WO2019112144A1 - 내식성이 우수한 비자성 오스테나이트계 스테인리스강 및 그 제조방법 - Google Patents

내식성이 우수한 비자성 오스테나이트계 스테인리스강 및 그 제조방법 Download PDF

Info

Publication number
WO2019112144A1
WO2019112144A1 PCT/KR2018/009162 KR2018009162W WO2019112144A1 WO 2019112144 A1 WO2019112144 A1 WO 2019112144A1 KR 2018009162 W KR2018009162 W KR 2018009162W WO 2019112144 A1 WO2019112144 A1 WO 2019112144A1
Authority
WO
WIPO (PCT)
Prior art keywords
stainless steel
less
corrosion resistance
content
weight
Prior art date
Application number
PCT/KR2018/009162
Other languages
English (en)
French (fr)
Inventor
김지수
김학
최자용
서영종
Original Assignee
주식회사 포스코
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 포스코 filed Critical 주식회사 포스코
Priority to CN201880075899.XA priority Critical patent/CN111373067A/zh
Priority to US16/765,615 priority patent/US20200299816A1/en
Priority to JP2020546249A priority patent/JP2021504587A/ja
Publication of WO2019112144A1 publication Critical patent/WO2019112144A1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0205Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/42Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/54Ferrous alloys, e.g. steel alloys containing chromium with nickel with boron
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/58Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.5% by weight of manganese
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/001Austenite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/005Ferrite

Definitions

  • the present invention relates to a non-magnetic austenitic stainless steel, and more particularly to a non-magnetic austenitic stainless steel excellent in corrosion resistance applicable to an environment where corrosion resistance is required along with non-magnetic properties, and a method for producing the same.
  • the austenitic stainless steel represented by STS304 has good corrosion resistance and exhibits a non-magnetic austenite structure in the annealing heat treatment, and is used as a non-magnetic steel in various devices and devices.
  • cold working is applied depending on the application.
  • STS316L type steels with higher austenite stability than STS304 are used for non-magnetic applications.
  • the secondary phase such as ⁇ -phase or ⁇ -ferrite is often present in the austenite matrix because of the high content of Mo. Since solidification starts from ⁇ -ferrite during continuous casting of STS316L steels, In the center segregation region, decomposition of the secondary phases due to a high content of Cr and Mo is difficult, which tends to remain even after hot rolling and final heat treatment.
  • Patent Document 1 refers to a high strength non-magnetic austenitic stainless steel which can maintain the non-magnetic property even after severe cold working and significantly improve the elastic limit stress by aging treatment.
  • Patent Document 0001 Korean Patent Publication No. 10-2015-0121061 (Oct. 28, 2015)
  • Embodiments of the present invention solve the above problems and provide a high corrosion resistant austenitic stainless steel having excellent non-magnetic properties by suppressing formation of delta -ferrite during solidification.
  • the non-magnetic austenitic stainless steel excellent in corrosion resistance is characterized by containing, by weight%, C: 0.05% or less, Si: 1.0% or less, Mn: 0.5-2.0% 10 to 16% of Ni, not more than 0.2% of N, the balance of Fe and unavoidable impurities, satisfies the following formula (1), and the permeability is 1.02 ⁇ ⁇ or less.
  • Ni, C, Si, Mn, Cr, Mo, Cu and N mean the content (weight%) of each element.
  • Cu may further include not more than 3.0% by weight.
  • it may further include Mo in an amount of 4.0% or less by weight.
  • B may further include less than 0.01% by weight.
  • the calculated? -F ferrite fraction expressed by the following formula (2) may satisfy 0% or less.
  • Cr, Mo, Si, Ni, C, N, Cu and Mn mean the content (weight%) of each element.
  • the inner equation index (PREN) represented by the following equation (3) may satisfy the range of 20 to 30.
  • Cr, Mo, N, Mn and Si mean the content (weight%) of each element.
  • the sigma image formation index represented by the following formula (4) may satisfy the range of 18 to 24.
  • Cr, Mo, and Si mean the content (weight%) of each element.
  • the stainless steel may have a permeability of 1.012 mu m or less.
  • the average grain size of the stainless steel may be 70 ⁇ or less.
  • the non-magnetic austenitic stainless steel producing method is characterized in that it contains 0.05% or less of C, 1.0% or less of Si, 0.5 to 2.0% of Mn, 16 to 24% of Cr, Hot rolling a slab containing 10 to 16% of Ni, not more than 0.2% of N, the balance of Fe and unavoidable impurities, and satisfying a sigma phase forming index of 18 to 24 expressed by the following formula (4) ; And heat treating the hot rolled material by heat treatment.
  • the slab satisfies the following formula (1), and the calculated? -F ferrite fraction represented by the following formula (2) may satisfy 0% or less.
  • the solution heat treatment may be performed at 1,100 to 1,150 ° C for 60 to 120 seconds.
  • the high corrosion resistant non-magnetic austenitic stainless steel according to the embodiment of the present invention can be applied variously for non-magnetic parts used in various devices or devices.
  • nonmagnetic properties are determined by the components without an additional step of heat-treating the material for a long time in order to remove the magnetism by the? -Ferrite, it is possible to provide a non-magnetic austenitic stainless steel with a simple manufacturing process.
  • Figure 1 is a graph showing the relationship between the magnetic permeability according to the difference between the Ni amount and the correction formula Ni (Ni adj) value.
  • the non-magnetic austenitic stainless steel excellent in corrosion resistance is characterized by containing, by weight%, C: 0.05% or less, Si: 1.0% or less, Mn: 0.5-2.0% 10 to 16% of Ni, not more than 0.2% of N, the balance of Fe and unavoidable impurities, satisfies the following formula (1), and the permeability is 1.02 ⁇ ⁇ or less.
  • Ni, C, Si, Mn, Cr, Mo, Cu and N mean the content (weight%) of each element.
  • an austenitic stainless steel which exhibits excellent nonmagnetic properties only by controlling the alloying element component system without the addition of a heat treatment addition step, and a method for producing the same.
  • the non-magnetic austenitic stainless steel excellent in corrosion resistance is characterized by containing, by weight%, C: 0.05% or less, Si: 1.0% or less, Mn: 0.5-2.0% Ni: 10 to 16%, N: 0.2% or less, the balance Fe and unavoidable impurities, and satisfies the following formula (1).
  • the content of C is 0.05% or less.
  • C is a strong austenite phase stabilizing element and is an effective element for increasing the strength of a material by solid solution strengthening.
  • the content of C is limited to 0.05% or less because it easily bonds with a carbide forming element such as Cr which is effective for corrosion resistance at the ferrite-austenite phase boundary at a higher content to lower the Cr content around grain boundaries to reduce the corrosion resistance.
  • a carbide forming element such as Cr which is effective for corrosion resistance at the ferrite-austenite phase boundary at a higher content to lower the Cr content around grain boundaries to reduce the corrosion resistance.
  • the content of Si is 1.0% or less.
  • Si acting also as a ferrite phase stabilizing element is effective in improving corrosion resistance, but it is limited to 1.0% or less because it promotes precipitation of an intermetallic compound such as ⁇ -phase when it is excessive and deteriorates mechanical characteristics and corrosion resistance related to impact toughness.
  • the content of Mn is 0.5 to 2.0%.
  • Mn is an austenite phase stabilizing element such as C and Ni, and can improve N solubility and is added by 0.5% or more.
  • Mn content is not desirable when the corrosion resistance is required due to the inclusion formation of MnS and the like, it is preferable to limit the Mn content to 2.0% or less in order to secure corrosion resistance.
  • the content of Cr is 16.0 to 24.0%.
  • Cr is the element which is the largest element among the elements for improving the corrosion resistance of stainless steel and should be contained at least 16% for the expression of corrosion resistance.
  • Cr is a ferrite stabilizing element, when the Cr content is increased, the ferrite fraction increases. In order to obtain the non-magnetic property, a large amount of Ni must be contained. Therefore, the cost increases and the formation of the ⁇ phase promotes the mechanical properties and corrosion resistance do. Therefore, the Cr content is preferably limited to 24% or less.
  • Ni is 10.0 to 16.0%.
  • Ni is the most powerful element among the austenite phase stabilizing elements and should be contained in an amount of 10% or more to obtain a non-magnetic property. However, since the increase of Ni content is directly related to the increase of raw material price, it is desirable to limit it to 16% or less.
  • the content of N is 0.2% or less.
  • N is a useful element for stabilizing the austenite phase as well as improving the corrosion resistance in the chlorine atmosphere.
  • the hot workability is reduced to lower the real water content of the steel, so that it is preferable to limit the steel to 0.2% or less.
  • Cu may further include not more than 3.0% by weight.
  • Cu can be selectively added because it has an advantage of improving the corrosion resistance in a sulfuric acid atmosphere.
  • the chlorine atmosphere there is a disadvantage that the formal resistance is lowered and the hot workability is lowered, which is limited to 3.0% or less.
  • it may further include Mo in an amount of 4.0% or less by weight.
  • the content of Mo is 4.0% or less.
  • Mo is an element useful for improving the corrosion resistance, and can be selectively added because anticorrosive property can be expected to be improved. It is preferable to add Mo in an amount of 2.0% or more. However, Mo is a ferrite stabilizing element. When Mo is added in a large amount, the ferrite content is increased to make it difficult to obtain non-magnetic properties, and formation of a sigma phase is promoted, which causes mechanical property and corrosion resistance degradation.
  • B may further include less than 0.01% by weight.
  • the content of B is less than 0.01%.
  • the boride compound B has an effect of improving hot workability, so it can be added in a range of less than 0.01%.
  • the amount of the boride compound is further increased, the boride compound having a low melting point is formed and the hot workability is lowered. Therefore, the boride compound is preferably limited to less than 0.01%.
  • the permeability value of the steel applied to the component should be 1.02 ⁇ or less for normal operation of the device. To satisfy this requirement, the fraction of ⁇ -ferrite formed during solidification of steel should be controlled.
  • ⁇ -ferrite existing in the microstructure of austenitic stainless steel becomes magnetic due to the characteristics of the structure having the sphere-intercalation structure, and the austenite is not magnetized by the planar intercalation structure. Therefore, it is necessary to control the fraction of delta-ferrite to obtain a desired magnetic characteristic, and in the case of non-magnetic steel, it is necessary to minimize or eliminate the fraction of delta-ferrite.
  • the fraction of? -Ferrites present in the microstructure of the austenitic stainless steel can be determined by the content of various alloying elements, as can be seen from the formula (2) to be described later.
  • the ⁇ -ferrite fraction can be reduced. Since the Ni content is useful for stabilizing austenite without deteriorating other physical properties, the formation of ⁇ -ferrite can be suppressed by controlling the Ni content.
  • Ni correction (hereinafter referred to as Ni adj ) means a minimum Ni content that prevents ⁇ -ferrite from being formed in a given composition system, and can be expressed as follows.
  • the ⁇ -ferrite can not be formed and exhibits a non-magnetic property. That is, in order to satisfy the non-magnetic property, the content of Ni contained in the steel should be larger than that of the Ni adj combined with the contents of C, Si, Mn, Cr, Mo, Cu and N components.
  • FIG. 1 is a graph showing the relationship of permeability according to the difference between the Ni content and the Ni adj value. Referring to FIG. 1, when the difference between the Ni content and the Ni adj value contained in the steel is a positive number, it is understood that the steel permeability satisfies 1.02 ⁇ or less.
  • the difference between the actual Ni content and the Ni adj value is less than 8%, since the cost increases as the Ni is added as the expensive alloying element.
  • the non-magnetic austenitic stainless steel excellent in corrosion resistance can satisfy the calculated? -F ferrite fraction expressed by the following formula (2) to be 0% or less.
  • the above formula (2) is a formula for predicting the ⁇ -ferrite content of a steel through the content of each component when austenitic stainless steel is produced in a usual steelmaking process, and is a formula of ⁇ -ferrite When the fraction is 0% or less, the non-magnetic property to be achieved in the present invention can be satisfied.
  • the non-magnetic austenitic stainless steels of the present invention according to the above formulas (1) and / or (2) can exhibit a permeability of 1.02 mu m or less, more preferably 1.012 mu m or less, .
  • the index of corrosion resistance of austenitic stainless steels will be based on the formula of equivalent index calculated by the combination of Cr, Mo and N contents.
  • the Mn and Si contents also have a large influence on the corrosion resistance of the steel. Therefore, a new internal equivalent index is required considering these elements.
  • the non-magnetic austenitic stainless steel having excellent corrosion resistance can satisfy the inner formal equivalence index (PREN) value represented by the following formula (3) in the range of 20 to 30.
  • PREN inner formal equivalence index
  • the present inventors have found that the internal equivalent index including the content of Mn and Si expressed by the formula (3) reflects the corrosion resistance of the steel.
  • the range of the formula (3) is 20 to 30, It was confirmed that they could have equivalent or higher corrosion resistance.
  • the non-magnetic austenitic stainless steel having excellent corrosion resistance can satisfy the range of 18 to 24 in the sigma phase formation index represented by the following formula (4).
  • the content of Cr and Mo is so small that it is difficult to ensure the corrosion resistance of the steel, and therefore, it is limited to 18 or more.
  • the sigma phase fraction can be controlled to be less than 1.0%, more preferably 0.8% or less.
  • the sigma phase-forming index is more than 24, a problem of deterioration of corrosion resistance and brittleness due to excessive sigma phase formation may occur.
  • nonmagnetic properties can be further improved.
  • the formation of the ⁇ phase can be suppressed by controlling the composition of the alloy component as in the present invention, but the formed ⁇ phase can be decomposed by controlling the solution heat treatment conditions.
  • the ⁇ phase it is effective to anneal at a high temperature for a long time, but in such a case, the grain size excessively grows, which increases the possibility of causing orange peel defects on the surface.
  • the orange fill defect refers to a defect in which unevenness of roughness occurs on the surface when the steel is formed by coarse crystal grains, and thereby the fine surface is damaged.
  • the non-magnetic austenitic stainless steel having excellent corrosion resistance may have an average grain size of 70 mu m or less.
  • the average grain size of the stainless steel should be 70 ⁇ or less.
  • the non-magnetic austenitic stainless steel of the present invention has a heat resistance of 60 to 120 seconds at 1,100 to 1,150 ⁇
  • the average grain size can be controlled to be 70 mu m or less by performing the solution heat treatment.
  • the steel having the alloy composition shown in Table 1 was dissolved in a vacuum induction melting furnace, followed by hot rolling and solution heat treatment to produce a hot rolled plate having a thickness of 6 mm.
  • the S5 steel species used in Comparative Examples 15 and 16 satisfied all of the component systems of the present invention, but were subjected to a solution heat treatment at a temperature of 1,180 DEG C exceeding 1,150 DEG C for 120 seconds or longer, And the orange peel defect after molding was more than 15%.
  • the grain size of the steel is changed.
  • the average grain size is increased.
  • the orange peel defect occurrence rate is more than 15% It was found that the heat treatment condition was significantly increased compared to other heat treatment conditions.
  • the permeability was found to be 1.02 mu m or less, and in particular, the inventive examples satisfied 1.012 mu m or less.
  • the ⁇ -ferrite fraction is 0% or less, the observed ⁇ -ferrite fraction is 0%.
  • the ⁇ phase formation index is more than 24, the ⁇ phase fraction is more than 0.8% and is close to 1.0%, which shows that the ⁇ phase fraction is significantly increased compared to other steel types.
  • Comparative Example 14 did not satisfy the equations (1) and (2) due to the S4 steel species containing excess Cr and the ⁇ phase fraction was high because the permeability was measured to be 1.042 ⁇ , and the desired nonmagnetic property of the present invention was unsatisfactory .
  • the ⁇ phase formation index also exceeded 24 and the ⁇ phase fraction was close to 1.0%. It was found that the ⁇ phase formation was promoted by the increase of the Cr content and the Cr depletion region was formed.
  • Comparative Example 18 did not satisfy the corrosion resistance requirement due to the high PREN value due to the S9 steel containing excess N.
  • Comparative Example 19 did not satisfy the corrosion resistance requirement due to the low PREN value due to the S14 steel containing excessive Mn, and it was found that the corrosion resistance was not secured due to inclusion formation due to the increase of the Mn content.
  • the austenitic stainless steel according to the present invention can be applied to non-magnetic parts of various electronic apparatuses and apparatuses, and non-magnetic properties can be secured without additional process such as heat treatment for a long time.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Steel (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Abstract

우수한 비자성 특성과 함께 내식성이 요구되는 환경에도 적용 가능한 내식성이 우수한 비자성 오스테나이트계 스테인리스강 및 그 제조방법이 개시된다. 본 발명의 일 실시예에 따른 내식성이 우수한 비자성 오스테나이트계 스테인리스강은, 중량%로, C: 0.05% 이하, Si: 1.0% 이하, Mn: 0.5 내지 2.0%, Cr: 16 내지 24%, Ni: 10 내지 16%, N: 0.2% 이하, 나머지 Fe 및 불가피한 불순물을 포함하고, 하기 식 (1)을 만족한다. (1) Ni ≥ -2.7 - 5.8*C - 1.77*Si - 0.066*Mn + 0.893*Cr + 1.05*Mo - 0.88*Cu - 13.8*N

Description

내식성이 우수한 비자성 오스테나이트계 스테인리스강 및 그 제조방법
본 발명은 비자성 오스테나이트계 스테인리스강에 관한 것으로, 보다 상세하게는 비자성 특성과 함께 내식성이 요구되는 환경에도 적용 가능한 내식성이 우수한 비자성 오스테나이트계 스테인리스강 및 그 제조방법에 관한 것이다.
STS304로 대표되는 오스테나이트계 스테인리스강은 양호한 내식성을 가지며, 소둔 열처리 상태에서 비자성의 오스테나이트 조직을 나타내어 비자성강으로서 각종 기기 및 장치에 사용되고 있다. 그러나 용도에 따라 냉간가공을 실시하는 경우가 있으며, STS304 강에 냉간가공을 적용할 경우, 가공유기 마르텐사이트 조직으로의 상변태로 인하여 비자성 특성을 유지하기 어렵기 때문에 소재에의 적용에 제한을 받게 된다.
따라서, STS304보다 오스테나이트 안정성이 더 높은 STS316L계의 강종이 비자성 용도로 많이 사용되고 있다. 그러나 STS316L계 강종의 경우에는 Mo의 함량이 높아 σ상이나 δ-페라이트 등의 2차 상이 오스테나이트 기지조직 내에 존재하는 경우가 많으며, STS316L 강의 연속주조 시 δ-페라이트로부터 응고를 시작하기 때문에 연주 슬라브 내 중심편석 영역에서는 높은 Cr, Mo 함량으로 인한 상기 2차 상들의 분해가 어려워 열간압연 및 최종 열처리 후에도 잔류하는 경향이 있다.
2차 상들이 잔류할 경우, 해당 영역에서의 자성이 높아지는 원인으로 작용하게 되며, 장치의 기능에 악영향을 미치게 된다. 따라서, 이러한 2차 상들이 없이 비자성 특성을 유지할 수 있는 재료가 요구되고 있다.
특허문헌 1에는, 가혹한 냉간가공 후에도 비자성 특성을 유지하며, 시효 처리에 의해 탄성한계 응력을 현저히 향상시킬 수 있는 고강도 비자성 오스테나이트계 스테인리스강에 대하여 언급하고 있다.
그러나 특허문헌 1의 스테인리스강은 Mn의 함량이 2 내지 9% 포함되어 있어 Mn으로 인한 내식성 저하가 우려되며, 내식성이 필요한 용도에서는 적용이 제한적이다. 오스테나이트상의 안정화를 위하여 Ni 당량식 범위를 제안하여 냉간가공 후에도 비자성 특성을 유지하는 것에 대하여 언급하고 있으나, 비자성 특성에 영향을 미치는 δ-페라이트에 대하여는 언급하고 있지 않기 때문에 δ-페라이트 형성에 의한 비자성 특성 저하 해결이 필요하다.
(특허문헌 0001) 한국 공개특허공보 제10-2015-0121061호 (2015.10.28.)
본 발명의 실시예들은 상기와 같은 문제점을 해결하여, 응고 시 δ-페라이트 형성을 억제하여 비자성 특성이 우수한 고내식 오스테나이트계 스테인리스강을 제공하고자 한다.
본 발명의 일 실시예에 따른 내식성이 우수한 비자성 오스테나이트계 스테인리스강은, 중량%로, C: 0.05% 이하, Si: 1.0% 이하, Mn: 0.5 내지 2.0%, Cr: 16 내지 24%, Ni: 10 내지 16%, N: 0.2% 이하, 나머지 Fe 및 불가피한 불순물을 포함하고, 하기 식 (1)을 만족하며, 투자율이 1.02μ 이하이다.
(1) Ni ≥ -2.7 - 5.8*C - 1.77*Si - 0.066*Mn + 0.893*Cr + 1.05*Mo - 0.88*Cu - 13.8*N
여기서, Ni, C, Si, Mn, Cr, Mo, Cu, N는 각 원소의 함량(중량%)를 의미한다.
또한, 본 발명의 일 실시예에 따르면, 중량%로, Cu: 3.0% 이하를 더 포함할 수 있다.
또한, 본 발명의 일 실시예에 따르면, 중량%로, Mo: 4.0% 이하를 더 포함할 수 있다.
또한, 본 발명의 일 실시예에 따르면, 중량%로, B: 0.01% 미만을 더 포함할 수 있다.
또한, 본 발명의 일 실시예에 따르면, 하기 식 (2)로 표현되는 계산 δ-페라이트 분율이 0% 이하를 만족할 수 있다.
(2) 161*{[Cr + Mo + 1.5*Si + 18]/[Ni + 30*(C + N) + 0.5*(Cu + Mn) + 36] + 0.262} - 161
여기서, Cr, Mo, Si, Ni, C, N, Cu, Mn는 각 원소의 함량(중량%)를 의미한다.
또한, 본 발명의 일 실시예에 따르면, 하기 식 (3)으로 표현되는 내공식당량지수(PREN)가 20 내지 30 범위를 만족할 수 있다.
(3) Cr + 3.3*Mo + 30*N - Mn + Si
여기서, Cr, Mo, N, Mn, Si은 각 원소의 함량(중량%)를 의미한다.
또한, 본 발명의 일 실시예에 따르면, 하기 식 (4)로 표현되는 σ상 형성지수가 18 내지 24 범위를 만족할 수 있다.
(4) Cr + Mo + 3*Si
여기서, Cr, Mo, Si은 각 원소의 함량(중량%)를 의미한다.
또한, 본 발명의 일 실시예에 따르면, 상기 스테인리스강은 투자율이 1.012μ 이하일 수 있다.
또한, 본 발명의 일 실시예에 따르면, 스테인리스강의 평균 결정립도는 70㎛ 이하일 수 있다.
본 발명의 일 실시예에 따른 내식성이 우수한 비자성 오스테나이트계 스테인리스강 제조방법은, 중량%로, C: 0.05% 이하, Si: 1.0% 이하, Mn: 0.5 내지 2.0%, Cr: 16 내지 24%, Ni: 10 내지 16%, N: 0.2% 이하, 나머지 Fe 및 불가피한 불순물을 포함하고, 하기 식 (4)로 표현되는 σ상 형성지수가 18 내지 24 범위를 만족하는 슬라브를 열간 압연하는 단계; 및 상기 열간 압연재를 용체화 열처리하는 단계;를 포함한다.
(4) Cr + Mo + 3*Si
또한, 본 발명의 일 실시예에 따르면, 상기 슬라브는 하기 식 (1)을 만족하며, 하기 식 (2)로 표현되는 계산 δ-페라이트 분율이 0% 이하를 만족할 수 있다.
(1) Ni ≥ -2.7 - 5.8*C - 1.77*Si - 0.066*Mn + 0.893*Cr + 1.05*Mo - 0.88*Cu - 13.8*N
(2) 161*{[Cr + Mo + 1.5*Si + 18]/[Ni + 30*(C + N) + 0.5*(Cu + Mn) + 36] + 0.262} - 161
또한, 본 발명의 일 실시예에 따르면, 상기 용체화 열처리는 1,100 내지 1,150℃에서 60 내지 120초 실시할 수 있다.
본 발명의 실시예에 따른 고내식 비자성 오스테나이트계 스테인리스강은 각종 기기 또는 장치에 사용되는 비자성 부품용으로 다양한 적용이 가능하다.
또한, δ-페라이트에 의한 자성을 제거하기 위하여 장시간 소재를 열처리하는 추가적인 공정이 없이 성분에 의해 비자성 특성이 결정되므로, 제조 공정이 간단한 비자성 오스테나이트계 스테인리스강 제공이 가능하다.
또한, 강판 표면의 오렌지필 결함에 의한 조도 열화를 방지할 수 있다.
도 1은 Ni 함량과 Ni 보정식(Niadj) 값의 차이에 따른 투자율 상관관계를 나타내는 그래프이다.
본 발명의 일 실시예에 따른 내식성이 우수한 비자성 오스테나이트계 스테인리스강은, 중량%로, C: 0.05% 이하, Si: 1.0% 이하, Mn: 0.5 내지 2.0%, Cr: 16 내지 24%, Ni: 10 내지 16%, N: 0.2% 이하, 나머지 Fe 및 불가피한 불순물을 포함하고, 하기 식 (1)을 만족하며, 투자율이 1.02μ 이하이다.
(1) Ni ≥ -2.7 - 5.8*C - 1.77*Si - 0.066*Mn + 0.893*Cr + 1.05*Mo - 0.88*Cu - 13.8*N
여기서, Ni, C, Si, Mn, Cr, Mo, Cu, N는 각 원소의 함량(중량%)를 의미한다.
이하에서는 본 발명의 실시예를 첨부 도면을 참조하여 상세히 설명한다. 이하의 실시예는 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 본 발명의 사상을 충분히 전달하기 위해 제시하는 것이다. 본 발명은 여기서 제시한 실시예만으로 한정되지 않고 다른 형태로 구체화될 수도 있다. 도면은 본 발명을 명확히 하기 위해 설명과 관계없는 부분의 도시를 생략하고, 이해를 돕기 위해 구성요소의 크기를 다소 과장하여 표현할 수 있다.
또한 어떤 부분이 어떤 구성요소를 "포함"한다고 할 때, 이는 특별히 반대되는 기재가 없는 한 다른 구성요소를 제외하는 것이 아니라 다른 구성요소를 더 포함할 수 있는 것을 의미한다.
단수의 표현은 문맥상 명백하게 예외가 있지 않는 한, 복수의 표현을 포함한다.
이하에서는 강의 미세조직 내에 존재하는 δ-페라이트 함량을 제어하여 δ-페라이트를 분해하기 위한 추가적인 공정이 필요없이 통상의 공정으로 제조하더라도 비자성 특성을 확보할 수 있을 뿐만 아니라, 통상적으로 사용되는 STS316L계 스테인리스강 대비 우수한 내식성을 갖는 비자성 오스테나이트계 스테인리스강에 대하여 기술한다.
본 발명에서는 열처리 추가 공정을 거치지 않더라도 합금원소 성분계 제어만으로 우수한 비자성 특성을 나타내는 오스테나이트계 스테인리스강 및 그 제조방법을 제공한다.
본 발명의 일 실시예에 따른 내식성이 우수한 비자성 오스테나이트계 스테인리스강은, 중량%로, C: 0.05% 이하, Si: 1.0% 이하, Mn: 0.5 내지 2.0%, Cr: 16 내지 24%, Ni: 10 내지 16%, N: 0.2% 이하, 나머지 Fe 및 불가피한 불순물을 포함하고, 하기 식 (1)을 만족한다.
(1) Ni ≥ -2.7 - 5.8*C - 1.77*Si - 0.066*Mn + 0.893*Cr + 1.05*Mo - 0.88*Cu - 13.8*N
이하, 본 발명의 실시예에서의 합금성분 원소 함량의 수치한정 이유에 대하여 설명한다. 이하에서는 특별한 언급이 없는 한 단위는 중량%이다.
C의 함량은 0.05% 이하이다.
C는 강력한 오스테나이트상 안정화 원소이며, 고용강화에 의한 재료강도 증가에 유효한 원소이다. 그러나, 함량 과다 시 페라이트-오스테나이트상 경계에서 내식성에 유효한 Cr과 같은 탄화물 형성 원소와 쉽게 결합하여 결정립계 주위의 Cr 함량을 낮추어 부식 저항성을 감소시키기 때문에 C의 함량을 0.05% 이하로 제한한다. 내식성을 저해할 수 있는 탄화물 석출의 위험성을 최소화하기 위해서는 C의 함량을 0.03% 이하로 제한하는 것이 바람직하다.
Si의 함량은 1.0% 이하이다.
페라이트상 안정화 원소로도 작용하는 Si은 내식성 향상에 효과적이나, 과다할 경우 σ상 등의 금속간 화합물 석출을 조장하여 충격인성과 관련된 기계적 특성 및 내식성을 저하시키므로 1.0% 이하로 제한한다.
Mn의 함량은 0.5 내지 2.0%이다.
Mn은 C, Ni과 같은 오스테나이트상 안정화 원소로서, N 고용도를 향상시킬 수 있어 0.5% 이상 첨가한다. 그러나, Mn 함량의 증가는 MnS 등의 개재물 형성에 관여하여 내식성이 요구되는 경우 바람직하지 못하므로, 부식 저항성 확보 차원에서 Mn 함량을 2.0% 이하로 제한하는 것이 바람직하다.
Cr의 함량은 16.0 내지 24.0%이다.
Cr은 스테인리스강의 내식성 향상 원소 중 가장 많이 함유되어 기본이 되는 원소이며, 내식성의 발현을 위해서는 적어도 16% 이상 포함되어야 한다. 그러나 Cr은 페라이트 안정화 원소로서, Cr 함량이 높아지면 페라이트 분율이 증가하여 비자성 특성을 얻기 위해서는 다량의 Ni이 함유되어야 하므로 비용이 증가하며, σ상 형성이 조장되어 기계적 물성 및 내식성 저하의 원인이 된다. 따라서 Cr 함량은 24% 이하로 제한하는 것이 바람직하다.
Ni의 함량은 10.0 내지 16.0%이다.
Ni는 오스테나이트상 안정화 원소 중 가장 강력한 원소로서, 비자성 특성을 얻기 위해서는 10% 이상 함유되어야 한다. 그러나 Ni 함량의 증가는 원료 가격의 상승과 직결되므로 16% 이하로 제한하는 것이 바람직하다.
N의 함량은 0.2% 이하이다.
N은 염소 분위기에서의 내식성 향상뿐 아니라 오스테나이트상의 안정화에 유용한 원소이다. 그러나 다량 첨가 시 열간가공성을 감소시켜 강의 실수율을 저하시키므로, 0.2% 이하로 제한하는 것이 바람직하다.
또한, 본 발명의 일 실시예에 따르면, 중량%로, Cu: 3.0% 이하를 더 포함할 수 있다.
Cu는 황산 분위기에서의 내식성을 향상시키는 장점이 있으므로 선택적 첨가가 가능하다. 그러나, 염소 분위기에서는 공식저항성을 감소시키고, 열간가공성을 저하시키는 단점이 있어 3.0% 이하로 제한한다.
또한, 본 발명의 일 실시예에 따르면, 중량%로, Mo: 4.0% 이하를 더 포함할 수 있다.
Mo의 함량은 4.0% 이하이다.
Mo는 내식성 향상에 유용한 원소로서 내식성 향상 효과를 기대할 수 있어 선택적으로 첨가할 수 있으며, 첨가 시에는 2.0% 이상 첨가하는 것이 바람직하다. 그러나 Mo는 페라이트 안정화 원소로서, 다량 첨가 시 페라이트 분율이 증가되어 비자성 특성을 얻기 어려우며, σ상의 형성이 조장되어 기계적 물성 및 내식성 저하의 원인이 되므로 4.0% 이하로 제한한다.
또한, 본 발명의 일 실시예에 따르면, 중량%로, B: 0.01% 미만을 더 포함할 수 있다.
B의 함량은 0.01% 미만이다.
B는 열간가공성을 개선하는 효과가 있으므로 0.01% 미만의 범위에서 첨가가 가능하다. 그러나 그 이상 첨가할 경우, 저융점의 보라이드 화합물을 형성하여 오히려 열간가공성이 저하되므로 0.01% 미만으로 제한하는 것이 바람직하다.
강의 비자성 특성을 이용하는 각종 기기 또는 장치에 있어서, 정상적인 장치의 작동을 위해서는 부품에 적용된 강의 투자율 값이 1.02μ 이하가 되어야 한다. 이를 만족하기 위해서는 강의 응고 시에 형성되는 δ-페라이트의 분율을 제어하여야 한다.
일반적으로 오스테나이트계 스테인리스강의 미세조직 내에 존재하는 δ-페라이트는 체심입방형 구조를 가지는 조직의 특성으로 인하여 자성을 띄게 되며, 오스테나이트는 면심입방형 구조로 자성을 띄지 않게 된다. 따라서, δ-페라이트의 분율을 제어하여 원하는 크기의 자성 특성을 얻을 수 있으며, 비자성강의 경우에는 δ-페라이트의 분율을 최대한 낮게 하거나, 없애는 것이 필요하다.
오스테나이트계 스테인리스강의 미세조직 내에 존재하는 δ-페라이트의 분율은 후술할 식 (2)에서 볼 수 있는 바와 같이, 다양한 합금원소의 함량으로 결정될 수 있다. 특히 오스테나이트 안정화 원소를 첨가함으로써 δ-페라이트 분율을 감소시킬 수가 있는데, Ni 함량은 다른 물성의 저하 없이 오스테나이트를 안정화시키는데 유용하므로 Ni 함량을 제어하여 δ-페라이트의 형성을 억제할 수 있다.
Ni 보정식(이하, Niadj)은 주어진 조성 성분계에서 δ-페라이트가 형성되지 않도록 하는 최소 Ni 함량을 의미하며, 아래와 같이 표현될 수 있다.
[Niadj]
-2.7 - 5.8*C - 1.77*Si - 0.066*Mn + 0.893*Cr + 1.05*Mo - 0.88*Cu - 13.8*N
실제 강중에 포함된 Ni 함량이 Niadj의 값보다 클 경우에는 δ-페라이트가 형성될 수 없어 비자성 특성을 보이게 된다. 즉, 비자성 특성을 만족하기 위해, 강에 포함되는 Ni의 함량은 C, Si, Mn, Cr, Mo, Cu, N 성분의 함량으로 조합된 Niadj보다 커야 함을 의미한다.
(1) Ni ≥ -2.7 - 5.8*C - 1.77*Si - 0.066*Mn + 0.893*Cr + 1.05*Mo - 0.88*Cu - 13.8*N
도 1은 Ni 함량과 Niadj 값의 차이에 따른 투자율 상관관계를 나타내는 그래프이다. 도 1을 참조하면, 강에 포함된 Ni 함량과 Niadj 값의 차이가 양수일 경우에 강의 투자율이 1.02μ 이하를 만족함을 알 수 있다.
그러나 Ni은 가격이 비싼 합금원소로 많이 투입될수록 원가가 상승하는 요인이 되므로, 실제 Ni 함량과 Niadj 값의 차이가 8% 이하가 되도록 하는 것이 바람직하다.
또한, 본 발명의 일 실시예에 따르면, 내식성이 우수한 비자성 오스테나이트계 스테인리스강은 하기 식 (2)로 표현되는 계산 δ-페라이트 분율이 0% 이하를 만족할 수 있다.
(2) 161*{[Cr + Mo + 1.5*Si + 18]/[Ni + 30*(C + N) + 0.5*(Cu + Mn) + 36] + 0.262} - 161
상기 식 (2)는 통상의 제강공정에서 오스테나이트계 스테인리스강을 생산할 경우, 각 성분의 함량을 통하여 강의 δ-페라이트 함량을 예측할 수 있는 수식으로서, 식 (2)를 통해 계산된 δ-페라이트의 분율이 0% 이하일 경우 본 발명에서 달성하고자 하는 비자성 특성을 만족할 수 있다.
상기 식 (1) 및/또는 (2)에 따른 본 발명의 비자성 오스테나이트계 스테인리스강은 투자율 1.02μ 이하를 나타낼 수 있으며, 더욱 바람직한 1.012μ 이하를 나타낼 수 있어 완전 비자성 특성 구현이 가능하다.
한편, 강의 내식성 향상을 위해서는 Cr, Mo, Si, N 등 내식성 향상 합금원소를 첨가하는 것이 효과적이다. 또한 Mn이 다량 첨가되는 경우에는 강 중 MnS 등의 수용성 개재물을 형성하여 내식성을 저하시키게 되어 Mn 함량을 제어하는 것이 필요하다.
일반적으로 오스테나이트 스테인리스강의 내식성을 나타내는 지표로서 Cr, Mo, N 함량의 조합으로 계산되는 내공식당량지수를 적용하게 된다. 그러나 전술한 바와 같이, Mn 및 Si 함량도 강의 내식성에 큰 영향을 미치므로, 이러한 원소들도 고려한 새로운 내공식당량지수가 필요하다.
본 발명의 일 실시예에 따르면, 내식성이 우수한 비자성 오스테나이트계 스테인리스강은 하기 식 (3)으로 표현되는 내공식당량지수(PREN) 값이 20 내지 30 범위를 만족할 수 있다.
(3) Cr + 3.3*Mo + 30*N - Mn + Si
본 발명자들은 식 (3)으로 표현되는, Mn과 Si 함량을 포함한 내공식당량지수가 강의 내식성을 잘 반영하고 있음을 알아내었으며, 식 (3)의 범위가 20 내지 30일 경우 통상의 STS316L 대비 동등 이상의 내식성을 가질 수 있음을 확인하였다.
그러나 Cr, Mo, Si의 함량이 증가할 경우, 비용이 증가할 뿐만 아니라 σ상의 형성이 조장되어 취성을 유발하며, Cr 및 Mo 고갈영역을 형성하여 오히려 내식성에 악영향을 미치게 된다. 따라서 원하는 내식성을 얻으면서도 σ상의 형성은 최소화할 수 있는 적정 Cr, Mo, Si 함량 범위의 설정이 필요하다.
본 발명의 일 실시예에 따르면, 내식성이 우수한 비자성 오스테나이트계 스테인리스강은 하기 식 (4)로 표현되는 σ상 형성지수가 18 내지 24 범위를 만족할 수 있다.
(4) Cr + Mo + 3*Si
σ상 형성지수가 18 미만일 경우에는, 그만큼 Cr, Mo 함량이 적은 것이므로, 강의 내식성을 확보하기가 어렵기 때문에 18 이상으로 제한한다.
σ상 형성지수를 24 이하로 제한함으로써 σ상 분율을 1.0% 미만, 더욱 바람직하게는 0.8% 이하로 제어할 수 있다. σ상 형성지수가 24 초과일 경우에는 과도한 σ상 형성에 의한 내식성 저하 및 취성의 재질 저하 문제가 발생할 수 있다. 낮은 σ상 분율을 확보함으로써 비자성 특성 또한 더욱 향상시킬 수 있다.
한편, 상기 σ상 형성 제어는, 본 발명과 같이 합금성분 조성을 제어하여 σ상의 형성을 억제할 수 있으나, 형성된 σ상은 용체화 열처리 조건을 제어하여 분해시킬 수도 있다. σ상의 분해를 위해서는 고온에서 장시간 동안 소둔하는 것이 유효하나, 그럴 경우 결정립도가 과도하게 성장하여 표면에 오렌지필 결함을 유발할 가능성이 높아진다. 여기서 오렌지필 결함이란, 조대한 결정립도에 의하여 강을 성형할 때 표면에 조도의 불균일이 발생하여 미려한 표면을 해치는 결함을 의미한다.
본 발명의 일 실시예에 따르면, 내식성이 우수한 비자성 오스테나이트계 스테인리스강의 평균 결정립도는 70㎛ 이하일 수 있다.
일반적인 300계 오스테나이트계 스테인리스강의 경우 약 1,100℃에서 60 내지 100초 가량 용체화 열처리를 실시한다. 성형 시 오렌지필 결함 발생율을 낮추기 위해서는 스테인리스강의 평균 결정립도가 70㎛ 이하여야 하며, 이를 위해 본 발명의 내식성이 우수한 비자성 오스테나이트계 스테인리스강은 열간 압연재를 1,100 내지 1,150℃에서 60 내지 120초 동안 용체화 열처리함으로써 평균 결정립도를 70㎛ 이하로 제어할 수 있다.
이하 본 발명의 바람직한 실시예를 통해 보다 상세히 설명하기로 한다.
실시예
표 1에 기재된 합금조성을 가지는 강을 진공유도용해로에서 용해한 후, 열간압연을 실시하고, 용체화 열처리를 실시하여 두께 6㎜의 열간압연 판재를 제조하였다.
구분 조성(중량%)
C Si Mn Cr Ni Mo Cu N B
S1 0.030 0.45 1.3 15.8 15.8 0.0 1.5 0.070 0.0026
S2 0.034 0.46 1.2 18.5 15.4 0.0 1.2 0.080 0.0045
S3 0.025 0.52 1.2 20.4 16.0 0.0 1.3 0.080 0.0035
S4 0.028 0.47 1.4 24.3 15.4 0.0 1.6 0.070 0.0026
S5 0.021 0.45 1.3 18.6 14.3 0.0 2.1 0.090 0.0025
S6 0.024 0.46 1.1 17.9 14.5 2.8 0.0 0.080 0.0025
S7 0.026 0.43 1.2 17.6 10.5 0.0 2.5 0.120 0.0026
S8 0.030 0.42 1.2 18.6 13.5 4.2 2.6 0.090 0.0034
S9 0.037 0.48 1.3 18.1 12.6 2.1 1.5 0.220 0.003
S10 0.032 0.45 1.3 18.2 13.5 2.5 1.6 0.100 0.002
S11 0.026 0.45 1.2 17.9 14.2 2.6 1.4 0.050 0.0021
S12 0.028 0.46 0.5 18.1 13.8 0.0 0.0 0.070 0.0026
S13 0.029 0.47 1.3 18.4 13.9 0.0 0.6 0.080 0.0026
S14 0.027 0.41 2.2 18.1 13.9 0.0 0.0 0.080 0.0032
S15 0.024 0.42 1.2 18.1 14.5 2.1 0.3 0.080 0.0025
S16 0.026 0.75 1.3 18.4 14.0 2.0 0.4 0.090 0.003
S17 0.035 1.12 1.1 18.7 13.9 2.3 0.6 0.110 0.0026
표 1에 기재된 S1 내지 S17 강종 중, 일부에 대해서는 용체화 열처리 조건을 변화시켜 결정립도를 달리하였으며, 각 결정립도를 가진 강을 성형하였을 때 오렌지필 결함 발생율을 조사하여 아래 표 2에 나타내었다.
구 분 용체화 열처리 평균결정립도(㎛) 오렌지필발생율(%)
온도(℃) 시간(초)
발명예 1 S2 1,150 90 23.48 < 1.0
2 S3 1,150 90 30.45 < 1.0
3 S5 1,150 90 25.63 < 1.0
4 1,100 90 22.89 < 1.0
5 1,150 180 50.88 3.2
6 1,180 90 53.48 3.5
7 S6 1,150 90 30.89 < 1.0
8 S7 1,150 90 38.52 < 1.0
9 S10 1,150 90 23.58 < 1.0
10 S11 1,150 90 25.25 < 1.0
11 S12 1,150 90 26.84 < 1.0
12 S13 1,150 90 21.35 < 1.0
비교예 13 S1 1,150 90 21.93 < 1.0
14 S4 1,150 90 27.56 < 1.0
15 S5 1,180 120 74.58 15.8
16 1,180 180 86.72 22.9
17 S8 1,150 90 24.69 < 1.0
18 S9 1,150 90 23.75 < 1.0
19 S14 1,150 90 26.84 < 1.0
20 S17 1,150 90 31.24 < 1.0
표 2에 기재된 바와 같이, 비교예 15 및 16에 사용된 S5 강종은 본 발명의 성분계를 모두 만족하지만, 용체화 열처리 온도가 1,150℃를 초과한 1,180℃에서 120초 이상 수행되어 평균 결정립도가 70㎛를 초과하였으며, 성형 후 오렌지필 결함도 15% 이상 발생하였다.
용체화 열처리 온도가 변화됨에 따라 강의 결정립도가 변화되는데, 열처리 온도 및 시간이 증가할수록 평균 결정립도가 증가하는 것을 알 수 있었으며, 평균 결정립도가 70㎛ 이상이 되었을 때, 오렌지필 결함 발생율이 15% 이상으로 다른 열처리 조건 대비 대폭 상승함을 알 수 있었다.
또한, 상기 표 1에 기재된 S1 내지 S17 강종에 대하여, 식 (1) 내지 (4)에 따른 계산 값, 투자율 및 σ상 분율을 측정하여 아래 표 3에 나타내었다.
구분 식 (1) 실측δ-페라이트분율 (%) 식 (2) 투자율(μ) 식 (3) 식 (4) 실측σ상분율(%)
발명예 1 S2 4.8 0 -11.9 1.003 20.2 19.9 0.06
2 S3 3.9 0 -7.0 1.004 22.1 22.0 0.11
3 S5 4.5 0 -10.4 1.003 20.5 20.0 0.16
4 4.5 0 -10.4 1.004 20.5 20.0 0.08
5 4.5 0 -10.4 1.003 20.5 20.0 0.06
6 4.5 0 -10.4 1.004 20.5 20.0 0.15
7 S6 0.4 0 -1.7 1.005 28.9 22.1 0.09
8 S7 2.3 0 -8.2 1.012 20.4 18.9 0.03
9 S10 1.2 0 -3.4 1.004 28.6 22.1 0.06
10 S11 1.1 0 -1.5 1.003 27.2 21.9 0.17
11 S12 2.3 0 -7.0 1.006 20.2 19.5 0.05
12 S13 2.9 0 -8.4 1.001 20.0 19.8 0.11
비교예 13 S1 7.7 0 -20.1 1.001 17.7 17.2 0.03
14 S4 -0.1 0.9 5.2 1.042 25.5 25.7 0.97
15 S5 4.5 0 -10.4 1.003 20.5 20.0 0.05
16 4.5 0 -10.4 1.003 20.5 20.0 0.12
17 S8 -0.3 0.3 2.5 1.026 34.4 24.1 0.94
18 S9 2.4 0 -10.2 1.002 30.8 21.6 0.17
19 S14 2.6 0 -9.8 1.002 18.7 19.3 0.03
20 S17 1.8 0 0.0 1.028 28.7 24.4 0.84
표 3에 기재된 바와 같이, 식 (1)로 표현되는 Ni-Niadj 값이 양수일 경우 투자율은 1.02μ 이하, 특히 본 발명예들은 1.012μ 이하를 만족함을 알 수 있었으며, 식 (2)에 따른 계산 δ-페라이트 분율이 0% 이하일 경우 실측 δ-페라이트 분율이 0%로 나타남을 알 수 있었다. 또한, σ상 형성지수가 24 이상일 경우 σ상 분율이 0.8% 이상으로 1.0%에 가깝게 나타나 다른 강종에 비해 σ상 분율이 큰 폭으로 증가하는 것을 알 수 있었다.
비교예 13은 Cr 함량이 부족한 S1 강종으로 인해 PREN(식 (3)) 값이 낮아 내식성 요구조건을 충족하지 못하였으며, σ상 형성지수(식 (4)) 또한 18에 미치지 못하였다.
비교예 14는 Cr을 과다 함유하고 있는 S4 강종으로 인해 식 (1), (2)를 만족하지 못하고 σ상 분율이 높아 투자율이 1.042μ로 측정되었으며, 본 발명이 목적하는 비자성 특성을 불만족하였다. σ상 형성지수 또한 24를 초과하여 σ상 분율이 1.0%에 가깝게 나타났다. 이는 Cr 함량의 증가에 의해 σ상 형성이 조장되어 Cr 고갈영역을 형성한 것을 알 수 있었다.
비교예 17은 Mo을 과다 함유하고 있는 S8 강종으로 인해 식 (1), (2)를 만족하지 못하고 σ상 분율이 높아 투자율이 1.026μ로 측정되어, 본 발명이 목적하는 비자성 특성을 불만족하였으며, σ상 형성지수 또한 24를 초과하여 σ상 분율이 1.0%에 가깝게 나타났다. 이는 Mo 함량의 증가에 의해 σ상 형성이 조장되어 Mo 고갈영역을 형성한 것을 알 수 있었다. 이를 통해 Mo를 추가로 첨가할 때 4.0% 이하로 첨가해야 함을 확인할 수 있었다.
비교예 18은 N을 과다 함유하고 있는 S9 강종으로 인해 PREN 값이 높아 내식성 요구조건을 충족하지 못하였다.
비교예 19는 Mn을 과다 함유하고 있는 S14 강종으로 인해 PREN 값이 낮아 내식성 요구조건을 충족하지 못하였으며, 이는 Mn 함량의 증가로 인한 개재물 형성으로 인해 부식 저항성이 확보되지 못한 것을 알 수 있었다.
비교예 20은 Si을 과다 함유하고 있는 S17 강종으로 인해 σ상 형성지수가 24를 초과하였으며, 자성을 띄는 2차 상인 σ상으로 인하여 식 (1) 및 (2)를 만족함에도 불구하고 투자율이 1.028μ로 높게 나타났다. 이는 Si가 내식성 향상에 효과적이지만 과다할 경우 σ상 등의 금속간 화합물 석출을 조장하여 내식성 및 비자성 특성을 저하시키므로 1.0% 이하로 첨가되어야 함을 확인할 수 있었다.
상술한 바에 있어서, 본 발명의 예시적인 실시예들을 설명하였지만, 본 발명은 이에 한정되지 않으며 해당 기술 분야에서 통상의 지식을 가진 자라면 다음에 기재하는 청구범위의 개념과 범위를 벗어나지 않는 범위 내에서 다양한 변경 및 변형이 가능함을 이해할 수 있을 것이다.
본 발명에 따른 오스테나이트계 스테인리스강은 각종 전자기기 및 장치의 비자성 부품으로 적용이 가능하며, 장시간의 열처리 등 추가적인 공정 없이 비자성 특성을 확보할 수 있다.

Claims (12)

  1. 중량%로, C: 0.05% 이하, Si: 1.0% 이하, Mn: 0.5 내지 2.0%, Cr: 16 내지 24%, Ni: 10 내지 16%, N: 0.2% 이하, 나머지 Fe 및 불가피한 불순물을 포함하고,
    하기 식 (1)을 만족하며,
    투자율이 1.02μ 이하인 내식성이 우수한 비자성 오스테나이트계 스테인리스강.
    (1) Ni ≥ -2.7 - 5.8*C - 1.77*Si - 0.066*Mn + 0.893*Cr + 1.05*Mo - 0.88*Cu - 13.8*N
    (여기서, Ni, C, Si, Mn, Cr, Mo, Cu, N는 각 원소의 함량(중량%)를 의미한다)
  2. 제1항에 있어서,
    중량%로, Cu: 3.0% 이하를 더 포함하는 내식성이 우수한 비자성 오스테나이트계 스테인리스강.
  3. 제1항에 있어서,
    중량%로, Mo: 4.0% 이하를 더 포함하는 내식성이 우수한 비자성 오스테나이트계 스테인리스강.
  4. 제1항에 있어서,
    중량%로, B: 0.01% 미만을 더 포함하는 내식성이 우수한 비자성 오스테나이트계 스테인리스강.
  5. 제1항에 있어서,
    상기 스테인리스강은, 하기 식 (2)로 표현되는 계산 δ-페라이트 분율이 0% 이하를 만족하는 내식성이 우수한 비자성 오스테나이트계 스테인리스강.
    (2) 161*{[Cr + Mo + 1.5*Si + 18]/[Ni + 30*(C + N) + 0.5*(Cu + Mn) + 36] + 0.262} - 161
    (여기서, Cr, Mo, Si, Ni, C, N, Cu, Mn는 각 원소의 함량(중량%)를 의미한다)
  6. 제1항에 있어서,
    상기 스테인리스강은, 하기 식 (3)으로 표현되는 내공식당량지수(PREN)가 20 내지 30 범위를 만족하는 내식성이 우수한 비자성 오스테나이트계 스테인리스강.
    (3) Cr + 3.3*Mo + 30*N - Mn + Si
    (여기서, Cr, Mo, N, Mn, Si은 각 원소의 함량(중량%)를 의미한다)
  7. 제1항에 있어서,
    상기 스테인리스강은, 하기 식 (4)로 표현되는 σ상 형성지수가 18 내지 24 범위를 만족하는 내식성이 우수한 비자성 오스테나이트계 스테인리스강.
    (4) Cr + Mo + 3*Si
    (여기서, Cr, Mo, Si은 각 원소의 함량(중량%)를 의미한다)
  8. 제1항에 있어서,
    상기 스테인리스강은 투자율이 1.012μ 이하인 내식성이 우수한 비자성 오스테나이트계 스테인리스강.
  9. 제1항에 있어서,
    상기 스테인리스강의 평균 결정립도는 70㎛ 이하인 내식성이 우수한 비자성 오스테나이트계 스테인리스강.
  10. 중량%로, C: 0.05% 이하, Si: 1.0% 이하, Mn: 0.5 내지 2.0%, Cr: 16 내지 24%, Ni: 10 내지 16%, N: 0.2% 이하, 나머지 Fe 및 불가피한 불순물을 포함하고, 하기 식 (4)로 표현되는 σ상 형성지수가 18 내지 24 범위를 만족하는 슬라브를 열간 압연하는 단계; 및
    상기 열간 압연재를 용체화 열처리하는 단계;를 포함하는 내식성이 우수한 비자성 오스테나이트계 스테인리스강 제조방법.
    (4) Cr + Mo + 3*Si
    (여기서, Cr, Mo, Si은 각 원소의 함량(중량%)를 의미한다)
  11. 제10항에 있어서,
    상기 슬라브는 하기 식 (1)을 만족하며,
    하기 식 (2)로 표현되는 계산 δ-페라이트 분율이 0% 이하를 만족하는 내식성이 우수한 비자성 오스테나이트계 스테인리스강 제조방법.
    (1) Ni ≥ -2.7 - 5.8*C - 1.77*Si - 0.066*Mn + 0.893*Cr + 1.05*Mo - 0.88*Cu - 13.8*N
    (2) 161*{[Cr + Mo + 1.5*Si + 18]/[Ni + 30*(C + N) + 0.5*(Cu + Mn) + 36] + 0.262} - 161
    (여기서, Ni, C, Si, Mn, Cr, Mo, Cu, N는 각 원소의 함량(중량%)를 의미한다)
  12. 제10항에 있어서,
    상기 용체화 열처리는,
    1,100 내지 1,150℃에서 60 내지 120초 실시하는 내식성이 우수한 비자성 오스테나이트계 스테인리스강 제조방법.
PCT/KR2018/009162 2017-12-06 2018-08-10 내식성이 우수한 비자성 오스테나이트계 스테인리스강 및 그 제조방법 WO2019112144A1 (ko)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201880075899.XA CN111373067A (zh) 2017-12-06 2018-08-10 具有优异的耐腐蚀性的非磁性奥氏体不锈钢及其制造方法
US16/765,615 US20200299816A1 (en) 2017-12-06 2018-08-10 Non-magnetic austenitic stainless steel having excellent corrosion resistance and manufacturing method therefor
JP2020546249A JP2021504587A (ja) 2017-12-06 2018-08-10 耐食性に優れた非磁性オーステナイト系ステンレス鋼およびその製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2017-0166443 2017-12-06
KR1020170166443A KR102015510B1 (ko) 2017-12-06 2017-12-06 내식성이 우수한 비자성 오스테나이트계 스테인리스강 및 그 제조방법

Publications (1)

Publication Number Publication Date
WO2019112144A1 true WO2019112144A1 (ko) 2019-06-13

Family

ID=66751051

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2018/009162 WO2019112144A1 (ko) 2017-12-06 2018-08-10 내식성이 우수한 비자성 오스테나이트계 스테인리스강 및 그 제조방법

Country Status (5)

Country Link
US (1) US20200299816A1 (ko)
JP (1) JP2021504587A (ko)
KR (1) KR102015510B1 (ko)
CN (1) CN111373067A (ko)
WO (1) WO2019112144A1 (ko)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140001231A1 (en) 2012-06-28 2014-01-02 Ethicon Endo-Surgery, Inc. Firing system lockout arrangements for surgical instruments
KR102265212B1 (ko) * 2019-07-15 2021-06-15 주식회사 포스코 비자성 오스테나이트계 스테인리스강
KR20210029464A (ko) * 2019-09-06 2021-03-16 주식회사 포스코 고강도 비자성 오스테나이트계 스테인리스강
KR102326043B1 (ko) * 2019-12-19 2021-11-15 주식회사 포스코 내식성이 우수한 고분자 연료전지 분리판용 스테인리스강
CN111218623B (zh) * 2020-02-21 2022-01-25 浦项(张家港)不锈钢股份有限公司 一种无磁不锈钢及其制备方法和应用
KR102448742B1 (ko) * 2020-07-17 2022-09-30 주식회사 포스코 비자성 오스테나이트계 스테인리스강
KR102570524B1 (ko) * 2020-12-21 2023-08-24 주식회사 포스코 내식성과 절삭성이 향상된 오스테나이트계 스테인리스강 및 그 제조방법
JP2023517158A (ja) * 2020-12-30 2023-04-24 ポスコ カンパニー リミテッド 非磁性オーステナイト系ステンレス鋼
WO2023013353A1 (ja) 2021-08-02 2023-02-09 日鉄ステンレス株式会社 オーステナイト系ステンレス鋼材及びその製造方法、並びに意匠性物品
CN114277313B (zh) * 2021-12-02 2022-12-27 浦项(张家港)不锈钢股份有限公司 一种高成型不锈钢的制备方法、不锈钢及应用
CN114351051B (zh) * 2022-01-11 2023-03-24 山西太钢不锈钢股份有限公司 奥氏体不锈钢及其制备方法和在储氢压力容器中的应用
CN115505846B (zh) * 2022-09-26 2023-06-30 福建青拓特钢技术研究有限公司 一种高表面质量的303易切削不锈钢盘条及其制造方法
CN116536574A (zh) * 2023-03-24 2023-08-04 鞍钢股份有限公司 一种低温性能优异的奥氏体不锈钢及其制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0432144B2 (ko) * 1985-03-12 1992-05-28
JPH07113144A (ja) * 1993-10-18 1995-05-02 Nisshin Steel Co Ltd 表面性状に優れた非磁性ステンレス鋼及びその製造方法
JPH08269564A (ja) * 1995-03-29 1996-10-15 Nippon Steel Corp 非磁性ステンレス厚鋼板の製造方法
JPH11117045A (ja) * 1997-10-13 1999-04-27 Sumitomo Electric Ind Ltd 高強度非磁性ステンレス鋼線及びその製造方法
JP2000192202A (ja) * 1998-12-28 2000-07-11 Nippon Steel Corp 高耐食・非磁性ステンレス快削鋼及びその製造方法

Family Cites Families (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5953343B2 (ja) * 1980-12-06 1984-12-24 愛知製鋼株式会社 非磁性ステンレス鋼およびその製造方法
JPS5940901B2 (ja) * 1981-03-24 1984-10-03 日本ステンレス株式会社 耐食性オ−ステナイト系ステンレス鋼
JPS6026619A (ja) * 1983-07-22 1985-02-09 Nippon Kokan Kk <Nkk> オ−ステナイト系ステンレス厚鋼板の製造方法
JPS6052523A (ja) * 1983-09-01 1985-03-25 Nippon Stainless Steel Co Ltd フエライト−オ−ステナイト二相ステンレス鋼の製造方法
JPH062931B2 (ja) * 1983-09-30 1994-01-12 住友金属工業株式会社 電子装置部品用ステンレス系非磁性鋼
JPS6152351A (ja) * 1984-08-20 1986-03-15 Nippon Steel Corp 極低温耐力、靭性に優れた構造用オ−ステナイト系ステンレス鋼
JPS61139651A (ja) * 1984-12-10 1986-06-26 Nippon Steel Corp 耐銹性と冷間加工性に優れたオ−ステナイト系ステンレス鋼
JPS6247460A (ja) * 1985-08-27 1987-03-02 Daido Steel Co Ltd 溶融亜鉛めつき設備用部品材料
JPS62192530A (ja) * 1986-02-18 1987-08-24 Nippon Kokan Kk <Nkk> 高Cr・高Moオ−ステナイトステンレス鋼板の製造方法
JPH0765146B2 (ja) * 1986-09-09 1995-07-12 川崎製鉄株式会社 熱間加工性を改善した非磁性オーステナイト系ステンレス鋼
JPS642241A (en) * 1987-06-24 1989-01-06 Nippon Mining Co Ltd Shadow mask and manufacture thereof
US5087414A (en) * 1989-11-03 1992-02-11 Carpenter Technology Corporation Free machining, mon-magnetic, stainless steel alloy
JPH046665A (ja) * 1990-04-25 1992-01-10 Mitsubishi Electric Corp 記録ディスク装置
JPH06256911A (ja) * 1993-03-03 1994-09-13 Nkk Corp 冷間における加工若しくは変形後の耐硝酸腐食性に優れたオーステナイトステンレス鋼
JP2970432B2 (ja) * 1993-11-11 1999-11-02 住友金属工業株式会社 高温用ステンレス鋼とその製造方法
JPH0813095A (ja) * 1994-06-30 1996-01-16 Nkk Corp 耐硝酸腐食性に優れたオーステナイトステンレス鋼
JPH08209309A (ja) * 1995-01-31 1996-08-13 Nkk Corp 溶接熱影響部の耐硝酸腐食性に優れたモリブデン含有オーステナイト系ステンレス鋼
JP3865853B2 (ja) * 1997-02-24 2007-01-10 日新製鋼株式会社 加工割れ感受性の低いオーステナイト系ステンレス鋼及びその製造方法
JPH11106873A (ja) * 1997-09-30 1999-04-20 Nippon Mining & Metals Co Ltd 電子銃電極用合金
JP2001164342A (ja) * 1999-09-28 2001-06-19 Nippon Mining & Metals Co Ltd 電子銃電極用Fe−Cr−Ni系合金および電子銃電極用Fe−Cr−Ni系合金板
JP3939568B2 (ja) * 2001-07-05 2007-07-04 日新製鋼株式会社 加工性に優れた非磁性ステンレス鋼
JP4221452B2 (ja) * 2002-08-23 2009-02-12 日本冶金工業株式会社 耐摩耗性及び耐食性に優れた筬羽又はヘルド用ステンレス鋼材
JP2004124173A (ja) * 2002-10-02 2004-04-22 Nippon Chuzo Kk 非磁性オーステナイトステンレス鋳鋼およびその製造方法
JP4503483B2 (ja) * 2005-04-14 2010-07-14 日立Geニュークリア・エナジー株式会社 被溶接材とそれを用いた溶接構造物及び高耐食性オーステナイト系ステンレス鋼
JP5116265B2 (ja) * 2006-07-13 2013-01-09 新日鐵住金ステンレス株式会社 強度及び延性に優れたオーステナイト系ステンレス圧延鋼板及びその製造方法
JP2009161802A (ja) * 2007-12-28 2009-07-23 Hitachi-Ge Nuclear Energy Ltd 高耐食性オーステナイト系ステンレス鋼、ならびにそのステンレス鋼を用いて構成した原子力発電プラント、溶接継手および構造部材
JP5177747B2 (ja) * 2008-08-06 2013-04-10 独立行政法人産業技術総合研究所 オーステナイト系ステンレス鋼、及びその水素添加方法
EP2412841B1 (en) * 2009-03-27 2018-11-14 Nippon Steel & Sumitomo Metal Corporation Austenitic stainless steel
JP6089657B2 (ja) * 2012-12-07 2017-03-08 愛知製鋼株式会社 低温での水素脆化感受性に優れた高圧水素用オーステナイト系ステンレス鋼及びその製造方法
WO2014133058A1 (ja) 2013-02-28 2014-09-04 日新製鋼株式会社 オーステナイト系ステンレス鋼板およびそれを用いた高弾性限非磁性鋼材の製造方法
JP2015055005A (ja) * 2013-09-13 2015-03-23 日立Geニュークリア・エナジー株式会社 オーステナイト系ステンレス鋼及びそれを用いた放射性廃液処理設備機器
JP6547599B2 (ja) * 2015-11-10 2019-07-24 日本製鉄株式会社 オーステナイト系耐熱鋼
JP6955322B2 (ja) * 2016-03-15 2021-10-27 山陽特殊製鋼株式会社 加工性、高温強度および時効後の靱性に優れたオーステナイト系耐熱鋼

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0432144B2 (ko) * 1985-03-12 1992-05-28
JPH07113144A (ja) * 1993-10-18 1995-05-02 Nisshin Steel Co Ltd 表面性状に優れた非磁性ステンレス鋼及びその製造方法
JPH08269564A (ja) * 1995-03-29 1996-10-15 Nippon Steel Corp 非磁性ステンレス厚鋼板の製造方法
JPH11117045A (ja) * 1997-10-13 1999-04-27 Sumitomo Electric Ind Ltd 高強度非磁性ステンレス鋼線及びその製造方法
JP2000192202A (ja) * 1998-12-28 2000-07-11 Nippon Steel Corp 高耐食・非磁性ステンレス快削鋼及びその製造方法

Also Published As

Publication number Publication date
KR20190066737A (ko) 2019-06-14
US20200299816A1 (en) 2020-09-24
JP2021504587A (ja) 2021-02-15
CN111373067A (zh) 2020-07-03
KR102015510B1 (ko) 2019-08-28

Similar Documents

Publication Publication Date Title
WO2019112144A1 (ko) 내식성이 우수한 비자성 오스테나이트계 스테인리스강 및 그 제조방법
WO2020101227A1 (ko) 비자성 오스테나이트계 스테인리스강 및 그 제조방법
WO2020101226A1 (ko) 고강도 비자성 오스테나이트계 스테인리스강 및 그 제조방법
WO2017034216A1 (ko) 고 경도 강판 및 그 제조방법
WO2019117430A1 (ko) 고온 내산화성이 우수한 페라이트계 스테인리스강 및 그 제조방법
WO2018117477A1 (ko) 내식성 및 성형성이 우수한 듀플렉스 스테인리스강 및 이의 제조 방법
WO2022139337A1 (ko) 무방향성 전기강판 및 그 제조방법
WO2021010599A2 (ko) 강도가 향상된 오스테나이트계 스테인리스강 및 그 제조 방법
WO2019132226A1 (ko) 절곡성이 향상된 린 듀플렉스강 및 그 제조방법
WO2019125025A1 (ko) 고 강도 오스테나이트계 고 망간 강재 및 그 제조방법
WO2019124982A1 (ko) 자기장 차폐용 강판 및 그 제조방법
WO2022131504A1 (ko) 고온 연화저항성이 향상된 오스테나이트계 스테인리스강
WO2015099214A1 (ko) 강도와 연성이 우수한 열처리 경화형 강판 및 그 제조방법
WO2020105885A1 (ko) 열간가공성 및 인장 특성이 우수한 보론 함유 스테인리스강 및 그 제조 방법
WO2022139314A1 (ko) 무방향성 전기강판 및 그 제조방법
WO2017222122A1 (ko) 철근 및 이의 제조 방법
WO2017111250A1 (ko) 내식성 및 가공성이 향상된 린 듀플렉스 스테인리스강 및 이의 제조 방법
WO2020085852A1 (ko) 항복강도가 우수한 오스테나이트계 고망간 강재 및 그 제조방법
WO2020122320A1 (ko) 성형성 및 고온 특성이 우수한 저cr 페라이트계 스테인리스강 및 그 제조방법
WO2021025248A1 (ko) 고온 내크립 특성이 향상된 페라이트계 스테인리스강 및 그 제조 방법
WO2014098521A1 (en) Stainless steel pipe with excellent erosion resistance and manufacturing method thereof
WO2022239883A1 (ko) 고강도 및 저합금형 듀플렉스 스테인리스강 및 그 제조 방법
WO2021045358A1 (ko) 고강도 비자성 오스테나이트계 스테인리스강
WO2022119134A1 (ko) 입계침식이 개선된 페라이트계 스테인리스강 및 그 제조방법
WO2016105080A1 (ko) 표면품질 및 내리징성이 우수한 페라이트계 스테인리스강

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18885736

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020546249

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18885736

Country of ref document: EP

Kind code of ref document: A1