WO2019120140A1 - 一种水性粘结剂及二次电池 - Google Patents

一种水性粘结剂及二次电池 Download PDF

Info

Publication number
WO2019120140A1
WO2019120140A1 PCT/CN2018/121112 CN2018121112W WO2019120140A1 WO 2019120140 A1 WO2019120140 A1 WO 2019120140A1 CN 2018121112 W CN2018121112 W CN 2018121112W WO 2019120140 A1 WO2019120140 A1 WO 2019120140A1
Authority
WO
WIPO (PCT)
Prior art keywords
binder
negative electrode
formula
group
fragment
Prior art date
Application number
PCT/CN2018/121112
Other languages
English (en)
French (fr)
Inventor
吴博
王龙
郑义
钟泽
Original Assignee
宁德时代新能源科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宁德时代新能源科技股份有限公司 filed Critical 宁德时代新能源科技股份有限公司
Publication of WO2019120140A1 publication Critical patent/WO2019120140A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/52Amides or imides
    • C08F220/54Amides, e.g. N,N-dimethylacrylamide or N-isopropylacrylamide
    • C08F220/58Amides, e.g. N,N-dimethylacrylamide or N-isopropylacrylamide containing oxygen in addition to the carbonamido oxygen, e.g. N-methylolacrylamide, N-(meth)acryloylmorpholine
    • C08F220/585Amides, e.g. N,N-dimethylacrylamide or N-isopropylacrylamide containing oxygen in addition to the carbonamido oxygen, e.g. N-methylolacrylamide, N-(meth)acryloylmorpholine and containing other heteroatoms, e.g. 2-acrylamido-2-methylpropane sulfonic acid [AMPS]
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F218/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an acyloxy radical of a saturated carboxylic acid, of carbonic acid or of a haloformic acid
    • C08F218/02Esters of monocarboxylic acids
    • C08F218/04Vinyl esters
    • C08F218/08Vinyl acetate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/04Acids; Metal salts or ammonium salts thereof
    • C08F220/06Acrylic acid; Methacrylic acid; Metal salts or ammonium salts thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/12Esters of monohydric alcohols or phenols
    • C08F220/16Esters of monohydric alcohols or phenols of phenols or of alcohols containing two or more carbon atoms
    • C08F220/18Esters of monohydric alcohols or phenols of phenols or of alcohols containing two or more carbon atoms with acrylic or methacrylic acids
    • C08F220/1802C2-(meth)acrylate, e.g. ethyl (meth)acrylate
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J133/00Adhesives based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Adhesives based on derivatives of such polymers
    • C09J133/24Homopolymers or copolymers of amides or imides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • H01M4/622Binders being polymers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to the field of secondary battery technology, and in particular to an aqueous binder for a secondary battery and a secondary battery containing the same.
  • the next-generation silicon-based anode material has a maximum mass ratio of 4200 mAh/g, but the silicon material will have a large volume effect (400%) under the condition of high deintercalation of lithium, which easily leads to electrode structure collapse and electrode material.
  • the peeling off causes the electrode material to lose the conductive network, resulting in a rapid decay of the capacity of the electrode and poor cycle performance. Therefore, the development of a negative electrode sheet with high energy density and high adhesion performance has become a technical bottleneck for the development of the next generation of advanced secondary batteries.
  • the binder is an important component of the secondary battery. During the charging and discharging process, the binder functions to maintain the integrity of the electrode structure and ensure the normal operation of the battery.
  • a binder currently used for negative electrode materials is mainly divided into: sodium carboxymethyl cellulose (CMCNa) with styrene-butadiene rubber emulsion (SBR) or styrene-butadiene rubber emulsion (SAR), in which CMCNa acts to disperse active substances and Stabilizing the effect of the slurry, the SBR or SAR emulsion acts as a bond between the active material particles and between the particles and the substrate.
  • SBR has certain adhesiveness and elasticity, it has a point contact connection between the particles of the active material and the particles and between the particles and the current collector, the bonding ability is weak, and the material has poor reversible mechanical properties.
  • Another existing binder for the anode material is a polysaccharide material such as sodium alginate, cyclodextrin, chitosan, etc., which has low mechanical strength and inhibits graphite anode and silicon-based anode.
  • the expansion effect during charging and discharging is limited, and there is a risk of cyclic stripping.
  • Modified polyacrylic acid (PAA) materials can also be used as binders for negative electrode materials, but such materials react with ions during electrode deintercalation, resulting in capacity loss, first coulomb efficiency degradation, and PAA materials.
  • the fatigue resistance is poor, the electrolyte infiltration performance is poor, and the negative electrode dynamic performance is poor.
  • the present invention has been made in view of the deficiencies existing in the prior art.
  • An object of the present invention is to provide a binder for a secondary battery having high adhesion and fatigue resistance.
  • Another object of the present invention is to provide a secondary battery having good properties, particularly cycle performance, kinetic performance, and high energy density.
  • the present invention provides an aqueous binder which is a polymer comprising at least two monomer units, wherein one monomer unit is a structural formula (I) which contains both a sulfonic acid group and an amide group.
  • one monomer unit is a structural formula (I) which contains both a sulfonic acid group and an amide group.
  • the unit shown, another monomer unit is selected from the group consisting of structural formula (II)-1 or structural formula (II)-2.
  • R 1 is selected from H, a linear or branched alkyl group having 1, 2 , 3, 4, 5 or 6 carbon atoms
  • R 2 is selected from H, benzoyl group, total a linear or branched alkanoyl group having 1, 2, 3, 4, 5, 6, 7, or 8 carbon atoms;
  • R 1 is selected from H, a linear or branched alkyl group having 1, 2, 3, 4, 5 or 6 carbon atoms
  • R 3 is selected from the group consisting of H, phenyl, benzyl, a linear or branched alkyl group having 1, 2, 3, 4, 5, 6, 7, or 8 carbon atoms;
  • R -1 in the formula (I) R 1 of structural formula (II) 1, R-2 in the structural formula (II) 1 are each independently selected.
  • the unit of the formula (I) as a first component which accounts for 40% to 90% by mole of the binder, preferably 50% to 80%, when the molar percentage of the structural formula (I) is within this range,
  • the binder achieves the best self-healing effect.
  • the unit of the formula (II)-1 and/or the unit of the formula (II)-2 is used as the second component, and the mole percentage of the binder is from 10% to 60%, preferably from 20% to 50% by mole (
  • the binder contains both the unit of the formula (II)-1 and the unit of the formula (II)-2
  • the sum of the mole percentages of the two units is from 10% to 60%, preferably from 20% to 50%.
  • a structural unit of the structural formula (II)-1 is used.
  • the adhesiveness of the binder is optimum.
  • the binder has a number average molecular weight of 200,000 or more, preferably 200,000 to 1,500,000, more preferably 400,000 to 1,110,000.
  • the binder of the present invention may contain other kinds of units as needed, as long as they can be combined with the structural formula.
  • Other types of structural units typically have a mole percent in the binder of from 0 to 10%.
  • the binder of the present invention contains no other types of structural units other than the unit of formula (I), unit of formula (II)-1 or unit of (II)-2.
  • the binder of the present invention is composed of the unit of the formula (I) and the unit of the formula (II)-1 and/or the unit of the formula (II)-2, that is, the unit of the formula (I) and the formula (II)
  • the -1 unit configuration may be composed of the structural formula (I) unit and the structural formula (II)-2 unit, or may be composed of the structural formula (I) unit, the structural formula (II)-1 unit, and the structural formula (II)-2 unit.
  • the binder of the present invention is a terpolymer as described above, the sum of the molar percentages of both the unit of the formula (II)-1 and the unit of the formula (II)-2 satisfies the conditions specified above, that is, The binder has a mole percent of from 10% to 60%, preferably from 20% to 50%.
  • the unit of the formula (I) include, but are not limited to, a poly(2-acrylamido-2-methylpropane sulfonate) fragment, poly(3-methacrylamido-2-methyl-1- a propanesulfonic acid) fragment, a poly(3-acrylamido-2,2-dimethyl-1-propanesulfonic acid lithium) fragment, a poly(3-acrylamido-1-propanesulfonate ammonium) fragment, poly( Fragment of 3-methylacrylamido-2,3-dimethyl-2-butanesulfonate potassium).
  • R 1 is selected from H or C 1-4 straight or branched alkyl (particularly CH 3 ), and R 2 is selected from H, benzoyl a linear or branched alkanoyl group of C 1-6 which is not substituted with a substituent (particularly a C 1-4 straight or branched alkanoyl group which is unsubstituted).
  • unit of the formula (II)-1 include, but are not limited to, a polyvinyl alcohol fragment, a polyvinyl acetate fragment, a poly(vinyl benzoate) fragment, a polymethyl methacrylate fragment, or a poly-n-butyric acid vinyl ester. Fragment.
  • R 1 is selected from H or C 1-4 straight or branched alkyl (especially CH 3 ), and R 3 is selected from H, phenyl, A linear or branched alkyl group of C 1-8 (more preferably C 1-6 , most preferably C 1-4 ) which is not substituted with a substituent.
  • unit of the formula (II)-2 include, but are not limited to, polyacrylic acid fragments, polymethyl methacrylate fragments, polyethyl methacrylate fragments, polypropyl methacrylate fragments, polyisopropyl methacrylate An ester fragment, a poly(n-butyl acrylate) fragment, or a polyisoamyl methacrylate fragment.
  • alkyl as used herein has the meaning commonly understood in the art to mean a group formed by a saturated hydrocarbon consisting solely of two elements, C and H, after losing one hydrogen atom at any carbon atom.
  • alkyl includes both straight chain alkyl and branched alkyl groups. The alkyl group may be unsubstituted or substituted, but is preferably unsubstituted.
  • alkyl groups described herein include, but are not limited to, methyl, ethyl, n-propyl, isopropyl, n-butyl, sec-butyl, isobutyl, tert-butyl, n-pentyl, N-hexyl, chloromethyl, fluoroethyl, trifluoromethyl or 1,1,1-trifluoroethyl and the like.
  • alkylene refers to a divalent group derived from a straight or branched chain saturated hydrocarbon by removal of two hydrogen atoms, for example, methylene, 1,2-ethylene, 1,3- Propyl, 1,4-butylene, 1,5-pentylene, 1,6-hexylene, 2,2-dimethylpropylene, and the like.
  • the alkylene group of the present invention may be unsubstituted or substituted, but is preferably unsubstituted.
  • alkanoyl include, but are not limited to, formyl, acetyl, propionyl, isobutyryl, oxalyl, and the like.
  • “the number of carbon atoms is 1-6” means “the number of carbon atoms is 1 , 2 , 3 , 4 , 5, 6"
  • any expression of a numerical range relating to the number of substituents also refers to an enumeration of all positive integers in the upper and lower limits, such as "1-3 substituents” and “the number of substituents may be, for example, 1 to 3" Each represents one, two or three substituents.
  • the binder polymer of the present invention has a simple structure, and can be easily prepared by a person skilled in the art according to its structure, for example, can be prepared by the most common solution polymerization method.
  • the preparation process is simple, easy to control, high in feasibility, and less in environmental pollution, and is suitable for industrial scale production.
  • the binder of the present invention can be produced by using a vinyl unsaturated amide sulfonic acid monomer (for constituting the monomer unit of the formula (I)), a vinyl unsaturated ester monomer (for Mixing the monomer of the formula (II)-1 or the structural formula (II)-2 with an optional polymerization initiator, and continuously adding the mixture to the solvent slowly under an inert gas atmosphere at a certain temperature and time.
  • the polymerization reaction is carried out to prepare the binder.
  • the polymerization temperature and time directly affect the molecular weight of the binder.
  • the polymerization temperature is controlled at 60-120 ° C, and the polymerization reaction time is controlled at 6-24 h; more preferably, the polymerization temperature is controlled at 80-100 ° C, polymerization.
  • the reaction time is controlled at 8-20 h.
  • the solvent may be selected from the group consisting of tetrahydrofuran, N,N-dimethylformamide, N,N-dimethylacetamide, dimethyl sulfoxide, N-methylpyrrolidone, dioxane, acetone, acetonitrile.
  • a mixture of at least one of water and water, the mass of the solvent and the sum of the mass of both the ethylenically unsaturated amide sulfonic acid monomer and the ethylenically unsaturated ester monomer may be 100: (50-200) ).
  • the vinyl unsaturated amide sulfonic acid monomer and the ethylenically unsaturated ester monomer are preferably in a molar ratio of from 3:1 to 12:1, and the binder obtained in this range has good water solubility. And stability, its bonding performance and crosslinking performance are optimal.
  • the optional polymerization initiators are, for example, azobisisobutyronitrile, benzoyl peroxide, 4,4'-azobis(4-cyanovaleric acid), and most preferably azobisisobutyronitrile.
  • the mass of the polymerization initiator is 0.1% to 3%, and most preferably 0.5% to 2%, of the sum of the mass of both the vinyl unsaturated sulfonic acid sulfonic acid monomer and the ethylenically unsaturated ester monomer.
  • the inert gas is argon or nitrogen, most preferably argon.
  • the binder is prepared by using the above solvent system and a preferred polymerization initiator, a ratio and a preferred polymerization atmosphere, temperature and time.
  • the reaction conditions are mild due to the appropriate type and ratio of the initiator, and the molecular weight range can be controlled at 200,000. -1.5 million in the preferred range.
  • the binder of the present invention can be used as a binder in a positive electrode tab, a negative electrode tab or a separator of a secondary battery.
  • the binder of the present invention is particularly preferable as a binder of the negative electrode tab of the secondary battery because the problem of the negative electrode tab due to adhesion in the secondary battery is more remarkable.
  • the H in (NH) forms a strong hydrogen bond, which constitutes a three-dimensional hydrogen bond network structure between polymer molecular chains.
  • the contact between the interfaces can quickly form a hydrogen bond self-repairing damage (ie, self-healing), which further improves the fatigue resistance of the binder material, thereby avoiding the bonding of the binder due to the volume change of the anode.
  • a hydrogen bond self-repairing damage ie, self-healing
  • the side chain contains a sulfonic acid group structure
  • the sulfonic acid group is more acidic than the carboxylic acid group than the conventional sodium carboxymethyl cellulose and polyacrylic binder materials, and its strong charge delocalization
  • the effect is such that the paired counterions have a very low dissociation energy. Therefore, the ion conduction performance is good, the mobility is high, and the polarization is effectively reduced. Therefore, the existing styrene-butadiene rubber emulsion, styrene-acrylic rubber emulsion, sodium carboxymethyl cellulose, polyacrylic acid aqueous negative electrode binder have low lithium ion conductivity and poor kinetic performance, especially under large rate charge and discharge. A problem that causes the battery capacity to decay rapidly.
  • the other structural unit of the binder of the present invention contains an alcohol ester or a carboxylate group.
  • the ester group has a strong polarity, and the adhesion between the negative electrode current collector copper foil and the negative electrode active material is stronger. Therefore, the binder of the present invention has a low glass transition temperature, and the overall polymer chain has stronger toughness, and is characterized by soft material, high elongation at break, and improved mechanical properties of the material.
  • the processing performance is excellent at the same compaction density, thereby avoiding battery performance problems due to excessive brittleness of the pole piece. At the same time, it is beneficial to increase the compaction density of the pole piece and improve the overall energy density of the battery.
  • the ester group has good affinity with the electrolyte and has a certain degree of swelling, which is beneficial to accelerate the transmission speed of ions at the interface of the active material, improve the kinetics of the anode material, and is suitable for use conditions of large rate charge and discharge. .
  • the binder of the invention is an anionic polymer, and has the ability to disperse and suspend the active material in a strong manner, and does not need to be additionally used with sodium carboxymethyl cellulose, and on the other hand, can maintain the negative electrode sheet. A high proportion of binder to enhance adhesion. On the other hand, the process steps in the production process can be simplified and the production efficiency can be improved.
  • one structural unit imparts self-healing properties to the adhesive, and the other structural unit enhances the adhesive force of the adhesive through the unique structural composition and the two structures.
  • the cooperation of the unit makes the secondary battery containing the binder have excellent comprehensive properties.
  • the present invention also relates to a secondary battery comprising a positive electrode tab, a negative electrode tab, a separator, and an electrolyte, wherein at least one of the positive electrode tab, the negative electrode tab, and the separator has a present invention
  • the binder of the invention
  • the secondary battery contains the binder in the negative electrode tab.
  • one method of preparing a negative electrode tab using the binder of the present invention is as follows:
  • the binder, the conductive agent and the negative electrode active material of the present invention are pulverized in deionized water, and the obtained slurry is coated on a current collector to form a negative electrode tab.
  • the negative electrode tab includes the binder, the negative electrode tab includes a negative current collector and a negative active material coating, and the negative active material coating includes conductive The agent, the negative electrode active material, and the binder of the present invention.
  • the binder of the present invention is applied directly to the current collector to form a current collector coating.
  • the negative electrode tab includes the binder, the negative electrode tab includes a negative electrode current collector and a negative electrode active material coating, the negative current collector and the negative electrode current collector A coating is provided between the negative active material coatings, the coating comprising the binder of the present invention.
  • Any conventional conductive agent may be used in the above method, and the specific kind is not limited, and includes one or more of carbon nanotubes, conductive carbon black, carbon fiber, and graphene.
  • Any conventional negative active material may be used in the above method, and specific types thereof may include hard carbon, soft carbon, mesocarbon microbeads, natural graphite, artificial graphite, surface-modified natural graphite, amorphous silicon, carbon-encapsulated.
  • amorphous silicon particles polycrystalline silicon, polycrystalline silicon particles, oxysilylene particles, or silicon-based alloy powder.
  • Any conventional current collector may be used in the above method, and the specific kind is not limited, for example, various metal foils, preferably copper foil.
  • the binder accounts for 3% to 15% by mass of the negative electrode active material layer composed of the binder, the conductive agent and the negative electrode active material.
  • the secondary battery containing the binder of the present invention can have very excellent overall properties such as excellent cycle performance, high kinetic performance, and high energy density.
  • Figure 1 is a self-healing effect diagram of the adhesive block of the present invention
  • Figure 2 is a graph showing the adhesion of a negative electrode tab prepared from the binder of Example 1 of the present invention to a negative electrode tab prepared from other binders (Comparative Examples 1-3).
  • binders were prepared by adjusting the molar contents of the two monomer units.
  • the specific reaction conditions and monomer charge molar ratios are shown in Table 1-1, and the specific composition and number average molecular weight of the obtained binder were obtained. As shown in Table 1-2.
  • Example 1 Temperature / °C Aggregation time / h Initiator dosage / wt% (I) and (II) molar ratio of feed
  • Example 1 80 twenty four 0.7 10:1
  • Example 2 80 16 1.2 7.5:1
  • Example 3 80 8 2 5.2:1
  • Example 4 80 36 0.5 3:1
  • Table 1-2 Composition of the adhesive of Examples 1-4
  • the corresponding lithium ion batteries were prepared using the binders of Examples 1-4 prepared above.
  • the lithium ion battery includes a positive electrode sheet, a negative electrode sheet, a separator, and an electrolyte. The material selection and preparation process of each component is briefly described below.
  • the positive electrode tab includes a positive electrode current collector and a positive electrode active material layer coated on the positive electrode current collector.
  • the positive electrode current collector is an aluminum foil, and the positive electrode active material layer includes the following components according to a mass fraction:
  • the positive active material is LiNi 1/3 Mn 1/3 Co 1/3 O 2 , and the content is 94.0%;
  • the positive electrode binder is polyvinylidene fluoride, and the content is 3.0%;
  • the positive electrode conductive agent is acetylene black, and the content is 3.0%;
  • the positive current collector was an aluminum foil with a thickness of 14 um.
  • the negative electrode tab includes a negative electrode current collector and a negative electrode active material layer coated on the negative electrode current collector.
  • the anode current collector is a copper foil, and the anode active material layer includes the following components:
  • the negative electrode active material is artificial graphite, and the content is 95.0%;
  • the negative electrode conductive agent is conductive carbon black, and the content is 2.0%;
  • the negative electrode binder is the polymer material prepared in Examples 1-4, respectively, and the content is 3%;
  • the negative current collector was a copper foil having a thickness of 10 um.
  • the separator is a polyethylene porous film with a thickness of 14 um.
  • an electrolyte comprising a lithium salt and an organic solvent
  • the organic solvent is dimethyl carbonate, diethyl carbonate, mixtures of ethylene carbonate, the volume ratio of 1:1:1 three solvents
  • the lithium salt is LiPF 6, concentration It is 1 mol/L.
  • positive electrode tab 94.0% LiNi 1/3 Mn 1/3 Co 1/3 O 2 , 3.0% polyvinylidene fluoride, 3.0% acetylene black were added to the N-methylpyrrolidone (NMP) solvent system and stirred well. After mixing uniformly, the coating was dried on an aluminum foil and cold pressed to obtain a positive electrode tab.
  • NMP N-methylpyrrolidone
  • negative electrode tab 95.0% artificial graphite, 3.0% binder, 2.0% conductive carbon black were added to the deionized water solvent, stirred well and uniformly mixed, coated on copper foil to be dried, and cold pressed to obtain a negative electrode. sheet.
  • the positive electrode tab, the separator film and the negative electrode tab are stacked in order, so that the separator is in the middle of the anode and cathode to function as an isolation, and the bare cell is obtained by winding.
  • the bare cell is placed in the outer package, the prepared electrolyte is injected and packaged, and the cell is formed and aged to obtain the corresponding lithium ion battery B1-B4.
  • a lithium ion battery of Comparative Example 1-4 was prepared according to the method of Example 1, except that the negative electrode binder used was different, and the composition of the negative electrode binder of Comparative Examples 1-4 was specifically as shown in Table 2.
  • the positive electrode tab, the negative electrode tab, and the battery were fabricated in the same manner as in Examples 1-4, and the obtained batteries were CB1, CB2, CB3, and CB4, respectively.
  • the binders of Comparative Example 5 and Example 5 were prepared according to the method of Example 2, except that Comparative Example 5 adjusts the reaction conditions such as the amount of the initiator and the polymerization time in the preparation of the binder (see Table 3-1 below for details). Obtaining a binder having a molecular weight of 150,000; in Example 5, adjusting the amount of the initiator and the polymerization time during the preparation of the binder (see Table 3-1 below) to obtain a binder having a molecular weight of 1.64 million.
  • the specific composition of the binder is shown in Table 3-2.
  • the lithium ion battery of Comparative Example 5 and Example 5 was prepared according to the method of Example 2, except that the binder used, the production process of the positive electrode tab, the negative electrode tab, and the battery were kept unchanged, and the obtained batteries were respectively CB5, B5.
  • Example 1-5 The binder in Example 1-5 was placed in an aqueous solution having a mass fraction of 10%, and a certain amount of the solution was placed in a mold and dried at 80 ° C to obtain a film of the binder.
  • the films in Comparative Examples 1-5 were prepared. Taking the same width and thickness of the film and testing the stress-strain curve, the elastic modulus before the film breaks can be obtained. The film is cut off from the middle and then self-repaired for a certain period of time (see Figure 1). The stress-strain curve is tested to obtain the elastic modulus of the film after self-healing.
  • the binder prepared in Examples 1-5 was a self-healing aqueous binder which had a modulus of elasticity after self-healing comparable to that before fracture. This indicates that the aqueous binder of the present invention has very strong self-healing property and good performance retention after healing, and can be used for a lithium battery even if the structure of the binder material is damaged due to various reasons. Repair and maintain the original performance, which has a significant effect on improving battery life and improving battery performance.
  • the binders of Comparative Examples 1-3 were not self-healing and could not be repaired by themselves after the structure was damaged; the binders of Comparative Examples 4 and 5 had a certain self-healing property, but the properties after self-repairing Significant decline, making it practically limited.
  • the inventors believe that the self-healing properties of the binders of Examples 1-5 are imparted by the first monomer unit of Structural Formula (I), while the performance of Examples 1-5 with respect to Comparative Example 4 is improved. Due to the introduction of a second monomer unit containing an alcohol ester group. Comparative Example 5 was inferior to the performance of Examples 1-5, probably due to its molecular weight being too small.
  • the negative electrode piece after coating and cold pressing is cut into a rectangular shape of 100 mm long and 10 mm wide, and immersed in an electrolyte.
  • the electrolyte includes an organic solvent and a lithium salt, and the organic solvent is diethyl carbonate. a mixture of dimethyl carbonate and ethylene carbonate, the volume ratio of the three solvents is 1:1:1, the lithium salt is LiPF 6 , the concentration is 1 mol/L, and it is placed in a dry environment (relative humidity ⁇ 5%). After soaking for 24 hours at room temperature, it will naturally evaporate in a dry environment. After the solvent on the surface of the pole piece is evaporated, the adhesion of the pole piece is tested. The test method and the adhesive force calculation method are the same as above. The test data is shown in Table 5.
  • the self-healing aqueous binder of the present invention has a significantly stronger adhesion to the pole piece than the conventional binder, both before soaking the electrolyte or after soaking the electrolyte. in this way. This will undoubtedly help improve the performance of lithium batteries.
  • Example 1 100% 98.5% 96.7% 93.0%
  • Example 2 100% 98.3% 95.4% 93.1%
  • Example 3 100% 97.5% 94.3% 92.5%
  • Example 4 100% 97.0% 94.0% 92.6%
  • Example 5 100% 90.1% 86.2% 82.5% Comparative Example 1 (CB1) 100% 92.1% 87.1% 82.5% Comparative Example 2 (CB2) 100% 90.0% 85.3% 77.3% Comparative Example 3 (CB3) 100% 94.5% 90.1% 88.6% Comparative Example 4 (CB4) 100% 95.3% 93.7% 90.2% Comparative Example 5 (CB5) 100% 85.6% 80.4% 75.3%
  • the self-healing aqueous binder of the present invention significantly improves the discharge rate performance of the lithium ion battery compared to the conventional binder, especially when the binder molecular weight is in the preferred range of 200,000 to 1,500,000. Internal time.
  • Example 1 100% 98.4% 96.7% 94.4%
  • Example 2 100% 96.2% 95.3% 94.0%
  • Example 3 100% 94.3% 92.6% 90.8%
  • Example 4 100% 95.7% 93.9% 91.4%
  • Example 5 (B5) 100% 91.3% 89.4% 87.1% Comparative Example 1 (CB1) 100% 90.3% 87.5% 84.3% Comparative Example 2 (CB2) 100% 89.1% 85.4% 82.6% Comparative Example 3 (CB3) 100% 91.1% 88.3% 86.2% Comparative Example 4 (CB4) 100% 90.5% 88.6% 85.9% Comparative Example 5 (CB5) 100% 89.3% 87.4% 84.5%
  • the self-healing type aqueous binder of the present invention remarkably improves the cycle life of the lithium ion battery with respect to the conventional binder.
  • the binder was prepared according to the method of Example 1.
  • the structure of the polymer includes the monomer unit of the formula (I) as the first component, and the monomer unit of the formula (II)-1 as the second component, wherein the structural formula and the The monomer unit composition is shown in Table 8.
  • the adhesives of the structural formulas of Examples 6-9 were prepared according to the method of Example 1.
  • the adhesives of Test Examples 6-9 also had excellent self-healing properties and were significantly better than the comparative examples.
  • the performance of the additionally prepared lithium ion battery was similar to that of the foregoing Examples 1-4.
  • a binder was prepared according to the method of Example 1.
  • the structure of the polymer includes the monomer unit of the formula (I) as the first component, and the monomer unit of the formula (II)-2 as the second component, wherein the structural formula and the The composition of the monomer units is shown in Table 9.
  • the adhesives of the structural formulas of Examples 10-13 were prepared according to the method of Example 1.
  • the adhesives of Test Examples 10-13 also had excellent self-healing properties and were significantly better than the comparative examples.
  • the performance of the additionally prepared lithium ion battery was similar to that of the foregoing Examples 1-4.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

一种水性粘结剂及二次电池。该粘结剂具有自修复能力,是包含至少两种单体单元的聚合物,其中一种单体同时包含有磺酸基和酰胺基,另一种单体包含有醇酯基或/和羧酸酯基。聚合物数均分子量优选为大于等于20万。还涉及一种二次电池,包含正极极片、负极极片、隔离膜和电解质,所述正极极片、负极极片、隔离膜中至少之一(优选负极极片)中含有所述粘结剂。所述的粘结剂相比于现有技术中的粘结剂,电化学稳定性高,粘结能力强,机械性能好,可以显著提高二次电池的循环寿命及降低循环膨胀。

Description

一种水性粘结剂及二次电池
本申请要求于2017年12月22日递交的201711405497.5号中国专利申请的优先权,该在先申请的全部内容通过引用并入本文。
发明领域
本发明涉及二次电池技术领域,特别涉及一种二次电池用水性粘结剂和含有该粘结剂的二次电池。
发明背景
二次电池自诞生以来,在多个领域都得到了重要应用。从目前二次电池的应用领域来看,不但在手机、充电器等电子产品中得到了广泛的应用,在车载电源,储能系统等领域也取得了一定的突破。目前商品化二次电池的负极材料大多是石墨或者以石墨为前躯体合成的各种碳材料,其理论储锂容量(372mAh/g)已达极限,从未来动力电池对高能量密度的需求角度看已无法满足要求。而下一代硅基负极材料,其最高质量比容量可达4200mAh/g,但硅材料在高度脱嵌锂的条件下,会产生巨大的体积效应(400%),容易导致电极结构崩塌和电极材料的剥落而使电极材料失去导电网络,从而造成电极的容量衰减快,循环性能差。因此开发高能量密度,高粘接性能的负极电极片成为发展下一代先进二次电池的技术瓶颈。
粘结剂是二次电池的重要组成部分,在充放电过程中,粘结剂起到维持电极结构完整,确保电池正常重复运行的作用。
现在用于负极材料的一种粘结剂主要分为:羧甲基纤维素钠(CMCNa)搭配丁苯橡胶乳液(SBR)或者丙苯橡胶乳液(SAR),其中CMCNa起到对活性物质分散及稳定浆料的作用,SBR或者SAR乳液起到对活性物质颗粒间和颗粒与基底间的粘接作用。虽然SBR具有一定粘着性和弹性,但其在活性物质颗粒与颗粒之间以及颗粒与集流体之间呈点接触连接,粘 结能力较弱,材料可逆回复力学性能也较差。
另一种用于负极材料的现有粘结剂是多糖类材料,如海藻酸钠、环糊精、壳聚糖等,该类材料本身机械强度低,对抑制石墨负极和硅基负极在充放电过程中的膨胀作用有限,有循环脱膜的风险。
改性聚丙烯酸(PAA)类材料也可以用作负极材料的粘结剂,但是这类材料会在电极脱嵌的过程中与离子发生反应,造成容量损失,首次库伦效率下降,而且PAA类材料耐疲劳性较差,对电解液浸润性能差,造成负极动力学性能较差。
因此,为了获得循环性能优异、高动力学性能和高能量密度的二次电池,亟待开发一种适用的粘结剂。
针对现有技术中存在的缺陷,特提出本发明。
发明内容
本发明的一个目的在于提供一种具有高粘接性、耐疲劳性的二次电池用粘结剂。
本发明的另一个目的在于提供一种具有良好性能,尤其是循环性能、动力学性能及高能量密度的二次电池。
在一个方面,本发明提供了一种水性粘结剂,其是包含至少两种单体单元的聚合物,其中一种单体单元是同时包含有磺酸基和酰胺基的如结构式(I)所示的单元,另一种单体单元是选自如结构式(II)-1或结构式(II)-2所示的单元,
Figure PCTCN2018121112-appb-000001
其中,
在结构式(I)中,R 1选自H、碳原子数为1、2、3、4、5或6的直链或支链烷基,C nH 2n为n=1、2、3、4、5、6、7或8的直链或支链亚烷基,X选自氢离子、锂离子、钠离子、钾离子、铷离子、铯离子或铵根离子;
在结构式(II)-1中,R 1选自H、碳原子数为1、2、3、4、5或6的直链或支链烷基,R 2选自H、苯甲酰基、总碳原子数为1、2、3、4、5、6、7或8的直链或支链的烷酰基;
在结构式(II)-2中R 1选自H、碳原子数为1、2、3、4、5或6的直链或支链烷基,R 3选自H、苯基、苄基、碳原子数为1、2、3、4、5、6、7或8的直链或支链烷基;
结构式(I)中的R 1与结构式(II)-1中的R 1、结构式(II)-2中的R 1是各自独立选择的。
结构式(I)单元作为第一组分,其占所述粘结剂的摩尔百分数为40%至90%,优选为50%至80%,当结构式(I)的摩尔百分数在此范围内时,该粘结剂可以达到最好的自愈合效果。结构式(II)-1单元和/或结构式(II)-2单元作为第二组分,其占所述粘结剂的摩尔百分数为10%至60%,优选摩尔百分数为20%至50%(当粘结剂中同时含有结构式(II)-1单元和结构式(II)-2单元时,两种单元的摩尔百分数之和为10%至60%,优选20%至50%)。优选的,使用结构为结构式(II)-1的结构单元。当粘结剂的各单元摩尔百分数在以上范围内时,该粘结剂的粘接性最佳。
优选的,所述粘结剂的数均分子量大于等于20万,优选为20万-150万,更优选为40万-110万。
本领域技术人员理解,除了结构式(I)单元、结构式(II)-1或(II)-2单元之外,本发明的粘结剂还可以根据需要含有其他种类的单元,只要它们能与结构式(I)单元、结构式(II)-1或(II)-2单元共聚而不会对粘结剂的性能产生不利影响即可。其他类型的结构单元在粘结剂中摩尔百分比通常为0-10%。
在本发明的一些优选实施方式中,除了结构式(I)单元、结构式(II)-1单元或(II)-2单元之外,本发明的粘结剂不含其他种类的结构单元。这种情 况下,本发明的粘结剂由结构式(I)单元以及结构式(II)-1单元和/或结构式(II)-2单元构成,即可以由结构式(I)单元以及结构式(II)-1单元构成,也可以由结构式(I)单元以及结构式(II)-2单元构成,或者由结构式(I)单元以及结构式(II)-1单元和结构式(II)-2单元三者构成。在本发明的粘结剂是如上所述三元共聚物的情况下,结构式(II)-1单元和结构式(II)-2单元两者的摩尔百分比之和满足上文规定的条件,即占所述粘结剂的摩尔百分数为10%至60%,优选摩尔百分数为20%至50%。
在一些优选实施方式中,在结构式(I)中,R 1选自H或C 1-4的直链或支链烷基(特别是CH 3),C nH 2n为n=1-6(更优选n=1-4)的直链或支链亚烷基,X选自H +、Li +、Na +、K +、NH 4 +
结构式(I)单元的具体例子包括,但不限于,聚(2-丙烯酰胺基-2-甲基丙烷磺酸钠)片段、聚(3-甲基丙烯酰胺基-2-甲基-1-丙烷磺酸)片段、聚(3-丙烯酰胺基-2,2-二甲基-1-丙烷磺酸锂)片段、聚(3-丙烯酰胺基-1-丙烷磺酸铵)片段、聚(3-甲基丙烯酰胺基-2,3-二甲基-2-丁烷磺酸钾)片段。
在一些优选实施方式中,在结构式(II)-1中,R 1选自H或C 1-4的直链或支链烷基(特别是CH 3),R 2选自H、苯甲酰基、未被取代基取代的C 1-6的直链或支链烷酰基(特别是未被取代基取代的C 1-4的直链或支链烷酰基)。
结构式(II)-1单元的具体例子包括,但不限于,聚乙烯醇片段、聚醋酸乙烯酯片段、聚苯甲酸乙烯酯片段、聚甲基丙酸乙烯酯片段、或聚正丁酸乙烯酯片段。
在一些优选实施方式中,在结构式(II)-2中,R 1选自H或C 1-4的直链或支链烷基(特别是CH 3),R 3选自H、苯基、未被取代基取代的C 1-8(更优选C 1-6,最优选C 1-4)的直链或支链烷基。
结构式(II)-2单元的具体例子包括,但不限于,聚丙烯酸片段、聚甲基丙烯酸甲酯片段、聚甲基丙烯酸乙酯片段、聚甲基丙烯酸丙酯片段、聚甲基丙烯酸异丙酯片段、聚丙烯酸正丁酯片段、或聚甲基丙烯酸异戊酯片段。
本文所用术语“烷基”具有本领域所通常理解的含义,其是指仅由C和H两种元素组成的饱和碳氢化合物在任何碳原子失去一个氢原子后形成 的基团。本文所述的“烷基”包括直链烷基和支链烷基。烷基可以是未被取代的,也可以是被取代的,但优选是未被取代的。当烷基被取代时,取代基的数目例如可以是1至3个,每个取代基例如可以独立地选自于羟基、卤素、硝基、氰基、氨基、羧基、C 1-6烷基、C 1-6烷氧基、C 3-6环烷基、=O、=S、SH、CF 3等;优选的取代基是卤素、C 1-4烷基、或C 1-4烷氧基。本文所述的“烷基”的例子包括,但不限于,甲基、乙基、正丙基、异丙基、正丁基、仲丁基、异丁基、叔丁基、正戊基、正己基、氯甲基、氟乙基、三氟甲基或1,1,1-三氟乙基等等。
本文所用术语“亚烷基”指由直链或支化链饱和烃通过除去两个氢原子得到的二价基团,例如,亚甲基、1,2-亚乙基、1,3-亚丙基、1,4-亚丁基、1,5-亚戊基、1,6-亚己基、2,2-二甲基亚丙基等。本发明的亚烷基可以是未被取代的,也可以是被取代的,但优选是未被取代的。当亚烷基被取代时,取代基的数目例如可以是1至3个,每个取代基例如可以独立地选自于羟基、卤素、硝基、氰基、氨基、羧基、C 1-6烷基、C 1-6烷氧基、C 3-6环烷基、=O、=S、SH、CF 3等;优选的取代基是卤素、C 1-4烷基、或C 1-4烷氧基。
本文所用术语“烷酰基”是指R-(C=O)-,其中R为烷基。“烷酰基”实例包括,但不限于,甲酰基、乙酰基、丙酰基、异丁酰基、草酰基等。烷酰基可以是未被取代的,也可以任选地被1-3个取代基所取代,其中每个取代基例如可以独立地选自于羟基、卤素、硝基、氰基、氨基、羧基、C 1-6烷基、C 1-6烷氧基、C 3-6环烷基、=O、=S、SH、CF 3等;优选的取代基是卤素、C 1-4烷基、或C 1-4烷氧基。
本文所用术语“苯甲酰基”是指C 6H 5-(C=O)-。苯甲酰基可以是未被取代的,也可以任选地被1-3个取代基所取代,其中每个取代基例如可以独立地选自于羟基、卤素、硝基、氰基、氨基、羧基、C 1-6烷基、C 1-6烷氧基、C 3-6环烷基、=O、=S、SH、CF 3等;优选的取代基是卤素、C 1-4烷基、或C 1-4烷氧基。
本文中凡是涉及碳原子数的数值范围的表述,比如“碳原子数为1-6”、“C 1-6”、“C nH 2n为n=1-8的……”,均指其上下限范围内所有正整数的枚举。例如“碳原子数为1-6”表示“碳原子数为1、2、3、4、5、 6”,“C 1-6”表示“C 1、C 2、C 3、C 4、C 5、C 6”,“n=1-8”、“C 3-6”等表述的含义类似。同样地,凡是涉及取代基数目的数值范围的表述,也指其上下限范围内所有正整数的枚举,例如“1-3个取代基”和“取代基的数目例如可以是1至3个”均表示1个、2个或3个取代基。
本发明的粘结剂聚合物结构简单,本领域技术人员可以根据其结构很容易地进行制备,例如可以采用最常见的溶液聚合方法进行制备。其制备过程简单、易于控制、可行性高,且对环境污染少,适合工业化规模生产。具体地,本发明的粘结剂可以通过如下方法进行制备:将乙烯基不饱和酰胺磺酸类单体(用于构成结构式(I)单体单元),乙烯基不饱和酯类单体(用于构成结构式(II)-1或结构式(II)-2单体单元)和可选的聚合引发剂混合,在惰性气体氛围下,将混合物连续缓慢滴加到溶剂中,于一定温度及时间下发生聚合反应制备得到所述粘结剂。其中,聚合温度及时间会直接影响粘结剂的分子量,优选的,聚合温度控制在60-120℃,聚合反应时间控制在6-24h;更优选的,聚合温度控制在80-100℃,聚合反应时间控制在8-20h。
其中所述的溶剂可以选自四氢呋喃、N,N-二甲基甲酰胺、N,N-二甲基乙酰胺、二甲基亚砜、N-甲基吡咯烷酮、二氧六环、丙酮、乙腈中的至少一种与水的混合物,所述溶剂的质量与乙烯基不饱和酰胺磺酸类单体和乙烯基不饱和酯类单体两者质量之和的比例可以为100∶(50-200)。
其中所述的乙烯基不饱和酰胺磺酸类单体和乙烯基不饱和酯类单体投料摩尔比例优选为3∶1至12∶1,在此范围内得到的粘结剂具有良好的水溶性和稳定性,其粘接性能和交联性能最优。
其中可选的聚合引发剂例如为偶氮二异丁腈、过氧化苯甲酰、4,4′-偶氮双(4-氰基戊酸),最优选为偶氮二异丁腈。聚合引发剂的质量为乙烯基不饱酰胺磺酸类单体和乙烯基不饱和酯类单体两者质量之和的0.1%-3%,最优选为0.5%-2%。惰性气体为氩气或氮气,最优选为氩气。
采用上述溶剂体系和优选的聚合引发剂、比例和优选的聚合反应氛围、温度和时间制备所述的粘结剂,因引发剂种类和比例合适,反应条件温和,其分子量范围可以控制在20万-150万的优选范围内。
本发明的粘结剂可以作为粘结剂用于二次电池的正极极片、负极极片或隔离膜中。本发明的粘结剂作为二次电池的负极极片的粘结剂是特别优选的,因为二次电池中负极极片由于粘结而导致的问题更加显著。
本发明的粘结剂是离子型水性聚合物,其中一个结构单元侧链中同时含有酰胺基团和磺酸基团,磺酸基团(-S=O-)中的O可以与酰胺基团(N-H)中的H形成强氢键作用,使得聚合物分子链间构成三维氢键网络结构。当负极活性材料因充放电等引起较大体积膨胀或收缩变化时,该粘结剂材料仍具有优良的粘接性和力学强度,即使由于反复多次体积膨胀造成材料微观界面发生断裂,材料收缩后界面间接触又可迅速形成氢键自我修复破损处(即自愈合),这进一步提高了该粘结剂材料的耐疲劳性,从而避免了因负极体积变化而导致粘结剂的粘接性能恶化或者失效所引起的粘结剂剥落和导电网络破坏的问题。
另外,由于其侧链含有磺酸基结构,相比传统的羧甲基纤维素钠类和聚丙烯酸类粘结剂材料,磺酸基的酸性强于羧酸基,其较强的电荷离域效应使其所配对的反离子具有很低的解离能。因此离子传导性能良好,迁移率高,有效减少极化情况。从而有效解决了现有丁苯橡胶乳液、苯丙橡胶乳液,羧甲基纤维素钠、聚丙烯酸类水性负极粘结剂的锂离子电导率低、动力学性能差,尤其是大倍率充放电下导致电池容量迅速衰减的问题。
本发明的粘结剂另一个结构单元中含有醇酯类或羧酸酯类基团。酯类基团的极性强,与负极集流体铜箔之间粘接性和负极活性物质之间粘接性更强。因此,本发明的粘结剂玻璃化转变温度低,整体高分子链具有更强的韧性,表现为材料软、断裂伸长率高,提升材料的机械性能。在用于二次电池负极时,在相同的压实密度情况下,加工性能优异,从而避免由于极片过脆而引起的电池性能问题。同时有利于提升极片压实密度,提高电池整体能量密度。另一方面,酯类基团与电解液亲和性好,有一定溶胀程度,有利于加速离子在活性材料界面处的传输速度,提升负极材料的动力学,适用于大倍率充放电的使用条件。
另外,本发明的粘结剂为阴离子型聚合物,本身就有对活性物质较强的分散及悬浮的能力,不需要额外搭配羧甲基纤维素钠使用,一方面可以 保持负极极片中较高比例的粘结剂用量,增强粘接性能。另一方面可以简化生产过程中的工艺步骤,提高生产效率。
因此,本发明的粘结剂中,一种结构单元赋予粘结剂以自愈合性能,另一种结构单元增强粘结剂的粘接力,通过这种独特的结构组成和这两种结构单元的配合使得含有该粘结剂的二次电池具有非常优异的综合性能。
因此,本发明还涉及一种二次电池,包含正极极片、负极极片、隔离膜和电解液,其特征在于,在所述正极极片、负极极片、隔离膜中至少一种含有本发明所述的粘结剂。
优选的,所述二次电池在负极极片含有所述的粘结剂。
例如,使用本发明的粘结剂制备负极极片的一种方法如下:
将本发明的粘结剂、导电剂和负极活性物质在去离子水中进行合浆,得到的浆料涂覆在集流体上制成负极极片。
因此,本发明一些实施方式涉及的二次电池中,负极极片含有所述的粘结剂,所述负极极片包括负极集流体及负极活性物质涂层,所述负极活性物质涂层包括导电剂、负极活性物质和本发明的粘结剂。
例如,使用本发明的粘结剂制备负极极片的另一种方法如下:
将本发明的粘结剂直接涂覆在集流体上,形成集流体涂层。
因此,本发明另一些实施方式涉及的二次电池中,负极极片含有所述的粘结剂,所述负极极片包括负极集流体及负极活性物质涂层,所述负极集流体和所述负极活性物质涂层之间设置有涂层,所述涂层包含本发明的粘结剂。
上述方法中可以使用任何常规导电剂,具体种类不限,包括碳纳米管、导电碳黑、碳纤维、石墨烯的其中一种或几种。
上述方法中可以使用任何常规负极活性物质,具体种类不限,可以包括硬碳、软碳、中间相碳微球、天然石墨、人造石墨、表面改性的天然石墨、非晶硅、碳包裹的非晶硅颗粒、多晶硅、多晶硅颗粒、氧化亚硅颗粒或硅基合金粉末中的一种或几种。
上述方法中可以使用任何常规集流体,具体种类不限,例如各种金属箔,优选铜箔。
优选的,所述二次电池负极极片中,所述粘结剂占由所述粘结剂、导电剂和负极活性物质构成的负极活性物质层的质量百分数为3%-15%。
含有本发明粘结剂的二次电池可以具有非常优异的综合性能,例如优异的循环性能、高动力学性能和高能量密度。
附图概述
图1为本发明的粘结剂胶块的自修复效果图;
图2为由本发明实施例1中粘结剂制备的负极极片与由其他粘结剂(对比例1-3)制备的负极极片的粘接力对比图。
实施例
下面结合具体实施例对本发明作进一步阐述。应理解,这些实施例仅用于说明本申请而不用于限制本申请的范围。在实际应用中本领域的技术人员根据本发明做出的改进和调整,仍属于本发明的保护范围。
一、实施例1-4
1.粘结剂的制备:
将一定量的溶剂(N,N-二甲基甲酰胺与水的混合溶剂)加入到装有冷凝管、搅拌器和温度计的四口烧瓶中,通氩气30min后,加热至90℃;在氩气保护下匀速滴入投料量的乙烯基不饱和酰胺磺酸类单体(式(I)单体单元)、乙烯基不饱和酯类单体(式(II)-1或式(II)-2单体单元)和偶氮二异丁腈的混合物;滴加完毕后保温反应至设定的时间,溶液冷却至室温后经喷雾干燥得到粘结剂固体粉末。
通过调节两种单体单元的摩尔含量,制得4种不同的粘结剂,具体的反应条件、单体投料摩尔比例如表1-1所示,所得粘结剂的具体组成及数均分子量如表1-2所示。
表1-1:实施例1-4的粘结剂制备条件
  温度/℃ 聚合时间/h 引发剂用量/wt% (I)和(II)投料摩尔比例
实施例1 80 24 0.7 10∶1
实施例2 80 16 1.2 7.5∶1
实施例3 80 8 2 5.2∶1
实施例4 80 36 0.5 3∶1
表1-2:实施例1-4粘结剂的组成
Figure PCTCN2018121112-appb-000002
*:粘结剂中结构式(I)单元与结构式(II)单元的摩尔百分比通过元素分析方法测得(下同)。
2.锂离子二次电池的制备:
利用上面制得的实施例1-4的粘结剂来制备相应的锂离子电池。锂离子电池包括正极极片、负极极片、隔离膜和电解液,各组成部分的材料选取和制备过程简述如下。
1)正极极片包括正极集流体和涂覆在正极集流体上的正极活性物质层。正极集流体为铝箔,所述正极活性物质层,按照质量分数,包括如下组分:
正极活性物质为LiNi 1/3Mn 1/3Co 1/3O 2,含量94.0%;
正极粘结剂为聚偏二氟乙烯,含量3.0%;
正极导电剂为乙炔黑,含量3.0%;
正极集流体是铝箔,厚度为14um。
2)负极极片包括负极集流体和涂覆在负极集流体上的负极活性物质层。负极集流体为铜箔,所述负极活性物质层包括如下组分:
负极活性物质为人造石墨,含量95.0%;
负极导电剂为导电碳黑,含量2.0%;
负极粘结剂分别为实施例1-4制备得到的聚合物材料,含量3%;
负极集流体是铜箔,厚度为10um。
3)隔离膜为聚乙烯多孔薄膜,厚度14um。
4)电解液包括有机溶剂和锂盐,有机溶剂为碳酸二乙酯、碳酸二甲酯、碳酸乙烯酯的混合物,三种溶剂的体积比例为1∶1∶1,锂盐为LiPF 6,浓度为1mol/L。
5)锂离子全电池的制备:
正极极片的制备:将94.0%LiNi 1/3Mn 1/3Co 1/3O 2、3.0%聚偏二氟乙烯、3.0%乙炔黑加入N-甲基吡咯烷酮(NMP)溶剂体系中充分搅拌混合均匀后,涂覆在铝箔上烘干,冷压,得到正极极片。
负极极片的制备:将95.0%人造石墨、3.0%粘结剂、2.0%导电碳黑加入去离子水溶剂中充分搅拌均匀混合后,涂覆于铜箔上烘干,冷压,得到负极极片。
电池的制备:将正极极片、隔离膜、负极极片按顺序叠好,使隔离膜处于阴阳极中间起到隔离的作用,并卷绕得到裸电芯。将裸电芯至于外包装中,注入配好的电解液并封装,对电芯进行化成和老化,得到相应的锂离子电池B1-B4。
二、对比例1-4
按照实施例1的方法制备对比例1-4的锂离子电池,区别在于所使用的负极粘结剂不同,对比例1-4的负极粘结剂的组成具体如表2所示。
正极极片、负极极片及电池的制作过程同实施例1-4,所得到的电池分别为CB1,CB2,CB3,CB4。
表2:对比例1-4的负极粘结剂的组成
Figure PCTCN2018121112-appb-000003
三、对比例5和实施例5
按照实施例2的方法制备对比例5和实施例5的粘结剂,区别在于:对比例5在粘结剂制备过程中调节引发剂用量及聚合时间等反应条件(具体见下面表3-1)得到分子量为15万的粘结剂;实施例5在粘结剂制备过程中调节引发剂用量及聚合时间等反应条件(具体见下面表3-1)得到分子量为164万的粘结剂,粘结剂的具体组成见表3-2。
表3-1:对比例5和实施例5的粘结剂制备条件
  温度/℃ 聚合时间/h 引发剂用量/wt% (I)和(II)投料摩尔比例
对比例5 80 24 2.5 7.5∶1
实施例5 80 24 0.2 7.5∶1
表3-2:对比例5和实施例5的负极粘结剂的组成
Figure PCTCN2018121112-appb-000004
按照实施例2的方法制备对比例5和实施例5的锂离子电池,除了所用粘结剂之外,正极极片、负极极片及电池的制作过程等保持不变,所得到的电池分别为CB5、B5。
四、实施例1-5和对比例1-5的性能测试对比
(一)粘结剂胶膜的应力-应变测试:
将实施例1-5中的粘结剂,配置成质量分数10%的水溶液,取一定量溶液装于模具中,在80℃下烘干,得到粘结剂的胶膜。对应的,制备对比例1-5中的胶膜。取同样宽度、厚度的胶膜,测试应力-应变曲线,可以得到胶膜断裂前的弹性模量。将胶膜从中部人为切断,再将其对接进行一定时间的自修复(参见附图1),测试应力-应变曲线,可以得到胶膜自愈合后的弹性模量。
表4:胶膜弹性模量数据(单位:MPa)
  断裂前弹性模量 自愈合后弹性模量
实施例1 388.6 352.7
实施例2 364.2 340.1
实施例3 355.4 335.7
实施例4 360.1 343.5
实施例5 345.1 320.9
对比例1 53.5 0(不能自愈合)
对比例2 27.6 0(不能自愈合)
对比例3 90.6 0(不能自愈合)
对比例4 170.4 63.8
对比例5 150.6 57.1
从以上数据可以看出,实施例1-5制备的粘结剂是自愈合型水性粘结剂,其自愈合后弹性模量与断裂前的弹性模量相当。这说明本发明的水性粘结剂具有非常强的自愈合性和愈合后的良好性能保持性,在用于锂电池时,即便由于各种原因造成粘结剂材料结构受损其仍能自修复且基本保持原有性能,这对于提高电池寿命和改善电池性能均有显著作用。与此相对,对比例1-3的粘结剂不具有自愈合性,结构受损后不能自行修复;对比例4、5的粘结剂具有一定的自愈合性,但是自修复后性能显著下降,使其实用性有限。发明人相信,实施例1-5的粘结剂的自愈合性是由结构式(I)的第一单体单元赋予的,而实施例1-5相对于对比例4的性能改善,可以归因于含醇酯类基团的第二单体单元的引入。对比例5相对于实施例1-5的性能较差,可能归因于其分子量过小。
(二)负极极片粘接力测试:
浸泡电解液前:取涂布、冷压后的负极极片,裁成100mm长,10mm宽的长方形。取一条宽度25mm的不锈钢板,贴双面胶(宽度11mm),将裁好的极片粘贴在不锈钢板上的双面胶上,用2000g压辊在其表面来回滚压三次。将极片180度弯折,手动剥开25mm,将样品固定在万能拉力 机上,使剥离面与试验机力线保持一致,试验机以300mm/min连续剥离,得到剥离力曲线(见图2),取平稳段的均值作为剥离力F,则被测试负极极片的粘接力为Fad=F/0.01(N/m)。
浸泡电解液后:取涂布、冷压后的负极极片,裁成100mm长,10mm宽的长方形,浸泡在电解液中,电解液包括有机溶剂和锂盐,有机溶剂为碳酸二乙酯,碳酸二甲酯,碳酸乙烯酯的混合物,三种溶剂的体积比例为1∶1∶1,锂盐为LiPF 6,浓度为1mol/L,放在干燥环境中(相对湿度<5%),在室温下浸泡24h,在干燥环境中自然挥发,待极片表面溶剂挥发完,测试极片粘接力。测试方法、粘接力计算方法同上。测试数据见表5所示。
表5:负极极片粘接力数据(单位:N/m)
  浸泡电解液前 浸泡电解液后
实施例1 83.2 40.7
实施例2 85.1 45.6
实施例3 80.7 42.5
实施例4 88.3 46.2
实施例5 80.3 42.3
对比例1 18.3 9.4
对比例2 12.6 5.7
对比例3 46.3 20.8
对比例4 61.4 31.4
对比例5 15.4 10.7
由以上数据对比可知:相对于传统的粘结剂,本发明的自愈合型水性粘结剂对极片的粘接力显著更强,无论是在浸泡电解液前还是在浸泡电解液后均如此。这无疑有助于改善锂电池性能。
(三)电池性能测试:
1.电池放电倍率性能测试
a.常温下,以0.5C恒流充电到4.25V,恒压充电至0.05C截止。0.2C 恒流放电至3.0V截止,记录容量,以此容量为100%;
b.常温下,以0.5C恒流充电到4.25V,恒压充电至0.05C截止。0.5C恒流放电至3.0V截止,记录容量,计算百分比;
c.常温下,以0.5C恒流充电到4.25V,恒压充电至0.05C截止。1.0C恒流放电至3.0V截止,记录容量,计算百分比;
d.常温下,以0.5C恒流充电到4.25V,恒压充电至0.05C截止。2.0C恒流放电至3.0V截止,记录容量,计算百分比;
测试数据见表6。
表6:电池放电倍率性能
  0.2C 0.5C 1.0C 2.0C
实施例1(B1) 100% 98.5% 96.7% 93.0%
实施例2(B2) 100% 98.3% 95.4% 93.1%
实施例3(B3) 100% 97.5% 94.3% 92.5%
实施例4(B4) 100% 97.0% 94.0% 92.6%
实施例5(B5) 100% 90.1% 86.2% 82.5%
对比例1(CB1) 100% 92.1% 87.1% 82.5%
对比例2(CB2) 100% 90.0% 85.3% 77.3%
对比例3(CB3) 100% 94.5% 90.1% 88.6%
对比例4(CB4) 100% 95.3% 93.7% 90.2%
对比例5(CB5) 100% 85.6% 80.4% 75.3%
由以上数据对比可知:本发明的自愈合型水性粘结剂相对于传统的粘结剂显著改善了锂离子电池放电倍率性能,尤其是当粘结剂分子量在优选的20万-150万范围内时。
2.电池循环寿命性能
a.常温下,0.5C恒流充电到4.25V,恒压充电到0.05C截止;
b.0.5C恒流放电到3.0V截止,记录容量,以第一次电池容量为100%;
c.重复1-2步骤,记录电池剩余容量百分比。
测试数据见表7。
表7:电池循环寿命性能
  初始 100次循环 200次循环 300次循环
实施例1(B1) 100% 98.4% 96.7% 94.4%
实施例2(B2) 100% 96.2% 95.3% 94.0%
实施例3(B3) 100% 94.3% 92.6% 90.8%
实施例4(B4) 100% 95.7% 93.9% 91.4%
实施例5(B5) 100% 91.3% 89.4% 87.1%
对比例1(CB1) 100% 90.3% 87.5% 84.3%
对比例2(CB2) 100% 89.1% 85.4% 82.6%
对比例3(CB3) 100% 91.1% 88.3% 86.2%
对比例4(CB4) 100% 90.5% 88.6% 85.9%
对比例5(CB5) 100% 89.3% 87.4% 84.5%
由以上数据对比可知:本发明的自愈合型水性粘结剂相对于传统的粘结剂显著改善了锂离子电池循环寿命。
五、实施例6-9
按实施例1的方法制备粘结剂,该聚合物的结构中包括结构式(I)单体单元为第一组分,结构式(II)-1单体单元为第二组分,其中结构式和两种单体单元组成比如表8所示。
表8:实施例6-9的粘结剂组成
Figure PCTCN2018121112-appb-000005
按照实施例1的方法制备了实施例6-9结构式的粘结剂,经测试实施例6-9的粘结剂同样具有优异的自愈合性以及显著优于对比例的对极片的粘接力,另外制备得到的锂离子电池的性能与前述实施例1-4相近似。
六、实施例10-13
按实施例1的方法制备粘结剂,该聚合物的结构中包括结构式(I)单体单元为第一组分,结构式(II)-2单体单元为第二组分,其中结构式和两个单体单元组成比如表9所示。
表9:实施例10-13的粘结剂组成
Figure PCTCN2018121112-appb-000006
按照实施例1的方法制备了实施例10-13结构式的粘结剂,经测试实施例10-13的粘结剂同样具有优异的自愈合性以及显著优于对比例的对极片的粘接力,另外制备得到的锂离子电池的性能与前述实施例1-4相近似。
本申请虽然以上述较佳的实施例公开如上,但并不是用来限定权利要求,任何本领域技术人员在不脱离本申请构思的前提下,都可以做出若干可能的变动和修改,因此本申请的保护范围应当以本申请权利要求所界定的范围为准。

Claims (10)

  1. 一种水性粘结剂,其是包含至少两种单体单元的聚合物,其中一种单体单元是同时包含有磺酸基和酰胺基的如结构式(I)所示的单元,另一种单体单元选自如结构式(II)-1或结构式(II)-2所示的单元,
    Figure PCTCN2018121112-appb-100001
    其中,在结构式(I)中,R 1选自H、碳原子数为1-6的直链或支链烷基,C nH 2n为n=1-8的直链或支链亚烷基,X选自氢离子、锂离子、钠离子、钾离子、铷离子、铯离子或铵根离子;
    在结构式(II)-1中,R 1选自H、碳原子数为1-6的直链或支链烷基,R 2选自H、苯甲酰基、总碳原子数为1-8的直链或支链的烷酰基;
    在结构式(II)-2中R 1选自H、碳原子数为1-6的直链或支链烷基,R 3选自H、苯基、苄基、碳原子数为1-8的直链或支链烷基;
    结构式(I)中的R 1与结构式(II)-1中的R 1、结构式(II)-2中的R 1是各自独立选择的。
  2. 根据权利要求1所述的粘结剂,其特征在于,结构式(I)所示的结构单元占所述粘结剂的摩尔百分数为40%至90%,优选为50%至80%。
  3. 根据权利要求1所述的粘结剂,其特征在于,结构式(II)-1或/和结构式(II)-2所示的结构单元占所述粘结剂的摩尔百分数为10%至60%,优选摩尔百分数为20%至50%。
  4. 根据权利要求1所述的粘结剂,其特征在于,所述结构式(I)单元选自聚(2-丙烯酰胺基-2-甲基丙烷磺酸钠)片段、聚(3-甲基丙烯酰胺基-2-甲基-1-丙烷磺酸)片段、聚(3-丙烯酰胺基-2,2-二甲基-1-丙烷磺酸锂)片段、聚(3-丙烯酰胺基-1-丙烷磺酸铵)片段、聚(3-甲基丙烯酰胺基-2,3-二甲基-2-丁烷磺酸钾)片段。
  5. 根据权利要求1所述的粘结剂,其特征在于,所述结构式(II)-1单元选自:聚乙烯醇片段、聚醋酸乙烯酯片段、聚苯甲酸乙烯酯片段、聚甲基丙酸乙烯酯片段、或聚正丁酸乙烯酯片段,所述结构式(II)-2单元选自:聚丙烯酸片段、聚甲基丙烯酸甲酯片段、聚甲基丙烯酸乙酯片段、聚甲基丙烯酸丙酯片段、聚甲基丙烯酸异丙酯片段、聚丙烯酸正丁酯片段、或聚甲基丙烯酸异戊酯片段。
  6. 根据权利要求1-5任一项所述的粘结剂,其特征在于,所述粘结剂的数均分子量大于等于20万,优选为20万-150万,更优选40万-110万。
  7. 根据权利要求1-7任一项所述的粘结剂,其特征在于,所述粘结剂由结构式(I)所示的单元以及如结构式(II)-1和/或结构式(II)-2所示的单元构成。
  8. 一种二次电池,包含正极极片、负极极片、隔离膜和电解质,其特征在于,在所述正极极片、负极极片、隔离膜中至少一种含有权利要求1-7任一项所述的粘结剂。
  9. 根据权利要求8所述的锂离子电池,其特征在于,所述负极极片包括负极集流体及负极活性物质涂层,所述负极活性物质涂层包括导电剂、负极活性物质和权利要求1-7任一项所述的粘结剂。
  10. 根据权利要求8所述的锂离子电池,其特征在于,所述负极极片包括负极集流体及负极活性物质涂层,所述负极集流体和所述负极活性物质涂层之间设置有涂层,所述涂层包含权利要求1-7任一项所述的粘结剂。
PCT/CN2018/121112 2017-12-22 2018-12-14 一种水性粘结剂及二次电池 WO2019120140A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201711405497.5 2017-12-22
CN201711405497.5A CN109957360B (zh) 2017-12-22 2017-12-22 一种水性粘结剂及二次电池

Publications (1)

Publication Number Publication Date
WO2019120140A1 true WO2019120140A1 (zh) 2019-06-27

Family

ID=66993076

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/121112 WO2019120140A1 (zh) 2017-12-22 2018-12-14 一种水性粘结剂及二次电池

Country Status (2)

Country Link
CN (1) CN109957360B (zh)
WO (1) WO2019120140A1 (zh)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112713262A (zh) * 2019-12-16 2021-04-27 宁波杉杉新材料科技有限公司 氧化亚硅复合材料、电极、锂离子电池及其制备方法和应用
CN113054193A (zh) * 2021-03-12 2021-06-29 广东工业大学 一种硅基负极自修复聚合物粘结剂及其制备方法和应用
CN114207883A (zh) * 2021-03-24 2022-03-18 宁德新能源科技有限公司 粘结剂及包括该粘结剂的电化学装置
CN114230715A (zh) * 2021-11-19 2022-03-25 华为数字能源技术有限公司 电池负极添加剂、电池负极片、二次电池和电子设备
CN114424365A (zh) * 2020-03-20 2022-04-29 广东省皓智科技有限公司 用于二次电池的阴极及阴极浆料
CN114824276A (zh) * 2022-04-29 2022-07-29 多氟多新能源科技有限公司 一种锂电池用胶膜制作及评测方法
CN114843706A (zh) * 2022-05-12 2022-08-02 珠海冠宇电池股份有限公司 一种电池及电子设备
CN115881970A (zh) * 2023-01-30 2023-03-31 宁德新能源科技有限公司 一种二次电池和电子装置
CN115939385A (zh) * 2022-06-30 2023-04-07 宁德时代新能源科技股份有限公司 导电化合物及其制备方法、极片、电极组件、电池单体、电池及用电设备
CN116948128A (zh) * 2023-09-20 2023-10-27 宁德时代新能源科技股份有限公司 接枝聚合物、制备方法、正极极片、二次电池和用电装置
CN117363276A (zh) * 2023-10-31 2024-01-09 南开大学 一种水性聚合物粘结剂及其制备方法和在锂离子电池正负极片中的应用
CN117801735A (zh) * 2024-03-01 2024-04-02 广州昊毅新材料科技股份有限公司 一种低温压敏型锂电池负极粘接材料及其制备方法
WO2024179533A1 (zh) * 2023-03-01 2024-09-06 郑州大学 一种水系粘结剂及其在钠离子电池硬碳负极中的应用

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111500228B (zh) * 2020-01-21 2021-03-16 四川茵地乐科技有限公司 电池用粘合剂、锂离子电池负极片以及锂离子电池
CN111900393A (zh) * 2020-06-24 2020-11-06 珠海冠宇电池股份有限公司 一种高离子电导率的粘结剂及含有该粘结剂的锂离子电池
CN112279981B (zh) * 2020-10-20 2023-02-03 珠海冠宇电池股份有限公司 一种含有软相区和硬相区的聚合物粘结剂及其制备方法和应用
CN113871622A (zh) * 2021-09-15 2021-12-31 惠州赣锋锂电科技有限公司 锂离子电池负极用粘结剂及使用该粘结剂的负极浆料及其制备方法
CN115960280B (zh) 2021-10-12 2023-12-26 宁德时代新能源科技股份有限公司 一种粘结剂化合物及其制备方法
CN114300684A (zh) * 2021-12-31 2022-04-08 珠海冠宇电池股份有限公司 一种单锂离子聚合物导锂粘结剂及含有该粘接剂的电池
CN115819690B (zh) * 2022-05-13 2024-07-16 宁德时代新能源科技股份有限公司 聚合物及其制备方法与应用、二次电池、电池模块、电池包和用电装置
CN117317226A (zh) * 2022-06-22 2023-12-29 宁德时代新能源科技股份有限公司 一种正极材料及二次电池、电池模块、电池包和用电装置
WO2024031448A1 (zh) * 2022-08-10 2024-02-15 宁德时代新能源科技股份有限公司 聚合物及其制备方法、正极浆料、正极极片、二次电池、电池模块、电池包和用电装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103348517A (zh) * 2011-02-14 2013-10-09 日本瑞翁株式会社 二次电池负极用浆料、二次电池用负极及其制造方法、以及二次电池
US20160118663A1 (en) * 2013-05-29 2016-04-28 Zeon Corporation Slurry composition for positive electrode of lithium ion secondary battery, method of producing positive electrode for lithium ion secondary battery, positive electrode for lithium ion secondary battery, and lithium ion secondary battery
CN106207184A (zh) * 2016-08-03 2016-12-07 深圳市贝特瑞新能源材料股份有限公司 一种锂离子电池用水性粘合剂及其制备方法和用途
CN107325225A (zh) * 2016-04-29 2017-11-07 成都中科来方能源科技股份有限公司 锂离子电池负极水性粘合剂及其制备方法
CN107384261A (zh) * 2017-07-21 2017-11-24 中国乐凯集团有限公司 一种锂离子电池隔膜耐热层用水性粘合剂、制备方法及其应用

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101687129B1 (ko) * 2013-01-21 2016-12-15 쇼와 덴코 가부시키가이샤 리튬 이온 이차 전지 전극용 바인더, 슬러리, 전극, 및 리튬 이온 이차 전지
CN103361005B (zh) * 2013-07-05 2015-11-18 天鼎丰非织造布有限公司 一种防水卷材胎基布用抗衰减型丙烯酸酯粘合剂及其制备方法
CN106010380B (zh) * 2015-11-16 2017-11-10 江苏景宏新材料科技有限公司 一种pickering乳液聚合法制备耐水白化丙烯酸乳液压敏胶的方法
CN105925219A (zh) * 2016-05-17 2016-09-07 湖南省和祥润新材料有限公司 一种丙烯酸酯黏合剂及其制备方法
CN106833448B (zh) * 2017-02-08 2019-02-15 北京蓝海黑石科技有限公司 一种锂离子电池正极水性粘合剂及其制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103348517A (zh) * 2011-02-14 2013-10-09 日本瑞翁株式会社 二次电池负极用浆料、二次电池用负极及其制造方法、以及二次电池
US20160118663A1 (en) * 2013-05-29 2016-04-28 Zeon Corporation Slurry composition for positive electrode of lithium ion secondary battery, method of producing positive electrode for lithium ion secondary battery, positive electrode for lithium ion secondary battery, and lithium ion secondary battery
CN107325225A (zh) * 2016-04-29 2017-11-07 成都中科来方能源科技股份有限公司 锂离子电池负极水性粘合剂及其制备方法
CN106207184A (zh) * 2016-08-03 2016-12-07 深圳市贝特瑞新能源材料股份有限公司 一种锂离子电池用水性粘合剂及其制备方法和用途
CN107384261A (zh) * 2017-07-21 2017-11-24 中国乐凯集团有限公司 一种锂离子电池隔膜耐热层用水性粘合剂、制备方法及其应用

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112713262A (zh) * 2019-12-16 2021-04-27 宁波杉杉新材料科技有限公司 氧化亚硅复合材料、电极、锂离子电池及其制备方法和应用
CN114424365A (zh) * 2020-03-20 2022-04-29 广东省皓智科技有限公司 用于二次电池的阴极及阴极浆料
CN114424365B (zh) * 2020-03-20 2024-04-23 广东省皓智科技有限公司 用于二次电池的阴极及阴极浆料
CN113054193A (zh) * 2021-03-12 2021-06-29 广东工业大学 一种硅基负极自修复聚合物粘结剂及其制备方法和应用
CN114207883A (zh) * 2021-03-24 2022-03-18 宁德新能源科技有限公司 粘结剂及包括该粘结剂的电化学装置
CN114230715A (zh) * 2021-11-19 2022-03-25 华为数字能源技术有限公司 电池负极添加剂、电池负极片、二次电池和电子设备
CN114824276A (zh) * 2022-04-29 2022-07-29 多氟多新能源科技有限公司 一种锂电池用胶膜制作及评测方法
CN114843706A (zh) * 2022-05-12 2022-08-02 珠海冠宇电池股份有限公司 一种电池及电子设备
CN115939385A (zh) * 2022-06-30 2023-04-07 宁德时代新能源科技股份有限公司 导电化合物及其制备方法、极片、电极组件、电池单体、电池及用电设备
CN115881970A (zh) * 2023-01-30 2023-03-31 宁德新能源科技有限公司 一种二次电池和电子装置
WO2024179533A1 (zh) * 2023-03-01 2024-09-06 郑州大学 一种水系粘结剂及其在钠离子电池硬碳负极中的应用
CN116948128A (zh) * 2023-09-20 2023-10-27 宁德时代新能源科技股份有限公司 接枝聚合物、制备方法、正极极片、二次电池和用电装置
CN116948128B (zh) * 2023-09-20 2024-02-23 宁德时代新能源科技股份有限公司 接枝聚合物、制备方法、正极极片、二次电池和用电装置
CN117363276A (zh) * 2023-10-31 2024-01-09 南开大学 一种水性聚合物粘结剂及其制备方法和在锂离子电池正负极片中的应用
CN117363276B (zh) * 2023-10-31 2024-06-21 南开大学 一种水性聚合物粘结剂及其制备方法和在锂离子电池正负极片中的应用
CN117801735A (zh) * 2024-03-01 2024-04-02 广州昊毅新材料科技股份有限公司 一种低温压敏型锂电池负极粘接材料及其制备方法
CN117801735B (zh) * 2024-03-01 2024-05-24 广州昊毅新材料科技股份有限公司 一种低温压敏型锂电池负极粘接材料及其制备方法

Also Published As

Publication number Publication date
CN109957360A (zh) 2019-07-02
CN109957360B (zh) 2020-09-15

Similar Documents

Publication Publication Date Title
WO2019120140A1 (zh) 一种水性粘结剂及二次电池
JP6888656B2 (ja) リチウムイオン電池用バインダー水溶液、リチウムイオン電池電極用スラリー及びその製造方法、リチウムイオン電池電極、並びにリチウムイオン電池
US10882990B2 (en) Multi-functionally modified polymer binder for lithium ion batteries and use thereof in electrochemical energy storage devices
CN111139002B (zh) 锂离子电池水溶型粘接剂及其制备方法、电极极片及电池
US10446850B2 (en) Binder resin composition for secondary battery electrodes, slurry for secondary battery electrodes, electrode for secondary batteries, and lithium ion secondary battery
JP7147331B2 (ja) リチウムイオン電池電極用スラリー及びその製造方法、リチウムイオン電池用電極、並びにリチウムイオン電池
CN110233235B (zh) 负极极片及电化学装置
WO2018000578A1 (zh) 多元功能化改性聚乙烯醇基锂离子电池水性粘结剂及在电化学储能器件中的应用
WO2019242318A1 (zh) 一种水性粘结剂及其制备方法和用途
CN109957361B (zh) 一种水性粘结剂及二次电池
JP7313412B2 (ja) グラフトコポリマー及びその使用
CN113024748B (zh) 一种含氟水基电极粘结剂的制备方法
JP7298592B2 (ja) リチウムイオン二次電池用スラリー組成物およびリチウムイオン二次電池用電極
JP2016042408A (ja) リチウム二次電池電極用バインダーの製造方法及びリチウム二次電池電極用バインダー
WO2023005520A1 (zh) 一种粘结剂及其制备方法和应用
US20210384511A1 (en) Aqueous binder composition for an electrode and methods for producing the same
CN117264571A (zh) 一种提高石墨负极性能的水性粘结剂及其制备方法
EP3796434A1 (en) Binder aqueous solution for lithium-ion battery, slurry for lithium-ion battery negative electrode, negative electrode for lithium-ion battery, and lithium-ion battery
JP7010595B2 (ja) 蓄電デバイス電極用バインダー
TWI710581B (zh) 羧甲基纖維素接枝共聚物及其用途
EP3879612A1 (en) Binder aqueous solution for lithium-ion battery electrode, slurry for lithium-ion battery negative electrode, negative electrode for lithium-ion battery, and lithium-ion battery
EP4024534A1 (en) Binder composition for electricity storage devices, slurry for electricity storage device electrodes, electricity storage device electrode, and electricity storage device
WO2024040489A1 (zh) 功能聚合物、电极浆料、电极极片、电池及用电装置
CN115692712A (zh) 一种负极添加剂、负极材料、负极极片及锂离子二次电池
WO2024031327A1 (zh) 负极极片及二次电池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18891460

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18891460

Country of ref document: EP

Kind code of ref document: A1