the route information, the vehicle position information, the occupant presence / absence information, and the predicted riding position. If the on-demand default route automatic traveling vehicle 100 is pre-dispatched, the on-demand default route automatic traveling vehicle 100 is not pre-dispatched and the energy efficient vehicle operation is performed compared to the case where the dispatch instruction signal is received after receiving the dispatch command signal. Control is possible.
  • the control of the energy efficient vehicle operation is, for example, the following case. For example, the on-demand default route automatic traveling vehicle 100 that receives the advance allocation command signal is controlled to travel at a speed with low energy consumption or travel along a route that does not cause traffic congestion.
  • the energy consumption of the on-demand default route automatic traveling vehicle 100 that has received the advance allocation command signal can be reduced. That is, the travel of the on-demand default route automatic traveling vehicle 100 can be controlled to suppress energy consumption. That is, the total energy consumption of the plurality of on-demand default route automatic traveling vehicles 100 can be reduced. And the number of times of energy supply of a plurality of on-demand default route automatic traveling vehicles 100 can be reduced. Then, an increase in hardware resources of the on-demand default route automatic traveling vehicle fleet control device 501 can be suppressed. Therefore, the on-demand default route automatic traveling vehicle fleet control device 501 of this example can be used in various areas and can further suppress an increase in hardware resources.
  • the on-demand default route automatic traveling vehicle 100 is assumed to be an expected riding position based on predicted riding position information generated based on at least one of information related to the user, information related to the destination, and information related to the environment. Will be dispatched in advance.
  • the ring connection default route 130 is a predetermined default route in the travelable area 140. That is, the area of the ring connection predetermined route 130 is limited to the area 140 where it can travel, and is relatively small. For this reason, the information related to the user 701 in the area of the ring connection predetermined route 130 is limited to the travelable area 140 and is easy to collect because the number is relatively small.
  • the information related to the destination in the area of the ring connection predetermined route 130 is limited to the travelable area 140 and is easy to collect because the number is relatively small.
  • Information related to the environment in the area of the ring connection default route 130 is limited to the area 140 where it can travel and is easy to collect because the number is relatively small.
  • the area of the ring connection preset route 130 is limited to the area 140 in which the user can travel, and it is relatively easy to predict the position where the user is expected to get on the vehicle. Therefore, the on-demand default route automatic traveling vehicle 100 can control the operation of the vehicle with higher energy efficiency as compared to the case of moving after receiving the dispatch instruction signal.
  • the on-demand default route automatic traveling vehicle 100 can be controlled so as to suppress energy consumption. That is, the total energy consumption of the plurality of on-demand default route automatic traveling vehicles 100 can be reduced. And the number of times of energy supply of a plurality of on-demand default route automatic traveling vehicles 100 can be reduced. Then, an increase in hardware resources of the on-demand default route automatic traveling vehicle fleet control device 501 can be suppressed. Therefore, the on-demand default route automatic traveling vehicle fleet control device 501 of this example can be used in various areas and can further suppress an increase in hardware resources.
  • the on-demand default route automatic traveling vehicle 100 is distributed in advance to the expected boarding position based on the predicted boarding position information and the estimated boarding position use request time.
  • the ring connection default route 130 is a predetermined default route in the travelable area 140. That is, the area of the ring connection predetermined route 130 is limited to the area in which it can travel and is relatively small. For this reason, the area of the ring connection preset route 130 is limited to the area 140 in which the user can travel, and the estimated riding position use is relatively time when it is expected that the user request for use will be made at the expected riding position. Request time is easy to predict.
  • the on-demand default route automatic traveling vehicle 100 is pre-dispatched based on the expected boarding position and the predicted boarding position utilization time, the on-demand default route automatic traveling vehicle 100 is pre-dispatched based on only the predicted boarding position. , It is possible to control the operation of the vehicle with better energy efficiency. As a result, energy consumption of the on-demand default route automatic traveling vehicle 100 in a state in which the allocation command signal is not received can be further reduced. Thereby, traveling of the on-demand default route automatic traveling vehicle 100 can be controlled so as to suppress energy consumption. That is, the total energy consumption of the plurality of on-demand default route automatic traveling vehicles 100 can be reduced.
  • the on-demand default route automatic traveling vehicle fleet control device 501 of this example can be used in various areas and can further suppress an increase in hardware resources.
  • the arbitration command signal is transmitted to the on-demand default route automatic traveling vehicle 100C in the following case, for example.
  • the on-demand default route automatic traveling vehicle 100C is a vehicle in a standby state
  • the on-demand default route automatic traveling vehicle 100A is a vehicle in a deployed state.
  • An on-demand default route automatic traveling vehicle traveling on a connection default route 132 toward the first connection portion 131a when there is an on-demand default route automatic traveling vehicle 100A traveling on the annular predetermined route 131 toward the first connection portion 131a 100C decelerates or stops based on the received arbitration command signal.
  • an on-demand default route automatic traveling vehicle 100A traveling on the annular default route 131 toward the first connection portion 131a an on-demand default route automatic route traveling on the connection default route 132 toward the first connection portion 131a.
  • the traveling vehicle 100C waits based on the arbitration command signal so that the order of passing through the first connection portion 131a is after the on-demand default route automatic traveling vehicle 100A.
  • the on-demand default route automatic traveling vehicle 100A traveling on the annular default route 131 toward the first connection portion 131a is more than the on-demand default route automatic traveling vehicle 100C traveling on the connection default route 132 toward the first connection portion 131a. First, it passes through the first connection portion 131a.
  • the two on-demand default route automatic traveling vehicles 100A and 100C can be smoothly passed through.
  • traveling of a plurality of on-demand default route automatic traveling vehicles 100 can be smoothly performed.
  • the number of on-demand default route automatic traveling vehicles 100 that can travel on the ring connection default route 130 can be increased. Thereby, the waiting time of the user 701 can be further shortened.
  • the number of connection default routes connected to the ring connection default route 130 is increased, it is possible to increase the number of on-demand default route automatic traveling vehicles 100 in a standby state waiting on the connection default route. Then, the distance from the current position of the on-demand default route automatic traveling vehicle 100 in the standby state to the planned boarding position may be shortened. Thereby, traveling of the on-demand default route automatic traveling vehicle 100 can be controlled so as to suppress energy consumption. That is, the total energy consumption of the plurality of on-demand default route automatic traveling vehicles 100 can be reduced. And the number of times of energy supply of a plurality of on-demand default route automatic traveling vehicles 100 can be reduced.
  • the on-demand default route automatic traveling vehicle fleet control device 501 can be used in various areas and can further suppress an increase in hardware resources.
  • the maximum number of occupants who can get on is four.
  • the weight of the on-demand default route automatic traveling vehicle 100 itself is reduced as compared with the case where the maximum number of occupants that can be ridden is more than eight.
  • the weight of the entire vehicle when the occupant gets on the on-demand default route automatic traveling vehicle 100 is reduced as compared with the case where the maximum number of occupants who can get on is greater than eight.
  • the energy efficiency per vehicle of the on-demand default route automatic traveling vehicle 100 can be improved. That is, the total energy consumption of the plurality of on-demand default route automatic traveling vehicles 100 can be reduced. And the number of times of energy supply of a plurality of on-demand default route automatic traveling vehicles 100 can be reduced.
  • the on-demand default route automatic traveling vehicle fleet control device 501 can be used in various areas and can further suppress an increase in hardware resources.
  • the on-demand default route automatic traveling vehicle 100 has an allocated vehicle speed of 20 km per hour.
  • traveling is controlled so that the speed in the dispatching state is 40 km / hr or less, compared with the case where traveling is controlled such that the speed in the dispatching state becomes larger than 40 km / hr, Low air resistance.
  • the energy consumption of the on-demand default route automatic traveling vehicle 100 per vehicle can be reduced. That is, the total energy consumption of the plurality of on-demand default route automatic traveling vehicles 100 can be reduced. And the number of times of energy supply of a plurality of on-demand default route automatic traveling vehicles 100 can be reduced. Then, an increase in hardware resources of the on-demand default route automatic traveling vehicle fleet control device 501 can be suppressed. Therefore, the on-demand default route automatic traveling vehicle fleet control device 501 of this example can be used in various areas and can further suppress an increase in hardware resources.
  • the on-demand default route automatic traveling vehicle 100 is allocated to the expected boarding position from among the plurality of on-demand default route automatic traveling vehicles 100 based on the remaining energy of the plurality A vehicle is selected. For example, the on-demand default route automatic traveling vehicle 100 having an energy remaining amount sufficiently larger than the energy required to travel from the current position to the expected riding position is taken by the on-demand default route automatic traveling vehicle fleet control device 501. It is selected as a vehicle to be dispatched to the planned position. That is, the on-demand default route automatic traveling vehicle 100 having a large amount of energy is preferentially allocated to the planned boarding position.
  • the on-demand default route automatic traveling vehicle fleet control device 501 of this example can be used in various areas and can further suppress an increase in hardware resources.
  • a plurality of on-demand default route automatic traveling vehicles 100 on the ring connection default route 130 transmit information related to the remaining energy level of the vehicle to the on-demand default route automatic traveling vehicle fleet control device 501. Then, based on the more accurate remaining energy levels of the plurality of on-demand default route automatic traveling vehicles 100 transmitted to the on-demand default route automatic traveling vehicle fleet control device 501, the plurality of on-demand default route automatic traveling vehicles 100.
  • the vehicle to be allocated to the planned boarding position is selected from. For example, the on-demand default route automatic traveling vehicle 100 having an energy remaining amount sufficiently larger than the energy required to travel from the current position to the expected riding position is taken by the on-demand default route automatic traveling vehicle fleet control device 501. It is more accurately selected as a vehicle to be dispatched to the planned position.
  • the on-demand default route automatic traveling vehicle 100 having a large amount of remaining energy is preferentially allocated to the planned boarding position. Then, the number of times of refueling the plurality of on-demand default route automatic traveling vehicles 100 can be reduced more accurately. Then, an increase in hardware resources of the on-demand default route automatic traveling vehicle fleet control device 501 can be suppressed. Therefore, the on-demand default route automatic traveling vehicle fleet control device 501 of this example can be used in various areas and can further suppress an increase in hardware resources.
  • the dispatch instruction signal is generated by the on-demand default route automatic traveling vehicle fleet control device 501 based on the route information, the vehicle position information, the occupant presence / absence information, the use request information, and the energy information.
  • the use request information includes information relating to the planned boarding position and the expected boarding position. That is, the on-demand default route automatic traveling vehicle fleet control device 501 automatically runs the on-demand default route based on the current position, the planned boarding position, the expected exit position, and the remaining energy amount of the plurality of on-demand default route automatic traveling vehicles 100.
  • the vehicle 100 can be allocated to a planned boarding position.
  • the on-demand default route automatic traveling vehicle 100 having the remaining energy necessary to travel from the current position to the expected exit position via the planned boarding position is the on-demand default route automatic traveling vehicle fleet control device 501. It can be distributed to the planned boarding position. Thereby, the energy efficiency of the whole on-demand default route automatic traveling vehicle 100 can be improved. That is, the total energy consumption of the plurality of on-demand default route automatic traveling vehicles 100 can be reduced. And the number of times of energy supply of a plurality of on-demand default route automatic traveling vehicles 100 can be reduced. Then, an increase in hardware resources of the on-demand default route automatic traveling vehicle fleet control device 501 can be suppressed. Therefore, the on-demand default route automatic traveling vehicle fleet control device 501 of this example can be used in various areas and can further suppress an increase in hardware resources.
  • the on-demand default route automatic traveling vehicle 100 of the specific example of the embodiment of the present invention is the on-demand default route automatic traveling vehicle 100 of the above-described embodiment of the present invention and the on-demand default route automatic traveling vehicle of the specific example of this embodiment In addition to the effects of 100, the following effects are achieved.
  • the vehicle allocation schedule information is acquired by the usage request management device 601 and the information terminal 720. Then, in the usage request management device 601 and the information terminal 720, it is possible to use the information related to the schedule of dispatch to the planned boarding position according to the usage purpose of the user 701. For example, it is possible to display information related to the schedule of dispatching to the planned boarding position on the usage request management device 601 and the information terminal 720. Further, for example, service information such as destination information for the user 701 can be displayed on the information terminal 720 based on the information related to the schedule of dispatch to the expected boarding position. As a result, the use request management device 601 can manage the use request of the user according to the use purpose of the user 701 which differs depending on the area. Therefore, the on-demand default route automatic traveling vehicle 100 of this specific example can be used in more various areas, and can reduce the energy load while shortening the waiting time of the user 701 who made the usage request. Design freedom can be improved.
  • the on-demand default route automatic traveling vehicle 100 travels a ring connection default route 130 having at least one ring default route 131 and at least one connection default route 132 that can travel with the ring default route 131.
  • the loop default route 131 and the possible connection default route 132 can be increased.
  • the vehicle-mounted control device 115 causes the drive mechanism 112, the braking mechanism 113, and the traveling direction so that the speed in the standby state becomes smaller than the speed in the vehicle allocation state when changing from the standby state to the vehicle allocation state based on the allocation command signal.
  • Control mechanism 114 is controlled.
  • the dispatch instruction signal is generated by the on-demand default route automatic traveling vehicle fleet control device 501 based on the route information, the vehicle position information, the occupant presence / absence information, and the use request information.
  • the on-demand default route automatic traveling vehicle 100 selected according to the presence or absence of the occupant is distributed to the planned boarding position. Since the ring connection default route 130 has the ring default route 131 and the connection default route 132 which can travel back and forth, the on-line default route automatic traveling vehicle 100 in a standby state in which no occupant is riding does not circulate constantly.
  • the route 130 can be distributed and made to stand by. As a result, it is possible to reduce the energy consumption of the on-demand default route automatic traveling vehicle 100 in a standby state in which no occupant is on the vehicle. As a result, the energy loading amount per vehicle can be reduced to increase the degree of freedom in vehicle design.
  • the on-demand default route automatic traveling vehicle 100 in a standby state in which no occupant is on can be dispersed and placed on standby in the ring connection default route 130. Therefore, it is possible to increase the number of on-demand default route automatic traveling vehicles 100 that can travel on the ring connected default route without constantly circulating the on-demand default route automatic traveling vehicle 100 on the annular predetermined route. Then, the on-demand default route automatic traveling vehicle 100 in a standby state in which no occupant is on can be dispersed and kept on standby in the ring connection default route 130. Thereby, the waiting time of the user 701 can be shortened. Therefore, the on-demand default route automatic traveling vehicle 100 of this specific example can be used in various areas, and reduces the energy load while shortening the waiting time of the user 701 who has made the usage request. Design freedom can be improved.
  • the on-demand default route automatic traveling vehicle 100 travels a ring connection default route 130 having at least one ring default route 131 and at least one connection default route 132 that can travel with the ring default route 131.
  • the loop default route 131 and the possible connection default route 132 can be increased.
  • Vehicle-mounted control device 115 is driven to move to a predicted boarding position expected to be the planned boarding position where user 701 on board ring connection preset route 130 is to board based on the pre-allocation command signal.
  • the mechanism 112, the braking mechanism 113, and the advancing direction control mechanism 114 are controlled.
  • the advance dispatching command signal is generated by the on-demand default route automatic traveling vehicle fleet control device 501 based on the route information, the vehicle position information, the occupant presence / absence information, and the predicted boarding position information. If the on-demand default route automatic traveling vehicle 100 is pre-dispatched, the on-demand default route automatic traveling vehicle 100 is not pre-dispatched and the energy efficient vehicle operation is performed compared to the case where the dispatch instruction signal is received after receiving the dispatch command signal. Control is possible.
  • the control of the energy efficient vehicle operation is, for example, the following case. For example, the on-demand default route automatic traveling vehicle 100 that receives the advance allocation command signal is controlled to travel at a speed with low energy consumption or travel along a route that does not cause traffic congestion.
  • the energy consumption of the on-demand default route automatic traveling vehicle 100 that has received the advance allocation command signal can be reduced.
  • the energy loading amount per vehicle can be reduced to increase the degree of freedom in vehicle design.
  • the on-demand default route automatic traveling vehicle 100 in a state where a passenger is not aboard and does not receive a dispatch command signal is a position where the user 701 on the ring connection default route 130 is expected to get on or around Can be made to wait in advance.
  • the waiting time of the user 701 can be shortened. Therefore, the on-demand default route automatic traveling vehicle 100 of this specific example can be used in various areas, and reduces the energy load while shortening the waiting time of the user 701 who has made the usage request. Design freedom can be improved.
  • the on-demand default route automatic traveling vehicle 100 is assumed to be an expected riding position based on predicted riding position information generated based on at least one of information related to the user, information related to the destination, and information related to the environment. Will be dispatched in advance.
  • the ring connection default route 130 is a predetermined default route in the travelable area 140. That is, the area of the ring connection predetermined route 130 is limited to the area 140 where it can travel, and is relatively small. For this reason, the information related to the user 701 in the area of the ring connection predetermined route 130 is limited to the travelable area 140 and is easy to collect because the number is relatively small.
  • the information related to the destination in the area of the ring connection predetermined route 130 is limited to the travelable area 140 and is easy to collect because the number is relatively small.
  • Information related to the environment in the area of the ring connection predetermined route is limited to the area 140 where the travel can be made and is easy to collect because the number is relatively small.
  • the area of the ring connection preset route 130 is limited to the area 140 in which the user can travel, and it is relatively easy to predict the position where the user 701 is expected to get on. Therefore, when the on-demand default route automatic traveling vehicle 100 is pre-dispatched, a vehicle having better energy efficiency than when the on-demand default route automatic traveling vehicle 100 is not pre-dispatched and then distributive command signal is received.
  • the ring connection default route 130 is a predetermined default route in the travelable area 140. That is, the area of the ring connection predetermined route 130 is limited to the area 140 where it can travel, and is relatively small. For this reason, the area of ring connection preset route 130 is limited within travelable area 140, and it is expected that the time when it is predicted that a request for use will be made relative to the expected boarding position as the expected boarding position. It is easy to predict location use request time.
  • the on-demand default route automatic traveling vehicle 100 is pre-dispatched based on the expected boarding position and the predicted boarding position utilization time, the on-demand default route automatic traveling vehicle 100 is pre-dispatched based on only the predicted boarding position. , It is possible to control the operation of the vehicle with better energy efficiency. As a result, energy consumption of the on-demand default route automatic traveling vehicle 100 in a state in which the allocation command signal is not received can be further reduced. As a result, it is possible to reduce the energy load per unit and to further increase the freedom of design of the vehicle.
  • the on-demand default route automatic traveling vehicle 100 in a state where a passenger is not aboard and does not receive a dispatch instruction signal is annularly connected to a position where the user 701 of the route 130 on the default route is expected to ride
  • the arbitration command signal is transmitted to the on-demand default route automatic traveling vehicle 100C in the following case, for example.
  • the on-demand default route automatic traveling vehicle 100C is a vehicle in a standby state
  • the on-demand default route automatic traveling vehicle 100A is a vehicle in a deployed state.
  • An on-demand default route automatic traveling vehicle traveling on a connection default route 132 toward the first connection portion 131a when there is an on-demand default route automatic traveling vehicle 100A traveling on the annular predetermined route 131 toward the first connection portion 131a 100C decelerates or stops based on the received arbitration command signal.
  • an on-demand default route automatic traveling vehicle 100A traveling on the annular default route 131 toward the first connection portion 131a an on-demand default route automatic route traveling on the connection default route 132 toward the first connection portion 131a.
  • the traveling vehicle 100C waits based on the arbitration command signal so that the order of passing through the first connection portion 131a is after the on-demand default route automatic traveling vehicle 100A.
  • the on-demand default route automatic traveling vehicle 100A traveling on the annular default route 131 toward the first connection portion 131a is more than the on-demand default route automatic traveling vehicle 100C traveling on the connection default route 132 toward the first connection portion 131a. First, it passes through the first connection portion 131a.
  • the two on-demand default route automatic traveling vehicles 100A and 100C can be smoothly passed through.
  • traveling of a plurality of on-demand default route automatic traveling vehicles 100 can be smoothly performed.
  • the number of on-demand default route automatic traveling vehicles 100 that can travel on the ring connection default route 130 can be increased. Thereby, the waiting time of the user 701 can be further shortened.
  • the on-demand default route automatic traveling vehicle 100 of this specific example can be used in various areas, and reduces the energy load while shortening the waiting time of the user 701 who has made the usage request. Design freedom can be improved.
  • the on-demand default route automatic traveling vehicle 100 the maximum number of occupants who can get on is eight or less.
  • the weight of the on-demand default route automatic traveling vehicle is reduced compared to the case where the maximum number of occupants that can be ridden is more than eight.
  • the weight of the entire vehicle when the occupant gets on the on-demand default route automatic traveling vehicle becomes lighter than when the maximum number of occupants who can get on is more than eight.
  • the energy efficiency of the on-demand default route automatic traveling vehicle per vehicle can be improved. That is, the amount of energy loading of the on-demand default route automatic traveling vehicle per vehicle can be reduced to increase the degree of freedom in designing the vehicle. Therefore, the on-demand default route automatic traveling vehicle 100 of this specific example can be used in various areas, and reduces the energy load while shortening the waiting time of the user 701 who has made the usage request. Design freedom can be improved.
  • the on-demand default route automatic traveling vehicle 100 is controlled to travel such that the speed in the vehicle allocation state becomes 20 km per hour.
  • traveling is controlled so that the speed in the dispatching state is 40 km / hr or less, compared with the case where traveling is controlled such that the speed in the dispatching state becomes larger than 40 km / hr, Low air resistance.
  • the energy consumption of the on-demand default route automatic traveling vehicle 100 per vehicle can be reduced.
  • traveling when traveling is controlled such that the speed of the dispatching state is 40 km / hr or less, the on-demand default route automatic traveling is performed as compared to the case where traveling is controlled such that the speed of the dispatching state is greater than 40 km / hr.
  • the vehicle 100 It takes a long time for the vehicle 100 to travel from the current position to the expected boarding position. However, it is possible to increase the number of on-demand default route automatic traveling vehicles 100 traveling on the ring connection default route 130. As a result, it is possible to allocate the on-demand default route automatic traveling vehicle 100 whose current position is close to the expected boarding position. Thereby, the waiting time of the user 701 can be shortened. Therefore, the on-demand default route automatic traveling vehicle 100 of this specific example can be used in various areas, and reduces the energy load while shortening the waiting time of the user 701 who has made the usage request. Design freedom can be improved.
  • the on-demand default route automatic traveling vehicle fleet control device 501 allocates the plurality of on-demand default route automatic traveling vehicles 100 to the expected boarding position based on the remaining energy levels of the plurality of on-demand default route automatic traveling vehicles 100 A vehicle is selected. For example, the on-demand default route automatic traveling vehicle 100 having an energy remaining amount sufficiently larger than the energy required to travel from the current position to the expected riding position is taken by the on-demand default route automatic traveling vehicle fleet control device 501. It is selected as a vehicle to be dispatched to the planned position. That is, the on-demand default route automatic traveling vehicle 100 having a large amount of energy is preferentially allocated to the planned boarding position. And the number of times of energy supply of a plurality of on-demand default route automatic traveling vehicles 100 can be reduced.
  • the energy efficiency of the whole on-demand default route automatic traveling vehicle 100 can be improved.
  • the energy loading amount of the on-demand default route automatic traveling vehicle 100 per vehicle can be reduced to increase the degree of freedom in designing the vehicle. Therefore, the on-demand default route automatic traveling vehicle 100 of this specific example can be used in various areas, and reduces the energy load while shortening the waiting time of the user 701 who has made the usage request. Design freedom can be improved.
  • the on-demand default route automatic traveling vehicle 100 transmits information related to the energy remaining amount of the vehicle to the on-demand default route automatic traveling vehicle fleet control device 501. Then, based on the more accurate remaining energy levels of the plurality of on-demand default route automatic traveling vehicles 100 transmitted to the on-demand default route automatic traveling vehicle fleet control device 501, the plurality of on-demand default route automatic traveling vehicles 100.
  • the vehicle to be allocated to the planned boarding position is selected from. For example, the on-demand default route automatic traveling vehicle 100 having an energy remaining amount sufficiently larger than the energy required to travel from the current position to the expected riding position is taken by the on-demand default route automatic traveling vehicle fleet control device 501. It is more accurately selected as a vehicle to be dispatched to the planned position.
  • the on-demand default route automatic traveling vehicle 100 having a large amount of remaining energy is preferentially allocated. Then, the number of times of refueling the plurality of on-demand default route automatic traveling vehicles 100 can be reduced more accurately. Thereby, the energy efficiency of the whole on-demand default route automatic traveling vehicle 100 can be further improved. Then, the energy loading amount of the on-demand default route automatic traveling vehicle 100 per vehicle can be further reduced, and the degree of freedom in designing the vehicle can be increased. Therefore, the on-demand default route automatic traveling vehicle 100 of this specific example can be used in various areas, and reduces the energy load while shortening the waiting time of the user 701 who has made the usage request. Design freedom can be improved.
  • the dispatch instruction signal is generated by the on-demand default route automatic traveling vehicle fleet control device 501 based on the route information, the vehicle position information, the occupant presence / absence information, the use request information, and the energy information.
  • the usage request information includes information related to the expected boarding position and the expected alighting position. That is, the on-demand default route automatic traveling vehicle fleet control device 501 selects the on-demand default route selected based on the current positions, the planned boarding positions, the expected exit positions, and the remaining energy amounts of the plurality of on-demand default route automatic traveling vehicles 100.
  • the autonomous traveling vehicle 100 is allocated to the planned boarding position.
  • the on-demand default route automatic traveling vehicle 100 having the remaining energy necessary to travel from the current position to the expected exit position via the planned boarding position is the on-demand default route automatic traveling vehicle fleet control device 501. It can be distributed to the planned boarding position. Thereby, the energy efficiency of the whole on-demand default route automatic traveling vehicle 100 can be improved. Then, the energy loading amount of the on-demand default route automatic traveling vehicle 100 per vehicle can be reduced to increase the degree of freedom in designing the vehicle. Therefore, the on-demand default route automatic traveling vehicle 100 of this specific example can be used in various areas, and reduces the energy load while shortening the waiting time of the user 701 who has made the usage request. Design freedom can be improved.
  • the ring connection default route 130 has only the ring default route 131 and the connection default route 132 connected to the ring default route 131 so as to be able to travel back and forth.
  • the ring connection default route of the present invention may have a connection default route connected to the connection default route back and forth as shown in, for example, FIG. 12A.
  • the ring connection default route of the present invention may have a connection default route connected to the ring default route so as not to come and go.
  • the ring connection default route of the present invention may have a ring default route connected to the ring default route so as not to come and go.
  • the ring connection default route of the present invention may have a connection default route connected to the connection default route so as not to come and go.
  • a connection default route can not travel from a ring default route to a connection default route, and can not travel from a connection default route to a ring default route if the connection default route is connected to the ring default route in an inaccessible manner. It may be. If the connection default route is connected to the ring default route in an inaccessible manner, it is impossible to travel from the ring default route to the connection default route, and it is possible to run from the connection default route to the ring default route It may be.
  • the ring connection default route 230 shown in FIG. 15A has a first ring default route 231, a second ring default route 232, a first connection default route 233, and a second connection default route 234.
  • the annular connection predetermined route 230 is a route configured to be able to travel in the direction of the illustrated arrow.
  • the first connection default route 233 is connected to the first ring default route 231 and the second ring default route 232.
  • the second connection default route 234 is connected to the first ring default route 231 and the second ring default route 232.
  • the first connection predetermined route 233 is connected to the first connection portion 231 a of the first annular predetermined route 231 and the third connection portion 232 a of the second annular predetermined route 232.
  • the second connection predetermined route 234 is connected to the second connection portion 231 b of the first annular predetermined route 231 and the fourth connection portion 232 b of the second annular predetermined route 232.
  • the second ring default route 232 includes a connection default route 232c and a connection default route 232d. Boundaries of the connection default route 232c and the connection default route 232d are a third connection portion 232a and a fourth connection portion 232b.
  • the first connection default route 233, the second connection default route 234, and the connection default route 232c constitute a connection default route 235.
  • the connection default route 235 is connected to the first ring default route 231 in a back and forth manner.
  • connection default route 232 d is connected to the connection default route 235 in a back and forth manner.
  • first connection portion 231 a of the first ring predetermined route 231 the first ring predetermined route 231 and the connection predetermined route 235 merge.
  • second connection portion 231 b of the first ring predetermined route 231 the first ring predetermined route 231 and the connection predetermined route 235 branch.
  • the ring connection default route of the present invention may have one ring default route and a plurality of connection default routes connected to one ring default route back and forth.
  • the ring connection default route of the present invention may have a plurality of ring default routes and at least one connection default route connected to a plurality of ring default routes back and forth. More specifically, the ring connection default route of the present invention has two connection default routes and one connection default route connected to both ring default routes as shown in FIG. 15C, for example. It may be done.
  • the ring connection default route of the present invention may have a plurality of ring default routes and a plurality of connection default routes connected to a plurality of ring default routes. .
  • a ring connection default route When a ring connection default route has at least one connection default route that is connected to multiple ring default routes, it is possible to connect one ring default route with only one connection default route.
  • the number may be less than the total number of connection default routes, or may be the same as the total number of connection default routes. Also, in the case where the ring connection default route has at least one connection default route connected to multiple ring default routes, the number of ring default routes connected with one connection default route is one.
  • the number may be less than the total number of cyclic predetermined routes, or may be the same as the total number of cyclic predetermined routes.
  • one connection default route connected to one ring default route as a specific example of the embodiment may be connected to two connections on the ring default route, for example, as shown in FIG.
  • connection predetermined route As in 15B, it may be connected to only one connection on the ring predetermined route.
  • a plurality of connection predetermined routes connected to one cyclic predetermined route back and forth may be connected to a common connection on the cyclic predetermined route, and different connection portions on the cyclic predetermined route. It may be connected to
  • one connection default route connected to both of the two ring default routes is, for example, as shown in FIG. 12C, one connection on the first ring default route and the second ring default route. Connected to one connection on the route.
  • the ring connection default route 330 shown in FIG. 15C has a first ring default route 331, a second ring default route 332, and a connection default route 333.
  • the annular connection predetermined route 330 is a route configured to be able to travel in the direction of the illustrated arrow.
  • the connection default route 333 is connected to both the first ring default route 331 and the second ring default route 332 back and forth.
  • the connection predetermined route 333 is connected to the connection portion 331 a of the first annular predetermined route 331 and the connection portion 332 a of the second annular predetermined route 332.
  • the ring connection default route 1310 shown in FIG. 15B has a ring default route 1331, a ring default route 1332, and a connection default route 1333-1344.
  • the connection predetermined routes 1333 to 1335 and 1336 to 1342 are routes configured to be able to travel in the direction of the arrow shown.
  • the connection default routes 1336 and 1343 are routes configured to be able to travel in both directions of the illustrated arrows.
  • the connection default routes 1333-1338 are connected to the ring default route 1331.
  • the connection default routes 1333 to 1335 are connected to the ring default route 1331 in a back and forth manner.
  • the connection default route 1337 to 1344 is connected to the ring default route 1332.
  • connection default routes 1339 to 1342 are connected to the ring default route 1332 in a back and forth manner.
  • the ring default route 1331 and the ring default route 133 are connected back and forth via a connection default route (first connection default route) 1337 and a connection default route (first connection default route) 1338.
  • connection default route 1333 is a route which branches from the ring default route 1331 at the connection portion 1331f and joins the ring default route 1331 at the connection portion 1331a.
  • connection default route 1334 is a route that branches from the ring default route 1331 at the connection unit 1331 b and joins the ring default route 1331 at the connection unit 1331 e.
  • the connection default route 1335 is a route that branches from the ring default route 1331 at the connection unit 1331 c and joins the ring default route 1331 at the connection unit 1331 d.
  • the connection predetermined route 1336 is configured to be capable of traveling in both directions, and is a route that is movably connected to the connection portion 1331 d on the annular predetermined route 1331.
  • the connection default route 1337 is a route that branches from the ring default route 1331 at the connection unit 1331a and joins the ring default route 1332 at the connection unit 1332a.
  • the connection default route 1338 is a route which branches from the ring default route 1332 at the connection portion 1332 b and joins the ring default route 1331 at the connection portion 1331 b.
  • the connection default route 1339 is a route which branches from the ring default route 1332 at the connection portion 1332 a and joins the ring default route 1332 at the connection portion 1332 f.
  • the connection default route 1340 is a route which branches from the ring default route 1332 at the connection unit 1332 e and joins the ring default route 1332 at the connection unit 1332 b.
  • the connection default route 1341 is a route that branches from the ring default route 1332 at the connection unit 1332 f and joins the ring default route 1332 at the connection unit 1332 e.
  • connection default route 1342 is a route that branches from the ring default route 1332 at the connection unit 1332 d and joins the ring default route 1332 at the connection unit 1332 c.
  • the connection default route 1343 is configured to be able to travel in both directions, and is a route that is connected to the connection 1332 c on the ring default route 1332 so as to be able to travel back and forth.
  • the connection default route 1344 is configured to be capable of traveling in both directions, and is a route that is movably connected to the connection 1332 d on the ring default route 1332.
  • a plurality of ring-shaped default routes are included in the ring connection default routes 330 and 1310 that the on-demand default route automatic traveling vehicle 100 on which the on-demand default route automatic traveling vehicle fleet control device 501 controls travel travels. Then, the number of on-demand default route automatic traveling vehicles 100 that can travel on the ring connection default routes 330 and 1310 can be increased. Thereby, the waiting time of the user 701 can be further shortened. In addition, when the number of on-demand default route automatic traveling vehicles 100 capable of traveling on the ring connection default route is increased, the distance from the current position of the on-demand default route automatic traveling vehicle 100 to the expected riding position may be shortened.
  • the energy consumption of the on-demand default route automatic traveling vehicle 100 per vehicle can be further reduced. That is, the total energy consumption of the plurality of on-demand default route automatic traveling vehicles 100 can be reduced. And the number of times of energy supply of a plurality of on-demand default route automatic traveling vehicles 100 can be reduced. Then, an increase in hardware resources of the on-demand default route automatic traveling vehicle fleet control device 501 can be suppressed. Therefore, the on-demand default route automatic traveling vehicle fleet control device 501 of this modification can be used in various areas and can further suppress an increase in hardware resources.
  • a plurality of ring-shaped default routes are included in the ring connection default routes 330 and 1310 on which the on-demand default route automatic traveling vehicle 100 travels. Then, the number of on-demand default route automatic traveling vehicles 100 that can travel on the ring connection default routes 330 and 1310 can be increased. Thereby, the waiting time of the user 701 can be further shortened.
  • the number of on-demand default route automatic traveling vehicles 100 capable of traveling on the ring connection default route is increased, the distance from the current position of the on-demand default route automatic traveling vehicle 100 to the expected riding position may be shortened. As a result, the energy consumption of the on-demand default route automatic traveling vehicle 100 per vehicle can be further reduced. Therefore, the on-demand default route automatic traveling vehicle 100 of this modification is available in various areas, and reduces the energy load while shortening the waiting time of the user 701 who made the usage request. Design freedom can be improved.
  • the on-demand default route automatic traveling vehicle 100 travels the default routes 30, 130 in the drivable area.
  • the on-demand default route automatic traveling vehicle of the present invention may be configured to be able to travel on a non-default route other than the default route in the drivable area.
  • the on-demand default route automatic traveling vehicle of the present invention may travel on a non-default route in the travelable area when switched from the automatic operation mode to the manual operation mode.
  • the on-demand predefined route automatic traveling vehicle 100 has four wheels 111.
  • the number of wheels possessed by the on-demand default route automatic traveling vehicle of the present invention is not limited to four, and may be plural.
  • the drive mechanism 112 is an electric motor.
  • the drive mechanism of the present invention may be an engine using gasoline or the like.
  • the braking mechanism 113 is a disk brake device.
  • the braking mechanism of the present invention may be a mechanical brake that converts kinetic energy such as drum brakes and engine brakes into thermal energy.
  • the braking mechanism of the present invention may be an electric brake that converts kinetic energy such as an electromagnetic brake or a regenerative brake by a generator with a motor function into electrical energy.
  • the braking mechanism of the present invention may be a combination of a mechanical brake and an electric brake.
  • the braking mechanism of the present invention may use a regenerative brake by a drive motor and a disk brake device in combination.
  • the traveling direction control mechanism 114 can steer the two front wheels 111f. By steering the two front wheels 111f, the traveling direction of the on-demand default route automatic traveling vehicle 100 is controlled.
  • the traveling direction control mechanism of the present invention may control the traveling direction of the on-demand preset route automatic traveling vehicle by the drive mechanism and the control mechanism.
  • the traveling direction control mechanism of the present invention includes a drive mechanism and a plurality of wheels on the right side of the on-demand default route automatic traveling vehicle and a plurality of wheels on the left side at different rotational speeds. By controlling the control mechanism, the traveling direction of the on-demand default route automatic traveling vehicle may be controlled.
  • the current position of the own vehicle is acquired by the own vehicle position detection device 120. That is, the on-demand default route automatic traveling vehicle 100 of the specific example performs more accurate matching by collating the image of the road surface captured by the camera 121 using the current position of the vehicle generated by the GNSS reception unit 123. It detects a high current position of the vehicle.
  • the on-demand default route automatic traveling vehicle of the present invention may acquire the current position of the vehicle only from the current position of the vehicle generated by the GNSS receiving unit.
  • the on-demand default route automatic traveling vehicle may have a wheel rotation detector, and may obtain the current position of the vehicle based on the travel distance measured from a predetermined location of the ring connection default route. .
  • the on-demand default route automatic traveling vehicle of the present invention may obtain the current position of the vehicle by using the identification mark on the road surface of the ring connection default route.
  • the on-demand default route automatic traveling vehicle of the present invention the current position of the vehicle, LIDAR, Inertial Measurement Unit (IMU), millimeter wave radar, sonar (Sound navigation and ranging: SONAR), TOF ( Time Of Flight)
  • IMU Inertial Measurement Unit
  • sonar Sound navigation and ranging: SONAR
  • TOF Time Of Flight
  • a distance image camera, an infrared sensor, a wireless direction measuring instrument, a reflector, a geomagnetic sensor, or the like may be used for acquisition.
  • the on-demand default route automatic traveling vehicle 100 of the specific example is configured by the vehicle-mounted control device 115 based on the image of the road surface captured by the camera 121 of the vehicle position detection device 120 and the current position of the GNSS reception unit 123. It travels automatically regardless of the presence or absence of a passenger.
  • the on-demand default route automatic traveling vehicle of the present invention may have a guiding wire detection unit that detects electromagnetic induction wires embedded in the default route 130.
  • the on-demand default route automatic traveling vehicle onboard control device includes an on-demand default route automatic traveling vehicle, LIDAR, IMU, GNSS receiving unit and map information, millimeter wave radar, sonar, TOF distance imaging camera,
  • the predetermined route may be automatically traveled regardless of the presence or absence of an occupant using an infrared sensor, LIDAR (except for a visible light camera) using an LED, a wireless direction measuring instrument, a reflector (Reflector), a geomagnetic sensor or the like.
  • the on-demand default route automatic traveling vehicle fleet control device 501 of the specific example distributes the vehicle to the planned boarding position based on the route information, the vehicle position information, the occupant presence / absence information, the use request information, and the energy information. 100 is selected.
  • the on-demand default route automatic traveling vehicle fleet control device of the present invention distributes the on-demand default route automatic traveling vehicle 100 to the planned boarding position based on the route information, the vehicle position information, the occupant presence / absence information and the use request information. You may choose.
  • the on-demand default route automatic traveling vehicle fleet control device 501 of the specific example generates a dispatch instruction signal based on route information, vehicle position information, occupant presence / absence information, use request information, and energy information.
  • the on-demand default route automatic traveling vehicle fleet control device of the present invention may generate a dispatch instruction signal based on the route information, the vehicle position information, the occupant presence / absence information and the use request information.
  • the on-demand default route automatic traveling vehicle fleet control device 501 of the specific example is on-demand allocated in advance to a predicted riding position based on route information, vehicle position information, occupant presence / absence information, predicted riding position information and energy information. The default route automatic traveling vehicle 100 is selected.
  • the on-demand default route automatic traveling vehicle fleet control device of the present invention automatically routes on the expected boarding position based on the route information, the vehicle position information, the occupant presence / absence information and the expected boarding position information.
  • Vehicle 100 may be selected.
  • the on-demand default route automatic traveling vehicle fleet control device 501 of the specific example generates the advance dispatch signal based on the route information, the vehicle position information, the occupant presence / absence information, the expected boarding position information and the energy information.
  • the on-demand default route automatic traveling vehicle fleet control device of the present invention may generate the advance dispatching signal based on the route information, the vehicle position information, the occupant presence / absence information, and the predicted boarding position information.
  • the predicted boarding position information includes information on the predicted boarding position utilization request time and information on the predicted alighting position.
  • the predicted riding position information includes at least one of predicted riding position utilization request time information and predicted alighting position information. You do not need to include it.
  • the seating detection unit disposed on the seat 102 detects the number of occupants seated on the seat 102. Then, information relating to the number of occupants seated on the seat 102 is transmitted as occupant presence information from the on-demand predefined route automatic traveling vehicle 100 to the on-demand predefined route automatic traveling vehicle fleet control device 501.
  • the on-demand default route automatic traveling vehicle 100 may have an on-vehicle terminal to which an occupant can input.
  • the on-demand default route automatic traveling vehicle 100 may transmit the occupant presence / absence information to the on-demand default route automatic traveling vehicle fleet control device 501 by inputting the number of occupants to the on-vehicle terminal.
  • the on-demand default route automatic traveling vehicle fleet control device 501 of the specific example receives the occupant presence / absence information related to the presence or absence of the occupant and the number of occupants from the plurality of on-demand default route automatic traveling vehicles 100 on the ring connection default route 130 Do.
  • the occupant presence / absence information may be determined by the on-demand default route automatic traveling vehicle fleet control device 501 from the traveling states of each of the plurality of on-demand default route automatic traveling vehicles 100.
  • the on-demand default route automatic traveling vehicle fleet control device determines the on-demand default route automatic traveling vehicle traveling in a standby state or a distributed state as a vehicle on which no occupant is aboard. Further, the on-demand default route automatic traveling vehicle fleet control device determines the on-demand default route automatic traveling vehicle traveling in the destination travel state as a vehicle on which the passenger is aboard. Note that the on-demand default route automatic traveling vehicle fleet control device determines the on-demand default route automatic traveling vehicle that has not transmitted the allocation instruction signal as a vehicle in a standby state. In other words, the on-demand default route automatic traveling vehicle fleet control device is a vehicle that has transmitted the dispatch instruction signal, and the on-demand default route automatic traveling vehicle after stopping at the expected departure position is a vehicle having a standby state.
  • the on-demand default route automatic traveling vehicle fleet control device is a vehicle that has transmitted a dispatch command signal, and is estimated to have not arrived at the expected boarding position from the current position of the vehicle. It is determined that the vehicle is in the vehicle allocation state.
  • the on-demand default route automatic traveling vehicle fleet control device is a vehicle that has transmitted a dispatch command signal, and it is estimated from the current position of the vehicle that it is traveling toward the expected departure position after arriving at the expected arrival position.
  • the on-demand default route automatic traveling vehicle is determined as a vehicle whose traveling state is a dispatch state.
  • the on-demand default route automatic traveling vehicle fleet control device is a vehicle that has transmitted a dispatch command signal, and it is estimated that it is traveling after arriving at the expected boarding location from the current position of the vehicle.
  • the vehicle is determined to be a vehicle whose traveling state is a dispatch state.
  • the vehicle-mounted control device 115 of the on-demand default route automatic traveling vehicle 100 performs the driving mechanism 112 and the driving mechanism 112 based on the speed corresponding to the traveling state of the on-demand default route automatic traveling vehicle 100 stored in the storage unit 152.
  • the braking mechanism 113 is controlled.
  • the on-demand default route automatic traveling vehicle onboard control device controls the drive mechanism and the braking mechanism based on the speed included in the command transmitted from the on demand default route automatic traveling vehicle fleet control device. May be Further, the on-demand control route automatic traveling vehicle 100 of this specific example has the vehicle installation control device 115 of V1 stored in the storage unit 152 as a value smaller than V2 and V3.
  • V1 is the speed of the on-demand default route automatic traveling vehicle 100 in the standby state.
  • V2 is the speed of the on-demand default route automatic traveling vehicle 100 in a distributed state.
  • V3 is the speed of the on-demand default route automatic traveling vehicle 100 in the destination traveling state.
  • the on-demand default route automatic traveling vehicle onboard control device may store V1 in the storage unit 152 as the same or different value as V2 and V3.
  • the on-demand default route automatic traveling vehicle fleet control device 501 of the specific example generates an arbitration command signal.
  • the on-demand default route automatic traveling vehicle fleet control device of the present invention may not generate the arbitration command signal.
  • the on-demand default route automatic traveling vehicle fleet control device of the present invention may not generate the advance allocation command signal.
  • the on-demand default route automatic traveling vehicle 100C traveling on the connection default route 132 is the first connection portion 131a.
  • An arbitration command signal for instructing the on-demand default route automatic traveling vehicle 100C traveling on the connection default route 132 to pass after the on-demand default route automatic traveling vehicle 100A traveling on the annular predetermined route 131 Generate
  • the on-demand default route automatic traveling vehicle fleet control device according to the present invention is configured such that the on-demand default route automatic traveling vehicle traveling on the annular default route follows the on-demand default route automatic traveling vehicle traveling on the connection default route.
  • An arbitration command signal may be generated to instruct the on-demand default route automatic traveling vehicle traveling on the annular default route so as to pass through the one connection portion 131a.
  • an arbitration command signal for an on-demand default route automatic traveling vehicle traveling on a ring preset route for example, on the ring connection preset route 130 shown in FIG. It is a case where route automatic traveling vehicle 100C is in a dispatch state, and on-demand default route automatic traveling vehicle 100A traveling on a ring predetermined route 131 is in a standby state.
  • the on-demand default route automatic traveling vehicle fleet control device 501 of this specific example acquires predicted boarding position information generated by the usage request management device 601.
  • the on-demand default route automatic traveling vehicle fleet control device of the present invention may generate predicted riding position information. That is, the on-demand default route automatic traveling vehicle fleet control device of the present invention does not have to execute the scheduled vehicle transmission process.
  • the on-demand default route automatic traveling vehicle fleet control device 501 of this specific example transmits the vehicle allocation schedule information to the usage request management device 601. Then, vehicle allocation schedule information is transmitted from the usage request management device 601 to the information terminal 720. However, the on-demand default route automatic traveling vehicle fleet control device 501 of the present invention may transmit the vehicle allocation schedule information directly to the information terminal 720.
  • the on-demand default route automatic traveling vehicle 100 acquires the front obstacle detection signal from the front obstacle detection device 118
  • the onboard control device 115 of the on-demand default route automatic traveling vehicle 100 controls the drive mechanism 112 and the braking mechanism 113 to Stop.
  • the on-demand default route automatic traveling vehicle controls the drive mechanism, the braking mechanism, and the traveling direction control mechanism.
  • Demand Default Route It may be made to run away from an obstacle in the forward direction of the automatic traveling vehicle.
  • the on-vehicle control device 115 controls the traveling of the on-demand default route automatic traveling vehicle 100 as shown in FIGS.
  • FIG. 16A to 16C the specific example of driving
  • FIGS. 16A to 16C it is assumed that the obstacle 100Y exists in the forward direction of the on-demand default route automatic traveling vehicle 100X.
  • the on-demand default route automatic traveling vehicle 100X moves the on-demand default route automatic traveling vehicle 100X from the ring default route 1130 to the ring default route 1132 via the connection default route 1131 To control the traveling direction and speed of the on-demand default route automatic traveling vehicle 100X.
  • the origin of the connection default route 1131 is at the ring default route 1130.
  • the starting point of the connection default route 1131 is a connection between the ring default route 1130 and the connection default route 1131.
  • the end point of the connection default route 1131 is on the ring default route 1132.
  • the end point of the connection default route 1131 is a connection portion between the ring default route 1132 and the connection default route 1131.
  • the on-vehicle default control route 115 causes the on-demand default route automatic traveling vehicle 100X to travel from the ring default route 1130 to the connection default route 1131 connected to the ring default route 1130. Then, the on-vehicle control device 115 causes the on-demand default route automatic traveling vehicle 100X to travel so as to move from the connection default route 1131 to the annular default route 1132 connected to the connection default route 1131. That is, the on-vehicle default control route automatic traveling vehicle 100X is caused to travel from the ring default route 1130 to the ring default route 1132 via the connection default route 1131.
  • the on-demand default route automatic traveling vehicle 100X of the on-demand default route automatic traveling vehicle 100X controls the on-line default route 1133 from the annular default route 1133 to the annular default route 1135 via the non-default route 1134.
  • the traveling direction and speed of the on-demand default route automatic traveling vehicle 100X may be controlled to move to
  • the origin of the non-default route 1134 is at the ring default route 1133.
  • the origin of the non-default route 1134 is a connection between the ring default route 1133 and the non-default route 1134.
  • the non-default route 1134 is not a predetermined route.
  • the origin of the non-predetermined route 1134 is set based on the previous obstacle detection signal.
  • the end point of the non-default route 1134 is at the ring default route 1135.
  • the end point of the non-default route 1134 is a connection between the ring default route 1135 and the non-default route 1134.
  • the on-vehicle control device 115 controls the traveling direction and the speed of the on-demand default route automatic traveling vehicle 100X as described below.
  • the on-vehicle control device 115 causes the on-demand default route automatic traveling vehicle 100X to travel from the ring default route 1133 to the non-default route 1134 connected to the ring default route 1133.
  • the on-vehicle control device 115 causes the on-demand default route automatic traveling vehicle 100X to travel so as to move from the non-default route 1134 to the annular default route 1135. That is, the on-vehicle default control route 115 causes the on-demand default route automatic traveling vehicle 100X to travel from the ring default route 1133 to the ring default route 1135 via the non-default route 1134.
  • the on-demand default route automatic traveling vehicle 100X on-demand default route automatic traveling vehicle 100X is temporarily removed from the ring default route 1136 and returned to the ring default route 1136.
  • the traveling direction and speed of the on-demand default route automatic traveling vehicle 100X may be controlled.
  • the origin of the non-default route 1137 is at the ring default route 1136.
  • the origin of the non-default route 1137 is a connection between the ring default route 1136 and the non-default route 1137.
  • the non-default route 1137 is not a predetermined route.
  • the origin of the non-predetermined route 1137 is set based on the previous obstacle detection signal.
  • the end point of the non-default route 1137 is at the ring default route 1136.
  • the end point of the non-default route 1137 is a connection between the ring default route 1136 and the non-default route 1137.
  • the on-vehicle default control route 115 causes the on-demand default route automatic traveling vehicle 100X to travel from the ring default route 1136 to the non-default route 1137 connected to the ring default route 1136. Thereafter, the on-vehicle control device 115 causes the on-demand default route automatic traveling vehicle 100X to travel so as to move from the non-default route 1137 to the annular default route 1136. That is, the on-vehicle default control route 115 controls the on-demand default route automatic traveling vehicle 100 X to once go out of the ring default route 1136 and return to the ring default route 1136.
  • the onboard control device 115 of the on-demand default route automatic traveling vehicle 100X detects the drive mechanism 112 and the braking as shown in FIGS.
  • the mechanism 113 and the traveling direction control mechanism 114 are controlled so as to travel away from the obstacle 100Y in the forward direction of the on-demand default route automatic traveling vehicle 100X.
  • the on-demand default route automatic traveling vehicle fleet control device receives the front obstacle detection signal from the on-demand default route automatic traveling vehicle, the on-demand default route automatic traveling vehicle is, for example, as shown in FIGS.
  • a control command signal for controlling the vehicle may be transmitted to the on-demand default route automatic traveling vehicle.
  • the on-demand default route automatic traveling vehicle of the present embodiment and the specific example is a golf car that can travel automatically.
  • the on-demand default route automatic traveling vehicle of the present invention may be a small automatic driving bus, a small automatic electric vehicle, or the like.
  • the maximum number of occupants who can get on is four.
  • the on-demand default route automatic traveling vehicle of the present invention may be any number as long as the maximum number of occupants who can get on the vehicle is eight or less.
  • the user holds the information terminal 720 of this specific example.
  • the information terminal may be placed at the entrance / exit location of the on-demand default route automatic traveling vehicle.

Landscapes

  • Engineering & Computer Science (AREA)
  • Business, Economics & Management (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Transportation (AREA)
  • Automation & Control Theory (AREA)
  • Tourism & Hospitality (AREA)
  • Human Resources & Organizations (AREA)
  • Economics (AREA)
  • Strategic Management (AREA)
  • Theoretical Computer Science (AREA)
  • General Business, Economics & Management (AREA)
  • Marketing (AREA)
  • Combustion & Propulsion (AREA)
  • Chemical & Material Sciences (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Entrepreneurship & Innovation (AREA)
  • Operations Research (AREA)
  • Quality & Reliability (AREA)
  • Development Economics (AREA)
  • Human Computer Interaction (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • General Health & Medical Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Primary Health Care (AREA)
  • Mathematical Physics (AREA)
  • Educational Administration (AREA)
  • Game Theory and Decision Science (AREA)
  • Traffic Control Systems (AREA)
  • Navigation (AREA)
  • Control Of Driving Devices And Active Controlling Of Vehicle (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)
  • Motorcycle And Bicycle Frame (AREA)

Abstract

オンデマンド既定ルート自動走行車両フリートコントロール装置501を、多様なエリアで利用可能にすると共に、ハードウェアリソースの増加を抑える。 フリートコントロール装置501が走行を制御するオンデマンド既定ルート自動走行車両100は、環状既定ルート31と接続既定ルート32を有する環状接続既定ルート30を、乗員の有無に関わらず自動で走行する。フリートコントロール装置501は、利用要求マネジメント装置601で受信した情報端末720から利用者701の利用要求を取得したときに、配車指令信号を生成する。フリートコントロール装置501は、複数のオンデマンド既定ルート自動走行車両100の中から選択された乗車予定位置に配車する車両に対して、利用要求マネジメント装置601が受信した利用要求に含まれる利用者の乗車予定位置に向かって走行するように指示する配車指令信号を送信する。

Description

オンデマンド既定ルート自動走行車両フリートコントロール装置
 本発明は、オンデマンド既定ルート自動走行車両フリートコントロール装置に関する。
 従来、オンデマンド既定ルート自動走行車両フリートコントロール装置がある。オンデマンド既定ルート自動走行車両フリートコントロール装置は、複数のオンデマンド既定ルート自動走行車両との間で情報を送受信可能に構成される。オンデマンド既定ルート自動走行車両フリートコントロール装置は、複数のオンデマンド既定ルート自動走行車両との間で情報を送受信可能に構成され、複数のオンデマンド既定ルート自動走行車両の走行を制御する。オンデマンド既定ルート自動走行車両は、走行可能なエリアの中の予め決められた既定ルートを自動で走行する。オンデマンド既定ルート自動走行車両フリートコントロール装置は、利用者からの利用要求を取得したときに、オンデマンド既定ルート自動走行車両フリートコントロール装置で生成した指令信号をオンデマンド既定ルート自動走行車両に送信する。そして、オンデマンド既定ルート自動走行車両フリートコントロール装置は、オンデマンド既定ルート自動走行車両を利用者が乗車する予定の位置に配車する。オンデマンド既定ルート自動走行車両フリートコントロール装置は、複数のオンデマンド既定ルート自動走行車両の走行を制御する。
 既定ルートを走行するオンデマンド既定ルート自動走行車両は、走行可能なエリアの中で走行が制限される。これに対して、既定ルート以外のルートを走行する自動走行車両は、走行可能なエリアの中を自由に走行できる。既定ルートを走行するオンデマンド既定ルート自動走行車両は、既定ルートでないルートを走行する自動走行車両と比べて、既定ルートの出発点から終着点まで走行するのに消費する1台あたりエネルギー消費量が少ない傾向がある。
 また、オンデマンド既定ルート自動走行車両が走行する既定ルートが、環状である場合がある。既定ルートが環状であると、複数のオンデマンド既定ルート自動走行車両を常時循環走行させることができる。既定ルートが環状であると、複数のオンデマンド既定ルート自動走行車両を既定ルートにおいて分散させて走行させることができる。
 特許文献1には、環状の既定ルートを走行する複数のオンデマンド既定ルート自動走行車両を配車するオンデマンド既定ルート自動走行車両フリートコントロール装置が開示されている。特許文献1では、複数のオンデマンド既定ルート自動走行車両が環状の既定ルートを常時、循環走行している。そして、特許文献1では、オンデマンド既定ルート自動走行車両フリートコントロール装置により、環状の既定ルートを常時、循環走行しているオンデマンド既定ルート自動走行車両が、利用者の利用要求に応じて配車される。これにより、オンデマンド既定ルート自動走行車両の利用要求を行った利用者の待ち時間を減らしている。なお、特許文献1では、オンデマンド既定ルート自動走行車両は、利用者を乗車させる場合に、環状既定ルートから外れて、非既定ルート上を走行する。また、利用者が乗車したオンデマンド既定ルート自動走行車両は、環状既定ルートを走行中に、利用者が停止したい位置で停車キーを操作することにより、停車する。
特開2003-24390号公報
 オンデマンド既定ルート自動走行車両フリートコントロール装置は、限定されたエリアで利用される。オンデマンド既定ルート自動走行車両フリートコントロール装置は、多様なエリアの特性に合った汎用的な装置であることが求められる。しかしながら、多様なエリアの特性にあった汎用的なオンデマンド既定ルート自動走行車両フリートコントロール装置は、ハードウェアリソースが多く必要になる。
 本発明のオンデマンド既定ルート自動走行車両フリートコントロール装置は、多様なエリアで利用可能にすると共に、ハードウェアリソースの増加を抑えることを目的とする。
 環状既定ルートに、接続既定ルートを行き来可能に接続した場合、既定ルートのエリアが広くなり、多様なエリアでオンデマンド既定ルート自動走行車両フリートコントロール装置を利用することができる。本願発明者らは、多様なエリアを詳細に検討したところ、エリアごとに、既定ルート、車両台数、利用要求の上限数、利用者の利用目的などの特性が異なることがわかった。オンデマンド既定ルート自動走行車両フリートコントロール装置を、多様なエリアの特性に合わせた汎用的な装置にしようとすると、多様なエリアのこれらの特性を考慮して設計する必要がある。つまり、複数のエリア全体に対して、1つの汎用的なオンデマンド既定ルート自動走行車両フリートコントロール装置でオンデマンド既定ルート自動走行車両の走行を管理できるように設計する。または、多様なエリアのそれぞれに対して、1つの汎用的なオンデマンド既定ルート自動走行車両フリートコントロール装置でオンデマンド既定ルート自動走行車両の走行を管理できるように設計する。
 オンデマンド既定ルート自動走行車両フリートコントロール装置が利用されるエリアの広さは限定されている。そのため、既定ルート、車両台数、利用要求の上限数は、エリアによって極端に異なることはない。その一方、利用者の利用目的は、エリアによって大きく異なる。ここで、既定ルート、車両台数、利用要求の上限数のエリア間の違いに対応するために必要なハードウェアリソースは、利用者の利用目的のエリア間の違いに対応するために必要なハードウェアリソースよりも少ない。そこで、オンデマンド既定ルート自動走行車両フリートコントロール装置とは別に、利用者の利用目的に応じて利用者の利用要求をマネジメントする利用要求マネジメント装置を設けることを考えた。また、利用要求マネジメント装置を、オンデマンド既定ルート自動走行車両フリートコントロール装置と情報を送受信可能に構成した。そして、オンデマンド既定ルート自動走行車両フリートコントロール装置を、利用要求マネジメント装置から取得した利用者の利用要求に基づいて、オンデマンド既定ルート自動走行車両の走行を制御するように構成した。つまり、オンデマンド既定ルート自動走行車両フリートコントロール装置のハードウェアリソースを、既定ルート、車両台数、利用要求の上限数のエリア間の違いに対応するために必要なハードウェアリソースのみとした。そして、利用者の利用目的のエリア間の違いに対応するために必要なハードウェアリソースを、利用要求マネジメント装置のハードウェアリソースに設けた。これにより、エリアの特性に合わせつつ、オンデマンド既定ルート自動走行車両フリートコントロール装置のハードウェアリソースの増加を抑制することができる。
(1)本発明のオンデマンド既定ルート自動走行車両フリートコントロール装置は、(i)走行可能なエリアの中の予め決められた既定ルートを乗員の有無に関わらず自動で走行する複数のオンデマンド既定ルート自動走行車両との間で情報を送受信可能に構成され、(ii)利用者からの利用要求を取得したときに、前記複数のオンデマンド既定ルート自動走行車両の中から少なくとも1台の前記オンデマンド既定ルート自動走行車両を利用者が乗車する予定の位置に配車するように、前記複数のオンデマンド既定ルート自動走行車両の走行を制御するオンデマンド既定ルート自動走行車両フリートコントロール装置であって、(A)少なくとも1つの環状既定ルートと、前記環状既定ルートに行き来可能に接続された少なくとも1つの接続既定ルートとを有する環状接続既定ルートである前記既定ルートのルートに関連するルート情報、(B)前記環状接続既定ルート上の前記複数のオンデマンド既定ルート自動走行車両が送信した前記環状接続既定ルート上の前記複数のオンデマンド既定ルート自動走行車両の現在位置に関連する車両位置情報、(C)前記環状接続既定ルート上の前記複数のオンデマンド既定ルート自動走行車両の乗員の有無に関連する乗員有無情報、および、(D)情報端末および前記オンデマンド既定ルート自動走行車両フリートコントロール装置と情報を送受信可能に構成された少なくとも1つの利用要求マネジメント装置が、前記情報端末から利用者の利用要求を受信したときに、前記オンデマンド既定ルート自動走行車両フリートコントロール装置に送信された、利用者が乗車する予定の乗車予定位置の情報を含む利用者の前記利用要求に関連する利用要求情報を取得する情報取得処理と、取得した前記ルート情報、前記車両位置情報、前記乗員有無情報および前記利用要求情報に基づいて、前記複数のオンデマンド既定ルート自動走行車両の中から前記乗車予定位置に配車する車両を選択する配車車両選択処理と、前記複数のオンデマンド既定ルート自動走行車両の中から選択された前記乗車予定位置に配車する車両に、前記利用要求マネジメント装置が受信した前記利用要求に含まれる利用者の前記乗車予定位置に向かって走行するように指示する配車指令信号を生成する配車指令信号生成処理と、生成した前記配車指令信号を前記複数のオンデマンド既定ルート自動走行車両の中から選択された前記乗車予定位置に配車する車両に送信する送信処理と、を実行するように構成されまたはプログラムされたプロセッサを有することを特徴とする、ことを特徴とする。
 この構成によると、オンデマンド既定ルート自動走行車両は、少なくとも1つの環状既定ルートと、環状既定ルートに行き来可能な少なくとも1つの接続既定ルートとを有する環状接続既定ルートを走行する。オンデマンド既定ルート自動走行車両フリートコントロール装置は、利用者の利用要求を、情報端末と情報を送受信可能に構成された少なくとも1つの利用要求マネジメント装置から取得する。情報端末は、利用者が所持してもよいし、オンデマンド既定ルート自動走行車両の乗降場所に配置されてもよい。利用要求マネジメント装置は、オンデマンド既定ルート自動走行車両フリートコントロール装置とは別に設けられる。利用要求マネジメント装置は、エリアごとに設けることができる。そのため、複数の利用要求マネジメント装置を、多様なエリアに設けることができる。利用者は利用要求を、情報端末からオンデマンド既定ルート自動走行車両フリートコントロール装置と送受信可能に構成された利用要求マネジメント装置に送信する。1つのオンデマンド既定ルート自動走行車両フリートコントロール装置に対して、複数の利用要求マネジメント装置を設けることができる。つまり、利用者の利用目的に応じて利用者の利用要求をマネジメントする利用要求マネジメント装置を、エリアごとに設けることができる。そして、エリアによって大きく異なる利用者の利用目的に応じて、利用要求マネジメント装置を構成することができる。オンデマンド既定ルート自動走行車両フリートコントロール装置は、多様なエリアに設けられた複数の利用要求マネジメント装置を介して、利用者が所持する情報端末からの利用者の利用要求を受け付けることができる。
 また、オンデマンド既定ルート自動走行車両フリートコントロール装置が利用される環状接続既定ルートのエリアの広さは限定されている。そのため、既定ルート、車両台数、利用要求の上限数は、エリアによって極端に異なることはない。その一方、利用者の利用目的は、エリアによって大きく異なる。ここで、オンデマンド既定ルート自動走行車両フリートコントロール装置とは別に、利用者の利用目的に応じて利用者の利用要求をマネジメントする利用要求マネジメント装置を設けられる。また、オンデマンド既定ルート自動走行車両フリートコントロール装置は、利用要求マネジメント装置から取得した利用者の利用要求に基づいて、オンデマンド既定ルート自動走行車両の走行を制御するように構成される。つまり、オンデマンド既定ルート自動走行車両フリートコントロール装置のハードウェアリソースは、既定ルート、車両台数、利用要求の上限数のエリア間の違いに対応するために必要なハードウェアリソースのみで構成される。そして、利用者の利用目的のエリア間の違いに対応するために必要なハードウェアリソースは、利用要求マネジメント装置のハードウェアリソースで構成される。これにより、エリアの特性に合わせつつ、オンデマンド既定ルート自動走行車両フリートコントロール装置のハードウェアリソースの増加を抑制することができる。
 従って、本発明のオンデマンド既定ルート自動走行車両フリートコントロール装置は、多様なエリアで利用可能にすると共に、ハードウェアリソースの増加を抑えることができる。
(2)本発明の他の観点によれば、本発明のオンデマンド既定ルート自動走行車両フリートコントロール装置は、上記(1)の構成に加えて、以下の構成を有することが好ましい。
 前記オンデマンド既定ルート自動走行車両フリートコントロール装置は、前記利用要求マネジメント装置または前記情報端末に対して、前記複数のオンデマンド既定ルート自動走行車両の中から選択された前記乗車予定位置に配車される車両の前記乗車予定位置への配車の予定に関連する配車予定情報を送信する配車予定送信処理、を更に実行するように構成されまたはプログラムされたプロセッサを有する。
 この構成によると、利用要求マネジメント装置または情報端末で、配車予定情報が取得される。そして、利用要求マネジメント装置または情報端末で、利用者の利用目的に応じて乗車予定位置への配車の予定に関連する情報を用いることができる。例えば、利用要求マネジメント装置または情報端末で、乗車予定位置への配車の予定に関連する情報を表示したり、乗車予定位置への配車の予定に関連する情報に基づいた利用者に対するサービス情報を表示したりすることができる。これにより、利用要求マネジメント装置は、エリアによって異なる利用者の利用目的に応じて利用者の利用要求をマネジメントすることができる。
 従って、本発明のオンデマンド既定ルート自動走行車両フリートコントロール装置は、より多様なエリアで利用可能にすると共に、ハードウェアリソースの増加を抑えることができる。
(3)本発明の他の観点によれば、本発明のオンデマンド既定ルート自動走行車両フリートコントロール装置は、上記(1)または(2)の構成に加えて、以下の構成を有することが好ましい。
 前記配車指令信号は、前記複数のオンデマンド既定ルート自動走行車両の中から選択された前記乗車予定位置に配車する車両に対して、乗員が乗っておらず前記配車指令信号を受信することが可能な状態である待機状態から、前記配車指令信号に基づいて前記乗車予定位置に向かって走行している状態である配車状態に変化する際に、前記待機状態の速度が前記配車状態の速度よりも小さくなるように指示する信号である。
 この構成によると、オンデマンド既定ルート自動走行車両は、少なくとも1つの環状既定ルートと、環状既定ルートに行き来可能な少なくとも1つの接続既定ルートとを有する環状接続既定ルートを走行する。環状既定ルートと行き来可能な接続既定ルートは増やすことができる。オンデマンド既定ルート自動走行車両フリートコントロール装置は、配車指令信号に基づいて乗員が乗っていない待機状態から配車状態に変化する際に、待機状態の速度が配車状態の速度よりも小さくなるように、オンデマンド既定ルート自動走行車両の走行を指令する配車指令信号を生成する。配車指令信号は、ルート情報、車両位置情報、乗員有無情報、利用要求情報に基づいて、オンデマンド既定ルート自動走行車両フリートコントロール装置で生成される。つまり、乗員の有無に応じて選択されたオンデマンド既定ルート自動走行車両が、乗車予定位置に配車される。環状接続既定ルートは、環状既定ルートと行き来可能な接続既定ルートを有するため、乗員が乗っていない待機状態のオンデマンド既定ルート自動走行車両を常時循環走行させずに、環状接続既定ルートにおいて分散して待機させることができる。これにより、乗員が乗っていない待機状態のオンデマンド既定ルート自動走行車両のエネルギーの消費を低くできる。つまり、エネルギー消費を抑制するようにオンデマンド既定ルート自動走行車両の走行を制御することができる。つまり、複数のオンデマンド既定ルート自動走行車両のエネルギーの消費の合計を低くできる。そして、複数のオンデマンド既定ルート自動走行車両のエネルギーを補給する回数を減らすことができる。そして、オンデマンド既定ルート自動走行車両フリートコントロール装置のハードウェアリソースの増加を抑制することができる。
 従って、本発明のオンデマンド既定ルート自動走行車両フリートコントロール装置は、多様なエリアで利用可能にすると共に、ハードウェアリソースの増加をより抑えることができる。
(4)本発明の他の観点によれば、本発明のオンデマンド既定ルート自動走行車両フリートコントロール装置は、上記(1)~(3)のいずれかの構成に加えて、以下の構成を有することが好ましい。
 前記情報取得処理は、更に、前記環状接続既定ルート上の前記乗車予定位置になることが予想される位置である予想乗車位置に関連する予想乗車位置情報を取得し、前記車両選択処理は、更に、取得した前記ルート情報、前記車両位置情報、前記乗員有無情報および前記予想乗車位置情報に基づいて、前記複数のオンデマンド既定ルート自動走行車両の内の前記配車指令信号を受信していない状態の車両の中から前記予想乗車位置に事前に配車する車両を選択し、前記プロセッサは、前記複数のオンデマンド既定ルート自動走行車両の中から選択された前記予想乗車位置情報に事前に配車する車両の走行を、前記予想乗車位置に移動するように指令する事前配車指令信号を、取得した前記ルート情報、前記車両位置情報、前記乗員有無情報および前記予想乗車位置情報に基づいて生成する事前配車指令信号生成処理を更に実行するように構成されまたはプログラムされ、前記送信処理は、更に、生成した前記事前配車指令信号を前記複数のオンデマンド既定ルート自動走行車両の中から選択された前記予想乗車位置に事前に配車する車両に送信する。
 この構成によると、オンデマンド既定ルート自動走行車両は、少なくとも1つの環状既定ルートと、環状既定ルートに行き来可能な少なくとも1つの接続既定ルートとを有する環状接続既定ルートを走行する。環状既定ルートと行き来可能な接続既定ルートは増やすことができる。オンデマンド既定ルート自動走行車両フリートコントロール装置は、事前配車指令信号に基づいて、環状接続既定ルート上の利用者が乗車する予定の乗車予定位置になることが予想される予想乗車位置に移動するように、オンデマンド既定ルート自動走行車両の走行を指令する事前配車指令信号を生成する。事前配車指令信号は、ルート情報、車両位置情報、乗員有無情報、予想乗車位置に基づいて、オンデマンド既定ルート自動走行車両フリートコントロール装置で生成される。オンデマンド既定ルート自動走行車両を事前配車すると、オンデマンド既定ルート自動走行車両を事前配車せず配車指令信号を受信してから配車する場合に比べて、エネルギーの効率のよい車両の運行の制御が可能となる。エネルギーの効率のよい車両の運行の制御とは、例えば、次のケースである。例えば、事前配車指令信号を受信したオンデマンド既定ルート自動走行車両を、エネルギー消費量が少ない速度で走行させたり、渋滞しないようなルートで走行させたりするように制御するケースである。これにより、事前配車指令信号を受信したオンデマンド既定ルート自動走行車両のエネルギーの消費を低くできる。つまり、エネルギー消費を抑制するようにオンデマンド既定ルート自動走行車両の走行を制御することができる。つまり、複数のオンデマンド既定ルート自動走行車両のエネルギーの消費の合計を低くできる。そして、複数のオンデマンド既定ルート自動走行車両のエネルギーを補給する回数を減らすことができる。そして、オンデマンド既定ルート自動走行車両フリートコントロール装置のハードウェアリソースの増加を抑制することができる。
 従って、本発明のオンデマンド既定ルート自動走行車両フリートコントロール装置は、多様なエリアで利用可能にすると共に、ハードウェアリソースの増加をより抑えることができる。
(5)本発明の他の観点によれば、本発明のオンデマンド既定ルート自動走行車両フリートコントロール装置は、上記(4)の構成に加えて、以下の構成を有することが好ましい。
 前記予想乗車位置情報は、利用者の過去の利用実績および利用者の現在位置を含む利用者に関連する情報、利用者の過去に前記オンデマンド既定ルート自動走行車両を利用したときの目的地を含む目的地に関連する情報、または、前記環状接続既定ルートの環境に関連する情報の少なくとも1つの情報に基づいて生成される。
 この構成によると、利用者に関連する情報、目的地に関連する情報、環境に関連する情報の少なくとも1つの情報に基づいて生成された予想乗車位置情報に基づいて、オンデマンド既定ルート自動走行車両が予想乗車位置に事前に配車される。環状接続既定ルートは、走行可能なエリアの中の予め決められた既定ルートである。つまり、環状接続既定ルートのエリアは走行可能なエリア内に限定されており、比較的小さい。このため、環状接続既定ルートのエリア内の利用者に関連する情報は、走行可能なエリア内に限定されており、比較的数が少ないため集めやすい。環状接続既定ルートのエリア内の目的地に関連する情報は、走行可能なエリア内に限定されており、比較的数が少ないため集めやすい。環状接続既定ルートのエリア内の環境に関連する情報は、走行可能なエリア内に限定されており、比較的数が少ないため集めやすい。利用者に関連する情報とは、利用者の過去の利用実績の情報および利用者の現在位置の情報を含む。利用者の過去利用実績の情報は、例えば、利用者の過去の乗車位置および乗車日時の情報や、降車位置および降車日時の情報である。目的地に関連する情報は、利用者の過去にオンデマンド既定ルート自動走行車両を利用したときの目的地を含む。目的地に関連する情報は、例えば、目的地の場所の情報や、店舗の営業日および営業時間の情報や、イベントの開催日および開催時間の情報である。利用者に関連する情報および目的地に関連する情報は、例えば、宿泊施設のチェックインおよびチェックアウトの統計情報である。環境に関連する情報は、例えば、雨などの天候の情報である。そして、環状接続既定ルートのエリアは走行可能なエリア内に限定されており、比較的、利用者が乗車することが予想される位置を予測しやすい。
 そのため、オンデマンド既定ルート自動走行車両は、配車指令信号を受信してから移動する場合に比べて、エネルギーの効率がよりよい車両の運行の制御が可能となる。これにより、配車指令信号を受信していない状態のオンデマンド既定ルート自動走行車両のエネルギーの消費をより低くできる。それにより、エネルギー消費を抑制するようにオンデマンド既定ルート自動走行車両の走行を制御することができる。つまり、複数のオンデマンド既定ルート自動走行車両のエネルギーの消費の合計を低くできる。そして、複数のオンデマンド既定ルート自動走行車両のエネルギーを補給する回数を減らすことができる。そして、オンデマンド既定ルート自動走行車両フリートコントロール装置のハードウェアリソースの増加を抑制することができる。
 従って、本発明のオンデマンド既定ルート自動走行車両フリートコントロール装置は、多様なエリアで利用可能にすると共に、ハードウェアリソースの増加をより抑えることができる。
(6)本発明の他の観点によれば、本発明のオンデマンド既定ルート自動走行車両フリートコントロール装置は、上記(4)または(5)の構成に加えて、以下の構成を有することが好ましい。
 前記予想乗車位置情報は、前記予想乗車位置および前記予想乗車位置を前記乗車予定位置とした利用者の前記利用要求が行われることが予想される時刻である予想乗車位置利用要求時刻の情報を含み、前記事前配車指令信号は、前記予想乗車位置利用要求時刻に前記予想乗車位置にいることを指示する。
 この構成によると、予想乗車位置情報および予想乗車位置利用要求時刻に基づいて、オンデマンド既定ルート自動走行車両が予想乗車位置に事前に配車される。環状接続既定ルートは、走行可能なエリアの中の予め決められた既定ルートである。つまり、環状接続既定ルートのエリアは走行可能なエリア内に限定されており、比較的小さい。このため、環状接続既定ルートのエリアは走行可能なエリア内に限定されており、比較的、予想乗車位置で利用者の利用要求が行われることが予想される時刻である予想乗車位置利用要求時刻が予測しやすい。
 そのため、オンデマンド既定ルート自動走行車両を事前配車すると、オンデマンド既定ルート自動走行車両を事前配車せず配車指令信号を受信してから配車する場合に比べて、エネルギーの効率がよりよい車両の運行の制御が可能となる。これにより、配車指令信号を受信していない状態のオンデマンド既定ルート自動走行車両のエネルギーの消費をより低くできる。それにより、エネルギー消費を抑制するようにオンデマンド既定ルート自動走行車両の走行を制御することができる。つまり、複数のオンデマンド既定ルート自動走行車両のエネルギーの消費の合計を低くできる。そして、複数のオンデマンド既定ルート自動走行車両のエネルギーを補給する回数を減らすことができる。そして、オンデマンド既定ルート自動走行車両フリートコントロール装置のハードウェアリソースの増加を抑制することができる。
 従って、本発明のオンデマンド既定ルート自動走行車両フリートコントロール装置は、多様なエリアで利用可能にすると共に、ハードウェアリソースの増加をより抑えることができる。
(7)本発明の他の観点によれば、本発明のオンデマンド既定ルート自動走行車両フリートコントロール装置は、上記(1)~(6)のいずれかの構成に加えて、以下の構成を有することが好ましい。
 前記環状接続既定ルートが、第1接続既定ルート、および、第1接続部で前記第1接続既定ルートと接続される第1接続既定ルートを含み、前記プロセッサは、前記ルート情報、前記車両位置情報、前記乗員有無情報および前記利用要求情報に基づいて、前記第1環状既定ルートを前記第1接続部に向かって走行している第1オンデマンド既定ルート自動走行車両が存在し、且つ、前記第1接続既定ルートを前記第1接続部に向かって走行している第2オンデマンド既定ルート自動走行車両が存在する場合であって、前記第1オンデマンド既定ルート自動走行車両および前記第2オンデマンド既定ルート自動走行車両が車両前方向にある障害物の存在に関連する制御が行われない状態であると判断した場合、または、前記第1接続既定ルートを前記第1接続部に向かって走行している第1オンデマンド既定ルート自動走行車両が存在し、且つ、前記第1環状既定ルートを前記第1接続部に向かって走行している第2オンデマンド既定ルート自動走行車両が存在する場合であって、前記第1オンデマンド既定ルート自動走行車両および前記第2オンデマンド既定ルート自動走行車両が車両前方向にある障害物の存在に関連する制御が行われない状態であると判断した場合に、前記ルート情報、前記車両位置情報、前記乗員有無情報および前記利用要求情報に基づいて、前記第1接続部を通過する順番を前記第1オンデマンド既定ルート自動走行車両が前記第2オンデマンド既定ルート自動走行車両の後にするように、前記第1接続部に向かって走行するときの前記第1オンデマンド既定ルート自動走行車両の速度が、前記第1接続部に向かって走行するときの前記第2オンデマンド既定ルート自動走行車両の速度よりも小さくなるように指令する調停指令信号を生成する調停指令信号生成処理を更に実行するように構成されまたはプログラムされ、前記送信処理は、更に、生成した前記調停指令信号を前記第1オンデマンド既定ルート自動走行車両に送信する。
 この構成によると、第1接続部に向かって第1接続既定ルートを走行する第2オンデマンド既定ルート自動走行車両がいる場合に、第1接続部に向かって第1環状既定ルートを走行する第1オンデマンド既定ルート自動走行車両は、受信した調停指令信号に基づいて、減速または停車する。つまり、第1接続部に向かって第1接続既定ルートを走行する第2オンデマンド既定ルート自動走行車両がいる場合に、第1接続部に向かって第1環状既定ルートを走行する第1オンデマンド既定ルート自動走行車両は、調停指令信号に基づいて、第1接続部を通過する順番が第2オンデマンド既定ルート自動走行車両の後になるように待機する。第1接続部に向かって第1接続既定ルートを走行する第2オンデマンド既定ルート自動走行車両は、第1接続部に向かって第1環状既定ルートを走行する第1オンデマンド既定ルート自動走行車両よりも先に第1接続部を通過する。また、第1接続部に向かって第1環状既定ルートを走行する第2オンデマンド既定ルート自動走行車両がいる場合に、第1接続部に向かって第1接続既定ルートを走行する第1オンデマンド既定ルート自動走行車両は、受信した調停指令信号に基づいて、減速または停車する。つまり、第1接続部に向かって第1環状既定ルートを走行する第2オンデマンド既定ルート自動走行車両がいる場合に、第1接続部に向かって第1接続既定ルートを走行する第1オンデマンド既定ルート自動走行車両は、調停指令信号に基づいて、第1接続部を通過する順番が第2オンデマンド既定ルート自動走行車両の後になるように待機する。第1接続部に向かって第1環状既定ルートを走行する第2オンデマンド既定ルート自動走行車両は、第1接続部に向かって第1接続既定ルートを走行する第1オンデマンド既定ルート自動走行車両よりも先に第1接続部を通過する。調停指令信号は、例えば次のケースで、第1オンデマンド既定ルート自動走行車両に送信される。例えば、第1オンデマンド既定ルート自動走行車両は、待機状態の車両であり、第2オンデマンド既定ルート自動走行車両は、乗員が乗っている車両、または、配車状態の車両であるケースである。また、例えば、第1オンデマンド既定ルート自動走行車両は、配車状態の車両であり、第2オンデマンド既定ルート自動走行車両は、乗員が乗っている車両であるケースである。また、例えば、第1オンデマンド既定ルート自動走行車両および第2オンデマンド既定ルート自動走行車両の両方が、配車状態の車両または乗員が乗っている車両であるケースであって、第1接続部から第1オンデマンド既定ルート自動走行車両が向かっている乗車予定位置までの距離が、第1接続部から第2オンデマンド既定ルート自動走行車両が向かっている乗車予定位置までの距離よりも短いケースである。また、例えば、第1オンデマンド既定ルート自動走行車両および第2オンデマンド既定ルート自動走行車両の両方が、待機状態の車両、配車状態の車両または乗員が乗っている車両であって、第1接続部からオンデマンド既定ルート自動走行車両の現在位置までの距離が、第1接続部から第2オンデマンド既定ルート自動走行車両の現在位置までの距離よりも長いケースである。また、例えば、第1オンデマンド既定ルート自動走行車両のエネルギー残量が、第2オンデマンド既定ルート自動走行車両のエネルギー残量より多いケースである。これにより、第1接続部に向かって第1環状既定ルートを走行する第1オンデマンド既定ルート自動走行車両および第1接続部に向かって第1接続既定ルートを走行するオンデマンド既定ルート自動走行車両が存在する場合に、第1接続部において、これら2台のオンデマンド既定ルート自動走行車両を円滑に通過させることができる。これにより、環状既定ルートに接続される接続既定ルートを増やしても、複数のオンデマンド既定ルート自動走行車両の走行を円滑に行うことができる。そして、環状接続既定ルートを走行できる複数のオンデマンド既定ルート自動走行車両の数を増やすことができる。ここで、環状既定ルートに接続される接続既定ルートを増やすと、接続既定ルートで待機する待機状態のオンデマンド既定ルート自動走行車両を増やすことができる。そして、待機状態のオンデマンド既定ルート自動走行車両の現在位置から乗車予定位置までの距離が短くなる場合がある。これにより、エネルギー消費を抑制するようにオンデマンド既定ルート自動走行車両の走行を制御することができる。つまり、複数のオンデマンド既定ルート自動走行車両のエネルギーの消費の合計を低くできる。そして、複数のオンデマンド既定ルート自動走行車両のエネルギーを補給する回数を減らすことができる。そして、オンデマンド既定ルート自動走行車両フリートコントロール装置のハードウェアリソースの増加を抑制することができる。
 従って、本発明のオンデマンド既定ルート自動走行車両フリートコントロール装置は、多様なエリアで利用可能にすると共に、ハードウェアリソースの増加をより抑えることができる。
(8)本発明の他の観点によれば、本発明のオンデマンド既定ルート自動走行車両フリートコントロール装置は、上記(1)~(7)のいずれかの構成に加えて、以下の構成を有することが好ましい。
 前記オンデマンド既定ルート自動走行車両は、乗車可能な乗員の最大数が8名以下である。
 この構成によると、乗車可能な乗員の最大数が8名より多い場合に比べて、オンデマンド既定ルート自動走行車両の車両自体の重量が軽くなる。また、乗車可能な乗員の最大数が8名より多い場合に比べて、オンデマンド既定ルート自動走行車両に乗員が乗った際の車両全体の重量が軽くなる。これにより、オンデマンド既定ルート自動走行車両1台あたりのエネルギー効率を向上させることができる。つまり、複数のオンデマンド既定ルート自動走行車両のエネルギーの消費の合計を低くできる。そして、複数のオンデマンド既定ルート自動走行車両のエネルギーを補給する回数を減らすことができる。そして、オンデマンド既定ルート自動走行車両フリートコントロール装置のハードウェアリソースの増加を抑制することができる。
 従って、本発明のオンデマンド既定ルート自動走行車両フリートコントロール装置は、多様なエリアで利用可能にすると共に、ハードウェアリソースの増加をより抑えることができる。
(9)本発明の他の観点によれば、本発明のオンデマンド既定ルート自動走行車両フリートコントロール装置は、上記(1)~(8)のいずれかの構成に加えて、以下の構成を有することが好ましい。
 前記配車指令信号は、前記乗車予定位置に向かって走行する最中の速度が時速40km以下となるように、前記複数のオンデマンド既定ルート自動走行車両の中から選択された前記乗車予定位置に配車する車両の走行を制御する。
 この構成によると、配車状態の速度が時速40km以下となるように走行が制御されると、配車状態の速度が時速40kmより大きくなるように走行が制御される場合と比べて、オンデマンド既定ルート自動走行車両の空気抵抗が小さい。これにより、1台あたりのオンデマンド既定ルート自動走行車両のエネルギー消費量を減らすことができる。つまり、複数のオンデマンド既定ルート自動走行車両のエネルギーの消費の合計を低くできる。そして、複数のオンデマンド既定ルート自動走行車両のエネルギーを補給する回数を減らすことができる。そして、オンデマンド既定ルート自動走行車両フリートコントロール装置のハードウェアリソースの増加を抑制することができる。
 従って、本発明のオンデマンド既定ルート自動走行車両フリートコントロール装置は、多様なエリアで利用可能にすると共に、ハードウェアリソースの増加をより抑えることができる。
(10)本発明の他の観点によれば、本発明のオンデマンド既定ルート自動走行車両フリートコントロール装置は、上記(1)~(9)のいずれかの構成に加えて、以下の構成を有することが好ましい。
 前記情報取得処理は、前記ルート情報、前記車両位置情報、前記乗員有無情報、前記利用要求情報、および、前記環状接続既定ルート上の前記複数のオンデマンド既定ルート自動走行車両のエネルギー残量に関連するエネルギー情報を取得し、前記車両選択処理は、取得した前記ルート情報、前記車両位置情報、前記乗員有無情報、前記利用要求情報および前記エネルギー情報に基づいて、前記複数のオンデマンド既定ルート自動走行車両の中から前記乗車予定位置に配車する車両を選択し、前記配車指令信号生成処理は、取得した前記ルート情報、前記車両位置情報、前記乗員有無情報、前記利用要求情報および前記エネルギー情報に基づいて、前記配車指令信号を生成する。
 この構成によると、オンデマンド既定ルート自動走行車両フリートコントロール装置において、複数のオンデマンド既定ルート自動走行車両のエネルギー残量に基づいて、複数のオンデマンド既定ルート自動走行車両の中から乗車予定位置に配車する車両が選択される。例えば、現在位置から乗車予定位置まで走行するのに必要なエネルギーよりも十分に多いエネルギー残量を有するオンデマンド既定ルート自動走行車両が、オンデマンド既定ルート自動走行車両フリートコントロール装置により、乗車予定位置に配車する車両として選択される。つまり、エネルギー残量の多いオンデマンド既定ルート自動走行車両が優先的に乗車予定位置に配車される。そして、複数のオンデマンド既定ルート自動走行車両のエネルギーを補給する回数を減らすことができる。そして、オンデマンド既定ルート自動走行車両フリートコントロール装置のハードウェアリソースの増加を抑制することができる。
 従って、本発明のオンデマンド既定ルート自動走行車両フリートコントロール装置は、多様なエリアで利用可能にすると共に、ハードウェアリソースの増加をより抑えることができる。
(11)本発明の他の観点によれば、本発明のオンデマンド既定ルート自動走行車両フリートコントロール装置は、上記(10)の構成に加えて、以下の構成を有することが好ましい。
 前記エネルギー情報は、前記環状接続既定ルート上の前記複数のオンデマンド既定ルート自動走行車両が送信した自車のエネルギー残量に関連する情報である。
 この構成によると、環状接続既定ルート上の複数のオンデマンド既定ルート自動走行車両は、自車のエネルギー残量に関連する情報をオンデマンド既定ルート自動走行車両フリートコントロール装置に送信する。そして、オンデマンド既定ルート自動走行車両フリートコントロール装置に送信された複数のオンデマンド既定ルート自動走行車両のより正確なエネルギー残量に基づいて、複数のオンデマンド既定ルート自動走行車両の中から乗車予定位置に配車する車両が選択される。例えば、現在位置から乗車予定位置まで走行するのに必要なエネルギーよりも十分に多いエネルギー残量を有するオンデマンド既定ルート自動走行車両が、オンデマンド既定ルート自動走行車両フリートコントロール装置により、乗車予定位置に配車する車両としてより正確に選択される。つまり、より正確に、エネルギー残量の多いオンデマンド既定ルート自動走行車両が優先的に乗車予定位置に配車される。そして、より正確に、複数のオンデマンド既定ルート自動走行車両のエネルギーを補給する回数を減らすことができる。そして、オンデマンド既定ルート自動走行車両フリートコントロール装置のハードウェアリソースの増加をより抑制することができる。
 従って、本発明のオンデマンド既定ルート自動走行車両フリートコントロール装置は、多様なエリアで利用可能にすると共に、ハードウェアリソースの増加をより抑えることができる。
(12)本発明の他の観点によれば、本発明のオンデマンド既定ルート自動走行車両フリートコントロール装置は、上記(10)または(11)のいずれかの構成に加えて、以下の構成を有することが好ましい。
 前記利用要求情報は、利用者が降車する予定の降車予定位置の情報を含む。
 配車指令信号は、ルート情報、車両位置情報、乗員有無情報、利用要求情報およびエネルギー情報に基づいて、オンデマンド既定ルート自動走行車両フリートコントロール装置で生成される。利用要求情報に乗車予定位置および降車予定位置の情報が含まれる。つまり、オンデマンド既定ルート自動走行車両フリートコントロール装置は、複数のオンデマンド既定ルート自動走行車両の現在位置、乗車予定位置、降車予定位置およびエネルギー残量に基づいて、オンデマンド既定ルート自動走行車両を乗車予定位置に配車することができる。例えば、オンデマンド既定ルート自動走行車両フリートコントロール装置は、現在位置から乗車予定位置を経由して降車予定位置まで走行するのに必要なエネルギー残量を有するオンデマンド既定ルート自動走行車両を、乗車予定位置に配車することができる。これにより、複数のオンデマンド既定ルート自動走行車両全体のエネルギー効率を向上させることができる。つまり、複数のオンデマンド既定ルート自動走行車両のエネルギーの消費の合計を低くできる。そして、複数のオンデマンド既定ルート自動走行車両のエネルギーを補給する回数を減らすことができる。そして、オンデマンド既定ルート自動走行車両フリートコントロール装置のハードウェアリソースの増加を抑制することができる。
 従って、本発明のオンデマンド既定ルート自動走行車両フリートコントロール装置は、多様なエリアで利用可能にすると共に、ハードウェアリソースの増加をより抑えることができる。
(13)本発明の他の観点によれば、本発明のオンデマンド既定ルート自動走行車両フリートコントロール装置は、上記(1)~(12)のいずれかの構成に加えて、以下の構成を有することが好ましい。
 前記環状接続既定ルートは、第1環状既定ルートと、第2環状既定ルートと、少なくとも1つの第1接続既定ルートを有し、前記第1環状既定ルートおよび前記第2環状既定ルートが前記少なくとも1つの第1接続既定ルートを介して行き来可能に接続される。
 この構成によると、オンデマンド既定ルート自動走行車両が走行する環状接続既定ルートに環状既定ルートが複数含まれる。そして、環状接続既定ルートを走行できるオンデマンド既定ルート自動走行車両の数を増やすことができる。ここで、環状接続既定ルートを走行できるオンデマンド既定ルート自動走行車両の数を増やすと、待機状態のオンデマンド既定ルート自動走行車両の現在位置から乗車予定位置までの距離が短くなることがある。これにより、1台あたりのオンデマンド既定ルート自動走行車両のエネルギー消費量をより減らすことができる。つまり、複数のオンデマンド既定ルート自動走行車両のエネルギーの消費の合計を低くできる。そして、複数のオンデマンド既定ルート自動走行車両のエネルギーを補給する回数を減らすことができる。そして、オンデマンド既定ルート自動走行車両フリートコントロール装置のハードウェアリソースの増加を抑制することができる。
 従って、本発明のオンデマンド既定ルート自動走行車両フリートコントロール装置は、多様なエリアで利用可能にすると共に、ハードウェアリソースの増加をより抑えることができる。
 本発明は、オンデマンド既定ルート自動走行車両に関するものであってもよい。
 従来、オンデマンド既定ルート自動走行車両がある。オンデマンド既定ルート自動走行車両は、走行可能なエリアの中の予め決められた既定ルートを自動で走行する。オンデマンド既定ルート自動走行車両は、オンデマンド既定ルート自動走行車両フリートコントロール装置との間で情報を送受信可能に構成される。オンデマンド既定ルート自動走行車両フリートコントロール装置は、複数のオンデマンド既定ルート自動走行車両との間で情報を送受信可能に構成され、複数のオンデマンド既定ルート自動走行車両の走行を制御する。オンデマンド既定ルート自動走行車両は、オンデマンド既定ルート自動走行車両フリートコントロール装置が利用者からの利用要求を取得したときに、オンデマンド既定ルート自動走行車両フリートコントロール装置から受信した配車指令信号に基づいて利用者が乗車する予定の位置に配車される。
 既定ルートを走行するオンデマンド既定ルート自動走行車両は、走行可能なエリアの中で走行が制限される。これに対して、既定ルート以外のルートを走行する自動走行車両は、走行可能なエリアの中を自由に走行できる。既定ルートを走行するオンデマンド既定ルート自動走行車両は、既定ルートでないルートを走行する自動走行車両と比べて、既定ルートの出発点から終着点まで走行するのに消費する1台あたりエネルギー消費量が少ない傾向がある。
 また、オンデマンド既定ルート自動走行車両が走行する既定ルートが、環状である場合がある。既定ルートが環状であると、複数のオンデマンド既定ルート自動走行車両を常時循環走行させることができる。既定ルートが環状であると、複数のオンデマンド既定ルート自動走行車両を既定ルートにおいて分散させて走行させることができる。
 特許文献1には、環状の既定ルートを走行する複数のオンデマンド既定ルート自動走行車両が開示されている。特許文献1では、複数のオンデマンド既定ルート自動走行車両が環状の既定ルートを常時、循環走行している。そして、特許文献1では、オンデマンド既定ルート自動走行車両フリートコントロール装置により、環状の既定ルートを常時、循環走行しているオンデマンド既定ルート自動走行車両が、利用者の利用要求に応じて配車される。これにより、オンデマンド既定ルート自動走行車両の利用要求を行った利用者の待ち時間を減らしている。なお、特許文献1では、オンデマンド既定ルート自動走行車両は、利用者を乗車させる場合に、環状既定ルートから外れて、非既定ルート上を走行する。また、利用者が乗車したオンデマンド既定ルート自動走行車両は、環状既定ルートを走行中に、利用者が停止したい位置で停車キーを操作することにより、停車する。
 オンデマンド既定ルート自動走行車両は、限定されたエリアで利用される。オンデマンド既定ルート自動走行車両は、多様なエリアの特性に合わせて利用できることが求められる。オンデマンド既定ルート自動走行車両のエネルギー搭載量は、エネルギー消費量から決まる。オンデマンド既定ルート自動走行車両の設計自由度は、エネルギー搭載量に応じて制約される。オンデマンド既定ルート自動走行車両は、利用要求を行った利用者の待ち時間を短縮しつつ、エネルギー搭載量を減らして車両の設計自由度を高めることが望まれる。
 本発明は、オンデマンド既定ルート自動走行車両を、多様なエリアで利用可能にすると共に、利用要求を行った利用者の待ち時間を短縮しつつ、エネルギー搭載量を減らして車両の設計自由度を向上させることができることを目的とする。
 特許文献1では、オンデマンド既定ルート自動走行車両の利用要求を行った利用者の待ち時間を減らすために、環状の既定ルートで複数のオンデマンド既定ルート自動走行車両が常時、循環走行している。そして、オンデマンド既定ルート自動走行車両として、エネルギー消費量の小さい小型車両が用いられている。つまり、特許文献1では、オンデマンド既定ルート自動走行車両の利用要求を行った利用者の待ち状態を減らすことを優先しつつ、複数のオンデマンド既定ルート自動走行車両全体のエネルギー消費量の増加を抑えている。特許文献1では、常時、循環走行することによるエネルギー消費が発生するため、環状の既定ルートを走行するオンデマンド既定ルート自動走行車両の台数を増やしたとしても、1台あたりのエネルギー搭載量は維持される。そこで、本願発明者らは、1台あたりのエネルギー搭載量を減らすことを優先して、利用要求を行った利用者の待ち時間を減らすことを考えた。
 また、環状既定ルートに、接続既定ルートを行き来可能に接続した場合、既定ルートのエリアが広くなり、多様なエリアでオンデマンド既定ルート自動走行車両を利用することができる。
(14)本発明のオンデマンド既定ルート自動走行車両は、複数の車輪と、車両を走行させるための駆動力を少なくとも1つの前記車輪に付与する駆動機構と、車両を減速させるための制動力を少なくとも1つの前記車輪に付与する制動機構と、車両が走行する際の少なくとも1つの前記車輪の進行方向を制御する進行方向制御機構と、(a)オンデマンド既定ルート自動走行車両フリートコントロール装置との間で情報を送受信可能に構成され、(b)走行可能なエリアの中の予め決められた既定ルートを乗員の有無に関わらず自動で走行するように、且つ、利用者からの利用要求を取得した前記オンデマンド既定ルート自動走行車両フリートコントロール装置で生成された配車指令信号を受信した場合に利用者が乗車する予定の乗車予定位置に配車されるように、前記駆動機構、前記制動機構および前記進行方向制御機構を制御して、前記乗車予定位置に向かって走行させる車両搭載制御装置と、を有するオンデマンド既定ルート自動走行車両であって、前記車両搭載制御装置は、少なくとも1つの環状既定ルートと、前記少なくとも1つの環状既定ルートに行き来可能に接続された少なくとも1つの接続既定ルートとを有する環状接続既定ルートである前記既定ルートにおける自車の現在位置の情報を前記オンデマンド既定ルート自動走行車両フリートコントロール装置に送信し、(A)前記環状接続既定ルートのルートに関連するルート情報、(B)送信された前記自車の現在位置の情報を含む、前記環状接続既定ルート上の前記複数のオンデマンド既定ルート自動走行車両の現在位置に関連する車両位置情報、(C)前記環状接続既定ルート上の前記複数のオンデマンド既定ルート自動走行車両の乗員の有無に関連する乗員有無情報、および、(D)情報端末と情報を送受信可能に構成された利用要求マネジメント装置から受信した前記乗車予定位置の情報を含む利用者の前記利用要求に関連する利用要求情報に基づいて、前記オンデマンド既定ルート自動走行車両フリートコントロール装置によって前記複数のオンデマンド既定ルート自動走行車両の中から前記乗車予定位置に配車する車両として選択された場合に、前記ルート情報、前記車両位置情報、前記乗員有無情報および前記利用要求情報に基づいて、前記オンデマンド既定ルート自動走行車両フリートコントロール装置で生成された前記配車指令信号を受信し、前記配車指令信号に基づいて、前記利用要求マネジメント装置が受信した前記利用要求に含まれる利用者の前記乗車予定位置に向かって走行するように、前記駆動機構、前記制動機構および前記進行方向制御機構を制御することを特徴とするオンデマンド既定ルート自動走行車両。
 この構成によると、オンデマンド既定ルート自動走行車両は、少なくとも1つの環状既定ルートと、環状既定ルートと行き来可能な少なくとも1つの接続既定ルートとを有する環状接続既定ルートを走行する。オンデマンド既定ルート自動走行車両フリートコントロール装置は、利用者の利用要求を、情報端末と情報を送受信可能に構成された少なくとも1つの利用要求マネジメント装置から取得する。情報端末は、利用者が所持してもよいし、オンデマンド既定ルート自動走行車両の乗降場所に配置されてもよい。利用要求マネジメント装置は、オンデマンド既定ルート自動走行車両フリートコントロール装置とは別に設けられる。利用要求マネジメント装置は、多様なエリアに設けることができる。利用者は利用要求を、情報端末からオンデマンド既定ルート自動走行車両フリートコントロール装置と送受信可能に構成された利用要求マネジメント装置に送信する。1つのオンデマンド既定ルート自動走行車両フリートコントロール装置に対して、複数の利用要求マネジメント装置を設けることができる。つまり、利用者の利用目的に応じて利用者の利用要求をマネジメントする利用要求マネジメント装置を、エリアごとに設けることができる。そして、エリアによって大きく異なる利用者の利用目的に応じて、利用要求マネジメント装置を構成することができる。オンデマンド既定ルート自動走行車両フリートコントロール装置は、多様なエリアに設けられた複数の利用要求マネジメント装置を介して、利用者が所持する情報端末からの利用者の利用要求を受け付けることができる。
 環状既定ルートと行き来可能な接続既定ルートは増やすことができる。車両搭載制御装置は、利用要求マネジメント装置が受信した利用要求に含まれる利用者の乗車予定位置に向かって走行するように、駆動機構、制動機構および進行方向制御機構を制御する。配車指令信号は、ルート情報、車両位置情報、乗員有無情報、利用要求情報に基づいて、オンデマンド既定ルート自動走行車両フリートコントロール装置で生成される。つまり、乗員の有無に応じて選択されたオンデマンド既定ルート自動走行車両が、乗車予定位置に配車される。環状接続既定ルートは、環状既定ルートと行き来可能な接続既定ルートを有するため、乗員が乗っていないオンデマンド既定ルート自動走行車両を常時循環走行させずに、環状接続既定ルートにおいて分散して待機させることができる。これにより、乗員が乗っていないオンデマンド既定ルート自動走行車両のエネルギーの消費を低くできる。それにより、1台あたりのエネルギー搭載量を減らして車両の設計自由度を高めることができる。
 また、乗員が乗っていないオンデマンド既定ルート自動走行車両を環状接続既定ルートにおいて分散して待機させることができる。そのため、オンデマンド既定ルート自動走行車両を環状既定ルートで常時循環走行させることなく、環状接続既定ルートを走行できるオンデマンド既定ルート自動走行車両の数を増やすことができる。そして、乗員が乗っていないオンデマンド既定ルート自動走行車両を環状接続既定ルートにおいて分散して待機させることができる。これにより、利用者の待ち時間を短くできる。
 従って、本発明のオンデマンド既定ルート自動走行車両は、多様なエリアで利用可能であると共に、利用要求を行った利用者の待ち時間を短縮しつつ、エネルギー搭載量を減らして車両の設計自由度を向上させることができる。
(15)本発明の他の観点によれば、本発明のオンデマンド既定ルート自動走行車両は、上記(14)の構成に加えて、以下の構成を有することが好ましい。
 前記乗車予定位置への配車の予定に関連する配車予定情報が、前記利用要求マネジメント装置または前記情報端末に対して送信される。
 この構成によると、利用要求マネジメント装置または情報端末で、配車予定情報が取得される。そして、利用要求マネジメント装置または情報端末で、利用者の利用目的に応じて乗車予定位置への配車の予定に関連する情報を用いることができる。例えば、利用要求マネジメント装置または情報端末に対して、乗車予定位置への配車の予定に関連する情報を表示することができる。また、例えば、情報端末に対して、乗車予定位置への配車の予定に関連する情報に基づいた利用者に対する目的地の情報などのサービス情報を表示したりすることができる。これにより、利用要求マネジメント装置は、エリアによって異なる利用者の利用目的に応じて利用者の利用要求をマネジメントすることができる。
 従って、本発明のオンデマンド既定ルート自動走行車両は、より多様なエリアで利用可能であると共に、利用要求を行った利用者の待ち時間を短縮しつつ、エネルギー搭載量を減らして車両の設計自由度を向上させることができる。
(16)本発明の他の観点によれば、本発明のオンデマンド既定ルート自動走行車両は、上記(14)または(15)の構成に加えて、以下の構成を有することが好ましい。
 前記車両搭載制御装置は、乗員が乗っておらず前記配車指令信号を受信することが可能な状態である待機状態から、前記配車指令信号に基づいて前記乗車予定位置に向かって走行している状態である配車状態に変化する際に、前記待機状態の速度が前記配車状態の速度よりも小さくなるように、前記駆動機構、前記制動機構および前記進行方向制御機構を制御する。
 この構成によると、オンデマンド既定ルート自動走行車両は、少なくとも1つの環状既定ルートと、環状既定ルートと行き来可能な少なくとも1つの接続既定ルートとを有する環状接続既定ルートを走行する。環状既定ルートと行き来可能な接続既定ルートは増やすことができる。車両搭載制御装置は、配車指令信号に基づいて待機状態から配車状態に変化する際に、待機状態の速度が配車状態の速度よりも小さくなるように、駆動機構、制動機構および進行方向制御機構を制御する。配車指令信号は、ルート情報、車両位置情報、乗員有無情報、利用要求情報に基づいて、オンデマンド既定ルート自動走行車両フリートコントロール装置で生成される。つまり、乗員の有無に応じて選択されたオンデマンド既定ルート自動走行車両が、乗車予定位置に配車される。環状接続既定ルートは、環状既定ルートと行き来可能な接続既定ルートを有するため、乗員が乗っていない待機状態のオンデマンド既定ルート自動走行車両を常時循環走行させずに、環状接続既定ルートにおいて分散して待機させることができる。これにより、乗員が乗っていない待機状態のオンデマンド既定ルート自動走行車両のエネルギーの消費を低くできる。それにより、1台あたりのエネルギー搭載量を減らして車両の設計自由度を高めることができる。
 また、乗員が乗っていない待機状態のオンデマンド既定ルート自動走行車両を環状接続既定ルートにおいて分散して待機させることができる。そのため、オンデマンド既定ルート自動走行車両を環状既定ルートで常時循環走行させることなく、環状接続既定ルートを走行できるオンデマンド既定ルート自動走行車両の数を増やすことができる。そして、乗員が乗っていない待機状態のオンデマンド既定ルート自動走行車両を環状接続既定ルートにおいて分散して待機させることができる。これにより、利用者の待ち時間を短くできる。
 従って、本発明のオンデマンド既定ルート自動走行車両は、多様なエリアで利用可能であると共に、利用要求を行った利用者の待ち時間を短縮しつつ、エネルギー搭載量を減らして車両の設計自由度を向上させることができる。
(17)本発明の他の観点によれば、本発明のオンデマンド既定ルート自動走行車両は、上記(14)~(16)のいずれかの構成に加えて、以下の構成を有することが好ましい。
 前記車両搭載制御装置は、更に、前記ルート情報、前記車両位置情報、前記乗員有無情報、および、前記環状接続既定ルート上の前記乗車予定位置になることが予想される位置である予想乗車位置に関連する予想乗車位置情報に基づいて、前記オンデマンド既定ルート自動走行車両フリートコントロール装置によって前記複数のオンデマンド既定ルート自動走行車両の内の前記配車指令信号を受信していない状態の車両の中から前記予想乗車位置に事前に配車する車両として選択された場合に、前記ルート情報、前記車両位置情報、前記乗員有無情報および前記予想乗車位置情報に基づいて、前記オンデマンド既定ルート自動走行車両フリートコントロール装置で生成された事前配車指令信号を受信し、前記事前配車指令信号に基づいて前記予想乗車位置に移動するように、前記駆動機構、前記制動機構および前記進行方向制御機構を制御する。
 この構成によると、オンデマンド既定ルート自動走行車両は、少なくとも1つの環状既定ルートと、環状既定ルートと行き来可能な少なくとも1つの接続既定ルートとを有する環状接続既定ルートを走行する。環状既定ルートと行き来可能な接続既定ルートは増やすことができる。車両搭載制御装置は、事前配車指令信号に基づいて、環状接続既定ルート上の利用者が乗車する予定の乗車予定位置になることが予想される予想乗車位置に移動するように、駆動機構、制動機構および進行方向制御機構を制御する。事前配車指令信号は、ルート情報、車両位置情報、乗員有無情報、予想乗車位置情報に基づいて、オンデマンド既定ルート自動走行車両フリートコントロール装置で生成される。オンデマンド既定ルート自動走行車両を事前配車すると、オンデマンド既定ルート自動走行車両を事前配車せず配車指令信号を受信してから配車する場合に比べて、エネルギーの効率のよい車両の運行の制御が可能となる。エネルギーの効率のよい車両の運行の制御とは、例えば、次のケースである。例えば、事前配車指令信号を受信したオンデマンド既定ルート自動走行車両を、エネルギー消費量が少ない速度で走行させたり、渋滞しないようなルートで走行させたりするように制御するケースである。これにより、事前配車指令信号を受信したオンデマンド既定ルート自動走行車両のエネルギーの消費を低くできる。それにより、1台あたりのエネルギー搭載量を減らして車両の設計自由度を高めることができる。
 また、乗員が乗っておらず、配車指令信号を受信していない状態のオンデマンド既定ルート自動走行車両を環状接続既定ルート上の利用者が乗車することが予想される位置またはその近傍に予め待機させることができる。これにより、利用者の待ち時間を短くできる。
 従って、本発明のオンデマンド既定ルート自動走行車両は、多様なエリアで利用可能であると共に、利用要求を行った利用者の待ち時間を短縮しつつ、エネルギー搭載量を減らして車両の設計自由度を向上させることができる。
(18)本発明の他の観点によれば、本発明のオンデマンド既定ルート自動走行車両は、上記(17)の構成に加えて、以下の構成を有することが好ましい。
 前記予想乗車位置情報は、利用者の過去の利用実績および利用者の現在位置を含む利用者に関連する情報、利用者の過去に前記オンデマンド既定ルート自動走行車両を利用したときの目的地を含む目的地に関連する情報、または、前記環状接続既定ルートの環境に関連する情報の少なくとも1つの情報に基づいて生成される。
 この構成によると、利用者に関連する情報、目的地に関連する情報、環境に関連する情報の少なくとも1つの情報に基づいて生成された予想乗車位置情報に基づいて、オンデマンド既定ルート自動走行車両が予想乗車位置に事前に配車される。環状接続既定ルートは、走行可能なエリアの中の予め決められた既定ルートである。つまり、環状接続既定ルートのエリアは走行可能なエリア内に限定されており、比較的小さい。このため、環状接続既定ルートのエリア内の利用者に関連する情報は、走行可能なエリア内に限定されており、比較的数が少ないため集めやすい。環状接続既定ルートのエリア内の目的地に関連する情報は、走行可能なエリア内に限定されており、比較的数が少ないため集めやすい。環状接続既定ルートのエリア内の環境に関連する情報は、走行可能なエリア内に限定されており、比較的数が少ないため集めやすい。利用者に関連する情報とは、利用者の過去の利用実績の情報および利用者の現在位置の情報を含む。利用者の過去利用実績の情報は、例えば、利用者の過去の乗車位置および乗車日時の情報や、降車位置および降車日時の情報である。目的地に関連する情報は、利用者の過去にオンデマンド既定ルート自動走行車両を利用したときの目的地を含む。目的地に関連する情報は、例えば、目的地の場所の情報や、店舗の営業日および営業時間の情報や、イベントの開催日および開催時間の情報である。利用者に関連する情報および目的地に関連する情報は、例えば、宿泊施設のチェックインおよびチェックアウトの統計情報である。環境に関連する情報は、例えば、雨などの天候の情報である。そして、環状接続既定ルートのエリアは走行可能なエリア内に限定されており、比較的、利用者が乗車することが予想される位置を予測しやすい。
 そのため、オンデマンド既定ルート自動走行車両を事前配車すると、オンデマンド既定ルート自動走行車両を事前配車せず配車指令信号を受信してから配車する場合に比べて、エネルギーの効率がよりよい車両の運行の制御が可能となる。これにより、配車指令信号を受信していない状態のオンデマンド既定ルート自動走行車両のエネルギーの消費をより低くできる。それにより、1台あたりのエネルギー搭載量を減らして車両の設計自由度をより高めることができる。
 また、乗員が乗っておらず、配車指令信号を受信していない状態のオンデマンド既定ルート自動走行車両を環状接続既定ルート上の利用者が乗車する確率のより高い位置またはその近傍に予め待機させることができる。これにより、利用者の待ち時間をより短くできる。
 従って、本発明のオンデマンド既定ルート自動走行車両は、多様なエリアで利用可能であると共に、利用要求を行った利用者の待ち時間をより短縮しつつ、エネルギー搭載量をより減らして車両の設計自由度をより向上させることができる。
(19)本発明の他の観点によれば、本発明のオンデマンド既定ルート自動走行車両は、上記(17)または(18)の構成に加えて、以下の構成を有することが好ましい。
 前記予想乗車位置情報は、前記予想乗車位置および前記予想乗車位置を前記乗車予定位置とした利用者の前記利用要求が行われることが予想される時刻である予想乗車位置利用要求時刻の情報を含み、前記車両搭載制御装置は、前記事前配車指令信号に基づいて、前記予想乗車位置利用要求時刻に前記予想乗車位置にいるように、前記駆動機構、前記制動機構および前記進行方向制御機構を制御する。
 この構成によると、予想乗車位置および予想乗車位置利用時刻に基づいて、オンデマンド既定ルート自動走行車両が予想乗車位置に予想乗車位置利用時刻の前に配車される。環状接続既定ルートは、走行可能なエリアの中の予め決められた既定ルートである。つまり、環状接続既定ルートのエリアは走行可能なエリア内に限定されており、比較的小さい。このため、環状接続既定ルートのエリアは走行可能なエリア内に限定されており、比較的、予想乗車位置を乗車予定位置とした利用要求が行われることが予想される時刻である予想乗車位置利用要求時刻が予測しやすい。
 そのため、オンデマンド既定ルート自動走行車両を事前配車すると、オンデマンド既定ルート自動走行車両を事前配車せず配車指令信号を受信してから配車する場合に比べて、エネルギーの効率がよりよい車両の運行の制御が可能となる。これにより、配車指令信号を受信していない状態のオンデマンド既定ルート自動走行車両のエネルギーの消費をより低くできる。それにより、1台あたりのエネルギー搭載量を減らして車両の設計自由度をより高めることができる。
 また、乗員が乗っておらず、配車指令信号を受信していない状態のオンデマンド既定ルート自動走行車両を環状接続既定ルート上の利用者が乗車する確率のより高い位置またはその近傍に予め待機させることができる。これにより、利用者の待ち時間をより短くできる。
 従って、本発明のオンデマンド既定ルート自動走行車両は、多様なエリアで利用可能であると共に、利用要求を行った利用者の待ち時間をより短縮しつつ、エネルギー搭載量をより減らして車両の設計自由度をより向上させることができる。
(20)本発明の他の観点によれば、本発明のオンデマンド既定ルート自動走行車両は、上記(14)~(19)のいずれかの構成に加えて、以下の構成を有することが好ましい。
 前記環状接続既定ルートが、第1環状既定ルート、および、第1接続部で前記第1環状既定ルートと接続される第1接続既定ルートを含み、前記車両搭載制御装置は、自車より車両前方向にある障害物の存在に関連する前記駆動機構、前記制動機構および前記進行方向制御機構の制御が行われない状態で、前記第1環状既定ルートを前記第1接続部に向かって走行しており、且つ、前記第1接続既定ルートを前記第1接続部に向かって走行している第2オンデマンド既定ルート自動走行車両が存在する場合、または、前記第1接続既定ルートを前記第1接続部に向かって走行しており、且つ、前記第1環状既定ルートを前記第1接続部に向かって走行している第2オンデマンド既定ルート自動走行車両が存在する場合に、前記ルート情報、前記車両位置情報、前記乗員有無情報および前記利用要求情報に基づいて前記オンデマンド既定ルート自動走行車両フリートコントロール装置で生成された、前記第1接続部を通過する順番が前記第2オンデマンド既定ルート自動走行車両の後になるように指示する調停指令信号を受信し、前記調停指令信号に基づいて前記第1接続部に向かって走行するときの速度が、前記第2オンデマンド既定ルート自動走行車両が前記第1接続部に向かって走行するときの速度よりも小さくなるように、前記駆動機構、前記制動機構および前記進行方向制御機構を制御する。
 この構成によると、第1接続部に向かって第1接続既定ルートを走行する第2オンデマンド既定ルート自動走行車両がいる場合に、第1接続部に向かって第1環状既定ルートを走行するオンデマンド既定ルート自動走行車両は、受信した調停指令信号に基づいて、減速または停車する。つまり、第1接続部に向かって第1接続既定ルートを走行する第2オンデマンド既定ルート自動走行車両がいる場合に、第1接続部に向かって第1環状既定ルートを走行するオンデマンド既定ルート自動走行車両は、調停指令信号に基づいて、第1接続部を通過する順番が第2オンデマンド既定ルート自動走行車両の後になるように待機する。第1接続部に向かって第1接続既定ルートを走行する第2オンデマンド既定ルート自動走行車両は、第1接続部に向かって第1環状既定ルートを走行するオンデマンド既定ルート自動走行車両よりも先に第1接続部を通過する。また、第1接続部に向かって第1環状既定ルートを走行する第2オンデマンド既定ルート自動走行車両がいる場合に、第1接続部に向かって第1接続既定ルートを走行するオンデマンド既定ルート自動走行車両は、受信した調停指令信号に基づいて、減速または停車する。つまり、第1接続部に向かって第1環状既定ルートを走行する第2オンデマンド既定ルート自動走行車両がいる場合に、第1接続部に向かって第1接続既定ルートを走行するオンデマンド既定ルート自動走行車両は、調停指令信号に基づいて、第1接続部を通過する順番が第2オンデマンド既定ルート自動走行車両の後になるように待機する。第1接続部に向かって第1環状既定ルートを走行する第2オンデマンド既定ルート自動走行車両は、第1接続部に向かって第1接続既定ルートを走行するオンデマンド既定ルート自動走行車両よりも先に第1接続部を通過する。調停指令信号は、例えば次のケースで、オンデマンド既定ルート自動走行車両に送信される。例えば、オンデマンド既定ルート自動走行車両は、待機状態の車両であり、第2オンデマンド既定ルート自動走行車両は、乗員が乗っている車両、または、配車状態の車両であるケースである。また、例えば、オンデマンド既定ルート自動走行車両は、配車状態の車両であり、第2オンデマンド既定ルート自動走行車両は、乗員が乗っている車両であるケースである。また、例えば、オンデマンド既定ルート自動走行車両および第2オンデマンド既定ルート自動走行車両の両方が、配車状態の車両または乗員が乗っている車両であるケースであって、第1接続部からオンデマンド既定ルート自動走行車両が向かっている乗車予定位置までの距離が、第1接続部から第2オンデマンド既定ルート自動走行車両が向かっている乗車予定位置までの距離よりも短いケースである。また、例えば、オンデマンド既定ルート自動走行車両および第2オンデマンド既定ルート自動走行車両の両方が、待機状態の車両、配車状態の車両または乗員が乗っている車両であって、第1接続部からオンデマンド既定ルート自動走行車両の現在位置までの距離が、第1接続部から第2オンデマンド既定ルート自動走行車両の現在位置までの距離よりも長いケースである。また、例えば、オンデマンド既定ルート自動走行車両のエネルギー残量が、第2オンデマンド既定ルート自動走行車両のエネルギー残量より多いケースである。これにより、第1接続部に向かって第1環状既定ルートを走行するオンデマンド既定ルート自動走行車両および第1接続部に向かって第1接続既定ルートを走行するオンデマンド既定ルート自動走行車両が存在する場合に、第1接続部において、これら2台のオンデマンド既定ルート自動走行車両を円滑に通過させることができる。これにより、環状既定ルートに接続される接続既定ルートを増やしても、複数のオンデマンド既定ルート自動走行車両の走行を円滑に行うことができる。そして、環状接続既定ルートを走行できる複数のオンデマンド既定ルート自動走行車両の数を増やすことができる。これにより、利用者の待ち時間をより短くできる。
 また、環状既定ルートに接続される接続既定ルートを増やすと、接続既定ルートで待機する待機状態のオンデマンド既定ルート自動走行車両を増やすことができる。そして、待機状態のオンデマンド既定ルート自動走行車両の現在位置から乗車予定位置までの距離が短くなる場合がある。これにより、1台あたりのオンデマンド既定ルート自動走行車両のエネルギー消費量をより減らすことができる。
 従って、本発明のオンデマンド既定ルート自動走行車両は、多様なエリアで利用可能であると共に、利用要求を行った利用者の待ち時間をより短縮しつつ、エネルギー搭載量を減らして車両の設計自由度をより向上させることができる。
(21)本発明の他の観点によれば、本発明のオンデマンド既定ルート自動走行車両は、上記(14)~(20)のいずれかの構成に加えて、以下の構成を有することが好ましい。
 前記オンデマンド既定ルート自動走行車両は、乗車可能な乗員の最大数が8名以下である。
 この構成によると、乗車可能な乗員の最大数が8名より多い場合に比べて、オンデマンド既定ルート自動走行車両の車両自体の重量が軽くなる。また、乗車可能な乗員の最大数が8名より多い場合に比べて、オンデマンド既定ルート自動走行車両に乗員が乗った際の車両全体の重量が軽くなる。これにより、1台あたりのオンデマンド既定ルート自動走行車両のエネルギー効率を向上させることができる。つまり、1台あたりのオンデマンド既定ルート自動走行車両のエネルギー搭載量を減らして車両の設計自由度を高めることができる。
 従って、本発明のオンデマンド既定ルート自動走行車両は、多様なエリアで利用可能であると共に、利用要求を行った利用者の待ち時間を短縮しつつ、エネルギー搭載量をより減らして車両の設計自由度をより向上させることができる。
(22)本発明の他の観点によれば、本発明のオンデマンド既定ルート自動走行車両は、上記(14)~(21)のいずれかの構成に加えて、以下の構成を有することが好ましい。
 前記車両搭載制御装置は、前記乗車予定位置に向かって走行する最中の速度が時速40km以下となるように、前記駆動機構、前記制動機構および前記進行方向制御機構を制御する。
 この構成によると、配車状態の速度が時速40km以下となるように走行が制御されると、配車状態の速度が時速40kmより大きくなるように走行が制御される場合と比べて、オンデマンド既定ルート自動走行車両の空気抵抗が小さい。これにより、1台あたりのオンデマンド既定ルート自動走行車両のエネルギー消費量を減らすことができる。
 ここで、配車状態の速度が時速40km以下となるように走行が制御されると、配車状態の速度が時速40kmより大きくなるように走行が制御される場合と比べて、オンデマンド既定ルート自動走行車両が現在位置から乗車予定位置まで走行する時間が長くなる。しかしながら、環状接続既定ルートを走行するオンデマンド既定ルート自動走行車両を増やすことができる。これにより、現在位置が乗車予定位置に近いオンデマンド既定ルート自動走行車両を配車することができる。これにより、利用者の待ち時間を短くできる。
 従って、本発明のオンデマンド既定ルート自動走行車両は、多様なエリアで利用可能であると共に、利用要求を行った利用者の待ち時間を短縮しつつ、エネルギー搭載量をより減らして車両の設計自由度をより向上させることができる。
(23)本発明の他の観点によれば、本発明のオンデマンド既定ルート自動走行車両は、上記(14)~(22)のいずれかの構成に加えて、以下の構成を有することが好ましい。
 前記車両搭載制御装置は、前記ルート情報、前記車両位置情報、前記乗員有無情報、前記利用要求情報、および、前記環状接続既定ルート上の前記複数のオンデマンド既定ルート自動走行車両のエネルギー残量に関連するエネルギー情報に基づいて前記オンデマンド既定ルート自動走行車両フリートコントロール装置によって前記複数のオンデマンド既定ルート自動走行車両の中から前記乗車予定位置に配車する車両として選択された場合に、前記ルート情報、前記車両位置情報、前記乗員有無情報、前記利用要求情報および前記エネルギー情報に基づいて前記オンデマンド既定ルート自動走行車両フリートコントロール装置で生成された前記配車指令信号を受信する。
 この構成によると、オンデマンド既定ルート自動走行車両フリートコントロール装置により、複数のオンデマンド既定ルート自動走行車両のエネルギー残量に基づいて、複数のオンデマンド既定ルート自動走行車両の中から乗車予定位置に配車する車両が選択される。例えば、現在位置から乗車予定位置まで走行するのに必要なエネルギーよりも十分に多いエネルギー残量を有するオンデマンド既定ルート自動走行車両が、オンデマンド既定ルート自動走行車両フリートコントロール装置により、乗車予定位置に配車する車両として選択される。つまり、エネルギー残量の多いオンデマンド既定ルート自動走行車両が優先的に乗車予定位置に配車される。そして、複数のオンデマンド既定ルート自動走行車両のエネルギーを補給する回数を減らすことができる。これにより、複数のオンデマンド既定ルート自動走行車両全体のエネルギー効率を向上させることができる。そして、1台あたりのオンデマンド既定ルート自動走行車両のエネルギー搭載量を減らして車両の設計自由度を高めることができる。
 従って、本発明のオンデマンド既定ルート自動走行車両は、多様なエリアで利用可能であると共に、利用要求を行った利用者の待ち時間を短縮しつつ、エネルギー搭載量をより減らして車両の設計自由度をより向上させることができる。
(24)本発明の他の観点によれば、本発明のオンデマンド既定ルート自動走行車両は、上記(23)の構成に加えて、以下の構成を有することが好ましい。
 前記車両搭載制御装置は、自車のエネルギー残量に関連する情報を前記オンデマンド既定ルート自動走行車両フリートコントロール装置に送信する。
 この構成によると、オンデマンド既定ルート自動走行車両は、自車のエネルギー残量に関連する情報をオンデマンド既定ルート自動走行車両フリートコントロール装置に送信する。そして、オンデマンド既定ルート自動走行車両フリートコントロール装置に送信された複数のオンデマンド既定ルート自動走行車両のより正確なエネルギー残量に基づいて、複数のオンデマンド既定ルート自動走行車両の中から乗車予定位置に配車する車両が選択される。例えば、現在位置から乗車予定位置まで走行するのに必要なエネルギーよりも十分に多いエネルギー残量を有するオンデマンド既定ルート自動走行車両が、オンデマンド既定ルート自動走行車両フリートコントロール装置により、乗車予定位置に配車する車両としてより正確に選択される。つまり、より正確に、エネルギー残量の多いオンデマンド既定ルート自動走行車両が優先的に配車される。そして、より正確に、複数のオンデマンド既定ルート自動走行車両のエネルギーを補給する回数を減らすことができる。これにより、複数のオンデマンド既定ルート自動走行車両全体のエネルギー効率をより向上させることができる。そして、1台あたりのオンデマンド既定ルート自動走行車両のエネルギー搭載量を減らして車両の設計自由度をより高めることができる。
 従って、本発明のオンデマンド既定ルート自動走行車両は、多様なエリアで利用可能であると共に、利用要求を行った利用者の待ち時間を短縮しつつ、エネルギー搭載量をより減らして車両の設計自由度をより向上させることができる。
(25)本発明の他の観点によれば、本発明のオンデマンド既定ルート自動走行車両は、上記(23)または(24)の構成に加えて、以下の構成を有することが好ましい。
 前記利用要求情報は、利用者が降車する予定の降車予定位置の情報を含む。
 配車指令信号は、ルート情報、車両位置情報、乗員有無情報、利用要求情報およびエネルギー情報に基づいて、オンデマンド既定ルート自動走行車両フリートコントロール装置で生成される。利用要求情報は、乗車予定位置および降車予定位置の情報を含む。つまり、オンデマンド既定ルート自動走行車両フリートコントロール装置は、複数のオンデマンド既定ルート自動走行車両の現在位置、乗車予定位置、降車予定位置およびエネルギー残量に基づいて選択されたオンデマンド既定ルート自動走行車両が、乗車予定位置に配車される。例えば、オンデマンド既定ルート自動走行車両フリートコントロール装置は、現在位置から乗車予定位置を経由して降車予定位置まで走行するのに必要なエネルギー残量を有するオンデマンド既定ルート自動走行車両を、乗車予定位置に配車することができる。これにより、複数のオンデマンド既定ルート自動走行車両全体のエネルギー効率を向上させることができる。そして、1台あたりのオンデマンド既定ルート自動走行車両のエネルギー搭載量を減らして車両の設計自由度を高めることができる。
 従って、本発明のオンデマンド既定ルート自動走行車両は、多様なエリアで利用可能であると共に、利用要求を行った利用者の待ち時間をより短縮しつつ、エネルギー搭載量をより減らして車両の設計自由度をより向上させることができる。
(26)本発明の他の観点によれば、本発明のオンデマンド既定ルート自動走行車両は、上記(23)~(25)のいずれかの構成に加えて、以下の構成を有することが好ましい。
 前記環状接続既定ルートは、第1環状既定ルートと、第2環状既定ルートと、少なくとも1つの第1接続既定ルートを有し、前記第1環状既定ルートおよび前記第2環状既定ルートが前記少なくとも1つの第1接続既定ルートを介して行き来可能に接続される。
 この構成によると、オンデマンド既定ルート自動走行車両が走行する環状接続既定ルートに環状既定ルートが複数含まれる。そして、環状接続既定ルートを走行できるオンデマンド既定ルート自動走行車両の数を増やすことができる。これにより、利用者の待ち時間をより短くできる。
 また、環状接続既定ルートを走行できるオンデマンド既定ルート自動走行車両の数を増やすと、待機状態のオンデマンド既定ルート自動走行車両の現在位置から乗車予定位置までの距離が短くなることがある。これにより、1台あたりのオンデマンド既定ルート自動走行車両のエネルギー消費量をより減らすことができる。
 従って、本発明のオンデマンド既定ルート自動走行車両は、多様なエリアで利用可能であると共に、利用要求を行った利用者の待ち時間をより短縮しつつ、エネルギー搭載量をより減らして車両の設計自由度をより向上させることができる。
<駆動機構の定義>
 本発明において、駆動機構とは、車輪に対して駆動力を付与する装置を意味する。駆動機構は、例えば、エンジン、モータ、エンジン及びモータを組み合わせたハイブリッドシステムなどの駆動力を付与可能な装置を含む。また、減速機、増速機または変速機を含んでいても良い。
<制動機構の定義>
 本発明において、制動機構とは、車輪に対して制動力を付与する装置を意味する。制動機構は、例えば、ディスクブレーキ、ドラムブレーキ、エンジンブレーキなどの運動エネルギーを熱エネルギーに変換する機械式ブレーキであってもよい。また、制動機構は、電磁ブレーキ、モータ機能付き発電機による回生ブレーキなどの運動エネルギーを電気エネルギーに変換する電気式ブレーキを含む。
<進行方向制御機構の定義>
 本発明において、進行方向制御機構とは、車両の進行方向を制御する装置を意味する。進行方向制御機構は、例えば、少なくとも1つの車輪の向きを変更するために乗員によって操作されるステアリングホイールであってもよい。また、進行方向制御機構は、例えば、車両左部に配置された左車輪の回転速度と車両右部に配置された右車輪の回転速度を異なるように制御することにより車両の進行方向を制御する装置であってもよい。
<走行可能なエリアの中の予め決められた既定ルートの定義>
 本発明において、「走行可能なエリア」とは、オンデマンド既定ルート自動走行車両が走行可能なエリアである。また、「走行可能なエリア」は、オンデマンド既定ルート自動走行車両が専用に走行することが可能なエリアであることが好ましい。つまり、「走行可能なエリア」は、オンデマンド既定ルート自動走行車両以外の車両の存在を想定していないエリアであることが好ましい。つまり、「走行可能なエリア」は、オンデマンド既定ルート自動走行車両およびオンデマンド既定ルート自動走行車両以外の車両が混在して走行することを想定していないエリアであることが好ましい。また、本発明において、「走行可能なエリアの中の予め決められた既定ルート」とは、オンデマンド既定ルート自動走行車両が走行可能なエリアの一部分のエリアに含まれる予め決められた既定ルートである。
<オンデマンド既定ルート自動走行車両の定義>
 本発明において、「オンデマンド既定ルート自動走行車両」とは、利用者の利用要求に応じて、走行可能なエリアの中の予め決められた既定ルートを自動走行する車両である。ここで、「既定ルート」とは、予め決められたオンデマンド既定ルート自動走行車両のルートである。既定ルートは、オンデマンド既定ルート自動走行車両が走行できる走行可能レーンにある、オンデマンド既定ルート自動走行車両が走行するために目安となる走行目安線である。走行可能レーンは、その縁にレーンマーク(例えば白線)があってもなくてもよい。走行目安線は、物理的に存在する線ではない。「自動走行」とは、オペレータによる速度および操舵の操作なしで走行することをいう。オペレータは、乗員とリモート操作を行う者を含む。また、自動走行は、自律走行も含む。自律走行とは、オペレータによる速度および操舵の操作なしで、障害物を回避しながら走行することをいう。オンデマンド既定ルート自動走行車両は、車両搭載制御装置またはオンデマンド既定ルート自動走行車両フリートコントロール装置の少なくともいずれかにより、自動で走行される。オンデマンド既定ルート自動走行車両には、例えば、ゴルフカー(ゴルフカート)などの電動小型車両が含まれる。
<オンデマンド既定ルート自動走行車両フリートコントロール装置の定義>
 本発明において、「オンデマンド既定ルート自動走行車両フリートコントロール装置」とは、複数のオンデマンド既定ルート自動走行車両と情報を送受信可能に構成されて、複数のオンデマンド既定ルート自動走行車両の走行を制御する装置である。
<配車の定義>
 本発明において、オンデマンド既定ルート自動走行車両フリートコントロール装置がオンデマンド既定ルート自動走行車両を乗車予定位置に「配車」するとは、オンデマンド既定ルート自動走行車両フリートコントロール装置がオンデマンド既定ルート自動走行車両を指定した位置(例えば、乗車予定位置)に向かって走行させるように制御することをいう。
<環状接続既定ルートの定義>
 本発明において、「環状接続既定ルート」とは、少なくとも1つの環状既定ルートと、少なくとも1つの環状既定ルートに行き来可能に接続された少なくとも1つの接続既定ルートとを有する既定ルートである。「環状既定ルート」は、予め決められた環状の既定ルートである。環状既定ルートは、複数の車両が常時循環走行できるような形状であればよく、円状に限らず様々な形状であってよい。「接続既定ルート」とは、環状既定ルート上の接続部で環状既定ルートと行き来可能に接続された予め決められた既定ルートである。本発明において、「接続既定ルートが環状既定ルートに行き来可能に接続された」とは、環状既定ルートから接続既定ルートに走行することが可能であり、且つ、接続既定ルートから環状既定ルートに走行することが可能であることをいう。
<ルート情報の定義>
 本発明において、「ルート情報」とは、複数のオンデマンド既定ルート自動走行車両が走行する環状接続既定ルートのルートに関連する情報である。ルート情報は、例えば、環状接続既定ルートのルートを示すマップ情報である。
<車両位置情報の定義>
 本発明において、「車両位置情報」とは、オンデマンド既定ルート自動走行車両フリートコントロール装置と情報を送受信可能に構成される複数のオンデマンド既定ルート自動走行車両の環状接続既定ルート上の位置に関連する情報である。車両位置情報は、環状接続既定ルート上の絶対位置の情報であってもよいし、環状接続既定ルート上の相対位置の情報であってもよい。
<乗員有無情報の定義>
 本発明において、「乗員有無情報」とは、オンデマンド既定ルート自動走行車両フリートコントロール装置と情報を送受信可能に構成される複数のオンデマンド既定ルート自動走行車両に乗っている乗員の有無に関連する情報である。乗員有無情報は、複数のオンデマンド既定ルート自動走行車両ごとの乗員の有無の情報だけでなく、複数のオンデマンド既定ルート自動走行車両ごとに乗っている乗員の数の情報を含んでもよい。
<利用要求情報の定義>
 本発明において、「利用要求情報」とは、オンデマンド既定ルート自動走行車両フリートコントロール装置が取得した利用者の利用要求に関連する情報である。利用要求情報は、利用者が乗車する予定の乗車予定位置の情報を含む。また、利用要求情報は、例えば、利用者が降車する予定の降車予定位置、利用者が走行を希望する走行ルート、利用者が途中で立ち寄る予定の経由予定位置、乗車する予定の利用者の人数である乗車予定人数、利用者が乗車予定位置で乗車する予定の時刻である乗車予定時刻、利用者が利用をキャンセルするキャンセル要求などの情報を含んでもよい。
<予想乗車位置情報の定義>
 本発明において、「予想乗車位置情報」とは、環状接続既定ルート上の乗車予定位置になることが予想される位置に関連する情報である。予想乗車位置情報とは、例えば、環状接続既定ルート上の任意の位置の内、過去に乗車予定位置になったことがある回数が基準回数以上の位置である。また、予想乗車位置情報とは、例えば、環状接続既定ルート上の任意の位置の内、利用者が所定人数以上いる位置である。
<配車指令信号を受信することが可能な状態>
 本発明において、「配車指令信号を受信することが可能な状態」とは、仮に配車指令信号を受信しても、配車指令信号に基づいて乗車予定位置に向かうようにオンデマンド既定ルート自動走行車両が走行することが可能な状態をいう。言い換えると、仮に配車指令信号を受信しても、配車指令信号以外の指令信号に基づいたオンデマンド既定ルート自動走行車両の制御に干渉することなく、配車指令信号に基づいたオンデマンド既定ルート自動走行車両の制御が可能な状態をいう。
<配車指令信号に基づいて待機状態から配車状態に変化する際の待機状態の速度および配車状態の速度の定義>
 本発明において、「配車指令信号に基づいて待機状態から配車状態に変化する際の待機状態の速度」とは、オンデマンド既定ルート自動走行車両が、配車指令信号に基づいて待機状態から配車状態に変化する直前の待機状態の速度である。また、「配車指令信号に基づいて待機状態から配車状態に変化する際の配車状態の速度」とは、オンデマンド既定ルート自動走行車両が、配車指令信号に基づいて待機状態から配車状態に変化した直後の配車状態の速度である。
<乗車可能な乗員の最大数の定義>
 本発明において、「乗車可能な乗員の最大数」とは、オンデマンド既定ルート自動走行車両に乗車することができる平均的な身長の大人の最大の人数である。なお、本発明のオンデマンド既定ルート自動走行車両には、大人の乗員だけでなく、子供の乗員および車椅子の乗員が乗車してもよい。
<エネルギー残量の定義>
 本発明において、エネルギー残量とは、オンデマンド既定ルート自動走行車両が充電可能な二次電池を搭載している場合、その二次電池のエネルギーの残量である。より具体的には、AhまたはWhなどの単位で表される二次電池の残りの容量のことである。本発明において、エネルギー残量とは、オンデマンド既定ルート自動走行車両が燃料の燃焼エネルギーによって駆動される駆動機構を搭載している場合、その搭載されている燃料の残量である。より具体的には、体積または重量などで表される燃料の残りの容量のことである。また、燃料は、具体的には、例えば、ガソリン、軽油、水素、LNG、LPGまたはガス燃料などが含まれる。なお、車両の駆動に必要なエネルギーであれば、前記具体例に限定されることはない。また、車両の駆動機構がエンジンとモータのハイブリッド式駆動機構である場合、エネルギー残量は、二次電池の残量と燃料の残量の両方になる場合がある。
<エネルギー残量に関連するエネルギー情報の定義>
 本発明において、エネルギー残量に関連するエネルギー情報とは、上述したエネルギー残量を直接的に示す情報に限定されない。例えば、そのエネルギー残量で走行可能な時間、走行可能な距離などエネルギー残量によって得られる機能を示していれば、エネルギー残量を間接的に示す情報であっても良い。また、二次電池の場合、エネルギー残量関連情報は、直接的なエネルギー残量を示すSOCを含んでもよい。二次電池の場合、エネルギー残量に関連するエネルギー情報は、その二次電池のエネルギー残量を推定可能な情報である、二次電池の電圧、二次電池の電流を含んでもよい。なお、二次電池の電圧、二次電池の電流から開放電圧またはエネルギーの消費量を算出することで、エネルギー残量を推定可能である。
<プロセッサの定義>
 本発明において、プロセッサは、マイクロコントローラ、CPU(Central Processing Unit)、GPU(Graphics Processing Unit)、マイクロプロセッサ、マルチプロセッサ、特定用途向け集積回路(ASIC)、プログラム可能な論理回路(PLC)、フィールドプログラマブルゲートアレイ(FPGA)および本明細書に記載する処理を実行することができる任意の他の回路が含まれる。プロセッサは、ECU(Electronic Control Unit)であってもよい。
<情報の定義>
 本発明において、情報とは、コンピュータによって取り扱い可能な、記号や文字の組からなるデジタル形式の信号を意味する。
<情報端末の定義>
 本発明において、情報端末とは、スマートフォン・携帯電話・タブレット・データ通信端末など、情報を送受信可能に構成された情報機器を意味する。情報端末は、利用者が所持してもよいし、オンデマンド既定ルート自動走行車両の乗降場所に配置されてもよい。
<記憶部の定義>
 本明細書において、記憶部は、各種データを記憶することが可能である。記憶部は、1つの記憶装置であってもよく、1つの記憶装置が有する記憶領域の一部であってもよく、複数の記憶装置を含んでいてもよい。記憶部は、例えば、RAM(Random Access Memory)を含んでもよい。RAMは、プロセッサがプログラムを実行するときに各種データを一時的に記憶する。記憶部は、例えば、ROM(Read Only Memory)を含んでもよく、含まなくてもよい。ROMは、プロセッサに実行させるプログラムを記憶する。記憶部は、プロセッサが有するバッファ(緩衝記憶装置)は含まない。バッファは、一時的にデータを記憶する装置である。
<ハードウェアリソースの定義>
 本明細書において、ハードウェアリソースとは、プロセッサや記憶装置などのデバイスを意味する。本発明において、ハードウェアリソースを低減するとは、プロセッサまたは記憶装置の数を低減すること、プロセッサに求められる処理能力を下げること、記憶装置の容量を低減することなどを意味する。
<その他の用語の定義>
 本発明において、ある情報に基づいて、取得する、生成する、または制御するとは、この情報だけに基づいた取得、生成または制御であってもよく、この情報と他の情報に基づいた取得、生成または制御であってもよい。この定義は、取得、生成または制御以外の動作にも適用される。
 本発明において、Aから取得するとは、Aから直接取得する場合と、AからBを介して取得する場合の両方を含む。
 本発明において、含む(including)、有する(comprising)、備える(having)およびこれらの派生語は、列挙されたアイテム及びその等価物に加えて追加的アイテムをも包含することが意図されて用いられている。
 本発明において、取り付けられた(mounted)、接続された(connected)、結合された(coupled)、支持された(supported)という用語は、広義に用いられている。具体的には、直接的な取付、接続、結合、支持だけでなく、間接的な取付、接続、結合および支持も含む。さらに、接続された(connected)および結合された(coupled)は、物理的又は機械的な接続/結合に限られない。それらは、直接的なまたは間接的な電気的接続/結合も含む。
 他に定義されない限り、本明細書で使用される全ての用語(技術用語および科学用語を含む)は、本発明が属する当業者によって一般的に理解されるのと同じ意味を有する。一般的に使用される辞書に定義された用語のような用語は、関連する技術および本開示の文脈における意味と一致する意味を有すると解釈されるべきであり、理想化されたまたは過度に形式的な意味で解釈されることはない。
 本発明および本明細書において、複数の選択肢のうちの少なくとも1つとは、複数の選択肢から考えられる全ての組み合わせを含む。複数の選択肢のうちの少なくとも1つとは、複数の選択肢のいずれか1つであってもよく、複数の選択肢の全てであってもよい。例えば、AとBとCの少なくとも1つとは、Aのみであってもよく、Bのみであってもよく、Cのみであってもよく、AとBであってもよく、AとCであってもよく、BとCであってもよく、AとBとCであってもよい。
 本明細書において、「好ましい」という用語は非排他的なものである。「好ましい」は、「好ましいがこれに限定されるものではない」ということを意味する。本明細書において、「好ましい」と記載された構成は、少なくとも、上記(1)の構成により得られる上記効果を奏する。また、本明細書において、「してもよい」という用語は非排他的なものである。「してもよい」は、「してもよいがこれに限定されるものではない」という意味である。本明細書において、「してもよい」と記載された構成は、少なくとも、上記(1)の構成により得られる上記効果を奏する。
 特許請求の範囲において、ある構成要素の数を明確に特定しておらず、英語に翻訳された場合に単数で表示される場合、本発明は、この構成要素を、複数有していてもよい。また本発明は、この構成要素を1つだけ有していてもよい。
 本発明では、上述した好ましい構成を互いに組み合わせることを制限しない。本発明の実施形態を詳細に説明する前に、本発明は、以下の説明に記載されたまたは図面に図示された構成要素の構成および配置の詳細に制限されないことが理解されるべきである。本発明は、後述する実施形態以外の実施形態でも可能である。本発明は、後述する実施形態に様々な変更を加えた実施形態でも可能である。また、本発明は、後述する実施形態、具体例および変形例を適宜組み合わせて実施することができる。
 本発明のオンデマンド既定ルート自動走行車両フリートコントロール装置は、多様なエリアで利用可能にすると共に、ハードウェアリソースの増加を抑えることができる。
実施形態のオンデマンド既定ルート自動走行車両の構成および使用状況の一例を示す概略図である。 実施形態のオンデマンド既定ルート自動走行車両フリートコントロール装置の構成を示す図である。 具体例の環状接続既定ルートを示す概略図である。 具体例の走行可能なエリアの中の環状接続既定ルートを示す概略図である。 具体例のオンデマンド既定ルート自動走行車両を示す側面図である。 具体例のオンデマンド既定ルート自動走行車両の車両搭載制御装置の構成を示すブロック図である。 具体例のオンデマンド既定ルート自動走行車両フリートコントロール装置の構成を示すブロック図である。 具体例のオンデマンド既定ルート自動走行車両フリートコントロール装置の処理の手順を示すフローチャートである。 具体例の情報端末で入出力される情報を示す図である。 具体例の情報端末の表示画面の一例を示す図である。 具体例の情報端末の表示画面の一例を示す図である。 具体例の情報端末の表示画面の一例を示す図である。 具体例の環状接続既定ルート上の第1接続部に向かって2台のオンデマンド既定ルート自動走行車両が走行している状況を示す概略図である。 具体例のオンデマンド既定ルート自動走行車両フリートコントロール装置および利用要求マネジメント装置の構成を示すブロック図である。 具体例のオンデマンド既定ルート自動走行車両フリートコントロール装置および利用要求マネジメント装置の論理アーキテクチャの一例を示す図である。 図12Aの論理アーキテクチャに基づいて構成したオンデマンド既定ルート自動走行車両フリートコントロール装置および利用要求マネジメント装置の一例を示す図である。 具体例の情報端末、利用要求マネジメント装置およびオンデマンド既定ルート自動走行車両フリートコントロール装置における、利用者の利用要求および認証の情報の流れの一例を示す図である。 具体例の情報端末、利用要求マネジメント装置およびオンデマンド既定ルート自動走行車両フリートコントロール装置における、利用者の利用要求および認証の情報の流れの一例を示す図である。 具体例の情報端末、利用要求マネジメント装置およびオンデマンド既定ルート自動走行車両フリートコントロール装置における、利用者の利用要求および認証の情報の流れの一例を示す図である。 具体例のオンデマンド既定ルート自動走行車両フリートコントロール装置のオペレータ向け管理アプリケーションの表示画面の一例を示す図である。 具体例のオンデマンド既定ルート自動走行車両フリートコントロール装置のオペレータ向け管理アプリケーションの表示画面の別の一例を示す図である。 具体例のオンデマンド既定ルート自動走行車両フリートコントロール装置のオペレータ向け管理アプリケーションの表示画面の別の一例を示す図である。 変形例の環状接続既定ルートを示す概略図である。 変形例の環状接続既定ルートを示す概略図である。 変形例の環状接続既定ルートを示す概略図である。 オンデマンド既定ルート自動走行車両の自律運転の一例を示す概略図である。 オンデマンド既定ルート自動走行車両の自律運転の一例を示す概略図である。 オンデマンド既定ルート自動走行車両の自律運転の一例を示す概略図である。
(本実施形態のオンデマンド既定ルート自動走行車両フリートコントロール装置)
 以下、本実施形態のオンデマンド既定ルート自動走行車両フリートコントロール装置501について図1を参照しつつ説明する。
 オンデマンド既定ルート自動走行車両フリートコントロール装置501は、複数のオンデマンド既定ルート自動走行車両100との間で情報を送受信可能に構成される。本実施形態では、複数のオンデマンド既定ルート自動走行車両100は、オンデマンド既定ルート自動走行車両100A、オンデマンド既定ルート自動走行車両100B、オンデマンド既定ルート自動走行車両100C、オンデマンド既定ルート自動走行車両100Dである。複数のオンデマンド既定ルート自動走行車両100A、100B、100C、100Dは、走行可能なエリアの中の予め決められた既定ルート30を乗員の有無に関わらず自動で走行する。
 オンデマンド既定ルート自動走行車両フリートコントロール装置501は、複数のオンデマンド既定ルート自動走行車両100A、100B、100C、100Dの走行を制御する。オンデマンド既定ルート自動走行車両フリートコントロール装置501は、利用者からの利用要求を取得したときに、複数のオンデマンド既定ルート自動走行車両100A、100B、100C、100Dの中から少なくとも1台のオンデマンド既定ルート自動走行車両を利用者が乗車する予定の位置に配車する。
 オンデマンド既定ルート自動走行車両フリートコントロール装置501は、情報取得処理S1と、配車車両選択処理S2と、配車指令信号生成処理S3と、送信処理S4とを行う。
 情報取得処理S1は、ルート情報、車両位置情報、乗員有無情報、および、利用要求情報を取得する。ルート情報は、環状接続既定ルートである既定ルート30のルートに関連する情報である。環状接続既定ルート30は、少なくとも1つの環状既定ルート31と、環状既定ルート31に行き来可能に接続された少なくとも1つの接続既定ルート32とを有する。車両位置情報は、環状接続既定ルート30上の複数のオンデマンド既定ルート自動走行車両100A、100B、100C、100Dの現在位置に関連する情報である。車両位置情報は、環状接続既定ルート30上の複数のオンデマンド既定ルート自動走行車両100A、100B、100C、100Dがオンデマンド既定ルート自動走行車両フリートコントロール装置501に送信する。乗員有無情報は、環状接続既定ルート30上の複数のオンデマンド既定ルート自動走行車両100A、100B、100C、100Dの乗員の有無に関連する情報である。利用要求情報は、利用者701の利用要求に関連する利用要求情報である。利用要求情報は、利用者701Aが乗車する予定の乗車予定位置Pの情報を含む。本実施形態では、利用者701は、利用者701Aおよび利用者701Bである。利用要求マネジメント装置601は、利用者701が所持する情報端末720およびオンデマンド既定ルート自動走行車両フリートコントロール装置501と情報を送受信可能に構成される。なお、本実施形態では、情報端末720は、各利用者701が所持する。情報端末720Aは、利用者701Aが所持する。情報端末720Bは、利用者701Bが所持する。また、本実施形態では、利用者701Aの利用要求があった場合を想定して説明する。利用要求情報は、少なくとも1つの利用要求マネジメント装置601が、情報端末720から利用者701の利用要求を受信したときに、オンデマンド既定ルート自動走行車両フリートコントロール装置501に送信する。
 配車車両選択処理S2は、取得した情報に基づいて、複数のオンデマンド既定ルート自動走行車両100A、100B、100C、100Dの中から乗車予定位置Pに配車する車両を選択する。取得した情報は、ルート情報、車両位置情報、乗員有無情報および利用要求情報である。なお、本実施形態では、オンデマンド既定ルート自動走行車両100Aが、複数のオンデマンド既定ルート自動走行車両100A、100B、100C、100Dの中から乗車予定位置Pに配車する車両として選択されたものとして説明する。
 配車指令信号生成処理S3は、取得したルート情報、車両位置情報、乗員有無情報および利用要求情報に基づいて、配車指令信号を生成する。配車指令信号は、複数のオンデマンド既定ルート自動走行車両100A、100B、100C、100Dの中から選択された乗車予定位置Pに配車する車両100Aを、利用要求マネジメント装置601が受信した利用要求に含まれる乗車予定位置Pに配車するための信号である。つまり、配車指令信号は、複数のオンデマンド既定ルート自動走行車両100A、100B、100C、100Dの中から選択された乗車予定位置Pに配車する車両100Aを乗車予定位置Pに向かって走行させるように指示する信号である。
 送信処理S4は、生成した配車指令信号を複数のオンデマンド既定ルート自動走行車両100A、100B、100C、100Dの中から選択された乗車予定位置Pに配車する車両100Aに送信する。
 本実施形態のオンデマンド既定ルート自動走行車両フリートコントロール装置501はこのような構成を有するため、以下の効果を有する。
 オンデマンド既定ルート自動走行車両100は、少なくとも1つの環状既定ルート31と、環状既定ルート31に行き来可能な少なくとも1つの接続既定ルート32とを有する環状接続既定ルート30を走行する。オンデマンド既定ルート自動走行車両フリートコントロール装置501は、利用者701の利用要求を、利用者701が所持する情報端末720と情報を送受信可能に構成された少なくとも1つの利用要求マネジメント装置601から取得する。利用要求マネジメント装置601は、オンデマンド既定ルート自動走行車両フリートコントロール装置501とは別に設けられる。利用要求マネジメント装置601は、エリアごとに設けることができる。そのため、複数の利用要求マネジメント装置601を、多様なエリアに設けることができる。利用者701は利用要求を、情報端末720からオンデマンド既定ルート自動走行車両フリートコントロール装置501と送受信可能に構成された利用要求マネジメント装置601に送信する。1つのオンデマンド既定ルート自動走行車両フリートコントロール装置501に対して、複数の利用要求マネジメント装置601を設けることができる。つまり、利用者701の利用目的に応じて利用者701の利用要求をマネジメントする利用要求マネジメント装置601を、エリアごとに設けることができる。そして、エリアによって大きく異なる利用者701の利用目的に応じて、利用要求マネジメント装置601を構成することができる。オンデマンド既定ルート自動走行車両フリートコントロール装置501は、多様なエリアに設けられた複数の利用要求マネジメント装置601を介して、利用者701が所持する情報端末720からの利用者701の利用要求を受け付けることができる。
 また、オンデマンド既定ルート自動走行車両フリートコントロール装置501が利用される環状接続既定ルート30のエリアの広さは限定されている。そのため、既定ルート、車両台数、利用要求の上限数は、エリアによって極端に異なることはない。その一方、利用者701の利用目的は、エリアによって大きく異なる。ここで、オンデマンド既定ルート自動走行車両フリートコントロール装置501とは別に、利用者701の利用目的に応じて利用者701の利用要求をマネジメントする利用要求マネジメント装置601を設けられる。また、オンデマンド既定ルート自動走行車両フリートコントロール装置501は、利用要求マネジメント装置601から取得した利用者701の利用要求に基づいて、オンデマンド既定ルート自動走行車両100の走行を制御するように構成される。つまり、オンデマンド既定ルート自動走行車両フリートコントロール装置501のハードウェアリソースは、既定ルート、車両台数、利用要求の上限数のエリア間の違いに対応するために必要なハードウェアリソースのみで構成される。そして、利用者701の利用目的のエリア間の違いに対応するために必要なハードウェアリソースは、利用要求マネジメント装置601のハードウェアリソースで構成される。これにより、エリアの特性に合わせつつ、オンデマンド既定ルート自動走行車両フリートコントロール装置501のハードウェアリソースの増加を抑制することができる。
 従って、本実施形態のオンデマンド既定ルート自動走行車両100の走行を制御するオンデマンド既定ルート自動走行車両フリートコントロール装置501は、多様なエリアで利用可能にすると共に、ハードウェアリソースの増加を抑えることができる。
(本実施形態のオンデマンド既定ルート自動走行車両)
 以下、本実施形態のオンデマンド既定ルート自動走行車両100について図2を参照しつつ説明する。
 オンデマンド既定ルート自動走行車両100は、複数の車輪111と、駆動機構112と、制動機構113と、進行方向制御機構114と、車両搭載制御装置115とを有する。本実施形態では、複数のオンデマンド既定ルート自動走行車両100は、オンデマンド既定ルート自動走行車両100A、オンデマンド既定ルート自動走行車両100Bである。
 駆動機構112は、車両を走行させるための駆動力を少なくとも1つの車輪111に付与する。制動機構113は、車両を減速させるための制動力を少なくとも1つの車輪111に付与する。進行方向制御機構114は、車両が走行する際の少なくとも1つの車輪111の進行方向を制御する。
 車両搭載制御装置115は、オンデマンド既定ルート自動走行車両フリートコントロール装置501との間で情報を送受信可能に構成される。
 車両搭載制御装置115は、走行可能なエリアの中の予め決められた既定ルート30を乗員の有無に関わらず自動で走行するように、駆動機構112、制動機構113および進行方向制御機構114を制御する。車両搭載制御装置115は、利用者701A、701Bからの利用要求を取得したオンデマンド既定ルート自動走行車両フリートコントロール装置501で生成された配車指令信号を受信した場合に利用者701A、701Bが乗車する予定の乗車予定位置に配車されるように、駆動機構112、制動機構113および進行方向制御機構114を制御して、乗車予定位置に向かって走行させる。
 車両搭載制御装置115は、既定ルート30における自車の現在位置の情報をオンデマンド既定ルート自動走行車両フリートコントロール装置501に送信する。既定ルート30は、少なくとも1つの環状既定ルート31と、少なくとも1つの環状既定ルート31に行き来可能に接続された少なくとも1つの接続既定ルート32とを有する環状接続既定ルート30である。
 車両搭載制御装置115は、オンデマンド既定ルート自動走行車両フリートコントロール装置501によって複数のオンデマンド既定ルート自動走行車両100の中から乗車予定位置に配車する車両として選択された場合に、配車指令信号を受信する。オンデマンド既定ルート自動走行車両フリートコントロール装置501は、ルート情報、車両位置情報、乗員有無情報、利用要求情報に基づいて、複数のオンデマンド既定ルート自動走行車両100A、100Bの中から乗車予定位置に配車する車両を選択する。配車指令信号は、ルート情報、車両位置情報、乗員有無情報、利用要求情報に基づいて、オンデマンド既定ルート自動走行車両フリートコントロール装置501で生成される。なお、本実施形態では、オンデマンド既定ルート自動走行車両100Aが、乗車予定位置Pに配車する車両として選択されたものとして説明する。
 ルート情報は、環状接続既定ルート30のルートに関連する情報である。車両位置情報は、環状接続既定ルート30上の複数のオンデマンド既定ルート自動走行車両の現在位置の情報である。車両位置情報は、オンデマンド既定ルート自動走行車両100A、100Bから送信された自車の現在位置の情報を含む。乗員有無情報は、環状接続既定ルート30上の複数のオンデマンド既定ルート自動走行車両100A、100Bの乗員の有無に関連する情報である。利用要求情報は、利用者701の利用要求に関連する情報である。利用要求情報は、乗車予定位置Pの情報を含む。利用要求情報は、利用者701Aが乗車する予定の乗車予定位置Pの情報を含む。本実施形態では、利用者701は、利用者701Aおよび利用者701Bである。利用要求マネジメント装置601は、利用者701が所持する情報端末720およびオンデマンド既定ルート自動走行車両フリートコントロール装置501と情報を送受信可能に構成される。なお、本実施形態では、情報端末720は、各利用者701が所持する。情報端末720Aは、利用者701Aが所持する。情報端末720Bは、利用者701Bが所持する。また、本実施形態では、利用者701Aの利用要求があった場合を想定して説明する。利用要求情報は、利用要求マネジメント装置601から受信した利用者701の利用要求を受信したときに、オンデマンド既定ルート自動走行車両フリートコントロール装置501に送信する。利用要求マネジメント装置601は、利用者701が所持する情報端末720と情報を送受信可能に構成される。
 車両搭載制御装置115は、配車指令信号に基づいて、利用要求マネジメント装置601が受信した利用要求に含まれる利用者701の乗車予定位置に向かって走行するように、駆動機構112、制動機構113および進行方向制御機構114を制御する。
 本実施形態のオンデマンド既定ルート自動走行車両100はこのような構成を有するため、以下の効果を有する。
 オンデマンド既定ルート自動走行車両100は、少なくとも1つの環状既定ルート31と、環状既定ルート31に行き来可能な少なくとも1つの接続既定ルート32とを有する環状接続既定ルート30を走行する。オンデマンド既定ルート自動走行車両フリートコントロール装置501は、利用者701の利用要求を、利用者701が所持する情報端末720と情報を送受信可能に構成された少なくとも1つの利用要求マネジメント装置601から取得する。利用要求マネジメント装置601は、オンデマンド既定ルート自動走行車両フリートコントロール装置501とは別に設けられる。利用要求マネジメント装置601は、エリアごとに設けることができる。そのため、複数の利用要求マネジメント装置601を、多様なエリアに設けることができる。利用者701は利用要求を、情報端末720からオンデマンド既定ルート自動走行車両フリートコントロール装置501と送受信可能に構成された利用要求マネジメント装置601に送信する。1つのオンデマンド既定ルート自動走行車両フリートコントロール装置501に対して、複数の利用要求マネジメント装置601を設けることができる。つまり、利用者701の利用目的に応じて利用者701の利用要求をマネジメントする利用要求マネジメント装置601を、エリアごとに設けることができる。そして、エリアによって大きく異なる利用者701の利用目的に応じて、利用要求マネジメント装置601を構成することができる。オンデマンド既定ルート自動走行車両フリートコントロール装置501は、多様なエリアに設けられた複数の利用要求マネジメント装置601を介して、利用者701が所持する情報端末720からの利用者701の利用要求を受け付けることができる。
 環状既定ルート31と行き来可能な接続既定ルート32は増やすことができる。車両搭載制御装置115は、利用要求マネジメント装置601が受信した利用要求に含まれる利用者701の乗車予定位置に向かって走行するように、駆動機構112、制動機構113および進行方向制御機構114を制御する。配車指令信号は、ルート情報、車両位置情報、乗員有無情報、利用要求情報に基づいて、オンデマンド既定ルート自動走行車両フリートコントロール装置501で生成される。つまり、乗員の有無に応じて選択されたオンデマンド既定ルート自動走行車両100が、乗車予定位置に配車される。環状接続既定ルート30は、環状既定ルート31と行き来可能な接続既定ルート32を有するため、乗員が乗っていないオンデマンド既定ルート自動走行車両100を常時循環走行させずに、環状接続既定ルート30において分散して待機させることができる。これにより、乗員が乗っていないオンデマンド既定ルート自動走行車両100のエネルギーの消費を低くできる。それにより、1台あたりのエネルギー搭載量を減らして車両の設計自由度を高めることができる。
 また、乗員が乗っていないオンデマンド既定ルート自動走行車両100を環状接続既定ルート30において分散して待機させることができる。そのため、オンデマンド既定ルート自動走行車両100を環状既定ルート31で常時循環走行させることなく、環状接続既定ルート30を走行できるオンデマンド既定ルート自動走行車両100の数を増やすことができる。そして、乗員が乗っていないオンデマンド既定ルート自動走行車両100を環状接続既定ルート30において分散して待機させることができる。これにより、利用者701の待ち時間を短くできる。
 従って、本実施形態のオンデマンド既定ルート自動走行車両100は、多様なエリアで利用可能であると共に、利用要求を行った利用者701の待ち時間を短縮しつつ、エネルギー搭載量を減らして車両の設計自由度を向上させることができる。
(実施形態のオンデマンド既定ルート自動走行車両およびオンデマンド既定ルート自動走行車両フリートコントロール装置の具体例)
 次に、上述した本発明の実施形態のオンデマンド既定ルート自動走行車両およびオンデマンド既定ルート自動走行車両フリートコントロール装置の具体例について図3~図14を用いて説明する。実施形態のオンデマンド既定ルート自動走行車両の具体例は、ゴルフカーに本発明のオンデマンド既定ルート自動走行車両を適用した一例である。なお、以下の説明では、上述した本発明の実施形態と同じ部位についての説明は省略する。基本的に、本発明の実施形態のオンデマンド既定ルート自動走行車両の具体例は、上述した本発明の実施形態のオンデマンド既定ルート自動走行車両の特徴を全て有している。また、基本的に、本発明の実施形態のオンデマンド既定ルート自動走行車両フリートコントロール装置の具体例は、上述した本発明の実施形態のオンデマンド既定ルート自動走行車両フリートコントロール装置の特徴を全て有している。
 以下の説明において、特に限定が無い限り、上下方向とは、車両の上下方向のことである。車両の上下方向とは、オンデマンド既定ルート自動走行車両100が水平な路面に配置させているときに路面に直交する方向である。以下の説明において、特に限定が無い限り、前後方向とは、車両の前後方向のことである。車両の前後方向とは、車両の上下方向に直交する方向であり、車両が直進するときの車両の進行方向が車両の前方向である。以下の説明において、左右方向とは、車両の左右方向のことである。車両の左右方向とは、上下方向および前後方向に直交する方向である。車両の左右方向はオンデマンド既定ルート自動走行車両100の車幅方向でもある。各図に示す矢印F、矢印B、矢印U、矢印D、矢印L、矢印Rは、それぞれ、前方向、後方向、上方向、下方向、左方向、右方向を表している。
 <環状接続既定ルートの構成>
 図3Aおよび図3Bは、本具体例のオンデマンド既定ルート自動走行車両100が走行する環状接続既定ルート130を模式的に示す図である。図3Aに示すように、環状接続既定ルート130は、1つの環状既定ルート131および1つの接続既定ルート132を有する。接続既定ルート132は、環状既定ルート131上の第1接続部131aおよび第2接続部131bで環状既定ルート131と接続する。具体例の環状接続既定ルート130では、4台のオンデマンド既定ルート自動走行車両100A、100B、100C、100Dが走行している。また、環状接続既定ルート130において、オンデマンド既定ルート自動走行車両が走行可能な方向は一方向である。環状既定ルート131および接続既定ルート132において、オンデマンド既定ルート自動走行車両が走行する向きは、図3Aの矢印の方向である。第1接続部131aは、環状既定ルート131および接続既定ルート132が合流する合流部である。第2接続部131bは、環状既定ルート131および接続既定ルート132が分岐する分岐部である。
 図3Bに示すように、環状接続既定ルート130は、走行可能なエリア140の中の予め決められた既定ルートである。つまり、環状接続既定ルート130は、走行可能なエリア140の一部のエリアに含まれる既定ルートである。走行可能なエリア140は、オンデマンド既定ルート自動走行車両100が専用に走行することが可能なエリアである。走行可能なエリア140は、オンデマンド既定ルート自動走行車両100以外の車両の存在を想定していないエリアである。つまり、走行可能なエリア140は、オンデマンド既定ルート自動走行車両100およびオンデマンド既定ルート自動走行車両100以外の車両が混在して走行することを想定していないエリアである。走行可能なエリア140は、例えば、高齢者、子連れ、車いす利用者などを含む一般のユーザを対象とした、数キロ四方程度の広さの市街地やリゾートなどが想定される。
 図3Aに示すように、利用者701は、走行可能なエリア140の中に存在する。この具体例の場合、利用者701Aは、環状接続既定ルート130の場所P1にいる。複数の利用者701B~701Dは、利用者701Aがいる場所P1とは異なる場所であって、環状接続既定ルート130の特定の場所P2の近傍に集中して存在している。なお、利用者701は、環状既定ルート131の特定の場所にいてもよいし、接続既定ルート132の特定の場所にいてもよい。各利用者701は、情報端末720を所持している。利用者701Aは、情報端末720Aを所持している。利用者701Bは、情報端末720Bを所持している。利用者701Cは、情報端末720Cを所持している。利用者701Dは、情報端末720Dを所持している。
 <オンデマンド既定ルート自動走行車両の構成>
 図4は、実施形態の具体例に係るオンデマンド既定ルート自動走行車両100の側面図である。図5は、実施形態の具体例に係るオンデマンド既定ルート自動走行車両100の車両搭載制御装置115の構成を示すブロック図である。
 図4に示すように、オンデマンド既定ルート自動走行車両100は、4つの車輪111および車体109を備える。4つの車輪111は、2つの前輪111fを含む。2つの前輪111fは、左右方向に並んで車体109の前部に配置されている。4つの車輪111は、2つの後輪111rを含む。2つの後輪111rは、左右方向に並んで車体109の後部に配置されている。オンデマンド既定ルート自動走行車両100は、4つの車輪111が回転することによって走行する。
 オンデマンド既定ルート自動走行車両100は、シート102を備える。シート102には、複数の乗員が着座することができる。シート102は、フロントシート102fとリアシート102rを含む。フロントシート102fおよびリアシート102rは、前後方向に並んで、車体109に支持される。フロントシート102fおよびリアシート102rには、それぞれ、平均的な身長の大人2人の乗員が着座することができる。フロントシート102fは、リアシート102rより前に配置される。つまり、オンデマンド既定ルート自動走行車両100に乗車可能な乗員の最大数は、4名である。また、車体109は、屋根部109aを上部に有する。屋根部109aは、フロントシート102fおよびリアシート102rの上に配置される。
 シート102には、乗員の着座を検知する着座検知部(図示せず)が配置される。より詳細には、着座検知部は、フロントシート102fの2人の乗員が着座する位置に配置された2つの着座センサと、リアシート102rの2人の乗員が着座する位置に配置された2つの着座センサを含む。着座センサは、例えば圧力センサであり、シート102の中に配置される。着座センサは、乗員の着座による荷重を検出して、乗員がシート102に着座したことを検出する。着座センサは、所定時間以上乗員の着座による荷重を検出した場合に、乗員がシート102に着座したものとして、乗員の着座を検出する。着座検知部は、送受信部153に接続される。着座検知部は、4つの着座センサの内、乗員の着座を検出した着座センサの数に基づいて、フロントシート102fおよびリアシート102rの着座する乗員の人数を検知する。そして、着座検知部は、シート102に着座する乗員の人数の情報を、乗員有無情報として送受信部153に出力する。送受信部153は、着座検知部で検出した着座する乗員の人数が変化した際に、エネルギー情報をオンデマンド既定ルート自動走行車両フリートコントロール装置501に送信する。
 オンデマンド既定ルート自動走行車両100は、駆動機構112と、制動機構113と、進行方向制御機構114とを有する。
 駆動機構112は、オンデマンド既定ルート自動走行車両100に駆動力を付与可能である。制動機構113は、オンデマンド既定ルート自動走行車両100に制動力を付与可能である。駆動機構112および制動機構113は、オンデマンド既定ルート自動走行車両100の進行方向の速度を制御する。駆動機構112は、2つの後輪111rに駆動力を付与可能である。駆動力は、正の駆動力だけでなく負の駆動力を含んでよい。2つの後輪111rに正の駆動力が付与されると、オンデマンド既定ルート自動走行車両100は加速する。2つの後輪111rに負の駆動力が付与されると、オンデマンド既定ルート自動走行車両100は減速する。駆動機構112は、例えば、駆動モータMとバッテリBとを含む。オンデマンド既定ルート自動走行車両100は電動車であり、駆動モータMは電気モータである。駆動モータMは、バッテリBに接続される。バッテリBは、オンデマンド既定ルート自動走行車両100を駆動する電力を駆動モータMに供給する。バッテリBは、車両搭載制御装置115に接続される。車両搭載制御装置115は、バッテリBのエネルギー残量に関連するエネルギー情報を取得する。駆動モータMは、2つの後輪111rを駆動する。制動機構113は、4つの車輪111に制動力を付与可能である。4つの車輪111に制動力が付与されると、オンデマンド既定ルート自動走行車両100は減速する。制動機構113は、例えば、4つのディスクブレーキ装置で構成される。4つのディスクブレーキ装置は、4つの車輪111にそれぞれ設けられる。4つのディスクブレーキ装置は、4つの車輪111を制動する。
 オンデマンド既定ルート自動走行車両100は、図示しないアクセルペダルおよびブレーキペダルを備える。本実施形態のオンデマンド既定ルート自動走行車両100は、通常、自動運転モードで走行される。自動運転モードでは、アクセルペダルおよびブレーキペダルの操作によらず、車両搭載制御装置115が駆動機構112および制動機構113を制御することで、オンデマンド既定ルート自動走行車両100の速度を制御する。また、オンデマンド既定ルート自動走行車両100は、手動運転モードに切り替えて走行することができる。手動運転モードでは、乗員がアクセルペダルおよびブレーキペダルを操作することによって、駆動機構112および制動機構113がオンデマンド既定ルート自動走行車両100の速度を制御する。アクセルペダルは、オンデマンド既定ルート自動走行車両100を走行させるために、乗員によって操作される。アクセルペダルは、駆動機構112に接続される。もしくは、アクセルペダルの操作量を検出するセンサが設けられており、車両搭載制御装置115がそのセンサの信号に基づいて駆動機構112を制御する。ブレーキペダルは、オンデマンド既定ルート自動走行車両100を制動させるために、乗員によって操作される。ブレーキペダルは、制動機構113に接続される。もしくは、ブレーキペダルの操作量を検出するセンサが設けられており、車両搭載制御装置115がそのセンサの信号に基づいて制動機構113を制御する。
 進行方向制御機構114は、2つの前輪111fを操舵可能である。2つの前輪111fが操舵されることで、オンデマンド既定ルート自動走行車両100の進行方向が制御される。
 オンデマンド既定ルート自動走行車両100は、ステアリングホイール104を備える。ステアリングホイール104は、進行方向制御機構114に接続される。ステアリングホイール104は、取り外すこともできる。ステアリングホイール104は、フロントシート102fに座る乗員の前に配置されている。本実施形態のオンデマンド既定ルート自動走行車両100は、通常、自動運転モードで走行する。自動運転モードでは、ステアリングホイール104の操作によらず、車両搭載制御装置115が進行方向制御機構114を制御することで、進行方向制御機構114がオンデマンド既定ルート自動走行車両100の進行方向を制御する。また、オンデマンド既定ルート自動走行車両100は、手動運転モードに切り替えて走行することができる。手動運転モードでは、乗員がステアリングホイール104を操作することによって、進行方向制御機構114がオンデマンド既定ルート自動走行車両100の進行方向を制御する。ステアリングホイール104は、オンデマンド既定ルート自動走行車両100の進行方向を変えるために、乗員により操作される。ステアリングホイール104の回転により、2つの前輪111fが操舵される。2つの前輪111fが操舵されることで、オンデマンド既定ルート自動走行車両100の進行方向が制御される。
 オンデマンド既定ルート自動走行車両100は、自車位置検出装置120を含む。自車位置検出装置120は、カメラ121、ライト122および全球測位衛星システム(GNSS:Global Navigation Satellite System)受信ユニット123を含む。カメラ121およびライト122は、車体109の底面に下方向を向くように配置される。カメラ121は、オンデマンド既定ルート自動走行車両100が走行する環状接続既定ルート130の路面を撮影する。カメラ121は、例えば単眼カメラである。単眼カメラは、エリアカメラでもラインスキャンカメラであってもよい。ライト122は、カメラ121の近傍に2つ配置される。ライト122は、1つ設置されてもよい。ライト122は、環状接続既定ルート30の路面に光を照射する。カメラ121は、ライト122による路面の照射範囲の少なくとも一部を撮像する。カメラ121は、ライト122による光の反射の影響を抑制するために、偏光フィルタを有しても良い。自車位置検出装置120は、カメラ121で撮像した路面の画像を、車両搭載制御装置115に出力する。GNSS受信ユニット123では、GNSS衛星から送信された電波を利用して現在位置の情報を生成する。GNSSを利用して生成されたオンデマンド既定ルート自動走行車両100の現在位置の情報は、GNSS衛星から送信された電波と、オンデマンド既定ルート自動走行車両100の挙動を検出するセンサの信号に基づいて生成される。GNSSを利用して生成された現在位置の情報は、絶対位置の情報である。オンデマンド既定ルート自動走行車両100の挙動を検出するセンサは、GNSS受信ユニット123内に設けられたセンサであってもよいし、オンデマンド既定ルート自動走行車両100が有するその他のセンサであってもよい。GNSSを利用して生成されたオンデマンド既定ルート自動走行車両100の現在位置の情報は、GNSS衛星から送信された電波のみに基づいて生成されてもよい。自車位置検出装置120は、GNSS受信ユニット123で生成され自車の現在位置を、車両搭載制御装置115に出力する。
 オンデマンド既定ルート自動走行車両100は、前障害物検出装置118を含む。前障害物検出装置118は、オンデマンド既定ルート自動走行車両100の前方向に存在する障害物を検出する。前障害物検出装置118は、例えばLIDAR(Laser Imaging Detection and Ranging)などのセンサである。前障害物検出装置118は、オンデマンド既定ルート自動走行車両100の前方向に存在する障害物を検出した場合、前障害物検出信号を車両搭載制御装置115に出力する。
 図5に示すように、車両搭載制御装置115は、プロセッサ151、記憶部152、送受信部153を備える。送受信部153は、オンデマンド既定ルート自動走行車両フリートコントロール装置501と情報を送受信可能に構成される。送受信部153は、例えばダイポールアンテナなどのアンテナである。なお、車両搭載制御装置115は、物理的に、1つの装置として構成されても良いし、複数の装置として構成されても良い。車両搭載制御装置115が物理的に複数の装置として構成される場合、それぞれの装置が、演算部および記憶部を備える。
 送受信部153は、オンデマンド既定ルート自動走行車両フリートコントロール装置501から配車指令信号、事前配車指令信号および調停指令信号を受信する。配車指令信号、事前配車指令信号および調停指令信号は、オンデマンド既定ルート自動走行車両フリートコントロール装置501で生成される。
 配車指令信号は、利用者701からの利用要求を取得したオンデマンド既定ルート自動走行車両フリートコントロール装置501で生成される。なお、利用者701からの利用要求は、利用者701が所持する情報端末720から利用要求マネジメント装置601に送信される。そして、利用要求マネジメント装置601は、情報端末720から利用者701の利用要求を受信したときに、利用者701からの利用要求をオンデマンド既定ルート自動走行車両フリートコントロール装置501に送信する。本具体例では、利用者701ごとに情報端末720を所持する。情報端末720は、利用要求マネジメント装置601と情報を送受信可能に構成される。また、利用要求マネジメント装置601がオンデマンド既定ルート自動走行車両フリートコントロール装置501と情報を送受信可能に構成される。なお、利用要求マネジメント装置601は、複数あってもよい。利用要求マネジメント装置601が複数の場合、複数の利用要求マネジメント装置601が1つのオンデマンド既定ルート自動走行車両フリートコントロール装置501と情報を送受信可能に構成される。またこの場合、1つの情報端末720は、1つの利用要求マネジメント装置601と情報を送受信可能に構成されてもよいし、複数の利用要求マネジメント装置601と情報を送受信可能に構成されてもよい。
 配車指令信号は、オンデマンド既定ルート自動走行車両フリートコントロール装置501によって複数のオンデマンド既定ルート自動走行車両100A~100Dの中から乗車予定位置に配車する車両として選択された車両が受信する。配車指令信号は、既定ルート上の乗車予定位置に向かって走行することを指示する信号である。オンデマンド既定ルート自動走行車両フリートコントロール装置501は、ルート情報、車両位置情報、乗員有無情報、利用要求情報、エネルギー情報に基づいて、複数のオンデマンド既定ルート自動走行車両100A~100Dの中から乗車予定位置に配車する車両を選択する。配車指令信号は、ルート情報、車両位置情報、乗員有無情報、利用要求情報、エネルギー情報に基づいて、オンデマンド既定ルート自動走行車両フリートコントロール装置501で生成される。エネルギー情報は、環状接続既定ルート130上の複数のオンデマンド既定ルート自動走行車両100A~100Dのエネルギー残量に関連する情報である。利用要求情報には、乗車予定位置の情報と、降車予定位置の情報が含まれる。
 事前配車指令信号は、オンデマンド既定ルート自動走行車両フリートコントロール装置501で生成される。事前配車指令信号は、オンデマンド既定ルート自動走行車両フリートコントロール装置501によって複数のオンデマンド既定ルート自動走行車両100A~100Dの中から予想乗車位置に事前に配車する車両として選択された車両が受信する。予想乗車位置に事前に配車する車両は、オンデマンド既定ルート自動走行車両フリートコントロール装置501によって、乗員が乗っておらず、配車指令信号を受信していない状態の車両の中から選択される。事前配車指令信号は、既定ルート上の予想乗車位置に向かって走行することを指示する信号である。オンデマンド既定ルート自動走行車両フリートコントロール装置501は、ルート情報、車両位置情報、乗員有無情報、予想乗車位置情報、エネルギー情報に基づいて、複数のオンデマンド既定ルート自動走行車両100A~100Dの中から予想乗車位置に事前に配車する車両を選択する。事前配車指令信号は、ルート情報、車両位置情報、乗員有無情報、予想乗車位置情報、エネルギー情報に基づいて、オンデマンド既定ルート自動走行車両フリートコントロール装置501で生成される。予想乗車位置情報は、環状接続既定ルート130上の乗車予定位置になることが予想される位置である予想乗車位置に関連する情報である。予想乗車位置情報には、予想乗車位置の情報と、予想降車位置の情報が含まれる。
 調停指令信号は、ルート情報、車両位置情報、乗員有無情報、利用要求情報、エネルギー情報に基づいて、オンデマンド既定ルート自動走行車両フリートコントロール装置501で生成される。調停指令信号は、環状既定ルート131と接続既定ルート132が接続される接続部131aの通過を待機することを指示する信号である。調停指令信号は、オンデマンド既定ルート自動走行車両フリートコントロール装置501が、ルート情報および車両位置情報に基づいて、接続既定ルート132を第1接続部131aに向かって走行するオンデマンド既定ルート自動走行車両100が存在し、且つ、環状既定ルート131を第1接続部131aに向かって走行しているオンデマンド既定ルート自動走行車両100が存在すると判断した場合に、生成される。調停指令信号は、この2台のオンデマンド既定ルート自動走行車両100の接続部131aの通過に関して調停するための信号である。調停指令信号は、ルート情報、車両位置情報、乗員有無情報、利用要求情報、エネルギー情報に基づいて、オンデマンド既定ルート自動走行車両フリートコントロール装置501によってこの2台のオンデマンド既定ルート自動走行車両100のうち調停のために走行が制御される車両として選択された第1オンデマンド既定ルート自動走行車両100に送信される。この場合、調停指令信号は、2台のオンデマンド既定ルート自動走行車両100のうち、第2オンデマンド既定ルート自動走行車両100には送信されない。図3Aの例では、第1オンデマンド既定ルート自動走行車両は、オンデマンド既定ルート自動走行車両100Cである。また、第2オンデマンド既定ルート自動走行車両は、オンデマンド既定ルート自動走行車両100Bである。調停指令信号は、第1接続部131aを通過する順番が、第1オンデマンド既定ルート自動走行車両が第2オンデマンド既定ルート自動走行車両の後になるように指示する信号である。具体的には、調停指令信号は、例えば、オンデマンド既定ルート自動走行車両100Cの速度の減速または接続既定ルート132の第1接続部131aより手前の位置で停止を指示する信号である。調停指令信号は、第1オンデマンド既定ルート自動走行車両100および第2オンデマンド既定ルート自動走行車両100が、自車より車両前方向にある障害物の存在に関連する駆動機構112および制動機構113の制御が行われていない状態のときに、第1オンデマンド既定ルート自動走行車両100に対して、オンデマンド既定ルート自動走行車両フリートコントロール装置501から送信される。つまり、調停指令信号は、車両搭載制御装置115が前障害物検出装置118から前障害物検出信号を取得していない状態の第1オンデマンド既定ルート自動走行車両100に対して、オンデマンド既定ルート自動走行車両フリートコントロール装置501から送信される。
 送受信部153は、前障害物検出装置118から前障害物検出信号を取得した場合に、前障害物検出信号を、オンデマンド既定ルート自動走行車両フリートコントロール装置501に送信する。送受信部153は、前障害物検出信号を取得した際に、前障害物検出信号をオンデマンド既定ルート自動走行車両フリートコントロール装置501に送信する。
 送受信部153は、バッテリBのエネルギー残量に関連するエネルギー情報を、オンデマンド既定ルート自動走行車両フリートコントロール装置501に送信する。送受信部153は、所定間隔ごとに、エネルギー情報をオンデマンド既定ルート自動走行車両フリートコントロール装置501に送信する。本明細書において、所定間隔は、所定の時間の間隔でもよいし、所定の走行距離の間隔でもよい。所定間隔は、任意に設定できる。
 送受信部153は、シート102に着座する乗員の人数の情報を、乗員の有無に関連する乗員有無情報として、オンデマンド既定ルート自動走行車両フリートコントロール装置501に送信する。送受信部153は、所定間隔ごとに、乗員有無情報をオンデマンド既定ルート自動走行車両フリートコントロール装置501に送信する。
 車両搭載制御装置115には、自車位置検出装置120から、カメラ121で撮像した路面の画像およびGNSS受信ユニット123で生成された自車の現在位置が入力される。
 車両搭載制御装置115の記憶部152は、あらかじめ取得した環状接続既定ルート130の路面の画像である事前取得画像とその事前取得画像が撮像された環状接続既定ルート130の絶対位置とを関連付けて記憶している。ここで、事前取得画像は、図3Aの一点鎖線に示す範囲130Pで撮像された環状接続既定ルート130の路面の画像である。車両搭載制御装置115は、GNSS受信ユニット123で生成された自車の現在位置を参照して、記憶部152に記憶された事前取得画像とカメラ121で撮像した路面の画像と比較する。つまり、車両搭載制御装置115は、GNSS受信ユニット123で生成された自車の現在位置の近傍の事前取得画像とカメラ121で撮像した路面の画像とを比較する。車両搭載制御装置115は、カメラ121で撮像した路面の画像と一致する事前取得画像と関連付けられた絶対位置に基づいて、オンデマンド既定ルート自動走行車両100のより精度の高い現在位置を得る。なお、カメラ121で撮像した路面の画像と一致する事前取得画像とは、完全一致だけでなく部分一致する事前取得画像を含む。送受信部153は、得られたオンデマンド既定ルート自動走行車両100の現在位置を、現在位置情報として、オンデマンド既定ルート自動走行車両フリートコントロール装置501に送信する。送受信部153は、所定間隔ごとに、現在位置情報をオンデマンド既定ルート自動走行車両フリートコントロール装置501に送信する。
 車両搭載制御装置115の記憶部152は、環状接続既定ルート130の位置およびオンデマンド既定ルート自動走行車両100の進行方向を関連付けて記憶している。環状接続既定ルート130の位置およびオンデマンド既定ルート自動走行車両100の進行方向は、オンデマンド既定ルート自動走行車両100が、走行可能なエリアの中の予め決められた環状接続既定ルート130をトレースして走行できるように関連付けて記憶される。例えば、環状接続既定ルート130の絶対位置と、その絶対位置においてオンデマンド既定ルート自動走行車両100の進行方向を変更するための操舵角とが関連付けて記憶される。車両搭載制御装置115は、オンデマンド既定ルート自動走行車両100の現在位置に対応するオンデマンド既定ルート自動走行車両100の進行方向を設定する。車両搭載制御装置115は、設定されたオンデマンド既定ルート自動走行車両100の進行方向に基づいて、進行方向制御機構114を制御する。つまり、車両搭載制御装置115は、オンデマンド既定ルート自動走行車両100の進行方向が設定された進行方向になるように進行方向制御機構114を制御する。車両搭載制御装置115は、走行可能なエリアの中の予め決められた既定ルート130を乗員の有無に関わらず自動で走行するように、進行方向制御機構114を制御する。
 車両搭載制御装置115は、通過ルート情報に基づいて、環状接続既定ルート130の環状既定ルート131および接続既定ルート132の接続部131bにおける進行方向を設定する。通過ルート情報は、オンデマンド既定ルート自動走行車両フリートコントロール装置501から受信した配車指令信号に含まれる。配車指令信号に基づいたオンデマンド既定ルート自動走行車両100の走行予定ルートに、分岐部である接続部131bがある場合に、配車指令信号は通過ルート情報を含む。通過ルート情報は、分岐部である接続部131bを通過した後に、環状既定ルート131または接続既定ルート132のいずれを走行するかどうかの情報が含まれる。車両搭載制御装置115は、通過ルート情報に基づいて設定された進行方向に基づいて、接続部131bを通過する際に進行方向制御機構114を制御する。
 車両搭載制御装置115の記憶部152は、オンデマンド既定ルート自動走行車両100の走行状態およびオンデマンド既定ルート自動走行車両100の速度を関連付けて記憶している。車両搭載制御装置115は、オンデマンド既定ルート自動走行車両100の走行状態に対応するオンデマンド既定ルート自動走行車両100の速度を設定する。具体的には、オンデマンド既定ルート自動走行車両100の走行状態は、配車状態、事前配車状態、待機状態、目的地走行状態、および、調停状態が含まれる。配車状態は、オンデマンド既定ルート自動走行車両100が、オンデマンド既定ルート自動走行車両フリートコントロール装置501から受信した配車指令信号に基づいて、乗車予定位置に向かって走行している状態である。配車状態では、オンデマンド既定ルート自動走行車両100に乗員が乗っていない。事前配車状態は、オンデマンド既定ルート自動走行車両100が、オンデマンド既定ルート自動走行車両フリートコントロール装置501から受信した事前配車指令信号に基づいて、予想乗車位置に向かって走行している状態である。事前配車状態では、オンデマンド既定ルート自動走行車両100に乗員が乗っていない。待機状態は、オンデマンド既定ルート自動走行車両100に乗員が乗っておらず、オンデマンド既定ルート自動走行車両100がオンデマンド既定ルート自動走行車両フリートコントロール装置501から事前配車指令信号または配車指令信号を受信することが可能な状態である。目的地走行状態は、オンデマンド既定ルート自動走行車両100に乗員が乗っており、オンデマンド既定ルート自動走行車両フリートコントロール装置501から受信した配車指令信号に基づいて、乗車予定位置から降車予定位置に向かって走行している状態である。調停状態は、オンデマンド既定ルート自動走行車両100がオンデマンド既定ルート自動走行車両フリートコントロール装置501から調停指令信号を受信して走行している状態である。待機状態のオンデマンド既定ルート自動走行車両100の速度を、速度V1とする。配車状態のオンデマンド既定ルート自動走行車両100の速度を、速度V2とする。目的地走行状態のオンデマンド既定ルート自動走行車両100の速度を、速度V3とする。調停状態のオンデマンド既定ルート自動走行車両100の速度を、速度V4とする。事前配車状態のオンデマンド既定ルート自動走行車両100の速度を、速度V5とする。速度V1は、速度V2および速度V3より小さい。速度V1は0であってもよい。速度V4は、速度V2、速度V3および速度V5より小さい。速度V4は0であってよい。速度V5は、エネルギー消費量が少ない速度で設定されることが好ましい。速度V2、速度V3および速度V5は、同じであってもよいし、全て異なってもよい。速度V1~速度V5は、時速40km以下で設定される。例えば、速度V2、速度V3および速度V5は、時速20kmである。車両搭載制御装置115は、設定されたオンデマンド既定ルート自動走行車両100の速度に基づいて、駆動機構112および制動機構113を制御する。つまり、車両搭載制御装置115は、オンデマンド既定ルート自動走行車両100の速度が設定された速度になるように、駆動機構112および制動機構113を制御する。
 具体的には、車両搭載制御装置115は、速度V1で走行している待機状態のオンデマンド既定ルート自動走行車両100が事前配車指令信号を受信した際に、駆動機構112および制動機構113を制御して、オンデマンド既定ルート自動走行車両100の速度を増加させ、速度V5で走行させる。なお、速度V1がゼロの場合は、車両搭載制御装置115は、待機状態のオンデマンド既定ルート自動走行車両100が事前配車指令信号を受信した際に、駆動機構112および制動機構113を制御して、オンデマンド既定ルート自動走行車両100の走行を開始させ、速度V5で走行させる。車両搭載制御装置115は、速度V5で走行している事前配車状態のオンデマンド既定ルート自動走行車両100が配車指令信号を受信した際に、駆動機構112および制動機構113を制御して、オンデマンド既定ルート自動走行車両100を速度V2で走行させる。また、車両搭載制御装置115は、速度V1で走行している待機状態のオンデマンド既定ルート自動走行車両100が配車指令信号を受信した際に、駆動機構112および制動機構113を制御して、オンデマンド既定ルート自動走行車両100の速度を増加させ、速度V2で走行させる。なお、速度V1がゼロの場合は、車両搭載制御装置115は、待機状態のオンデマンド既定ルート自動走行車両100が配車指令信号を受信した際に、駆動機構112および制動機構113を制御して、オンデマンド既定ルート自動走行車両100の走行を開始させ、速度V2で走行させる。車両搭載制御装置115は、速度V2で走行している配車状態のオンデマンド既定ルート自動走行車両100が配車指令信号に含まれる利用者の乗車予定位置に到着した際に、駆動機構112および制動機構113を制御して、車両を停止させる。車両搭載制御装置115は、乗車予定位置で利用者が乗車して目的地走行状態となった際に、駆動機構112および制動機構113を制御して、オンデマンド既定ルート自動走行車両100の走行を開始させ、速度V3で走行させる。車両搭載制御装置115は、目的地走行状態のオンデマンド既定ルート自動走行車両100が配車指令信号に含まれる利用者の降車予定位置に到着した際に、駆動機構112および制動機構113を制御して、オンデマンド既定ルート自動走行車両100を停止させる。車両搭載制御装置115は、降車予定位置で利用者が降車して待機状態となった際に、駆動機構112および制動機構113を制御して、オンデマンド既定ルート自動走行車両100の走行を開始させ、速度V1で走行させる。なお、この際に、オンデマンド既定ルート自動走行車両100が環状既定ルート131にいる場合は、車両搭載制御装置115は、駆動機構112および制動機構113を制御して、オンデマンド既定ルート自動走行車両100を接続既定ルート132に移動させるように速度V1で走行させてもよい。ここで、速度V1がゼロの場合は、車両搭載制御装置115は、降車予定位置で利用者が降車して待機状態となった際に、駆動機構112および制動機構113を制御して、オンデマンド既定ルート自動走行車両100を停止させる。なお、この際に、オンデマンド既定ルート自動走行車両100が環状既定ルート131にいる場合は、車両搭載制御装置115は、駆動機構112および制動機構113を制御して、オンデマンド既定ルート自動走行車両100を接続既定ルート132に移動させてから停止させてもよい。
 車両搭載制御装置115は、前障害物検出装置118から前障害物検出信号を取得すると、駆動機構112および制動機構113を制御して、オンデマンド既定ルート自動走行車両100を停止させる。
 <オンデマンド既定ルート自動走行車両フリートコントロール装置の構成>
 図6は、実施形態の具体例に係るオンデマンド既定ルート自動走行車両フリートコントロール装置501の構成を示すブロック図である。図7は、実施形態の具体例に係るオンデマンド既定ルート自動走行車両フリートコントロール装置501の処理の手順を示すフローチャートである。
 図6に示すように、オンデマンド既定ルート自動走行車両フリートコントロール装置501は、プロセッサ502、記憶部503および送受信部504を備える。送受信部504は、オンデマンド既定ルート自動走行車両100A~100Dと情報を送受信可能に構成される。送受信部504は、例えばダイポールアンテナなどのアンテナである。なお、車両搭載制御装置115は、物理的に、1つの装置として構成されても良いし、複数の装置として構成されても良い。オンデマンド既定ルート自動走行車両フリートコントロール装置501が物理的に複数の装置として構成される場合、それぞれの装置が、演算部および記憶部とを備える。
 送受信部504は、利用要求マネジメント装置601から送信された利用者701からの利用要求を受信する。利用者701が所持する情報端末720は、利用者701からの利用要求を利用要求マネジメント装置601に送信する。情報端末720は、例えば携帯端末である。情報端末720は、タッチパネル721およびGNSS受信ユニット750を有している。タッチパネル721は、情報を表示したり、利用者701の操作により情報を入力したりすることができる。GNSS受信ユニット750は、GNSS衛星から送信された電波を利用して情報端末720の現在位置の情報を生成する。GNSSを利用して生成された情報端末720の現在位置の情報は、GNSS衛星から送信された電波と、情報端末720の挙動を検出するセンサの信号に基づいて生成される。GNSSを利用して生成された情報端末720の現在位置の情報は、絶対位置の情報である。情報端末720の挙動を検出するセンサは、情報端末720内に設けられるセンサである。そして、情報端末720は、GNSS受信ユニット750により現在位置を得ることができる。GNSSを利用して生成された情報端末720の現在位置の情報は、GNSS衛星から送信された電波のみに基づいて生成されてもよい。情報端末720は、オンデマンド既定ルート自動走行車両フリートコントロール装置501に対して、所定間隔ごとに情報端末720の現在位置を送信する。
 ここで、情報端末720から入出力できる利用者701の利用要求に関連する情報の具体例を図8に示す。図8は、利用者701の情報端末720、利用要求マネジメント装置601およびオンデマンド既定ルート自動走行車両フリートコントロール装置501との間で送受信される情報をユースケースとして示している。図8に示すように、本具体例では、利用要求の情報、目的地指示の情報、降車要求の情報、および、キャンセル要求の情報が、利用者701の利用要求に関連する情報として、情報端末720から利用要求マネジメント装置601に送信される。利用要求の情報、目的地指示の情報、降車要求の情報、および、キャンセル要求の情報は、情報端末720で利用者701により入力されて、利用要求マネジメント装置601に送信される。利用要求マネジメント装置601が受信した利用要求の情報、目的地指示の情報、降車要求の情報、および、キャンセル要求の情報は、オンデマンド既定ルート自動走行車両フリートコントロール装置501に送信される。なお、図8において、利用要求をVehicle Requestともいう。また、目的地入力をDrive to Destinationともいう。また、降車要求をGet offともいう。また、キャンセル要求をCancel Orderともいう。また、配車予定時間算出をCalculate Travel Timeともいう。また、到着通知をArrival Notificationともいう。また、目的地の設定をSet Destinationともいう。
 利用要求の情報は、利用者701のオンデマンド既定ルート自動走行車両100の利用要求の情報である。利用要求マネジメント装置601に送信される利用要求に関連する情報には、乗車予定位置の情報が含まれる。乗車予定位置は、利用者701が乗車する予定の位置である。
 例えば、利用者701が入力する利用要求の情報は、オンデマンド既定ルート自動走行車両100の単なる利用を要求する旨の情報である。具体的には、図9Aに示すように、利用者701が情報端末720のタッチパネル721に表示された乗車ボタン722aをタップすることで、単なる利用を要求する旨の情報が入力される。この場合、単なる利用を要求する旨の情報が入力された際に、GNSS受信ユニット750により生成される情報端末720の現在位置の情報に基づいて作成された乗車予定位置の情報が、利用要求マネジメント装置601に送信される。例えば、単なる利用を要求する旨が入力された際にGNSS受信ユニット750により生成される情報端末720の現在位置が環状接続既定ルート130にある場合、情報端末720の現在位置が乗車予定位置として、利用要求マネジメント装置601に送信される。単なる利用を要求する旨の情報が入力された際にGNSS受信ユニット750により生成される情報端末720の現在位置が環状接続既定ルート130の近傍の場合、情報端末720の現在位置に最も近い環状接続既定ルート130の位置が乗車予定位置の情報として、利用要求マネジメント装置601に送信される。
 また、例えば、利用者701が入力する利用要求の情報は、環状接続既定ルート130のルート情報に基づいて情報端末720のタッチパネル721に表示されたマップ上で利用者701が指定した乗車指定位置の情報である。具体的には、図9Bに示すように、利用者701が情報端末720のタッチパネル721に表示された環状接続既定ルートのマップ723a上の任意の位置723bをタップすることで、マップ上で利用者701が指定した乗車指定位置の情報が情報端末720に入力される。情報端末720の記憶部725には、環状接続既定ルートのマップ723a上の位置と環状接続既定ルート130の絶対位置情報とが関連付けられて記憶される。この場合、マップ723a上で利用者701が指定した乗車指定位置に対応する絶対位置情報が、乗車予定位置として、利用要求マネジメント装置601に送信される。なお、利用要求の情報は、オンデマンド既定ルート自動走行車両100に乗車する予定の人数の情報を含んでもよい。この場合、利用者701は、情報端末720のタッチパネル721から乗車する予定の人数を入力する。具体的には、図9Aに示すように、利用者701が情報端末720のタッチパネル721に表示された乗車人数入力欄722bに、乗車する予定の人数を入力する。また、利用要求の情報は、オンデマンド既定ルート自動走行車両100に乗車する予定の時間の情報を含んでもよい。この場合、利用者701は、情報端末720のタッチパネル721から乗車する予定の時間を入力する。具体的には、図9Aに示すように、利用者701が情報端末720のタッチパネル721に表示された乗車時間入力欄722cに、乗車する予定の時間を入力する。
 目的地指示の情報では、利用者701がオンデマンド既定ルート自動走行車両100を利用して到達したい目的地の情報である。利用要求マネジメント装置601に送信される目的地指示の情報には、降車予定位置が含まれる。降車予定位置は、利用者701が降車する予定の位置である。
 例えば、利用者701が入力する目的地指示の情報は、目的地の候補の中から利用者701によって選択された目的地の情報である。なお、目的地の候補の情報は、情報端末720の記憶部725に記憶されて、タッチパネル721に表示されてもよい。または、目的地の候補の情報は、利用要求マネジメント装置601から送信されて情報端末720のタッチパネル721に表示されてもよい。情報端末720のタッチパネル721に、目的地の候補を表示してもよい。そして、情報端末720のタッチパネル721に、目的地の候補をジャンル別に表示してもよい。具体的には、図9Cに示すように、情報端末720のタッチパネル721に、ジャンル(レストラン)が共通する目的地の候補であるレストランA、B、Cが、レストランAに対応する目的地ボタン724a、レストランBに対応する目的地ボタン724b、レストランCに対応する目的地ボタン724cで表示されるものとする。利用者701が、目的地ボタン724a~724cのいずれかをタップすることで、情報端末720に目的地指示の情報が入力される。なお、タッチパネル721に表示される目的地の候補の情報は、ジャンルが共通する目的地に限らず、様々な目的地を表示してもよい。情報端末720の記憶部725には、目的地の候補であるレストランA~Cが環状接続既定ルート130の絶対位置情報に関連付けられて記憶される。この場合、利用者701が目的地指示として入力したレストランA~Cのいずれかに対応する絶対位置情報が、降車予定位置として、利用要求マネジメント装置601に送信される。
 また、例えば、利用者701が入力する目的地指示の情報は、環状接続既定ルート130のルート情報に基づいて情報端末720のタッチパネル721に表示されたマップ上で利用者701が指定した降車指定位置の情報である。具体的には、図9Bに示すように、利用者701が情報端末720のタッチパネル721に表示された環状接続既定ルートのマップ723a上の任意の位置723bをタップすることで、マップ上で利用者701が指定した降車指定位置の情報が情報端末720に入力される。情報端末720の記憶部725には、環状接続既定ルートのマップ723a上の位置と環状接続既定ルート130の絶対位置情報とが関連付けられて記憶される。この場合、マップ上で利用者701が指定した降車指定位置に対応する絶対位置情報が、降車予定位置として、利用要求マネジメント装置601に送信される。
 なお、目的地指示の情報が、降車予定位置の情報に加えて走行ルートの情報を含んでもよい。走行ルートは、利用者が走行を希望するルートである。例えば、利用者701が入力する走行ルートの情報は、環状接続既定ルート130のルート情報に基づいて情報端末720のタッチパネル721に表示されたマップ上で利用者701が指定した指定走行ルートの情報である(図示せず)。情報端末720の記憶部725には、環状接続既定ルートのマップ723a上のルートと環状接続既定ルート130のルート情報とが関連付けられて記憶される。この場合、マップ上で利用者701が指定した指定走行ルートに対応するルート情報が、走行ルートとして、利用要求マネジメント装置601に送信される。また、目的地指示の情報が、降車予定位置の情報に加えて経由予定位置の情報を含んでもよい。経由予定位置は、利用者が途中で立ち寄りたい位置である。例えば、利用者701が入力する経由予定位置の情報は、環状接続既定ルート130のルート情報に基づいて情報端末720のタッチパネル721に表示されたマップ上で利用者701が指定した指定経由位置の情報である。具体的には、図9Bに示すように、利用者701が情報端末720のタッチパネル721に表示された環状接続既定ルートのマップ723a上の任意の位置723bをタップすることで、マップ上で利用者701が指定した経由指定位置の情報が入力される。情報端末720の記憶部725には、環状接続既定ルートのマップ723a上の位置が環状接続既定ルート130のルート情報に関連付けられて記憶される。この場合、マップ上で利用者701が指定した指定経由位置に対応する絶対位置情報が、経由予定位置として、利用要求マネジメント装置601に送信される。
 降車要求の情報は、利用者がオンデマンド既定ルート自動走行車両100からの降車を要求する情報である。降車要求の情報は、単なる降車を要求する旨の情報である。具体的には、利用者701が情報端末720のタッチパネル721に表示された降車ボタンをタップすることで、降車要求が情報端末720に入力される。この場合、降車要求が入力されると、降車要求の情報が、利用要求マネジメント装置601に送信される。なお、降車要求の情報が、情報端末720が有するGNSS受信ユニットにより生成される情報端末720の現在位置の情報が含んでいてもよい。
 キャンセル要求の情報は、利用要求を行った利用者がオンデマンド既定ルート自動走行車両100の利用をキャンセルする要求の情報である。キャンセル要求の情報は、単なるキャンセルを要求する旨の情報である。具体的には、利用者701が情報端末720のタッチパネル721に表示されたキャンセルボタンをタップすることで、キャンセル要求が入力される。この場合、キャンセル要求が入力されると、キャンセル要求の情報が、利用要求マネジメント装置601に送信される。
 また、図8に示すように、情報端末720は、入力された利用者701の利用要求に基づいて算出されたオンデマンド既定ルート自動走行車両100の配車予定時間を、タッチパネル721に表示してもよい。配車予定時間の算出は、情報端末720で行ってもよいし、利用要求マネジメント装置601で算出されて情報端末720が取得してもよい。または、配車予定時間は、オンデマンド既定ルート自動走行車両フリートコントロール装置501で算出されて、利用要求マネジメント装置601が取得して情報端末720に送信してもよい。また、図8に示すように、情報端末720は、入力された利用者701の利用要求に基づいて生成されたオンデマンド既定ルート自動走行車両100の到着の通知を、タッチパネル721に表示してもよい。さらに、情報端末720は、入力された利用者701の利用要求に基づいて生成されたオンデマンド既定ルート自動走行車両100の環状接続既定ルート130上の現在位置を、タッチパネル721に表示してもよい。
 送受信部504は、オンデマンド既定ルート自動走行車両100A~100Dが送信した、自車の現在位置の情報およびバッテリBのエネルギー残量に関連するエネルギー情報を受信する。
 送受信部504は、オンデマンド既定ルート自動走行車両100A~100Dが送信した、前障害物検出信号を受信する。
 送受信部504は、プロセッサ502で生成した配車指令信号および調停指令信号をオンデマンド既定ルート自動走行車両100A~100Dに送信する。
 プロセッサ502は、配車機能520、調停機能521および管理機能522を有する。配車機能520では、事前配車車両選択処理、事前配車信号生成処理、配車車両選択処理および配車信号生成処理を行う。調停機能521では調停信号生成処理を行う。管理機能522では、情報取得処理および送信処理を行う。つまり、プロセッサ502は、事前配車車両選択処理、事前配車信号生成処理、配車車両選択処理、配車信号生成処理、調停信号生成処理、情報取得処理および送信処理を実行するように構成されまたはプログラムされる。なお、配車機能520および管理機能522は、それぞれ単独で処理を行うものではなく、互いに協調して処理が行われる。調停機能521および管理機能522は、それぞれ単独で処理を行うものではなく、互いに協調して処理が行われる。配車機能520および調停機能521は、それぞれ単独で処理を行うこともでき、互いに協調して処理が行うこともできる。
 ここで、オンデマンド既定ルート自動走行車両フリートコントロール装置501のプロセッサ502が実行する処理の手順について、図7に基づいて説明する。なお、図7に示す処理の手順は、オンデマンド既定ルート自動走行車両フリートコントロール装置501のプロセッサ502が実行する処理の中の1つである。つまり、オンデマンド既定ルート自動走行車両フリートコントロール装置501のプロセッサ502は、図7の処理以外の処理も実行する。
 図7に示すように、オンデマンド既定ルート自動走行車両フリートコントロール装置501は、情報取得処理S101を実行する。情報取得処理S101ではオンデマンド既定ルート自動走行車両フリートコントロール装置501は、情報を取得する(ステップS101)。オンデマンド既定ルート自動走行車両フリートコントロール装置501が取得する情報は、ルート情報、車両位置情報、乗員有無情報、予想乗車位置情報、利用要求情報およびエネルギー情報である。
 ルート情報は、環状接続既定ルート130のマップ情報であり、記憶部503に予め記憶される。
 車両位置情報は、環状接続既定ルート130上の複数のオンデマンド既定ルート自動走行車両100の現在位置の情報である。車両位置情報は、複数のオンデマンド既定ルート自動走行車両100の各々から送信されて、送受信部504が受信する。車両位置情報は、所定間隔ごとに、環状接続既定ルート130上の複数のオンデマンド既定ルート自動走行車両100から送信される。
 乗員有無情報は、環状接続既定ルート130上の複数のオンデマンド既定ルート自動走行車両100の乗員の有無に関連する情報である。乗員有無情報は、複数のオンデマンド既定ルート自動走行車両100の各々から送信されて、送受信部504が受信する。複数のオンデマンド既定ルート自動走行車両100が送信する乗員有無情報は、オンデマンド既定ルート自動走行車両100のシート102に着座する乗員の人数の情報である。なお、オンデマンド既定ルート自動走行車両フリートコントロール装置501では、シート102に着座する乗員が0人の場合は乗員なしとし、シート102に着座する乗員が1~4人の場合は乗員ありとする。乗員有無情報は、シート102に配置された着座検知部で検出した着座する乗員の人数が変化した際に、環状接続既定ルート130上の複数のオンデマンド既定ルート自動走行車両100から送信される。
 予想乗車位置情報は、環状接続既定ルート130上の乗車予定位置になることが予想される予想乗車位置に関連する情報である。予想乗車位置情報は、利用者701に関連する情報、目的地に関連する情報、環境に関連する情報の少なくとも1つの情報に基づいて、利用要求マネジメント装置601で、所定間隔ごとに生成される。
 利用者に関連する情報は、利用者701の過去の利用実績および利用者701の現在位置を含む。利用者701の過去の利用実績の情報は、例えば、利用者701の過去の乗車位置および乗車日時の情報や、降車位置および降車日時の情報である。目的地に関連する情報は、利用者701の過去にオンデマンド既定ルート自動走行車両100を利用したときの目的地または利用者701がこれから行く可能性のある目的地を含む。目的地に関連する情報は、例えば、目的地の場所の情報や、店舗の営業日および営業時間の情報や、イベントの開催日および開催時間の情報である。利用者に関連する情報および目的地に関連する情報は、例えば、宿泊施設のチェックインおよびチェックアウトの統計情報である。環境に関連する情報は、環状接続既定ルート130の環境の情報である。環境の情報は、例えば、雨などの天候の情報である。
 また、予想乗車位置情報には、利用者701の利用要求が行われることが予想される時刻である予想乗車位置利用要求時刻の情報を含む。予想乗車位置利用要求時刻は、利用者701に関連する情報、目的地に関連する情報、環境に関連する情報の少なくとも1つの情報に基づいて、利用要求マネジメント装置601で、所定間隔ごとに生成される。
 また、予想乗車位置情報には、利用者701が降車する予定の降車予定位置になることが予想される位置である予想降車位置の情報を含む。予想降車位置は、予想乗車位置に対応する利用者701の過去の利用実績に基づいて生成される。
 そして、具体的には、環状接続既定ルート上の任意の位置の内、現時点において、利用者701が所定人数以上いる位置が、予想乗車位置として生成される。そして、この場合は、現時点が予想乗車位置利用要求時刻として生成される。また、例えば、利用者701の過去の利用実績から得られた過去の所定の曜日および所定の時間帯において乗車位置になったことがある回数が基準回数以上の位置が、予想乗車位置として生成される。そして、この場合は、当該所定の曜日および所定の時間帯が予想乗車位置利用要求時刻として生成される。また、例えば、特定の日時においてイベントが開催される場合は、イベントの開催地の近傍が予想乗車位置として生成される。そして、この場合は、当該特定の日時が予想乗車位置利用要求時刻として生成される。また、例えば、所定の曜日および所定の時間帯において宿泊施設のチェックインおよびチェックアウトが所定人数以上行われる場合は、宿泊施設のフロントの近傍が予想乗車位置として生成される。そして、この場合は、当該所定の曜日および所定の時間帯が予想乗車位置利用要求時刻として生成される。また、例えば、利用者701がオンデマンド既定ルート自動走行車両100を目的地まで利用した後に雨が降りだした場合は、当該目的地の場所の近傍が予想乗車位置として生成される。そして、この場合は、利用者701がオンデマンド既定ルート自動走行車両100を目的地まで利用してから所定の時間経過後が予想乗車位置利用要求時刻として生成される。
 利用要求情報は、利用者701が乗車する予定の乗車予定位置の情報を含む利用者の利用要求に関連する情報である。本具体例では、利用要求に関連する情報が利用要求情報として、情報端末720から送信されて、利用要求マネジメント装置601が受信する。利用要求マネジメント装置601からオンデマンド既定ルート自動走行車両フリートコントロール装置501に送信される利用要求に関連する情報は、単なる利用を要求する旨および単なる利用を要求する旨が入力された際の情報端末720の現在位置である。または、利用要求マネジメント装置601からオンデマンド既定ルート自動走行車両フリートコントロール装置501に送信される利用要求に関連する情報は、利用者701が指定した乗車指定位置に対応する絶対位置情報を含む。また、本具体例では、目的地指示の情報が利用要求情報として、情報端末720から送信されて、利用要求マネジメント装置601が受信してもよい。利用要求マネジメント装置601からオンデマンド既定ルート自動走行車両フリートコントロール装置501に送信される目的地指示の情報は、利用者701が指定した目的地に対応する絶対位置情報または利用者701が指定した降車指定位置に対応する絶対位置情報である。利用要求情報は、利用者701が情報端末720に利用要求に関連する情報が入力された際に、利用要求マネジメント装置601に送信される。
 エネルギー情報は、環状接続既定ルート130上の複数のオンデマンド既定ルート自動走行車両100のエネルギー残量に関連する情報である。エネルギー情報は、複数のオンデマンド既定ルート自動走行車両100の各々から送信されて、送受信部504が受信する。本具体例では、エネルギー情報オンデマンド既定ルート自動走行車両100のバッテリBのエネルギー残量に関連する情報である。エネルギー情報は、所定間隔ごとに、環状接続既定ルート130上の複数のオンデマンド既定ルート自動走行車両100から送信される。
 オンデマンド既定ルート自動走行車両フリートコントロール装置501は、事前配車車両選択処理を行う。事前配車車両選択処理では、オンデマンド既定ルート自動走行車両フリートコントロール装置501は、取得したルート情報、車両位置情報、乗員有無情報および予想乗車位置情報に基づいて、複数のオンデマンド既定ルート自動走行車両100の中から予想乗車位置に事前に配車する車両を選択する。予想乗車位置に事前に配車する車両は、複数のオンデマンド既定ルート自動走行車両100の内の、乗員が乗っておらず、配車指令信号を受信していない状態の車両の中から選択される(ステップS102)。
 ここで、オンデマンド既定ルート自動走行車両フリートコントロール装置501は、予想降車位置が取得されている場合は、予想乗車位置を経由して予想降車位置まで走行するのに必要なエネルギー残量を有している車両を予想乗車位置に配車するオンデマンド既定ルート自動走行車両100として選択する。
 オンデマンド既定ルート自動走行車両フリートコントロール装置501は、事前配車指令信号生成処理を行う。事前配車指令信号生成処理では、オンデマンド既定ルート自動走行車両フリートコントロール装置501は、取得したルート情報、車両位置情報、乗員有無情報および予想乗車位置情報に基づいて、事前配車指令信号を生成する。事前配車指令信号は、複数のオンデマンド既定ルート自動走行車両100の中から選択された予想乗車位置情報に事前に配車する車両を予想乗車位置に向かって走行させて、予想乗車位置利用要求時刻に予想乗車位置にいるように指示する信号である(ステップS103)。
 オンデマンド既定ルート自動走行車両フリートコントロール装置501は、送信処理を行う。送信処理では、オンデマンド既定ルート自動走行車両フリートコントロール装置501は、生成した事前配車指令信号を複数のオンデマンド既定ルート自動走行車両100の中から選択された予想乗車位置に事前に配車する車両に送信する(ステップS104)。
 オンデマンド既定ルート自動走行車両フリートコントロール装置501は、利用者701が所持する情報端末720から利用要求情報が入力されると(ステップS105:YES)、配車車両選択処理S106~S107を行う。オンデマンド既定ルート自動走行車両フリートコントロール装置501は、利用者701が所持する情報端末720から利用要求情報が入力されなければ(ステップS105:NO)、配車車両選択処理S106~S107は行わない。配車車両選択処理では、オンデマンド既定ルート自動走行車両フリートコントロール装置501は、取得したルート情報、車両位置情報、乗員有無情報、利用要求情報およびエネルギー情報に基づいて、複数のオンデマンド既定ルート自動走行車両100の中から利用要求情報に含まれる乗車予定位置に配車するオンデマンド既定ルート自動走行車両100を選択する(ステップS106)。
 具体的には、オンデマンド既定ルート自動走行車両フリートコントロール装置501は、複数のオンデマンド既定ルート自動走行車両100の中から、乗員が乗っておらず配車指令信号を受信することが可能な車両を、乗車予定位置に配車するオンデマンド既定ルート自動走行車両100として選択する。乗員が乗っておらず配車指令信号を受信することが可能な車両には、事前配車状態の車両も含まれる。乗員が乗っておらず配車指令信号を受信することが可能な車両が複数台存在する場合は、オンデマンド既定ルート自動走行車両フリートコントロール装置501は、例えば、次のようにして、乗車予定位置に配車するオンデマンド既定ルート自動走行車両100を選択する。例えば、オンデマンド既定ルート自動走行車両フリートコントロール装置501は、乗車予定位置まで走行するのに必要なエネルギー残量を有している車両を乗車予定位置に配車するオンデマンド既定ルート自動走行車両100として選択する。また、例えば、オンデマンド既定ルート自動走行車両フリートコントロール装置501は、乗車予定位置まで走行するのに必要なエネルギーより所定値以上多いエネルギー残量を有している車両を乗車予定位置に配車するオンデマンド既定ルート自動走行車両100として選択する。また、例えば、オンデマンド既定ルート自動走行車両フリートコントロール装置501は、降車予定位置が取得されている場合は、乗車予定位置を経由して降車予定位置まで走行するのに必要なエネルギー残量を有している車両を乗車予定位置に配車するオンデマンド既定ルート自動走行車両100として選択する。また、例えば、オンデマンド既定ルート自動走行車両フリートコントロール装置501は、エネルギー残量が所定量より多い車両をオンデマンド既定ルート自動走行車両100として選択する。また、例えば、オンデマンド既定ルート自動走行車両フリートコントロール装置501は、現在位置が乗車予定位置に最も近い車両を乗車予定位置に配車するオンデマンド既定ルート自動走行車両100として選択する。オンデマンド既定ルート自動走行車両フリートコントロール装置501は、エネルギー残量と現在位置に基づいて、乗車予定位置に配車するオンデマンド既定ルート自動走行車両100を選択してもよい。
 なお、複数のオンデマンド既定ルート自動走行車両100の中に、乗員が乗っておらず配車指令信号を受信することが可能な車両が存在しない場合は、オンデマンド既定ルート自動走行車両フリートコントロール装置501は、乗員が乗っている車両の中から乗車予定位置に配車するオンデマンド既定ルート自動走行車両100を選択する。この場合は、例えば、オンデマンド既定ルート自動走行車両フリートコントロール装置501は、配車指令信号に基づいて走行しているオンデマンド既定ルート自動走行車両100のうち、現在位置が降車予定位置に最も近い車両を乗車予定位置に配車するオンデマンド既定ルート自動走行車両100として選択する。また、例えば、オンデマンド既定ルート自動走行車両フリートコントロール装置501は、配車指令信号に基づいて走行しているオンデマンド既定ルート自動走行車両100のうち、降車予定位置が乗車予定位置に最も近い車両を、乗車予定位置に配車するオンデマンド既定ルート自動走行車両100として選択する。オンデマンド既定ルート自動走行車両フリートコントロール装置501は、現在位置と降車予定位置と乗車予定位置に基づいて、乗車予定位置に配車するオンデマンド既定ルート自動走行車両100を選択してもよい。オンデマンド既定ルート自動走行車両フリートコントロール装置501は、エネルギー残量と現在位置と降車予定位置と乗車予定位置に基づいて、乗車予定位置に配車するオンデマンド既定ルート自動走行車両100を選択してもよい。
 さらに、オンデマンド既定ルート自動走行車両フリートコントロール装置501は、取得した乗員有無情報に基づいて、乗車予定人数が1台のオンデマンド既定ルート自動走行車両100に乗車できる最大の人数よりも多いと判断した場合は、複数のオンデマンド既定ルート自動走行車両100の中から利用要求情報に含まれる乗車予定位置に配車するオンデマンド既定ルート自動走行車両100を複数台選択する。
 乗車予定位置に配車するオンデマンド既定ルート自動走行車両100が選択されると、オンデマンド既定ルート自動走行車両フリートコントロール装置501は、乗車予定位置に配車するオンデマンド既定ルート自動走行車両100に対する配車指令信号を生成する(ステップS107)。配車指令信号は、取得したルート情報、車両位置情報、乗員有無情報、利用要求情報およびエネルギー情報に基づいて生成される。配車指令信号は、複数のオンデマンド既定ルート自動走行車両100の中から選択された乗車予定位置に配車する車両を乗車予定位置に配車するための信号である。配車指令信号は、乗車予定位置に配車するオンデマンド既定ルート自動走行車両100の現在位置情報および乗車予定位置の情報に基づいて、乗車予定位置に配車するオンデマンド既定ルート自動走行車両100を、現在位置から乗車予定位置まで走行させて、乗車予定位置で停止させるための指令を含む。配車指令信号は、利用者701により情報端末720に降車予定位置の情報が入力されている場合は、さらに、乗車予定位置に配車するオンデマンド既定ルート自動走行車両100を、乗車予定位置から降車予定位置まで走行させて、降車予定位置で停止させるための指令を含む。また、配車指令信号は、利用者701により情報端末720に走行ルートの情報が入力されている場合は、さらに、乗車予定位置に配車するオンデマンド既定ルート自動走行車両100を、現在位置から乗車予定位置まで走行する際に指定された走行ルートを走行させるための指令を含む。また、配車指令信号は、利用者701により情報端末720に経由予定位置の情報が入力されている場合は、さらに、乗車予定位置に配車するオンデマンド既定ルート自動走行車両100を、現在位置から乗車予定位置まで走行するまでの間に指定された経由予定位置で停止させるための指令を含む。
 配車指令信号は、乗車予定位置に配車する車両として選択されたオンデマンド既定ルート自動走行車両100が、乗員が乗っていない待機状態の車両である場合、待機状態から配車状態に変化する際に待機状態の速度が配車状態の速度よりも小さくなるように指示する信号である。ここで、オンデマンド既定ルート自動走行車両100の車両搭載制御装置115は、待機状態のオンデマンド既定ルート自動走行車両100の速度を、V1と設定する。また、オンデマンド既定ルート自動走行車両100の車両搭載制御装置115は、配車状態のオンデマンド既定ルート自動走行車両100の速度を、V2と設定する。速度V1は、速度V2より小さい。つまり、乗車予定位置に配車する車両として選択されたオンデマンド既定ルート自動走行車両100は、配車指令信号を受信して、待機状態から配車状態に変化する際に待機状態の速度が配車状態の速度よりも小さくなるように制御される。配車指令信号は、乗車予定位置に配車する車両として選択されたオンデマンド既定ルート自動走行車両100が、乗員が乗っている目的地走行状態の車両である場合、目的地走行状態から配車状態に変化する際の目的地走行状態の速度は、配車状態の速度と同じであっても異なってもよいように指示する信号である。ここで、オンデマンド既定ルート自動走行車両100の車両搭載制御装置115は、目的地走行状態のオンデマンド既定ルート自動走行車両100の速度を、V3と設定する。速度V3は、速度V2と同じであってもよいし、異なってもよい。つまり、乗車予定位置に配車するオンデマンド既定ルート自動走行車両100は、配車指令信号を受信して、目的地走行状態から配車状態に変化する際に目的地走行状態の速度が配車状態の速度と同じであっても異なってもよいように制御される。
 なお、オンデマンド既定ルート自動走行車両フリートコントロール装置501は、待機状態のオンデマンド既定ルート自動走行車両100の速度V1を、オンデマンド既定ルート自動走行車両100のエネルギー残量に応じて、エネルギー消費量を抑制する速度になるように制御してもよい。例えば、オンデマンド既定ルート自動走行車両フリートコントロール装置501は、エネルギー情報に基づいて、エネルギー残量が少ないと判断されたオンデマンド既定ルート自動走行車両100に対して、待機状態のオンデマンド既定ルート自動走行車両100の速度V1が0になるように制御する。
 また、オンデマンド既定ルート自動走行車両フリートコントロール装置501は、キャンセル要求に関連する情報を、利用要求を行った利用者701が所持する情報端末720から受信すると、乗車予定位置に配車される車両として選択されたオンデマンド既定ルート自動走行車両100を、配車状態から待機状態に変更されるように制御する。
 また、オンデマンド既定ルート自動走行車両フリートコントロール装置501は、降車要求の情報を、利用要求を行った利用者701が所持する情報端末720から受信すると、利用者701が乗車した目的地走行状態で走行するオンデマンド既定ルート自動走行車両100の走行を停止するように制御する。
 オンデマンド既定ルート自動走行車両フリートコントロール装置501は、配車指令信号生成処理S104が実行されると、送信処理S105を実行する。オンデマンド既定ルート自動走行車両フリートコントロール装置501は、生成された配車指令信号を、乗車予定位置に配車する車両として選択されたオンデマンド既定ルート自動走行車両100に対して送信する(ステップS108)。
 次に、オンデマンド既定ルート自動走行車両フリートコントロール装置501は、配車予定送信処理S109を実行する。オンデマンド既定ルート自動走行車両フリートコントロール装置501は、利用要求マネジメント装置601に対して、乗車予定位置に配車する車両として選択されたオンデマンド既定ルート自動走行車両100の配車予定情報を送信する(ステップS109)。また、配車予定情報を受信した利用要求マネジメント装置601は、配車予定情報を、利用要求情報が入力された情報端末720に送信する。配車予定情報は、複数のオンデマンド既定ルート自動走行車両100の中から選択された乗車予定位置に配車される車両の乗車予定位置への配車の予定に関連する情報である。配車予定情報は、例えば、乗車予定位置に到着する予定の時刻、乗車予定位置に到着するまでの所要時間、乗車予定位置に配車する車両として選択されたオンデマンド既定ルート自動走行車両100の現在位置などの情報が含まれる。配車予定情報は、取得したルート情報、車両位置情報、乗員有無情報、利用要求情報およびエネルギー情報に基づいて、生成される。
 次に、オンデマンド既定ルート自動走行車両フリートコントロール装置501は、第1接続部131aに向かって環状既定ルート131を走行しているオンデマンド既定ルート自動走行車両100および第1接続部131aに向かって接続既定ルート132を走行しているオンデマンド既定ルート自動走行車両100が存在する場合(S110:YES)、調停指令信号生成処理S107を実行する。オンデマンド既定ルート自動走行車両フリートコントロール装置501は、取得したルート情報、車両位置情報、乗員有無情報、利用要求情報およびエネルギー情報に基づいて、調停指令信号生成処理S107を実行するかどうかを判断する。オンデマンド既定ルート自動走行車両フリートコントロール装置501は、現在位置情報に基づいて、第1接続部131aから所定の距離以内の環状既定ルート131にオンデマンド既定ルート自動走行車両100が進入した場合に、第1接続部131aに向かって環状既定ルート131を走行しているオンデマンド既定ルート自動走行車両100が存在すると判断する。オンデマンド既定ルート自動走行車両フリートコントロール装置501は、現在位置情報に基づいて、第1接続部131aから所定の距離以内の接続既定ルート132にオンデマンド既定ルート自動走行車両100が進入した場合に、第1接続部131aに向かって接続既定ルート132を走行しているオンデマンド既定ルート自動走行車両100が存在すると判断する。ここでいう所定の距離とは、オンデマンド既定ルート自動走行車両100が、前障害物検出装置118で車両前方向にある障害物を検出する距離よりも大きい距離である。
 さらに、オンデマンド既定ルート自動走行車両フリートコントロール装置501は、第1接続部131aに向かって走行している2台のオンデマンド既定ルート自動走行車両100が、前障害物検出装置118で車両前方向にある障害物を検出しておらず、障害物の存在に関連する制御が行われない状態である場合に、調停指令信号生成処理S111を実行する。オンデマンド既定ルート自動走行車両フリートコントロール装置501は、第1接続部131aに向かって走行しているこれらのオンデマンド既定ルート自動走行車両100から前障害物検出信号が受信していない場合に、障害物の存在に関連する制御が行われない状態であると判断する。
 オンデマンド既定ルート自動走行車両フリートコントロール装置501が調停指令信号生成処理S111を実行するかどうかを判断する具体例について、図10に基づいて説明する。図10では、環状接続既定ルート130上の第1接続部131aに向かって、オンデマンド既定ルート自動走行車両100Aが環状既定ルート131を走行している。また、環状接続既定ルート130上の第1接続部131aに向かって、オンデマンド既定ルート自動走行車両100Bが接続既定ルート132を走行している。オンデマンド既定ルート自動走行車両フリートコントロール装置501は、以下の条件を満たす場合に、調停指令信号生成処理S107を実行する。1つめの条件は、オンデマンド既定ルート自動走行車両フリートコントロール装置501が、オンデマンド既定ルート自動走行車両100Aおよびオンデマンド既定ルート自動走行車両100Bが、第1接続部131aから所定の距離以内に進入したと判断した場合である。2つめの条件は、オンデマンド既定ルート自動走行車両フリートコントロール装置501が、オンデマンド既定ルート自動走行車両100Aおよびオンデマンド既定ルート自動走行車両100Bから、前障害物検出信号を受信していない場合である。
 調停指令信号生成処理では、オンデマンド既定ルート自動走行車両フリートコントロール装置501は、取得したルート情報、車両位置情報、乗員有無情報、予想乗車位置情報、利用要求情報およびエネルギー情報に基づいて、調停指令信号を生成する。調停指令信号は、第1接続部131aに向かって走行している2台のオンデマンド既定ルート自動走行車両100が、第1接続部を通過する順番を決定する信号である。
 オンデマンド既定ルート自動走行車両フリートコントロール装置501は、第1接続部を通過する順番を、例えばオンデマンド既定ルート自動走行車両100の走行状態に基づいて、以下のように決定する。例えば、第1接続部131aに向かって走行している2台のオンデマンド既定ルート自動走行車両100が、配車状態のオンデマンド既定ルート自動走行車両100および事前配車状態のオンデマンド既定ルート自動走行車両100の場合、第1接続部131aを、事前配車状態のオンデマンド既定ルート自動走行車両100を、配車状態のオンデマンド既定ルート自動走行車両100の後に通過させる。また、例えば、第1接続部131aに向かって走行している2台のオンデマンド既定ルート自動走行車両100が、目的地走行状態のオンデマンド既定ルート自動走行車両100および事前配車状態のオンデマンド既定ルート自動走行車両100の場合、第1接続部131aを、事前配車状態のオンデマンド既定ルート自動走行車両100を、目的地走行状態のオンデマンド既定ルート自動走行車両100の後に通過させる。また、第1接続部131aに向かって走行している2台のオンデマンド既定ルート自動走行車両100が、配車状態のオンデマンド既定ルート自動走行車両100および待機状態のオンデマンド既定ルート自動走行車両100の場合、第1接続部131aを、待機状態のオンデマンド既定ルート自動走行車両100を、配車状態のオンデマンド既定ルート自動走行車両100の後に通過させる。また、例えば、第1接続部131aに向かって走行している2台のオンデマンド既定ルート自動走行車両100が、目的地走行状態のオンデマンド既定ルート自動走行車両100および待機状態のオンデマンド既定ルート自動走行車両100の場合、第1接続部131aを、待機状態のオンデマンド既定ルート自動走行車両100を、目的地走行状態のオンデマンド既定ルート自動走行車両100の後に通過させる。第1接続部131aに向かって走行している2台のオンデマンド既定ルート自動走行車両100が、配車状態のオンデマンド既定ルート自動走行車両100および目的地走行状態のオンデマンド既定ルート自動走行車両100の場合、第1接続部131aを、配車状態のオンデマンド既定ルート自動走行車両100を、目的地走行状態のオンデマンド既定ルート自動走行車両100の後に通過させる。第1接続部131aに向かって走行している2台のオンデマンド既定ルート自動走行車両100が、両方とも、事前配車状態のオンデマンド既定ルート自動走行車両100の場合、第1接続部131aを、第1接続部131aから乗車予定位置までの距離が短い方のオンデマンド既定ルート自動走行車両100を、第1接続部131aから乗車予定位置までの距離が長い方のオンデマンド既定ルート自動走行車両100の後に通過させる。第1接続部131aに向かって走行している2台のオンデマンド既定ルート自動走行車両100が、両方とも、配車状態のオンデマンド既定ルート自動走行車両100の場合、第1接続部131aを、第1接続部131aから乗車予定位置までの距離が短い方のオンデマンド既定ルート自動走行車両100を、第1接続部131aから乗車予定位置までの距離が長い方のオンデマンド既定ルート自動走行車両100の後に通過させる。第1接続部131aに向かって走行している2台のオンデマンド既定ルート自動走行車両100が、両方とも、目的地走行状態のオンデマンド既定ルート自動走行車両100の場合、第1接続部131aを、第1接続部131aから降車予定位置までの距離が短い方のオンデマンド既定ルート自動走行車両100を、第1接続部131aから降車予定位置までの距離が長い方のオンデマンド既定ルート自動走行車両100の後に通過させる。第1接続部131aに向かって走行している2台のオンデマンド既定ルート自動走行車両100が、両方とも、待機状態のオンデマンド既定ルート自動走行車両100の場合、第1接続部131aを、第1接続部131aから現在位置までの距離が長い方のオンデマンド既定ルート自動走行車両100を、第1接続部131aから現在位置までの距離が短い方のオンデマンド既定ルート自動走行車両100の後に通過させる。また、例えば、第1接続部131aに向かって走行している2台のオンデマンド既定ルート自動走行車両100のエネルギー残量が異なる場合、第1接続部131aを、エネルギー残量が多い方のオンデマンド既定ルート自動走行車両100を、エネルギー残量が少ない方のオンデマンド既定ルート自動走行車両100の後に通過させる。
 調停指令信号は、第1接続部131aに向かって走行している2台のオンデマンド既定ルート自動走行車両100のうち、第1接続部を通過する順番が2番であるオンデマンド既定ルート自動走行車両100の速度を、第1接続部を通過する順番が1番であるオンデマンド既定ルート自動走行車両100の速度よりも小さくなるように指示する信号である。
 オンデマンド既定ルート自動走行車両フリートコントロール装置501が調停指令信号を生成する処理の具体例について、図10に基づいて説明する。図10に示すように、環状接続既定ルート130上の第1接続部131aに向かって、オンデマンド既定ルート自動走行車両100Aが環状既定ルート131を走行している。環状接続既定ルート130上の第1接続部131aに向かって、オンデマンド既定ルート自動走行車両100Cが接続既定ルート132を走行している。オンデマンド既定ルート自動走行車両100Dは、利用者701Cの利用要求に基づいて生成された配車指令信号を受信して、配車状態で走行している。オンデマンド既定ルート自動走行車両100Cは、待機状態で走行している。オンデマンド既定ルート自動走行車両フリートコントロール装置501は、第1接続部131aを、待機状態のオンデマンド既定ルート自動走行車両100Cが、配車状態のオンデマンド既定ルート自動走行車両100Dの後に通過するように、待機状態のオンデマンド既定ルート自動走行車両100Cに対する調停指令信号を生成する。調停指令信号は、配車状態のオンデマンド既定ルート自動走行車両100Dが第1接続部131aを通過する際に、待機状態のオンデマンド既定ルート自動走行車両100Cが第1接続部131aに進入しないように、調停状態のオンデマンド既定ルート自動走行車両100の速度V4を設定する信号である。
 オンデマンド既定ルート自動走行車両フリートコントロール装置501は、調停指令信号生成処理S111が実行されると、送信処理S108を実行する。オンデマンド既定ルート自動走行車両フリートコントロール装置501は、生成された調停指令信号を、第1接続部131aに向かって走行している2台のオンデマンド既定ルート自動走行車両100のうち、第1接続部を通過する順番が2番であるオンデマンド既定ルート自動走行車両100に対して送信する(ステップS112)。図10の例では、オンデマンド既定ルート自動走行車両フリートコントロール装置501は、生成された調停指令信号を、待機状態のオンデマンド既定ルート自動走行車両100Cに対して送信する。
 なお、図6に示すオンデマンド既定ルート自動走行車両フリートコントロール装置501の管理機能522は、取得したルート情報、車両位置情報、乗員有無情報、予想乗車位置情報、利用要求情報およびエネルギー情報に基づいて、環状接続既定ルート130を走行する複数のオンデマンド既定ルート自動走行車両100全体の走行を制御する処理を行う。
 例えば、オンデマンド既定ルート自動走行車両フリートコントロール装置501の管理機能522は、配車機能520および調停機能521の処理が行われたことにより、環状接続既定ルート130を走行する複数のオンデマンド既定ルート自動走行車両100の中の少なくとも1台のオンデマンド既定ルート自動走行車両100の走行予定ルートが変更された場合に次の処理を行う。オンデマンド既定ルート自動走行車両フリートコントロール装置501の管理機能522は、オンデマンド既定ルート自動走行車両100の変更された走行予定ルートに基づいて、環状接続既定ルート130を走行する複数のオンデマンド既定ルート自動走行車両100全体の走行を制御する処理を行う。
 また、例えば、オンデマンド既定ルート自動走行車両フリートコントロール装置501の管理機能522は、降車予定位置で利用者が降車して待機状態となった際に、オンデマンド既定ルート自動走行車両100の走行を開始させ、接続既定ルート132に移動させるように制御してもよい。また、例えば、オンデマンド既定ルート自動走行車両フリートコントロール装置501の管理機能522は、乗車予定位置に到着して乗員を乗車させた後、目的地が設定されていない場合において、その車両の走行を停止させるように制御してもよい。または、オンデマンド既定ルート自動走行車両フリートコントロール装置501の管理機能522は、乗車予定位置に到着して乗員を乗車させた後、目的地が設定されていない場合において、その車両以外のオンデマンド既定ルート自動走行車両100が走行するルートを避けるように調整して、走行を開始させるように制御してもよい。
 また、オンデマンド既定ルート自動走行車両フリートコントロール装置501のプロセッサ502は、充電管理機能(図示せず)を有する。充電管理機能では、オンデマンド既定ルート自動走行車両フリートコントロール装置501が取得した複数のオンデマンド既定ルート自動走行車両100のエネルギー情報に基づいて、エネルギー補充処理を行う。エネルギー補充処理では、オンデマンド既定ルート自動走行車両フリートコントロール装置501は、エネルギー残量が所定の値以下であるオンデマンド既定ルート自動走行車両100を検出した場合に、エネルギー残量が所定の値以下であるオンデマンド既定ルート自動走行車両100のエネルギーを補充するために、この車両の走行を制御する。具体的には、オンデマンド既定ルート自動走行車両フリートコントロール装置501は、エネルギー残量が所定の値以下であるオンデマンド既定ルート自動走行車両100を充電ステーションに向かって走行させるように制御する。
<利用要求マネジメント装置の構成>
 図11は、実施形態の具体例に係るオンデマンド既定ルート自動走行車両フリートコントロール装置501および利用要求マネジメント装置の構成を示すブロック図である。
 図11に示すように、利用要求マネジメント装置601は、オンデマンド既定ルート自動走行車両フリートコントロール装置501と情報を送受信可能に構成される。オンデマンド既定ルート自動走行車両フリートコントロール装置501は、フリートコントロールシステム(Fleet Control System)ともいう。また、利用要求マネジメント装置601は、マスシステム(Maas System)ともいう。オンデマンド既定ルート自動走行車両フリートコントロール装置501および利用要求マネジメント装置601は、WebAPI(Application Programming Interface)により、通信可能に構成される。利用要求マネジメント装置601は、利用者701(701A、701B、701C)が所持する情報端末720(720A~720C)と情報を送受信可能に構成される。オンデマンド既定ルート自動走行車両フリートコントロール装置501および利用要求マネジメント装置601は、コントローラサーバシステム610を構成する。コントローラサーバシステム610は、物理的に、複数の装置であるオンデマンド既定ルート自動走行車両フリートコントロール装置501および利用要求マネジメント装置601で構成される。
 なお、図11では、1つのオンデマンド既定ルート自動走行車両フリートコントロール装置501が、1つの利用要求マネジメント装置601と情報を送受信可能に構成されるが、それに限らない。1つのオンデマンド既定ルート自動走行車両フリートコントロール装置501が、複数の利用要求マネジメント装置601と情報を送受信可能に構成されてよい。そして、複数の利用要求マネジメント装置601はそれぞれ、複数の利用者701が所持する情報端末720と情報を送受信可能に構成されてよい。
 利用要求マネジメント装置601は、図示しないプロセッサ、記憶部、送受信部を備える。送受信部は、オンデマンド既定ルート自動走行車両フリートコントロール装置501および情報端末720と情報を送受信可能に構成される。送受信部は、例えばダイポールアンテナなどのアンテナである。なお、利用要求マネジメント装置601は、物理的に、1つの装置として構成されても良いし、複数の装置として構成されても良い。利用要求マネジメント装置601が物理的に複数の装置として構成される場合、それぞれの装置が、演算部および記憶部とを備える。利用要求マネジメント装置601は、操作端末650と情報を送受信可能に接続される。操作端末650は、オペレータ651により操作される。
 利用要求マネジメント装置601は、管理アプリケーション630およびサービスアプリケーション631が記憶部に記憶されて、プロセッサにより実行される。
 管理アプリケーション630は、オンデマンド既定ルート自動走行車両フリートコントロール装置501と利用要求マネジメント装置601との間の情報のやりとりを管理し、操作端末650に情報を提供するためのアプリケーションである。管理アプリケーション630は、オンデマンド既定ルート自動走行車両フリートコントロール装置501のマネジメント機能522と情報を送受信する。管理アプリケーション630で取得する情報は、利用要求マネジメント装置601を操作するオペレータ651が任意で設定できる。なお、管理アプリケーション630は、利用要求マネジメント装置601の利用目的に応じて、操作端末650に情報を提供することができる。
 サービスアプリケーション631は、情報端末720を介して利用者701に様々なサービスを提供するためのアプリケーションである。管理アプリケーション630は、オンデマンド既定ルート自動走行車両フリートコントロール装置501の配車機能520と情報を送受信する。サービスアプリケーション631は、情報端末720から入力された利用者701の利用要求を受信したときに、利用要求情報を、オンデマンド既定ルート自動走行車両フリートコントロール装置501に送信する。この変形例では、図8に示す利用者701の利用要求に関連する情報が、情報端末720と利用要求マネジメント装置601との間で送受信される。そして、利用要求マネジメント装置601は、情報端末720との間でやり取りした利用者701の利用要求に関連する情報を、利用要求情報として、オンデマンド既定ルート自動走行車両フリートコントロール装置501に送信する。なお、サービスアプリケーション631は、利用要求マネジメント装置601の利用目的に応じて、操作端末650から入力できる情報および提供できる情報を設定することができる。
 利用要求マネジメント装置601は、利用者701に関連する情報、目的地に関連する情報、環境に関連する情報の少なくとも1つの情報に基づいて、予想乗車位置情報を、所定間隔ごとに生成する。利用要求マネジメント装置601は、生成した予想乗車位置情報を、オンデマンド既定ルート自動走行車両フリートコントロール装置501に送信する。
 オンデマンド既定ルート自動走行車両フリートコントロール装置501は、図7に示す情報取得処理S101において、利用要求マネジメント装置601で生成されて送信された予想乗車位置情報を取得する。
 利用要求マネジメント装置601は、利用要求情報を、利用者701によって情報端末720に利用要求に関連する情報が入力された際に受信する。利用要求マネジメント装置601は、受信した利用要求情報を、オンデマンド既定ルート自動走行車両フリートコントロール装置501に送信する。
 オンデマンド既定ルート自動走行車両フリートコントロール装置501は、図7に示す情報取得処理S101において、利用要求情報を、利用要求マネジメント装置601から取得する。
 オンデマンド既定ルート自動走行車両フリートコントロール装置501は、図7に示す配車指令信号生成処理S104において、利用要求マネジメント装置601が受信した利用要求に含まれる利用者の乗車予定位置に向かって走行するように、複数のオンデマンド既定ルート自動走行車両100の中から選択された乗車予定位置に配車する車両の走行を指令する配車指令信号を生成する。
 オンデマンド既定ルート自動走行車両フリートコントロール装置501から配車指令信号を受信したオンデマンド既定ルート自動走行車両100の車両搭載制御装置115は、次のように制御する。オンデマンド既定ルート自動走行車両100の車両搭載制御装置115は、配車指令信号に基づいて、利用要求マネジメント装置601が受信した利用要求に含まれる利用者の乗車予定位置に向かって走行するように、駆動機構112、制動機構113および進行方向制御機構114を制御する。
 オンデマンド既定ルート自動走行車両フリートコントロール装置501および利用要求マネジメント装置601の論理アーキテクチャの一例を、図12Aに示す。図12Aに示すように、オンデマンド既定ルート自動走行車両フリートコントロール装置501は、複数の利用要求マネジメント装置601とAPIで接続されて、情報を送受信可能に構成される。オンデマンド既定ルート自動走行車両フリートコントロール装置501では、3つのレイヤー(Layer)に分けて処理を行う。そして、異なる特性を有する複数の情報を並行して処理できるように構成している。例えば、オンデマンド既定ルート自動走行車両100とオンデマンド既定ルート自動走行車両フリートコントロール装置501で扱われる情報の内、複数のオンデマンド既定ルート自動走行車両100に対して送信する調停指令信号に関連する情報は、Speed Layer Data BaseおよびSpeed Eventによって高速に処理される。これにより、オンデマンド既定ルート自動走行車両フリートコントロール装置501の処理の負荷を軽減すると共に、処理を高速に行うことができる。
 図12Aの論理アーキテクチャに基づいて構成したオンデマンド既定ルート自動走行車両フリートコントロール装置501および利用要求マネジメント装置601の一例を、図12Bに示す。図12Bに示すように、この例では、図12Aの論理アーキテクチャを、クラウドのPaaS(Platform as a Service)上に構成している。例えば、Speed Layer DatabaseおよびSpeed EventをPaaS上に構成して、高速に処理を行う。図12Aの論理アーキテクチャを、クラウドのPaaS上に構成することにより、オンデマンド既定ルート自動走行車両100の走行の制御を高速に行うことができる。これにより、オンデマンド既定ルート自動走行車両フリートコントロール装置501で制御できるオンデマンド既定ルート自動走行車両100の台数が増える。そして、オンデマンド既定ルート自動走行車両100の利用要求を行った利用者701の待ち時間を短縮することができる。また、オンデマンド既定ルート自動走行車両100の走行の多様な制御が可能になる。なお、オンデマンド既定ルート自動走行車両100およびオンデマンド既定ルート自動走行車両フリートコントロール装置501との間は、例えば、高いセキュリティを持つVPC(Virtual Private Cloud)によって、情報を送受信可能に構成すること好ましい。これにより、オンデマンド既定ルート自動走行車両100のハッキングを防ぐことができる。
 利用要求マネジメント装置601とオンデマンド既定ルート自動走行車両フリートコントロール装置501がWebAPIで接続されて、情報を送受信可能に構成されているため、操作端末650は、利用要求マネジメント装置601から様々な情報を取得できる。操作端末650が取得可能な情報は、例えば、利用者701の認証、オンデマンド既定ルート自動走行車両100に対する各種指令、オンデマンド既定ルート自動走行車両100の利用状況などの情報である。
 利用要求マネジメント装置601でAPIを利用して実行されるサービスアプリケーション631の一例を示す。サービスアプリケーション631は、利用者701の利用要求に応じて、オンデマンド既定ルート自動走行車両フリートコントロール装置501によりオンデマンド既定ルート自動走行車両100の配車を行うためのアプリケーションである。サービスアプリケーション631は、利用者701の認証機能を有する。図13A~図13Cは、サービスアプリケーション631における、利用者701の利用要求および認証の情報の流れの一例を示す。つまり、図13A~図13Cは、利用者701の情報端末720、利用要求マネジメント装置601およびオンデマンド既定ルート自動走行車両フリートコントロール装置501における、利用者701の利用要求および認証の情報の流れの一例を示す。利用者701の認証は、利用者701の識別番号に基づいた認証である。
 図13Aでは、利用要求マネジメント装置601Aとオンデマンド既定ルート自動走行車両フリートコントロール装置501AとがAPIで接続されて、情報を送受信可能に構成される。図13Aでは、利用者701の識別情報に関連する情報がオンデマンド既定ルート自動走行車両フリートコントロール装置501に予め記憶される。なお、利用者701の識別情報に関連する情報には、利用者701の識別情報、利用者701の利用実績に基づく課金の情報が含まれてもよい。利用者701の利用要求は、情報端末720から利用要求マネジメント装置601に送信される。利用要求情報は、APIを介して利用要求マネジメント装置601からオンデマンド既定ルート自動走行車両フリートコントロール装置501に送信される。利用者701の識別情報は、情報端末720からオンデマンド既定ルート自動走行車両フリートコントロール装置501に送信される。そして、情報端末720とオンデマンド既定ルート自動走行車両フリートコントロール装置501との間で、利用者701の認証(図13A中の「ユーザ認証」)が行われる。利用者701が認証されると、APIを介してオンデマンド既定ルート自動走行車両フリートコントロール装置501は、利用要求マネジメント装置601から利用者の現在位置の情報などを含む利用要求情報を取得する。そして、オンデマンド既定ルート自動走行車両フリートコントロール装置501によりオンデマンド既定ルート自動走行車両100の配車が行われる。
 図13Bでは、利用要求マネジメント装置601Bとオンデマンド既定ルート自動走行車両フリートコントロール装置501BとがAPIで接続されて、情報を送受信可能に構成される。図13Bでは、利用者701の識別情報に関連する情報が利用要求マネジメント装置601に予め記憶される。利用者701の利用要求および利用者701の識別情報は、情報端末720から利用要求マネジメント装置601に送信される。そして、情報端末720と利用要求マネジメント装置601との間で、利用者701の認証(図13B中の「ユーザ認証」)が行われる。利用者701が認証されると、APIを介してオンデマンド既定ルート自動走行車両フリートコントロール装置501は、利用要求マネジメント装置601から利用者の現在位置の情報などを含む利用要求情報を取得する。そして、オンデマンド既定ルート自動走行車両フリートコントロール装置501によりオンデマンド既定ルート自動走行車両100の配車が行われる。
 図13Cでは、利用要求マネジメント装置601Cとオンデマンド既定ルート自動走行車両フリートコントロール装置501CとがAPIで接続されて、情報を送受信可能に構成される。図13Cでは、利用要求マネジメント装置601Cの識別情報に関連する情報がオンデマンド既定ルート自動走行車両フリートコントロール装置501に予め記憶される。利用者701の利用要求は、情報端末720から利用要求マネジメント装置601に送信される。利用要求情報は、APIを介して利用要求マネジメント装置601からオンデマンド既定ルート自動走行車両フリートコントロール装置501に送信される。利用要求マネジメント装置601Cの識別情報は、利用要求マネジメント装置601からオンデマンド既定ルート自動走行車両フリートコントロール装置501に送信される。そして、利用要求マネジメント装置601とオンデマンド既定ルート自動走行車両フリートコントロール装置501との間で、利用要求マネジメント装置601Cの認証(図13C中の「ユーザ認証」)が行われる。利用要求マネジメント装置601Cが認証されると、APIを介してオンデマンド既定ルート自動走行車両フリートコントロール装置501は、利用要求マネジメント装置601から利用者の現在位置の情報などを含む利用要求情報を取得する。そして、オンデマンド既定ルート自動走行車両フリートコントロール装置501においてオンデマンド既定ルート自動走行車両100の配車が行われる。
 利用要求マネジメント装置601で実行される管理アプリケーション630の一例を示す。管理アプリケーション630は、オンデマンド既定ルート自動走行車両100を管理するオンデマンド既定ルート自動走行車両フリートコントロール装置501から情報を取得するためのアプリケーションである。以下、図14A~図14Cを参照しつつ、管理アプリケーション630において、オンデマンド既定ルート自動走行車両フリートコントロール装置501から取得できる情報の一例について説明する。図14A~図14Cに示すように、管理アプリケーション630は、オンデマンド既定ルート自動走行車両フリートコントロール装置501から取得した情報を、操作端末650の表示画面652に表示する。
 図14Aでは、オンデマンド既定ルート自動走行車両フリートコントロール装置501からオンデマンド既定ルート自動走行車両100の車両情報を取得して表示する一例を示す。図14Aに示すように、管理アプリケーション630は、車両情報として、オンデマンド既定ルート自動走行車両フリートコントロール装置501が管理するオンデマンド既定ルート自動走行車両100の車両一覧661および車両運行マップ662を表示画面652に表示する。車両一覧661には、車両IDおよび車両状態(車両の走行状態)などを含む情報が表示される。また、車両運行マップ662は、環状接続既定ルート130を模式的に示したマップ663を含む。このマップ663に対して、複数のオンデマンド既定ルート自動走行車両100の環状接続既定ルート130上の位置が、車両位置表示664として示されている。
 図14Bでは、オンデマンド既定ルート自動走行車両フリートコントロール装置501からオンデマンド既定ルート自動走行車両100の利用明細を取得して表示する一例を示す。図14Bに示すように、管理アプリケーション630は、利用明細情報として、オンデマンド既定ルート自動走行車両フリートコントロール装置501が管理するオンデマンド既定ルート自動走行車両100の利用明細672を表示画面652に表示する。利用明細672には、オンデマンド既定ルート自動走行車両フリートコントロール装置501におけるオンデマンド既定ルート自動走行車両100の利用実績が表示される。オンデマンド既定ルート自動走行車両100の利用実績として、オンデマンド既定ルート自動走行車両100ごとの利用回数および累計時間が表示される。累計時間は、オンデマンド既定ルート自動走行車両100が利用された時間の合計である。なお、図14Bの例では、オンデマンド既定ルート自動走行車両フリートコントロール装置501で管理するオンデマンド既定ルート自動走行車両100が23台あるものとして表示している。オンデマンド既定ルート自動走行車両100の利用実績は、オペレータ651により入力された利用年月日の所定範囲で検索することができる。また、オンデマンド既定ルート自動走行車両100の利用実績は、オペレータ651により入力された累計時間の所定範囲で検索することができる。
 図14Cでは、オンデマンド既定ルート自動走行車両フリートコントロール装置501からオンデマンド既定ルート自動走行車両100を利用するユーザ情報を取得して表示する一例を示す。図14Cに示すように、管理アプリケーション630は、ユーザ情報として、オンデマンド既定ルート自動走行車両100を利用する利用者701のユーザ一覧680を表示画面652に表示する。ユーザ一覧680には、ユーザID、年代、性別、配車サービス利用回数、車両利用時間、最新配車サービス利用日時および最新の目的地が表示される。なお、ユーザIDは、利用者701の識別情報の一例である。配車サービス利用回数は、利用者701がオンデマンド既定ルート自動走行車両フリートコントロール装置501に利用要求を送信した回数である。車両利用時間は、利用者701がオンデマンド既定ルート自動走行車両100に乗車していた累計の時間である。最新配車サービス利用日時は、最後に利用者701がオンデマンド既定ルート自動走行車両フリートコントロール装置501に利用要求を送信した時間である。最新の目的地は、最後に利用者701が送信した利用要求に含まれる降車予定位置である。
 本発明の実施形態の具体例のオンデマンド既定ルート自動走行車両フリートコントロール装置501は、上述した本発明の実施形態のオンデマンド既定ルート自動走行車両フリートコントロール装置501の効果に加えて、以下の効果を奏する。
 利用要求マネジメント装置601および情報端末720で、配車予定情報が取得される。そして、利用要求マネジメント装置601および情報端末720で、利用者701の利用目的に応じて乗車予定位置への配車の予定に関連する情報を用いることができる。例えば、利用要求マネジメント装置601および情報端末720で、乗車予定位置への配車の予定に関連する情報を表示したり、乗車予定位置への配車の予定に関連する情報に基づいた利用者に対するサービス情報を表示したりすることができる。これにより、利用要求マネジメント装置601は、エリアによって異なる利用者701の利用目的に応じて利用者701の利用要求をマネジメントすることができる。
 従って、本具体例のオンデマンド既定ルート自動走行車両フリートコントロール装置501は、より多様なエリアで利用可能にすると共に、ハードウェアリソースの増加を抑えることができる。
 オンデマンド既定ルート自動走行車両100は、少なくとも1つの環状既定ルート131と、環状既定ルート131に行き来可能な少なくとも1つの接続既定ルート132とを有する環状接続既定ルート130を走行する。環状既定ルート131と行き来可能な接続既定ルート132は増やすことができる。オンデマンド既定ルート自動走行車両フリートコントロール装置501は、配車指令信号に基づいて乗員が乗っていない待機状態から配車状態に変化する際に、待機状態の速度が配車状態の速度よりも小さくなるように、オンデマンド既定ルート自動走行車両100の走行を指令する配車指令信号を生成する。配車指令信号は、ルート情報、車両位置情報、乗員有無情報、利用要求情報に基づいて、オンデマンド既定ルート自動走行車両フリートコントロール装置501で生成される。つまり、乗員の有無に応じて選択されたオンデマンド既定ルート自動走行車両100が、乗車予定位置に配車される。環状接続既定ルート130は、環状既定ルート131と行き来可能な接続既定ルート132を有するため、乗員が乗っていない待機状態のオンデマンド既定ルート自動走行車両100を常時循環走行させずに、環状接続既定ルート130において分散して待機させることができる。これにより、乗員が乗っていない待機状態のオンデマンド既定ルート自動走行車両100のエネルギーの消費を低くできる。つまり、エネルギー消費を抑制するようにオンデマンド既定ルート自動走行車両100の走行を制御することができる。つまり、複数のオンデマンド既定ルート自動走行車両100のエネルギーの消費の合計を低くできる。そして、複数のオンデマンド既定ルート自動走行車両100のエネルギーを補給する回数を減らすことができる。そして、オンデマンド既定ルート自動走行車両フリートコントロール装置501のハードウェアリソースの増加を抑制することができる。
 従って、本具体例のオンデマンド既定ルート自動走行車両フリートコントロール装置501は、多様なエリアで利用可能にすると共に、ハードウェアリソースの増加をより抑えることができる。
 オンデマンド既定ルート自動走行車両100は、少なくとも1つの環状既定ルート131と、環状既定ルート131に行き来可能な少なくとも1つの接続既定ルート132とを有する環状接続既定ルート130を走行する。環状既定ルート131と行き来可能な接続既定ルート132は増やすことができる。オンデマンド既定ルート自動走行車両フリートコントロール装置501は、事前配車指令信号に基づいて、環状接続既定ルート130上の利用者701が乗車する予定の乗車予定位置になることが予想される予想乗車位置に移動するように、オンデマンド既定ルート自動走行車両100の走行を指令する事前配車指令信号を生成する。事前配車指令信号は、ルート情報、車両位置情報、乗員有無情報、予想乗車位置に基づいて、オンデマンド既定ルート自動走行車両フリートコントロール装置501で生成される。オンデマンド既定ルート自動走行車両100を事前配車すると、オンデマンド既定ルート自動走行車両100を事前配車せず配車指令信号を受信してから配車する場合に比べて、エネルギーの効率のよい車両の運行の制御が可能となる。エネルギーの効率のよい車両の運行の制御とは、例えば、次のケースである。例えば、事前配車指令信号を受信したオンデマンド既定ルート自動走行車両100を、エネルギー消費量が少ない速度で走行させたり、渋滞しないようなルートで走行させたりするように制御するケースである。これにより、事前配車指令信号を受信したオンデマンド既定ルート自動走行車両100のエネルギーの消費を低くできる。つまり、エネルギー消費を抑制するようにオンデマンド既定ルート自動走行車両100の走行を制御することができる。つまり、複数のオンデマンド既定ルート自動走行車両100のエネルギーの消費の合計を低くできる。そして、複数のオンデマンド既定ルート自動走行車両100のエネルギーを補給する回数を減らすことができる。そして、オンデマンド既定ルート自動走行車両フリートコントロール装置501のハードウェアリソースの増加を抑制することができる。
 従って、本具体例のオンデマンド既定ルート自動走行車両フリートコントロール装置501は、多様なエリアで利用可能にすると共に、ハードウェアリソースの増加をより抑えることができる。
 利用者に関連する情報、目的地に関連する情報、環境に関連する情報の少なくとも1つの情報に基づいて生成された予想乗車位置情報に基づいて、オンデマンド既定ルート自動走行車両100が予想乗車位置に事前に配車される。環状接続既定ルート130は、走行可能なエリア140の中の予め決められた既定ルートである。つまり、環状接続既定ルート130のエリアは走行可能なエリア140内に限定されており、比較的小さい。このため、環状接続既定ルート130のエリア内の利用者701に関連する情報は、走行可能なエリア140内に限定されており、比較的数が少ないため集めやすい。環状接続既定ルート130のエリア内の目的地に関連する情報は、走行可能なエリア140内に限定されており、比較的数が少ないため集めやすい。環状接続既定ルート130のエリア内の環境に関連する情報は、走行可能なエリア140内に限定されており、比較的数が少ないため集めやすい。そして、環状接続既定ルート130のエリアは走行可能なエリア140内に限定されており、比較的、利用者が乗車することが予想される位置を予測しやすい。
 そのため、オンデマンド既定ルート自動走行車両100は、配車指令信号を受信してから移動する場合に比べて、エネルギーの効率がよりよい車両の運行の制御が可能となる。これにより、配車指令信号を受信していない状態のオンデマンド既定ルート自動走行車両100のエネルギーの消費をより低くできる。それにより、エネルギー消費を抑制するようにオンデマンド既定ルート自動走行車両100の走行を制御することができる。つまり、複数のオンデマンド既定ルート自動走行車両100のエネルギーの消費の合計を低くできる。そして、複数のオンデマンド既定ルート自動走行車両100のエネルギーを補給する回数を減らすことができる。そして、オンデマンド既定ルート自動走行車両フリートコントロール装置501のハードウェアリソースの増加を抑制することができる。
 従って、本具体例のオンデマンド既定ルート自動走行車両フリートコントロール装置501は、多様なエリアで利用可能にすると共に、ハードウェアリソースの増加をより抑えることができる。
 予想乗車位置情報および予想乗車位置利用要求時刻に基づいて、オンデマンド既定ルート自動走行車両100が予想乗車位置に事前に配車される。環状接続既定ルート130は、走行可能なエリア140の中の予め決められた既定ルートである。つまり、環状接続既定ルート130のエリアは走行可能なエリア内に限定されており、比較的小さい。このため、環状接続既定ルート130のエリアは走行可能なエリア140内に限定されており、比較的、予想乗車位置で利用者の利用要求が行われることが予想される時刻である予想乗車位置利用要求時刻が予測しやすい。
 そのため、予想乗車位置と予想乗車位置利用時刻に基づいてオンデマンド既定ルート自動走行車両100を事前配車すると、予想乗車位置のみに基づいてオンデマンド既定ルート自動走行車両100を事前配車する場合に比べて、エネルギーの効率がよりよい車両の運行の制御が可能となる。これにより、配車指令信号を受信していない状態のオンデマンド既定ルート自動走行車両100のエネルギーの消費をより低くできる。それにより、エネルギー消費を抑制するようにオンデマンド既定ルート自動走行車両100の走行を制御することができる。つまり、複数のオンデマンド既定ルート自動走行車両100のエネルギーの消費の合計を低くできる。そして、複数のオンデマンド既定ルート自動走行車両100のエネルギーを補給する回数を減らすことができる。そして、オンデマンド既定ルート自動走行車両フリートコントロール装置501のハードウェアリソースの増加を抑制することができる。
 従って、本具体例のオンデマンド既定ルート自動走行車両フリートコントロール装置501は、多様なエリアで利用可能にすると共に、ハードウェアリソースの増加をより抑えることができる。
 調停指令信号は、例えば次のケースで、オンデマンド既定ルート自動走行車両100Cに送信される。例えば、オンデマンド既定ルート自動走行車両100Cは、待機状態の車両であり、オンデマンド既定ルート自動走行車両100Aは、配車状態の車両であるケースである。第1接続部131aに向かって環状既定ルート131を走行するオンデマンド既定ルート自動走行車両100Aがいる場合に、第1接続部131aに向かって接続既定ルート132を走行するオンデマンド既定ルート自動走行車両100Cは、受信した調停指令信号に基づいて、減速または停車する。つまり、第1接続部131aに向かって環状既定ルート131を走行するオンデマンド既定ルート自動走行車両100Aがいる場合に、第1接続部131aに向かって接続既定ルート132を走行するオンデマンド既定ルート自動走行車両100Cは、調停指令信号に基づいて、第1接続部131aを通過する順番がオンデマンド既定ルート自動走行車両100Aの後になるように待機する。第1接続部131aに向かって環状既定ルート131を走行するオンデマンド既定ルート自動走行車両100Aは、第1接続部131aに向かって接続既定ルート132を走行するオンデマンド既定ルート自動走行車両100Cよりも先に第1接続部131aを通過する。
 これにより、第1接続部131aに向かって環状既定ルート131を走行するオンデマンド既定ルート自動走行車両100Aおよび第1接続部131aに向かって接続既定ルート132を走行するオンデマンド既定ルート自動走行車両100Cが存在する場合に、第1接続部131aにおいて、これら2台のオンデマンド既定ルート自動走行車両100A、100Cを円滑に通過させることができる。これにより、環状接続既定ルート130に接続される接続既定ルートを増やしても、複数のオンデマンド既定ルート自動走行車両100の走行を円滑に行うことができる。そして、環状接続既定ルート130を走行できる複数のオンデマンド既定ルート自動走行車両100の数を増やすことができる。これにより、利用者701の待ち時間をより短くできる。
 また、環状接続既定ルート130に接続される接続既定ルートを増やすと、接続既定ルートで待機する待機状態のオンデマンド既定ルート自動走行車両100を増やすことができる。そして、待機状態のオンデマンド既定ルート自動走行車両100の現在位置から乗車予定位置までの距離が短くなる場合がある。これにより、エネルギー消費を抑制するようにオンデマンド既定ルート自動走行車両100の走行を制御することができる。つまり、複数のオンデマンド既定ルート自動走行車両100のエネルギーの消費の合計を低くできる。そして、複数のオンデマンド既定ルート自動走行車両100のエネルギーを補給する回数を減らすことができる。そして、オンデマンド既定ルート自動走行車両フリートコントロール装置501のハードウェアリソースの増加を抑制することができる。
 従って、本具体例のオンデマンド既定ルート自動走行車両フリートコントロール装置501は、多様なエリアで利用可能にすると共に、ハードウェアリソースの増加をより抑えることができる。
 オンデマンド既定ルート自動走行車両100は、乗車可能な乗員の最大数が4名である。乗車可能な乗員の最大数が8名より多い場合に比べて、オンデマンド既定ルート自動走行車両100の車両自体の重量が軽くなる。また、乗車可能な乗員の最大数が8名より多い場合に比べて、オンデマンド既定ルート自動走行車両100に乗員が乗った際の車両全体の重量が軽くなる。これにより、オンデマンド既定ルート自動走行車両100の1台あたりのエネルギー効率を向上させることができる。つまり、複数のオンデマンド既定ルート自動走行車両100のエネルギーの消費の合計を低くできる。そして、複数のオンデマンド既定ルート自動走行車両100のエネルギーを補給する回数を減らすことができる。そして、オンデマンド既定ルート自動走行車両フリートコントロール装置501のハードウェアリソースの増加を抑制することができる。
 従って、本具体例のオンデマンド既定ルート自動走行車両フリートコントロール装置501は、多様なエリアで利用可能にすると共に、ハードウェアリソースの増加をより抑えることができる。
 オンデマンド既定ルート自動走行車両100は、配車状態の速度が時速20kmである。配車状態の速度が時速40km以下となるように走行が制御されると、配車状態の速度が時速40kmより大きくなるように走行が制御される場合と比べて、オンデマンド既定ルート自動走行車両100の空気抵抗が小さい。これにより、1台あたりのオンデマンド既定ルート自動走行車両100のエネルギー消費量を減らすことができる。つまり、複数のオンデマンド既定ルート自動走行車両100のエネルギーの消費の合計を低くできる。そして、複数のオンデマンド既定ルート自動走行車両100のエネルギーを補給する回数を減らすことができる。そして、オンデマンド既定ルート自動走行車両フリートコントロール装置501のハードウェアリソースの増加を抑制することができる。
 従って、本具体例のオンデマンド既定ルート自動走行車両フリートコントロール装置501は、多様なエリアで利用可能にすると共に、ハードウェアリソースの増加をより抑えることができる。
 オンデマンド既定ルート自動走行車両フリートコントロール装置501において、複数のオンデマンド既定ルート自動走行車両100のエネルギー残量に基づいて、複数のオンデマンド既定ルート自動走行車両100の中から乗車予定位置に配車する車両が選択される。例えば、現在位置から乗車予定位置まで走行するのに必要なエネルギーよりも十分に多いエネルギー残量を有するオンデマンド既定ルート自動走行車両100が、オンデマンド既定ルート自動走行車両フリートコントロール装置501により、乗車予定位置に配車する車両として選択される。つまり、エネルギー残量の多いオンデマンド既定ルート自動走行車両100が優先的に乗車予定位置に配車される。そして、複数のオンデマンド既定ルート自動走行車両100のエネルギーを補給する回数を減らすことができる。そして、オンデマンド既定ルート自動走行車両フリートコントロール装置501のハードウェアリソースの増加を抑制することができる。
 従って、本具体例のオンデマンド既定ルート自動走行車両フリートコントロール装置501は、多様なエリアで利用可能にすると共に、ハードウェアリソースの増加をより抑えることができる。
 環状接続既定ルート130上の複数のオンデマンド既定ルート自動走行車両100は、自車のエネルギー残量に関連する情報をオンデマンド既定ルート自動走行車両フリートコントロール装置501に送信する。そして、オンデマンド既定ルート自動走行車両フリートコントロール装置501に送信された複数のオンデマンド既定ルート自動走行車両100のより正確なエネルギー残量に基づいて、複数のオンデマンド既定ルート自動走行車両100の中から乗車予定位置に配車する車両が選択される。例えば、現在位置から乗車予定位置まで走行するのに必要なエネルギーよりも十分に多いエネルギー残量を有するオンデマンド既定ルート自動走行車両100が、オンデマンド既定ルート自動走行車両フリートコントロール装置501により、乗車予定位置に配車する車両としてより正確に選択される。つまり、より正確に、エネルギー残量の多いオンデマンド既定ルート自動走行車両100が優先的に乗車予定位置に配車される。そして、より正確に、複数のオンデマンド既定ルート自動走行車両100のエネルギーを補給する回数をより減らすことができる。そして、オンデマンド既定ルート自動走行車両フリートコントロール装置501のハードウェアリソースの増加を抑制することができる。
 従って、本具体例のオンデマンド既定ルート自動走行車両フリートコントロール装置501は、多様なエリアで利用可能にすると共に、ハードウェアリソースの増加をより抑えることができる。
 配車指令信号は、ルート情報、車両位置情報、乗員有無情報、利用要求情報およびエネルギー情報に基づいて、オンデマンド既定ルート自動走行車両フリートコントロール装置501で生成される。利用要求情報に乗車予定位置および降車予定位置に関連する情報が含まれる。つまり、オンデマンド既定ルート自動走行車両フリートコントロール装置501は、複数のオンデマンド既定ルート自動走行車両100の現在位置、乗車予定位置、降車予定位置およびエネルギー残量に基づいて、オンデマンド既定ルート自動走行車両100を乗車予定位置に配車することができる。例えば、オンデマンド既定ルート自動走行車両フリートコントロール装置501は、現在位置から乗車予定位置を経由して降車予定位置まで走行するのに必要なエネルギー残量を有するオンデマンド既定ルート自動走行車両100を、乗車予定位置に配車することができる。これにより、複数のオンデマンド既定ルート自動走行車両100全体のエネルギー効率を向上させることができる。つまり、複数のオンデマンド既定ルート自動走行車両100のエネルギーの消費の合計を低くできる。そして、複数のオンデマンド既定ルート自動走行車両100のエネルギーを補給する回数を減らすことができる。そして、オンデマンド既定ルート自動走行車両フリートコントロール装置501のハードウェアリソースの増加を抑制することができる。
 従って、本具体例のオンデマンド既定ルート自動走行車両フリートコントロール装置501は、多様なエリアで利用可能にすると共に、ハードウェアリソースの増加をより抑えることができる。
 本発明の実施形態の具体例のオンデマンド既定ルート自動走行車両100は、上述した本発明の実施形態のオンデマンド既定ルート自動走行車両100および本実施形態の具体例のオンデマンド既定ルート自動走行車両100の効果に加えて、以下の効果を奏する。
 利用要求マネジメント装置601および情報端末720で、配車予定情報が取得される。そして、利用要求マネジメント装置601および情報端末720で、利用者701の利用目的に応じて乗車予定位置への配車の予定に関連する情報を用いることができる。例えば、利用要求マネジメント装置601および情報端末720に対して、乗車予定位置への配車の予定に関連する情報を表示することができる。また、例えば、情報端末720に対して、乗車予定位置への配車の予定に関連する情報に基づいた利用者701に対する目的地の情報などのサービス情報を表示したりすることができる。これにより、利用要求マネジメント装置601は、エリアによって異なる利用者701の利用目的に応じて利用者の利用要求をマネジメントすることができる。
 従って、本具体例のオンデマンド既定ルート自動走行車両100は、より多様なエリアで利用可能であると共に、利用要求を行った利用者701の待ち時間を短縮しつつ、エネルギー搭載量を減らして車両の設計自由度を向上させることができる。
 オンデマンド既定ルート自動走行車両100は、少なくとも1つの環状既定ルート131と、環状既定ルート131と行き来可能な少なくとも1つの接続既定ルート132とを有する環状接続既定ルート130を走行する。環状既定ルート131と行き来可能な接続既定ルート132は増やすことができる。車両搭載制御装置115は、配車指令信号に基づいて待機状態から配車状態に変化する際に、待機状態の速度が配車状態の速度よりも小さくなるように、駆動機構112、制動機構113および進行方向制御機構114を制御する。配車指令信号は、ルート情報、車両位置情報、乗員有無情報、利用要求情報に基づいて、オンデマンド既定ルート自動走行車両フリートコントロール装置501で生成される。つまり、乗員の有無に応じて選択されたオンデマンド既定ルート自動走行車両100が、乗車予定位置に配車される。環状接続既定ルート130は、環状既定ルート131と行き来可能な接続既定ルート132を有するため、乗員が乗っていない待機状態のオンデマンド既定ルート自動走行車両100を常時循環走行させずに、環状接続既定ルート130において分散して待機させることができる。これにより、乗員が乗っていない待機状態のオンデマンド既定ルート自動走行車両100のエネルギーの消費を低くできる。それにより、1台あたりのエネルギー搭載量を減らして車両の設計自由度を高めることができる。
 また、乗員が乗っていない待機状態のオンデマンド既定ルート自動走行車両100を環状接続既定ルート130において分散して待機させることができる。そのため、オンデマンド既定ルート自動走行車両100を環状既定ルートで常時循環走行させることなく、環状接続既定ルートを走行できるオンデマンド既定ルート自動走行車両100の数を増やすことができる。そして、乗員が乗っていない待機状態のオンデマンド既定ルート自動走行車両100を環状接続既定ルート130において分散して待機させることができる。これにより、利用者701の待ち時間を短くできる。
 従って、本具体例のオンデマンド既定ルート自動走行車両100は、多様なエリアで利用可能であると共に、利用要求を行った利用者701の待ち時間を短縮しつつ、エネルギー搭載量を減らして車両の設計自由度を向上させることができる。
 オンデマンド既定ルート自動走行車両100は、少なくとも1つの環状既定ルート131と、環状既定ルート131と行き来可能な少なくとも1つの接続既定ルート132とを有する環状接続既定ルート130を走行する。環状既定ルート131と行き来可能な接続既定ルート132は増やすことができる。車両搭載制御装置115は、事前配車指令信号に基づいて、環状接続既定ルート130上の利用者701が乗車する予定の乗車予定位置になることが予想される予想乗車位置に移動するように、駆動機構112、制動機構113および進行方向制御機構114を制御する。事前配車指令信号は、ルート情報、車両位置情報、乗員有無情報、予想乗車位置情報に基づいて、オンデマンド既定ルート自動走行車両フリートコントロール装置501で生成される。オンデマンド既定ルート自動走行車両100を事前配車すると、オンデマンド既定ルート自動走行車両100を事前配車せず配車指令信号を受信してから配車する場合に比べて、エネルギーの効率のよい車両の運行の制御が可能となる。エネルギーの効率のよい車両の運行の制御とは、例えば、次のケースである。例えば、事前配車指令信号を受信したオンデマンド既定ルート自動走行車両100を、エネルギー消費量が少ない速度で走行させたり、渋滞しないようなルートで走行させたりするように制御するケースである。これにより、事前配車指令信号を受信したオンデマンド既定ルート自動走行車両100のエネルギーの消費を低くできる。それにより、1台あたりのエネルギー搭載量を減らして車両の設計自由度を高めることができる。
 また、乗員が乗っておらず、配車指令信号を受信していない状態のオンデマンド既定ルート自動走行車両100を環状接続既定ルート130上の利用者701が乗車することが予想される位置またはその近傍に予め待機させることができる。これにより、利用者701の待ち時間を短くできる。
 従って、本具体例のオンデマンド既定ルート自動走行車両100は、多様なエリアで利用可能であると共に、利用要求を行った利用者701の待ち時間を短縮しつつ、エネルギー搭載量を減らして車両の設計自由度を向上させることができる。
 利用者に関連する情報、目的地に関連する情報、環境に関連する情報の少なくとも1つの情報に基づいて生成された予想乗車位置情報に基づいて、オンデマンド既定ルート自動走行車両100が予想乗車位置に事前に配車される。環状接続既定ルート130は、走行可能なエリア140の中の予め決められた既定ルートである。つまり、環状接続既定ルート130のエリアは走行可能なエリア140内に限定されており、比較的小さい。このため、環状接続既定ルート130のエリア内の利用者701に関連する情報は、走行可能なエリア140内に限定されており、比較的数が少ないため集めやすい。環状接続既定ルート130のエリア内の目的地に関連する情報は、走行可能なエリア140内に限定されており、比較的数が少ないため集めやすい。環状接続既定ルートのエリア内の環境に関連する情報は、走行可能なエリア140内に限定されており、比較的数が少ないため集めやすい。そして、環状接続既定ルート130のエリアは走行可能なエリア140内に限定されており、比較的、利用者701が乗車することが予想される位置を予測しやすい。
 そのため、オンデマンド既定ルート自動走行車両100を事前配車すると、オンデマンド既定ルート自動走行車両100を事前配車せず配車指令信号を受信してから配車する場合に比べて、エネルギーの効率がよりよい車両の運行の制御が可能となる。これにより、配車指令信号を受信していない状態のオンデマンド既定ルート自動走行車両100のエネルギーの消費をより低くできる。それにより、1台あたりのエネルギー搭載量を減らして車両の設計自由度をより高めることができる。
 また、乗員が乗っておらず、配車指令信号を受信していない状態のオンデマンド既定ルート自動走行車両100を環状接続既定ルート130上の利用者701が乗車することがより予想される位置またはその近傍に予め待機させることができる。これにより、利用者701の待ち時間をより短くできる。
 従って、本具体例のオンデマンド既定ルート自動走行車両100は、多様なエリアで利用可能であると共に、利用要求を行った利用者701の待ち時間を短縮しつつ、エネルギー搭載量を減らして車両の設計自由度を向上させることができる。
 予想乗車位置および予想乗車位置利用時刻に基づいて、オンデマンド既定ルート自動走行車両100が予想乗車位置に予想乗車位置利用時刻の前に配車される。環状接続既定ルート130は、走行可能なエリア140の中の予め決められた既定ルートである。つまり、環状接続既定ルート130のエリアは走行可能なエリア140内に限定されており、比較的小さい。このため、環状接続既定ルート130のエリアは走行可能なエリア140内に限定されており、比較的、予想乗車位置を乗車予定位置とした利用要求が行われることが予想される時刻である予想乗車位置利用要求時刻が予測しやすい。
 そのため、予想乗車位置と予想乗車位置利用時刻に基づいてオンデマンド既定ルート自動走行車両100を事前配車すると、予想乗車位置のみに基づいてオンデマンド既定ルート自動走行車両100を事前配車する場合に比べて、エネルギーの効率がよりよい車両の運行の制御が可能となる。これにより、配車指令信号を受信していない状態のオンデマンド既定ルート自動走行車両100のエネルギーの消費をより低くできる。それにより、1台あたりのエネルギー搭載量を減らして車両の設計自由度をより高めることができる。
 また、乗員が乗っておらず、配車指令信号を受信していない状態のオンデマンド既定ルート自動走行車両100を環状接続既定ルート上130の利用者701が乗車することが予想される位置またはその近傍に、利用者701が乗車することが予想される時刻の前に予め待機させることができる。これにより、利用者701の待ち時間をより短くできる。
 従って、本具体例のオンデマンド既定ルート自動走行車両100は、多様なエリアで利用可能であると共に、利用要求を行った利用者701の待ち時間を短縮しつつ、エネルギー搭載量を減らして車両の設計自由度を向上させることができる。
 調停指令信号は、例えば次のケースで、オンデマンド既定ルート自動走行車両100Cに送信される。例えば、オンデマンド既定ルート自動走行車両100Cは、待機状態の車両であり、オンデマンド既定ルート自動走行車両100Aは、配車状態の車両であるケースである。第1接続部131aに向かって環状既定ルート131を走行するオンデマンド既定ルート自動走行車両100Aがいる場合に、第1接続部131aに向かって接続既定ルート132を走行するオンデマンド既定ルート自動走行車両100Cは、受信した調停指令信号に基づいて、減速または停車する。つまり、第1接続部131aに向かって環状既定ルート131を走行するオンデマンド既定ルート自動走行車両100Aがいる場合に、第1接続部131aに向かって接続既定ルート132を走行するオンデマンド既定ルート自動走行車両100Cは、調停指令信号に基づいて、第1接続部131aを通過する順番がオンデマンド既定ルート自動走行車両100Aの後になるように待機する。第1接続部131aに向かって環状既定ルート131を走行するオンデマンド既定ルート自動走行車両100Aは、第1接続部131aに向かって接続既定ルート132を走行するオンデマンド既定ルート自動走行車両100Cよりも先に第1接続部131aを通過する。
 これにより、第1接続部131aに向かって環状既定ルート131を走行するオンデマンド既定ルート自動走行車両100Aおよび第1接続部131aに向かって接続既定ルート132を走行するオンデマンド既定ルート自動走行車両100Cが存在する場合に、第1接続部131aにおいて、これら2台のオンデマンド既定ルート自動走行車両100A、100Cを円滑に通過させることができる。これにより、環状接続既定ルート130に接続される接続既定ルートを増やしても、複数のオンデマンド既定ルート自動走行車両100の走行を円滑に行うことができる。そして、環状接続既定ルート130を走行できる複数のオンデマンド既定ルート自動走行車両100の数を増やすことができる。これにより、利用者701の待ち時間をより短くできる。
 また、環状接続既定ルート130に接続される接続既定ルートを増やすと、接続既定ルートで待機する待機状態のオンデマンド既定ルート自動走行車両100を増やすことができる。そして、待機状態のオンデマンド既定ルート自動走行車両100の現在位置から乗車予定位置までの距離が短くなる場合がある。これにより、1台あたりのオンデマンド既定ルート自動走行車両100のエネルギー消費量をより減らすことができる。
 従って、本具体例のオンデマンド既定ルート自動走行車両100は、多様なエリアで利用可能であると共に、利用要求を行った利用者701の待ち時間を短縮しつつ、エネルギー搭載量を減らして車両の設計自由度を向上させることができる。
 オンデマンド既定ルート自動走行車両100は、乗車可能な乗員の最大数が8名以下である。乗車可能な乗員の最大数が8名より多い場合に比べて、オンデマンド既定ルート自動走行車両の車両自体の重量が軽くなる。また、乗車可能な乗員の最大数が8名より多い場合に比べて、オンデマンド既定ルート自動走行車両に乗員が乗った際の車両全体の重量が軽くなる。これにより、1台あたりのオンデマンド既定ルート自動走行車両のエネルギー効率を向上させることができる。つまり、1台あたりのオンデマンド既定ルート自動走行車両のエネルギー搭載量を減らして車両の設計自由度を高めることができる。
 従って、本具体例のオンデマンド既定ルート自動走行車両100は、多様なエリアで利用可能であると共に、利用要求を行った利用者701の待ち時間を短縮しつつ、エネルギー搭載量を減らして車両の設計自由度を向上させることができる。
 オンデマンド既定ルート自動走行車両100は、配車状態の速度が時速20kmとなるように走行が制御される。配車状態の速度が時速40km以下となるように走行が制御されると、配車状態の速度が時速40kmより大きくなるように走行が制御される場合と比べて、オンデマンド既定ルート自動走行車両100の空気抵抗が小さい。これにより、1台あたりのオンデマンド既定ルート自動走行車両100のエネルギー消費量を減らすことができる。
 ここで、配車状態の速度が時速40km以下となるように走行が制御されると、配車状態の速度が時速40kmより大きくなるように走行が制御される場合と比べて、オンデマンド既定ルート自動走行車両100が現在位置から乗車予定位置まで走行する時間が長くなる。しかしながら、環状接続既定ルート130を走行するオンデマンド既定ルート自動走行車両100を増やすことができる。これにより、現在位置が乗車予定位置に近いオンデマンド既定ルート自動走行車両100を配車することができる。これにより、利用者701の待ち時間を短くできる。
 従って、本具体例のオンデマンド既定ルート自動走行車両100は、多様なエリアで利用可能であると共に、利用要求を行った利用者701の待ち時間を短縮しつつ、エネルギー搭載量を減らして車両の設計自由度を向上させることができる。
 オンデマンド既定ルート自動走行車両フリートコントロール装置501により、複数のオンデマンド既定ルート自動走行車両100のエネルギー残量に基づいて、複数のオンデマンド既定ルート自動走行車両100の中から乗車予定位置に配車する車両が選択される。例えば、現在位置から乗車予定位置まで走行するのに必要なエネルギーよりも十分に多いエネルギー残量を有するオンデマンド既定ルート自動走行車両100が、オンデマンド既定ルート自動走行車両フリートコントロール装置501により、乗車予定位置に配車する車両として選択される。つまり、エネルギー残量の多いオンデマンド既定ルート自動走行車両100が優先的に乗車予定位置に配車される。そして、複数のオンデマンド既定ルート自動走行車両100のエネルギーを補給する回数を減らすことができる。これにより、複数のオンデマンド既定ルート自動走行車両100全体のエネルギー効率を向上させることができる。そして、1台あたりのオンデマンド既定ルート自動走行車両100のエネルギー搭載量を減らして車両の設計自由度を高めることができる。
 従って、本具体例のオンデマンド既定ルート自動走行車両100は、多様なエリアで利用可能であると共に、利用要求を行った利用者701の待ち時間を短縮しつつ、エネルギー搭載量を減らして車両の設計自由度を向上させることができる。
 オンデマンド既定ルート自動走行車両100は、自車のエネルギー残量に関連する情報をオンデマンド既定ルート自動走行車両フリートコントロール装置501に送信する。そして、オンデマンド既定ルート自動走行車両フリートコントロール装置501に送信された複数のオンデマンド既定ルート自動走行車両100のより正確なエネルギー残量に基づいて、複数のオンデマンド既定ルート自動走行車両100の中から乗車予定位置に配車する車両が選択される。例えば、現在位置から乗車予定位置まで走行するのに必要なエネルギーよりも十分に多いエネルギー残量を有するオンデマンド既定ルート自動走行車両100が、オンデマンド既定ルート自動走行車両フリートコントロール装置501により、乗車予定位置に配車する車両としてより正確に選択される。つまり、より正確に、エネルギー残量の多いオンデマンド既定ルート自動走行車両100が優先的に配車される。そして、より正確に、複数のオンデマンド既定ルート自動走行車両100のエネルギーを補給する回数を減らすことができる。これにより、複数のオンデマンド既定ルート自動走行車両100全体のエネルギー効率をより向上させることができる。そして、1台あたりのオンデマンド既定ルート自動走行車両100のエネルギー搭載量をより減らして車両の設計自由度を高めることができる。
 従って、本具体例のオンデマンド既定ルート自動走行車両100は、多様なエリアで利用可能であると共に、利用要求を行った利用者701の待ち時間を短縮しつつ、エネルギー搭載量を減らして車両の設計自由度を向上させることができる。
 配車指令信号は、ルート情報、車両位置情報、乗員有無情報、利用要求情報およびエネルギー情報に基づいて、オンデマンド既定ルート自動走行車両フリートコントロール装置501で生成される。利用要求情報は、乗車予定位置および降車予定位置に関連する情報を含む。つまり、オンデマンド既定ルート自動走行車両フリートコントロール装置501は、複数のオンデマンド既定ルート自動走行車両100の現在位置、乗車予定位置、降車予定位置およびエネルギー残量に基づいて選択されたオンデマンド既定ルート自動走行車両100が、乗車予定位置に配車される。例えば、オンデマンド既定ルート自動走行車両フリートコントロール装置501は、現在位置から乗車予定位置を経由して降車予定位置まで走行するのに必要なエネルギー残量を有するオンデマンド既定ルート自動走行車両100を、乗車予定位置に配車することができる。これにより、複数のオンデマンド既定ルート自動走行車両100全体のエネルギー効率を向上させることができる。そして、1台あたりのオンデマンド既定ルート自動走行車両100のエネルギー搭載量を減らして車両の設計自由度を高めることができる。
 従って、本具体例のオンデマンド既定ルート自動走行車両100は、多様なエリアで利用可能であると共に、利用要求を行った利用者701の待ち時間を短縮しつつ、エネルギー搭載量を減らして車両の設計自由度を向上させることができる。
(オンデマンド既定ルート自動走行車両およびオンデマンド既定ルート自動走行車両フリートコントロール装置のその他の変形例)
 本発明は、上述した実施形態、実施形態の具体例および変形例に限られるものではなく、特許請求の範囲に記載した限りにおいて様々な変更が可能である。以下、本発明の実施形態の変更例について説明する。
<環状接続既定ルートの変形例>
 実施形態の具体例において、環状接続既定ルート130は、環状既定ルート131と、環状既定ルート131に行き来可能に接続された接続既定ルート132のみを有する。しかしながら、本発明の環状接続既定ルートは、例えば図12Aに示すように、接続既定ルートに行き来可能に接続された接続既定ルートを有してもよい。また、本発明の環状接続既定ルートは、環状既定ルートに行き来不能に接続された接続既定ルートを有してもよい。または、本発明の環状接続既定ルートは、環状既定ルートに行き来不能に接続された環状既定ルートを有してもよい。また、本発明の環状接続既定ルートは、接続既定ルートに行き来不能に接続された接続既定ルートを有してもよい。なお、接続既定ルートが環状既定ルートに行き来不能に接続されるとは、環状既定ルートから接続既定ルートに走行することが不可能であり、且つ、接続既定ルートから環状既定ルートに走行することが不可能であってもよい。接続既定ルートが環状既定ルートに行き来不能に接続されるとは、環状既定ルートから接続既定ルートに走行することが可能であり、且つ、接続既定ルートから環状既定ルートに走行することが不可能であってもよい。接続既定ルートが環状既定ルートに行き来不能に接続されるとは、環状既定ルートから接続既定ルートに走行することが不可能であり、且つ、接続既定ルートから環状既定ルートに走行することが可能であってもよい。
 図15Aに示す環状接続既定ルート230は、第1環状既定ルート231、第2環状既定ルート232、第1接続既定ルート233、および第2接続既定ルート234を有する。環状接続既定ルート230は、図示する矢印の向きに走行可能に構成されたルートである。第1接続既定ルート233は、第1環状既定ルート231および第2環状既定ルート232に接続される。第2接続既定ルート234は、第1環状既定ルート231および第2環状既定ルート232に接続される。第1接続既定ルート233は、第1環状既定ルート231の第1接続部231aおよび第2環状既定ルート232の第3接続部232aに接続される。第2接続既定ルート234は、第1環状既定ルート231の第2接続部231bおよび第2環状既定ルート232の第4接続部232bに接続される。第2環状既定ルート232は、接続既定ルート232cと接続既定ルート232dからなる。接続既定ルート232cおよび接続既定ルート232dの境界は、第3接続部232aおよび第4接続部232bである。第1接続既定ルート233と、第2接続既定ルート234と、接続既定ルート232cは、接続既定ルート235を構成する。接続既定ルート235は、第1環状既定ルート231に行き来可能に接続される。接続既定ルート232dは、接続既定ルート235に行き来可能に接続される。第1環状既定ルート231の第1接続部231aでは、第1環状既定ルート231と接続既定ルート235が合流する。第1環状既定ルート231の第2接続部231bでは、第1環状既定ルート231と接続既定ルート235が分岐する。
 また、本発明の環状接続既定ルートは、1つの環状既定ルートと、1つの環状既定ルートに行き来可能に接続された複数の接続既定ルートを有していてもよい。また、本発明の環状接続既定ルートは、複数の環状既定ルートと、複数の環状既定ルートに行き来可能に接続された少なくとも1つの接続既定ルートを有していてもよい。より詳細には、本発明の環状接続既定ルートは、例えば図15Cに示すように、2つの環状既定ルートと、2つの環状既定ルートの両方に行き来可能に接続された1つの接続既定ルートを有していてもよい。また、本発明の環状接続既定ルートは、例えば図15Bに示すように、複数の環状既定ルートと、複数の環状既定ルートに行き来可能に接続された複数の接続既定ルートを有していてもよい。環状接続既定ルートが、複数の環状既定ルートに行き来可能に接続された少なくとも1つの接続既定ルートを有する場合、1つの環状既定ルートと接続される接続既定ルートの数は、1つであってもよく、接続既定ルートの全数より少ない複数であってもよく、接続既定ルートの全数と同数であってもよい。また、環状接続既定ルートが、複数の環状既定ルートに行き来可能に接続された少なくとも1つの接続既定ルートを有する場合に、1つの接続既定ルートと接続される環状既定ルートの数は、1つであってもよく、環状既定ルートの全数より少ない複数であってもよく、環状既定ルートの全数と同数であってもよい。本発明において、1つの環状既定ルートに行き来可能に接続された1つの接続既定ルートは、実施形態の具体例のように、環状既定ルート上の2つの接続部に接続されてもよく、例えば図15Bのように、環状既定ルート上の1つの接続部にのみ接続されてもよい。本発明において、1つの環状既定ルートに行き来可能に接続された複数の接続既定ルートは、環状既定ルート上の共通する1つの接続部に接続されてもよく、環状既定ルート上の互いに異なる接続部に接続されてもよい。本発明において、2つの環状既定ルートの両方に行き来可能に接続された1つの接続既定ルートは、例えば図12Cに示すように、第1環状既定ルート上の1つの接続部と、第2環状既定ルート上の1つの接続部に接続される。
 図15Cに示す環状接続既定ルート330は、第1環状既定ルート331、第2環状既定ルート332、および接続既定ルート333を有する。環状接続既定ルート330は、図示する矢印の向きに走行可能に構成されたルートである。接続既定ルート333は、第1環状既定ルート331および第2環状既定ルート332の両方に行き来可能に接続される。接続既定ルート333は、第1環状既定ルート331の接続部331aおよび第2環状既定ルート332の接続部332aに接続される。
 図15Bに示す環状接続既定ルート1310は、環状既定ルート1331、環状既定ルート1332、および接続既定ルート1333~1344を有する。接続既定ルート1333~1335、1336~1342は、図示する矢印の向きに走行可能に構成されたルートである。接続既定ルート1336、1343は、図示する矢印の両方の向きに走行可能に構成されたルートである。接続既定ルート1333~1338は、環状既定ルート1331に接続される。接続既定ルート1333~1335は、環状既定ルート1331に行き来可能に接続される。接続既定ルート1337~1344は、環状既定ルート1332に接続される。接続既定ルート1339~1342は、環状既定ルート1332に行き来可能に接続される。環状既定ルート1331および環状既定ルート133は、接続既定ルート(第1接続既定ルート)1337および接続既定ルート(第1接続既定ルート)1338を介して行き来可能に接続される。環状既定ルート1331の接続部1331cと接続部1331dの間は、双方向に走行可能に構成されている。環状既定ルート1332の接続部1332cと接続部1332dの間は、双方向に走行可能に構成されている。接続既定ルート1333は、接続部1331fで環状既定ルート1331から分岐して、接続部1331aで環状既定ルート1331に合流するルートである。接続既定ルート1334は、接続部1331bで環状既定ルート1331から分岐して、接続部1331eで環状既定ルート1331に合流するルートである。接続既定ルート1335は、接続部1331cで環状既定ルート1331から分岐して、接続部1331dで環状既定ルート1331に合流するルートである。接続既定ルート1336は、双方向に走行可能に構成され、環状既定ルート1331上の接続部1331dに行き来可能に接続されたルートである。接続既定ルート1337は、接続部1331aで環状既定ルート1331から分岐して、接続部1332aで環状既定ルート1332に合流するルートである。接続既定ルート1338は、接続部1332bで環状既定ルート1332から分岐して、接続部1331bで環状既定ルート1331に合流するルートである。接続既定ルート1339は、接続部1332aで環状既定ルート1332から分岐して、接続部1332fで環状既定ルート1332に合流するルートである。接続既定ルート1340は、接続部1332eで環状既定ルート1332から分岐して、接続部1332bで環状既定ルート1332に合流するルートである。接続既定ルート1341は、接続部1332fで環状既定ルート1332から分岐して接続部1332eで環状既定ルート1332に合流するルートである。接続既定ルート1342は、接続部1332dで環状既定ルート1332から分岐して接続部1332cで環状既定ルート1332に合流するルートである。接続既定ルート1343は、双方向に走行可能に構成され、環状既定ルート1332上の接続部1332cに行き来可能に接続されたルートである。接続既定ルート1344は、双方向に走行可能に構成され、環状既定ルート1332上の接続部1332dに行き来可能に接続されたルートである。
 この構成によると、オンデマンド既定ルート自動走行車両フリートコントロール装置501が走行を制御するオンデマンド既定ルート自動走行車両100が走行する環状接続既定ルート330、1310に環状既定ルートが複数含まれる。そして、環状接続既定ルート330、1310を走行できるオンデマンド既定ルート自動走行車両100の数を増やすことができる。これにより、利用者701の待ち時間をより短くできる。
 また、環状接続既定ルートを走行できるオンデマンド既定ルート自動走行車両100の数を増やすと、オンデマンド既定ルート自動走行車両100の現在位置から予想乗車位置までの距離が短くなることがある。これにより、1台あたりのオンデマンド既定ルート自動走行車両100のエネルギー消費量をより減らすことができる。つまり、複数のオンデマンド既定ルート自動走行車両100のエネルギーの消費の合計を低くできる。そして、複数のオンデマンド既定ルート自動走行車両100のエネルギーを補給する回数を減らすことができる。そして、オンデマンド既定ルート自動走行車両フリートコントロール装置501のハードウェアリソースの増加を抑制することができる。
 従って、本変形例のオンデマンド既定ルート自動走行車両フリートコントロール装置501は、多様なエリアで利用可能にすると共に、ハードウェアリソースの増加をより抑えることができる。
 この構成によると、オンデマンド既定ルート自動走行車両100が走行する環状接続既定ルート330、1310に環状既定ルートが複数含まれる。そして、環状接続既定ルート330、1310を走行できるオンデマンド既定ルート自動走行車両100の数を増やすことができる。これにより、利用者701の待ち時間をより短くできる。
 また、環状接続既定ルートを走行できるオンデマンド既定ルート自動走行車両100の数を増やすと、オンデマンド既定ルート自動走行車両100の現在位置から予想乗車位置までの距離が短くなることがある。これにより、1台あたりのオンデマンド既定ルート自動走行車両100のエネルギー消費量をより減らすことができる。
 従って、本変形例のオンデマンド既定ルート自動走行車両100は、多様なエリアで利用可能であると共に、利用要求を行った利用者701の待ち時間を短縮しつつ、エネルギー搭載量を減らして車両の設計自由度を向上させることができる。
<オンデマンド既定ルート自動走行車両が走行する既定ルートの変形例>
 実施形態およびその具体例において、オンデマンド既定ルート自動走行車両100は、走行可能なエリアの中の既定ルート30、130を走行する。しかしながら、本発明のオンデマンド既定ルート自動走行車両は、走行可能なエリアの中の既定ルートではない非既定ルートを走行可能に構成されてもよい。例えば、本発明のオンデマンド既定ルート自動走行車両は、自動運転モードから手動運転モードに切り替えられた時に、走行可能なエリアの中の非既定ルートを走行してもよい。
<車輪の変形例>
 実施形態および具体例において、オンデマンド既定ルート自動走行車両100は、4つの車輪111を有する。しかしながら、本発明のオンデマンド既定ルート自動走行車両が有する車輪は、4つに限らず、複数であればよい。
<駆動機構の変形例>
 実施形態の具体例において、駆動機構112は、電気モータである。しかしながら、本発明の駆動機構は、ガソリンなどを用いるエンジンであってもよい。
<制動機構の変形例>
 実施形態の具体例において、制動機構113は、ディスクブレーキ装置である。しかしながら、本発明の制動機構は、ドラムブレーキ、エンジンブレーキなどの運動エネルギーを熱エネルギーに変換する機械式ブレーキであってよい。また、本発明の制動機構は、電磁ブレーキ、モータ機能付き発電機による回生ブレーキなどの運動エネルギーを電気エネルギーに変換する電気式ブレーキであってよい。また、本発明の制動機構は、機械式ブレーキと電気式ブレーキを組み合わせるものであってよい。例えば、本発明の制動機構は、駆動モータによる回生ブレーキとディスクブレーキ装置を併用するものであってもよい。
<進行方向制御機構の変形例>
 実施形態の具体例において、進行方向制御機構114は、2つの前輪111fを操舵可能である。2つの前輪111fが操舵されることで、オンデマンド既定ルート自動走行車両100の進行方向が制御される。しかしながら、本発明の進行方向制御機構は、駆動機構および制御機構により、オンデマンド既定ルート自動走行車両の進行方向を制御してよい。具体的には、本発明の進行方向制御機構は、オンデマンド既定ルート自動走行車両の右部にある複数の車輪と左部にある複数の車輪が、互いに異なる回転速度となるように駆動機構および制御機構を制御することにより、オンデマンド既定ルート自動走行車両の進行方向を制御してよい。
<自車の現在位置を取得する方法の変形例>
 具体例のオンデマンド既定ルート自動走行車両100は、自車位置検出装置120で、自車の現在位置を取得している。つまり、具体例のオンデマンド既定ルート自動走行車両100は、GNSS受信ユニット123で生成された自車の現在位置を用いて、カメラ121で撮像した路面の画像の照合を行うことにより、より精度の高い自車の現在位置を検出している。しかしながら、本発明のオンデマンド既定ルート自動走行車両は、自車の現在位置を、GNSS受信ユニットで生成された自車の現在位置のみで取得してもよい。または、本発明のオンデマンド既定ルート自動走行車両は、車輪回転検出器を有し、自車の現在位置を、環状接続既定ルートの所定の場所から計測した走行距離に基づいて取得してもよい。または、本発明のオンデマンド既定ルート自動走行車両は、自車の現在位置を、環状接続既定ルートの路面上の識別マークにより取得してもよい。また、本発明のオンデマンド既定ルート自動走行車両は、自車の現在位置を、LIDAR、慣性計測装置(Inertial Measurement Unit:IMU)、ミリ波レーダ、ソナー(Sound navigation and ranging:SONAR)、TOF(Time Of Flight)距離画像カメラ、赤外線センサ、無線方位測定機、リフレクター(Reflector)、地磁気センサなどを用いて取得してもよい。
<既定ルートを乗員の有無に関わらず自動で走行させる方法の変形例>
 具体例のオンデマンド既定ルート自動走行車両100は、自車位置検出装置120のカメラ121で撮像した路面の画像およびGNSS受信ユニット123の現在位置に基づいて、車両搭載制御装置115により既定ルート130を乗員の有無に関わらず自動で走行させている。しかしながら、本発明のオンデマンド既定ルート自動走行車両は、既定ルート130に埋設された電磁誘導線を検出する誘導線検出部を有してもよい。そして、車両搭載制御装置が、誘導線検出部の検出信号に基づいて電磁誘導線に沿って走行するように進行方向制御機構を制御することにより、既定ルートを乗員の有無に関わらず自動で走行させてもよい。また、本発明のオンデマンド既定ルート自動走行車両の車両搭載制御装置は、オンデマンド既定ルート自動走行車両を、LIDAR、IMU、GNSS受信ユニットおよびマップ情報、ミリ波レーダ、ソナー、TOF距離画像カメラ、赤外線センサ、LEDを用いたLIDAR(可視光カメラを除く)、無線方位測定機、リフレクター(Reflector)、地磁気センサなどを用いて、既定ルートを乗員の有無に関わらず自動で走行させてもよい。
<オンデマンド既定ルート自動走行車両フリートコントロール装置の取得する情報の変形例>
 具体例のオンデマンド既定ルート自動走行車両フリートコントロール装置501は、ルート情報、車両位置情報、乗員有無情報、利用要求情報およびエネルギー情報に基づいて、乗車予定位置に配車するオンデマンド既定ルート自動走行車両100を選択している。しかしながら、本発明のオンデマンド既定ルート自動走行車両フリートコントロール装置は、ルート情報、車両位置情報、乗員有無情報および利用要求情報に基づいて、乗車予定位置に配車するオンデマンド既定ルート自動走行車両100を選択してよい。同様に、具体例のオンデマンド既定ルート自動走行車両フリートコントロール装置501は、ルート情報、車両位置情報、乗員有無情報、利用要求情報およびエネルギー情報に基づいて、配車指令信号を生成している。しかしながら、本発明のオンデマンド既定ルート自動走行車両フリートコントロール装置は、ルート情報、車両位置情報、乗員有無情報および利用要求情報に基づいて、配車指令信号を生成してよい。
 また、具体例のオンデマンド既定ルート自動走行車両フリートコントロール装置501は、ルート情報、車両位置情報、乗員有無情報、予想乗車位置情報およびエネルギー情報に基づいて、予想乗車位置に事前に配車するオンデマンド既定ルート自動走行車両100を選択している。しかしながら、本発明のオンデマンド既定ルート自動走行車両フリートコントロール装置は、ルート情報、車両位置情報、乗員有無情報および予想乗車位置情報に基づいて、予想乗車位置に事前に配車するオンデマンド既定ルート自動走行車両100を選択してよい。同様に、具体例のオンデマンド既定ルート自動走行車両フリートコントロール装置501は、ルート情報、車両位置情報、乗員有無情報、予想乗車位置情報およびエネルギー情報に基づいて、事前配車指令信号を生成している。しかしながら、本発明のオンデマンド既定ルート自動走行車両フリートコントロール装置は、ルート情報、車両位置情報、乗員有無情報および予想乗車位置情報に基づいて、事前配車指令信号を生成してよい。
 また、具体例のオンデマンド既定ルート自動走行車両100およびオンデマンド既定ルート自動走行車両フリートコントロール装置501では、予想乗車位置情報が、予想乗車位置利用要求時刻の情報および予想降車位置の情報を含む。しかしながら、本発明のオンデマンド既定ルート自動走行車両およびオンデマンド既定ルート自動走行車両フリートコントロール装置では、予想乗車位置情報が、予想乗車位置利用要求時刻の情報および予想降車位置の情報の少なくともいずれかを含まなくてよい。
<オンデマンド既定ルート自動走行車両で乗員有無情報を取得する方法の変形例>
 具体例のオンデマンド既定ルート自動走行車両100は、シート102に配置した着座検知部により、シート102に着座する乗員の人数を検知する。そして、オンデマンド既定ルート自動走行車両100からオンデマンド既定ルート自動走行車両フリートコントロール装置501にシート102に着座する乗員の人数に関連する情報を乗員有無情報として送信する。しかしながら、オンデマンド既定ルート自動走行車両100は、乗員が入力可能な車載端末を有してもよい。そして、車載端末に乗員が乗員数を入力することにより、オンデマンド既定ルート自動走行車両100からオンデマンド既定ルート自動走行車両フリートコントロール装置501に乗員有無情報を送信してもよい。
<オンデマンド既定ルート自動走行車両フリートコントロール装置で乗員有無情報を取得する方法の変形例>
 具体例のオンデマンド既定ルート自動走行車両フリートコントロール装置501は、乗員の有無および乗員の人数に関連する乗員有無情報を、環状接続既定ルート130上の複数のオンデマンド既定ルート自動走行車両100から受信する。しかしながら、乗員有無情報は、オンデマンド既定ルート自動走行車両フリートコントロール装置501が、複数のオンデマンド既定ルート自動走行車両100の各々の走行状態から判断してもよい。例えば、オンデマンド既定ルート自動走行車両フリートコントロール装置は、待機状態または配車状態で走行しているオンデマンド既定ルート自動走行車両を、乗員が乗っていない車両として判断する。また、オンデマンド既定ルート自動走行車両フリートコントロール装置は、目的地走行状態で走行しているオンデマンド既定ルート自動走行車両を、乗員が乗っている車両として判断する。なお、オンデマンド既定ルート自動走行車両フリートコントロール装置は、配車指令信号を送信していないオンデマンド既定ルート自動走行車両を、走行状態が待機状態の車両として判断する。つまり、オンデマンド既定ルート自動走行車両フリートコントロール装置は、配車指令信号を送信した車両であって、降車予定位置で停車した後のオンデマンド既定ルート自動走行車両を、走行状態が待機状態の車両として判断する。オンデマンド既定ルート自動走行車両フリートコントロール装置は、配車指令信号を送信した車両であって、車両の現在位置から、乗車予定位置に到着していないと推定されるオンデマンド既定ルート自動走行車両を、走行状態が配車状態の車両として判断する。オンデマンド既定ルート自動走行車両フリートコントロール装置は、配車指令信号を送信した車両であって、車両の現在位置から、乗車予定位置に到着した後に降車予定位置に向かって走行していると推定されるオンデマンド既定ルート自動走行車両を、走行状態が配車状態の車両として判断する。オンデマンド既定ルート自動走行車両フリートコントロール装置は、配車指令信号を送信した車両であって、車両の現在位置から、乗車予定位置に到着した後に走行していると推定されるオンデマンド既定ルート自動走行車両を、走行状態が配車状態の車両として判断する。
<オンデマンド既定ルート自動走行車両の速度の設定の変形例>
 本具体例のオンデマンド既定ルート自動走行車両100の車両搭載制御装置115は、記憶部152に記憶されたオンデマンド既定ルート自動走行車両100の走行状態に対応する速度に基づいて、駆動機構112および制動機構113を制御する。しかしながら、本発明のオンデマンド既定ルート自動走行車両の車両搭載制御装置は、オンデマンド既定ルート自動走行車両フリートコントロール装置から送信された指令に含まれる速度に基づいて、駆動機構および制動機構を制御してもよい。また、本具体例のオンデマンド既定ルート自動走行車両100の車両搭載制御装置115は、V1は、V2およびV3より小さい値として記憶部152に記憶している。V1は、待機状態のオンデマンド既定ルート自動走行車両100の速度である。V2は、配車状態のオンデマンド既定ルート自動走行車両100の速度である。V3は、目的地走行状態のオンデマンド既定ルート自動走行車両100の速度である。しかしながら、本発明のオンデマンド既定ルート自動走行車両の車両搭載制御装置は、V1は、V2およびV3と同じか異なる値で記憶部152に記憶してもよい。
<オンデマンド既定ルート自動走行車両フリートコントロール装置が生成する指令信号の変形例>
 具体例のオンデマンド既定ルート自動走行車両フリートコントロール装置501は、調停指令信号を生成する。しかしながら、本発明のオンデマンド既定ルート自動走行車両フリートコントロール装置は、調停指令信号を生成しなくてもよい。また、本発明のオンデマンド既定ルート自動走行車両フリートコントロール装置は、事前配車指令信号を生成しなくてもよい。
<調停指令信号の変形例>
 本具体例のオンデマンド既定ルート自動走行車両フリートコントロール装置501は、図10に示す例において、第1接続部131aを、接続既定ルート132を走行しているオンデマンド既定ルート自動走行車両100Cが、環状既定ルート131を走行しているオンデマンド既定ルート自動走行車両100Aの後に通過するように、接続既定ルート132を走行しているオンデマンド既定ルート自動走行車両100Cに指示するための調停指令信号を生成する。本発明のオンデマンド既定ルート自動走行車両フリートコントロール装置は、環状既定ルートを走行しているオンデマンド既定ルート自動走行車両が、接続既定ルートを走行しているオンデマンド既定ルート自動走行車両の後に第1接続部131aを通過するように、環状既定ルートを走行しているオンデマンド既定ルート自動走行車両に指示するための調停指令信号を生成してもよい。環状既定ルートを走行しているオンデマンド既定ルート自動走行車両に対する調停指令信号を生成する場合は、例えば、図10に示す環状接続既定ルート130において、接続既定ルート132を走行しているオンデマンド既定ルート自動走行車両100Cが配車状態であり、環状既定ルート131を走行しているオンデマンド既定ルート自動走行車両100Aが待機状態である場合である。
<配車予定情報の変形例>
 本具体例のオンデマンド既定ルート自動走行車両フリートコントロール装置501は、利用要求マネジメント装置601で生成される予想乗車位置情報を取得する。しかしながら、本発明のオンデマンド既定ルート自動走行車両フリートコントロール装置は、予想乗車位置情報を生成してもよい。つまり、本発明のオンデマンド既定ルート自動走行車両フリートコントロール装置は、配車予定送信処理を実行しなくてよい。
<配車予定情報の変形例>
 本具体例のオンデマンド既定ルート自動走行車両フリートコントロール装置501は、利用要求マネジメント装置601に、配車予定情報を送信する。そして、利用要求マネジメント装置601から情報端末720に、配車予定情報が送信される。しかしながら、本発明のオンデマンド既定ルート自動走行車両フリートコントロール装置501は、直接、情報端末720に、配車予定情報を送信してもよい。
<自律制御の変形例>
 本具体例に係るオンデマンド既定ルート自動走行車両100の車両搭載制御装置115は、前障害物検出装置118から前障害物検出信号を取得すると、駆動機構112および制動機構113を制御して、車両を停止させる。しかしながら、本発明のオンデマンド既定ルート自動走行車両の車両搭載制御装置は、前障害物検出装置から前障害物検出信号を取得すると、駆動機構、制動機構および進行方向制御機構を制御して、オンデマンド既定ルート自動走行車両の前方向にある障害物をよけるように走行させてもよい。具体的には、車両搭載制御装置115は、オンデマンド既定ルート自動走行車両100の走行を図16A~図16Cのように制御する。以下、図16A、図16B、および、図16Cに基づいて、車両搭載制御装置115で制御されるオンデマンド既定ルート自動走行車両100の走行の具体例について、説明する。図16A~図16Cの具体例では、オンデマンド既定ルート自動走行車両100Xより前方向に障害物100Yが存在する場合を想定する。
 図16Aの場合、オンデマンド既定ルート自動走行車両100Xの車両搭載制御装置115は、オンデマンド既定ルート自動走行車両100Xが、接続既定ルート1131を介して、環状既定ルート1130から環状既定ルート1132に移動するように、オンデマンド既定ルート自動走行車両100Xの進行方向および速度を制御してよい。ここで、接続既定ルート1131の起点は、環状既定ルート1130にある。接続既定ルート1131の起点は、環状既定ルート1130と接続既定ルート1131の接続部である。接続既定ルート1131の終点は、環状既定ルート1132にある。接続既定ルート1131の終点は、環状既定ルート1132と接続既定ルート1131の接続部である。車両搭載制御装置115は、環状既定ルート1130から環状既定ルート1130に接続された接続既定ルート1131に移動するように、オンデマンド既定ルート自動走行車両100Xを走行させる。そして、車両搭載制御装置115は、接続既定ルート1131から接続既定ルート1131に接続された環状既定ルート1132に移動するように、オンデマンド既定ルート自動走行車両100Xを走行させる。つまり、車両搭載制御装置115は、オンデマンド既定ルート自動走行車両100Xが、接続既定ルート1131を介して、環状既定ルート1130から環状既定ルート1132に移動するように走行させる。
 また、図16Bの場合、オンデマンド既定ルート自動走行車両100Xの車両搭載制御装置115は、オンデマンド既定ルート自動走行車両100Xが、非既定ルート1134を介して、環状既定ルート1133から環状既定ルート1135に移動するように、オンデマンド既定ルート自動走行車両100Xの進行方向および速度を制御してよい。ここで、非既定ルート1134の起点は、環状既定ルート1133にある。非既定ルート1134の起点は、環状既定ルート1133と非既定ルート1134の接続部である。非既定ルート1134は、予め決められたルートではない。非既定ルート1134の起点は、前障害物検出信号に基づいて設定される。非既定ルート1134の終点は、環状既定ルート1135にある。非既定ルート1134の終点は、環状既定ルート1135と非既定ルート1134の接続部である。具体的には、車両搭載制御装置115は、下記のように、オンデマンド既定ルート自動走行車両100Xの進行方向および速度を制御する。車両搭載制御装置115は、環状既定ルート1133から環状既定ルート1133に接続された非既定ルート1134に移動するように、オンデマンド既定ルート自動走行車両100Xを走行させる。そして、車両搭載制御装置115は、非既定ルート1134から環状既定ルート1135へ移動するように、オンデマンド既定ルート自動走行車両100Xを走行させる。つまり、車両搭載制御装置115は、オンデマンド既定ルート自動走行車両100Xが、非既定ルート1134を介して、環状既定ルート1133から環状既定ルート1135に移動するように走行させる。
 また、図16Cの場合、オンデマンド既定ルート自動走行車両100Xの車両搭載制御装置115は、オンデマンド既定ルート自動走行車両100Xを、環状既定ルート1136から一旦外れて環状既定ルート1136に戻るように、オンデマンド既定ルート自動走行車両100Xの進行方向および速度を制御してよい。ここで、非既定ルート1137の起点は、環状既定ルート1136にある。非既定ルート1137の起点は、環状既定ルート1136と非既定ルート1137の接続部である。非既定ルート1137は、予め決められたルートではない。非既定ルート1137の起点は、前障害物検出信号に基づいて設定される。非既定ルート1137の終点は、環状既定ルート1136にある。非既定ルート1137の終点は、環状既定ルート1136と非既定ルート1137の接続部である。具体的には、車両搭載制御装置115は、環状既定ルート1136から環状既定ルート1136に接続された非既定ルート1137に移動するように、オンデマンド既定ルート自動走行車両100Xを走行させる。その後、車両搭載制御装置115は、非既定ルート1137から環状既定ルート1136に移動するように、オンデマンド既定ルート自動走行車両100Xを走行させる。つまり、車両搭載制御装置115は、オンデマンド既定ルート自動走行車両100Xを、環状既定ルート1136から一旦外れて環状既定ルート1136に戻るように制御する。
 なお、上述のオンデマンド既定ルート自動走行車両100Xの車両搭載制御装置115は、前障害物検出装置118から前障害物検出信号を取得すると、例えば図16A~図16Cのように駆動機構112、制動機構113および進行方向制御機構114を制御して、オンデマンド既定ルート自動走行車両100Xの前方向にある障害物100Yをよけるように走行させている。しかしながら、本発明のオンデマンド既定ルート自動走行車両フリートコントロール装置は、オンデマンド既定ルート自動走行車両から前障害物検出信号を受信すると、オンデマンド既定ルート自動走行車両を例えば図16A~図16Cのように制御するための制御指令信号を、オンデマンド既定ルート自動走行車両に送信してもよい。
<オンデマンド既定ルート自動走行車両が適用される車両の変形例>
 本実施形態および具体例のオンデマンド既定ルート自動走行車両は、自動走行可能なゴルフカーである。しかし、本発明のオンデマンド既定ルート自動走行車両は、小型自動運転バス、小型自動電動車両などであってもよい。
<乗車可能な乗員の最大数の変形例>
 本具体例のオンデマンド既定ルート自動走行車両は、乗車可能な乗員の最大数が4名である。しかしながら、本発明のオンデマンド既定ルート自動走行車両は、乗車可能な乗員の最大数が8名以下であれば、何名でもよい。
<情報端末の変形例>
 本具体例の情報端末720は、利用者が所持している。しかしながら、本発明において、情報端末は、オンデマンド既定ルート自動走行車両の乗降場所に配置されてもよい。
30 既定ルート、環状接続既定ルート
31 環状既定ルート
32 接続既定ルート
100、100A、100B、100C、100D、100X オンデマンド既定ルート自動走行車両
111 車輪
112 駆動機構
113 制動機構
114 進行方向制御機構
115 車両搭載制御装置
130 既定ルート、環状接続既定ルート
131 環状既定ルート、第1環状既定ルート
131a 第1接続部
132 接続既定ルート、第1接続既定ルート
230 既定ルート、環状接続既定ルート
231 環状既定ルート
231a 第1接続部
231b 第2接続部
232 接続既定ルート
232a 第3接続部
232b 第4接続部
501 オンデマンド既定ルート自動走行車両フリートコントロール装置
502 プロセッサ
601 利用要求マネジメント装置
701、701A、701B、701C 利用者
720、720A、720B、720C 情報端末
1130、1132、1133、1135、1136 環状既定ルート
1131 接続既定ルート
1310 既定ルート、環状接続既定ルート
1331、1332 環状既定ルート
1333~1344 接続既定ルート

Claims (13)

  1.  (i)走行可能なエリアの中の予め決められた既定ルートを乗員の有無に関わらず自動で走行する複数のオンデマンド既定ルート自動走行車両との間で情報を送受信可能に構成され、(ii)利用者からの利用要求を取得したときに、前記複数のオンデマンド既定ルート自動走行車両の中から少なくとも1台の前記オンデマンド既定ルート自動走行車両を利用者が乗車する予定の位置に配車するように、前記複数のオンデマンド既定ルート自動走行車両の走行を制御するオンデマンド既定ルート自動走行車両フリートコントロール装置であって、
     (A)少なくとも1つの環状既定ルートと、前記環状既定ルートに行き来可能に接続された少なくとも1つの接続既定ルートとを有する環状接続既定ルートである前記既定ルートのルートに関連するルート情報、
     (B)前記環状接続既定ルート上の前記複数のオンデマンド既定ルート自動走行車両が送信した前記環状接続既定ルート上の前記複数のオンデマンド既定ルート自動走行車両の現在位置に関連する車両位置情報、
     (C)前記環状接続既定ルート上の前記複数のオンデマンド既定ルート自動走行車両の乗員の有無に関連する乗員有無情報、および、
     (D)情報端末および前記オンデマンド既定ルート自動走行車両フリートコントロール装置と情報を送受信可能に構成された少なくとも1つの利用要求マネジメント装置が、前記情報端末から利用者の利用要求を受信したときに、前記オンデマンド既定ルート自動走行車両フリートコントロール装置に送信された、利用者が乗車する予定の乗車予定位置の情報を含む利用者の前記利用要求に関連する利用要求情報を取得する情報取得処理と、
     取得した前記ルート情報、前記車両位置情報、前記乗員有無情報および前記利用要求情報に基づいて、前記複数のオンデマンド既定ルート自動走行車両の中から前記乗車予定位置に配車する車両を選択する配車車両選択処理と、
     前記複数のオンデマンド既定ルート自動走行車両の中から選択された前記乗車予定位置に配車する車両に、前記利用要求マネジメント装置が受信した前記利用要求に含まれる利用者の前記乗車予定位置に向かって走行するように指示する配車指令信号を生成する配車指令信号生成処理と、
     生成した前記配車指令信号を前記複数のオンデマンド既定ルート自動走行車両の中から選択された前記乗車予定位置に配車する車両に送信する送信処理と、
     を実行するように構成されまたはプログラムされたプロセッサを有することを特徴とする、ことを特徴とするオンデマンド既定ルート自動走行車両フリートコントロール装置。
  2.  前記利用要求マネジメント装置または前記情報端末に対して、前記複数のオンデマンド既定ルート自動走行車両の中から選択された前記乗車予定位置に配車される車両の前記乗車予定位置への配車の予定に関連する配車予定情報を送信する配車予定送信処理、
     を更に実行するように構成されまたはプログラムされたプロセッサを有することを特徴とする請求項1に記載のオンデマンド既定ルート自動走行車両フリートコントロール装置。
  3.  前記配車指令信号は、
     前記複数のオンデマンド既定ルート自動走行車両の中から選択された前記乗車予定位置に配車する車両に対して、乗員が乗っておらず前記配車指令信号を受信することが可能な状態である待機状態から、前記配車指令信号に基づいて前記乗車予定位置に向かって走行している状態である配車状態に変化する際に、前記待機状態の速度が前記配車状態の速度よりも小さくなるように指示する信号であることを特徴とする請求項1または2に記載のオンデマンド既定ルート自動走行車両フリートコントロール装置。
  4.  前記情報取得処理は、更に、
     前記環状接続既定ルート上の前記乗車予定位置になることが予想される位置である予想乗車位置に関連する予想乗車位置情報を取得し、
     前記車両選択処理は、更に、
     取得した前記ルート情報、前記車両位置情報、前記乗員有無情報および前記予想乗車位置情報に基づいて、前記複数のオンデマンド既定ルート自動走行車両の内の前記配車指令信号を受信していない状態の車両の中から前記予想乗車位置に事前に配車する車両を選択し、
     前記プロセッサは、
     前記複数のオンデマンド既定ルート自動走行車両の中から選択された前記予想乗車位置情報に事前に配車する車両の走行を、前記予想乗車位置に移動するように指令する事前配車指令信号を、取得した前記ルート情報、前記車両位置情報、前記乗員有無情報および前記予想乗車位置情報に基づいて生成する事前配車指令信号生成処理を更に実行するように構成されまたはプログラムされ、
     前記送信処理は、更に、
     生成した前記事前配車指令信号を前記複数のオンデマンド既定ルート自動走行車両の中から選択された前記予想乗車位置に事前に配車する車両に送信することを特徴とする請求項1~3のいずれか一項に記載のオンデマンド既定ルート自動走行車両フリートコントロール装置。
  5.  前記予想乗車位置情報は、
     利用者の過去の利用実績および利用者の現在位置を含む利用者に関連する情報、利用者の過去に前記オンデマンド既定ルート自動走行車両を利用したときの目的地を含む目的地に関連する情報、または、前記環状接続既定ルートの環境に関連する情報の少なくとも1つの情報に基づいて生成されることを特徴とする請求項4に記載のオンデマンド既定ルート自動走行車両フリートコントロール装置。
  6.  前記予想乗車位置情報は、
     前記予想乗車位置および前記予想乗車位置を前記乗車予定位置とした利用者の前記利用要求が行われることが予想される時刻である予想乗車位置利用要求時刻の情報を含み、
     前記事前配車指令信号は、
     前記予想乗車位置利用要求時刻に前記予想乗車位置にいることを指示することを特徴とする請求項4または5に記載のオンデマンド既定ルート自動走行車両フリートコントロール装置。
  7.  前記環状接続既定ルートが、第1環状既定ルート、および、第1接続部で前記第1環状既定ルートと接続される第1接続既定ルートを含み、
     前記プロセッサは、
     前記ルート情報、前記車両位置情報、前記乗員有無情報および前記利用要求情報に基づいて、
     前記第1環状既定ルートを前記第1接続部に向かって走行している第1オンデマンド既定ルート自動走行車両が存在し、且つ、前記第1接続既定ルートを前記第1接続部に向かって走行している第2オンデマンド既定ルート自動走行車両が存在する場合であって、前記第1オンデマンド既定ルート自動走行車両および前記第2オンデマンド既定ルート自動走行車両が車両前方向にある障害物の存在に関連する制御が行われない状態であると判断した場合、または、
     前記第1接続既定ルートを前記第1接続部に向かって走行している第1オンデマンド既定ルート自動走行車両が存在し、且つ、前記第1環状既定ルートを前記第1接続部に向かって走行している第2オンデマンド既定ルート自動走行車両が存在する場合であって、前記第1オンデマンド既定ルート自動走行車両および前記第2オンデマンド既定ルート自動走行車両が車両前方向にある障害物の存在に関連する制御が行われない状態であると判断した場合に、
     前記ルート情報、前記車両位置情報、前記乗員有無情報および前記利用要求情報に基づいて、前記第1接続部を通過する順番を前記第1オンデマンド既定ルート自動走行車両が前記第2オンデマンド既定ルート自動走行車両の後にするように、前記第1接続部に向かって走行するときの前記第1オンデマンド既定ルート自動走行車両の速度が、前記第1接続部に向かって走行するときの前記第2オンデマンド既定ルート自動走行車両の速度よりも小さくなるように指令する調停指令信号を生成する調停指令信号生成処理を更に実行するように構成されまたはプログラムされ、
     前記送信処理は、更に、
     生成した前記調停指令信号を前記第1オンデマンド既定ルート自動走行車両に送信することを特徴とする請求項1~6のいずれか一項に記載のオンデマンド既定ルート自動走行車両フリートコントロール装置。
  8.  前記オンデマンド既定ルート自動走行車両は、乗車可能な乗員の最大数が8名以下であることを特徴とする請求項1~7のいずれか一項に記載のオンデマンド既定ルート自動走行車両フリートコントロール装置。
  9.  前記配車指令信号は、
     前記乗車予定位置に向かって走行する最中の速度が時速40km以下となるように、前記複数のオンデマンド既定ルート自動走行車両の中から選択された前記乗車予定位置に配車する車両の走行を制御することを特徴とする請求項1~8のいずれか一項に記載のオンデマンド既定ルート自動走行車両フリートコントロール装置。
  10.  前記情報取得処理は、
     前記ルート情報、前記車両位置情報、前記乗員有無情報、前記利用要求情報、および、前記環状接続既定ルート上の前記複数のオンデマンド既定ルート自動走行車両のエネルギー残量に関連するエネルギー情報を取得し、
     前記車両選択処理は、
     取得した前記ルート情報、前記車両位置情報、前記乗員有無情報、前記利用要求情報および前記エネルギー情報に基づいて、前記複数のオンデマンド既定ルート自動走行車両の中から前記乗車予定位置に配車する車両を選択し、
     前記配車指令信号生成処理は、
     取得した前記ルート情報、前記車両位置情報、前記乗員有無情報、前記利用要求情報および前記エネルギー情報に基づいて、前記配車指令信号を生成することを特徴とする請求項1~9のいずれか一項に記載のオンデマンド既定ルート自動走行車両フリートコントロール装置。
  11.  前記エネルギー情報は、前記環状接続既定ルート上の前記複数のオンデマンド既定ルート自動走行車両が送信した自車のエネルギー残量に関連する情報であることを特徴とする請求項10に記載のオンデマンド既定ルート自動走行車両フリートコントロール装置。
  12.  前記利用要求情報は、利用者が降車する予定の降車予定位置の情報を含むことを特徴とする請求項10または11に記載のオンデマンド既定ルート自動走行車両フリートコントロール装置。
  13.  前記環状接続既定ルートは、第1環状既定ルートと、第2環状既定ルートと、少なくとも1つの第1接続既定ルートを有し、前記第1環状既定ルートおよび前記第2環状既定ルートが前記少なくとも1つの第1接続既定ルートを介して行き来可能に接続されることを特徴とする請求項1~12のいずれか一項に記載のオンデマンド既定ルート自動走行車両フリートコントロール装置。

                                                                                    
PCT/JP2018/047199 2017-12-22 2018-12-21 オンデマンド既定ルート自動走行車両フリートコントロール装置 WO2019124539A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2019560589A JP7026136B2 (ja) 2017-12-22 2018-12-21 オンデマンド既定ルート自動走行車両フリートコントロール装置
EP18892554.9A EP3731210A4 (en) 2017-12-22 2018-12-21 FLEET CONTROL DEVICE FOR AUTOMATICALLY MOVING VEHICLES ON ITINERARY ESTABLISHED ON DEMAND
US16/907,150 US20200320882A1 (en) 2017-12-22 2020-06-19 On-demand predefined route automated driving vehicle fleet controller

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201762609779P 2017-12-22 2017-12-22
US62/609,779 2017-12-22

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/907,150 Continuation-In-Part US20200320882A1 (en) 2017-12-22 2020-06-19 On-demand predefined route automated driving vehicle fleet controller

Publications (2)

Publication Number Publication Date
WO2019124539A1 true WO2019124539A1 (ja) 2019-06-27
WO2019124539A8 WO2019124539A8 (ja) 2020-08-20

Family

ID=66992656

Family Applications (3)

Application Number Title Priority Date Filing Date
PCT/JP2018/047190 WO2019124535A1 (ja) 2017-12-22 2018-12-21 オンデマンド既定ルート自動走行車両
PCT/JP2018/047199 WO2019124539A1 (ja) 2017-12-22 2018-12-21 オンデマンド既定ルート自動走行車両フリートコントロール装置
PCT/JP2018/047179 WO2019124534A1 (ja) 2017-12-22 2018-12-21 オンデマンド既定ルート自動走行車両

Family Applications Before (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/047190 WO2019124535A1 (ja) 2017-12-22 2018-12-21 オンデマンド既定ルート自動走行車両

Family Applications After (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/047179 WO2019124534A1 (ja) 2017-12-22 2018-12-21 オンデマンド既定ルート自動走行車両

Country Status (4)

Country Link
US (3) US11325615B2 (ja)
EP (3) EP3731210A4 (ja)
JP (3) JP7026136B2 (ja)
WO (3) WO2019124535A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112298203A (zh) * 2019-07-30 2021-02-02 丰田自动车株式会社 驾驶控制装置
WO2021171513A1 (ja) * 2020-02-27 2021-09-02 本田技研工業株式会社 制御装置、作業機および作業システム

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3778327B1 (en) * 2018-03-27 2022-04-13 Nissan Motor Co., Ltd. Method and device for controlling autonomous driving vehicle
JP7183987B2 (ja) * 2019-07-26 2022-12-06 トヨタ自動車株式会社 移動制御システム
JP7226232B2 (ja) * 2019-10-04 2023-02-21 トヨタ自動車株式会社 自動運転車両の制御装置
JP7408793B2 (ja) 2020-05-15 2024-01-05 ヤマハ発動機株式会社 走行経路生成装置、走行経路生成方法、及び自動運転システム
KR20210153800A (ko) * 2020-06-10 2021-12-20 현대자동차주식회사 자율 주행 제어 장치 및 그 방법
JP7447766B2 (ja) * 2020-11-10 2024-03-12 トヨタ自動車株式会社 情報処理装置、方法、プログラム、及び車両
US11753019B2 (en) * 2020-11-30 2023-09-12 Sony Group Corporation Event determination for vehicles and occupants of mobility provider on MaaS platform
JP2023032947A (ja) * 2021-08-27 2023-03-09 株式会社豊田自動織機 自律走行システム

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000233751A (ja) * 1999-02-17 2000-08-29 Toyota Motor Corp 車両運行支援方法
JP2003006784A (ja) * 2001-06-20 2003-01-10 Matsushita Electric Ind Co Ltd デマンド車両管理装置
JP2003024390A (ja) 2001-07-18 2003-01-28 Suzuki Motor Corp 自走式電動車椅子の貸し出しシステム
JP2003168195A (ja) * 2001-12-03 2003-06-13 Denso Corp 配車サービス方法、配車サービスシステム、配車サービス装置、利用者用端末装置、事業者用端末装置、事業者用車載機
JP2005011007A (ja) * 2003-06-18 2005-01-13 Nec Soft Ltd サービス提供システムおよびサービス提供方法
JP2014006890A (ja) * 2012-05-30 2014-01-16 Osamu Masuda タクシーの最適配置システム
JP2016091411A (ja) * 2014-11-07 2016-05-23 株式会社デンソー 自動配車システム、センタ装置
JP2017517809A (ja) * 2014-05-22 2017-06-29 コミサリア ア レネルジ アトミク エ オウ エネルジ アルタナティヴ 車両共有システムの全自動車両のオートリバランス方法
JP2017167669A (ja) * 2016-03-14 2017-09-21 国立大学法人 筑波大学 交通システム

Family Cites Families (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES391695A1 (es) * 1971-05-28 1973-07-01 Galvez Figari Perfeccionamientos en el sistema de transporte elevado ur- bano o suburbano sobre mono riel.
US5219395A (en) * 1992-02-24 1993-06-15 Robert Spieldiener Monorail transport system
US5797330A (en) * 1996-07-31 1998-08-25 Li; Zhengzhong Mass transit system
JP4181719B2 (ja) 2000-01-21 2008-11-19 ヤマハ発動機株式会社 無人走行車両の自動分岐システム
JP2003029838A (ja) 2001-07-18 2003-01-31 Suzuki Motor Corp 自走式電動車椅子の貸し出しシステム
JP3860496B2 (ja) * 2002-03-28 2006-12-20 富士通株式会社 配車方法、および配車プログラム
US8239083B2 (en) * 2006-01-18 2012-08-07 I-Guide Robotics, Inc. Robotic vehicle controller
CN102107662A (zh) * 2009-12-25 2011-06-29 张兔生 无人驾驶有轨电轿车及天铁系统
JP5146855B2 (ja) * 2010-08-09 2013-02-20 村田機械株式会社 天井走行車システム
DE102012021282A1 (de) * 2012-10-29 2014-04-30 Audi Ag Verfahren zur Koordination des Betriebs von vollautomatisiert fahrenden Kraftfahrzeugen
US9984574B2 (en) * 2014-01-21 2018-05-29 Tribal Rides, Inc. Method and system for anticipatory deployment of autonomously controlled vehicles
US20190050758A1 (en) * 2014-01-30 2019-02-14 Modutram Mexico, S.A. De. C.V. System and method for grouping passengers together in an automated collective form of transport
US9483744B2 (en) * 2014-05-06 2016-11-01 Elwha Llc Real-time carpooling coordinating systems and methods
US9805605B2 (en) * 2015-08-12 2017-10-31 Madhusoodhan Ramanujam Using autonomous vehicles in a taxi service
KR101755846B1 (ko) * 2015-09-21 2017-07-07 현대자동차주식회사 전기차의 에코코스팅 연비향상률 표시방법 및 장치
US9958864B2 (en) * 2015-11-04 2018-05-01 Zoox, Inc. Coordination of dispatching and maintaining fleet of autonomous vehicles
US10685297B2 (en) * 2015-11-23 2020-06-16 Google Llc Automatic booking of transportation based on context of a user of a computing device
US20170169366A1 (en) * 2015-12-14 2017-06-15 Google Inc. Systems and Methods for Adjusting Ride-Sharing Schedules and Routes
US11205240B2 (en) * 2015-12-30 2021-12-21 Waymo Llc Autonomous vehicle services
US20170294130A1 (en) * 2016-04-08 2017-10-12 Uber Technologies, Inc. Rider-vehicle handshake
US20170351990A1 (en) * 2016-06-01 2017-12-07 GM Global Technology Operations LLC Systems and methods for implementing relative tags in connection with use of autonomous vehicles
US20190370922A1 (en) * 2016-10-27 2019-12-05 University Of Southern California Price-aware real-time auction-based ride-sharing system
US10817775B2 (en) * 2017-01-12 2020-10-27 International Business Machines Corporation Neural network computing systems for predicting vehicle requests
US10753754B2 (en) * 2017-01-19 2020-08-25 Andrew DeLizio Managing autonomous vehicles
US11619951B2 (en) * 2017-01-23 2023-04-04 Massachusetts Institute Of Technology On-demand high-capacity ride-sharing via dynamic trip-vehicle assignment with future requests
US10168167B2 (en) * 2017-01-25 2019-01-01 Via Transportation, Inc. Purposefully selecting longer routes to improve user satisfaction
US20180315146A1 (en) * 2017-04-27 2018-11-01 Lyft, Inc. Dynamic autonomous vehicle matching optimization

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000233751A (ja) * 1999-02-17 2000-08-29 Toyota Motor Corp 車両運行支援方法
JP2003006784A (ja) * 2001-06-20 2003-01-10 Matsushita Electric Ind Co Ltd デマンド車両管理装置
JP2003024390A (ja) 2001-07-18 2003-01-28 Suzuki Motor Corp 自走式電動車椅子の貸し出しシステム
JP2003168195A (ja) * 2001-12-03 2003-06-13 Denso Corp 配車サービス方法、配車サービスシステム、配車サービス装置、利用者用端末装置、事業者用端末装置、事業者用車載機
JP2005011007A (ja) * 2003-06-18 2005-01-13 Nec Soft Ltd サービス提供システムおよびサービス提供方法
JP2014006890A (ja) * 2012-05-30 2014-01-16 Osamu Masuda タクシーの最適配置システム
JP2017517809A (ja) * 2014-05-22 2017-06-29 コミサリア ア レネルジ アトミク エ オウ エネルジ アルタナティヴ 車両共有システムの全自動車両のオートリバランス方法
JP2016091411A (ja) * 2014-11-07 2016-05-23 株式会社デンソー 自動配車システム、センタ装置
JP2017167669A (ja) * 2016-03-14 2017-09-21 国立大学法人 筑波大学 交通システム

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
AKITANI, RYUTARO: "Development of an actual operable simulator of a transportation system enabling platooning", RESEARCH REPORT OF INFORMATION PROCESSING SOCIETY OF JAPAN : SYSTEM SOFTWARE AND OPERATING SYSTEM(OS) 2017-0S-141, 19 July 2017 (2017-07-19), pages 1 - 6, XP009521762 *
ANONYMOUS: "Taxi driver talks! The trick of finding customers when an taxi is empty", JAPAN EXECUTIVE TRADE, 8 August 2016 (2016-08-08), pages 1 - 5, XP055715423, Retrieved from the Internet <URL:https://jet-takuten.com/537> *
See also references of EP3731210A4
SHEEP. OVERSEAS LAB!: "6 things to watch out for when taking a taxi in Thailand", THAISLIFE.COM, 17 January 2017 (2017-01-17), pages 1 - 7, XP009521766, Retrieved from the Internet <URL:https://www.thaislife.com/entry/2017/01/17/090000_1> *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112298203A (zh) * 2019-07-30 2021-02-02 丰田自动车株式会社 驾驶控制装置
CN112298203B (zh) * 2019-07-30 2023-09-15 丰田自动车株式会社 驾驶控制装置
WO2021171513A1 (ja) * 2020-02-27 2021-09-02 本田技研工業株式会社 制御装置、作業機および作業システム
JPWO2021171513A1 (ja) * 2020-02-27 2021-09-02

Also Published As

Publication number Publication date
US11325615B2 (en) 2022-05-10
JP7026136B2 (ja) 2022-02-25
EP3731210A4 (en) 2021-02-17
JP7026134B2 (ja) 2022-02-25
US20200320882A1 (en) 2020-10-08
JPWO2019124534A1 (ja) 2021-01-07
US20200317230A1 (en) 2020-10-08
EP3731210A1 (en) 2020-10-28
EP3731209A4 (en) 2021-01-27
US20200317229A1 (en) 2020-10-08
JP7026135B2 (ja) 2022-02-25
WO2019124534A8 (ja) 2020-08-27
EP3731208A1 (en) 2020-10-28
JPWO2019124539A1 (ja) 2021-01-14
US11332160B2 (en) 2022-05-17
JPWO2019124535A1 (ja) 2021-01-07
EP3731208A4 (en) 2021-01-27
WO2019124535A1 (ja) 2019-06-27
WO2019124535A8 (ja) 2020-08-20
WO2019124539A8 (ja) 2020-08-20
WO2019124534A1 (ja) 2019-06-27
EP3731209A1 (en) 2020-10-28

Similar Documents

Publication Publication Date Title
WO2019124539A1 (ja) オンデマンド既定ルート自動走行車両フリートコントロール装置
US11422555B2 (en) Autonomous vehicle and control method thereof
KR102058049B1 (ko) 차량의 운행 시스템
CN111436217A (zh) 运输服务方法、车辆队列运行方法、车辆组运行系统、可协作行驶自走车辆、组车辆引导机
CN109552330A (zh) 列队行驶控制装置和方法
US11709504B2 (en) Platooning system
JP7019041B2 (ja) 乗降車地点決定方法及び乗降車地点決定装置
US20210107509A1 (en) Vehicle control system, vehicle control device, and vehicle control method
CN109074072A (zh) 自动运输系统
US20210114626A1 (en) Vehicle control system, vehicle control device, and vehicle control method
JP6897481B2 (ja) 降車位置設定装置
KR20180120123A (ko) 무인운전시스템, 무인운전차 이용 요금 부과 서버 및 방법
JP6958735B2 (ja) 降車地点決定方法及び降車地点決定装置
JP7022827B2 (ja) 乗車地点決定方法及び乗車地点決定装置
JP2023097153A (ja) 車両管理装置、車両管理方法、車両管理システム及び車両管理プログラム
JP2022070117A (ja) モビリティサービスシステム及びモビリティサービス提供方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18892554

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019560589

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018892554

Country of ref document: EP

Effective date: 20200722