WO2022139214A1 - 강도 및 내식성이 향상된 마르텐사이트계 스테인리스강 및 이의 제조 방법 - Google Patents

강도 및 내식성이 향상된 마르텐사이트계 스테인리스강 및 이의 제조 방법 Download PDF

Info

Publication number
WO2022139214A1
WO2022139214A1 PCT/KR2021/017715 KR2021017715W WO2022139214A1 WO 2022139214 A1 WO2022139214 A1 WO 2022139214A1 KR 2021017715 W KR2021017715 W KR 2021017715W WO 2022139214 A1 WO2022139214 A1 WO 2022139214A1
Authority
WO
WIPO (PCT)
Prior art keywords
stainless steel
corrosion resistance
martensitic stainless
improved strength
hot
Prior art date
Application number
PCT/KR2021/017715
Other languages
English (en)
French (fr)
Inventor
송병준
권영진
조규진
추나연
Original Assignee
주식회사 포스코
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 포스코 filed Critical 주식회사 포스코
Priority to CN202180091082.3A priority Critical patent/CN116745455A/zh
Priority to EP21911281.0A priority patent/EP4265784A1/en
Priority to JP2023537896A priority patent/JP2024500865A/ja
Publication of WO2022139214A1 publication Critical patent/WO2022139214A1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/18Hardening; Quenching with or without subsequent tempering
    • C21D1/25Hardening, combined with annealing between 300 degrees Celsius and 600 degrees Celsius, i.e. heat refining ("Vergüten")
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/26Methods of annealing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/002Heat treatment of ferrous alloys containing Cr
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0205Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0236Cold rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0263Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment following hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/42Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/46Ferrous alloys, e.g. steel alloys containing chromium with nickel with vanadium
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/004Dispersions; Precipitations
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/005Ferrite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/008Martensite

Definitions

  • the present invention relates to a martensitic stainless steel and a method for manufacturing the same, and more particularly to a martensitic stainless steel applicable to various parts materials such as home appliances, automobile compressor parts, doctor blades, and the like, and a manufacturing method thereof.
  • stainless steel is classified according to its chemical composition or metal structure. According to the metal structure, stainless steel can be classified into austenite, ferrite, martensite, and dual phase.
  • martensitic stainless steel Although martensitic stainless steel has excellent hardness and wear resistance, it is very brittle and has a low elongation, and the carbon content varies depending on the intended use. For example, for brake discs that do not require much wear resistance, for anchors, less than 0.1% carbon, for type 1 fish tanks, 0.1 to 0.3% carbon, esophagus, scissors, surgical knives, etc. that require high wear resistance 0.3 to 0.7% of carbon for the purpose of use, and 1% or more of carbon in the case of an industrial knife.
  • STS 420 is a representative martensitic stainless steel containing 12 to 15% chromium, and has been most widely used because of its excellent strength, hardness and corrosion resistance.
  • a temper is formed by introducing a strengthening heat treatment to the microstructure in which chromium carbide is distributed in the ferrite matrix to form an austenite phase, which is a high-temperature stable phase, and then rapidly cooling it.
  • a de martensitic organization Use a de martensitic organization.
  • Tempered martensite has a very hard structure, and the higher the content of dissolved carbon, the higher the hardness.
  • the wear resistance of martensitic stainless steel can be secured by residual or precipitating a certain fraction of carbide after heat treatment. Carbon and chromium react to precipitate in the form of chromium carbide, and accordingly, the concentration of Cr in the matrix decreases, resulting in inferior corrosion resistance.
  • martensitic stainless steel with strong brittleness needs to be softened for easy processing, so it is subjected to a batch annealing (BAF) process that facilitates heat treatment workability.
  • BAF batch annealing
  • a thermal history deviation occurs in the longitudinal direction. Specifically, at the 1/2 point in the longitudinal direction, since the heating and cooling rates are the slowest, the size of the carbide becomes coarse, and the deviation is maintained even after cold rolling, which acts as a cause of the deviation of the physical properties of the final material.
  • Embodiments of the present invention are to provide a martensitic stainless steel with improved strength and corrosion resistance while securing hardness by optimizing the content of Mo and V, and a method for manufacturing the same.
  • the martensitic stainless steel hot-rolled steel sheet with improved strength and corrosion resistance according to an embodiment of the present invention, in weight %, C: 0.3 to 0.5%, N: 0.01 to 0.025%, Si: 0.3 to 0.5%, Mn: 0.4 to 0.6, Cr: 13.1 to 14.5%, Mo: 0.95 to 1.10%, V: 0.05 to 0.3%, Ni: 0.3 to 0.5%, Cu: 0.001 to 0.5%, the remainder including Fe and unavoidable impurities, the formula (1) is satisfied.
  • Cr, N, Mo, and V mean the content (% by weight) of each element.
  • martensitic stainless steel hot-rolled annealed steel sheet having improved strength and corrosion resistance may satisfy the following formula (2).
  • Equation (2) -14 ⁇
  • C, Cr, Mo, V, Fe, Si, Mn, Ni, and Cu mean the content (% by weight) of each element.
  • martensitic stainless steel hot-rolled annealed steel sheet having improved strength and corrosion resistance may satisfy Equation (3) below.
  • Equation (3) 0.37 ⁇ C+N ⁇ 0.43
  • martensitic stainless steel hot-rolled annealed steel sheet having improved strength and corrosion resistance may satisfy Equation (4) below.
  • Equation (4) 1.0 ⁇ Mo+V ⁇ 1.35
  • the martensitic stainless steel hot-rolled steel sheet with improved strength and corrosion resistance has ferrite as a matrix structure, (Cr,Fe,Mo,V) 7 C 3 Primary carbide and (Cr,Fe,Mo,V) 23 C 6 It may include a secondary carbide represented by.
  • a weight% of (Mo+V) may be 2.93 to 5.67%.
  • the weight % of (Mo+V) may be 12.2 to 14.8%.
  • the primary carbide may have a particle diameter of 10 ⁇ m or less.
  • the martensitic stainless steel hot-rolled steel sheet having improved strength and corrosion resistance according to an embodiment of the present invention may have a carbide deviation of 10/100 ⁇ m 2 or less in the longitudinal direction.
  • the distribution density of carbides may be 42 to 58 pieces/100 ⁇ m 2 .
  • the hot-rolled annealing material has ferrite as a matrix structure, and (Cr,Fe,Mo,V) 7 C 3 It may include a primary carbide and a secondary carbide represented by (Cr,Fe,Mo,V) 23 C 6 .
  • the weight % of (Mo + V) may be 2.93 to 5.67%.
  • the weight % of (Mo + V) may be 12.2 to 14.8%.
  • the primary carbide may have a particle diameter of 10 ⁇ m or less.
  • the strengthening heat treatment includes quenching at a temperature of 980 to 1,050° C., 400 to 600° C. for 1 minute to tempering for 1 hour; may include.
  • the Vickers hardness may be 520 to 650 Hv.
  • the method for manufacturing martensitic stainless steel with improved strength and corrosion resistance may satisfy the following Equation (2).
  • Equation (2) -14 ⁇
  • C, Cr, Mo, V, Fe, Si, Mn, Ni, and Cu mean the content (% by weight) of each element.
  • the method for manufacturing martensitic stainless steel with improved strength and corrosion resistance may satisfy the following formulas (3) and (4).
  • Equation (3) 0.37 ⁇ C+N ⁇ 0.43
  • Equation (4) 1.0 ⁇ Mo+V ⁇ 1.35
  • 1 is a graph for explaining the relationship between (Cr+3.3Mo+16N)*(Mo+V) value of martensitic stainless steel according to an embodiment of the present invention and Mo+V content in carbide.
  • 3 is a graph for explaining the relationship between the (Cr+3.3Mo+16N)*(Mo+V) value of the martensitic stainless steel according to an embodiment of the present invention and the carbide distribution of the hot-rolled annealing material.
  • FIG. 4 is a scanning electron microscope (SEM) photograph of microstructured chromium carbide after tempering and strengthening heat treatment of Comparative Example 4.
  • SEM scanning electron microscope
  • FIG. 5 is a scanning electron microscope (SEM) photograph of microstructured chromium carbide after tempering and after strengthening heat treatment of Example 1.
  • SEM scanning electron microscope
  • the martensitic stainless steel hot-rolled steel sheet with improved strength and corrosion resistance according to an embodiment of the present invention, in weight %, C: 0.3 to 0.5%, N: 0.01 to 0.025%, Si: 0.3 to 0.5%, Mn: 0.4 to 0.6, Cr: 13.1 to 14.5%, Mo: 0.95 to 1.10%, V: 0.05 to 0.3%, Ni: 0.3 to 0.5%, Cu: 0.001 to 0.5%, the remainder including Fe and unavoidable impurities, the formula (1) is satisfied.
  • Cr, N, Mo, and V mean the content (% by weight) of each element.
  • the present inventors have been able to obtain the following knowledge as a result of various studies in order to improve the corrosion resistance of high-carbon martensitic stainless steel and to minimize material variation.
  • the hot-rolled annealing material produced through general casting, hot-rolling, and upper annealing processes has ferrite as a matrix structure and contains chromium carbide.
  • the size of the primary chromium carbide distributed in the center of the material is coarse to 10 ⁇ m or more, it remains without being decomposed through hot rolling and upper annealing. Even if cold rolling is performed by applying a certain level of reduction, it is difficult to segment and remains as coarse carbide of 3 ⁇ m or more. In addition, even when cold rolling is performed by applying a certain level of reduction, it is difficult to segment and remains in a size of 3 ⁇ m or more.
  • Residual carbide lowers the re-solubility of the austenite phase during reinforcing heat treatment, thereby lowering the hardness and corrosion resistance of martensitic stainless steel, which is the final material, and causing local material imbalance.
  • the inventors can prevent coarsening of chromium carbide and secure uniform physical properties (corrosion resistance, hardness) by diversifying the precipitation sites of chromium carbide, as well as subsequent strengthening It was found that corrosion resistance and strength could be improved by enabling the rapid re-dissolution of chromium and carbon into the hot austenite phase during the heat treatment step.
  • the martensitic stainless steel hot-rolled steel sheet having improved strength and corrosion resistance according to an aspect of the present invention is, by weight, C: 0.3 to 0.5%, N: 0.01 to 0.025%, Si: 0.3 to 0.5%, Mn: 0.4 to 0.6, Cr: 13.1 to 14.5%, Mo: 0.95 to 1.10%, V: 0.05 to 0.3%, Ni: 0.3 to 0.5%, Cu: 0.001 to 0.5%, the remainder contains Fe and unavoidable impurities.
  • the unit is % by weight.
  • the content of C is 0.3 to 0.5%.
  • Carbon (C) is an essential element for securing the hardness of martensitic stainless steel, and 0.3% or more is added to secure hardness after quenching / annealing heat treatment.
  • the content is excessive, chromium carbide is formed excessively, and thus the corrosion resistance of the material itself is deteriorated, and there is a risk of a decrease in toughness due to an increase and residual coarse carbide, so the upper limit can be limited to 0.5%. have.
  • the content of C is 0.36 to 0.4%.
  • the content of N is 0.01 to 0.025%.
  • N Nitrogen
  • Cr nitride which is a low-temperature precipitated phase, and excessive retained austenite phase, so the upper limit may be limited to 0.025% to secure fatigue characteristics.
  • the C+N content is 0.37 to 0.43%.
  • the hardness of martensitic stainless steel can be secured by controlling the content of interstitial elements C and N to 0.37% or more.
  • C+N increases, the rolling force increases during hot rolling, which makes manufacturing difficult and toughness decreases. % can be controlled.
  • the content of Si is 0.3 to 0.5%.
  • Silicon (Si) is an element essential for deoxidation, and serves to improve strength. In the present invention, 0.3% or more is added. However, when the content is excessive, there is a problem in that scale is formed on the surface of the steel sheet during hot rolling to impair the surface quality, and the upper limit may be limited to 0.5%.
  • the content of Mn is 0.4 to 0.6%.
  • Manganese (Mn) is an element added to improve strength and hardenability, and by combining with sulfur (S), which is unavoidably contained during the manufacturing process, to form MnS, it serves to suppress cracks caused by sulfur (S).
  • S sulfur
  • S sulfur
  • 0.4% or more is added.
  • the upper limit may be limited to 0.6%.
  • the content of Cr is 13.1 to 14.5%.
  • Chromium (Cr) is a basic element for securing corrosion resistance, and serves to improve hardness and wear resistance by forming chromium carbide. In the present invention, 13.1% or more is added. However, when the content is excessive, the manufacturing cost increases and the hardenability is increased to limit the upper limit to 14.5%.
  • the content of Mo is 0.95 to 1.10%.
  • Molybdenum (Mo) is an element that improves corrosion resistance, suppresses decarburization, and improves hardenability. It replaces Cr in chromium carbide to refine carbide, and in the present invention, 0.95% or more is added. However, when the content is excessive, the manufacturing cost increases and the hardenability is increased to limit the upper limit to 1.10%.
  • the content of V is 0.05 to 0.3%.
  • Vanadium (V) is an element effective in suppressing coarsening of chromium carbide by forming carbide, preventing coarsening of grains during heat treatment and improving wear resistance, and is added in an amount of 0.05% or more in the present invention.
  • the upper limit may be limited to 0.3%.
  • the Mo+V content is between 1.0 and 1.35%.
  • the content of Ni is 0.3 to 0.5%.
  • Nickel (Ni) is an essential element added to secure the austenite structure in the hot working region of martensitic stainless steel, and serves to improve corrosion resistance and hardenability. In the present invention, it is added in 0.3% or more. However, if the content is excessive, the manufacturing cost increases and there is a problem of lowering the workability, so the upper limit may be limited to 0.5%.
  • the content of Cu is 0.001 to 0.5%.
  • Copper (Cu) is an austenite phase forming element, and serves to improve strength, hardness, and corrosion resistance.
  • copper (Cu) is added in an amount of 0.001% or more.
  • the content is excessive, the manufacturing cost increases, the hot workability is reduced, and there is a problem of forming a precipitated phase such as CuS that is harmful to corrosion resistance by reflecting S and the upper limit can be limited to 0.5%.
  • the remaining component of the present invention is iron (Fe).
  • Fe iron
  • the martensitic stainless steel hot-rolled steel sheet having improved strength and corrosion resistance satisfies the following formula (1).
  • Cr, N, Mo, and V mean the content (% by weight) of each element.
  • the Pitting Resistance Equivalent Number is expressed as Cr+3.3Mo+16N.
  • the PREN value in Equation (1) in addition to limiting the content of alloying elements to the above-mentioned conditions, by controlling the PREN value in Equation (1) to 16.4 or more, corrosion resistance was secured even in a humid environment such as a compressor.
  • the hot-rolled annealing material produced through the phase annealing process has ferrite as a matrix structure, and contains chromium carbide.
  • the primary carbide formed during slab cooling has limitations in controlling its size and distribution during hot rolling and cold rolling.
  • FIG. 1 is a graph for explaining the relationship between (Cr+3.3Mo+16N)*(Mo+V) value of martensitic stainless steel according to an embodiment of the present invention and Mo+V content in carbide
  • FIG. 2 is the (Cr+3.3Mo+16N)*(Mo+V) value and (Cr,Fe,Mo,V) 7 C 3 of the martensitic stainless steel according to an embodiment of the present invention
  • the size of the primary carbide It is a graph to explain the relationship between
  • Equation (2) was derived in consideration of the characteristic change of the carbide during the strengthening heat treatment.
  • the present inventors have found that the content of C, Cr, and N affected by the addition of Mo and V that changes the properties of the precipitated carbide, the content of Mo+V in the chromium carbide, and Z expressed as M(C, N) Equation (2) was derived in consideration of the relationship between the formation of a phase (here, M is 44V+41Cr) and vanadium nitride represented by M-N (here, M is 74.2V+5Cr) and the added component.
  • C, Cr, Mo, V, Fe, Si, Mn, Ni, and Cu mean the content (% by weight) of each element.
  • Equation (2) the value of Equation (2) is higher, coarsening of primary carbides can be prevented and fine secondary carbides can be precipitated.
  • value of formula (2) exceeds -14, added Mo and V substitute Cr of primary and secondary carbides to suppress coarsening, and Z phase and vanadium nitride are formed to form grain boundaries By preferentially precipitating along the grain boundary, the formation of secondary chromium carbide (M 23 C 6 ) that is long precipitated along the grain boundary is suppressed.
  • the value of Equation (2) is too high, there is a problem that the Z phase and vanadium nitride itself act as a precipitation site for secondary carbides, and there is a problem that the manufacturing cost increases. do.
  • the reinforced heat treatment process is a process in which the material is maintained at a high temperature of about 1,000 to 1,200 ° C for a short time and then rapidly cooled to room temperature. It is a process to improve the corrosion resistance of materials by densely creating a thin passivation film, chromium oxide.
  • the austenite phase containing carbon or nitrogen re-dissolved during rapid cooling is transformed into a martensite phase, the hardness of the material is improved.
  • the size of the spheroidized chromium carbide distributed in the matrix structure is large, it is difficult to re-dissolve the chromium carbide in the high-temperature austenite phase, so that the concentration of chromium and carbon present in the matrix structure is reduced, and as a result, the corrosion resistance of the material and lowering the hardness.
  • the size of the chromium carbide is fine, it is easy to re-dissolve the chromium carbide even after a short heat treatment, so that the concentration of chromium, carbon and nitrogen in the matrix structure increases, thereby improving corrosion resistance and hardness.
  • Mo and V added in the present invention suppress the growth of carbides by substituting Cr of primary and secondary Cr carbides, and preferentially combine with C to form fine carbides to preempt the precipitation sites of primary and secondary Cr carbides. Evens the refinement and distribution of carbides.
  • the martensitic stainless steel hot-rolled steel sheet with improved strength and corrosion resistance has ferrite as a matrix structure, and (Cr,Fe,Mo,V) 7 C 3 Primary carbide and (Cr,Fe,Mo,V) 23 C 6 secondary carbides.
  • Mo and V form carbide in combination with Cr, thereby reducing the Cr content in the carbide and increasing the concentration of chromium in the matrix by forming fine and fine carbide.
  • the weight % of (Mo+V) in the primary carbide represented by (Cr,Fe,Mo,V) 7 C 3 is 2.93 to 5.67%, and the particle diameter of the primary carbide is 10 ⁇ m or less, (Cr ,Fe,Mo,V) 23 C 6
  • the weight% of (Mo+V) in the secondary carbide is 12.2 to 14.8%.
  • Z phase represented by M (C, N) (where M is 44V + 41Cr) and vanadium nitride represented by M-N (here, M is 74.2V + 5Cr) are formed, Z-phase and vanadium nitride themselves act as precipitation sites for secondary carbides, so that carbides can be finely and uniformly distributed.
  • the martensitic stainless steel hot-rolled steel sheet having improved strength and corrosion resistance according to an embodiment of the present invention has a carbide deviation of 10/100 ⁇ m 2 or less in the longitudinal direction.
  • the stainless steel having the above composition is manufactured into a slab by continuous casting or ingot casting, and a hot-rolled steel sheet that can be processed through hot rolling treatment is manufactured.
  • the manufactured hot-rolled steel sheet is subjected to a softening operation through upper annealing heat treatment in order to secure good workability before proceeding with processing such as precision rolling to a thickness usable for coating.
  • phase transformation into martensite is prevented by introducing a phase annealing heat treatment immediately after hot rolling.
  • Phase annealing may be performed in a temperature range of 600 to 900° C. in order to uniformly distribute the carbide.
  • the annealing temperature is low, the driving force for annealing into the ferrite and carbide phases is insufficient, and the martensite phase may remain.
  • the temperature range of the phase annealing heat treatment is to be limited to 600 to 900°C.
  • the martensitic stainless steel hot-rolled material subjected to the upper annealing heat treatment can be manufactured into martensitic stainless steel through a step of strengthening heat treatment after being processed into a final shape.
  • the strengthening heat treatment may further include an austenizing step, a quenching step, an annealing step.
  • the step of the austenizing treatment is a step of transforming the matrix structure of the steel from ferrite to austenite.
  • heat treatment may be performed at a temperature of 1,000° C. or higher for 1 minute or longer.
  • the chromium carbide is re-dissolved into the matrix in the form of chromium and carbon to increase the hardness of the martensitic stainless steel after the subsequent quenching step.
  • the quenching step is a step of transforming the austenite structure into martensite with high hardness by rapidly cooling it to room temperature in a temperature range of 980 to 1,050° C. after the austenizing treatment. If the cooling rate is secured to 0.2°C/s or more, a martensitic structure can be secured.
  • the tempering step is a step for imparting toughness to the martensitic structure with high hardness and strong brittleness after the quenching step.
  • heat treatment may be performed at a temperature of 400 to 600° C. for 1 minute to 1 hour depending on the thickness.
  • the ferrite structure may be finally transformed into a martensitic structure, and desired hardness and corrosion resistance may be secured.
  • the Vickers hardness of the material re-dissolved by the strengthening heat treatment may be 520 to 650 Hv.
  • the slabs of various alloy composition ranges shown in Table 1 below were reheated at 1,250°C, and after rough rolling, finish hot rolling was performed at 800°C or higher. Next, without cooling the hot-rolled sheet to room temperature, it was charged into an upper annealing furnace at 700°C while maintaining a temperature of 600°C or higher to perform hot-rolling annealing.
  • Formula (1) is (Cr+3.3Mo+16N)*(Mo+V).
  • Example 1 0.38 0.4 0.45 0.4 0.05 13.5 1.05 0.07 0.02 0.40 1.12 19.4
  • Example 2 0.38 0.4 0.45 0.4 0.05 13.5 0.95 0.05 0.02 0.40 1.00 17.0
  • Example 3 0.38 0.4 0.45 0.4 0.05 13.5 1.1 0.15 0.02 0.40 1.25 21.8
  • Example 4 0.38 0.4 0.45 0.4 0.05 14.5 1.05 0.07 0.02 0.40 1.12 20.5
  • Example 5 0.4 0.5 0.6 0.5 0.5 13.9 1.1 0.15 0.025 0.43 1.25 22.4
  • Example 6 0.36 0.3 0.4 0.3 0.001 13.1 0.95 0.05 0.01 0.37 1.00 16.4
  • Example 7 0.38 0.4 0.45 0.4 0.05 13.5 1.05 0.3 0.02 0.40 1.35 23.3 Comparative Example 1 0.38 0.4 0.45 0.4 0.05 13.5 0.5 0.001 0.02 0.40 0.5 7.8 Comparative Example 2 0.38 0.4 0.45 0.4 0.05 13.5 0.5 0.04 0.02 0.40
  • the cold-rolled annealed material was subjected to a strengthening heat treatment. Specifically, the cold-rolled annealed material is heat treated at 1,000°C for 420 seconds, quenched to cool at a cooling rate of 233°C/s to 300°C, and then tempered at 350°C for 350 seconds to final martensitic stainless steel Steel was prepared and Vickers hardness was measured, and the results are shown in Table 2 below.
  • the weight % of (Mo+V) in the primary carbide represented by (Cr,Fe,Mo,V) 7 C 3 is 2.93 to 5.67%, and the primary carbide has a particle size of 10 ⁇ m or less, and (Cr, Fe, Mo, V) 23 C 6
  • the weight % of (Mo+V) in the secondary carbide is 12.2 to 14.8%.
  • Comparative Example 5 Comparative Example 6, Comparative Example 7 and Comparative Example 10, Z phase and vanadium nitride were formed during hot rolling annealing, but the content of Mo and V fell short of the range of 16.4 to 23.3 suggested in the present invention, The carbide particle size of the hot-rolled annealed material could not be derived below the target 10 ⁇ m.
  • SEM scanning electron microscope
  • the martensitic stainless steel hot-rolled steel sheet according to the present invention has improved strength and corrosion resistance while ensuring hardness, industrial use is possible.

Abstract

강도 및 내식성이 향상된 마르텐사이트계 스테인리스강이 개시된다. 개시된 마르텐사이트계 스테인리스 열연소둔 강판은 중량%로, C: 0.3 내지 0.5%, N: 0.01 내지 0.025%, Si: 0.3 내지 0.5%, Mn: 0.4 내지 0.6, Cr: 13.1 내지 14.5%, Mo: 0.95 내지 1.10%, V: 0.05 내지 0.3%, Ni: 0.3 내지 0.5%, Cu: 0.001 내지 0.5%, 나머지는 Fe 및 불가피한 불순물을 포함하고, 하기 식 (1)을 만족한다. 식(1): 16.4 ≤ (Cr+3.3Mo+16N)*(Mo+V) ≤ 23.3 여기서, Cr, N, Mo, V는 각 원소의 함량(중량%)을 의미한다.

Description

강도 및 내식성이 향상된 마르텐사이트계 스테인리스강 및 이의 제조 방법
본 발명은 마르텐사이트계 스테인리스강 및 이의 제조 방법에 관한 것으로, 특히 가전제품, 자동차의 압축기 부품용, doctor blade 등 다양한 부품 소재로 적용이 가능한 마르텐사이트계 스테인리스강 및 이의 제조 방법에 관한 것이다.
일반적으로 스테인리스강은 화학성분이나 금속조직에 따라 분류한다. 금속조직에 따를 경우, 스테인리스강은 오스테나이트(Austenite)계, 페라이트(Ferrite)계, 마르텐사이트(Martensite)계 그리고 이상(Dual Phase)계로 분류할 수 있다.
마르텐사이트계 스테인리스강은 경도, 내마모성이 뛰어나지만, 취성이 매우 강하고 연신율이 낮은 소재로, 사용 용도에 따라 탄소 함량이 다르다. 예를 들어, 내마모성이 크게 요구되지 않는 브레이크 디스크용, 앙카용에는 탄소를 0.1% 이하, 1종 양식기용에는 탄소를 0.1 내지 0.3%, 높은 내마모특성이 요구되는 식도, 가위, 수술용 Knife 등의 용도에는 탄소를 0.3 내지 0.7%, 산업용 Knife 등의 경우에는 탄소를 1% 이상 첨가하기도 한다.
STS 420은 크롬을 12 내지 15% 함유하는 대표적인 마르텐사이트계 스테인리스강으로, 강도, 경도 및 내식성이 우수하여 가장 널리 사용되어 왔다.
마르텐사이트계 스테인리스강은 강도 및 경도를 확보하기 위해, 소둔 후 페라이트 기지에 크롬탄화물이 분포되어 있는 미세조직에 강화 열처리를 도입하여 고온 안정상인 오스테나이트상을 형성한 후, 급속 냉각하여 형성되는 템퍼드 마르텐사이트 조직을 활용한다. 템퍼드 마르텐사이트는 매우 경한 조직으로, 고용된 탄소의 함량이 높을수록 경도가 높아진다.
한편, 열처리 후 일정 분율의 탄화물 잔류 또는 석출시킴으로써 마르텐사이트계 스테인리스강의 내마모성을 확보할 수 있다. 탄소와 크롬이 반응하여 크롬탄화물 형태로 석출되며, 이에 따라, 기지의 Cr 농도가 감소하여 내식성이 열위해진다.
또한, 잔류하는 탄화물의 크기가 클수록, 기지로 쉽게 분해되기 어려워 경도 및 내식성 편차가 발생하고, 피로 환경에서는 응력의 집중을 받아 크랙 발생의 시발점으로 작용하여 소재의 수명을 단축시키는 문제가 있다.
한편, 취성이 강한 마르텐사이트계 스테인리스강은 가공이 용이하도록 연화시킬 필요가 있어, 열처리 작업성이 용이한 상소둔(BAF, Batch Annealing Furnace) 공정을 거친다. 권취된 코일상태로 소둔이 진행되는 동안, 길이방향으로 열이력 편차가 발생한다. 구체적으로, 길이방향의 1/2 지점에서는 가열, 냉각속도가 가장 느리기 때문에 탄화물 크기가 조대해지고, 냉간압연 후에도 편차가 유지되어, 최종 소재의 물성 편차를 일으키는 원인으로 작용한다.
따라서, 기존 고탄소 소재와 동등 이상의 경도, 강도 및 내식성을 확보하면서도 재질편차를 억제할 수 있는 마르텐사이트계 스테인리스강의 개발과 열처리 조건의 정립이 요구된다.
본 발명의 실시예들은 Mo, V의 함량을 최적화하여 경도를 확보하면서도 강도 및 내식성이 향상된 마르텐사이트계 스테인리스강 및 그 제조 방법을 제공하고자 한다.
본 발명의 일 실시예에 따른 강도 및 내식성이 향상된 마르텐사이트계 스테인리스 열연소둔 강판은, 중량%로, C: 0.3 내지 0.5%, N: 0.01 내지 0.025%, Si: 0.3 내지 0.5%, Mn: 0.4 내지 0.6, Cr: 13.1 내지 14.5%, Mo: 0.95 내지 1.10%, V: 0.05 내지 0.3%, Ni: 0.3 내지 0.5%, Cu: 0.001 내지 0.5%, 나머지는 Fe 및 불가피한 불순물을 포함하고, 하기 식 (1)을 만족한다.
식(1): 16.4 ≤ (Cr+3.3Mo+16N)*(Mo+V) ≤ 23.3
여기서, Cr, N, Mo, V는 각 원소의 함량(중량%)을 의미한다.
또한, 본 발명의 일 실시예에 따른 강도 및 내식성이 향상된 마르텐사이트계 스테인리스 열연소둔 강판은, 하기 식 (2)을 만족할 수 있다.
식(2): -14 ≤
-36442+248C+365Cr+373Mo+530V+365Fe+350Si+312Mn+331Ni+506Cu ≤ 50
여기서, C, Cr, Mo, V, Fe, Si, Mn, Ni, Cu 는 각 원소의 함량(중량%)을 의미한다.
또한, 본 발명의 일 실시예에 따른 강도 및 내식성이 향상된 마르텐사이트계 스테인리스 열연소둔 강판은, 하기 식 (3)을 만족할 수 있다.
식(3): 0.37 ≤ C+N ≤ 0.43
또한, 본 발명의 일 실시예에 따른 강도 및 내식성이 향상된 마르텐사이트계 스테인리스 열연소둔 강판은, 하기 식 (4)를 만족할 수 있다.
식(4): 1.0 ≤ Mo+V ≤ 1.35
또한, 본 발명의 일 실시예에 따른 강도 및 내식성이 향상된 마르텐사이트계 스테인리스 열연소둔 강판은, 페라이트를 기지조직으로 하고, (Cr,Fe,Mo,V)7C3으로 표현되는 1차 탄화물 및 (Cr,Fe,Mo,V)23C6으로 표현되는 2차 탄화물을 포함할 수 있다.
또한, 본 발명의 일 실시예에 따른 강도 및 내식성이 향상된 마르텐사이트계 스테인리스 열연소둔 강판은, 상기 1차 탄화물 내, (Mo+V)의 중량%가 2.93 내지 5.67%일 수 있다.
또한, 본 발명의 일 실시예에 따른 강도 및 내식성이 향상된 마르텐사이트계 스테인리스 열연소둔 강판은, 상기 2차 탄화물 내, (Mo+V)의 중량%가 12.2 내지 14.8%일 수 있다.
또한, 본 발명의 일 실시예에 따른 강도 및 내식성이 향상된 마르텐사이트계 스테인리스 열연소둔 강판은, 상기 1차 탄화물의 입경이 10㎛ 이하일 수 있다.
또한, 본 발명의 일 실시예에 따른 강도 및 내식성이 향상된 마르텐사이트계 스테인리스 열연소둔 강판은, 길이 방향으로, 탄화물 편차가 10개/100㎛2 이하일 수 있다.
또한, 본 발명의 일 실시예에 따른 강도 및 내식성이 향상된 마르텐사이트계 스테인리스 열연소둔 강판은, 냉간 압연 후, 탄화물의 분포밀도는 42 내지 58개/100㎛2 일 수 있다.
본 발명의 다른 일 실시예에 따른 강도 및 내식성이 향상된 마르텐사이트계 스테인리스강의 제조 방법은, 중량%로, C: 0.3 내지 0.5%, N: 0.01 내지 0.025%, Si: 0.3 내지 0.5%, Mn: 0.4 내지 0.6, Cr: 13.1 내지 14.5%, Mo: 0.95 내지 1.10%, V: 0.05 내지 0.3%, Ni: 0.3 내지 0.5%, Cu: 0.001 내지 0.5%, 나머지는 Fe 및 불가피한 불순물을 포함하고, 하기 식 (1)을 만족하는 슬라브를 열간 압연하는 단계; 열간 압연 직후, 600 내지 900℃의 온도범위에서 상소둔 열처리하는 단계; 열연 소둔재를 냉간 압연하는 단계; 및 냉연재를 강화 열처리하는 단계;를 포함한다.
또한, 본 발명의 일 실시예에 따른 강도 및 내식성이 향상된 마르텐사이트계 스테인리스강의 제조 방법은, 상기 열연 소둔재는 페라이트를 기지조직으로 하고, (Cr,Fe,Mo,V)7C3으로 표현되는 1차 탄화물 및 (Cr,Fe,Mo,V)23C6으로 표현되는 2차 탄화물을 포함할 수 있다.
또한, 본 발명의 일 실시예에 따른 강도 및 내식성이 향상된 마르텐사이트계 스테인리스강의 제조 방법은, 상기 1차 탄화물 내, (Mo+V)의 중량%가 2.93 내지 5.67%일 수 있다.
또한, 본 발명의 일 실시예에 따른 강도 및 내식성이 향상된 마르텐사이트계 스테인리스강의 제조 방법은, 상기 2차 탄화물 내, (Mo+V)의 중량%가 12.2 내지 14.8%일 수 있다.
또한, 본 발명의 일 실시예에 따른 강도 및 내식성이 향상된 마르텐사이트계 스테인리스강의 제조 방법은, 상기 1차 탄화물의 입경이 10㎛ 이하일 수 있다.
또한, 본 발명의 일 실시예에 따른 강도 및 내식성이 향상된 마르텐사이트계 스테인리스강의 제조 방법은, 냉간 압연 후, 42 내지 58개/100㎛2 이하의 탄화물이 분포할 수 있다.
또한, 본 발명의 일 실시예에 따른 강도 및 내식성이 향상된 마르텐사이트계 스테인리스강의 제조 방법은, 상기 강화 열처리는, 980 내지 1,050℃의 온도에서 소입하는 단계, 400 내지 600℃의 온도에서 1분 내지 1시간 동안 소려하는 단계;를 포함할 수 있다.
또한, 본 발명의 일 실시예에 따른 강도 및 내식성이 향상된 마르텐사이트계 스테인리스강의 제조 방법은, 강화 열처리 후, 비커스 경도는 520 내지 650 Hv일 수 있다.
또한, 본 발명의 일 실시예에 따른 강도 및 내식성이 향상된 마르텐사이트계 스테인리스강의 제조 방법은, 하기 식 (2)을 만족할 수 있다.
식(2): -14 ≤
-36442+248C+365Cr+373Mo+530V+365Fe+350Si+312Mn+331Ni+506Cu ≤ 50
여기서, C, Cr, Mo, V, Fe, Si, Mn, Ni, Cu 는 각 원소의 함량(중량%)을 의미한다.
또한, 본 발명의 일 실시예에 따른 강도 및 내식성이 향상된 마르텐사이트계 스테인리스강의 제조 방법은, 하기 식 (3) 및 식 (4)를 만족할 수 있다.
식(3): 0.37 ≤ C+N ≤ 0.43
식(4): 1.0 ≤ Mo+V ≤ 1.35
본 발명의 실시예에 따르면, 경도를 확보하면서도 강도 및 내식성이 향상된 마르텐사이트계 스테인리스강 및 그 제조 방법을 제공할 수 있다.
도 1은 본 발명의 일 실시예에 따른 마르텐사이트계 스테인리스강의 (Cr+3.3Mo+16N)*(Mo+V)값과 탄화물 내 Mo+V 함량 사이의 관계를 설명하기 위한 그래프이다.
도 2는 본 발명의 일 실시예에 따른 마르텐사이트계 스테인리스강의 (Cr+3.3Mo+16N)*(Mo+V)값과 (Cr,Fe,Mo,V)7C3으로 표현되는 1차 탄화물의 크기 사이의 관계를 설명하기 위한 그래프이다.
도 3은 본 발명의 일 실시예에 따른 마르텐사이트계 스테인리스강의 (Cr+3.3Mo+16N)*(Mo+V)값과 열연 소둔재 탄화물 분포 사이의 관계를 설명하기 위한 그래프이다.
도 4는 소려 후, 비교예 4의 강화 열처리 후 미세조직의 크롬탄화물을 관찰한 주사전자현미경(SEM) 사진이다.
도 5는 소려 후, 실시예 1의 강화 열처리 후 미세조직의 크롬탄화물을 관찰한 주사전자현미경(SEM) 사진이다.
본 발명의 일 실시예에 따른 강도 및 내식성이 향상된 마르텐사이트계 스테인리스 열연소둔 강판은, 중량%로, C: 0.3 내지 0.5%, N: 0.01 내지 0.025%, Si: 0.3 내지 0.5%, Mn: 0.4 내지 0.6, Cr: 13.1 내지 14.5%, Mo: 0.95 내지 1.10%, V: 0.05 내지 0.3%, Ni: 0.3 내지 0.5%, Cu: 0.001 내지 0.5%, 나머지는 Fe 및 불가피한 불순물을 포함하고, 하기 식 (1)을 만족한다.
식(1): 16.4 ≤ (Cr+3.3Mo+16N)*(Mo+V) ≤ 23.3
여기서, Cr, N, Mo, V는 각 원소의 함량(중량%)을 의미한다.
이하에서는 본 발명의 실시예를 첨부 도면을 참조하여 상세히 설명한다. 이하의 실시예는 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 본 발명의 사상을 충분히 전달하기 위해 제시하는 것이다. 본 발명은 여기서 제시한 실시예만으로 한정되지 않고 다른 형태로 구체화될 수도 있다. 도면은 본 발명을 명확히 하기 위해 설명과 관계 없는 부분의 도시를 생략하고, 이해를 돕기 위해 구성요소의 크기를 다소 과장하여 표현할 수 있다.
명세서 전체에서, 어떤 부분이 어떤 구성요소를 "포함"한다고 할 때, 이는 특별히 반대되는 기재가 없는 한 다른 구성요소를 제외하는 것이 아니라 다른 구성요소를 더 포함할 수 있는 것을 의미한다.
단수의 표현은 문맥상 명백하게 예외가 있지 않는 한, 복수의 표현을 포함한다. 이하에서는 본 발명에 따른 실시예를 첨부된 도면을 참조하여 상세히 설명한다.
본 발명자들은 고탄소 마르텐사이트계 스테인리스강의 내식성을 향상 시키고, 재질 편차를 최소화하기 위하여 다양한 검토를 행한 결과, 이하의 지견을 얻을 수 있었다.
내식성 향상을 위해서는 Cr 함량을 높이는 방법이 고려될 수 있으나, Cr은 고가 원소로 제조원가를 상승시키는 바, 바람직한 개발 방향이 아니다.
일반적인 연주, 열연, 상소둔 공정을 경유하여 생산된 열연소둔재는, 페라이트를 기지 조직으로 하고, 크롬탄화물을 포함한다. 크롬 탄화물은, 주조 과정에서 Cr, C 중심 편석으로 형성되어 수십 ~ 수백 ㎛ 크기를 갖는 M7C3(M은 Cr:Fe=73.6%:17.2%)로 표현되는 1차 크롬탄화물과, 상소둔시 결정입계, 마르텐사이트 래스(Lath) 입계를 따라 우선적으로 석출되고, M23C6(M은 Cr:Fe=73%:19.3%)로 표현되는 2차 크롬탄화물을 포함한다.
특히, 소재의 중심부에 분포하는 1차 크롬탄화물의 크기가 10㎛ 이상으로 조대하면, 열연, 상소둔을 거치면서 분해되지 않고 잔류한다. 일정수준의 압하량을 가하여 냉간압연을 수행하더라도 분절이 어려워 3㎛ 이상의 조대한 탄화물로 잔류하게 된다. 또한, 일정수준의 압하량을 가하여 냉간압연을 수행하더라도 분절이 어려워 3㎛ 이상의 크기로 잔류하게 된다.
잔류하는 탄화물은, 강화 열처리 시 오스테나이트상으로의 재고용율을 떨어뜨려 최종 소재인 마르텐사이트계 스테인리스강의 경도 및 내식성을 저하시키고, 국부적인 재질 불균형을 초래한다.
발명자들은 Mo 및 V 함량을 일정량 이상으로 확보할 경우, 크롬탄화물의 조대화를 방지하고, 크롬탄화물의 석출 사이트를 다양화하여 균일한 물성(내식성, 경도)을 확보할 수 있을 뿐만 아니라 후속되는 강화 열처리 단계에서 고온의 오스테나이트상으로의 크롬 및 탄소의 빠른 재고용을 가능하게 하여, 내식성 및 강도를 향상시킬 수 있다는 것을 발견하였다.
이하에서는 본 발명에 따른 실시예를 첨부된 도면을 참조하여 상세히 설명한다. 우선 마르텐사이트계 스테인리스강에 대해 설명한 후, 마르텐사이트 스테인리스강의 제조방법에 대해 설명한다.
본 발명의 일 측면에 따른 강도 및 내식성이 향상된 마르텐사이트계 스테인리스 열연소둔 강판은, 중량%로, C: 0.3 내지 0.5%, N: 0.01 내지 0.025%, Si: 0.3 내지 0.5%, Mn: 0.4 내지 0.6, Cr: 13.1 내지 14.5%, Mo: 0.95 내지 1.10%, V: 0.05 내지 0.3%, Ni: 0.3 내지 0.5%, Cu: 0.001 내지 0.5%, 나머지는 Fe 및 불가피한 불순물을 포함한다.
이하, 본 발명의 실시예에서의 함금성분 함량의 수치 한정 이유에 대하여 설명한다. 이하에서는 특별한 언급이 없는 한 단위는 중량%이다.
C의 함량은 0.3 내지 0.5%이다.
탄소(C)는 마르텐사이트계 스테인리스강의 경도를 확보하기 위한 필수적인 원소로 소입/소려 열처리 후 경도를 확보하기 위해 0.3% 이상 첨가한다. 다만 그 함량이 과도할 경우, 크롬탄화물이 과도하게 형성되고 이에 따라 소재 자체의 내식성이 저하될 뿐만 아니라, 증가와 조대한 탄화물 잔류에 따른 인성 저하의 우려가 있으므로 그 상한을 0.5%로 한정할 수 있다. 바람직하게, C의 함량은 0.36 내지 0.4%이다.
N의 함량은 0.01 내지 0.025%이다.
질소(N)는 내식성과 경도를 동시에 개선하기 위해 첨가되는 원소로서, C 대신 첨가하더라도 국부적인 미세 편석을 유발하지 않아 제품에 조대한 석출물을 형성하지 않는 장점이 있다. 이러한 효과를 구현하기 위해 본 발명에서는 N을 0.01% 이상 첨가한다. 다만 그 함량이 과도할 경우, 저온 석출상인 Cr질화물 및 과도한 잔류 오스테나이트상을 형성하는 문제가 있어, 피로특성 확보를 위해 그 상한을 0.025%로 한정할 수 있다.
C+N 함량은 0.37 내지 0.43%이다.
침입형 원소인 C와 N의 함량을 0.37%이상으로 제어함으로써 마르텐사이트계 스테인리스강의 경도를 확보할 수 있다. 반면, C+N이 증가할수록 열간 압연 과정에서 압하력이 증가하게 되어 제조가 용이하지 않고, 인성이 저하되므로, 최종 소재의 경도 및 제조용이성을 고려하여, C+N 값의 범위를 0.37 내지 0.43%로 제어할 수 있다.
Si의 함량은 0.3 내지 0.5%이다.
규소(Si)는 탈산을 위해 필수적으로 첨가되는 원소이고, 강도를 향상시키는 역할을 하는 바, 본 발명에서는 0.3% 이상 첨가한다. 다만 그 함량이 과도할 경우, 열간 압연 시 강판 표면에 스케일을 형성하여 표면 품질을 저해하는 문제가 있어, 그 상한을 0.5%로 한정할 수 있다.
Mn의 함량은 0.4 내지 0.6%이다.
망간(Mn)은 강도 및 경화능을 향상시키기 위해 첨가되는 원소로, 제조공정 중 불가피하게 함유되는 황(S)과 결합하여 MnS를 형성함으로써, 황(S)에 의한 크랙 발생을 억제하는 역할하는 바, 본 발명에서는 0.4% 이상 첨가한다. 다만 그 함량이 과도할 경우, 강의 표면품질을 저해하고 인성을 저해하는 문제가 있어, 그 상한을 0.6%로 한정할 수 있다.
Cr의 함량은 13.1 내지 14.5%이다.
크롬(Cr)은 내식성을 확보하는 기본 원소로, 크롬 탄화물을 형성하여 경도 및 내마모성 향상시키는 역할을 하는 바, 본 발명에서는 13.1% 이상 첨가한다. 다만 그 함량이 과도할 경우, 제조비용이 상승하고, 경화능을 증가시켜 그 상한을 14.5%로 한정할 수 있다.
Mo의 함량은 0.95 내지 1.10%이다.
몰리브덴(Mo)은 내식성을 향상시키고, 탈탄을 억제하며, 경화능을 향상시키는 원소로, 크롬탄화물에서 Cr을 대체하여 탄화물을 미세화하는 역할을 하는 바, 본 발명에서는 0.95% 이상 첨가한다. 다만 그 함량이 과도할 경우, 제조비용이 상승하고, 경화능을 증가시켜 그 상한을 1.10%로 한정할 수 있다.
V의 함량은 0.05 내지 0.3%이다.
바나듐(V)은 탄화물을 형성하여 크롬탄화물의 조대화를 억제하고, 열처리 시의 결정립의 조대화 방지 및 내마모성의 향상에 효과적인 원소로, 본 발명에서는 0.05% 이상 첨가한다. 다만 그 함량이 과도할 경우, 제조비용이 상승하고, 인성을 저하시키는 문제가 있어 그 상한을 0.3%로 한정할 수 있다.
Mo+V 함량은 1.0 내지 1.35%이다.
Cr 대신 C와 우선적으로 반응하여 탄화물을 형성하는 Mo와 V의 함량을 1.0%이상으로 제어함으로써 내식성을 향상시키고, 크롬탄화물의 결정립을 미세하게 확보할 수 있다. 한편, Mo+V 함량이 증가함에 따라, 전술한 효과가 포화되고 소재의 가격 경쟁력을 고려하여, Mo+V 값의 범위를 1.0 내지 1.35%로 제어할 수 있다.
Ni의 함량은 0.3 내지 0.5%이다.
니켈(Ni)은 마르텐사이트계 스테인리스강의 열간가공 영역에서 오스테나이트 조직을 확보하기 위해 첨가되는 필수 원소로, 내식성 및 소입성을 향상시키는 역할을 하는 바, 본 발명에서는 0.3% 이상 첨가한다. 다만 그 함량이 과도할 경우, 제조비용이 상승하고, 가공성을 저하시키는 문제가 있어 그 상한을 0.5%로 한정할 수 있다.
Cu의 함량은 0.001 내지 0.5%이다.
구리(Cu)는 오스테나이트상 형성원소로, 강도, 경도 및 내식성을 향상시키는 역할을 하는 바, 본 발명에서는 0.001% 이상 첨가한다. 다만, 그 함량이 과다할 경우, 제조비용이 상승하고, 열간 가공성을 저하시키며, S와 반영하여 내식성에 유해한 CuS 등 석출상을 형성하는 문제가 있어 그 상한을 0.5%로 한정할 수 있다.
본 발명의 나머지 성분은 철(Fe)이다. 다만, 통상의 제조과정에서는 원료 또는 주위 환경으로부터 의도되지 않는 불순물들이 불가피하게 혼입될 수 있으므로, 이를 배제할 수는 없다. 이들 불순물들은 통상의 제조과정의 기술자라면 누구라도 알 수 있는 것이기 때문에 그 모든 내용을 특별히 본 명세서에서 언급하지는 않는다.
한편, 본 발명의 일 실시예에 따른 강도 및 내식성이 향상된 마르텐사이트계 스테인리스 열연소둔 강판은, 하기 식 (1)을 만족한다.
식(1): 16.4 ≤ (Cr+3.3Mo+16N)*(Mo+V) ≤ 23.3
여기서, Cr, N, Mo, V는 각 원소의 함량(중량%)을 의미한다.
일반적으로, 내공식지수(Pitting Resistance Equivalent Number, PREN)는 Cr+3.3Mo+16N로 표현된다. PREN*(Mo+V) 값이 높을수록 내공식이 우수하다는 것을 의미한다. 본 발명에서는 합금원소의 함량을 상술한 조건으로 한정하는 것 이외에도, 식 (1)에서 PREN 값을 16.4 이상으로 제어함으로써 압축기 등 습기가 발생하는 환경에서도 내식성을 확보하고자 하였다.
마르텐사이트계 스테인리스강의 제조 과정에서, 상소둔 공정을 경유하여 생산된 열연소둔재는, 페라이트를 기지 조직으로 하고, 크롬탄화물을 포함한다. 크롬 탄화물은, 주조 과정에서 Cr, C 중심 편석으로 형성되어 수십 ~ 수백 ㎛ 크기를 갖는 M7C3(M은 Cr:Fe=73.6%:17.2%)로 표현되는 1차 크롬탄화물과, 상소둔시 결정입계를 따라 우선적으로 석출되고, M23C6(M은 Cr:Fe=73%:19.3%)로 표현되는 2차 크롬탄화물을 포함한다.
슬라브 냉각시 형성되는 1차 탄화물은 열연 및 냉연 과정에서 그 크기 및 분포를 제어하기데 한계가 있다.
본 발명에서는 소입/소려 연속 열처리를 포함하는 강화 열처리에 의하여 마르텐사이트계 스테인리스강으로 제조될 때, 탄화물을 미세화하여 소입/소려 후 강재의 내식성을 향상시킬 수 있는 Mo 및 V의 영향도 고려하여, 최적화된 식 (1)을 도출한 것이다.
도 1은 본 발명의 일 실시예에 따른 마르텐사이트계 스테인리스강의 (Cr+3.3Mo+16N)*(Mo+V)값과 탄화물 내 Mo+V 함량 사이의 관계를 설명하기 위한 그래프이고, 도 2는 본 발명의 일 실시예에 따른 마르텐사이트계 스테인리스강의 (Cr+3.3Mo+16N)*(Mo+V)값과 (Cr,Fe,Mo,V)7C3으로 표현되는 1차 탄화물의 크기 사이의 관계를 설명하기 위한 그래프이다.
도 1 및 도 2를 참조하면, (Cr+3.3Mo+16N)*(Mo+V)값이 증가함에 따라, 크롬 탄화물 내의 Cr이 Mo와 V로 대체되는 것을 확인할 수 있고, 탄화물이 미세하게 도출되는 것을 확인할 수 있다.
또한, 본 발명에서는 강화 열처리시 탄화물의 특성 변화를 고려하여, 하기 식(2)를 도출하였다.
구체적으로, 본 발명자들은 석출되는 탄화물의 특성을 변화시키는 Mo와 V의 첨가에 의해 영향을 받는 C, Cr, N의 함량, 크롬탄화물 내 Mo+V 함량, M(C, N)으로 표현되는 Z상(여기서 M은, 44V+41Cr) 및 M-N으로 표현되는 질화바나듐(여기서, M은 74.2V+5Cr)의 형성 여부와 첨가된 성분과의 관계를 고려하여 식(2)을 도출하였다.
식(2): -14 ≤ -36442+248C+365Cr+373Mo+530V+365Fe+350Si+312Mn+331Ni+506Cu ≤ 50
여기서, C, Cr, Mo, V, Fe, Si, Mn, Ni, Cu 는 각 원소의 함량(중량%)을 의미한다.
본 발명자들은 식 (2)의 값이 높을수록, 1차 탄화물의 조대화를 방지하고, 미세한 2차 탄화물을 석출할 수 있음을 확인하였다. 구체적으로, 식 (2)의 값이 -14를 초과하는 경우, 첨가된 Mo, V이 1차, 2차 탄화물의 Cr을 치환하여 조대화를 억제하고, Z상 및 질화바나듐이 형성되어 결정입계를 따라 우선적으로 석출함으로써 결정립계를 따라 길게 석출되는 2차 크롬탄화물(M23C6)의 형성을 억제한다. 반면, 식 (2)의 값이 지나치게 높으면 Z상 및 질화바나듐 자체가 2차 탄화물의 석출 사이트로 작용하는 문제와 제조비용이 상승하는 문제가 있어, 식 (2)의 값을 50 이하로 한정하고자 한다.
일반적으로 마르텐사이트계 스테인리스강의 경우, 최종 형상으로 가공된 후에 강화열처리(hardening) 공정을 거쳐 내식성과 경도를 확보한다. 강화열처리 공정은 소재를 약 1,000 내지 1,200℃의 고온에서 단시간 유지한 후, 상온으로 급냉시키는 공정으로써 고온의 오스테나이트상에서 크롬탄화물을 재고용시켜 기지의 크롬 농도를 약 12%로 높이고, 이로 인해 소재 표면에 얇은 부동태 피막인 크롬산화물을 치밀하게 생성하여 소재의 내식성을 향상시키는 공정이다.
또한, 급냉 시 재고용 된 탄소 또는 질소를 함유하고 있는 오스테나이트상이 마르텐사이트상으로 변태함에 따라 소재의 경도가 향상된다. 이때, 기지조직 내에 분포하는 구상화된 크롬탄화물의 크기가 클 경우, 고온의 오스테나이트상에서 크롬탄화물의 재고용이 어렵기 때문에 기지조직 내에 존재하는 크롬 및 탄소의 농도가 감소하게 되고, 결과적으로 소재의 내식성 및 경도를 저하시킨다.
반면 크롬탄화물의 크기가 미세할 경우, 단시간의 열처리에도 크롬탄화물의 재고용이 용이하여 기지조직 내에 크롬, 탄소 및 질소의 농도가 증가하게 되어 내식성 및 경도를 향상시킬 수 있다.
따라서, 고탄소 마르텐사이트계 스테인리스강의 내식성 및 경도를 동시에 확보하기 위해서는 열연소둔재 등 강화 열처리 공정 이전의 소재에서 크롬탄화물을 미세하고 균일하게 분포시키는 것이 요구된다.
본 발명에서 첨가하는 Mo 및 V는 1, 2차 Cr탄화물의 Cr을 치환함으로써 탄화물의 성장을 억제하고, C와 우선적으로 결합하여 미세한 탄화물을 형성하여 1, 2차 Cr탄화물의 석출 사이트를 선점함으로써 탄화물의 미세화 및 분포를 고르게 한다.
구체적으로, 본 발명의 일 실시예에 따른 강도 및 내식성이 향상된 마르텐사이트계 스테인리스 열연소둔 강판은, 페라이트를 기지조직으로 하고, (Cr,Fe,Mo,V)7C3으로 표현되는 1차 탄화물 및 (Cr,Fe,Mo,V)23C6으로 표현되는 2차 탄화물을 포함한다.
Mo 및 V가 Cr과 복합적으로 탄화물을 형성함으로써 탄화물 내의 Cr 함량을 감소시킬 뿐만 아니라 탄화물을 미세하고 형성하여 기지조직 내에 크롬의 농도를 증가시킬 수 있다.
구체적으로, (Cr,Fe,Mo,V)7C3으로 표현되는 1차 탄화물 내의 (Mo+V)의 중량%는 2.93 내지 5.67%이고, 1차 탄화물의 입경은 10㎛ 이하이며, (Cr,Fe,Mo,V)23C6으로 표현되는 2차 탄화물 내의 (Mo+V)의 중량%는 12.2 내지 14.8%이다.
한편, Mo 및 V가 첨가됨에 따라 M(C, N)으로 표현되는 Z상(여기서 M은, 44V+41Cr) 및 M-N으로 표현되는 질화바나듐(여기서, M은 74.2V+5Cr)을 형성하고, Z상 및 질화바나듐 자체가 2차 탄화물의 석출 사이트로 작용하여 탄화물을 미세하고 균일하게 분포시킬 수 있다.
예를 들어, 본 발명의 일 실시예에 따른 강도 및 내식성이 향상된 마르텐사이트계 스테인리스 열연소둔 강판은, 길이 방향으로, 탄화물 편차가 10개/100㎛2 이하이다.
또한, 마르텐사이트계 스테인리스 열연소둔 강판을 냉간 압연 거친 후에는, 미세조직 내에 42 내지 58개/100㎛2 의 크롬탄화물이 분포된다.
다음으로, 본 발명의 다른 일 측면에 따른 마르텐사이트계 스테인리스강의 제조 방법에 대하여 설명한다.
본 발명의 일 실시예에 따른 강도 및 내식성이 향상된 마르텐사이트계 스테인리스강의 제조 방법은, 중량%로, C: 0.3 내지 0.5%, N: 0.01 내지 0.025%, Si: 0.3 내지 0.5%, Mn: 0.4 내지 0.6, Cr: 13.1 내지 14.5%, Mo: 0.95 내지 1.10%, V: 0.05 내지 0.3%, Ni: 0.3 내지 0.5%, Cu: 0.001 내지 0.5%, 나머지는 Fe 및 불가피한 불순물을 포함하고, 하기 식 (1)을 만족하는 슬라브를 열간 압연하는 단계; 열간 압연 직후, 600 내지 900℃의 온도범위에서 상소둔 열처리하는 단계; 열연 소둔재를 냉간 압연하는 단계; 및 냉연재를 강화 열처리하는 단계;를 포함한다.
식(1): 16.4 ≤ (Cr+3.3Mo+16N)*(Mo+V) ≤ 23.3
합금원소 함량의 수치 한정 이유에 대한 설명은 상술한 바와 같다.
상기의 조성을 포함하는 스테인리스강을 연속주조 또는 강괴 주조에 의해 주편으로 제작하고, 열간 압연 처리를 통하여 가공 처리가 가능한 열연강판으로 제조한다.
이후 제조된 열연강판은 도물용으로 사용 가능한 두께로 정밀압연과 같은 가공을 진행하기 전, 양호한 가공성을 확보하기 위하여 상소둔 열처리를 통한 연질화 작업을 실시한다.
통상적으로, 권취된 상태의 열연코일의 상소둔 시, 냉각/재가열 과정에서 열이력 편차가 발생하고, 최종 소재의 물성 편차를 일으키는 원인으로 작용한다. 구체적으로, 열간 압연 직후, 권취된 코일은 외부의 공기와 접촉함에 따라 부분적으로 냉각 편차가 발생하고, 이에 따라 냉각속도가 빠른 영역에 대해서는 마르텐사이트 조직을 발현되어 미세조직이 불균일하게 도출되는 문제가 발생한다.
본 발명에서는 열간 압연하고 800 내지 900℃의 온도 범위에서 권취된 열연코일이 상온에서 공랭되는 시간을 최소화하고자, 열간 압연 직후, 상소둔 열처리를 도입하여 마르텐사이트로의 상변태를 방지하고자 하였다.
상소둔은 탄화물을 균일하게 분포시키기 위해 600 내지 900℃의 온도범위에서 수행될 수 있다. 소둔 온도가 낮은 경우, 페라이트와 탄화물의 상으로 소둔되기 위한 구동력이 부족하여 마르텐사이트상이 잔류할 수 있고, 소둔 온도가 지나치게 높은 경우, 오스테나이트상으로 역변태가 일어나 결정립이 조대해지고, 냉각과정에 조대한 크롬 탄화물이 결정립계에 집중적으로 형성되는 점을 고려하여, 상소둔 열처리의 온도범위는 600 내지 900℃로 한정하고자 한다.
본 발명에 따르면, 상소둔 열처리된 마르텐사이트계 스테인리스 열연소둔재는 최종 형상으로 가공된 후에 강화 열처리하는 단계를 거쳐 마르텐사이트계 스테인리스강으로 제조할 수 있다.
강화 열처리는 오스테나이징 처리하는 단계, 소입하는 단계, 소려하는 단계를 더 포함할 수 있다.
오스테나이징 처리하는 단계는 강재의 기지조직을 페라이트에서 오스테나이트로 변태시키는 단계이다. 일 예에 따르면, 오스테나이징 처리하는 단계는 1,000℃ 이상의 온도에서 1분 이상 열처리할 수 있다.
해당 단계에서 크롬 탄화물이 크롬과 탄소의 형태로 기지조직으로 재고용되어 후속되는 소입 단계 이후 마르텐사이트 스테인리스강의 경도를 높일 수 있다.
소입하는 단계는 오스테나이징 처리 이후, 980 내지 1,050℃의 온도범위에서 상온까지 급속 냉각하여 오스테나이트 조직을 경도가 높은 마르텐사이트로 변태시키는 단계이다. 냉각속도를 0.2℃/s 이상으로 확보하면, 마르텐사이트 조직을 확보할 수 있다.
소려하는 단계는 소입 단계 이후 경도가 높아 취성이 강한 마르텐사이트 조직에 인성을 부여하기 위한 단계이다. 일 예에 따르면, 400 내지 600℃의 온도에서 두께에 따라 1분 내지 1시간 동안 열처리할 수 있다.
전술한 강화 열처리 단계를 거치면서, 페라이트 조직을 마르텐사이트 조직으로 최종 변태시킬 수 있으며, 목적하는 경도 및 내식성을 확보할 수 있다. 예를 들어, 강화 열처리에 의해 재고용시킨 소재의 비커스 경도는 520 내지 650 Hv일 수 있다.
이하, 실시예를 통하여 본 발명을 보다 상세하게 설명하고자 한다.
하기 표 1에 나타낸 다양한 합금 성분범위의 슬라브를 1,250℃에서 재가열하고, 조압연 후, 800℃ 이상에서 마무리 열간 압연을 진행하였다. 다음으로, 열연판을 상온으로 냉각시키지 않고, 600℃이상의 온도를 유지한 상태에서 700℃의 상소둔 로에 장입하여 열연소둔을 진행하였다.
하기 표 1에서 식 (1)은 (Cr+3.3Mo+16N)*(Mo+V)이다.
C Si Mn Ni Cu Cr Mo V N C+N Mo+V 식(1)
실시예1 0.38 0.4 0.45 0.4 0.05 13.5 1.05 0.07 0.02 0.40 1.12 19.4
실시예2 0.38 0.4 0.45 0.4 0.05 13.5 0.95 0.05 0.02 0.40 1.00 17.0
실시예3 0.38 0.4 0.45 0.4 0.05 13.5 1.1 0.15 0.02 0.40 1.25 21.8
실시예4 0.38 0.4 0.45 0.4 0.05 14.5 1.05 0.07 0.02 0.40 1.12 20.5
실시예5 0.4 0.5 0.6 0.5 0.5 13.9 1.1 0.15 0.025 0.43 1.25 22.4
실시예6 0.36 0.3 0.4 0.3 0.001 13.1 0.95 0.05 0.01 0.37 1.00 16.4
실시예7 0.38 0.4 0.45 0.4 0.05 13.5 1.05 0.3 0.02 0.40 1.35 23.3
비교예1 0.38 0.4 0.45 0.4 0.05 13.5 0.5 0.001 0.02 0.40 0.5 7.8
비교예2 0.38 0.4 0.45 0.4 0.05 13.5 0.5 0.04 0.02 0.40 0.54 8.4
비교예3 0.38 0.4 0.45 0.4 0.05 12.5 1.05 0.07 0.02 0.40 1.12 18.2
비교예4 0.38 0.4 0.45 0.4 0.05 13.5 0.001 0.001 0.02 0.40 0.00 0.0
비교예5 0.38 0.4 0.45 0.4 0.05 13.5 0.001 0.07 0.02 0.40 0.07 1.0
비교예6 0.38 0.4 0.45 0.4 0.05 13.5 0.1 0.07 0.02 0.40 0.17 2.4
비교예7 0.38 0.4 0.45 0.4 0.05 13.5 0.1 0.07 0.02 0.40 0.17 2.4
비교예8 0.3 0.5 0.5 0.2 0.05 13.2 0 0 0.02 0.32 0.00 0.0
비교예9 0.45 0.35 0.55 0.2 0.05 14.0 0 0 0.025 0.48 0.00 0.0
비교예10 0.5 0.4 0.45 0.2 0.05 14.7 0.65 0.125 0.03 0.53 0.78 13.4
소둔 과정에서 M(C, N)으로 표현되는 Z상(여기서 M은, 44V+41Cr) 및 M-N으로 표현되는 질화바나듐(여기서, M은 74.2V+5Cr) 형성 여부, 1차 탄화물의 평균 입경(㎛) 및 열연소둔재에서 탄화물 내, Mo+V 함량(중량%)을 투사전자현미경의 Replical법으로 시편을 채취하였고, TEM의 EDS 성분을 측정하여 하기 표 2에 나타내었다. 다음으로 0.2mm 두께로 냉간압연하고, 냉연소둔 하여 탄화물 밀도를 측정하여 하기 표 2에 나타내었다.
추가적으로, 냉연소둔재에 강화 열처리를 실시하였다. 구체적으로, 냉연소둔재를 1,000℃에서 420초 동안 열처리 후, 300℃까지 233℃/s의 냉각속도로 냉각키는 소입 처리 후, 350℃에서 350초 동안 소려 처리를 실시하여 최종 마르텐사이트계 스테인리스강을 제조하고 비커스 경도를 측정하여, 그 결과를 하기 표 2에 나타내었다.
식(2) (Mo+V) in M7C3 (Mo+V) in M23C6 Z 상 석출 여부 VN 석출
여부
M7C3 크기(㎛) 냉연소둔재 탄화물 밀도
(개/100㎛2)
소려 후
경도(Hv)
실시예1 -10 4.29 14.1 O O 6.2 49 620
실시예2 -14 3.70 12.2 O O 10 44 555
실시예3 3 5.67 14.3 O O 4 53 635
실시예4 -10 3.94 13.3 O O 7 45 582
실시예5 50 5.54 13.6 O O 9 55 643
실시예6 -8 3.71 12.8 O O 5 42 520
실시예7 28 2.93 14.8 O O 3.5 58 650
비교예1 -227 2.90 13.2 X X 19 36 480
비교예2 -220 2.93 13.2 X X 16 37 484
비교예3 -10 4.69 13.3 O O 12 33 430
비교예4 -30 0.00 0.0 X X 67 35 473
비교예5 -19 1.40 0.0 O O 50 40 501
비교예6 -18 1.72 1.5 O O 25 43 496
비교예7 -18 2.92 6.8 O O 14 38 517
비교예8 -18 0.00 0.0 X X 38 32 453
비교예9 -38 0.00 0.0 X X 74 59 751
비교예10 -15 3.67 6.9 O O 45 78 847
도 1 내지 도 3은 본 발명의 일 실시예에 따른 마르텐사이트계 스테인리스강의 (Cr+3.3Mo+16N)*(Mo+V)값과 탄화물 내 Mo+V 함량, (Cr,Fe,Mo,V)7C3으로 표현되는 1차 탄화물의 크기 및 열연 소둔재 탄화물 분포 사이의 관계를 설명하기 위한 그래프이다. 표 1, 표 2, 도 1 내지 도 3을 참조하면, Mo 및 V의 함량, 식 (1)의 값이 16.4 내지 23. 3의 범위를 만족하는 실시예 1내지 실시예 7의 경우에는, 크롬 탄화물 내의 Cr이 Mo와 V로 대체되는 것을 확인할 수 있고, 탄화물이 미세하게 도출되는 것을 확인할 수 있다.
예를 들어, 실시예 1내지 실시예 7에서, (Cr,Fe,Mo,V)7C3으로 표현되는 1차 탄화물 내의 (Mo+V)의 중량%는 2.93 내지 5.67%이고, 1차 탄화물의 입경은 10㎛ 이하이며, (Cr,Fe,Mo,V)23C6으로 표현되는 2차 탄화물 내의 (Mo+V)의 중량%는 12.2 내지 14.8%이다.
이는 최적화된 Mo 및 V가 Cr과 복합적으로 탄화물을 형성함으로써 조대한 탄화물의 형성을 억제할 뿐만 아니라, 열연소둔 시 형성되는 Z상 및 질화바나듐 자체가 2차 탄화물의 석출 사이트로 작용하여 도출된 결과이다.
이에 따라, 냉간 압연을 거친 후에는, 미세조직 내에 42 내지 58개/100㎛2 의 크롬탄화물이 분포하고, 최종 소재의 경도를 520 내지 650 Hv의 범위로 확보할 수 있었다.
이에 비해, Mo 와 V를 첨가하지 않은 비교예 4, 비교예 8 및 비교예 9의 경우에는, 열연소둔 시 Z상 및 질화바나듐이 형성되지 않았고, 열연소둔재의 1차 탄화물의 입경이 각각 67㎛, 38㎛, 74㎛로 매우 조대하게 도출되었다.
비교예 5, 비교예 6, 비교예 7 및 비교예 10의 경우에는, 열연소둔 시 Z상 및 질화바나듐이 형성되었으나, Mo 와 V의 함량이 본 발명에서 제안하는 16.4 내지 23.3 범위에 미달하여, 열연소둔재의 탄화물 입경을 목표하는 10㎛ 이하로 도출할 수 없었다.
특히, 비교예 10의 경우에는 Mo 및 V를 일정량 이상 첨가하였음에도 불구하고, 식(1)의 범위를 만족시키지 못하여 2차 탄화물 내, (Mo+V)의 중량%를 확보할 수 없었고, 이에 따라 크롬탄화물을 미세하고 균일하게 분포시킬 수 없었다.
도 4 및 도 5는 비교예 4와 실시예 1의 강화 열처리 후 미세조직의 크롬탄화물을 관찰한 주사전자현미경(SEM) 사진이다.
비교예 4의 경우에는 탄화물이 조대화되어 편석되어 강화 열처리 후에도 재고용되지 못하고 잔류하는 것을 확인할 수 있다. 반면, 실시예 1의 경우에는 강화 열처리 후 대부분의 탄질물이 재고용되어 잔류하는 탄질화물의 면적분율이 낮은 마르텐사이트 조직이 도출되는 것을 확인할 수 있다.
이와 같이, 개시된 실시예에 따르면, 합금성분과 관계식을 제어함으로써, 고탄소 마르텐사이트계 스테인리스강의 내식성을 향상 시키고, 재질 편차를 최소화할 수 있다.
상술한 바에 있어서, 본 발명의 예시적인 실시예들을 설명하였지만, 본 발명은 이에 한정되지 않으며 해당 기술 분야에서 통상의 지식을 가진 자라면 다음에 기재하는 특허청구범위의 개념과 범위를 벗어나지 않는 범위 내에서 다양한 변경 및 변형이 가능함을 이해할 수 있을 것이다.
본 발명에 따른 마르텐사이트계 스테인리스 열연소둔 강판은 경도를 확보하면서도 강도 및 내식성이 향상되므로, 산업상 이용이 가능하다.

Claims (20)

  1. 중량%로, C: 0.3 내지 0.5%, N: 0.01 내지 0.025%, Si: 0.3 내지 0.5%, Mn: 0.4 내지 0.6, Cr: 13.1 내지 14.5%, Mo: 0.95 내지 1.10%, V: 0.05 내지 0.3%, Ni: 0.3 내지 0.5%, Cu: 0.001 내지 0.5%, 나머지는 Fe 및 불가피한 불순물을 포함하고, 하기 식 (1)을 만족하는 강도 및 내식성이 향상된 마르텐사이트계 스테인리스 열연소둔 강판.
    식(1): 16.4 ≤ (Cr+3.3Mo+16N)*(Mo+V) ≤ 23.3
    여기서, Cr, N, Mo, V는 각 원소의 함량(중량%)을 의미한다.
  2. 제1항에 있어서,
    하기 식 (2)을 만족하는 강도 및 내식성이 향상된 마르텐사이트계 스테인리스 열연소둔 강판.
    식(2): -14 ≤
    -36442+248C+365Cr+373Mo+530V+365Fe+350Si+312Mn+331Ni+506Cu ≤ 50
    여기서, C, Cr, Mo, V, Fe, Si, Mn, Ni, Cu 는 각 원소의 함량(중량%)을 의미한다.
  3. 제1항에 있어서,
    하기 식 (3)을 만족하는 강도 및 내식성이 향상된 마르텐사이트계 스테인리스 열연소둔 강판.
    식(3): 0.37 ≤ C+N ≤ 0.43
  4. 제1항에 있어서,
    하기 식 (4)을 만족하는 강도 및 내식성이 향상된 마르텐사이트계 스테인리스 열연소둔 강판.
    식(4): 1.0 ≤ Mo+V ≤ 1.35
  5. 제1항에 있어서,
    페라이트를 기지조직으로 하고,
    (Cr,Fe,Mo,V)7C3으로 표현되는 1차 탄화물 및 (Cr,Fe,Mo,V)23C6으로 표현되는 2차 탄화물을 포함하는 강도 및 내식성이 향상된 마르텐사이트계 스테인리스 열연소둔 강판.
  6. 제5항에 있어서,
    상기 1차 탄화물 내, (Mo+V)의 중량%가 2.93 내지 5.67%인 강도 및 내식성이 향상된 마르텐사이트계 스테인리스 열연소둔 강판.
  7. 제5항에 있어서,
    상기 2차 탄화물 내, (Mo+V)의 중량%가 12.2 내지 14.8%인 강도 및 내식성이 향상된 마르텐사이트계 스테인리스 열연소둔 강판.
  8. 제1항에 있어서,
    상기 1차 탄화물의 입경이 10㎛ 이하인 강도 및 내식성이 향상된 마르텐사이트계 스테인리스 열연소둔 강판.
  9. 제1항에 있어서,
    길이 방향으로, 탄화물 편차가 10개/100㎛2 이하인 강도 및 내식성이 향상된 마르텐사이트계 스테인리스 열연소둔 강판.
  10. 제1항에 있어서,
    냉간 압연 후, 탄화물의 분포밀도는 42 내지 58개/100㎛2인 강도 및 내식성이 향상된 마르텐사이트계 스테인리스 열연소둔 강판.
  11. 중량%로, C: 0.3 내지 0.5%, N: 0.01 내지 0.025%, Si: 0.3 내지 0.5%, Mn: 0.4 내지 0.6, Cr: 13.1 내지 14.5%, Mo: 0.95 내지 1.10%, V: 0.05 내지 0.3%, Ni: 0.3 내지 0.5%, Cu: 0.001 내지 0.5%, 나머지는 Fe 및 불가피한 불순물을 포함하고, 하기 식 (1)을 만족하는 슬라브를 열간 압연하는 단계;
    열간 압연 직후, 600 내지 900℃의 온도범위에서 상소둔 열처리하는 단계;
    열연 소둔재를 냉간 압연하는 단계; 및
    냉연재를 강화 열처리하는 단계;를 포함하는 강도 및 내식성이 향상된 마르텐사이트계 스테인리스강의 제조 방법.
    식(1): 16.4 ≤ (Cr+3.3Mo+16N)*(Mo+V) ≤ 23.3
    여기서, Cr, N, Mo, V는 각 원소의 함량(중량%)을 의미한다.
  12. 제11항에 있어서,
    상기 열연 소둔재는 페라이트를 기지조직으로 하고,
    (Cr,Fe,Mo,V)7C3으로 표현되는 1차 탄화물 및 (Cr,Fe,Mo,V)23C6으로 표현되는 2차 탄화물을 포함하는 강도 및 내식성이 향상된 마르텐사이트계 스테인리스강의 제조 방법.
  13. 제11항에 있어서,
    상기 1차 탄화물 내, (Mo+V)의 중량%가 2.93 내지 5.67%인 강도 및 내식성이 향상된 마르텐사이트계 스테인리스강의 제조 방법.
  14. 제11항에 있어서,
    상기 2차 탄화물 내, (Mo+V)의 중량%가 12.2 내지 14.8%인 강도 및 내식성이 향상된 마르텐사이트계 스테인리스강의 제조 방법.
  15. 제11항에 있어서,
    상기 1차 탄화물의 입경이 10㎛ 이하인 강도 및 내식성이 향상된 마르텐사이트계 스테인리스강의 제조 방법.
  16. 제11항에 있어서,
    냉간 압연 후, 42 내지 58개/100㎛2 이하의 탄화물이 분포하는 강도 및 내식성이 향상된 마르텐사이트계 스테인리스 열연소둔 강의 제조방법.
  17. 제11항에 있어서,
    상기 강화 열처리는,
    980 내지 1,050℃의 온도에서 소입하는 단계,
    400 내지 600℃의 온도에서 1분 내지 1시간 동안 소려하는 단계;를 포함하는 강도 및 내식성이 향상된 마르텐사이트계 스테인리스강의 제조 방법.
  18. 제17항에 있어서,
    강화 열처리 후, 비커스 경도는 520 내지 650 Hv인 강도 및 내식성이 향상된 마르텐사이트계 스테인리스강의 제조 방법.
  19. 제11항에 있어서,
    하기 식 (2)을 만족하는 강도 및 내식성이 향상된 마르텐사이트계 스테인리스강의 제조 방법.
    식(2): -14 ≤
    -36442+248C+365Cr+373Mo+530V+365Fe+350Si+312Mn+331Ni+506Cu ≤ 50
    여기서, C, Cr, Mo, V, Fe, Si, Mn, Ni, Cu 는 각 원소의 함량(중량%)을 의미한다.
  20. 제11항에 있어서,
    하기 식 (3) 및 식 (4)를 만족하는 강도 및 내식성이 향상된 마르텐사이트계 스테인리스강의 제조 방법.
    식(3): 0.37 ≤ C+N ≤ 0.43
    식(4): 1.0 ≤ Mo+V ≤ 1.35
PCT/KR2021/017715 2020-12-21 2021-11-29 강도 및 내식성이 향상된 마르텐사이트계 스테인리스강 및 이의 제조 방법 WO2022139214A1 (ko)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202180091082.3A CN116745455A (zh) 2020-12-21 2021-11-29 具有改善的强度和耐腐蚀性的马氏体不锈钢及其制造方法
EP21911281.0A EP4265784A1 (en) 2020-12-21 2021-11-29 Martensitic stainless steel with improved strength and corrosion resistance, and manufacturing method therefor
JP2023537896A JP2024500865A (ja) 2020-12-21 2021-11-29 強度及び耐食性が向上したマルテンサイト系ステンレス鋼及びその製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020200180359A KR20220089588A (ko) 2020-12-21 2020-12-21 강도 및 내식성이 향상된 마르텐사이트계 스테인리스강 및 이의 제조 방법
KR10-2020-0180359 2020-12-21

Publications (1)

Publication Number Publication Date
WO2022139214A1 true WO2022139214A1 (ko) 2022-06-30

Family

ID=82158192

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2021/017715 WO2022139214A1 (ko) 2020-12-21 2021-11-29 강도 및 내식성이 향상된 마르텐사이트계 스테인리스강 및 이의 제조 방법

Country Status (5)

Country Link
EP (1) EP4265784A1 (ko)
JP (1) JP2024500865A (ko)
KR (2) KR20220089588A (ko)
CN (1) CN116745455A (ko)
WO (1) WO2022139214A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115896591A (zh) * 2022-10-28 2023-04-04 中国科学院金属研究所 一种提升低碳马氏体不锈钢抗腐蚀性能和综合力学性能的方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100210522B1 (ko) * 1995-01-13 1999-07-15 다나카 히사노리 우수한 내점식성을 갖는 고경도 말텐사이트계 스테인레스 스틸
CN106086631A (zh) * 2016-08-23 2016-11-09 钢铁研究总院 高硬度高耐磨高氮马氏体不锈轴承钢及其制备方法
JP2020050916A (ja) * 2018-09-27 2020-04-02 日鉄ステンレス株式会社 冷間加工性に優れる高硬度・高耐食性用途のマルテンサイト系ステンレス鋼及びその製造方法
US20200232076A1 (en) * 2017-10-05 2020-07-23 Uddeholms Ab Stainless steel
WO2020245285A1 (en) * 2019-06-05 2020-12-10 Ab Sandvik Materials Technology A martensitic stainless alloy

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100210522B1 (ko) * 1995-01-13 1999-07-15 다나카 히사노리 우수한 내점식성을 갖는 고경도 말텐사이트계 스테인레스 스틸
CN106086631A (zh) * 2016-08-23 2016-11-09 钢铁研究总院 高硬度高耐磨高氮马氏体不锈轴承钢及其制备方法
US20200232076A1 (en) * 2017-10-05 2020-07-23 Uddeholms Ab Stainless steel
JP2020050916A (ja) * 2018-09-27 2020-04-02 日鉄ステンレス株式会社 冷間加工性に優れる高硬度・高耐食性用途のマルテンサイト系ステンレス鋼及びその製造方法
WO2020245285A1 (en) * 2019-06-05 2020-12-10 Ab Sandvik Materials Technology A martensitic stainless alloy

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115896591A (zh) * 2022-10-28 2023-04-04 中国科学院金属研究所 一种提升低碳马氏体不锈钢抗腐蚀性能和综合力学性能的方法

Also Published As

Publication number Publication date
KR20230123913A (ko) 2023-08-24
KR20220089588A (ko) 2022-06-28
JP2024500865A (ja) 2024-01-10
EP4265784A1 (en) 2023-10-25
CN116745455A (zh) 2023-09-12

Similar Documents

Publication Publication Date Title
WO2018117481A1 (ko) 고경도 내마모강 및 이의 제조방법
WO2020067685A1 (ko) 우수한 경도와 충격인성을 갖는 내마모강 및 그 제조방법
WO2019125083A1 (ko) 우수한 경도와 충격인성을 갖는 내마모강 및 그 제조방법
WO2010074473A2 (en) High strength steel plate for nuclear reactor containment vessel and method of manufacturing the same
WO2018074887A1 (ko) 고강도 철근 및 이의 제조 방법
WO2017034216A1 (ko) 고 경도 강판 및 그 제조방법
WO2020067686A1 (ko) 우수한 경도와 충격인성을 갖는 내마모강 및 그 제조방법
WO2017222159A1 (ko) 가공성이 우수한 고강도 냉연강판 및 그 제조 방법
WO2022139214A1 (ko) 강도 및 내식성이 향상된 마르텐사이트계 스테인리스강 및 이의 제조 방법
WO2021187706A1 (ko) 고내식 마르텐사이트계 스테인리스강 및 그 제조방법
WO2019132310A1 (ko) 재질 균일성이 우수한 내마모 강판 및 그 제조방법
WO2020111857A1 (ko) 크리프 강도가 우수한 크롬-몰리브덴 강판 및 그 제조방법
WO2013154254A1 (ko) 재질 균일성이 우수한 고탄소 열연강판 및 이의 제조방법
WO2020040388A1 (ko) 인성 및 부식피로특성이 향상된 스프링용 선재, 강선 및 이들의 제조방법
WO2018106016A1 (ko) 부식피로 저항성이 우수한 스프링용 선재, 강선 및 그들의 제조방법
WO2019125076A1 (ko) 우수한 경도와 충격인성을 갖는 내마모강 및 그 제조방법
WO2021261884A1 (ko) 생산성 및 원가 절감 효과가 우수한 고강도 오스테나이트계 스테인리스강 및 이의 제조방법
WO2020036370A1 (ko) 강도가 향상된 오스테나이트계 스테인리스강
WO2023234525A1 (ko) 오스테나이트계 스테인리스강 및 그 제조방법
WO2020130614A2 (ko) 구멍확장성이 우수한 고강도 열연강판 및 그 제조방법
WO2024080657A1 (ko) 강판 및 이의 제조방법
WO2022139282A1 (ko) 가공성이 우수한 고인성 고탄소 냉연강판 및 그 제조방법
WO2023113206A1 (ko) 오스테나이트계 스테인리스 강 및 그 제조방법
WO2022131540A1 (ko) 저온 충격인성이 우수한 고경도 방탄강 및 이의 제조방법
WO2024072023A1 (ko) 냉연강판 및 그 제조방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21911281

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023537896

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 202180091082.3

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2021911281

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021911281

Country of ref document: EP

Effective date: 20230721