WO2017111290A1 - Pwht 저항성이 우수한 저온 압력용기용 강판 및 그 제조 방법 - Google Patents

Pwht 저항성이 우수한 저온 압력용기용 강판 및 그 제조 방법 Download PDF

Info

Publication number
WO2017111290A1
WO2017111290A1 PCT/KR2016/012566 KR2016012566W WO2017111290A1 WO 2017111290 A1 WO2017111290 A1 WO 2017111290A1 KR 2016012566 W KR2016012566 W KR 2016012566W WO 2017111290 A1 WO2017111290 A1 WO 2017111290A1
Authority
WO
WIPO (PCT)
Prior art keywords
steel sheet
steel
pwht
low
pressure vessel
Prior art date
Application number
PCT/KR2016/012566
Other languages
English (en)
French (fr)
Other versions
WO2017111290A8 (ko
Inventor
홍순택
Original Assignee
주식회사 포스코
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 포스코 filed Critical 주식회사 포스코
Priority to US16/063,990 priority Critical patent/US20180371568A1/en
Priority to EP16879157.2A priority patent/EP3395984B1/en
Priority to CN201680075744.7A priority patent/CN108431272B/zh
Priority to JP2018532673A priority patent/JP6700400B2/ja
Publication of WO2017111290A1 publication Critical patent/WO2017111290A1/ko
Publication of WO2017111290A8 publication Critical patent/WO2017111290A8/ko

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0263Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment following hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/18Hardening; Quenching with or without subsequent tempering
    • C21D1/25Hardening, combined with annealing between 300 degrees Celsius and 600 degrees Celsius, i.e. heat refining ("Vergüten")
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/001Heat treatment of ferrous alloys containing Ni
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/005Heat treatment of ferrous alloys containing Mn
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/008Heat treatment of ferrous alloys containing Si
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/50Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for welded joints
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/08Ferrous alloys, e.g. steel alloys containing nickel
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/002Bainite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/008Martensite

Definitions

  • the present invention relates to a thick steel plate used in low pressure vessels, vessels, storage tanks, structural steel, etc., and a method for manufacturing the same. More specifically, a low temperature pressure vessel steel plate having a tensile strength of 600 MPa or more having excellent PWHT resistance and low temperature toughness; The manufacturing method is related.
  • ferrite As the high-strength thick steel for low temperature, ferrite, martensite structure, mixed structure composed of bainite structure, or near single phase structure mainly composed of bainite and ferrite are widely known.
  • the high strength hot rolled steel produced through the normal NOMALIZING treatment may have a mixed structure of ferrite and pearlite.
  • carbides are formed along the grain boundaries, and thus the strength and toughness of the steel are lowered, thereby making it impossible to guarantee the properties required for the PWHT.
  • An example of the related art is the invention described in Korean Patent Publication No. 2012-0011289.
  • the invention described in the above publication is a steel produced through the normal NOMALIZING, even if Ni is added, there is a problem that the strength and toughness of the steel after PWHT treatment can not be avoided.
  • Patent Document 1 Republic of Korea Patent Publication No. 2012-0011289
  • the present invention is to solve the problems of the prior art, by controlling the steel composition, cooling and heat treatment process to make the microstructure into a mixed structure of tempered bainite and tempered martensite for high strength low-temperature for high PWHT resistance for a long time
  • An object of the present invention is to provide a pressure vessel steel sheet and a method of manufacturing the same.
  • the present invention for achieving the above object, by weight, C: 0.07 ⁇ 0.17%, Si: 0.15 ⁇ 0.40%, Mn: 0.3 ⁇ 0.7%, P: 0.012% or less, S: 0.015% or less, Ni: 3.0 ⁇ 4.0%, W: 0.03 ⁇ 0.25%, balance Fe and unavoidable impurities, PWHT resistance steel plate with excellent PWHT resistance with 25 ⁇ 80 area% of tempered bainite and balance tempered martensite It is about.
  • the steel sheet can maintain a tensile strength of 600MPa or more even if PWHT is performed for a maximum of 20 hours in the 580 ⁇ 640 °C section.
  • the steel sheet may have a Charpy impact energy value at ⁇ 110 ° C. or higher at 200 J or more even when PWHT is performed for a maximum of 20 hours in a range of 580 ° C. to 640 ° C.
  • the present invention in terms of weight%, C: 0.07-0.17%, Si: 0.15-0.40%, Mn: 0.3-0.7%, P: 0.012% or less, S: 0.015% or less, Ni: 3.0-4.0%, W : Reheating a steel slab composed of 0.03 to 0.25%, balance Fe and inevitable impurities at 1050 to 1250 ° C .;
  • Low temperature PWHT resistance including; a step of tempering the water-cooled steel sheet ⁇ 1.5 ⁇ t + (10 ⁇ 30) ⁇ minutes (where t means the thickness of the steel (mm)) at 550 ⁇ 660 °C It relates to a method for producing a pressure vessel steel sheet.
  • the tempering process may further include a step of PWHT up to 20 hours in the 580 ⁇ 640 °C section.
  • the steel microstructure obtained by the tempering process may be composed of 25 to 80 area fraction (%) of tempered bainite and residual tempered martensite.
  • the present invention having the above-described configuration can effectively provide a low-temperature pressure vessel steel sheet excellent in PWHT resistance that can be stably used at a low temperature of about -110 ° C while satisfying a tensile strength of 600 MPa or more.
  • C 0.07 to 0.17%
  • Si 0.15 to 0.40%
  • Mn 0.3 to 0.7%
  • P 0.012% or less
  • S 0.015% or less
  • Ni 3.0 to 4.0%
  • W 0.03 to 0.25%
  • the balance of Fe and unavoidable impurities the specific emphasis component and the reasons for limiting the components are as follows.
  • C is preferably limited to 0.07 to 0.17%. This is because when the content is less than 0.07%, the strength of the matrix on the matrix is lowered, and when it exceeds 0.17%, the weldability of the steel sheet is greatly deteriorated.
  • Si is a component added for the deoxidation effect, the solid solution strengthening effect, and the impact transition temperature raising effect, and in order to achieve such an addition effect, it is preferable to add 0.15% or more. However, if the content exceeds 0.40%, the weldability is lowered and the oxide film is severely formed on the surface of the steel sheet, so that the content is preferably limited to 0.15 to 0.40%.
  • Mn forms MnS, which is a non-metallic inclusion drawn together with S, lowers the normal temperature elongation and low temperature toughness
  • Mn is preferably managed at 0.7% or less.
  • the amount of Mn added is preferably limited to 0.3 to 0.7%.
  • P is an element that impairs low-temperature toughness, and it is preferable to suppress the content as much as possible, but it is desirable to manage it within 0.012% or less because excessive cost is required to remove it in the steelmaking process.
  • S is also an element that adversely affects low temperature toughness along with P, but like P, it may be excessively expensive to remove in the steelmaking process, so it is appropriate to manage it within 0.015%.
  • Ni is the most effective element for improving low temperature toughness. However, if the added amount is less than 3.0%, the low-temperature toughness is lowered, and if it is added in excess of 4.0%, the production cost is increased, and therefore it is preferably added within the range of 3.0 to 4.0%.
  • W is an important element which increases the strength of the steel by solidifying the austenite to increase the hardenability of the austenite and to precipitate as carbide (W 2 C) to match the matrix (Matrix).
  • W 2 C carbide
  • Motrix matrix
  • the steel sheet of the present invention has a microstructure of 25 to 80 area% of tempered bainite and the balance of tempered martensite. If the tempered bainite fraction is less than 25%, the amount of tempered martensite may be excessive to degrade the low temperature toughness of the steel sheet. On the other hand, if it exceeds 80%, it may be difficult to secure the strength of the target steel sheet.
  • it may be composed of 30 to 70 area fraction (%) of tempered bainite and residual tempered martensite.
  • the steel sheet having the above-described emphasis component and microstructure, as well as PWHT for up to 20 hours in a section of 580 ⁇ 640 °C can effectively maintain the tensile strength to 600MPa or more as well as have excellent low temperature toughness.
  • Steel sheet manufacturing method of the present invention the step of reheating the steel slab having a steel composition as described above at 1050 ⁇ 1250 °C; A hot rolling step of hot rolling the reheated steel slab and finishing rolling at a temperature of 800 ° C. or higher to obtain a hot rolled steel sheet; Cooling the hot rolled steel sheet at a cooling rate of 2.5 to 30 ° C./sec after heating at 800 to 950 ° C .; And tempering the water-cooled steel for ⁇ 1.5 ⁇ t + (10-30) ⁇ minutes, where t denotes the thickness (mm) of the steel, at 550-660 ° C .;
  • the steel slab having the steel composition is reheated at 1050 to 1250 ° C. If the reheating temperature is lower than 1050 °C, it is difficult to solute the solute atoms, and if the reheating temperature exceeds 1250 °C austenite grain size becomes too coarse to reduce the properties of the steel sheet.
  • the reheated steel slab is hot rolled.
  • the reheated steel slab is hot rolled and the rolling is finished at a temperature of 800 ° C. or higher.
  • the hot rolling temperature is less than 800 ° C, the hot deformation resistance during rolling may increase, resulting in a load of the rolling mill.
  • the rolling reduction per pass during the hot rolling is preferably 5 to 30%.
  • the hot rolled steel sheet is cooled at a cooling rate of 2.5 ⁇ 30 °C / sec after heating at 800 ⁇ 950 °C.
  • the heating temperature is less than 800 ° C, it is difficult to sufficiently solidify the alloy component, and if the heating temperature exceeds 950 ° C, grains may coarsen and damage toughness.
  • the cooling rate is less than 2.5 °C / sec martensite structure can not be obtained, while the cooling rate is more than 30 °C / sec because a large amount of cooling water is required, there is an economic burden requiring additional cooling equipment cooling rate is It is preferable to limit to 2.5-30 degreeC / sec.
  • the water-cooled steel sheet is tempered.
  • the water-cooled steel sheet is tempered for ⁇ 1.5 ⁇ t + (10-30) ⁇ minutes (where t means the thickness of the steel (mm)) at 550 to 660 ° C. If the tempering temperature is less than 550 ° C., the toughness may be lowered due to excess strength, and if the tempering temperature is higher than 660 ° C., excessive strength may be reduced.
  • the tempering time is performed for ⁇ 1.5 ⁇ t + (10 ⁇ 30) ⁇ minutes (where t means the thickness of the steel (mm)), but the specific reason is as follows.
  • the tempering time is shorter than the above standard, it is difficult to obtain the tempered martensite structure, whereas if the tempering time exceeds the reference time, the overall productivity is impaired.
  • it may be composed of 30 to 70 area fraction (%) of tempered bainite and residual tempered martensite.
  • the tempered steel sheet may be subjected to a PWHT heat treatment to remove stresses in the welded part after welding for manufacturing the pressure vessel. That is, it may further include a process of PWHT for up to 20 hours in the 580 ⁇ 640 °C section.
  • these steel slabs were reheated at 1100 °C.
  • the reheated steel slab was hot rolled at a rolling reduction of 15% per pass, and hot rolling was finished at 900 ° C. to prepare hot rolled steel sheets having a predetermined thickness.
  • the hot rolled steel sheets were heated and water-cooled at the austenitization temperature under the conditions shown in Table 2, and then tempered at the temperatures and times shown in Table 2 below. And the tampered steel sheet was also subjected to the PWHT treatment under the conditions of Table 2.
  • low-temperature toughness is a result of evaluating a specimen having a V notch at -110 ° C as a Charpy impact energy value obtained by performing a Charpy impact test.
  • the tempered bainite and the balance of 25-80% in an area fraction after tempering treatment Since the tempered martensite structure can be obtained, it can be seen that the yield strength and the tensile strength after the PWHT are superior to about 100 MPa and 80 MPa, respectively, while the low temperature toughness of -110 ° C. is also better than 70 J, respectively, compared to the comparative example.
  • the comparative steel d does not contain W, the strength of the steel was relatively low, and in the case of Comparative Examples 1 and 2, no tempered bainite was formed because water cooling was not performed and air cooling was performed. Yield strength and tensile strength were lower than those of the invention, and low temperature toughness of -110 ° C was also low.

Abstract

본 발명은, 중량%로, C: 0.07 ~ 0.17%, Si: 0.15 ~ 0.40%, Mn: 0.3 ~ 0.7%, P: 0.012% 이하, S: 0.015%이하, Ni: 3.0 ~ 4.0%, W : 0.03~0.25%, 잔부 Fe 및 불가피한 불순물로 이루어지며, 미세조직이 25~80 면적%의 템퍼드 베이나이트와 잔부 템퍼드 마르텐사이트로 이루어지고 인장강도 600MPa 이상인 저온인성과 PWHT 저항성이 우수한 저온용 압력용기 강판 및 그 제조 방법에 관한 것이다.

Description

PWHT 저항성이 우수한 저온 압력용기용 강판 및 그 제조 방법
본 발명은 저온용 압력용기, 선박, 저장탱크, 구조용강 등에 사용되는 후강판 및 그 제조방법에 관한 것으로서, 보다 상세하게는 PWHT 저항성과 저온인성이 우수한 인장강도 600MPa 이상인 저온용 압력용기용 강판 및 그 제조 방법에 관한 것이다.
저온용 고강도 후판강재로는 페라이트(ferrite), 마르텐사이트 (martensite)조직, 베이나이트 조직으로 이루어진 혼합조직, 혹은 베이나이트, 페라이트가 주체인 거의 단상조직에 가까운 것 등이 널리 알려져 있다.
시공 시 그 자체가 구조재로 이용될 수 있어야 하므로 고강도일 것이 요구된다. 한편 이러한 고강도 구조용 강재는 우수한 PWHT 저항성이 요구된다. 통상의 NOMALIZING처리을 통하여 제조된 고강도 열연강재는 페라이트와 퍼얼라이트의 혼합조직을 가질 수 있다. 그런데 이러한 조직을 갖는 강재를 후속하는 공정에서 PWHT처리를 행하면, 입계를 따라 탄화물이 형성되고, 이에 따라 강재의 강도와 인성이 저하되어 PWHT에서 요구되는 물성을 보증할 수 없게 되는 문제가 있으며, 이에 대한 종래기술의 일예로 대한민국 특허공개공보 2012-0011289호에 기재된 발명을 들 수 있다.
상기 특허공개공보에는, 중량%로, C: 0.08 ~ 0.15%, Si : 0.2 ~ 0.3%, Mn : 0.5 ~ 1.2%, P : 0.01 ~ 0.02%, S : 0.004 ~ 0.006%, Ti : 0% 초과 내지 0.01% 이하, Mo : 0.05 ~ 0.1%, Ni : 3.0 ~ 5.0% 및 나머지 Fe과 기타 불가피한 불순물로 조성되는 것을 특징으로 하는 500MPa 이상의 LPG용 고강도 강재를 제시하고 있으며, 그 강 조성성분에서 Ni과 Mo를 첨가함을 특징으로 하고 있다.
그런데 상기 공개공보에 기재된 발명은 통상의 NOMALIZING을 통하여 제조된 강재이므로 비록 Ni등을 첨가하여도 PWHT 처리후 강재의 강도와 인성의 저하를 피할 수 없다는 문제가 있다.
그러므로 저온용 압력용기, 선박, 저장탱크, 구조용강 등에 사용되는 고강도 후강판에 있어서, 장시간 PWHT 저항성이 우수한 고강도 강재의 개발에 대한 요구가 대두되고 있다.
(선행기술문헌)
(특허문헌 1) 대한민국 공개특허 제2012-0011289호
따라서 본 발명은 상기 종래기술의 문제점을 해결하기 위한 것으로, 강 조성, 냉각 및 열처리 공정을 제어하여 미세조직을 템퍼드 베이나이트와 템퍼드 마르텐사이트의 혼합조직으로 함으로써 장시간 PWHT 저항성이 우수한 고강도 저온용 압력용기 강판 및 그 제조방법을 제공함에 그 목적이 있다.
그러나 본 발명이 해결하고자 하는 과제는 이상에서 언급한 과제로 제한되지 않으며, 언급되지 않은 또 다른 과제들은 아래의 기재로부터 당업자에게 명확하게 이해될 수 있을 것이다.
상기 목적을 달성하기 위한 본 발명은,중량%로, C: 0.07 ~ 0.17%, Si: 0.15 ~ 0.40%, Mn: 0.3 ~ 0.7%, P: 0.012% 이하, S: 0.015%이하, Ni: 3.0 ~ 4.0%, W: 0.03~0.25%, 잔부 Fe 및 불가피한 불순물로 이루어지며, 미세조직이 25~80 면적%의 템퍼드 베이나이트와 잔부 템퍼드 마르텐사이트로 이루어진 PWHT 저항성이 우수한 저온용 압력용기 강판에 관한 것이다.
상기 강판은 580~640℃ 구간에서 최대 20시간 동안 PWHT를 실시하여도 인장강도를 600MPa 이상으로 유지할 수 있다.
상기 강판은 580~640℃ 구간에서 최대 20시간 동안 PWHT를 실시하여도 -110℃에서의 샤르피 충격에너지값이 200J 이상일 수 있다.
또한 본 발명은, 중량%로, C: 0.07 ~ 0.17%, Si: 0.15 ~ 0.40%, Mn: 0.3 ~ 0.7%, P: 0.012% 이하, S: 0.015%이하, Ni: 3.0 ~ 4.0%, W : 0.03~0.25%, 잔부 Fe 및 불가피한 불순물로 이루어지는 강 슬라브를 1050 ~ 1250℃에서 재가열하는 공정;
상기 재가열된 강 슬라브를 열간 압연하고, 800℃ 이상의 온도에서 압연을 종료하여 열연강판을 얻는 열간압연 공정;
상기 열연강판을 800 ~ 950℃에서 가열 후 2.5~30℃/sec의 냉각 속도로 수냉하는 공정; 및
상기 수냉된 강판을 550 ~ 660℃에서 {1.5×t + (10~30)}분 [여기서 t는 강재의 두께(mm)를 의미한다] 동안 템퍼링 처리하는 공정;을 포함하는 PWHT 저항성이 우수한 저온용 압력용기 강판의 제조방법에 관한 것이다.
본 발명에서는 상기 템퍼링 공정 이후에, 580~640℃구간에서 최대 20시간 PWHT하는 공정을 추가로 포함할 수 있다.
상기 템퍼링 공정으로 얻이진 강 미세조직은 25~80 면적분율(%)의 템퍼드 베이나이트와 잔부 템퍼드 마르텐사이트로 이루어질 수 있다.
상술한 바와 같은 구성의 본 발명은, 인장 강도 600MPa 이상을 만족하면서 -110℃ 정도의 저온에서 안정적으로 사용이 가능한 PWHT 저항성이 우수한 저온용 압력용기 강판을 효과적으로 제공할 수 있다.
이하, 본 발명에 대하여 상세히 설명한다.
먼저, 본 발명의 PWHT 저항성이 우수한 저온용 압력용기 강판을 설명한다.
본 발명의 강판은, 중량%로, C: 0.07 ~ 0.17%, Si: 0.15 ~ 0.40%, Mn: 0.3 ~ 0.7%, P: 0.012% 이하, S: 0.015%이하, Ni: 3.0 ~ 4.0%, W : 0.03~0.25%, 잔부 Fe 및 불가피한 불순물로 이루어지며, 그 구체적인 강조성성분 및 그 성분 제한사유는 아래와 같다.
본 발명에서 C는 0.07 ~ 0.17%로 한정하는 것이 바람직하다. 상기 함량이 0.07% 미만인 경우에는 기지 상의 자체 강도가 저하되고, 0.17%를 초과하는 경우에는 강판의 용접성을 크게 해치기 때문이다.
Si은 탈산 효과, 고용 강화 효과 및 충격 천이 온도 상승 효과를 위하여 첨가되는 성분으로서, 이러한 첨가 효과를 달성하기 위해서는 0.15%이상 첨가하는 것이 바람직하다. 하지만, 0.40%를 초과하여 첨가되면 용접성이 저하되고 강판 표면에 산화 피막이 심하게 형성되므로 그 함량을 0.15 ~ 0.40%로 제한함이 바람직하다.
Mn은 S와 함께 연신된 비금속 개재물인 MnS를 형성하여 상온 연신율 및 저온인성을 저하시키므로 0.7%이하로 관리하는 것이 바람직하다. 그러나, 본 발명의 성분 특성상 Mn이 0.3%미만이 되면 적절한 강도를 확보하기 어려우므로 Mn의 첨가량은 0.3 ~ 0.7%로 제한함이 바람직하다.
P는 저온인성을 해치는 원소로서, 가능한 그 함량을 억제하는 것이 바람직하지만, 제강 공정에서 제거하는데 과다한 비용이 소요되므로 0.012%이하의 범위 내에서 관리함이 소망스럽다.
S 역시 P와 더불어 저온인성에 악영향을 주는 원소이지만 P와 마찬가지로 제강 공정에서 제거하는데 과다한 비용이 소요될 수 있으므로 0.015% 이하의 범위 내에서 관리함이 적절하다.
Ni은 저온 인성의 향상에 가장 효과적인 원소이다. 그러나 그 첨가량이 3.0% 미만이면 저온인성의 저하를 초래하고, 4.0%를 초과하여 첨가하면 제조비용의 상승을 가져오므로 3.0 ~ 4.0%의 범위 내에서 첨가함이 바람직하다.
본 발명에서 W은 오스테나이트에 고용되어 오스테나이트의 경화능을 증대시키고, 기지(Matrix)와 정합을 이루는 탄화물(W2C)로 석출함으로써 강의 강도를 증가시키는 중요한 원소이다. 0.03% 미만의 첨가는 그 효과를 기대할 수 없고 0.25% 초과하여 첨가 시 연주 과정에서 조대한 석출물로 나타나 저온인성을 해칠 수 있으므로 0.03~0.25%로 제한하는 것이 바람직하다.
한편 본 발명의 강판은 그 미세조직이 25~80 면적%의 템퍼드 베이나이트와 잔부 템퍼드 마르텐사이트로 이루어져 있다. 만일 템퍼드 베이나이트 분율이 25% 미만이면 템퍼드 마르텐사이트의 량이 과대해져서 강판의 저온인성이 열화될 수 있다. 반면에 80%를 초과하면 목표로 하는 강판의 강도를 확보할 수가 어려울 수 있다.
더 바람직하게는 30~70 면적분율(%)의 템퍼드 베이나이트와 잔부 템퍼드 마르텐사이트로 이루어질 수 있다
상술한 바와 같은 강조성성분과 미세조직을 갖는 강판은, 580~640℃ 구간에서 최대 20시간 동안 PWHT를 실시하여도 인장강도를 600MPa 이상으로 효과적으로 유지할 수 있을 뿐만 아니라 우수한 저온인성을 가질 수 있다.
다음으로, 본 발명의 PWHT 저항성이 우수한 저온용 압력용기 강판의 제조방법을 설명한다.
본 발명의 강판 제조방법은, 상술한 바와 같은 강 조성성분을 갖는 강슬라브를 1050 ~ 1250℃에서 재가열하는 공정; 상기 재가열된 강 슬라브를 열간 압연하고, 800℃ 이상의 온도에서 압연을 종료하여 열연강판을 얻는 열간압연 공정; 상기 열간 압연된 강판을 800 ~ 950℃에서 가열 후 2.5~30℃/sec의 냉각 속도로 수냉하는 공정; 및 상기 수냉된 강재를 550 ~ 660℃에서 {1.5×t + (10~30)}분 [여기서 t는 강재의 두께(mm)를 의미한다] 동안 템퍼링 처리하는 공정;을 포함한다.
먼저, 본 발명에서는 상기 강 조성성분을 갖는 강슬라브를 1050 ~ 1250℃에서 재가열한다. 만일 재가열 온도가 1050℃보다 낮을 경우 용질원자의 고용이 어렵고, 재가열온도가 1250℃를 초과하면 오스테나이트 결정립 크기가 너무 조대하게 되어 강판의 물성을 저하시키기 때문이다.
이어, 본 발명에서는 상기 재가열된 강 슬라브를 열간압연한다. 구체적으로, 본 발명에서는 상기 재가열된 강 슬라브를 열간 압연하고, 800℃ 이상의 온도에서 압연을 종료한다. 상기 열간 압연 온도가 800℃ 미만일 경우에는 압연시 열간변형저항이 증대되어 압연기의 부하를 초래할 수 있다.
상기 열간 압연 시 패스당 압하율은 5 ~ 30%가 바람직하다.
그리고 본 발명에서는 상기 열간 압연된 강판을 800 ~ 950℃에서 가열 후 2.5~30℃/sec의 냉각 속도로 수냉한다.
상기 가열온도가 800℃ 미만이면 합금성분의 충분한 고용이 어렵고, 950℃를 초과하면 결정립이 조대화 되어 인성을 해칠 수 있다.
또한 상기 냉각 속도가 2.5℃/sec 미만인 경우에는 마르텐사이트 조직을 얻을 수 없는 반면에, 냉각 속도가 30℃/sec를 초과하면 냉각수가 다량 필요하므로 추가적인 냉각설비가 요구되는 경제적 부담이 있으므로 냉각 속도는 2.5~30℃/sec로 한정하는 것이 바람직하다
이어, 본 발명에서는 상기 수냉된 강판를 템퍼링처리한다.
구체적으로, 본 발명에서는 상기 수냉된 강판을 550 ~ 660℃에서 {1.5×t + (10~30)}분 [여기서 t는 강재의 두께(mm)를 의미한다] 동안 템퍼링한다. 상기 템퍼링온도가 550℃ 미만이면 강도 초과에 의하여 인성이 저하될 수 있으며, 660℃를 초과하면 지나친 강도의 저하를 가져올 수 있다.
또한 본 발명에서는 템퍼링 시간을 {1.5×t + (10~30)}분 [여기서 t는 강재의 두께(mm)를 의미한다] 동안 실시하는데, 그 구체적인 제한이유는 다음과 같다.
즉, 만일 템퍼링 시간이 상기 기준보다 짧으면 템퍼드 마르텐사이트 조직을 얻기 어렵고, 반면에 기준 시간을 초과하여 템퍼링을 한다면 전체적인 생산성을 해치기 때문이다.
상술한 바와 같은 조건의 템퍼링 열처리에 의해 25~80 면적%의 템퍼드 베이나이트와 잔부 템퍼드 마르텐사이트로 이루어진 강 미세조직을 얻을 수 있다.
더 바람직하게는 30~70 면적분율(%)의 템퍼드 베이나이트와 잔부 템퍼드 마르텐사이트로 이루어질 수 있다
후속하여, 본 발명에서는 상기 템퍼링 처리된 강판에 대하여 압력 용기 제조를 위한 용접 후의 용접부 응력 제거를 위하여 PWHT 열처리를 실시할 수 있다. 즉, 580~640℃구간에서 최대 20시간 PWHT하는 공정을 추가로 포함할 수 있다.
만일 PWHT 온도가 580℃ 보다 낮으면 용접부 등의 잔류 응력 제거가 어렵고, 640℃ 초과하면 강재의 강도를 크게 저하시키기 때문이다. 또한 상기 PWHT시간이 20시간을 초과하면 과도한 강도의 하락을 가져올 수 있기 때문이다.
이하, 실시예를 통하여 본 발명을 보다 상세히 설명한다.
하기 표 1과 같은 조성성분을 갖는 강슬라브를 각각 마련한 후, 이들 강슬라브를 1100℃에서 재가열하였다. 그리고 상기 재가열된 강 슬라브를 패스당 15%의 압하율로 열간 압연하고, 900℃에서 열간 압연을 종료하여 소정의 두께를 갖는 열간압연 강판들을 제조하였다.
상기 열간압연 강판들을 하기 표 2와 같은 조건으로 오스테나이트화 온도에서 가열, 수냉 처리하였으며, 이어, 하기 표 2와 같은 온도 및 시간으로 템퍼링 처리하였다. 그리고 상기 탬퍼링처리된 강판은 또한 하기 표 2의 조건으로 PWHT처리를 수행하였다.
상기와 같이, PWHT처리된 강판들에 대하여 항복 강도, 인장강도 및 저온 인성을 평가하여 그 결과를 하기 표 2에 또한 나타내었다. 한편 하기 표 2에서 저온 인성은 -110℃에서 V노치를 갖는 시편을 샤르피 충격 시험을 행하여 얻은 샤르피 충격에너지 값으로 평가한 결과이다.
강종 조성성분(중량%)
C Mn Si P S Ni W
발명강a 0.10 0.62 0.29 0.009 0.0012 3.49 0.08
발명강b 0.09 0.60 0.27 0.008 0.0010 3.45 0.11
발명강c 0.10 0.65 0.28 0.010 0.0011 3.55 0.18
비교강d 0.11 0.68 0.29 0.012 0.0012 3.50 -
구분 강종 가열온도(℃) 수냉속도(℃/s) 템퍼링온도(℃) 템퍼링시간(분) PWHT온도(℃) PWHT시간(hr) 템퍼드 베이나이트 면적분율(%) YS(Mpa) TS(Mpa) -110℃충격인성(J)
발명예1 a 850 15.0 650 50 630 15 60 568 608 256
발명예2 860 8.5 650 90 630 20 55 557 602 251
발명예3 b 850 15.0 650 50 630 15 53 558 610 227
발명예4 860 8.5 650 90 630 20 50 557 605 233
발명예5 c 850 15.0 650 50 630 15 48 560 615 230
발명예6 850 8.5 650 90 630 20 45 551 610 215
비교예1 d 850 공냉 650 50 630 15 0 458 523 155
비교예2 850 공냉 650 90 630 20 0 442 516 148
상기 표 1 및 2에 나타난 바와 같이, 강조성성분 및 제조공정 조건이 본 발명의 범위를 만족하는 발명예 1-6의 경우, 템퍼링처리후 면적분율로 25-80%의 템퍼드 베이나이트와 잔부 템퍼드 마르텐사이트 조직을 얻을 수 있어, 후속하는 PWHT후 항복강도 및 인장강도가 비교예에 비해 각각 약 100MPa 및 80MPa 정도 우수하면서도 -110℃ 저온 인성 역시 70J 이상 우수함을 알 수 있다.
한편, 비교강 d는 W를 함유하지 않으므로, 강의 강도가 상대적으로 낮게 나타났고, 비교예 1 및 2의 경우에는 수냉을 행하지 않았고 공냉을 수행했기 때문에 템퍼드 베이나이트가 생성되지 않아 후속하는 PWHT후 항복강도 및 인장강도가 발명예에 비해 낮게 나타났고, -110℃ 저온 인성도 역시 낮은 수치로 나타났다.

Claims (10)

  1. 중량%로, C: 0.07 ~ 0.17%, Si: 0.15 ~ 0.40%, Mn: 0.3 ~ 0.7%, P: 0.012% 이하, S: 0.015%이하, Ni: 3.0 ~ 4.0%, W: 0.03~0.25%, 잔부 Fe 및 불가피한 불순물로 이루어지며, 강 미세조직이 25~80 면적%의 템퍼드 베이나이트와 잔부 템퍼드 마르텐사이트로 이루어진 PWHT 저항성이 우수한 저온용 압력용기 강판.
  2. 제 1항에 있어서, 상기 강판은 580~640℃구간에서 최대 20시간 동안 PWHT를 실시하여도 인장강도를 600MPa 이상으로 유지하는 것을 특징으로 하는 PWHT 저항성이 우수한 저온용 압력용기 강판.
  3. 제 1항에 있어서, 상기 강 미세조직은 30~70 면적%의 템퍼드 베이나이트와 잔부 템퍼드 마르텐사이트로 이루어지는 것임을 특징으로 하는 PWHT 저항성이 우수한 저온용 압력용기 강판의 제조방법.
  4. 제 1항에 있어서, 상기 강판은 580~640℃ 구간에서 최대 20시간 동안 PWHT를 실시하여도 -110℃에서의 샤르피 충격에너지값이 200J 이상인 것을 특징으로 하는 PWHT 저항성이 우수한 저온용 압력용기 강판.
  5. 중량%로, C: 0.07 ~ 0.17%, Si: 0.15 ~ 0.40%, Mn: 0.3 ~ 0.7%, P: 0.012% 이하, S: 0.015%이하, Ni: 3.0 ~ 4.0%, W: 0.03~0.25%, 잔부 Fe 및 불가피한 불순물로 이루어진 강 슬라브를 1050 ~ 1250℃에서 재가열하는 공정;
    상기 재가열된 강 슬라브를 열간 압연하고, 800℃ 이상의 온도에서 압연을 종료하여 열연강판을 얻는 열간압연 공정;
    상기 열간 압연된 강판을 800 ~ 950℃로 가열 후 수냉하는 공정; 및
    상기 수냉된 강재를 550 ~ 660℃에서 {1.5×t + (10~30)}분 [여기서 t는 강재의 두께(mm)를 의미한다] 동안 템퍼링 처리하는 공정;을
    포함하는 PWHT 저항성이 우수한 저온용 압력용기 강판의 제조방법.
  6. 제 5항에 있어서, 상기 템퍼링 공정 이후에, 580~640℃구간에서 최대 20시간 PWHT하는 공정을 추가로 포함하는 PWHT 저항성이 우수한 저온용 압력용기 강판의 제조방법.
  7. 제 5항에 있어서, 상기 템퍼링 공정으로 얻이진 강 미세조직은 25~80 면적%의 템퍼드 베이나이트와 잔부 템퍼드 마르텐사이트로 이루어지는 것임을 특징으로 하는 PWHT 저항성이 우수한 저온용 압력용기 강판의 제조방법.
  8. 제 5항에 있어서, 상기 템퍼링 공정으로 얻이진 강 미세조직은 30~70 면적%의 템퍼드 베이나이트와 잔부 템퍼드 마르텐사이트로 이루어지는 것임을 특징으로 하는 PWHT 저항성이 우수한 저온용 압력용기 강판의 제조방법.
  9. 제 5항에 있어서,
    상기 열간 압연 공정에서 패스당 압하율은 5 ~ 30%인 것을 특징으로 하는 PWHT 저항성이 우수한 저온용 압력용기 강판의 제조방법.
  10. 제 5항에 있어서,
    상기 수냉공정에서 냉각속도는 2.5~30℃/sec인 것을 특징으로 하는 PWHT 저항성이 우수한 저온용 압력용기 강판의 제조방법.
PCT/KR2016/012566 2015-12-22 2016-11-03 Pwht 저항성이 우수한 저온 압력용기용 강판 및 그 제조 방법 WO2017111290A1 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US16/063,990 US20180371568A1 (en) 2015-12-22 2016-11-03 Steel plate having excellent pwht resistance for low-temperature pressure vessel and method for manufacturing same
EP16879157.2A EP3395984B1 (en) 2015-12-22 2016-11-03 Steel sheet having excellent pwht resistance for low-temperature pressure vessel and method for manufacturing same
CN201680075744.7A CN108431272B (zh) 2015-12-22 2016-11-03 对pwht具有优异抗性的低温压力容器用钢板及其制造方法
JP2018532673A JP6700400B2 (ja) 2015-12-22 2016-11-03 Pwht抵抗性に優れた低温圧力容器用鋼板及びその製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2015-0183528 2015-12-22
KR1020150183528A KR101758497B1 (ko) 2015-12-22 2015-12-22 Pwht 저항성이 우수한 저온 압력용기용 강판 및 그 제조 방법

Publications (2)

Publication Number Publication Date
WO2017111290A1 true WO2017111290A1 (ko) 2017-06-29
WO2017111290A8 WO2017111290A8 (ko) 2017-12-21

Family

ID=59090737

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2016/012566 WO2017111290A1 (ko) 2015-12-22 2016-11-03 Pwht 저항성이 우수한 저온 압력용기용 강판 및 그 제조 방법

Country Status (6)

Country Link
US (1) US20180371568A1 (ko)
EP (1) EP3395984B1 (ko)
JP (1) JP6700400B2 (ko)
KR (1) KR101758497B1 (ko)
CN (1) CN108431272B (ko)
WO (1) WO2017111290A1 (ko)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3835448A4 (en) * 2018-08-07 2021-07-07 Posco STEEL FOR PRESSURE VESSELS WITH EXCELLENT SURFACE QUALITY AND IMPACT RESISTANCE AND THE PROCESS FOR ITS MANUFACTURING
EP3872208A4 (en) * 2018-10-26 2021-12-08 Posco STEEL PLATE FOR PRESSURE VESSELS WITH EXCELLENT LOW-TEMPERATURE TOUGHNESS AND EXTENSION RESISTANCE, AND THE PROCESS FOR THEIR MANUFACTURING

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101998991B1 (ko) * 2017-12-15 2019-07-10 주식회사 포스코 인장강도 및 저온충격인성이 우수한 압력용기용 강판 및 그 제조방법
KR102200225B1 (ko) * 2019-09-03 2021-01-07 주식회사 포스코 극저온 횡팽창이 우수한 압력용기용 강판 및 그 제조 방법
KR102280641B1 (ko) * 2019-10-22 2021-07-22 주식회사 포스코 고온 용접후열처리 저항성이 우수한 압력용기용 강판 및 그 제조방법
CN112626417A (zh) * 2020-12-14 2021-04-09 南阳汉冶特钢有限公司 一种低成本690MPa级低温抗震钢的生产方法
CN113088807A (zh) * 2021-02-25 2021-07-09 舞阳钢铁有限责任公司 一种高韧性低温压力容器用钢板及其生产方法
CN113549815B (zh) * 2021-06-25 2022-09-16 鞍钢股份有限公司 一种低温用低合金压力容器用钢板及生产方法
CN115341152A (zh) * 2022-08-31 2022-11-15 鞍钢股份有限公司 一种节镍型-100℃低温钢及其制造方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100663219B1 (ko) * 2002-06-19 2007-01-03 신닛뽄세이테쯔 카부시키카이샤 원유 유조용 강 및 그 제조 방법, 원유 유조 및 그 방식방법
KR100833071B1 (ko) * 2006-12-13 2008-05-27 주식회사 포스코 내hic특성이 우수한 인장강도 600㎫급 압력용기용 강판및 그 제조 방법
JP2013533921A (ja) * 2010-06-10 2013-08-29 タタ、スティール、ネダーランド、テクノロジー、ベスローテン、フェンノートシャップ 高温用途向けの焼きもどしマルテンサイト系耐熱鋼の製造方法
KR101388334B1 (ko) * 2007-01-31 2014-04-22 제이에프이 스틸 가부시키가이샤 내지연 파괴 특성이 우수한 고장력 강재 그리고 그 제조 방법
KR20150101734A (ko) * 2014-02-27 2015-09-04 현대제철 주식회사 압력용기 강재 및 그 제조 방법

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6126727A (ja) * 1984-07-18 1986-02-06 Nippon Kokan Kk <Nkk> 調質型厚肉80Kgf/mm↑2以上級高張力鋼の製造方法
CN1040555C (zh) * 1993-08-04 1998-11-04 新日本制铁株式会社 焊接部位的疲劳强度和焊接性优良的高强度钢及其制造方法
JP5028760B2 (ja) * 2004-07-07 2012-09-19 Jfeスチール株式会社 高張力鋼板の製造方法および高張力鋼板
FR2886314B1 (fr) * 2005-05-26 2007-07-20 Industeel France Acier pour coques de sous-marins a soudabilite renforcee
KR101343747B1 (ko) * 2008-12-26 2013-12-19 제이에프이 스틸 가부시키가이샤 용접열 영향부 및 모재부의 내연성 균열 발생 특성이 우수한 강재 및 그 제조 방법
KR101322067B1 (ko) * 2009-12-28 2013-10-25 주식회사 포스코 용접 후 열처리 저항성이 우수한 고강도 강판 및 그 제조방법
JP6253974B2 (ja) * 2013-12-27 2017-12-27 Jfeスチール株式会社 脆性亀裂伝播停止特性に優れる原子炉格納容器用厚鋼板

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100663219B1 (ko) * 2002-06-19 2007-01-03 신닛뽄세이테쯔 카부시키카이샤 원유 유조용 강 및 그 제조 방법, 원유 유조 및 그 방식방법
KR100833071B1 (ko) * 2006-12-13 2008-05-27 주식회사 포스코 내hic특성이 우수한 인장강도 600㎫급 압력용기용 강판및 그 제조 방법
KR101388334B1 (ko) * 2007-01-31 2014-04-22 제이에프이 스틸 가부시키가이샤 내지연 파괴 특성이 우수한 고장력 강재 그리고 그 제조 방법
JP2013533921A (ja) * 2010-06-10 2013-08-29 タタ、スティール、ネダーランド、テクノロジー、ベスローテン、フェンノートシャップ 高温用途向けの焼きもどしマルテンサイト系耐熱鋼の製造方法
KR20150101734A (ko) * 2014-02-27 2015-09-04 현대제철 주식회사 압력용기 강재 및 그 제조 방법

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3835448A4 (en) * 2018-08-07 2021-07-07 Posco STEEL FOR PRESSURE VESSELS WITH EXCELLENT SURFACE QUALITY AND IMPACT RESISTANCE AND THE PROCESS FOR ITS MANUFACTURING
US11624101B2 (en) 2018-08-07 2023-04-11 Posco Co., Ltd Steel for pressure vessel having excellent surface quality and impact toughness, and method for manufacturing same
EP3872208A4 (en) * 2018-10-26 2021-12-08 Posco STEEL PLATE FOR PRESSURE VESSELS WITH EXCELLENT LOW-TEMPERATURE TOUGHNESS AND EXTENSION RESISTANCE, AND THE PROCESS FOR THEIR MANUFACTURING
JP2022505860A (ja) * 2018-10-26 2022-01-14 ポスコ 極低温靭性及び延性に優れた圧力容器用鋼板及びその製造方法
JP7183410B2 (ja) 2018-10-26 2022-12-05 ポスコ 極低温靭性及び延性に優れた圧力容器用鋼板及びその製造方法

Also Published As

Publication number Publication date
JP6700400B2 (ja) 2020-05-27
KR20170075050A (ko) 2017-07-03
EP3395984A1 (en) 2018-10-31
JP2019505672A (ja) 2019-02-28
WO2017111290A8 (ko) 2017-12-21
CN108431272A (zh) 2018-08-21
EP3395984B1 (en) 2020-01-29
CN108431272B (zh) 2020-07-28
US20180371568A1 (en) 2018-12-27
EP3395984A4 (en) 2018-12-26
KR101758497B1 (ko) 2017-07-27

Similar Documents

Publication Publication Date Title
WO2017111290A1 (ko) Pwht 저항성이 우수한 저온 압력용기용 강판 및 그 제조 방법
WO2018074887A1 (ko) 고강도 철근 및 이의 제조 방법
WO2019117536A1 (ko) 인장강도 및 저온충격인성이 우수한 압력용기용 강판 및 그 제조방법
WO2018110779A1 (ko) 강도 및 연성이 우수한 저합금 강판
WO2017104969A1 (ko) 용접 후 열처리 저항성이 우수한 압력용기 강판 및 그 제조방법
WO2018117646A1 (ko) 극저온 충격인성이 우수한 후강판 및 이의 제조방법
WO2017034216A1 (ko) 고 경도 강판 및 그 제조방법
WO2017222159A1 (ko) 가공성이 우수한 고강도 냉연강판 및 그 제조 방법
WO2018117477A1 (ko) 내식성 및 성형성이 우수한 듀플렉스 스테인리스강 및 이의 제조 방법
WO2017065371A1 (ko) 고강도 강판 및 그 제조방법
WO2020085684A1 (ko) 극저온 인성 및 연성이 우수한 압력용기용 강판 및 그 제조 방법
WO2018117496A1 (ko) 고온 템퍼링 열처리 및 용접 후 열처리 저항성이 우수한 압력용기용 강재 및 이의 제조방법
WO2018117650A1 (ko) 표면부 nrl-dwt 물성이 우수한 극후물 강재 및 그 제조방법
WO2020060051A1 (ko) 충격 인성이 우수한 페라이트계 스테인리스 열연 무소둔 강판 및 그 제조방법
WO2013154254A1 (ko) 재질 균일성이 우수한 고탄소 열연강판 및 이의 제조방법
WO2019117432A1 (ko) 충격 인성이 우수한 페라이트계 스테인리스강 및 그 제조방법
WO2011081236A1 (ko) 열간 프레스 가공성이 우수한 열처리 강화형 강판 및 그 제조방법
WO2021125564A1 (ko) 클램프용 고강도 페라이트계 스테인리스강 및 그 제조방법
WO2015099214A1 (ko) 강도와 연성이 우수한 열처리 경화형 강판 및 그 제조방법
WO2017222122A1 (ko) 철근 및 이의 제조 방법
WO2021256590A1 (ko) 철근 및 그 제조방법
WO2020085687A1 (ko) 클램프용 고강도 페라이트계 스테인리스강 및 그 제조방법
WO2021125471A1 (ko) 초고강도 스프링용 선재, 강선 및 그 제조방법
WO2021125563A1 (ko) 항복비가 우수한 고강도 열연강판 및 그 제조방법
WO2018117449A1 (ko) 수소유기균열 저항성이 우수한 인장강도 450mpa급 후육 강재 및 그 제조방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16879157

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018532673

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2016879157

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2016879157

Country of ref document: EP

Effective date: 20180723