WO2024040489A1 - 功能聚合物、电极浆料、电极极片、电池及用电装置 - Google Patents

功能聚合物、电极浆料、电极极片、电池及用电装置 Download PDF

Info

Publication number
WO2024040489A1
WO2024040489A1 PCT/CN2022/114664 CN2022114664W WO2024040489A1 WO 2024040489 A1 WO2024040489 A1 WO 2024040489A1 CN 2022114664 W CN2022114664 W CN 2022114664W WO 2024040489 A1 WO2024040489 A1 WO 2024040489A1
Authority
WO
WIPO (PCT)
Prior art keywords
functional polymer
formula
electrode
battery
structural unit
Prior art date
Application number
PCT/CN2022/114664
Other languages
English (en)
French (fr)
Inventor
许云鹏
徐健
吴燕英
王星会
Original Assignee
宁德时代新能源科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宁德时代新能源科技股份有限公司 filed Critical 宁德时代新能源科技股份有限公司
Priority to PCT/CN2022/114664 priority Critical patent/WO2024040489A1/zh
Publication of WO2024040489A1 publication Critical patent/WO2024040489A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers

Definitions

  • This application relates to the field of batteries, specifically to a functional polymer, electrode slurry, electrode pole piece, battery and electrical device.
  • Lithium-ion secondary batteries have the characteristics of excellent cycle performance, excellent safety performance, low cost and environmental friendliness, and are a focus of attention in the field of new energy.
  • science and technology in order to meet the development trend of miniaturization and thinness of various electrical appliances and to improve the cruising range of electric vehicles, people have put forward higher and higher requirements for the cycle life of lithium batteries.
  • the rate performance and cycle life of lithium batteries are often improved by increasing the load of active materials on the pole pieces.
  • thick coating causes the electrode pole pieces to be easily cracked, and the components in the coating are more likely to be unevenly dispersed when thickly coated, which has a negative impact on the cycle stability and rate of lithium-ion secondary batteries. Therefore, , traditional technology still needs to be improved.
  • this application provides a functional polymer, electrode slurry, electrode pole piece, battery and electrical device, aiming to improve the cycle stability of the battery.
  • the first aspect of the present application provides a functional polymer, which includes structural units represented by formula (A), formula (B) and formula (C):
  • R is selected from one or more combinations of branched polyester segments, branched alkane groups with 4 to 60 carbon atoms, and branched polyolefins.
  • the above-mentioned functional polymers can not only improve the dispersion stability of the electrode slurry, but also have a toughening effect, improve the uniformity of dispersion of components in the electrode active layer and improve its ability to prevent cracking, thereby improving the performance of the electrode.
  • the stability and anti-cracking ability of the pole piece can thereby improve the cycle stability and rate of the battery.
  • the above-mentioned functional polymer includes structural units represented by formula (A), formula (B) and formula (C), wherein the structural unit of formula (A) is a non-polar
  • the hydrophilic structure is conducive to the uniform dispersion of each group in the electrode slurry in the solvent.
  • the side group of the structural unit of formula (B) contains a benzene ring, which has an adsorption effect on conductive carbon materials, etc., which is conducive to conductivity in the electrode slurry.
  • the agent is evenly dispersed, and in the prepared electrode active layer, the benzene ring on the structural unit of formula (B) can prevent the slip between the components and improve the stability and toughness of the electrode active layer.
  • Formula (C) The structural units shown contain branched groups, which on the one hand is beneficial to the dispersion of various components in the electrode slurry. On the other hand, in the prepared electrode active layer, the branched groups are equivalent to a supported network. , plays an anchoring role in each component in the electrode active layer, and can prevent cracking caused by slippage between components. Therefore, each chain segment in the functional polymer works synergistically to improve the electrode slurry. It not only improves the dispersion stability of the material, but also has a toughening effect. It improves the dispersion uniformity of the components in the electrode active layer and improves its ability to prevent cracking, thereby improving the stability and anti-cracking ability of the electrode plate. This in turn can improve the cycle stability and rate of the battery.
  • the above-mentioned functional polymer has excellent antioxidant properties and has a low probability of side reactions with the electrolyte.
  • the electrode active layer produced thereby is highly stable and can maintain excellent performance even at high voltages (above 4V). performance, and can reduce the internal resistance of the battery, thereby improving the cycle performance and rate of the battery.
  • the functional polymer satisfies at least one of the conditions (1) to (3):
  • the mass proportion of the structural unit represented by the formula (A) in the functional polymer is 20wt% to 60wt%;
  • the mass proportion of the structural unit represented by formula (A) in the functional polymer is 20wt% to 40wt%;
  • the mass proportion of the structural unit represented by the formula (B) in the functional polymer is 20wt% to 40wt%;
  • R is selected from any one of a dendritic polyester segment, an alkane group with at least two branches and a carbon number of 4 to 50, or a dendritic polyolefin segment.
  • the structural unit represented by formula (C) satisfies at least one of the conditions (4) to (5):
  • R is selected from an alkane group with at least two branches and a carbon number of 4 to 50 or a dendritic polyolefin segment with a number average molecular weight of 100 to 2000;
  • the number average molecular weight of the structural unit represented by the formula (C) is 50 to 5,000.
  • R includes a branched chain structure as shown below:
  • Each R 1 is independently selected from an alkyl group having 1 to 20 carbon atoms, and n is any integer from 1 to 10.
  • each R 1 is independently selected from an alkyl group having 1 to 5 carbon atoms
  • each R 1 is independently selected from any one of methyl, ethyl, propyl, n-butyl and isobutyl.
  • the functional polymer includes polymeric segments represented by formula (A1), formula (B1) and formula (C1):
  • x, y, and z represent the degree of polymerization, and x, y, and z are independently selected from any integer from 20 to 80.
  • the functional polymer includes a molecular chain structure represented by formula (1):
  • x, y, and z represent the degree of polymerization, and x, y, and z are independently selected from any integer from 20 to 80.
  • the HLB value of the functional polymer is 6 to 14;
  • the HLB value of the functional polymer is 7 to 11.
  • the number average molecular weight of the functional polymer is 10,000 to 50,000.
  • a second aspect of the application provides the use of the functional polymer of the first aspect as an electrode additive.
  • the above-mentioned functional polymer When the above-mentioned functional polymer is used as an electrode additive, on the one hand, it has the function of a dispersant, which is beneficial to the uniform dispersion of the conductive agent in the electrode slurry and improves the dispersion stability of the electrode slurry. On the other hand, it also has a toughening effect, which can improve the performance of the electrode slurry. The ability of the electrode active layer to prevent cracking can improve the stability and anti-cracking ability of the electrode plate, thereby improving the cycle stability and rate of the battery.
  • a third aspect of the present application provides an electrode slurry, which includes an electrode active material, a conductive agent, and the functional polymer of the first aspect.
  • the electrode slurry has good dispersion stability and can maintain good dispersion even if it is left for a long time, which is very convenient for processing.
  • the mass proportion of the functional polymer is 0.1% to 0.5%;
  • the mass proportion of the functional polymer is 0.2% to 0.5%.
  • the electrode active material is a positive electrode active material or a negative electrode active material.
  • the fourth aspect of the present application provides an electrode piece, which includes a current collector and an active layer located on the surface of the current collector, and the components of the active layer include the functional polymer of the first aspect; or Prepared using the electrode active slurry of the third aspect.
  • a fifth aspect of the present application provides a battery, including the electrode pole piece of the fourth aspect.
  • a sixth aspect of the present application provides an electrical device, which includes the battery of the fifth aspect.
  • Figure 1 is a schematic diagram of an embodiment of a battery.
  • FIG. 2 is an exploded view of FIG. 1 .
  • Figure 3 is a schematic diagram of an embodiment of a battery module.
  • Figure 4 is a schematic diagram of an embodiment of a battery pack.
  • FIG. 5 is an exploded view of FIG. 4 .
  • Figure 6 is a schematic diagram of an embodiment of an electrical device using a battery as a power source
  • Figure 7 is a comparison chart of the viscosity change curves of the positive electrode slurry prepared in Example 1 and the blank positive electrode slurry;
  • Figure 8 is a CV curve comparison chart of the lithium ion secondary battery prepared in Example 1 and the blank lithium ion secondary battery;
  • Figure 9 is a comparison chart of the discharge DCR-SOC curves of the lithium-ion secondary battery prepared in Example 1 and the blank lithium-ion secondary battery at 25°C and different states of charge (SOC);
  • Figure 10 is a comparison chart of the discharge DCR-SOC curves of the lithium-ion secondary battery prepared in Example 1 and the blank lithium-ion secondary battery at -25°C and different states of charge (SOC);
  • Figure 11 is a histogram of the capacity retention rate of the lithium-ion secondary battery and the blank lithium-ion secondary battery prepared in Example 1 at different temperatures;
  • Figure 12 is a histogram comparing the capacity retention rates of the lithium-ion secondary battery prepared in Example 1 and the blank lithium-ion secondary battery at a rate of 0.5C;
  • Figure 13 is a histogram comparing the capacity retention rates of the lithium ion secondary battery produced in Example 1 and the blank lithium ion secondary battery at a rate of 2C.
  • an embodiment means that a particular feature, structure or characteristic described in connection with the embodiment can be included in at least one embodiment of the present application.
  • the appearances of this phrase in various places in the specification are not necessarily all referring to the same embodiment, nor are separate or alternative embodiments mutually exclusive of other embodiments. Those skilled in the art understand, both explicitly and implicitly, that the embodiments described herein may be combined with other embodiments.
  • multiple refers to more than two (including two).
  • multiple groups refers to two or more groups (including two groups), and “multiple pieces” refers to It is more than two pieces (including two pieces).
  • alkyl refers to a group formed by the loss of one hydrogen from an alkane, for example, the loss of a hydrogen from methane to form a methyl group.
  • alkanes refers to alkanes in which the carbon atoms are connected by carbon-carbon single bonds and do not form a ring, and the remaining valence bonds are combined with hydrogen, including straight-chain alkanes and branched-chain alkanes.
  • connection site when the connection site is not specified in the group, it means that the optional linkable site in the group is used as the connection site.
  • structural unit means: the basic unit in which monomer molecules enter the macromolecular chain through polymerization reaction, also called "monomer unit".
  • the element composition of the structural unit can be the same as the element composition of the monomer unit, also Can be different.
  • the structural unit in the polymer molecule can be one or more.
  • the "structural unit” is the repeating unit, such as polyvinyl chloride (CH 2 —CHCl)n, which The repeating units and structural units are the same, both are -CH 2 CHCl-, while nylon-66 has two structural units.
  • the technicians of this application have obtained the functional polymer in this application that can improve the dispersion stability of the electrode slurry and have a toughening effect, and can improve the dispersion uniformity of the components in the electrode active layer. At the same time, it improves its toughness, which can improve the stability and anti-cracking ability of the electrode pole pieces, thereby improving the cycle stability of the battery.
  • One embodiment of the present application provides a functional polymer, which includes structural units represented by formula (A), formula (B) and formula (C):
  • R is selected from one or more combinations of branched polyester segments, branched alkane groups with 4 to 60 carbon atoms, and branched polyolefins.
  • the above-mentioned functional polymers can not only improve the dispersion stability of the electrode slurry, but also have a toughening effect, improve the uniformity of dispersion of components in the electrode active layer and improve its ability to prevent cracking, thereby improving the performance of the electrode.
  • the stability and anti-cracking ability of the pole piece can thereby improve the cycle stability and rate of the battery.
  • the above-mentioned functional polymer includes structural units represented by formula (A), formula (B) and formula (C), wherein the structural unit of formula (A) is a non-polar
  • the hydrophilic structure is conducive to the uniform dispersion of each component in the electrode slurry in the solvent.
  • the side group of the structural unit of formula (B) contains a benzene ring, which has an adsorption effect on conductive carbon materials, etc., which is conducive to the uniform dispersion of the components in the electrode slurry.
  • the conductive agent is evenly dispersed, and in the prepared electrode active layer, the benzene ring on the structural unit of formula (B) can prevent the slip between the components and improve the stability and toughness of the electrode active layer.
  • Formula (C ) contains branched groups. On the one hand, it is beneficial to the dispersion of various components in the electrode slurry. On the other hand, in the prepared electrode active layer, the branched groups are equivalent to the supported The network plays an anchoring role in each component in the electrode active layer and can prevent cracking caused by slippage between components.
  • each chain segment in the functional polymer works synergistically to improve the electrode
  • it also has a toughening effect, which improves the dispersion uniformity of the components in the electrode active layer and improves its ability to prevent cracking, thereby improving the stability and anti-cracking ability of the electrode pole piece. , which can improve the cycle stability and rate of the battery.
  • the above-mentioned functional polymer has excellent antioxidant properties and is less likely to react with the electrolyte.
  • the electrode active layer produced thereby has a high stable phase and can maintain excellent performance even at high voltages (above 4V). , and can reduce the internal resistance of the battery, thereby improving the cycle performance and rate of the battery.
  • R is selected from one or more combinations of polyester segments with multiple branches, alkyl groups with multiple branches, and polyolefins with multiple branches.
  • multi-branched polyester segments means having at least 2 branches.
  • the branches in the above-mentioned multi-branched polyester segments all include ester groups.
  • the multi-branched polyester segment does not contain cyclic groups.
  • the branches in the polyolefin with multiple branches include at least one alkane group having 4 to 50 carbon atoms.
  • R is selected from any one of dendritic polyester segments, alkane groups with at least two branches and a carbon number of 4 to 50, and dendritic polyolefins.
  • Dendron polymers refer to polymers with a multi-branched structure, that is, secondary branches are further developed on the primary branches of the polymer, or even multi-level branches are further developed to form Orderly and regular hyperbranched structure.
  • the branch chain in the above-mentioned alkane group containing at least two branches includes at least one kind of alkane group having a carbon number of 4 to 50.
  • the number average molecular weight of the structural unit represented by formula (C) is 50-5000.
  • R is selected from an alkane group containing at least two branches and having 4 to 50 carbon atoms or a dendritic polyolefin segment with a number average molecular weight of 100 to 2000.
  • R is selected from an alkane group containing at least two branches and having 4 to 50 carbon atoms or a polyisobutylene segment with a number average molecular weight of 40 to 2000.
  • R includes a branched chain structure as shown below:
  • Each R 1 is independently selected from an alkyl group having 1 to 20 carbon atoms, and n is any integer from 1 to 10.
  • the structure of the above R is as follows shown.
  • each R 1 is independently selected from an alkyl group having 1 to 10 carbon atoms.
  • each R 1 is independently selected from an alkyl group having 1 to 5 carbon atoms.
  • each R 1 is independently selected from any one of methyl, ethyl, propyl, n-butyl and isobutyl.
  • each R 1 is identically selected from any one of methyl, ethyl, propyl, n-butyl and isobutyl.
  • each R1 is methyl.
  • n takes any integer from 1, 2, 3, 4, 5, 6, 7, 8, 9, or 10.
  • n 1
  • the mass proportion of the structural unit represented by formula (A) in the functional polymer is 20 wt% to 60 wt%.
  • the mass proportion of the structural unit represented by formula (A) in the functional polymer is 20 wt% to 40 wt%.
  • the mass proportion of the structural unit represented by formula (B) in the functional polymer is 20 wt% to 60 wt%.
  • the mass proportion of the structural unit represented by formula (B) in the functional polymer is 20wt% to 40wt%.
  • the mass proportion of the structural unit represented by formula (C) in the functional polymer is 20 wt% to 60 wt%.
  • the hydrophilic-hydrophobic balance value of the functional polymer can be further controlled, ensuring the excellent toughening effect of the functional polymer while further improving its dispersion effect.
  • the above-mentioned functional polymer is a block polymer, including a segment formed by a polyoxyethylene segment, a polystyrene segment and a structural unit represented by formula (C).
  • the above-mentioned functional polymers include polymeric segments represented by formula (A1), formula (B1) and formula (C1):
  • x, y, z represent the degree of polymerization.
  • x, y, and z are independently selected from any integer from 20 to 80.
  • the hydrophilic-hydrophobic balance value of the functional polymer can be further controlled, ensuring the excellent toughening effect of the functional polymer while further improving its dispersion effect.
  • the polymerized segments represented by the above-mentioned formula (A1), formula (B1) and formula (C1) are arranged in any order, and there is no specific requirement for the arrangement.
  • it can be A1 -B1-C1, or B1-C1-A1.
  • the above-mentioned functional polymer includes a molecular chain structure represented by formula (1):
  • x, y, z represent the degree of polymerization.
  • the HLB value of the functional polymer is 7-11.
  • HLB 1.4121log [CMC] -10.25
  • [CMC] refers to the measured critical micelle concentration of the functional polymer.
  • the specific test process refers to the standard GB/T 11276-2007.
  • the number average molecular weight of the functional polymer is 10,000 to 50,000.
  • the dispersion stability and toughness of the functional polymer can be further optimized.
  • the number average molecular weight of the functional polymer ranges from 15,000 to 40,000.
  • the number average molecular weight of the functional polymer ranges from 15,000 to 30,000.
  • the number average molecular weight of the functional polymer ranges from 15,000 to 20,000.
  • One embodiment of the present invention also provides the use of the above-mentioned functional polymer as an electrode additive.
  • the above-mentioned functional polymer When the above-mentioned functional polymer is used as an electrode additive, on the one hand, it has the function of a dispersant, which is beneficial to the uniform dispersion of the conductive agent in the electrode slurry and improves the dispersion stability of the electrode slurry. On the other hand, it also has a toughening effect, which can improve the performance of the electrode slurry. The ability of the electrode active layer to prevent cracking can improve the stability and anti-cracking ability of the electrode plate, thereby improving the cycle stability and rate of the battery.
  • One embodiment of the present application also provides an electrode slurry, which includes an electrode active material, a conductive agent, and the above-mentioned functional polymer.
  • the electrode slurry has good dispersion stability and can maintain good dispersion even if it is left for a long time, which is very convenient for processing.
  • the mass proportion of the functional polymer is 0.1% to 0.5%.
  • the mass proportion of the functional polymer is 0.2% to 0.5%.
  • the addition amount is relatively large, generally 0.5% or more, which will reduce the proportion of active substances in the electrode piece.
  • the functional polymer of this application On the one hand, it has the function of a dispersant, which is beneficial to the uniform dispersion of the conductive agent in the electrode slurry and improves the dispersion stability of the electrode slurry.
  • it also has a toughening effect, which can improve the anti-cracking ability of the electrode active layer. Even at a low addition amount, the stability and anti-cracking ability of the electrode piece can be improved.
  • the mass proportion of the conductive agent is 1 to 3 wt%.
  • the conductive agent includes conductive carbon material.
  • Conductive carbon materials include, but are not limited to, at least one of graphite, carbon nanotubes, nanofibers, carbon black, and graphene.
  • the above-mentioned conductive agents include but are not limited to: SP, KS-6, acetylene black, Ketjen black ECP with branched chain structure, SFG-6, vapor-grown carbon fiber VGCF, carbon nanotubes CNTs and graphene and their composite conductivity at least one of the agents.
  • the mass proportion of the electrode active material is 93.5% to 97.8%.
  • the electrode active material is a positive active material or a negative active material.
  • the electrode active material is a positive active material
  • the above-mentioned electrode active slurry is the positive active slurry
  • the prepared electrode piece is the positive electrode piece.
  • the electrode active material is a negative active material
  • the prepared electrode piece is the negative electrode piece.
  • the above-mentioned positive electrode active material can be a commonly used positive electrode active material in this application; further, as an example, the positive electrode active material can include at least one of the following materials: olivine structure lithium-containing phosphate, lithium transition metal oxide and their respective modified compounds.
  • the present application is not limited to these materials, and other traditional materials that can be used as positive electrode active materials of batteries can also be used. Only one type of these positive electrode active materials may be used alone, or two or more types may be used in combination.
  • lithium transition metal oxides may include, but are not limited to, lithium cobalt oxides (such as LiCoO 2 ), lithium nickel oxides (such as LiNiO 2 ), lithium manganese oxides (such as LiMnO 2 , LiMn 2 O 4 ), lithium Nickel cobalt oxide, lithium manganese cobalt oxide, lithium nickel manganese oxide, lithium nickel cobalt manganese oxide (such as LiNi 1/3 Co 1/3 Mn 1/3 O 2 (also referred to as NCM333), LiNi 0.5 Co 0.2 Mn 0.3 O 2 (can also be abbreviated to NCM523), LiNi 0.5 Co 0.
  • lithium cobalt oxides such as LiCoO 2
  • lithium nickel oxides such as LiNiO 2
  • lithium manganese oxides such as LiMnO 2 , LiMn 2 O 4
  • Nickel cobalt oxide lithium manganese cobalt oxide
  • lithium nickel manganese oxide lithium nickel cobalt manganese oxide
  • lithium nickel cobalt manganese oxide such as Li
  • Lithium-containing phosphate with olivine structure examples may include, but are not limited to, at least one of lithium iron phosphate (such as LiFePO 4 (also referred to as LFP)), lithium manganese phosphate (such as LiMnPO 4 ), and lithium iron manganese phosphate.
  • the molecular formula of the cathode active material is: LiFex Mn (1-x) PO 4 , and x is any number from 0 to 1.
  • LiFe x Mn (1-x) PO 4 is LiMnPO 4 lithium manganese phosphate
  • LiFePO 4 is LiFePO 4 lithium iron phosphate
  • the negative active material adopts commonly used negative active materials in this application; further, as an example, the negative active material may include at least one of the following materials: artificial graphite, natural graphite, soft carbon, hard carbon, silicon-based materials, Tin-based materials and lithium titanate, etc.
  • the silicon-based material may be selected from at least one of elemental silicon, silicon oxide compounds, silicon carbon composites, silicon nitrogen composites and silicon alloys.
  • the tin-based material may be selected from at least one of elemental tin, tin oxide compounds and tin alloys.
  • the present application is not limited to these materials, and other traditional materials that can be used as battery negative electrode active materials can also be used. Only one type of these negative electrode active materials may be used alone, or two or more types may be used in combination.
  • the above-mentioned electrode active material is a cathode active material.
  • the electrode active material includes at least one of lithium iron phosphate and lithium iron manganese phosphate.
  • the above solvents are each independently selected from at least one of water, N-methylpyrrolidone (NMP), N,N-dimethylformamide, ethanol, ethylene glycol, methanol and isopropyl alcohol.
  • the solvent is water.
  • the above-mentioned electrode slurry further includes a binder. Further, based on the total mass of components in the electrode slurry except the solvent, the mass proportion of the binder is 1% to 3%.
  • the binder can be a binder commonly used in this field, which can be polyvinylidene fluoride (PVDF), polytetrafluoroethylene (PTFE), vinylidene fluoride-tetrafluoroethylene-propylene terpolymer, vinylidene fluoride- Hexafluoropropylene-tetrafluoroethylene terpolymer, tetrafluoroethylene-hexafluoropropylene copolymer, hydrogenated nitrile rubber, styrene-butadiene rubber (SBR), polyacrylic acid (PAA), sodium polyacrylate (PAAS), polyacrylamide (PAM), polyvinyl alcohol (PVA), sodium alginate (SA), polymethacrylic acid (PMAA), carboxymethyl chitosan (CMCS) and at least one of fluorine-containing acrylate resin.
  • PVDF polyvinylidene fluoride
  • PTFE polytetrafluoroethylene
  • PTFE
  • One embodiment of the present application also provides an electrode piece.
  • the electrode piece includes a current collector and an active layer located on the surface of the current collector.
  • the components of the active layer include the above-mentioned functional polymer or are prepared by using the above-mentioned electrode slurry.
  • the above-mentioned current collector can be a metal foil or a composite current collector, and the composite current collector has at least one metal surface.
  • the metal foil aluminum foil can be used.
  • the composite current collector may include a polymer material base layer and a metal layer formed on at least one surface of the polymer material base layer.
  • Composite current collectors can be formed by forming metal materials (aluminum, aluminum alloys, nickel, nickel alloys, titanium, titanium alloys, silver and silver alloys, etc.) on polymer material substrates (such as polypropylene (PP), polyterephthalate It is formed on substrates such as ethylene glycol ester (PET), polybutylene terephthalate (PBT), polystyrene (PS), polyethylene (PE), etc.).
  • PP polypropylene
  • PBT polybutylene terephthalate
  • PS polystyrene
  • PE polyethylene
  • the above-mentioned electrode pole pieces still have excellent flexibility under higher pressure density, and have excellent oxidation resistance. They have a low probability of reacting with the electrolyte.
  • the active layer has a high stability and can be maintained even at high voltages (above 4V). Excellent performance, and can reduce the internal resistance of the battery, thereby improving the cycle performance and rate of the battery.
  • the above-mentioned electrode piece is a positive electrode piece.
  • the electrode pole piece can be prepared by dispersing the above-mentioned components for preparing the electrode pole piece, such as electrode active material, conductive agent, binder and functional polymer, in a solvent (such as N- Methylpyrrolidone) to form an electrode slurry; the electrode slurry is coated on the positive electrode current collector, and after drying, cold pressing and other processes, the electrode pole piece can be obtained.
  • a solvent such as N- Methylpyrrolidone
  • One embodiment of the present application provides a battery, which includes the above-mentioned electrode plate.
  • the above-mentioned electrode piece serves as a positive electrode piece
  • the battery further includes a separation film and a negative electrode piece.
  • isolation membrane there is no particular restriction on the type of isolation membrane in this application. Any well-known porous structure isolation membrane with good chemical stability and mechanical stability can be used.
  • the material of the isolation membrane can be selected from at least one of glass fiber, non-woven fabric, polyethylene, polypropylene and polyvinylidene fluoride.
  • the isolation film can be a single-layer film or a multi-layer composite film, with no special restrictions. When the isolation film is a multi-layer composite film, the materials of each layer can be the same or different, and there is no particular limitation.
  • the thickness of the isolation film is controlled between 2 ⁇ m and 15 ⁇ m; optionally, the thickness of the isolation film is controlled between 2 ⁇ m and 13 ⁇ m.
  • the positive electrode sheet, the negative electrode sheet and the separator film can be made into an electrode assembly through a winding process or a lamination process.
  • the battery may include an outer packaging and an electrolyte.
  • the outer packaging is used to package the positive electrode sheet, negative electrode sheet and electrolyte.
  • the battery can be prepared according to conventional methods in the art, for example, the positive electrode sheet, the separator film, and the negative electrode sheet are wound (or stacked) in order, so that the separator film is between the positive electrode sheet and the negative electrode sheet to play an isolation role, and an electrode assembly is obtained.
  • the electrode assembly is placed in the outer package, electrolyte is injected and sealed to obtain a battery.
  • FIG. 1 shows a battery 5 with a square structure as an example.
  • the outer package may include a housing 51 and a cover 53 .
  • the housing 51 may include a bottom plate and side plates connected to the bottom plate, and the bottom plate and the side plates enclose a receiving cavity.
  • the housing 51 has an opening communicating with the accommodation cavity, and the cover plate 53 can cover the opening to close the accommodation cavity.
  • the positive electrode sheet, the negative electrode sheet and the isolation film can be formed into the electrode assembly 52 through a winding process or a lamination process.
  • the electrode assembly 52 is packaged in the containing cavity.
  • the electrolyte soaks into the electrode assembly 52 .
  • the number of electrode assemblies 52 contained in the battery 5 can be one or more, and can be adjusted according to needs.
  • the outer packaging of the battery may be a hard shell, such as a hard plastic shell, an aluminum shell, a steel shell, etc.
  • the outer packaging of the battery can also be a soft bag, such as a bag-type soft bag.
  • the soft bag may be made of plastic, such as one or more of polypropylene (PP), polybutylene terephthalate (PBT), polybutylene succinate (PBS), and the like.
  • the above-mentioned electrolyte solution includes an electrolyte salt and a solvent.
  • the electrolyte salt may be selected from the group consisting of lithium hexafluorophosphate, lithium tetrafluoroborate, lithium perchlorate, lithium hexafluoroarsenate, lithium bisfluorosulfonimide, lithium bistrifluoromethanesulfonimide, trifluoromethane At least one of lithium sulfonate, lithium difluorophosphate, lithium difluoroborate, lithium dioxaloborate, lithium difluorodioxalate phosphate and lithium tetrafluoroxalate phosphate.
  • the solvent may be selected from the group consisting of ethylene carbonate, propylene carbonate, methylethyl carbonate, diethyl carbonate, dimethyl carbonate, dipropyl carbonate, methylpropyl carbonate, ethylpropyl carbonate, Butylene carbonate, fluoroethylene carbonate, methyl formate, methyl acetate, ethyl acetate, propyl acetate, methyl propionate, ethyl propionate, propyl propionate, methyl butyrate, ethyl butyrate At least one of ester, 1,4-butyrolactone, sulfolane, dimethyl sulfone, methyl ethyl sulfone and diethyl sulfone.
  • the above-described electrolyte optionally further includes functional additives.
  • functional additives may include negative electrode film-forming additives, positive electrode film-forming additives, and may also include additives that can improve certain properties of the battery, such as additives that improve battery overcharge performance, additives that improve battery high-temperature or low-temperature performance, etc.
  • the above-mentioned battery is a lithium ion secondary battery.
  • the batteries can be assembled into a battery module.
  • the number of batteries contained in the battery module can be multiple, and the specific number can be adjusted according to the application and capacity of the battery module.
  • FIG 3 is a battery module 4 as an example.
  • a plurality of batteries 5 may be arranged in sequence along the length direction of the battery module 4 .
  • the plurality of batteries 5 can be fixed by fasteners.
  • the battery module 4 may also include a housing with a receiving space, and a plurality of batteries 5 are received in the receiving space.
  • the above-mentioned battery modules can also be assembled into a battery pack, and the number of battery modules contained in the battery pack can be adjusted according to the application and capacity of the battery pack.
  • FIGS. 4 and 5 show the battery pack 1 as an example.
  • the battery pack 1 may include a battery box and a plurality of battery modules 4 arranged in the battery box.
  • the battery box includes an upper box 2 and a lower box 3 .
  • the upper box 2 can be covered with the lower box 3 and form a closed space for accommodating the battery module 4 .
  • Multiple battery modules 4 can be arranged in the battery box in any manner.
  • the present application also provides an electrical device, which includes at least one of the above-mentioned batteries, battery modules, or battery packs.
  • the above-mentioned battery, battery module or battery pack can be used as a power source for an electrical device, or as an energy storage unit for an electrical device.
  • the above-mentioned electric devices may be, but are not limited to, mobile devices (such as mobile phones, laptops, etc.), electric vehicles (such as pure electric vehicles, hybrid electric vehicles, plug-in hybrid electric vehicles, electric bicycles, electric scooters, electric golf golf carts, electric trucks, etc.), electric trains, ships and satellites, energy storage systems, etc.
  • mobile devices such as mobile phones, laptops, etc.
  • electric vehicles such as pure electric vehicles, hybrid electric vehicles, plug-in hybrid electric vehicles, electric bicycles, electric scooters, electric golf golf carts, electric trucks, etc.
  • electric trains ships and satellites, energy storage systems, etc.
  • the electrical device can select batteries, battery modules or battery packs according to its usage requirements.
  • FIG. 6 shows an electrical device 6 as an example.
  • the electric device 6 is a pure electric vehicle, a hybrid electric vehicle, a plug-in hybrid electric vehicle, or the like.
  • a battery pack or battery module may be used.
  • the power-consuming device may be a mobile phone, a tablet computer, a laptop computer, etc.
  • the device is usually required to be thin and light, and a secondary battery can be used as a power source.
  • Preparation of polyoxyethylene A1 Use ethylene oxide to perform ring-opening polymerization under acidic conditions to obtain polyoxyethylene A1.
  • the specific reaction route is as follows.
  • For the specific preparation process please refer to the references ⁇ Sun Lilin, Feng Song, Li Qinghai, Shen Liangjun .Synthesis and characterization of polyoxyethylene (PEO), acrylamide and methyl methacrylate terpolymer [J]. Journal of Anhui Normal University (Natural Science Edition), 2003(03):249-252>.
  • the prepared target product was tested using gel permeation chromatography, and the number average molecular weight was measured to be 2000-5000.
  • Preparation of polystyrene B1 Use styrene for polymerization to obtain polystyrene B1.
  • the specific reaction route is as follows.
  • For the specific preparation process please refer to the reference document ⁇ Wang Teng. Study on the preparation and properties of polystyrene [D] .Xi'an Petroleum University, 2017>.
  • the prepared target product was tested using gel permeation chromatography, and the number average molecular weight was measured to be 3000-5000.
  • polymer C1 2-isobutylethylene oxide is used for polymerization to obtain polymer C1.
  • the specific reaction route is as follows.
  • For the specific preparation process please refer to the literature ⁇ Sun Lilin, Feng Song, Li Qinghai, Shen Liangjun. Polyoxyethylene Synthesis and characterization of terpolymers of (PEO), acrylamide and methyl methacrylate [J]. Journal of Anhui Normal University (Natural Science Edition), 2003(03):249-252> Preparation process of polyoxyethylene .
  • the prepared target product was tested using gel permeation chromatography, and the molecular weight Mn was 10,000.
  • Blank comparative example Mix the active main material lithium nickel cobalt manganate material (LiNi 0.8 Co 0.1 Mn 0.1 O 2 (NCM811)) conductive carbon SP and PVDF according to the mass ratio of 97:2:1.0, and then disperse it in the solvent N- In methylpyrrolidone, a blank positive electrode slurry was obtained.
  • active main material lithium nickel cobalt manganate material LiNi 0.8 Co 0.1 Mn 0.1 O 2 (NCM811)
  • step (3) Coat the positive electrode slurry prepared in step (2) on the Al foil, dry it to form a positive electrode active layer, and cold press to obtain a positive electrode piece.
  • the compacted density of the positive electrode piece is 3.6g/cm 3 .
  • the mass proportion of the above-mentioned functional polymer is recorded as P. Please see Table 1 for details.
  • step (3) replace the positive electrode slurry in step (3) with blank electrode slurry and repeat step (3) to prepare a blank positive electrode piece.
  • the preparation of the negative electrode sheet add the negative active material artificial graphite, conductive agent (Super P), binder, and dispersant (sodium carboxymethyl cellulose) in deionized water in a weight ratio of 96:2:1:1 After the solvent system is fully stirred and mixed evenly, it is coated on a Cu foil, dried, and cold-pressed to obtain a negative electrode piece.
  • the negative active material artificial graphite conductive agent (Super P)
  • binder binder
  • dispersant sodium carboxymethyl cellulose
  • isolation film Use PE porous polymer film as the isolation film, stack the positive electrode piece or blank positive electrode piece, isolation film, and negative electrode piece in order, so that the isolation film is between the cathode and anode to play the role of isolation, and wind it to obtain the bare electrodes respectively. Cells and blank bare cells.
  • DCR resistance (U1-U2)/I.
  • Each secondary battery prepared above was placed in a constant temperature environment of 25°C for 30 minutes, discharged at a constant current of 0.33C to 2.8V, left for 30 minutes, charged at a constant current of 0.33C to 4.25V, and then charged at a constant voltage of 0.33C.
  • Charge with a cut-off current of 0.05C then let it sit for 30 minutes, then discharge to 2.8V at 0.33C, record the discharge capacity C0, let it stand for 30 minutes, charge with a constant current of 0.33C to 4.25V, then charge with a constant voltage, with a cut-off current of 0.05 C, then let it sit for 5 minutes.
  • the discharge DCR-SOC curves of lithium-ion secondary batteries and blank lithium-ion secondary batteries at different states of charge (SOC) at 25°C are shown in Figure 9; at -25°C, the discharge DCR-SOC curves of lithium-ion secondary batteries and blank lithium-ion secondary batteries are shown in Figure 9.
  • the discharge DCR-SOC curves of lithium-ion secondary batteries at different states of charge (SOC) are shown in Figure 10. It can be seen from Figures 9 and 10 that at different temperatures, there is no significant difference in the DCR-SOC curves between the two, indicating that the addition of functional polymers will not have a negative impact on the resistance of the pole piece.
  • the secondary batteries prepared above were placed in high and low temperature chambers at 25°C (model: SM-012PF, manufacturer: Guangdong Sanmu Technology Co., Ltd.), discharged to 2.8V at 1C, 2.5V at 1C, and then allowed to stand still. Leave for 5 minutes, charge according to 1C constant current to 4.25V, constant voltage charge, the cut-off current is 0.05C, record the discharge capacity C0, then let it stand for 30 minutes, discharge according to 1C to 2.8V, discharge to 2.5V according to 1C, and then let it stand For 30 minutes, charge at 1C constant current to 4.25V, constant voltage charge, the cut-off current is 0.05C, and record the discharge capacity C1.
  • the discharge capacity retention rate at 25°C is C1/C0 ⁇ 100%.
  • the discharge capacity retention rate at -10°C is C2/C0 ⁇ 100%.
  • 45°C performance test adjust the high and low temperature oven to 25°C, let each secondary battery prepared above stand for 120 minutes, charge it to 4.25V according to 1C constant current, constant voltage charging, the cut-off current is 0.05C, and then let it stand for 5 minute. Adjust the temperature of the high and low temperature oven to 45°C, let each secondary battery prepared above stand for 120 minutes, discharge it to 2.8V at 1C, and discharge it to 2.5V at 1C. Record the discharge capacity C3, and then let it stand for 5 minutes.
  • the discharge capacity retention rate at 45°C is (C3/C0) ⁇ 100%.
  • the specific discharge capacity retention rates of the two are shown in Figure 11.
  • Discharge capacity retention rate test Each secondary battery prepared above was left to stand for 30 minutes in a constant temperature environment of 25°C. Discharge to 2.8V with a constant current of 0.33C, discharge to 2.5V with a constant current of 0.33C, then let it stand for 1 hour, charge with a constant current of 0.33C to 4.25V, charge with a constant voltage, the cut-off current is 0.05C, let it stand for 30 minutes, follow the instructions 0.33C constant current discharge to 2.8V, then 0.33C constant current discharge to 2.5V, record the discharge capacity C0, let it stand for 1 hour, 0.33C constant current charge to 4.25V, constant voltage charge, cut-off current 0.05C, let it stand for 30 minute. Discharge to 2.8V at 0.5C and 2.5V at 0.5C, and record the discharge capacity C0.5.
  • the discharge capacity retention rate at 0.5C rate is (C0.5/C0) ⁇ 100%.
  • the capacity retention rate histogram of lithium ion secondary battery and blank lithium ion secondary battery at 0.5C rate is shown in Figure 12; the capacity retention rate histogram of lithium ion secondary battery and blank lithium ion secondary battery at 2C rate
  • the figures are shown in Figure 13 respectively.
  • the prepared lithium ion secondary battery and the blank lithium ion secondary battery were repeatedly charged and discharged at 25°C, and their capacitance retention rate (capacity) after n cycles of charge and discharge was calculated, and the cycle performance test as follows:
  • the secondary battery prepared above was charged at a constant current rate of 1C to the charge cut-off voltage of 4.25V, then charged at a constant voltage to a current ⁇ 0.05C, left to stand for 5 minutes, and then discharged at a constant current rate of 0.33C until the discharge cutoff.
  • the voltage is 2.8V, let it stand for 5 minutes, and record the capacity C0 at this time. This is a charge and discharge cycle.
  • Embodiments 2 to 6 are basically the same as Embodiment 1, the only difference is that by adjusting the amount of monomer added in each unit of A1, B1 and C1, while keeping the ratio of K: L: M unchanged, the functions obtained are changed. Number average molecular weight Mn of the polymer.
  • Examples 2 to 6 are basically the same as Example 1. The only difference is that the K:L:M ratio is changed and the molecular weight of the functional polymer remains unchanged by adjusting the amount of monomer added in each unit of A1, B1 and C1.
  • Embodiments 11 to 13 are basically the same as Embodiment 1, and the only difference lies in: when preparing the cathode slurry in step (2), the mass ratio of the active material and the functional polymer is adjusted, thereby changing the functional polymerization in the formed cathode active layer.
  • the mass proportion of the object P please see Table 1 for details.
  • Comparative Example 1 is basically the same as the Example, except that in the preparation step of the functional polymer, polyoxyethylene A1 and polystyrene B1 are used, and polymer C1 is not added.
  • Comparative Example 2 is basically the same as Example 1, except that in the preparation step of the functional polymer, polystyrene B1 and polymer C1 are used, and polyoxyethylene A1 is not added.
  • Comparative Example 3 is basically the same as Example 1, with the only difference being that in the preparation of the cathode slurry in step (2), the functional polymer is replaced with SEBS (YH-502T) of equal mass: both have the same molecular weight.
  • the functional polymer with a specific structure in this application can improve the dispersion stability of the electrode slurry, and at the same time has a toughening effect, can reduce the resistance of the electrode piece, and improve the stability and stability of the electrode piece. Anti-cracking ability, thereby improving the cycle stability of the battery.
  • the number of cycles can reach 350 times and above.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

本申请涉及一种功能聚合物、电极浆料、电极极片、电池及用电装置。该功能聚合物包括式(A)、式(B)及式(C)所示的结构单元。该功能聚合物能提高电极浆料的分散稳定性,同时具有增韧的作用,从而在提高电极活性层中组分的分散均匀性的同时提高其韧性,进而能提高电池的循环稳定性。

Description

功能聚合物、电极浆料、电极极片、电池及用电装置 技术领域
本申请涉及电池领域,具体涉及一种功能聚合物、电极浆料、电极极片、电池及用电装置。
背景技术
锂离子二次电池具有出色的循环性能、优异的安全性能、较低的成本及环境友好等特点,是新能源领域的关注热点。随着科技的发展,为满足各种电器的小型化、轻薄化的发展趋势以及提升电动汽车的续航里程,人们对锂电池的循环使用寿命提出越来越高的要求。
传统技术中,常通过提高极片上的活性物质的负载量来提高锂电池的倍率性能及循环使用寿命,具体通过厚涂实现:将含活性物质的电极浆料涂布在集流体上,然后干燥制得极片,提高涂布的厚度就可以提高制得的极片上活性物质的负载量。然而,厚涂导致制得的电极极片容易出现开裂的问题,且厚涂时涂层中各组分更易分散不均,反而对锂离子二次电池的循环稳定性和倍率产生负面影响,因此,传统技术仍有待改进。
发明内容
鉴于上述问题,本申请提供一种功能聚合物、电极浆料、电极极片、电池及用电装置,旨在提高电池的循环稳定性。
为了实现上述目的,本申请的第一方面提供了一种功能聚合物,所述功能聚合物包括式(A)、式(B)及式(C)所示的结构单元:
Figure PCTCN2022114664-appb-000001
*代表连接位点,R选自具有支链的聚酯链段、具有支链的碳原子数为 4~60的烷烃基、具有支链的聚烯烃中的一种或多种的组合。
上述功能性聚合物能够在提高电极浆料的分散稳定性的同时,还具有增韧的作用,在提高电极活性层中组分的分散均匀性的同时提高其防开裂的能力,从而能提高电极极片的稳定性及防开裂能力,进而能提高电池的循环稳定性和倍率。
虽然机理尚不清楚,但本申请发明人推测是由于:上述功能性聚合物包括式(A)、式(B)及式(C)所示的结构单元,其中式(A)结构单元是非极性的亲水结构,有利于电极浆料中各组在溶剂中的均匀分散,式(B)结构单元的侧基含有苯环,对导电碳材料等具有吸附作用,有利于电极浆料中导电剂的均匀分散,且在制得的电极活性层中,式(B)结构单元上的苯环可阻止各组分之间的滑移,提高电极活性层的稳定性及韧性,式(C)所示的结构单元中含有支链的基团,一方面有利于电极浆料中各组分的分散,另一方面,在制得的电极活性层中,支链基团相当于支撑开的网络,对电极活性层中的各组分起到锚固作用,可阻止因各组分之间的滑移而产生的开裂,由此,该功能聚合物中各链段部分协同作用,在提高电极浆料的分散稳定性的同时,还具有增韧的作用,在提高电极活性层中组分的分散均匀性的同时提高其防开裂的能力,从而能提高电极极片的稳定性及防开裂能力,进而能提高电池的循环稳定性和倍率。
另外,上述功能性聚合物的抗氧化性能优异,与电解液发生副反应的几率小,由此制得的电极活性层的稳定较高,即使在高电压(4V以上)下也能保持优异的性能,且能降低电池的内阻,从而提高电池的循环性能及倍率。
在本申请任意实施方式中,所述功能聚合物满足(1)~(3)中至少一个条件:
(1)所述式(A)所示结构单元在所述功能聚合物中的质量占比为20wt%~60wt%;
可选地,所述式(A)所示结构单元在所述功能聚合物中的质量占比为20wt%~40wt%;
(2)所述式(B)所示结构单元在所述功能聚合物中的质量占比为 20wt%~60wt%;
所述式(B)所示结构单元在所述功能聚合物中的质量占比为20wt%~40wt%;
(3)所述式(C)所示结构单元在所述功能聚合物中的质量占比为20wt%~60wt%。
在本申请任意实施方式中,R选自树枝状聚酯链段、至少含有两个支链的碳原子数为4~50的烷烃基、树枝状聚烯烃链段中的任意一种。
在本申请任意实施方式中,所述式(C)所示的结构单元满足(4)~(5)中至少一个条件:
(4)R选自至少含有两个支链的碳原子数为4~50的链烷烃基或数均分子量为100~2000的树枝状聚烯烃链段;
(5)所述式(C)所示的结构单元的数均分子量为50~5000。
在本申请任意实施方式中,R包括如下所示的支链结构:
Figure PCTCN2022114664-appb-000002
各R 1各自独立地选自碳原子数为1~20的链烷基,n取自1~10任一整数。
在本申请任意实施方式中,各R 1分别独立地选自碳原子数为1~5的链烷基;
可选地,各R 1分别独立地选自甲基、乙基、丙基、正丁基及异丁基中的任意一种。
在本申请任意实施方式中,所述功能聚合物包括式(A1)、式(B1)及式(C1)所示的聚合链段:
Figure PCTCN2022114664-appb-000003
其中,x、y、z表示聚合度,x、y、z分别独立地选自20~80任意整数。
在本申请任意实施方式中,所述功能聚合物包括式(1)所示的分子链结构:
Figure PCTCN2022114664-appb-000004
其中,x、y、z表示聚合度,x、y、z分别独立地选自20~80任意整数。
在本申请任意实施方式中,所述功能聚合物的HLB值为6~14;
可选地,所述功能聚合物的HLB值为7~11。
在本申请任意实施方式中,所述功能聚合物的数均分子量为10000~50000。
本申请的第二方面提供了第一方面的功能聚合物作为电极添加剂的应用。
上述功能聚合物作为电极添加剂时,一方面具有分散剂的作用,有利于电极浆料中导电剂的均匀分散,提高电极浆料的分散稳定性,另一方面还具有增韧的作用,可以提高电极活性层的防开裂的能力,从而能提高电极极片的稳定性及防开裂能力,进而能提高电池的循环稳定性和倍率。
本申请的第三方面提供了一种电极浆料,所述电极浆料包括电极活性材料、导电剂及第一方面的功能聚合物。
该电极浆料的分散稳定性好,即使久置也能保持良好的分散性,对加工大有便利。
在本申请任意实施方式中,以所述电极浆料除溶剂之外的组分的总质量为基准,所述功能聚合物的质量占比为0.1%~0.5%;
可选地,所述功能聚合物的质量占比为0.2%~0.5%。
在本申请任意实施方式中,所述电极活性物质为正极活性物质或负极活性物质。
本申请的第四方面提供了一种电极极片,所述电极极片包括集流体及位 于所述集流体表面的活性层,所述活性层的组分包括第一方面的功能聚合物;或采用第三方面的电极活性浆料制得。
本申请的第五方面提供了一种电池,包括第四方面的电极极片。
本申请的第六方面提供了一种用电装置,所述用电装置包括第五方面的电池。
上述说明仅是本申请技术方案的概述,为了能够更清楚了解本申请的技术手段,而可依照说明书的内容予以实施,并且为了让本申请的上述和其它目的、特征和优点能够更明显易懂,以下特举本申请的具体实施方式。
附图说明
通过阅读对下文优选实施方式的详细描述,各种其他的优点和益处对于本领域普通技术人员将变得清楚明了。附图仅用于示出优选实施方式的目的,而并不认为是对本申请的限制。而且在全部附图中,用相同的附图标号表示相同的部件。在附图中:
图1是电池的一实施方式的示意图。
图2是图1的分解图。
图3是电池模组的一实施方式的示意图。
图4是电池包的一实施方式的示意图。
图5是图4的分解图。
图6是电池用作电源的用电装置的一实施方式的示意图;
图7是实施例1中制得的正极浆料和空白正极浆料的粘度变化曲线对比图;
图8是实施例1中制得的锂离子二次电池和空白锂离子二次电池的CV曲线对比图;
图9为实施例1中制得的锂离子二次电池和空白锂离子二次电池在25℃下、不同荷电状态(SOC)的放电DCR-SOC曲线对比图;
图10为实施例1中制得的锂离子二次电池和空白锂离子二次电池在-25℃下、不同荷电状态(SOC)的放电DCR-SOC曲线对比图;
图11为实施例1中制得的锂离子二次电池和空白锂离子二次电池在不同温度下的容量保持率柱状图;
图12为实施例1中制得的锂离子二次电池和空白锂离子二次电池在0.5C倍率下的容量保持率柱状对比图;
图13为实施例1中制得的锂离子二次电池和空白锂离子二次电池在2C倍率下的容量保持率柱状对比图。
附图标记说明:
1、电池包;2、上箱体;3、下箱体;4、电池模组;5、电池;51、壳体;52、电极组件;53、盖板;6、用电装置。
具体实施方式
下面将结合附图对本申请技术方案的实施例进行详细的描述。以下实施例仅用于更加清楚地说明本申请的技术方案,因此只作为示例,而不能以此来限制本申请的保护范围。
除非另有定义,本文所使用的所有的技术和科学术语与属于本申请的技术领域的技术人员通常理解的含义相同;本文中所使用的术语只是为了描述具体的实施例的目的,不是旨在于限制本申请;本申请的说明书和权利要求书及上述附图说明中的术语“包括”和“具有”以及它们的任何变形,意图在于覆盖不排他的包含。
在本申请实施例的描述中,技术术语“第一”、“第二”等仅用于区别不同对象,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量、特定顺序或主次关系。在本申请实施例的描述中,“多个”的含义是两个以上,除非另有明确具体的限定。
在本文中提及“实施例”意味着,结合实施例描述的特定特征、结构或特性可以包含在本申请的至少一个实施例中。在说明书中的各个位置出现该短语并不一定均是指相同的实施例,也不是与其它实施例互斥的独立的或备选的实施例。本领域技术人员显式地和隐式地理解的是,本文所描述的实施例可以与其它实施例相结合。
在本申请实施例的描述中,术语“和/或”仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
在本申请实施例的描述中,术语“多个”指的是两个以上(包括两个),同理,“多组”指的是两组以上(包括两组),“多片”指的是两片以上(包括两片)。
在本申请实施例的描述中,技术术语“中心”“纵向”“横向”“长度”“宽度”“厚度”“上”“下”“前”“后”“左”“右”“竖直”“水平”“顶”“底”“内”“外”“顺时针”“逆时针”“轴向”“径向”“周向”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本申请实施例和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请实施例的限制。
在本申请实施例的描述中,除非另有明确的规定和限定,技术术语“安装”“相连”“连接”“固定”等术语应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或成一体;也可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本申请实施例中的具体含义。
在本申请中,术语“烷烃基”指的是烷烃失去一个氢后形成的基团,例如甲烷失去一个氢后形成甲基。
术语“链烷烃”是指碳原子都以碳碳单键相连且不成环,其余的价键都与氢结合而成的烷烃,包括直链烷烃和支链烷烃。
本申请中,基团中未指明连接位点时,表示基团中任选可连接位点作为连接位点。
本申请中,“*”表示连接位点。
本申请中,术语“结构单元”表示:单体分子通过聚合反应进入大分子链的基本单元,也称为“单体单元”,结构单元的元素组成可以与单体单元的元素组成相同,也可以不同。聚合物分子中的结构单元可以是一种或多种,当聚合物分子中的结构单元只有一种时,“结构单元”即为重复单元,例如聚氯乙烯(CH 2—CHCl)n,其重复单元与结构单元是相同的,都是—CH 2CHCl—,而尼龙-66则有两种结构单元。
如背景技术所述,传统技术常通过厚涂来提高极片上的活性物质的负 载量,进而提高锂电池的倍率性能及循环使用寿命,但厚涂导致制得的电极极片容易出现开裂的问题,且厚涂时涂层中各组分更易分散不均,反而对锂离子二次电池的循环稳定性和倍率产生负面影响。由此,传统技术中常需要通过添加各类具有不同功能的功能添加剂来提高其分散性或韧性,例如需要通过添加分散剂来提高浆料的中各组分的分散性、需要加入增韧剂来提高活性层的韧性。
按照传统的技术思路,若要使活性层上各组分分散均匀的同时有要使其具有良好的韧性,则组同时添加分散性及增韧剂等各类功能性添加剂,而本申请的技术人员传统技术方案进行研究发现:若同时添加分散性及增韧剂等各类功能性添加剂,则势必会降低活性层中活性物质的占比量,反而阻碍了极片上的活性物质的负载量的提高。
由此,本申请技术人员通过大量创造性实验,获得本申请中能提高电极浆料的分散稳定性,同时具有增韧的作用的功能聚合物,能在提高电极活性层中组分的分散均匀性的同时提高其韧性,能提高电极极片的稳定性及防开裂能力,进而能提高电池的循环稳定性。
本申请一实施方式提供了一种功能聚合物,该功能聚合物包括式(A)、式(B)及式(C)所示的结构单元:
Figure PCTCN2022114664-appb-000005
*代表连接位点,R选自具有支链的聚酯链段、具有支链的碳原子数为4~60的烷烃基、具有支链的聚烯烃中的一种或多种的组合。
上述功能性聚合物能够在提高电极浆料的分散稳定性的同时,还具有增韧的作用,在提高电极活性层中组分的分散均匀性的同时提高其防开裂的能力,从而能提高电极极片的稳定性及防开裂能力,进而能提高电池的循环稳定性和倍率。
虽然机理尚不清楚,但本申请发明人推测是由于:上述功能性聚合物包括式(A)、式(B)及式(C)所示的结构单元,其中式(A)结构单元是非极性的亲水结构,有利于电极浆料中各组分在溶剂中的均匀分散,式(B)结构单元的侧基含有苯环,对导电碳材料等具有吸附作用,有利于电极浆料中导电剂的均匀分散,且在制得的电极活性层中,式(B)结构单元上的苯环可阻止各组分之间的滑移,提高电极活性层的稳定性及韧性,式(C)所示的结构单元中含有支链的基团,一方面有利于电极浆料中各组分的分散,另一方面,在制得的电极活性层中,支链基团相当于支撑开的网络,对电极活性层中的各组分起到锚固作用,可阻止因各组分之间的滑移而产生的开裂,由此,该功能聚合物中各链段部分协同作用,在提高电极浆料的分散稳定性的同时,还具有增韧的作用,在提高电极活性层中组分的分散均匀性的同时提高其防开裂的能力,从而能提高电极极片的稳定性及防开裂能力,进而能提高电池的循环稳定性和倍率。
且,上述功能性聚合物的抗氧化性能优异,与电解液发生反应的几率小,由此制得的电极活性层的稳定相高,即使在高电压(4V以上)下也能保持优异的性能,且能降低电池的内阻,从而提高电池的循环性能及倍率。
在其一些实施例中,R选自具有多支链的聚酯链段、具有多支链的烷烃基、具有多支链的聚烯烃中的一种或多种的组组合。
可理解:上述多支链的聚酯链段、具有多支链的烷烃基、具有多支链的聚烯烃中的“多支链”是指至少具有2条支链。
上述多支链的聚酯链段中的支链均包括酯基。
在其中一些实施例中,上述多支链的聚酯链段中不含环状基团。
在其中一些实施例中,上述具有多支链的聚烯烃中的支链包括碳原子数为4~50的链烷烃基中的至少一种。
在其中一些实施例中,R选自树枝状聚酯链段、至少含有两个支链的碳原子数为4~50的烷烃基、树枝状聚烯烃中的任意一种。
树枝状(dendron)聚合物(dendrimer)是指具有数多分枝结构的聚合物,即在聚合物的一级支链上进一步发展出二级支链,甚至更进一步发展出多级支链,形成有序、规整的超支化结构。
在其中一些实施例中,上述至少含有两个支链的烷烃基中的支链包括碳 原子数为4~50的链烷烃基中的至少一种。
在其中一些实施例中,式(C)所示的结构单元的数均分子量为50~5000。
在其中一些实施例中,R选自至少含有两个支链、碳原子数为4~50的链烷烃基或数均分子量为100~2000的树枝状聚烯烃链段。
在其中一些实施例中,R选自至少含有两个支链、碳原子数为4~50的链烷烃基或数均分子量为40~2000的聚异丁烯链段。
在其中一些实施例中,R包括如下所示的支链结构:
Figure PCTCN2022114664-appb-000006
各R 1分别独立地选自碳原子数为1~20的链烷基,n取自1~10任一整数。
在其中一些实施例中,上述R的结构如
Figure PCTCN2022114664-appb-000007
所示。
在其中一些实施例中,各R 1分别独立地选自碳原子数为1~10的链烷基。
在其中一些实施例中,各R 1分别独立地选自碳原子数为1~5的链烷基。
在其中一些实施例中,各R 1分别独立地选自甲基、乙基、丙基、正丁基及异丁基中的任意一种。
在其中一些实施例中,各R 1相同地选自甲基、乙基、丙基、正丁基及异丁基中的任意一种。
在一具体示例中,各R 1均为甲基。
n取1、2、3、4、5、6、7、8、9、10任一整数。
在一具体示例中,n为1。
在其中一些实施例中,式(A)所示结构单元在功能聚合物中的质量占比为20wt%~60wt%。
在其中一些实施例中,式(A)所示结构单元在功能聚合物中的质量占比为20wt%~40wt%。
在其中一些实施例中,式(B)所示结构单元在功能聚合物中的质量占比为20wt%~60wt%。
在其中一些实施例中,式(B)所示结构单元在功能聚合物中的质量占比为20wt%~40wt%。
在其中一些实施例中,式(C)所示结构单元在功能聚合物中的质量占比为20wt%~60wt%。
通过控制各结构单元的质量占比,可进一步控制功能聚合物的亲水疏水平衡值,在保证功能聚合物优异的增韧作用的同时,进一步提高其分散作用。
在其中一些实施例中,上述功能聚合物是嵌段聚合物,包括聚氧乙烯链段、聚苯乙烯链段及式(C)所示结构单元形成的链段。
在其中一些实施中,上述功能聚合物包括式(A1)、式(B1)及式(C1)所示的聚合链段:
Figure PCTCN2022114664-appb-000008
其中,x、y、z表示聚合度。
x、y、z分别独立地选自20~80任意整数。
同理,通过控制上述各聚合链段的质量占比,可进一步控制功能聚合物的亲水疏水平衡值,在保证功能聚合物优异的增韧作用的同时,进一步提高其分散作用。
需要说明的是,在上述功能聚合物中,上述式(A1)、式(B1)及式(C1)所示的聚合链段按任意顺序排列,对排列方式没有特定的要求,例如可以是A1-B1-C1,也可以是B1-C1-A1。
在其中一些实施例中,上述功能聚合物包括式(1)所示的分子链结构:
Figure PCTCN2022114664-appb-000009
其中,x、y、z表示聚合度。
在其中一些实施例中,上述功能聚合物的HLB值为7~11。
进一步地,上述HLB值是于25℃、水溶液中采用临界胶束浓度法测得。
其中,HLB=1.4121log [CMC]-10.25,[CMC]是指测得的功能聚合物的临界胶束浓度,具体测试过程参照标准GB/T 11276-2007。
在其中一些实施例中,上述功能聚合物的数均分子量为10000~50000。通过调节功能聚合物的数均分子量,可进一步优化功能聚合物的分散稳定性及增韧性。
在其中一些实施例中,上述功能聚合物的数均分子量为1.5万~4万。
在其中一些实施例中,上述功能聚合物的数均分子量为1.5万~3万。
在其中一些实施例中,上述功能聚合物的数均分子量为1.5万~2万。
本发明一实施方式,还提供上述功能聚合物作为电极添加剂的应用。
上述功能聚合物作为电极添加剂时,一方面具有分散剂的作用,有利于电极浆料中导电剂的均匀分散,提高电极浆料的分散稳定性,另一方面还具有增韧的作用,可以提高电极活性层的防开裂的能力,从而能提高电极极片的稳定性及防开裂能力,进而能提高电池的循环稳定性和倍率。
本申请一实施方式,还提供一种电极浆料,该电极浆料包括电极活性材料、导电剂及上述功能聚合物。
该电极浆料的分散稳定性好,即使久置也能保持良好的分散性,对加工大有便利。
在其中一些实施例中,以电极浆料中除溶剂之外的组分的总质量为基准,功能聚合物的质量占比为0.1%~0.5%。
可选地,上述功能聚合物的质量占比为0.2%~0.5%。
采用传统的各类单一的功能性添加剂制备电极极片时,添加量较大, 一般需0.5%及以上,会降低电极极片中活性物质的占比量,而采用本申请的功能聚合物,一方面具有分散剂的作用,有利于电极浆料中导电剂的均匀分散,提高电极浆料的分散稳定性,另一方面还具有增韧的作用,可以提高电极活性层的防开裂的能力,即使在较低的添加量的情况下,也能提高电极极片的稳定性及防开裂能力。
在其中一些实施例中,以电极浆料中除溶剂之外的组分的总质量为基准,导电剂的质量占比为1wt%~3wt%。
在其中一些实施例中,上述导电剂包括导电炭材料。
导电炭材料包括但不限于:石墨、碳纳米管、纳米纤维、炭黑和石墨烯中的至少一种。具体地,上述导电剂包括但不限于:SP、KS-6,乙炔黑、有支链结构的科琴黑ECP,SFG-6,气相生长碳纤维VGCF,碳纳米管CNTs和石墨烯及其复合导电剂中的至少一种。
在其中一些实施例中,以电极浆料中除溶剂之外的组分的总质量为基准,电极活性物质的质量占比为93.5%~97.8%。
在其中一些实施例中,电极活性物质为正极活性物质或负极活性物质。
可理解,当电极活性物质为正极活性物质,上述电极活性浆料即为正极活性浆料,制得的电极极片即为正极极片,当电极活性物质为负极活性物质,上述电极活性浆料即为负极活性浆料,制得的电极极片即为负极极片。
上述正极活性材料可采用本申请中的常用的正极活性材料;进一步地,作为示例,正极活性材料可包括以下材料中的至少一种:橄榄石结构的含锂磷酸盐、锂过渡金属氧化物及其各自的改性化合物。但本申请并不限定于这些材料,还可以使用其他可被用作电池正极活性材料的传统材料。这些正极活性材料可以仅单独使用一种,也可以将两种以上组合使用。其中,锂过渡金属氧化物的示例可包括但不限于锂钴氧化物(如LiCoO 2)、锂镍氧化物(如LiNiO 2)、锂锰氧化物(如LiMnO 2、LiMn 2O 4)、锂镍钴氧化物、锂锰钴氧化物、锂镍锰氧化物、锂镍钴锰氧化物(如LiNi 1/3Co 1/3Mn 1/3O 2(也可以简称为NCM333)、LiNi 0.5Co 0.2Mn 0.3O 2(也可以简称为NCM523)、LiNi 0.5Co 0.2 5Mn 0.25O 2(也可以简称为NCM211)、LiNi 0.6Co 0.2Mn 0.2O 2(也可以简称为NCM622)、LiNi 0.8Co 0.1Mn 0.1O 2(也可以简称为NCM811)、锂镍钴 铝氧化物(如LiNi 0.85Co 0.15Al 0.05O 2)及其改性化合物等中的至少一种。橄榄石结构的含锂磷酸盐的示例可包括但不限于磷酸铁锂(如LiFePO 4(也可以简称为LFP))磷酸锰锂(如LiMnPO 4)、磷酸锰铁锂中的至少一种。
在其中一些实施例中,正极活性材料的分子式为:LiFe xMn (1-x)PO 4,x取0~1任一数。
可理解,当x取0时,LiFe xMn (1-x)PO 4即为LiMnPO 4磷酸锰锂,当x取1时,LiFePO 4即为LiFePO 4磷酸铁锂。
上述负极活性材料采用本申请中的常用的负极活性材料;进一步地,作为示例,负极活性材料可包括以下材料中的至少一种:人造石墨、天然石墨、软炭、硬炭、硅基材料、锡基材料和钛酸锂等。所述硅基材料可选自单质硅、硅氧化合物、硅碳复合物、硅氮复合物以及硅合金中的至少一种。所述锡基材料可选自单质锡、锡氧化合物以及锡合金中的至少一种。但本申请并不限定于这些材料,还可以使用其他可被用作电池负极活性材料的传统材料。这些负极活性材料可以仅单独使用一种,也可以将两种以上组合使用。
在其中一些实施例中,上述电极活性材料为正极活性材料。
在其中一些实施例中,电极活性物质包括磷酸铁锂和磷酸锰铁锂中的至少一种。
上述溶剂各自独立地选自水、N-甲基吡咯烷酮(NMP)、N,N-二甲基甲酰胺、乙醇、乙二醇、甲醇及异丙醇中的至少一种。
若电极活性物质为负极活性物质时,溶剂为水。
在其中一些实施例中,上述电极浆料还包括粘结剂。进一步地,以电极浆料中除溶剂之外的组分的总质量为基准,粘结剂的质量占比为1%~3%。
粘结剂可以采用本领域常用的粘结剂,可以是聚偏二氟乙烯(PVDF)、聚四氟乙烯(PTFE)、偏氟乙烯-四氟乙烯-丙烯三元共聚物、偏氟乙烯-六氟丙烯-四氟乙烯三元共聚物、四氟乙烯-六氟丙烯共聚物、氢化丁腈橡胶、丁苯橡胶(SBR)、聚丙烯酸(PAA)、聚丙烯酸钠(PAAS)、聚丙烯酰胺(PAM)、聚乙烯醇(PVA)、海藻酸钠(SA)、聚甲基丙烯酸(PMAA)及羧甲基壳聚糖(CMCS)及含氟丙烯酸酯树脂中的至少一种。
本申请一实施方式,还提供一种电极极片,电极极片包括集流体及位于集流体表面的活性层,活性层的组分包括上述功能聚合物或采用上述电极浆 料制得。
上述集流体可采用金属箔片或复合集流体,复合集流体至少具有一个金属面。例如,作为金属箔片,可采用铝箔。复合集流体可包括高分子材料基层和形成于高分子材料基层至少一个表面上的金属层。复合集流体可通过将金属材料(铝、铝合金、镍、镍合金、钛、钛合金、银及银合金等)形成在高分子材料基材(如聚丙烯(PP)、聚对苯二甲酸乙二醇酯(PET)、聚对苯二甲酸丁二醇酯(PBT)、聚苯乙烯(PS)、聚乙烯(PE)等的基材)上而形成。
上述电极极片在较高压密下仍具有优异的柔韧性,且抗氧化性能优异,与电解液发生反应的几率小,活性层的稳定相高,即使在高电压(4V以上)下也能保持优异的性能,且能降低电池的内阻,从而提高电池的循环性能及倍率。
在其中一些实施例中,上述电极极片为正极极片。
在一些实施方式中,可以通过以下方式制备电极极片:将上述用于制备电极极片的组分,例如电极活性材料、导电剂、粘结剂和功能聚合物的分散于溶剂(例如N-甲基吡咯烷酮)中,形成电极浆料;将电极浆料涂覆在正极集流体上,经烘干、冷压等工序后,即可得到电极极片。
本申请一实施方式,提供一种电池,该电池包括上述电极极片。
进一步地,上述电极极片作为正极极片,该电池还包括隔离膜和负极极片。
本申请对隔离膜的种类没有特别的限制,可以选用任意公知的具有良好的化学稳定性和机械稳定性的多孔结构隔离膜。
在其中一些实施方式中,隔离膜的材质可选自玻璃纤维、无纺布、聚乙烯、聚丙烯及聚偏二氟乙烯中的至少一种。隔离膜可以是单层薄膜,也可以是多层复合薄膜,没有特别限制。在隔离膜为多层复合薄膜时,各层的材料可以相同或不同,没有特别限制。隔离膜的厚度控制在2μm~15μm;可选地,隔离膜的厚度控制在2μm~13μm。
在其中一些实施方式中,正极片、负极片和隔离膜可通过卷绕工艺或叠片工艺制成电极组件。
在其中一些实施例中,上述电池可包括外包装和电解液。该外包装用 于封装正极片、负极片和电解液。
可以按照本领域常规方法制备电池,例如将正极片、隔离膜、负极片按顺序卷绕(或叠片),使隔离膜处于正极片与负极片之间起到隔离的作用,得到电极组件,将电极组件置于外包装中,注入电解液并封口,得到电池。
本申请实施例对电池的形状没有特别的限制,其可以是圆柱形、方形或其他任意的形状。如图1是作为一个示例的方形结构的电池5。
在一些实施例中,参照图2,外包装可包括壳体51和盖板53。其中,壳体51可包括底板和连接于底板上的侧板,底板和侧板围合形成容纳腔。壳体51具有与容纳腔连通的开口,盖板53能够盖设于开口,以封闭容纳腔。
正极片、负极片和隔离膜可经卷绕工艺或叠片工艺形成电极组件52。电极组件52封装于容纳腔。电解液浸润于电极组件52中。电池5所含电极组件52的数量可以为一个或多个,可根据需求来调节。
在一些实施例中,电池的外包装可以是硬壳,例如硬塑料壳、铝壳、钢壳等。电池的外包装也可以是软包,例如袋式软包。软包的材质可以是塑料,如可包括聚丙烯(PP)、聚对苯二甲酸丁二醇酯(PBT)、聚丁二酸丁二醇酯(PBS)等中的一种或几种。
在一些实施方式中,上述电解液包括电解质盐和溶剂。
在一些实施方式中,电解质盐可选自六氟磷酸锂、四氟硼酸锂、高氯酸锂、六氟砷酸锂、双氟磺酰亚胺锂、双三氟甲磺酰亚胺锂、三氟甲磺酸锂、二氟磷酸锂、二氟草酸硼酸锂、二草酸硼酸锂、二氟二草酸磷酸锂及四氟草酸磷酸锂中的至少一种。
在一些实施方式中,溶剂可选自碳酸亚乙酯、碳酸亚丙酯、碳酸甲乙酯、碳酸二乙酯、碳酸二甲酯、碳酸二丙酯、碳酸甲丙酯、碳酸乙丙酯、碳酸亚丁酯、氟代碳酸亚乙酯、甲酸甲酯、乙酸甲酯、乙酸乙酯、乙酸丙酯、丙酸甲酯、丙酸乙酯、丙酸丙酯、丁酸甲酯、丁酸乙酯、1,4-丁内酯、环丁砜、二甲砜、甲乙砜及二乙砜中的至少一种。
在一些实施方式中,上述电解液还可选地包括功能性添加剂。例如功能性添加剂可以包括负极成膜添加剂、正极成膜添加剂,还可以包括能够改善电池某些性能的添加剂,例如改善电池过充性能的添加剂、改善电池 高温或低温性能的添加剂等。
上述电池为锂离子二次电池。
在一些实施例中,电池可以组装成电池模组,电池模组所含电池的数量可以为多个,具体数量可根据电池模组的应用和容量来调节。
图3是作为一个示例的电池模组4。在电池模组4中,多个电池5可以是沿电池模组4的长度方向依次排列设置。当然,也可以按照其他任意的方式进行排布。进一步可以通过紧固件将该多个电池5进行固定。
可选地,电池模组4还可以包括具有容纳空间的外壳,多个电池5容纳于该容纳空间。
在一些实施例中,上述电池模组还可以组装成电池包,电池包所含电池模组的数量可以根据电池包的应用和容量进行调节。
图4和图5是作为一个示例的电池包1。在电池包1中可以包括电池箱和设置于电池箱中的多个电池模组4。电池箱包括上箱体2和下箱体3,上箱体2能够盖设于下箱体3,并形成用于容纳电池模组4的封闭空间。多个电池模组4可以按照任意的方式排布于电池箱中。
另外,本申请还提供一种用电装置,该用电装置包括上述的电池、电池模组、或电池包中的至少一种。
上述电池、电池模组或电池包可以用作用电装置的电源,也可以作为用电装置的能量存储单元。
上述用电装置可以但不限于是移动设备(例如手机、笔记本电脑等)、电动车辆(例如纯电动车、混合动力电动车、插电式混合动力电动车、电动自行车、电动踏板车、电动高尔夫球车、电动卡车等)、电气列车、船舶及卫星、储能系统等。
用电装置可以根据其使用需求来选择电池、电池模组或电池包。
图6是作为一个示例的用电装置6。该用电装置6为纯电动车、混合动力电动车、或插电式混合动力电动车等。为了满足该用电装置6对二次电池的高功率和高能量密度的需求,可以采用电池包或电池模组。
作为另一个示例的用电装置可以是手机、平板电脑、笔记本电脑等。该装置通常要求轻薄化,可以采用二次电池作为电源。
具体实施例
实施例1
(1)制备功能聚合物,具体步骤如下:
1、聚氧乙烯A1的制备:采用环氧乙烷在酸性条件下开环聚合,得到聚氧乙烯A1,具体反应路线如下所示,具体制备过程参考参考文献<孙礼林,冯松,李庆海,沈良骏.聚氧乙烯(PEO)、丙烯酰胺与甲基丙烯酸甲酯三元共聚物的合成与表征[J].安徽师范大学学报(自然科学版),2003(03):249-252>。
Figure PCTCN2022114664-appb-000010
采用凝胶渗透色谱对制得的制得的目标产物进行测试,测得数均分子量为2000~5000。
2、聚苯乙烯B1的制备:采用苯乙烯进行聚合,得到聚苯乙烯B1,具体反应路线如下所示,具体制备过程参考参考文献<王腾.聚苯乙烯的制备及其性能研究[D].西安石油大学,2017>。
Figure PCTCN2022114664-appb-000011
采用凝胶渗透色谱对制得的制得的目标产物进行测试,测得数均分子量为3000~5000。
3、聚合物C1的制备:采用2-异丁基环氧乙烷进行聚合,得到聚合物C1,具体反应路线如下所示,具体制备过程参考参考文献<孙礼林,冯松,李庆海,沈良骏.聚氧乙烯(PEO)、丙烯酰胺与甲基丙烯酸甲酯三元共聚物的合成与表征[J].安徽师范大学学报(自然科学版),2003(03):249-252>中聚氧乙烯的制备过程。
Figure PCTCN2022114664-appb-000012
4、功能聚合物的制备:具体反应路线参考如下路线,采用原子转移自由基聚合技术,具体制备过程参考参考文献《程时远,徐祖顺,袁建军.聚苯乙烯-聚氧乙烯-聚苯乙烯三嵌段共聚物的结晶行为研究[J].高分子材料科学与工程,2001(03):110-113》或《刘啸天,刘传生,王励申.酶促开环聚合及原子转移自由基聚合串联法合成聚碳酸酯-聚苯乙烯二嵌段聚合物[J].东莞理工学院学报,2013,20(05):76-79》或《沈大娲.原子转移自由基聚合与缩合聚合相结合聚苯乙烯/聚碳酸酯嵌段及接枝共聚物的合成[D].北京化工大学,2002.》
Figure PCTCN2022114664-appb-000013
采用凝胶渗透色谱对制得的制得的目标产物进行测试,分子量Mn为10000。
于25℃、水溶液中采用临界胶束浓度法,测试计算目标产物的HLB值,其中,HLB=1.4121log [CMC]-10.25,[CMC]是指测得的功能聚合物的临界胶束浓度,具体测试过程参照标准GB/T 11276-2007。具体结果请见表1。
(2)将活性主材镍钴锰酸锂材料LiNi 0.8Co 0.1Mn 0.1O 2(NCM811)导电碳SP、PVDF(聚偏二氟乙烯)、上述功能聚合物按照96.8:2:1.0:0.2的质量比混合,然后分散于溶剂N-甲基吡咯烷酮中,得到正极浆料。
空白对比例:将活性主材镍钴锰酸锂材料(LiNi 0.8Co 0.1Mn 0.1O 2(NCM811))导电碳SP、PVDF、按照97:2:1.0的质量比混合,然后分散于溶剂N-甲基吡咯烷酮中,得到空白正极浆料。
分别对刚制得的正极浆料(记为Sample)及空白电极浆料(记为Base)的粘度进行测试,记为初始粘度值R0,然后将制得的正极浆料置于室温下静置,测试不同静置条件下的温度,正极浆料及空白电极浆料的粘度变化曲线分别如图7中a和b所示。
上述粘度的测试采用布氏粘度计于室温25℃下测试。具体结果请见表1。
由图7中a和b对比可知:采用本申请功能聚合物的正极浆料的粘度变化小,说明正极浆料中各组分的分散稳定性越好。
(3)将步骤(2)中制得的正极浆料涂覆于Al箔上烘干形成正极活性层,冷压,得到正极极片,正极极片压实密度为3.6g/cm 3
其中,在形成正极活性层中,上述功能聚合物的质量占比记为P,具体请见表1。
同时,采用空白电极浆料替换步骤(3)中的正极浆料重复步骤(3),制得空白正极极片。
采用ACCFILM,G2R型膜片电阻仪测试正极极片及空白正极极片的电阻值,具体于25℃下采用二探针法测试,结果请见表1。
其中,负极极片的制备:将负极活性物质人造石墨、导电剂(Super P)、粘结剂、分散剂(羧甲基纤维素钠)按照重量比96:2:1:1在去离子水溶剂体系中充分搅拌混合均匀后,涂覆于Cu箔上烘干、冷压,得到负极极片。
以PE多孔聚合薄膜作为隔离膜,将正极极片或空白正极极片、隔离膜、负极极片按顺序叠好,使隔离膜处于阴阳极中间起到隔离的作用,并卷绕,分别得到裸电芯和空白裸电芯。
(4)将裸电芯或空白裸电芯置于外包装中,注入配好的电解液并封装,得到锂离子二次电池(记为Sample)或空白锂离子二次电池(记为Base)。其中,电解液的制备:在氩气气氛手套箱中(H 2O<0.1ppm,O 2<0.1ppm), 将有机溶剂碳酸乙烯酯(EC)/碳酸甲乙酯(EMC)按照体积比3:7混合均匀,加入LiPF 6锂盐溶解于有机溶剂中,搅拌均匀,得到电解液,浓度为10wt%。
(5)对制得的锂离子二次电池的性能进行测试,具体如下:
1、采用循环伏安测试对锂离子二次电池和空白锂离子二次电池分别进行CV测试,CV曲线如图8中所示:从图中可看出:两者曲线基本吻合,由此可知添加功能性聚合物也不会导致有其他多余氧化还原峰产生,可耐4.5V以上高电压。图8中,电压(V)为横坐标,电流(mA)为纵坐标。
2、对制得的锂离子二次电池和空白锂离子二次电池在不同荷电状态(SOC)、不同温度下的放电DCR(技术直流阻抗)进行测试,具体过程如下:
20%SOC直流电阻测试:将上述制备的各二次电池,分别在25℃恒温环境下,静置30分钟,按照0.33C恒流放电至2.8V,静置30分钟,按照0.33C恒流充电至4.25V,再恒压充电,截止电流0.05C,然后静置30分钟,然后按照0.33C放电至2.8V,记录放电容量C0,静置30分钟,按照0.33C恒流充电至4.25V,再恒压充电,截止电流0.05C,然后静置5分钟,再按照0.33C放电,截止电流0.5C0,静置1小时,记录此时电压U1,按照电流I=5C,放电30秒,记录此时电压U2,然后静置5分钟。DCR阻值=(U1-U2)/I。
50%SOC直流电阻测试:
将上述制备的各二次电池,分别在25℃恒温环境下,静置30分钟,按照0.33C恒流放电至2.8V,静置30分钟,按照0.33C恒流充电至4.25V,再恒压充电,截止电流0.05C,然后静置30分钟,再按照0.33C放电至2.8V,记录放电容量C0,静置30分钟,按照0.33C恒流充电至4.25V,再恒压充电,截止电流0.05C,然后静置5分钟。按照0.33C放电,截止电流0.5C0,静置1小时,记录此时电压U1,按照电流I=5C,放电30秒,记录此时电压U2,然后静置5分钟。DCR阻值=(U1-U2)/I。
其中,25℃下,锂离子二次电池和空白锂离子二次电池在不同荷电状态(SOC)的放电DCR-SOC曲线如图9所示;-25℃下,锂离子二次电池和空白锂离子二次电池在不同荷电状态(SOC)的放电DCR-SOC曲线如图10 所示。由图9和图10可知:不同温度下,两者DCR-SOC曲线无明显差异,说明功能聚合物的加入不会对极片的电阻产生负面应影响。
3、电池容量保持率测试:
对制得的锂离子二次电池和空白锂离子二次电池在不同温度下的容量保持率进行测试,具体过程如下:
将上述制备的二次电池,分别置于25℃的高低温箱(型号:SM-012PF,制造商:广东三木科技有限公司)中,按照1C放电至2.8V,1C放电至2.5V,然后静置5分钟,按照1C恒流充电至4.25V,恒压充电,截止电流为0.05C,记录放电容量C0,然后静置30分钟,按照1C放电至2.8V,1C放电至2.5V,然后静置30分钟,按照1C恒流充电至4.25V,恒压充电,截止电流为0.05C,记录放电容量C1。
25℃放电容量保持率为C1/C0×100%。
然后调节高低温箱的温度至-10℃,静置120分钟,按照1C放电至2.8V,1C放电至2.5V,记录放电容量C2,然后静置5分钟。
-10℃放电容量保持率为C2/C0×100%。
0℃及-20℃的测试参照-10℃的测试。
45℃性能测试:调节高低温箱至25℃,将上述制备的各二次电池,静置120分钟,按照1C恒流充电至4.25V,恒压充电,截止电流为0.05C,然后静置5分钟。调节高低温箱的温度至45℃,将上述制备的各二次电池,静置120分钟,按照1C放电至2.8V,1C放电至2.5V,记录放电容量C3,然后静置5分钟。
45℃放电容量保持率为(C3/C0)×100%。两者具体的放电容量保持率如图11所示。
对制得的锂离子二次电池和空白锂离子二次电池在不同倍率下的容量保持率进行测试,具体过程如下:
放电容量保持率测试:上述制备的各二次电池,分别在25℃恒温环境下,静置30分钟。按照0.33C恒流放电至2.8V,0.33C恒流放电至2.5V,然后静置1小时,0.33C恒流充电至4.25V,恒压充电,截止电流为0.05C,静置30分钟,按照0.33C恒流放电至2.8V,然后0.33C恒流放 电至2.5V,记录放电容量C0,静置1小时,0.33C恒流充电至4.25V,恒压充电,截止电流0.05C,静置30分钟。按照0.5C放电至2.8V,0.5C放电至2.5V,记录放电容量C0.5。
0.5C倍率放电容量保持率为(C0.5/C0)×100%。
再按照2C放电至2.8V,2C放电至2.5V,记录放电容量C2,然后静置30分钟。2C放电容量保持率为(C2/C0)×100%。
其中,0.5C倍率下,锂离子二次电池和空白锂离子二次电池容量保持率柱状图如图12所示;2C倍率下,锂离子二次电池和空白锂离子二次电池容量保持率柱状图分别如图13所示。
由图11~13可知:两者容量保持率基本持平,说明功能聚合物的加入不会对极片的电芯容量、倍率产生负面应影响。
4、循环性能测试:
于25℃下,分别对制得的锂离子二次电池和空白锂离子二次电池重复进行充电和放电,计算其循环充放电n次(cycle)后的电容保持率(capacity),循环性能测试如下:
在25℃下,将上述制备的二次电池以1C倍率恒流充电至充电截止电压4.25V,之后恒压充电至电流≤0.05C,静置5min,再以0.33C倍率恒流放电至放电截止电压2.8V,静置5min,记录此时的容量C0,此为一个充放电循环。
按照上述对电池进行循环充放电测试,循环500次,并记录每次循环的放电容量,循环500次时的容量记为C500,C500=(C500/C0)×100%。
循环测试后拆分电池观察正极片是否裂片。测试过程中发现:两者25℃循环70cycle,其容量保持率基本持平;循环充放电500次(cycle)后的电容量保持率(capacity)如表1所示。
实施例2~6
实施例2~6与实施例1基本相同,区别仅在于:通过调控A1、B1和C1各单元中单体加入量,在保持K:L:M比值不变的情况下,改变制得的功能聚合物的数均分子量Mn。
其余步骤及条件与实施例1相同。
实施例7~10
实施例2~6与实施例1基本相同,区别仅在于:改变K:L:M比值并通过调控A1、B1和C1各单元中单体加入量,保持功能聚合物分子量不变。
其余步骤及条件与实施例1相同。
实施例11~13
实施例11~13与实施例1基本相同,不同之处仅在于:步骤(2)制备正极浆料时,调控活性材料与功能聚合物的质量比,从而改变形成的正极活性层中,功能聚合物的质量占比P,具体请见表1。
对比例1
对比例1与实施例基本相同,不同之处仅在于:功能聚合物的制备步骤中,采用聚氧乙烯A1、聚苯乙烯B1进行,不加入聚合物C1。
其余步骤及条件与实施例1相同。
对比例2
对比例2与实施例1基本相同,不同之处仅在于:功能聚合物的制备步骤中,采用聚苯乙烯B1和聚合物C1进行,不添加聚氧乙烯A1。
其他步骤及条件与实施例1相同。
对比例3
对比例3与实施例1基本相同,区别仅在于:步骤(2)正极浆料的制中,将功能聚合物替换成等质量的SEBS(YH-502T):二者分子量相同。
其他步骤与实施例1相同,具体结果请见表1。
各实施例及对比例中相关的物理参数及测试结果请见表1。其中,以聚氧乙烯A1、聚苯乙烯B1和聚合物C1的总投料质量为基准,聚氧乙烯A1、 聚苯乙烯B1和聚合物C1的质量占比如表1。
表1
Figure PCTCN2022114664-appb-000014
其中,“/”代表不存在该物质或没有测试结果。
由表1中实验结果分析可知:本申请中具有特定结构的功能聚合物能提高电极浆料的分散稳定性,同时具有增韧的作用,能降低极片电阻,提高电极极片的稳定性及防开裂能力,进而能提高电池的循环稳定性,在循环充放电过程中,循环次数能达到350次及以上,且通过进一步对功能聚合物这个的分子量、各结构单元的占比进行调控,可进一步提高电极极片的稳定性及防开裂能力,提高电池的循环稳定性,使其循环充放电500次后仍具有较高的容量保持率;而空白对比例及对比例1~3的电池,在循环充放电时,其循环次数仅能达到320次,甚至更少,其循环稳定性极差。
最后应说明的是:以上各实施例仅用以说明本申请的技术方案,而非对其限制;尽管参照前述各实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的范围,其均应涵盖在本申请的权利要求和说明书的范围当中。尤其是,只要不存在结构冲突,各个实施例中所提到的各项技术特征均可以任意方式组合起来。本申请并不局限于文中公开的特定实施例,而是包括落入权利要求的范围内的所有技术方案。

Claims (17)

  1. 一种功能聚合物,其特征在于,所述功能聚合物包括式(A)、式(B)及式(C)所示的结构单元:
    Figure PCTCN2022114664-appb-100001
    *代表连接位点,R选自具有支链的聚酯链段、具有支链的碳原子数为4~60的烷烃基、具有支链的聚烯烃中的一种或多种的组合。
  2. 如权利要求1所述的功能聚合物,其特征在于,所述功能聚合物满足(1)~(3)中至少一个条件:
    (1)所述式(A)所示结构单元在所述功能聚合物中的质量占比为20wt%~60wt%;
    可选地,所述式(A)所示结构单元在所述功能聚合物中的质量占比为20wt%~40wt%;
    (2)所述式(B)所示结构单元在所述功能聚合物中的质量占比为20wt%~60wt%;
    可选地,所述式(B)所示结构单元在所述功能聚合物中的质量占比为20wt%~40wt%;
    (3)所述式(C)所示结构单元在所述功能聚合物中的质量占比为20wt%~60wt%。
  3. 如权利要求1或2所述的功能聚合物,其特征在于,R选自树枝状聚酯链段、至少含有两个支链的碳原子数为4~50的烷烃基、树枝状聚烯烃链段中的任意一种。
  4. 如权利要求1~3任一项所述的功能聚合物,其特征在于,所述式(C)所示的结构单元满足(4)~(5)中至少一个条件:
    (4)R选自至少含有两个支链的碳原子数为4~50的链烷烃基或数均分子量为100~2000的树枝状聚烯烃链段;
    (5)所述式(C)所示的结构单元的数均分子量为50~5000。
  5. 如权利要求1~4任一项所述的功能聚合物,其特征在于,R包括如下所示的支链结构:
    Figure PCTCN2022114664-appb-100002
    各R 1各自独立地选自碳原子数为1~20的链烷基,n取自1~10任一整数。
  6. 如权利要求5所述的功能聚合物,其特征在于,各R 1分别独立地选自碳原子数为1~5的链烷基;
    可选地,各R 1分别独立地选自甲基、乙基、丙基、正丁基及异丁基中的任意一种。
  7. 如权利要求1~6任一项所述的功能聚合物,其特征在于,所述功能聚合物包括式(A1)、式(B1)及式(C1)所示的聚合链段:
    Figure PCTCN2022114664-appb-100003
    其中,x、y、z表示聚合度,x、y、z分别独立地选自20~80任意整数。
  8. 如权利要求1~7任一项所述的功能聚合物,其特征在于,所述功能聚合物包括式(1)所示的分子链结构:
    Figure PCTCN2022114664-appb-100004
    其中,x、y、z表示聚合度,x、y、z分别独立地选自20~80任意整数。
  9. 如权利要求1~8所述的功能聚合物,其特征在于,所述功能聚合物的HLB值为6~14;
    可选地,所述功能聚合物的HLB值为7~11。
  10. 如权利要求1~9任一项所述的功能聚合物,其特征在于,所述功能聚合物的数均分子量为10000~50000。
  11. 如权利要求1~10任一项所示的功能聚合物作为电极添加剂的应用。
  12. 一种电极浆料,其特征在于,所述电极浆料包括电极活性材料、导电剂及如权利要求1~10任一项所述的功能聚合物。
  13. 如权利要求12所述的电极浆料,其特征在于,以所述电极浆料除溶剂之外的组分的总质量为基准,所述功能聚合物的质量占比为0.1%~0.5%;
    可选地,所述功能聚合物的质量占比为0.2%~0.5%。
  14. 如权利要求12~13任一项所述的电极浆料,其特征在于,所述电极活性物质为正极活性物质或负极活性物质。
  15. 一种电极极片,其特征在于,所述电极极片包括集流体及位于所述集流体表面的活性层,所述活性层的组分包括权利要求1~10任一项所述的功能聚合物或采用如权利要求12~14任一项所述的电极浆料制得。
  16. 一种电池,其特征在于,包括如权利要求15所述的电极极片。
  17. 一种用电装置,其特征在于,所述用电装置包括如权利要求16所述的电池。
PCT/CN2022/114664 2022-08-25 2022-08-25 功能聚合物、电极浆料、电极极片、电池及用电装置 WO2024040489A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/114664 WO2024040489A1 (zh) 2022-08-25 2022-08-25 功能聚合物、电极浆料、电极极片、电池及用电装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/114664 WO2024040489A1 (zh) 2022-08-25 2022-08-25 功能聚合物、电极浆料、电极极片、电池及用电装置

Publications (1)

Publication Number Publication Date
WO2024040489A1 true WO2024040489A1 (zh) 2024-02-29

Family

ID=90012018

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/114664 WO2024040489A1 (zh) 2022-08-25 2022-08-25 功能聚合物、电极浆料、电极极片、电池及用电装置

Country Status (1)

Country Link
WO (1) WO2024040489A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007220376A (ja) * 2006-02-14 2007-08-30 Nippon Soda Co Ltd 電極保護膜
CN102549820A (zh) * 2009-09-28 2012-07-04 日本瑞翁株式会社 二次电池用电极、二次电池电极用粘合剂及二次电池
JP2015225734A (ja) * 2014-05-26 2015-12-14 三菱レイヨン株式会社 二次電池電極用バインダ樹脂、二次電池電極用スラリー組成物、二次電池用電極、及び非水系二次電池
CN109962239A (zh) * 2017-12-22 2019-07-02 宁德时代新能源科技股份有限公司 一种粘结剂,使用该粘结剂的电极极片及二次电池
WO2022097683A1 (ja) * 2020-11-04 2022-05-12 昭和電工株式会社 共重合体、非水系二次電池電極用バインダー、及び非水系二次電池電極用スラリー

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007220376A (ja) * 2006-02-14 2007-08-30 Nippon Soda Co Ltd 電極保護膜
CN102549820A (zh) * 2009-09-28 2012-07-04 日本瑞翁株式会社 二次电池用电极、二次电池电极用粘合剂及二次电池
JP2015225734A (ja) * 2014-05-26 2015-12-14 三菱レイヨン株式会社 二次電池電極用バインダ樹脂、二次電池電極用スラリー組成物、二次電池用電極、及び非水系二次電池
CN109962239A (zh) * 2017-12-22 2019-07-02 宁德时代新能源科技股份有限公司 一种粘结剂,使用该粘结剂的电极极片及二次电池
WO2022097683A1 (ja) * 2020-11-04 2022-05-12 昭和電工株式会社 共重合体、非水系二次電池電極用バインダー、及び非水系二次電池電極用スラリー

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
CHENG SHIYUANXU ZUSHUNYUAN JIANJUN: "Study on the Crystallization Behavior of Polystyrene-b-poly(ethylene oxide)-b-polystyrene Triblock Copolymers [J", POLYMERIC MATERIALS SCIENCE AND ENGINEERING, no. 03, 2001, pages 110 - 113
LIU XIAOTIANLIU CHUANSHENGWANG LISHEN: "Combining Block Polymer of Polycarbonate-Polystyrene by Tandem Method of Enzymatic Ring-Opening Polymerization and Atom Transfer Radical Polymerization [J", JOURNAL OF DONGGUAN UNIVERSITY OF TECHNOLOGY, vol. 20, no. 05, 2013, pages 76 - 79
SHEN DAWA: "Synthesis of Polystyrene/Polycarbonate Block and Graft Copolymers by Combining Atom Transfer Radical Polymerization and Condensation Polymerization [D", BEIJING UNIVERSITY OF CHEMICAL TECHNOLOGY, 2002
SUN LILIN, FENG SONG, LI QINGHAI, SHEN LIANGJUN: "Synthesis and Characterization of Tri-copolymer Poly(ethylene oxide) (PEO) macromonomer, Acrylamide and Methyl Methacrylate [J]", JOURNAL OF ANHUI NORMAL UNIVERSITY (NATURAL SCIENCES, no. 03, 2003, pages 249 - 252
SUN LILINFENG SONGLI QINGHAISHEN LIANGJUN: "Synthesis and Characterization of Tri-copolymer Poly(ethylene oxide) (PEO) macromonomer, Acrylamide and Methyl Methacrylate [J", JOURNAL OF ANHUI NORMAL UNIVERSITY (NATURAL SCIENCES, no. 03, 2003, pages 249 - 252
WANG TENG: "Study on the Preparation and Properties of Polystyrene [D", 2017, XI'AN SHIYOU UNIVERSITY

Similar Documents

Publication Publication Date Title
WO2022247929A1 (zh) 一种电解液及其电化学装置和电子装置
CN107958997B (zh) 正极浆料、正极极片及锂离子电池
WO2024045554A1 (zh) 粘结剂、制备方法、正极极片、二次电池及用电装置
WO2023061135A1 (zh) 一种粘结剂化合物及其制备方法
WO2023093880A1 (zh) 一种锂离子电池
WO2023082918A1 (zh) 锂离子电池、电池模块、电池包及用电装置
WO2024045472A1 (zh) 分散剂、粘结剂组合物、正极浆料、二次电池、电池模块、电池包及用电装置
WO2021127996A1 (zh) 二次电池及含有该二次电池的装置
CN113839095B (zh) 一种电解液及包括该电解液的电池
CN113795952B (zh) 粘结剂、使用该粘结剂的电化学装置和电子设备
CN112103561B (zh) 一种电解液及电化学装置
CN109119599B (zh) 一种二次电池及其制备方法
WO2023169096A1 (zh) 正极活性材料、二次电池、电池模块、电池包和用电装置
WO2024040489A1 (zh) 功能聚合物、电极浆料、电极极片、电池及用电装置
KR20230170731A (ko) 양극 슬러리, 이차 전지, 전지 모듈, 전지 팩 및 전기 장치
CN115000511A (zh) 一种电化学装置和电子装置
WO2024040572A1 (zh) 用于正极极片的水性粘接剂以及由其制备的正极极片
CN116344826B (zh) 复合导电剂、包含其的负极组合物、负极极片、电池和用电装置
WO2023245491A1 (zh) 粘结剂及其制备方法、正极浆料、正极极片、二次电池、电池模块、电池包和用电装置
WO2023216051A1 (zh) 一种含有环状硅氧烷的二次电池及用电装置
WO2024031518A1 (zh) 电极浆料、极片、二次电池及用电装置
WO2024077507A1 (zh) 粘结组合物、电极浆料、电极极片、二次电池及用电装置
WO2024020724A1 (zh) 电极浆料、电极极片及其制备方法、二次电池和用电装置
WO2024026835A1 (zh) 复合负极活性材料及其制备方法、以及包含其的负极极片、二次电池及用电装置
WO2024031448A1 (zh) 聚合物及其制备方法、正极浆料、正极极片、二次电池、电池模块、电池包和用电装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22956037

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2022956037

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2022956037

Country of ref document: EP

Effective date: 20240419