WO2017034216A1 - 고 경도 강판 및 그 제조방법 - Google Patents
고 경도 강판 및 그 제조방법 Download PDFInfo
- Publication number
- WO2017034216A1 WO2017034216A1 PCT/KR2016/009079 KR2016009079W WO2017034216A1 WO 2017034216 A1 WO2017034216 A1 WO 2017034216A1 KR 2016009079 W KR2016009079 W KR 2016009079W WO 2017034216 A1 WO2017034216 A1 WO 2017034216A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- less
- steel sheet
- excluding
- content
- carbon
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
- C21D8/0221—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
- C21D8/0226—Hot rolling
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D1/00—General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
- C21D1/18—Hardening; Quenching with or without subsequent tempering
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
- C21D8/0247—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
- C21D8/0263—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment following hot rolling
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D9/00—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
- C21D9/46—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/02—Ferrous alloys, e.g. steel alloys containing silicon
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/06—Ferrous alloys, e.g. steel alloys containing aluminium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/44—Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/46—Ferrous alloys, e.g. steel alloys containing chromium with nickel with vanadium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/48—Ferrous alloys, e.g. steel alloys containing chromium with nickel with niobium or tantalum
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/50—Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/54—Ferrous alloys, e.g. steel alloys containing chromium with nickel with boron
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/58—Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.5% by weight of manganese
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D2211/00—Microstructure comprising significant phases
- C21D2211/002—Bainite
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D2211/00—Microstructure comprising significant phases
- C21D2211/005—Ferrite
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D2211/00—Microstructure comprising significant phases
- C21D2211/008—Martensite
Definitions
- the present invention relates to a high hardness steel sheet and a method of manufacturing the same used in various fields.
- Steel plate with high hardness can guarantee long service life and durability due to its excellent wear resistance and load bearing ability, and is used for various parts.
- the wear-resistant steel grade is defined based on Brinell hardness, it is usually manufactured in various hardness levels from HB (Brinnel hardness) 350 grade to high HB 600 grade.
- the steel sheet having a high hardness can also be used in the sector utilizing a high-strength structure, such as a collision member, a reinforcement, and has a high strength at the same time, and has a high economic value in terms of light weight and efficiency of parts.
- a high-strength structure such as a collision member, a reinforcement
- the steel sheet In the high hardness steel sheet, the steel sheet is transformed into martensite or bainite structure in the course of cooling to a room temperature in the austenite temperature range, and thus, high hardness and strength of the low temperature transformation structure are usually utilized.
- One aspect of the present invention is to provide a high hardness steel sheet having a Brinell hardness of 500HB or more by using a minimum carbon content relational formula for obtaining a Brinell hardness of 500HB or more.
- Another aspect of the present invention is to provide a method for producing a high hardness steel sheet having a Brinell hardness of 500HB or more by setting the steel composition in accordance with the minimum carbon content relationship for obtaining a Brinell hardness of 500HB or more.
- One preferred aspect of the present invention is a steel sheet manufactured by a process of cooling the hot rolled hot rolled steel sheet
- carbon (C) 0.05 to 0.3%, silicon (Si): 0.5% or less (except 0%), manganese (Mn): 2.5% or less (except 0%), chromium (Cr): 1.5 % Or less (excluding 0%), molybdenum (Mo): 1.0% or less (excluding 0%), nickel (Ni): 1.0% or less (excluding 0%), niobium (Nb): 0.1% or less (0 Titanium (Ti): 0.1% or less (excluding 0%), Vanadium (V): 0.1% or less (excluding 0%), Boron (B): 0.01% or less (excluding 0%) ), Aluminum (Al): 0.1% or less (excluding 0%), balance iron (Fe) and other unavoidable impurities;
- Mn, Si, Cr, Ni and Mo are the values indicating the content of each element in weight%, C.R. is the value indicating the cooling rate when cooling the hot rolled steel sheet, the unit is °C / sec]
- Another preferred aspect of the present invention is by weight, carbon (C): 0.05 ⁇ 0.3%, silicon (Si): 0.5% or less (excluding 0%), manganese (Mn): 2.5% or less (excluding 0%) ), Chromium (Cr): 1.5% or less (excluding 0%), molybdenum (Mo): 1.0% or less (excluding 0%), nickel (Ni): 1.0% or less (excluding 0%), niobium ( Nb): 0.1% or less (excluding 0%), Titanium (Ti): 0.1% or less (excluding 0%), Vanadium (V): 0.1% or less (excluding 0%), Boron (B): Steel slabs consisting of 0.01% or less (except 0%), aluminum (Al): 0.1% or less (except 0%), residual iron (Fe) and other unavoidable impurities are hot rolled with hot rolled steel sheets, and then cooled to 95 vol.
- Mn, Si, Cr, Ni and Mo are the values indicating the content of each element in weight%, C.R. is the value indicating the cooling rate when cooling the hot rolled steel sheet, the unit is °C / sec]
- Prior arts related to high hardness steel sheets have proposed various components and process control methods to obtain the hardness required for each component, but have not suggested the component criteria for obtaining the unified hardness.
- the present inventors conduct research and experiments on the conditions of component design for securing the required hardness level when forming the microstructure of the steel sheet to the martensite structure of 95 vol.% Or more in order to secure high hardness and strength, Based on the result, the present invention has been completed.
- one of the main technical idea of the present invention is to present the conditions of the component design to secure the required hardness level when forming the microstructure of the steel sheet to the martensite structure of 95 vol.% Or more in order to secure high hardness and strength
- a steel sheet having a microstructure comprising a martensite phase of 95 vol.% Or more and a Brinell hardness of 500 HB or more can be produced more economically, and a unified hardness can be obtained.
- the content of carbon (C) may be 0.05 to 0.3%.
- the content of carbon (C) may be 0.19 to 0.3%.
- the content of silicon (Si) may be 0.5% or less (excluding 0%).
- Silicon is the preferred alloying element in applications utilizing hardness because it increases the wear resistance of steels.
- Si is added, there is a possibility that the surface properties and plating properties of the steel are deteriorated and complete austenitization may not be achieved when reheating.
- the content of silicon (Si) may be 0.21 to 0.5%.
- the content of silicon (Si) may be 0.253 to 0.34%.
- Manganese (Mn) and chromium (Cr) are both elements that significantly lower the martensite transformation point, and manganese and chromium are the most effective elements for lowering the transformation point after carbon among the elements added to steel, and are economically available. Element.
- the upper limit of the manganese content is preferably limited to 2.5%, the upper limit of the chromium content is preferably limited to 1.5%.
- austenite may remain at room temperature, resulting in the inability to obtain a target martensite structure of 95 vol.% Or more.
- the manganese content may be 1.4 to 2.5%.
- the content of manganese may be 2.1 to 2.5%.
- Molybdenum (Mo) and nickel (Ni) are elements that lower the martensite transformation start temperature.
- the degree of lowering the martensite transformation start temperature is lower than that of Mn and Cr, and it is preferable to limit the upper limit of the addition amount of these elements to 1.0% as an expensive element.
- Niobium (Nb) and titanium (Ti) may be added at levels of 0.1% or less (excluding 0%), respectively, and have an effect of improving the impact characteristics of the steel sheet through refinement of austenite grains.
- the upper limit is preferably limited to 0.1%.
- titanium (Ti) first reacts with carbon or nitrogen in steel to form TiC or TiN, thereby adding boron (B). Increase the effect In this case, the content of titanium (Ti) is sufficient to satisfy the following relational formula 2 by the stoichiometry of the amount of nitrogen in the steel.
- V Vanadium (V): 0.1% or less (excluding 0%)
- Vanadium (V) may be added at a level of 0.1% or less (excluding 0%), and serves to prevent precipitation hardening and deterioration of weld properties through the formation of fine V carbides.
- the upper limit of the content is preferably limited to 0.1%.
- B Boron (B) can be added at a level of 0.01% or less (except 0%), and B is an element that significantly improves the hardenability of steel by inhibiting nucleation of ferrite and pearlite. In that case its utilization is very large.
- the final microstructure is obtained with martensite of 95 vol.% Or more, and there is no particular limitation on the manufacturing process. Therefore, B may be added to secure hardenability as necessary. However, if the content of B is excessively added, rather it acts as a nucleation site on the ferrite or perlite, so as to impair the hardenability, the upper limit of the content is preferably limited to 0.01%.
- Aluminum (Al) is added for deoxidation and grain refinement, and its content is preferably limited to 0.1% or less (excluding 0%).
- iron includes iron (Fe) and other unavoidable impurities.
- the minimum content of carbon (C) satisfies the following relation (1).
- Mn, Si, Cr, Ni and Mo are the values indicating the content of each element in weight%, C.R. is the value indicating the cooling rate when cooling the hot rolled steel sheet, the unit is °C / sec]
- the relation (1) is the minimum carbon (C) to obtain a Brinell hardness of 500 HB or more from the composition of the silicon (Si), manganese (Mn), chromium (Cr), molybdenum (Mo), nickel (Ni) and chromium (Cr) ) Content.
- the relation (1) can be designed using, for example, the following relation (3).
- C, Mn, Si, Cr, Ni and Mo are values representing the content of each element in weight percent, C.R. is a value representing the cooling rate when cooling the hot-rolled steel sheet, the unit is °C / sec]
- the relation (1) for the minimum carbon content for HB ⁇ 500 can be derived from the relation (3).
- the microstructure of the steel sheet of the present invention comprises at least 95 vol.% Martensite phase.
- fraction of the martensite phase is less than 95 vol.%, It may be difficult to secure the desired strength and hardness.
- the microstructure of the steel sheet of the present invention may include one or two of less than 5.0 vol.% Of ferrite and bainite as a second phase structure other than martensite.
- the steel sheet of the present invention has a Brinell hardness of 500 HB or more.
- the minimum content of carbon (C) of the steel slab satisfies the following relation (1).
- Mn, Si, Cr, Ni and Mo are the values indicating the content of each element in weight%, C.R. is the value indicating the cooling rate when cooling the hot rolled steel sheet, the unit is °C / sec]
- the steel slab Before hot rolling the steel slab to a hot rolled steel sheet, the steel slab may be reheated.
- the slab reheating conditions are not particularly limited, and homogenization is sufficient.
- the slab reheating temperature is preferably 1100 to 1300 ° C.
- the hot rolling conditions are not particularly limited, and the hot finish rolling temperature is sufficient to be a temperature at which austenitization is sufficiently performed.
- the hot finish rolling temperature may be, for example, 870 ⁇ 930 °C, the whole hot rolling may be made in the temperature range of 1150 °C ⁇ hot finish rolling temperature after extraction of the furnace.
- the cooling rate during the cooling of the hot rolled steel sheet is not particularly limited as long as it is a cooling rate capable of obtaining a martensite phase of 95 vol.% Or more, for example, 20 ° C./sec or more, preferably 20 ° C./150° C./sec.
- the cooling end temperature at the time of cooling the hot-rolled steel sheet is Ms point (martensite transformation start temperature) or less, and is not particularly limited as long as it can obtain a martensite phase of 95 vol.% Or more.
- compositions of the steels in Table 1 below all satisfy the composition range of the present invention.
- a steel sheet having a steel composition of Table 1 and having a thickness of 30 mm and a width of 200 mm was prepared, and then reheated at 1200 ° C. for 180 minutes.
- the reheated steel sheet was hot rolled at a hot finishing temperature range of 900 ° C. to produce a hot rolled steel sheet having a thickness of 3.0 mm, and then cooled to 200 ° C. at a cooling rate shown in Table 2 below.
- Table 2 shows the second phase tissues except martensite in the second phase tissues, the non-second phase tissues are martensite, and 100% martensite is represented as 100% M.
- F represents ferrite
- B represents bainite
- M martensite
- Table 2 below shows the required carbon content, the actual carbon content, and the difference between the actual carbon content and the required carbon content determined by the relationship (1).
- the Brinell hardness (HB) value is 500 HB or more.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Heat Treatment Of Steel (AREA)
- Heat Treatment Of Sheet Steel (AREA)
Abstract
Description
강종 | C | Si | Mn | Cr | Mo | Ni | Al | Ti | Nb | V | B |
A | 0.081 | 0.298 | 1.85 | 0.498 | 0.101 | 0.008 | 0.03 | 0.006 | 0.032 | 0.006 | 0.0002 |
B | 0.121 | 0.351 | 2.11 | 0.313 | 0.798 | 0.012 | 0.032 | 0.025 | 0.023 | 0.005 | 0.0017 |
C | 0.195 | 0.354 | 2.01 | 0.297 | 0.006 | 0.812 | 0.031 | 0.029 | 0.025 | 0.003 | 0.0016 |
D | 0.152 | 0.248 | 1.49 | 0.296 | 0.008 | 0.011 | 0.033 | 0.03 | 0.056 | 0.005 | 0.003 |
E | 0.242 | 0.432 | 1.72 | 0.411 | 0.312 | 0.013 | 0.036 | 0.03 | 0.003 | 0.006 | 0.0033 |
F | 0.148 | 0.243 | 1.48 | 0.607 | 0.012 | 0.005 | 0.034 | 0.029 | 0.004 | 0.004 | 0.0032 |
G | 0.148 | 0.24 | 1.48 | 0.3 | 0.007 | 0.007 | 0.035 | 0.098 | 0.005 | 0.005 | 0.0033 |
H | 0.297 | 0.253 | 1.51 | 0.3 | 0.211 | 0.006 | 0.035 | 0.03 | 0.007 | 0.002 | 0.0016 |
I | 0.212 | 0.25 | 1.49 | 1.1 | 0.203 | 0.008 | 0.035 | 0.03 | 0.022 | 0.098 | 0.0029 |
J | 0.2 | 0.249 | 1.47 | 0.3 | 0.011 | 0.021 | 0.03 | 0.029 | 0.005 | 0.003 | 0.0029 |
K | 0.252 | 0.254 | 2.31 | 0.125 | 0.012 | 0.015 | 0.033 | 0.03 | 0.032 | 0.005 | 0.0028 |
L | 0.198 | 0.243 | 1.49 | 0.297 | 0.015 | 0.023 | 0.034 | 0.03 | 0.008 | 0.004 | 0.0031 |
M | 0.199 | 0.254 | 1.47 | 1.12 | 0.012 | 0.015 | 0.033 | 0.03 | 0.032 | 0.005 | 0.0028 |
N | 0.2 | 0.207 | 1.47 | 0.3 | 0.011 | 0.014 | 0.034 | 0.098 | 0.045 | 0.002 | 0.0025 |
O | 0.26 | 0.297 | 2.11 | 0.02 | 0.101 | 0.005 | 0.027 | 0.007 | 0.022 | 0.011 | 0.0003 |
P | 0.27 | 0.212 | 1.51 | 0.52 | 0.112 | 0.012 | 0.021 | 0.005 | 0.023 | 0.012 | 0.0020 |
Q | 0.232 | 0.491 | 1.78 | 0.298 | 0.005 | 0.003 | 0.026 | 0.021 | 0.015 | 0.055 | 0.0018 |
구분 | 강종 | Ms(℃) | 냉각속도(℃/sec) | 필요 탄소함량(wt.%,관계식1)① | 실제 탄소함량(wt.%)② | ②-① | 브리넬경도(HB) | 제2상 조직 |
비교예 1 | A | 432 | 100 | 0.200 | 0.081 | -0.119 | 395 | F8%,B11% |
비교예 2 | B | 401 | 50 | 0.178 | 0.121 | -0.057 | 445 | F2%, B3% |
발명예 1 | C | 381 | 50 | 0.174 | 0.195 | 0.021 | 519 | B3% |
비교예 3 | D | 433 | 50 | 0.275 | 0.152 | -0.123 | 404 | F1%. B4% |
발명예 2 | E | 387 | 35 | 0.229 | 0.242 | 0.013 | 505 | F1%, B3% |
발명예 3 | E | 379 | 70 | 0.218 | 0.242 | 0.024 | 523 | 100%M |
비교예 4 | F | 425 | 50 | 0.249 | 0.148 | -0.101 | 405 | B4% |
비교예 5 | G | 434 | 20 | 0.286 | 0.148 | -0.138 | 364 | F6%, B7% |
발명예 4 | H | 380 | 50 | 0.266 | 0.297 | 0.031 | 531 | B3% |
발명예 5 | I | 379 | 35 | 0.202 | 0.212 | 0.010 | 511 | 100%M |
비교예 6 | J | 411 | 35 | 0.281 | 0.2 | -0.081 | 437 | F2%, B2% |
발명예 6 | K | 372 | 100 | 0.190 | 0.252 | 0.062 | 551 | 100%M |
비교예 7 | L | 417 | 35 | 0.279 | 0.198 | -0.081 | 440 | F2%, B2% |
비교예 8 | M | 394 | 20 | 0.213 | 0.199 | -0.014 | 491 | F1%, B3% |
비교예 9 | N | 417 | 70 | 0.272 | 0.2 | -0.072 | 448 | B4% |
발명예 7 | O | 377 | 80 | 0.222 | 0.26 | 0.038 | 527 | B3% |
발명예 8 | P | 386 | 50 | 0.251 | 0.27 | 0.019 | 510 | B2% |
발명예 9 | Q | 396 | 100 | 0.222 | 0.232 | 0.010 | 502 | B3% |
Claims (12)
- 열간압연된 열연강판을 냉각하는 공정을 포함하여 제조되는 강판으로서,중량%로, 탄소(C): 0.05 ~ 0.3%, 규소(Si): 0.5%이하(0%는 제외), 망간(Mn): 2.5% 이하(0%는 제외), 크롬(Cr): 1.5% 이하(0%는 제외), 몰리브덴(Mo): 1.0%이하(0%는 제외), 니켈(Ni): 1.0% 이하(0%는 제외), 니오비움(Nb): 0.1% 이하(0%는 제외), 타이타니움(Ti): 0.1% 이하(0%는 제외), 바나디움(V): 0.1% 이하(0%는 제외), 보론(B): 0.01% 이하(0%는 제외), 알루미늄(Al): 0.1% 이하(0%는 제외), 잔부 철(Fe) 및 기타 불가피한 불순물로 이루어지고;상기 탄소(C)의 최소 함량은 하기 관계식(1)을 만족하고;[관계식 1]C(탄소(C)의 최소 함량)≥ 0.481-0.104Mn-0.035Si-0.088Cr-0.054Ni-0.035Mo-0.0003C.R.[여기서, Mn, Si, Cr, Ni 및 Mo은 각 원소들의 함유량을 중량%로 나타낸 값이고, C.R.은 열연강판의 냉각 시 냉각속도를 나타낸 값이고, 단위는 ℃/sec임]95vol.% 이상의 마르텐사이트 상을 포함하는 미세조직을 갖고; 그리고500HB이상의 브리넬 경도를 갖는 고 경도 강판.
- 제1항에 있어서, 상기 미세조직은 마르텐사이트 이외의 제2상 조직으로 5.0vol.% 미만의 페라이트 및 베이나이트 중 1 종 또는 2종을 포함하는 것을 특징으로 하는 고 경도 강판.
- 제1항에 있어서,상기 관계식(1)은 하기 관계식(3)으로부터 도출된 것임을 특징으로 하는 고 경도 강판.[관계식 3]HB (브리넬 경도) = 100.4 + 830.5*C + 86.5*Mn + 28.8*Si + 73.4*Cr +44.5*Ni + 28.8*Mo + 0.252*C.R.[여기서, C, Mn, Si, Cr, Ni 및 Mo은 각 원소들의 함유량을 중량%로 나타낸 값이고, C.R.은 열연강판의 냉각 시 냉각속도를 나타낸 값이고, 단위는 ℃/sec임]
- 제1항 내지 제3항 중 어느 한 항에 있어서, 상기 탄소(C)의 함량은 0.19 ~ 0.3%인 것을 특징으로 하는 고 경도 강판.
- 제1항 내지 제3항 중 어느 한 항에 있어서, 상기 규소(Si)의 함량은 0.21~ 0.5%인 것을 특징으로 하는 고 경도 강판.
- 제1항 내지 제3항 중 어느 한 항에 있어서, 상기 망간의 함량은 1.4 ~ 2.5% 인 것을 특징으로 하는 고 경도 강판.
- 중량%로, 탄소(C): 0.05 ~ 0.3%, 규소(Si): 0.5%이하(0%는 제외), 망간(Mn): 2.5% 이하(0%는 제외), 크롬(Cr): 1.5% 이하(0%는 제외), 몰리브덴(Mo): 1.0% 이하(0%는 제외), 니켈(Ni): 1.0%이하(0%는 제외), 니오비움(Nb): 0.1% 이하(0%는 제외), 타이타니움(Ti): 0.1% 이하(0%는 제외), 바나디움(V): 0.1% 이하(0%는 제외), 보론(B): 0.01% 이하(0%는 제외), 알루미늄(Al): 0.1% 이하(0%는 제외), 잔부 철(Fe) 및 기타 불가피한 불순물로 이루어지는 강 슬라브를 열연강판으로 열간압연한 후, 냉각시켜 95vol.% 이상의 마르텐사이트 상을 포함하는 미세조직 및 500HB이상의 브리넬 경도를 갖는 강판을 제조하는 방법으로서, 상기 탄소(C)의 최소 함량은 하기 관계식(1)을 만족하는 고 경도 강판의 제조방법.[관계식 1]C(탄소(C)의 최소 함량)≥ 0.481-0.104Mn-0.035Si-0.088Cr-0.054Ni-0.035Mo-0.0003C.R.[여기서, Mn, Si, Cr, Ni 및 Mo은 각 원소들의 함유량을 중량%로 나타낸 값이고, C.R.은 열연강판의 냉각 시 냉각속도를 나타낸 값이고, 단위는 ℃/sec임]
- 제7항에 있어서, 상기 열연강판의 냉각 시 냉각속도는 20~150℃/sec 인 것을 특징으로 하는 고 경도 강판의 제조방법.
- 제7항 또는 제8항에 있어서, 상기 열연강판의 냉각 시 냉각 종료온도는 Ms 점(마르텐사이트 변태 시작온도) 이하인 것을 특징으로 하는 고 경도 강판의 제조방법.
- 제7항 또는 제8항에 있어서, 상기 탄소(C)의 함량은 0.19 ~ 0.3%인 것을 특징으로 하는 고 경도 강판의 제조방법.
- 제7항 또는 제8항에 있어서, 상기 규소(Si)의 함량은 0.21~ 0.5%인 것을 특징으로 하는 고 경도 강판의 제조방법.
- 제7항 또는 제8항에 있어서, 상기 망간의 함량은 1.4 ~ 2.5% 인 것을 특징으로 하는 고 경도 강판의 제조방법.
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP24150998.3A EP4324954A3 (en) | 2015-08-21 | 2016-08-18 | High-hardness steel sheet, and manufacturing method thereof |
JP2018509544A JP6843119B2 (ja) | 2015-08-21 | 2016-08-18 | 高硬度鋼板及びその製造方法 |
CN201680047778.5A CN107923023B (zh) | 2015-08-21 | 2016-08-18 | 高硬度钢板及其制造方法 |
US15/751,591 US20180237875A1 (en) | 2015-08-21 | 2016-08-18 | High-hardness steel sheet, and manufacturing method thereof |
EP16839505.1A EP3339464B1 (en) | 2015-08-21 | 2016-08-18 | Method for manufacturing a high-hardness steel sheet |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR10-2015-0117985 | 2015-08-21 | ||
KR1020150117985A KR101696094B1 (ko) | 2015-08-21 | 2015-08-21 | 고 경도 강판 및 그 제조방법 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2017034216A1 true WO2017034216A1 (ko) | 2017-03-02 |
Family
ID=57835400
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/KR2016/009079 WO2017034216A1 (ko) | 2015-08-21 | 2016-08-18 | 고 경도 강판 및 그 제조방법 |
Country Status (6)
Country | Link |
---|---|
US (1) | US20180237875A1 (ko) |
EP (2) | EP4324954A3 (ko) |
JP (1) | JP6843119B2 (ko) |
KR (1) | KR101696094B1 (ko) |
CN (1) | CN107923023B (ko) |
WO (1) | WO2017034216A1 (ko) |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR102031446B1 (ko) * | 2017-12-22 | 2019-11-08 | 주식회사 포스코 | 우수한 경도와 충격인성을 갖는 내마모강 및 그 제조방법 |
KR102031443B1 (ko) * | 2017-12-22 | 2019-11-08 | 주식회사 포스코 | 우수한 경도와 충격인성을 갖는 내마모강 및 그 제조방법 |
KR102045646B1 (ko) * | 2017-12-26 | 2019-11-15 | 주식회사 포스코 | 재질 균일성이 우수한 내마모 강판 및 그 제조방법 |
KR102175570B1 (ko) * | 2018-09-27 | 2020-11-06 | 주식회사 포스코 | 우수한 경도와 충격인성을 갖는 내마모강 및 그 제조방법 |
JP7163889B2 (ja) * | 2019-08-21 | 2022-11-01 | Jfeスチール株式会社 | 耐疲労特性に優れた耐摩耗鋼材の製造方法 |
JP7163887B2 (ja) * | 2019-08-21 | 2022-11-01 | Jfeスチール株式会社 | 耐疲労特性に優れた耐摩耗鋼材 |
DE102019215055A1 (de) * | 2019-09-30 | 2021-04-01 | Thyssenkrupp Steel Europe Ag | Verfahren zur Herstellung eines Stahlproduktes sowie ein entsprechendes Stahlprodukt |
CN113215488B (zh) * | 2021-05-07 | 2022-06-17 | 马鞍山钢铁股份有限公司 | 一种免热处理nm360耐磨钢板及其制造方法 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002080930A (ja) * | 2000-09-11 | 2002-03-22 | Nkk Corp | 靭性および耐遅れ破壊性に優れた耐摩耗鋼材ならびにその製造方法 |
KR100536828B1 (ko) * | 1997-09-22 | 2006-02-28 | 카가쿠기쥬쯔죠 킨조쿠자이료 기쥬쯔켄큐죠 | 미세페라이트주체조직강과그제조방법 |
KR20070004055A (ko) * | 2004-04-28 | 2007-01-05 | 제이에프이 스틸 가부시키가이샤 | 기계구조용 부품 및 그 제조방법 |
KR20120070603A (ko) * | 2009-11-17 | 2012-06-29 | 수미도모 메탈 인더스트리즈, 리미티드 | 고인성 내마모강 및 그 제조 방법 |
KR20120071614A (ko) * | 2010-12-23 | 2012-07-03 | 주식회사 포스코 | 저온인성이 우수한 극후물 내마모용 후강판 및 그 제조방법 |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3425837B2 (ja) * | 1996-03-28 | 2003-07-14 | 株式会社神戸製鋼所 | 耐孔明き腐食性および圧壊特性に優れた高強度熱延鋼板、および高強度亜鉛系めっき鋼板並びにそれらの製造方法 |
JP4374350B2 (ja) * | 2006-04-11 | 2009-12-02 | 新日本製鐵株式会社 | 溶接性、加工性および耐高速衝突貫通性能に優れる高硬度熱延鋼板およびその製造方法 |
MX348365B (es) * | 2011-03-29 | 2017-06-08 | Jfe Steel Corp | Placa de acero o lamina de acero resistente a la abrasion excelente en resistencia al agrietamiento por corrosion y esfuerzo y metodo para la fabricacion de la misma. |
CN102517509A (zh) * | 2012-01-06 | 2012-06-27 | 江苏省沙钢钢铁研究院有限公司 | Hb500级耐磨钢板及其制备方法 |
JP5966730B2 (ja) * | 2012-07-30 | 2016-08-10 | Jfeスチール株式会社 | 耐衝撃摩耗特性に優れた耐摩耗鋼板およびその製造方法 |
MX2015003379A (es) * | 2012-09-19 | 2015-06-05 | Jfe Steel Corp | Placa de acero resistente a la abrasion que tiene excelente tenacidad a baja temperatura y excelente resistencia al desgaste corrosivo. |
CN103146997B (zh) * | 2013-03-28 | 2015-08-26 | 宝山钢铁股份有限公司 | 一种低合金高韧性耐磨钢板及其制造方法 |
-
2015
- 2015-08-21 KR KR1020150117985A patent/KR101696094B1/ko active IP Right Grant
-
2016
- 2016-08-18 JP JP2018509544A patent/JP6843119B2/ja active Active
- 2016-08-18 EP EP24150998.3A patent/EP4324954A3/en active Pending
- 2016-08-18 WO PCT/KR2016/009079 patent/WO2017034216A1/ko active Application Filing
- 2016-08-18 EP EP16839505.1A patent/EP3339464B1/en active Active
- 2016-08-18 US US15/751,591 patent/US20180237875A1/en not_active Abandoned
- 2016-08-18 CN CN201680047778.5A patent/CN107923023B/zh active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100536828B1 (ko) * | 1997-09-22 | 2006-02-28 | 카가쿠기쥬쯔죠 킨조쿠자이료 기쥬쯔켄큐죠 | 미세페라이트주체조직강과그제조방법 |
JP2002080930A (ja) * | 2000-09-11 | 2002-03-22 | Nkk Corp | 靭性および耐遅れ破壊性に優れた耐摩耗鋼材ならびにその製造方法 |
KR20070004055A (ko) * | 2004-04-28 | 2007-01-05 | 제이에프이 스틸 가부시키가이샤 | 기계구조용 부품 및 그 제조방법 |
KR20120070603A (ko) * | 2009-11-17 | 2012-06-29 | 수미도모 메탈 인더스트리즈, 리미티드 | 고인성 내마모강 및 그 제조 방법 |
KR20120071614A (ko) * | 2010-12-23 | 2012-07-03 | 주식회사 포스코 | 저온인성이 우수한 극후물 내마모용 후강판 및 그 제조방법 |
Also Published As
Publication number | Publication date |
---|---|
CN107923023B (zh) | 2020-04-24 |
EP4324954A2 (en) | 2024-02-21 |
US20180237875A1 (en) | 2018-08-23 |
CN107923023A (zh) | 2018-04-17 |
JP2018528325A (ja) | 2018-09-27 |
EP3339464C0 (en) | 2024-07-03 |
EP3339464B1 (en) | 2024-07-03 |
EP4324954A3 (en) | 2024-05-22 |
EP3339464A1 (en) | 2018-06-27 |
KR101696094B1 (ko) | 2017-01-13 |
JP6843119B2 (ja) | 2021-03-17 |
EP3339464A4 (en) | 2018-08-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2017034216A1 (ko) | 고 경도 강판 및 그 제조방법 | |
WO2020067685A1 (ko) | 우수한 경도와 충격인성을 갖는 내마모강 및 그 제조방법 | |
WO2018117481A1 (ko) | 고경도 내마모강 및 이의 제조방법 | |
WO2021091138A1 (ko) | 저온 충격인성이 우수한 고강도 강재 및 그 제조방법 | |
WO2016104975A1 (ko) | Pwht 후 인성이 우수한 고강도 압력용기용 강재 및 그 제조방법 | |
WO2018074887A1 (ko) | 고강도 철근 및 이의 제조 방법 | |
WO2021125621A1 (ko) | 저온 충격인성이 우수한 고경도 내마모강 및 이의 제조방법 | |
WO2019125083A1 (ko) | 우수한 경도와 충격인성을 갖는 내마모강 및 그 제조방법 | |
WO2020067686A1 (ko) | 우수한 경도와 충격인성을 갖는 내마모강 및 그 제조방법 | |
WO2018117482A1 (ko) | 고경도 내마모강 및 이의 제조방법 | |
WO2018117646A1 (ko) | 극저온 충격인성이 우수한 후강판 및 이의 제조방법 | |
WO2017111290A1 (ko) | Pwht 저항성이 우수한 저온 압력용기용 강판 및 그 제조 방법 | |
WO2018080108A1 (ko) | 저온인성이 우수한 고강도 고망간강 및 그 제조방법 | |
WO2019132310A1 (ko) | 재질 균일성이 우수한 내마모 강판 및 그 제조방법 | |
WO2018117496A1 (ko) | 고온 템퍼링 열처리 및 용접 후 열처리 저항성이 우수한 압력용기용 강재 및 이의 제조방법 | |
WO2017104995A1 (ko) | 인성과 절단균열저항성이 우수한 고경도 내마모강 및 그 제조방법 | |
WO2020111857A1 (ko) | 크리프 강도가 우수한 크롬-몰리브덴 강판 및 그 제조방법 | |
WO2013154254A1 (ko) | 재질 균일성이 우수한 고탄소 열연강판 및 이의 제조방법 | |
WO2019125076A1 (ko) | 우수한 경도와 충격인성을 갖는 내마모강 및 그 제조방법 | |
WO2011081236A1 (ko) | 열간 프레스 가공성이 우수한 열처리 강화형 강판 및 그 제조방법 | |
WO2013100625A1 (ko) | 인성 및 용접성이 우수한 내마모강 | |
WO2022139214A1 (ko) | 강도 및 내식성이 향상된 마르텐사이트계 스테인리스강 및 이의 제조 방법 | |
WO2015099214A1 (ko) | 강도와 연성이 우수한 열처리 경화형 강판 및 그 제조방법 | |
WO2017222122A1 (ko) | 철근 및 이의 제조 방법 | |
WO2018110850A1 (ko) | 충격인성이 우수한 고강도 선재 및 그 제조방법 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 16839505 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 15751591 Country of ref document: US |
|
ENP | Entry into the national phase |
Ref document number: 2018509544 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2016839505 Country of ref document: EP |