WO2021045358A1 - 고강도 비자성 오스테나이트계 스테인리스강 - Google Patents

고강도 비자성 오스테나이트계 스테인리스강 Download PDF

Info

Publication number
WO2021045358A1
WO2021045358A1 PCT/KR2020/007525 KR2020007525W WO2021045358A1 WO 2021045358 A1 WO2021045358 A1 WO 2021045358A1 KR 2020007525 W KR2020007525 W KR 2020007525W WO 2021045358 A1 WO2021045358 A1 WO 2021045358A1
Authority
WO
WIPO (PCT)
Prior art keywords
stainless steel
austenitic stainless
present
strength
reduction ratio
Prior art date
Application number
PCT/KR2020/007525
Other languages
English (en)
French (fr)
Inventor
공정현
김경훈
김지수
이문수
Original Assignee
주식회사 포스코
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 포스코 filed Critical 주식회사 포스코
Publication of WO2021045358A1 publication Critical patent/WO2021045358A1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/42Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/004Heat treatment of ferrous alloys containing Cr and Ni
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0236Cold rolling
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/34Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of silicon

Definitions

  • the present invention relates to a high-strength nonmagnetic austenitic stainless steel.
  • the high-strength non-magnetic austenitic stainless steel according to the present invention can be applied as a material for various electronic devices requiring non-magnetic properties in order to reduce power loss and prevent malfunction.
  • the 300 series stainless steel has an austenite phase as its main structure and generally has nonmagnetic properties, it is widely used as a material for electronic devices.
  • ⁇ -ferrite is formed in a fraction of 1 to 5% during steel making/rolling.
  • the formed ⁇ -ferrite phase is a structure that induces magnetism, and there is a problem in that the final product has magnetism. Therefore, conventional STS304 and STS316 austenitic stainless steels have a problem in that nonmagnetic properties cannot be secured due to the ⁇ -ferrite phase.
  • the present invention is to provide a high-strength nonmagnetic austenitic stainless steel having a low magnetic permeability.
  • the high-strength nonmagnetic austenitic stainless steel according to an example of the present invention is in wt%, C: 0.001 to 0.07%, Si: 0.5 to 1.0%, Mn: 1.0 to 2.0%, Cr: 16 to 20%, Ni: 8 to 11%, Cu: 2.0 to 3.0%, N: 0.01 to 0.1%, the remaining Fe and inevitable impurities are included, and C+N: 0.14 to 0.18% is satisfied, and the following The value of formula (1) is 1.0 or less.
  • Cr, Si, Ni, Cu, C, N, and Mn mean weight percent of each alloy element.
  • the value of the following formula (2) may be -150 or less.
  • C, N, Si, Mn, Cr, Ni, and Cu mean weight percent of each alloy element.
  • the value of the following formula (3) may be -350 or less.
  • C, N, Mn, Ni, Cr, and Cu mean weight percent of each alloy element.
  • the fraction of the processed organic martensite phase may be 0.5% or less.
  • the permeability may be 1.04 or less.
  • the yield strength may be 1050 MPa or more.
  • the tensile strength may be 1150 MPa or more.
  • a high-strength nonmagnetic austenitic stainless steel that secures nonmagnetic properties by suppressing the formation of ⁇ -ferrite during steel making/rolling through control of the alloy composition and suppressing the formation of work-induced martensite during cold rolling.
  • the present invention it is possible to provide a high-strength nonmagnetic austenitic stainless steel in which high strength is secured by high stress accumulated due to the formation of a strain zone even though the high-strength martensite phase is formed in a low fraction.
  • 1 is a graph showing the change in the permeability ( ⁇ ) of the steel of each invention example and a comparative example cold-rolled for each reduction ratio.
  • the high-strength nonmagnetic austenitic stainless steel according to an example of the present invention is by weight %, C: 0.001 to 0.07%, Si: 0.5 to 1.0%, Mn: 1.0 to 2.0%, Cr: 16 to 20%, Ni: 8 to 11%, Cu: 2.0 to 3.0%, N: 0.01 to 0.1%, the rest of Fe and inevitable impurities are included, and C+N: 0.14 to 0.18% is satisfied, and the value of the following formula (1) is 1.0 or less to be.
  • Cr, Si, Ni, Cu, C, N, and Mn mean weight percent of each alloy element.
  • the high-strength nonmagnetic austenitic stainless steel according to an example of the present invention is by weight %, C: 0.001 to 0.07%, Si: 0.5 to 1.0%, Mn: 1.0 to 2.0%, Cr: 16 to 20%, Ni: 8 to 11%, Cu: 2.0 to 3.0%, N: 0.01 to 0.1%, remaining Fe and unavoidable impurities.
  • C is a strong austenite phase stabilizing element, and is an element that suppresses an increase in magnetism during solidification.
  • 0.001% by weight or more is added for the austenite phase stabilization effect.
  • the upper limit of the C content in the present invention is preferably limited to 0.07% by weight.
  • Si is an element that improves corrosion resistance.
  • Si may be added in an amount of 0.5% by weight or more.
  • Si is a ferrite phase stabilizing element that causes magnetism, and when the Si content is excessive, there is a concern that mechanical properties and corrosion resistance may be deteriorated by promoting precipitation of intermetallic compounds such as ⁇ phase. Accordingly, the upper limit of the Si content in the present invention is preferably limited to 1.0% by weight.
  • Mn is an austenite phase stabilizing element such as C and Ni, and is effective for nonmagnetic strengthening. Accordingly, in the present invention, Mn may be added in an amount of 1.0% by weight or more. However, when the Mn content is excessive, there is a problem that inclusions such as MnS are formed to reduce corrosion resistance and surface gloss. Accordingly, in the present invention, the upper limit of the Mn content is preferably limited to 2.0% by weight.
  • Cr is a typical element for improving corrosion resistance of stainless steel, and in the present invention, Cr may be added in an amount of 16% by weight or more to ensure sufficient corrosion resistance.
  • Cr is a ferrite phase stabilizing element that causes magnetism.
  • the upper limit of the Cr content is preferably limited to 20% by weight.
  • Ni is the most powerful austenite phase stabilizing element, and in the present invention, Ni may be added in an amount of 8% by weight or more to obtain nonmagnetic properties. However, as the Ni content increases, the price of the raw material increases, so the upper limit of the Ni content is preferably limited to 11% by weight.
  • Copper (Cu) 2.0 to 3.0% by weight
  • Cu is an austenite phase stabilizing element, and can be used by replacing expensive Ni.
  • Cu may be added in an amount of 2.0% by weight or more.
  • the upper limit of the Cu content is preferably limited to 3.0% by weight.
  • N is an austenite phase stabilizing element, and in the present invention, N may be added in an amount of 0.01% by weight or more to ensure nonmagnetic properties. In order to ensure non-magnetic properties, it may be preferably added in an amount of 0.07% by weight or more. However, if the N content is excessive, the hot workability is deteriorated and the surface quality of the steel is deteriorated. Therefore, the upper limit of the N content is preferably limited to 0.1% by weight.
  • the remaining component of the present invention is iron (Fe).
  • Fe iron
  • the alloy composition of the stainless steel of the present invention may further limit the relationship between them as follows, in addition to limiting the content of each alloy element to the above-described conditions.
  • Equation (1) The value of Equation (1) is 1.0 or less
  • STS 304 or 316 stainless steel is composed of an austenite phase as a main structure, and has a microstructure in which the ⁇ -ferrite phase formed during steelmaking/rolling remains.
  • the ⁇ -ferrite phase is a structure that induces magnetism, and remains even after annealing at a high temperature of 1,100°C or higher, and is the cause structure that makes the final product appear magnetic. Therefore, it is necessary to suppress the formation of ⁇ -ferrite in order to secure the nonmagnetic properties.
  • Equation (1) below is a formula that can predict the ⁇ -ferrite fraction of steel through the content of each component when producing austenitic stainless steel in a conventional steelmaking process.
  • a target non-magnetic property may be secured by controlling the value calculated through Equation (1) below to be 1.0 or less.
  • Cr, Si, Ni, Cu, C, N, and Mn mean the weight percent of each alloy element.
  • Equation (2) The value of Equation (2) is -150 or less
  • the following equation (2) is the temperature at which the martensite phase is generated in a fraction of 50% when the steel is deformed with a true strain of 30%.
  • the austenite phase stabilization is increased by controlling the value calculated through the following equation (2) to be -150 or less, and the formation of a processed organic martensite phase is suppressed even when cold-rolled at a high reduction ratio.
  • Equation (2) C, N, Si, Mn, Cr, Ni, and Cu mean the weight percent of each alloy element.
  • Equation (3) The value of Equation (3) is -350 or less
  • the following formula (3) means the temperature at which the austenite structure starts to transform into a martensite structure by rapid cooling.
  • the austenite phase stabilization is increased by controlling the value calculated through the following equation (3) to be -350 or less, and the formation of the processed organic martensite phase is suppressed even when cold-rolled at a high reduction ratio.
  • Equation (3) C, N, Mn, Ni, Cr, and Cu mean the weight percent of each alloy element.
  • the degree of stabilization of the austenite phase can be increased, and even when cold-rolled at a high reduction ratio, the formation of a work-induced martensite phase can be suppressed.
  • the high-strength nonmagnetic austenitic stainless steel according to an exemplary embodiment of the present invention may be cold-rolled at a reduction ratio of 60 to 80%, and then the fraction of the processed organic martensite phase may be 0.5% or less.
  • a slab having a thickness of 140 to 160 mm is reheated at a temperature range of 1100 to 1280°C to prepare a hot rolled coil having a thickness of 2 to 6 mm, and solid solution heat treatment is performed at a temperature range of 1100 to 1240°C. Thereafter, each hot-rolled annealed coil may be cold-rolled in 5 to 9 passes to a rolling reduction ratio of 60 to 80%, thereby producing an unannealed cold-rolled coil.
  • the value of formula (1) is controlled to suppress the formation of ⁇ -ferrite during steel making/rolling, and the formation of the processed organic martensite phase during cold working is suppressed by controlling the values of formulas (2) and (3).
  • the present invention can secure nonmagnetic properties by suppressing the formation of a processed organic martensite phase even when cold rolling at a high reduction ratio.
  • the magnetic permeability of the high-strength nonmagnetic austenitic stainless steel according to an example of the present invention may be 1.04 or less.
  • the stainless steel according to the present invention can secure a low permeability even when cold-rolled at a high reduction rate.
  • the high-strength nonmagnetic austenitic stainless steel according to an example of the present invention may have a permeability of 1.04 or less after cold rolling at a reduction ratio of 60 to 80%.
  • the high-strength martensite phase is formed in a low fraction of 0.5% or less, high strength can be secured by high stress accumulated due to the formation of a deformation band.
  • the degree of austenite stabilization is increased to suppress martensite transformation that may occur by cold working, thereby suppressing the occurrence of magnetism.
  • the austenite stabilization degree while suppressing the formation of processed induced martensite, only the strain zone can be formed, thereby improving the strength.
  • the high-strength nonmagnetic austenitic stainless steel according to an example of the present invention may have a yield strength and a tensile strength of 1050 MPa or more and 1150 MPa or more, respectively, after cold-rolling at a reduction ratio of 60 to 80%.
  • Table 1 is a table showing the values derived by substituting the alloy components and each alloy component corresponding to the invention examples and comparative examples into equations (1), (2), and (3).
  • Equation (1) As a result of controlling the value of Equation (1) to 1.0 or less in Inventive Examples 1, 2, and 3, formation of ⁇ -ferrite during steelmaking/playing is suppressed. However, in the case of Comparative Example 2, the value of Equation (1) exceeds 1.0, so that ⁇ -ferrite may be excessively formed during steelmaking/rolling, and ⁇ -ferrite may remain without decomposition even during hot rolling annealing.
  • each reduction ratio (%) value in the processed organic martensite fraction (%) according to the reduction ratio in Table 2 mean the value of the fraction (%) of the processed organic martensite phase.
  • the values listed below each reduction ratio (%) value refer to the permeability ⁇ value.
  • 1 is a graph showing the change in the permeability ( ⁇ ) of the steel of each of the invention examples and comparative examples cold-rolled for each reduction ratio.
  • Inventive Examples 1,2 and 3 control the value of Equation (2) to -150 or less, and as a result of controlling the value of Equation (3) to -350 or less, the austenite phase stability is high and the reduction ratio is 60 to 80% Even when cold-rolled at a high reduction ratio of, the fraction of the processed organic martensite phase satisfies 0.5% or less.
  • the processed organic martensite phase is a structure that induces magnetism, and in order to secure non-magnetic properties, the fraction of the processed organic martensite phase must be controlled to 0.5% or less after being cold-rolled at a high reduction ratio.
  • Inventive Examples 1, 2 and 3 were cold-rolled at a reduction ratio of 0 to 80%, and then the fraction of the processed organic martensite phase satisfies 0.5% or less, and the magnetic permeability satisfies 1.04 or less to secure the desired nonmagnetic properties.
  • Comparative Examples 1 and 2 the fraction of the processed organic martensite phase after cold rolling at a relatively low reduction ratio of 0 to 40% of the reduction ratio was low. However, in Comparative Examples 1 and 2, when cold-rolled at a high reduction ratio of 60 to 80%, the fraction of the processed organic martensite phase exceeded 0.5%, so that the desired nonmagnetic properties could not be secured.
  • Comparative Example 1 after cold-rolling at a reduction ratio of 80%, the fraction of the processed organic martensite phase exceeded 0.5%, and after cold-rolling at a reduction ratio of 80%, the magnetic permeability was 1.097. The upper limit of 1.04 was exceeded.
  • FIG. 1 The change in the permeability ( ⁇ ) relative to the reduction ratio of each of the inventive examples and comparative examples can be visually confirmed from FIG. 1.
  • the magnetic permeability value was low at a low reduction ratio, but the magnetic permeability value increased significantly at a reduction ratio of 60 to 80%, and the non-magnetic properties of the permeability of 1.04 or less for the purpose of the present invention were not secured.
  • Equation (1) 1.0 or less
  • Equation (2) the value of Equation (3)
  • the present invention suppresses the formation of a processed organic martensite phase even when cold-rolled at an extremely high reduction ratio to secure nonmagnetic properties.
  • Table 3 shows the results of measuring the yield strength and tensile strength of each of the inventive examples and comparative examples after cold rolling at a reduction ratio of 60%.
  • Table 4 shows the results of measuring the yield strength and tensile strength of each of the inventive examples and comparative examples after cold rolling at a reduction ratio of 80%.
  • Comparative Examples 1 and 2 secured high strength characteristics as in the present invention, but as discussed in the results of FIGS. 1 and 1 and 2, the non-magnetic properties desired in the present invention were not obtained.
  • the present invention can secure nonmagnetic properties by controlling the values of equations (1), (2), and (3) and secure high strength properties at the same time.
  • the high-strength nonmagnetic austenitic stainless steel according to the present invention can be applied as a material for electronic devices such as smart devices.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Abstract

본 명세서에서는 고강도 비자성 오스테나이트계 스테인리스강을 개시한다. 개시되는 고강도 비자성 오스테나이트계 스테인리스강의 일 실시예에 따르면, 고강도 비자성 오스테나이트계 스테인리스강은 중량%로, C: 0.001 내지 0.07%, Si: 0.5 내지 1.0%, Mn: 1.0 내지 2.0%, Cr: 16 내지 20%, Ni: 8 내지 11%, Cu: 2.0 내지 3.0%, N: 0.01 내지 0.1%, 나머지 Fe 및 불가피한 불순물을 포함하고, C+N: 0.14 내지 0.18%을 만족하며, 하기 식 (1)의 값이 1.0 이하이다. (1) {[Cr+1.5Si+18]/[Ni+0.52Cu+30(C+N)+0.5Mn+36]+0.262}161-161 상기 식 (1)에서, Cr, Si, Ni, Cu, C, N, Mn은 각 합금원소의 중량%를 의미한다.

Description

고강도 비자성 오스테나이트계 스테인리스강
본 발명은 고강도 비자성 오스테나이트계 스테인리스강에 관한 것이다. 본 발명에 따른 고강도 비자성 오스테나이트계 스테인리스강은 전력손실 저감 및 오작동 방지를 위해 비자성 특성이 요구되는 다양한 전자기기의 소재로 적용될 수 있다.
최근 다양한 기능을 갖는 스마트 기기가 사용됨에 따라 전력손실 저감 및 오작동 방지를 위해 자성이 저감된 강재의 요구가 증가하고 있다. 300계 스테인리스강은 오스테나이트 상을 주조직으로 하여 통상적으로 비자성 특성을 갖기 때문에, 전자기기용 소재로 널리 사용되고 있다.
그러나, 통상의 STS304 또는 STS316 오스테나이트계 스테인리스강은 제강/연주 시 δ-페라이트가 1~5% 분율로 형성된다. 형성된 δ-페라이트 상은 자성을 유발하는 조직으로서, 최종 제품이 자성을 띄게 하는 문제점이 있다. 따라서, 통상의 STS304, STS316 오스테나이트계 스테인리스강은 δ-페라이트 상으로 인해 비자성 특성을 확보하지 못하는 문제가 있다.
또한, 전자기기 내의 핵심 소자를 보호하기 위해서는 일정 수준 이상의 강도가 요구된다. 이를 위하여 통상의 STS304 또는 STS316 오스테나이트계 스테인리스강을 압연하면, 강도는 높아지지만 자성을 유발하는 가공 유기 마르텐사이트 상이 생성되어 비자성 특성을 확보하지 못하는 문제가 있다.
상술한 문제점을 해결하기 위하여, 본 발명은 낮은 투자율을 갖는 고강도 비자성 오스테나이트계 스테인리스강을 제공하고자 한다.
상술한 목적을 달성하기 위한 수단으로서 본 발명의 일 예에 따른 고강도 비자성 오스테나이트계 스테인리스강은 중량%로, C: 0.001 내지 0.07%, Si: 0.5 내지 1.0%, Mn: 1.0 내지 2.0%, Cr: 16 내지 20%, Ni: 8 내지 11%, Cu: 2.0 내지 3.0%, N: 0.01 내지 0.1%, 나머지 Fe 및 불가피한 불순물을 포함하고, C+N: 0.14 내지 0.18%을 만족하며, 하기 식 (1)의 값이 1.0 이하이다.
(1) {[Cr+1.5Si+18]/[Ni+0.52Cu+30(C+N)+0.5Mn+36]+0.262}161-161
상기 식 (1)에서, Cr, Si, Ni, Cu, C, N, Mn은 각 합금원소의 중량%를 의미한다.
본 발명의 각 고강도 비자성 오스테나이트계 스테인리스강에 있어서, 하기 식 (2)의 값이 -150 이하일 수 있다.
(2) 551-462(C+N)-9.2Si-8.1Mn-13.7Cr-29(Ni+Cu)
상기 식 (2)에서, C, N, Si, Mn, Cr, Ni, Cu는 각 합금원소의 중량%를 의미한다.
본 발명의 각 고강도 비자성 오스테나이트계 스테인리스강에 있어서, 하기 식 (3)의 값이 -350 이하일 수 있다.
(3) 502-810C-1230N-13Mn-30Ni-12Cr-54Cu
상기 식 (3)에서, C, N, Mn, Ni, Cr, Cu는 각 합금원소의 중량%를 의미한다.
본 발명의 각 고강도 비자성 오스테나이트계 스테인리스강에 있어서, 가공 유기 마르텐사이트 상의 분율이 0.5% 이하일 수 있다.
본 발명의 각 고강도 비자성 오스테나이트계 스테인리스강에 있어서, 투자율이 1.04 이하일 수 있다.
본 발명의 각 고강도 비자성 오스테나이트계 스테인리스강에 있어서, 압하율 60 내지 80%로 냉간 압연된 후, 항복강도가 1050MPa 이상일 수 있다.
본 발명의 각 고강도 비자성 오스테나이트계 스테인리스강에 있어서, 압하율 60 내지 80%로 냉간 압연된 후, 인장강도가 1150MPa 이상일 수 있다.
본 발명에 의하면, 합금조성의 제어를 통하여 제강/연주시 δ-페라이트의 형성을 억제하며, 냉간 압연 시 가공 유기 마르텐사이트의 형성을 억제하여 비자성 특성을 확보한 고강도 비자성 오스테나이트계 스테인리스강을 제공할 수 있다.
본 발명에 의하면, 고강도의 마르텐사이트 상이 낮은 분율로 형성되어 있음에도, 변형대의 형성으로 인해 축적된 높은 응력으로 고강도를 확보한 고강도 비자성 오스테나이트계 스테인리스강을 제공할 수 있다.
도 1은 압하율 별로 냉간 압연한 각 발명예 및 비교예의 강의 투자율(μ)의 변화를 도시한 그래프이다.
본 발명의 일 예에 따른 고강도 비자성 오스테나이트계 스테인리스강은 중량%로, C: 0.001 내지 0.07%, Si: 0.5 내지 1.0%, Mn: 1.0 내지 2.0%, Cr: 16 내지 20%, Ni: 8 내지 11%, Cu: 2.0 내지 3.0%, N: 0.01 내지 0.1%, 나머지 Fe 및 불가피한 불순물을 포함하고, C+N: 0.14 내지 0.18%을 만족하며, 하기 식 (1)의 값이 1.0 이하이다.
(1) {[Cr+1.5Si+18]/[Ni+0.52Cu+30(C+N)+0.5Mn+36]+0.262}161-161
상기 식 (1)에서, Cr, Si, Ni, Cu, C, N, Mn은 각 합금원소의 중량%를 의미한다.
이하에서는 본 발명의 바람직한 실시형태들을 설명한다. 그러나, 본 발명의 실시형태는 여러 가지 다른 형태로 변형될 수 있으며, 본 발명의 기술사상이 이하에서 설명하는 실시형태로 한정되는 것은 아니다. 또한, 본 발명의 실시형태는 당해 기술분야에서 평균적인 지식을 가진 자에게 본 발명을 더욱 완전하게 설명하기 위해서 제공되는 것이다.
본 출원에서 사용하는 용어는 단지 특정한 예시를 설명하기 위하여 사용되는 것이다. 때문에 가령 단수의 표현은 문맥상 명백하게 단수여야만 하는 것이 아닌 한, 복수의 표현을 포함한다. 덧붙여, 본 출원에서 사용되는 "포함하다" 또는 "구비하다" 등의 용어는 명세서 상에 기재된 특징, 단계, 기능, 구성요소 또는 이들을 조합한 것이 존재함을 명확히 지칭하기 위하여 사용되는 것이지, 다른 특징들이나 단계, 기능, 구성요소 또는 이들을 조합한 것의 존재를 예비적으로 배제하고자 사용되는 것이 아님에 유의해야 한다.
한편, 다르게 정의되지 않는 한, 본 명세서에서 사용되는 모든 용어들은 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에 의해 일반적으로 이해되는 것과 동일한 의미를 가진 것으로 보아야 한다. 따라서, 본 명세서에서 명확하게 정의하지 않는 한, 특정 용어가 과도하게 이상적이거나 형식적인 의미로 해석되어서는 안 된다. 가령, 본 명세서에서 단수의 표현은 문맥상 명백하게 예외가 있지 않는 한, 복수의 표현을 포함한다.
또한, 본 명세서의 "약", "실질적으로" 등은 언급한 의미에 고유한 제조 및 물질 허용오차가 제시될 때 그 수치에서 또는 그 수치에 근접한 의미로 사용되고, 본 발명의 이해를 돕기 위해 정확하거나 절대적인 수치가 언급된 개시 내용을 비양심적인 침해자가 부당하게 이용하는 것을 방지하기 위해 사용된다.
본 발명의 일 예에 따른 고강도 비자성 오스테나이트계 스테인리스강은 중량%로, C: 0.001 내지 0.07%, Si: 0.5 내지 1.0%, Mn: 1.0 내지 2.0%, Cr: 16 내지 20%, Ni: 8 내지 11%, Cu: 2.0 내지 3.0%, N: 0.01 내지 0.1%, 나머지 Fe 및 불가피한 불순물을 포함한다.
이하에서는 상기 합금조성에 대해서 한정한 이유에 대하여 구체적으로 설명한다. 하기 성분조성은 특별한 기재가 없는 한 모두 중량%를 의미한다.
탄소(C): 0.001 내지 0.07중량%
C는 강력한 오스테나이트 상 안정화 원소이며, 응고 시 자성 증가를 억제하는 원소이다. 본 발명에서는 오스테나이트 상 안정화 효과를 위하여 0.001중량% 이상 첨가한다. 그러나, C함량이 과다하면 Cr과 결합하여 입계에 탄화물을 형성하며, 결정립계 주위의 Cr 함량을 국부적으로 낮추어 부식성을 저하시킬 우려가 있다. 따라서, 충분한 내식성을 확보하기 위하여 본 발명에서 C함량의 상한은 0.07중량%로 제한되는 것이 바람직하다.
실리콘(Si): 0.5 내지 1.0중량%
Si은 내식성을 향상시키는 원소이다. 내식성을 위해 본 발명에서 Si은 0.5중량% 이상 첨가될 수 있다. 그러나, Si은 자성을 유발하는 페라이트 상 안정화 원소이며, Si함량이 과다하면 σ상 등의 금속간 화합물 석출을 조장하여 기계적 특성 및 내식성을 저하시킬 우려가 있다. 이에 따라, 본 발명에서 Si 함량의 상한은 1.0중량%로 제한되는 것이 바람직하다.
망간(Mn): 1.0 내지 2.0중량%
Mn은 C, Ni과 같은 오스테나이트 상 안정화 원소이며, 비자성 강화에 유효하다. 이에 따라, 본 발명에서 Mn은 1.0중량% 이상 첨가될 수 있다. 그러나, Mn함량이 과다하면 MnS 등의 개재물을 형성하여 내식성을 저하시키고, 표면 광택을 저하시키는 문제가 있다. 이에 따라, 본 발명에서 Mn함량의 상한은 2.0중량%로 제한되는 것이 바람직하다.
크롬(Cr): 16 내지 20중량%
Cr은 대표적인 스테인리스강의 내식성 향상 원소이며, 본 발명에서는 충분한 내식성 확보를 위해서 Cr은 16중량% 이상 첨가될 수 있다. 그러나, Cr은 자성을 유발하는 페라이트 상 안정화 원소이다. 또한, Cr함량이 과다하면 비자성 특성을 얻기 위해서 다량의 Ni이 포함되어야 하므로 비용이 증가하며, σ상 형성이 조장되어 기계적 물성 및 내식성이 저하된다. 이에 따라, Cr함량의 상한은 20중량%로 제한되는 것이 바람직하다.
니켈(Ni): 8 내지 11중량%
Ni는 가장 강력한 오스테나이트 상 안정화 원소이며, 본 발명에서 비자성 특성을 얻기 위해 Ni은 8중량% 이상으로 첨가될 수 있다. 그러나, Ni 함량이 증가하면 원료 가격이 상승하게 되므로, Ni함량의 상한은 11중량%로 제한되는 것이 바람직하다.
구리(Cu): 2.0 내지 3.0중량%
Cu는 오스테나이트 상 안정화 원소이며, 고가의 Ni을 대체하여 사용할 수 있다. 본 발명에서 비자성 확보 및 원가 저감을 위하여 Cu는 2.0중량% 이상 첨가될 수 있다. 그러나, Cu함량이 과다하면 저융점의 상을 형성하여 열간 가공성을 저하시켜 표면 품질을 저하시킨다. 따라서, Cu함량의 상한은 3.0중량%로 제한되는 것이 바람직하다.
질소(N): 0.01 내지 0.1중량%
N은 오스테나이트 상 안정화 원소이며, 본 발명에서 비자성 확보를 위해 N은 0.01중량% 이상으로 첨가될 수 있다. 비자성 확보를 위해 바람직하게는 0.07중량% 이상으로 첨가될 수 있다. 그러나, N함량이 과다하면 열간 가공성을 저하시켜 강의 표면 품질을 저하시키므로, N함량의 상한은 0.1중량%로 제한되는 것이 바람직하다.
본 발명의 나머지 성분은 철(Fe)이다. 다만, 통상의 제조 과정에서는 원료 또는 주위 환경으로부터 의도되지 않는 불순물들이 불가피하게 혼입될 수 있으므로, 이를 배제할 수는 없다. 상기 불순물들은 통상의 제조 과정의 기술자라면 누구라도 알 수 있는 것이기 때문에 그 모든 내용을 특별히 본 명세서에서 언급하지는 않는다.
본 발명의 스테인리스강의 합금조성은 또한, 각 합금원소의 함량을 상술한 조건으로 제한하는 것 이외에도, 이들 사이의 관계를 다음과 같이 더욱 한정할 수 있다.
C+N: 0.14 내지 0.18중량%
C와 N이 과다하게 첨가되는 경우 가공성에 불리한 탄화물, 질화물 또는 탄질화물 등이 형성될 우려가 있으므로 본 발명의 일 예에 따르면, 이들의 함량의 합계(C+N)는 0.14 내지 0.18중량%일 수 있다.
식 (1)의 값이 1.0 이하
통상적으로 STS 304 또는 316 스테인리스강은 오스테나이트 상을 주조직으로 구성되며, 제강/연주 시 형성된 δ-페라이트 상이 잔존하는 미세조직을 가진다. δ-페라이트 상은 자성을 유발하는 조직으로서, 1,100℃ 이상의 고온에서 소둔하여도 잔류하여 최종 제품에서 자성을 띄게 하는 원인 조직이다. 따라서, 비자성 특성을 확보하기 위하여 δ-페라이트의 형성을 억제하여야 한다.
하기 식 (1)은 통상의 제강공정에서 오스테나이트계 스테인리스강을 생산할 경우, 각 성분의 함량을 통하여 강의 δ-페라이트 분율을 예측할 수 있는 수식이다. 식 (1)의 값이 클수록 예측되는 δ-페라이트의 분율이 높아진다. 본 발명의 일 예에 따르면 하기 식 (1)을 통해 계산된 값이 1.0 이하로 제어하여 목표로 하는 비자성 특성을 확보할 수 있다.
(1) {[Cr+1.5Si+18]/[Ni+0.52Cu+30(C+N)+0.5Mn+36]+0.262}161-161
식 (1)에서, Cr, Si, Ni, Cu, C, N, Mn은 각 합금원소의 중량%를 의미한다.
통상의 오스테나이트계 스테인리스강을 냉간 압연하면 자성을 유발하는 가공 유기 마르텐사이트가 형성된다. 이에 따라, 본 발명에서는 오스테나이트 상 안정화도를 높여 높은 압하율로 냉간 압연하여도 가공 유기 마르텐사이트 상의 형성을 억제할 수 있다. 이하에서, 오스테나이트 상 안정화도를 높이기 위한 기술적 수단에 대해 상술한다.
식 (2)의 값이 -150 이하
하기 식 (2)는 강을 진변형률 30%으로 변형 시 마르텐사이트 상이 50%의 분율로 생기는 온도이다. 식 (2)의 값이 클수록 오스테나이트 상 안정화도는 낮음을 의미한다. 본 발명의 일 예에 따르면 하기 식 (2)를 통해 계산된 값이 -150 이하로 제어하여 오스테나이트 상 안정화도를 높이며, 높은 압하율로 냉간 압연하여도 가공 유기 마르텐사이트 상의 형성을 억제한다.
(2) 551-462(C+N)-9.2Si-8.1Mn-13.7Cr-29(Ni+Cu)
식 (2)에서, C, N, Si, Mn, Cr, Ni, Cu는 각 합금원소의 중량%를 의미한다.
식 (3)의 값이 -350 이하
하기 식 (3)은 오스테나이트 조직에서 급냉에 의해 마르텐사이트 조직으로 변태하기 시작하는 온도를 의미한다. 식 (3)의 값이 클수록 오스테나이트 상 안정화도는 낮음을 의미한다. 본 발명의 일 예에 따르면 하기 식 (3)을 통해 계산된 값이 -350 이하로 제어하여 오스테나이트 상 안정화도를 높이며, 높은 압하율로 냉간 압연하여도 가공 유기 마르텐사이트 상의 형성을 억제한다.
(3) 502-810C-1230N-13Mn-30Ni-12Cr-54Cu
식 (3)에서, C, N, Mn, Ni, Cr, Cu는 각 합금원소의 중량%를 의미한다.
본 발명은 식 (2), (3)의 값을 낮게 제어하는 것에 의해 오스테나이트 상의 안정화도를 높여 높은 압하율로 냉간 압연하여도 가공 유기 마르텐사이트 상의 형성을 억제할 수 있다.
본 발명의 일 예에 따른 고강도 비자성 오스테나이트계 스테인리스강은 압하율 60 내지 80%로 냉간 압연된 후, 가공 유기 마르텐사이트 상의 분율이 0.5% 이하일 수 있다.
냉간 압연 공정의 일 예에 따르면, 두께가 140 내지 160mm인 슬라브를 1100 내지 1280℃ 온도 범위에서 재가열하여 두께가 2 내지 6mm인 열연 코일을 제조하고, 1100 내지 1240℃ 온도범위에서 고용화 열처리한다. 이후 각 열연 소둔된 코일을 압하율 60 내지 80%까지 5 내지 9 패스로 냉간 압연하여 미소둔 냉연 코일로 제조할 수 있다.
본 발명에 따르면 식 (1)의 값을 제어하여 제강/연주 시 δ-페라이트의 형성을 억제하며, 식 (2), (3)의 값을 제어하여 냉간 가공 시 가공 유기 마르텐사이트 상의 형성을 억제함으로써 비자성 특성을 확보할 수 있다. 특히, 본 발명은 높은 압하율로 냉간 압연하여도 가공 유기 마르텐사이트 상의 형성을 억제하여 비자성 특성을 확보할 수 있다.
본 발명의 일 예에 따른 고강도 비자성 오스테나이트계 스테인리스강의 투자율은 1.04 이하일 수 있다. 특히, 본 발명에 따른 스테인리스강은 높은 압하율로 냉간 압연되어도 낮은 투자율을 확보할 수 있다. 본 발명의 일 예에 따른 고강도 비자성 오스테나이트계 스테인리스강은 압하율 60 내지 80%로 냉간 압연된 후, 투자율이 1.04 이하일 수 있다.
또한, 본 발명에 따르면, 고강도의 마르텐사이트 상이 0.5% 이하의 낮은 분율로 형성되어 있음에도, 변형대(deformation band)의 형성으로 인해 축적된 높은 응력으로 고강도를 확보할 수 있다.
일반적으로 오스테나이트계 스테인리스강에 항복점 이상의 변형이 가해지면 소성변형에 의해 전단방향으로 원자의 슬립(slip) 현상이 발생하고 이는 띠 형태로 관찰된다. 소성변형량이 증가할수록 이러한 슬립 라인(slip line)의 발생량도 증가하고 연속적인 형태로 관찰되는 것을 변형대라고 한다. 소성변형에 의해 형성되는 슬립 라인(slip line) 및 변형대 주변에는 변형에 의해 생성되는 전위의 이동이 방해되어 높은 응력이 축적되게 되고, 축적된 높은 응력은 변태의 구동력을 감소시킴과 동시에 Ms 점을 상승시켜 마르텐사이트 변태를 촉진시키게 된다. 따라서, 일반적인 오스테나이트계 스테인리스강 또는 오스테나이트 안정화도가 낮은 오스테나이트계 스테인리스강은 소량의 변형만 가해져도 변형대 주변에서 가공에 의한 마르텐사이트 변태가 유발되어 고자성 특성을 나타내게 된다.
이에 따라, 본 발명에서는 식 (2) 및 식 (3)을 활용하여 오스테나이트 안정화도를 높여 냉간 가공에 의해 발생할 수 있는 마르텐사이트 변태를 억제하여 자성의 발생을 억제하였다. 또한, 오스테나이트 안정화도를 높인 결과, 가공 유기 마르텐사이트의 형성을 억제하면서도, 변형대만을 형성시킬 수 있어 강도를 향상시킬 수 있게 된다.
본 발명의 일 예에 따른 고강도 비자성 오스테나이트계 스테인리스강은 압하율 60 내지 80%로 냉간 압연된 후, 항복강도, 인장강도가 각각 1050MPa 이상, 1150MPa 이상일 수 있다.
이하, 실시예를 통하여 본 발명을 보다 구체적으로 설명하고자 한다. 다만, 하기의 실시예는 본 발명을 예시하여 보다 상세하게 설명하기 위한 것일 뿐, 본 발명의 권리범위를 한정하기 위한 것이 아니라는 점에 유의할 필요가 있다. 본 발명의 권리범위는 특허청구범위에 기재된 사항과 이로부터 합리적으로 유추되는 사항에 의해 결정되는 것이기 때문이다.
{실시예}
아래 표 1은 각 발명예, 비교예에 해당되는 합금성분 및 각 합금성분을 식 (1), (2), (3)에 대입하여 도출된 값을 나타낸 표이다.
C Si Mn Ni Cr Cu N C+N 식(1) 식(2) 식(3)
발명예1 0.070 0.71 1.90 10.2 19.5 2.82 0.099 0.17 -3.2 -193.7 -393.5
발명예2 0.063 0.69 1.51 10.0 19.2 2.82 0.091 0.15 -2.3 -173.5 -363.3
발명예3 0.058 0.78 1.89 9.5 19.7 2.85 0.090 0.15 0.7 -167.9 -355.6
비교예1 0.055 0.71 1.26 9.5 19.2 2.82 0.095 0.15 -0.6 -155.4 -343.5*
비교예2 0.051 0.70 1.05 8.9 19.2 2.65 0.084 0.14 2.3* -124.3* -296.8*
(*는 본 발명이 규정한 범위 외이다.)
이상의 표 1을 참조하면 발명예 1,2,3은 식 (1)의 값이 1.0 이하로 제어된 결과, 제강/연주 시 δ-페라이트의 형성이 억제된다. 그러나, 비교예 2의 경우 식 (1)의 값이 1.0을 초과하여 제강/연주 시 δ-페라이트가 과다 형성되며, 열연 소둔 시에도 분해되지 않고 δ-페라이트가 잔류할 수 있다.
아래 표 2에는 각 발명예 및 비교예의 강을 통상의 열간 압연 조건으로 압연한 다음, 1,150℃에서 60초 소둔하고, 압하율 별로 냉간 압연한 후, 측정된 가공 유기 마르텐사이트 분율(%), 투자율(μ) 값을 나타냈다. 표 2에서, 0%, 20%, 40%, 60%, 80%는 압하율(%)을 의미한다.
표 2의 압하율에 따른 가공 유기 마르텐사이트 분율(%)에서 각 압하율(%) 수치 아래에 기재된 값은 가공 유기 마르텐사이트 상의 분율(%) 값을 의미한다. 표 2의 압하율에 따른 투자율 μ에서 각 압하율(%) 수치 아래에 기재된 값은 투자율 μ 값을 의미한다.
첨부된 도 1은 압하율 별로 냉간 압연한 각 발명예 및 비교예의 강의 투자율(μ)의 변화를 도시한 그래프이다.
압하율에 따른 가공 유기 마르텐사이트 분율(%) 압하율에 따른 투자율 μ
0% 20% 40% 60% 80% 0% 20% 40% 60% 80%
발명예1 0.00 0.00 0.00 0.17 0.18 1.003 1.004 1.005 1.010 1.016
발명예2 0.00 0.00 0.00 0.19 0.42 1.003 1.005 1.006 1.020 1.039
발명예3 0.00 0.00 0.12 0.17 0.41 1.003 1.005 1.007 1.014 1.032
비교예1 0.00 0.00 0.16 0.44 0.89* 1.003 1.004 1.009 1.031 1.097*
비교예2 0.00 0.18 0.42 0.99* 2.70* 1.004 0.999 1.023 1.139* 1.172*
(*는 본 발명이 규정한 범위 외이다.)
이하에서, 도 1 및 표 1,2를 참조하여 각 발명예 및 비교예의 비자성 특성을 평가하도록 한다. 발명예 1,2,3은 식 (2)의 값을 -150 이하로 제어하며, 식 (3)의 값을 -350 이하로 제어한 결과, 오스테나이트 상 안정화도가 높아 압하율 60 내지 80%의 높은 압하율로 냉간 압연하여도 가공 유기 마르텐사이트 상의 분율이 0.5% 이하를 만족하였다.
그러나, 비교예 1은 식 (3)의 값이 -350을 초과하여 오스테나이트 상 안정화도가 상대적으로 낮아 압하율 80%로 냉간 압연된 후, 가공 유기 마르텐사이트 상의 분율이 0.5%를 초과하였다.
비교예 2는 식 (2)의 값이 -150를 초과하고, 식 (3)의 값이 -350을 초과하여 오스테나이트 상 안정화도가 상대적으로 낮아 압하율 60 내지 80%로 냉간 압연된 후, 가공 유기 마르텐사이트 상의 분율이 0.5%를 초과하였다.
가공 유기 마르텐사이트 상은 자성을 유발하는 조직으로써, 비자성 특성을 확보하기 위해서는 높은 압하율로 냉간 압연된 후, 가공 유기 마르텐사이트 상의 분율이 0.5% 이하로 제어되어야 한다.
발명예 1,2,3은 압하율 0 내지 80%로 냉간 압연 된 후, 가공 유기 마르텐사이트 상의 분율이 0.5% 이하를 만족하고, 투자율이 1.04 이하를 만족하여 목적하는 비자성 특성을 확보하였다.
비교예 1,2는 압하율 0 내지 40%의 상대적으로 낮은 압하율에서 냉간 압연된 후의 가공 유기 마르텐사이트 상의 분율이 낮았다. 그러나, 비교예 1,2는 압하율 60 내지 80%의 높은 압하율로 냉간 압연된 경우에는 가공 유기 마르텐사이트 상의 분율이 0.5%를 초과하여 목적하는 비자성 특성을 확보하지 못하였다.
구체적으로, 비교예 1은 압하율 80%로 냉간 압연된 후, 가공 유기 마르텐사이트 상의 분율이 0.5%를 초과하였으며, 압하율 80%로 냉간 압연된 후, 투자율은 1.097으로 본 발명이 목적 하는 투자율의 상한인 1.04를 초과하였다.
비교예 2는 압하율 60%, 80%로 냉간 압연된 후, 가공 유기 마르텐사이트 상의 분율이 0.5%를 초과하였으며, 압하율 60%, 80%로 냉간 압연된 후, 투자율이 각각 1.139, 1.172으로 본 발명이 목적하는 투자율의 상한인 1.04를 초과하였다.
각 발명예 및 비교예의 압하율 대비 투자율(μ)의 변화는 도 1로부터 가시적으로 확인할 수 있다. 도 1을 참조하면, 본 발명예는 압하율이 80%까지 증가하여도 투자율 값이 크게 상승하지 않고, 낮은 투자율을 잘 유지하고 있음을 확인할 수 있다. 반면, 비교예의 경우 낮은 압하율에서는 투자율 값이 낮았으나, 압하율 60 내지 80%에서는 투자율 값이 크게 상승하여 본 발명이 목적하는 투자율 1.04 이하의 비자성 특성을 확보하지 못하였다.
상술한 결과로부터, 식 (1)의 값이 1.0 이하가 되도록 제어함으로써 제강/연주 시 δ-페라이트 상의 형성을 억제하여 비자성 특성을 확보함을 알 수 있다. 또한, 식 (2)의 값이 -150 이하, 식 (3)의 값이 -350 이하로 제어함으로써 냉간 가공 시 가공 유기 마르텐사이트 상의 형성을 억제하여 비자성 특성을 확보함을 알 수 있다. 특히, 본 발명은 극도로 높은 압하율에서 냉간 압연되는 경우에도 가공 유기 마르텐사이트 상의 형성을 억제하여 비자성 특성을 확보함을 알 수 있다.
아래 표 3에는 60%의 압하율로 냉간 압연된 후의 각 발명예 및 비교예의 항복강도 및 인장강도를 측정한 결과를 나타내었다. 아래 표 4에는 80%의 압하율로 냉간 압연된 이후의 각 발명예 및 비교예의 항복강도 및 인장강도를 측정한 결과를 나타내었다.
항복강도 (MPa) 인장강도 (MPa)
발명예1 1102.6 1206.7
발명예2 1078.0 1181.7
발명예3 1061.3 1160.4
비교예1 1082.0 1178.1
비교예2 1070.4 1166.8
항복강도 (MPa) 인장강도 (MPa)
발명예1 1160.6 1307.3
발명예2 1136.5 1301.1
발명예3 1155.4 1296.0
비교예1 1130.0 1304.2
비교예2 1147.3 1315.9
표 3, 4를 참조하면 발명예 1,2,3은 고강도의 가공 유기 마르텐사이트 상의 분율이 0.5% 이하임에도 불구하고, 변형대의 형성으로 인해 축적된 높은 응력으로 고강도를 확보할 수 있음을 알 수 있다. 발명예 1,2,3은 압하율 60 내지 80%로 냉간 압연된 후, 항복강도가 1050MPa 이상, 인장강도가 1150MPa 이상이였다.
한편, 비교예 1,2는 본 발명과 같이 고강도 특성을 확보하였으나, 도 1, 표 1,2의 결과에서 고찰한 바와 같이 본 발명에서 목적하는 비자성 특성을 확보하지 못하였다.
상술한 결과로부터, 본 발명은 식 (1), (2), (3)의 값을 제어하여 비자성 특성을 확보하고, 동시에 고강도 특성을 확보할 수 있음을 알 수 있다.
상술한 바에 있어서, 본 발명의 예시적인 실시예들을 설명하였지만, 본 발명은 이에 한정되지 않으며 해당 기술 분야에서 통상의 지식을 가진 자라면 다음에 기재하는 청구범위의 개념과 범위를 벗어나지 않는 범위 내에서 다양한 변경 및 변형이 가능함을 이해할 수 있을 것이다.
본 발명에 따른 고강도 비자성 오스테나이트계 스테인리스강은 스마트 기기 등 전자기기용 소재로 적용될 수 있다.

Claims (7)

  1. 중량%로, C: 0.001 내지 0.07%, Si: 0.5 내지 1.0%, Mn: 1.0 내지 2.0%, Cr: 16 내지 20%, Ni: 8 내지 11%, Cu: 2.0 내지 3.0%, N: 0.01 내지 0.1%, 나머지 Fe 및 불가피한 불순물을 포함하고, C+N: 0.14 내지 0.18%을 만족하며,
    하기 식 (1)의 값이 1.0 이하인 고강도 비자성 오스테나이트계 스테인리스강:
    (1) {[Cr+1.5Si+18]/[Ni+0.52Cu+30(C+N)+0.5Mn+36]+0.262}161-161
    (상기 식 (1)에서, Cr, Si, Ni, Cu, C, N, Mn은 각 합금원소의 중량%를 의미한다).
  2. 제1항에 있어서,
    하기 식 (2)의 값이 -150 이하인 고강도 비자성 오스테나이트계 스테인리스강:
    (2) 551-462(C+N)-9.2Si-8.1Mn-13.7Cr-29(Ni+Cu)
    (상기 식 (2)에서, C, N, Si, Mn, Cr, Ni, Cu는 각 합금원소의 중량%를 의미한다).
  3. 제1항에 있어서,
    하기 식 (3)의 값이 -350 이하인 고강도 비자성 오스테나이트계 스테인리스강:
    (3) 502-810C-1230N-13Mn-30Ni-12Cr-54Cu
    (상기 식 (3)에서, C, N, Mn, Ni, Cr, Cu는 각 합금원소의 중량%를 의미한다).
  4. 제1항에 있어서,
    가공 유기 마르텐사이트 상의 분율이 0.5% 이하인 고강도 비자성 오스테나이트계 스테인리스강.
  5. 제1항에 있어서,
    투자율이 1.04 이하인 고강도 비자성 오스테나이트계 스테인리스강.
  6. 제1항에 있어서,
    압하율 60 내지 80%로 냉간 압연된 후, 항복강도가 1050MPa 이상인 고강도 비자성 오스테나이트계 스테인리스강.
  7. 제1항에 있어서,
    압하율 60 내지 80%로 냉간 압연된 후, 인장강도가 1150MPa 이상인 고강도 비자성 오스테나이트계 스테인리스강.
PCT/KR2020/007525 2019-09-06 2020-06-10 고강도 비자성 오스테나이트계 스테인리스강 WO2021045358A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020190110724A KR20210029464A (ko) 2019-09-06 2019-09-06 고강도 비자성 오스테나이트계 스테인리스강
KR10-2019-0110724 2019-09-06

Publications (1)

Publication Number Publication Date
WO2021045358A1 true WO2021045358A1 (ko) 2021-03-11

Family

ID=74853407

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2020/007525 WO2021045358A1 (ko) 2019-09-06 2020-06-10 고강도 비자성 오스테나이트계 스테인리스강

Country Status (2)

Country Link
KR (1) KR20210029464A (ko)
WO (1) WO2021045358A1 (ko)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07113144A (ja) * 1993-10-18 1995-05-02 Nisshin Steel Co Ltd 表面性状に優れた非磁性ステンレス鋼及びその製造方法
JP2002060838A (ja) * 2000-08-18 2002-02-28 Sanyo Special Steel Co Ltd 非磁性オーステナイト系ステンレス鋼の製造方法
JP2015212418A (ja) * 2015-05-14 2015-11-26 国立研究開発法人物質・材料研究機構 高強度非磁性オーステナイト系ステンレス鋼材
KR20190066737A (ko) * 2017-12-06 2019-06-14 주식회사 포스코 내식성이 우수한 비자성 오스테나이트계 스테인리스강 및 그 제조방법
KR20190066734A (ko) * 2017-12-06 2019-06-14 주식회사 포스코 내식성이 우수한 고경도 오스테나이트계 스테인리스강

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR950006434B1 (ko) 1992-09-08 1995-06-15 삼성전자주식회사 리이드 프레임

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07113144A (ja) * 1993-10-18 1995-05-02 Nisshin Steel Co Ltd 表面性状に優れた非磁性ステンレス鋼及びその製造方法
JP2002060838A (ja) * 2000-08-18 2002-02-28 Sanyo Special Steel Co Ltd 非磁性オーステナイト系ステンレス鋼の製造方法
JP2015212418A (ja) * 2015-05-14 2015-11-26 国立研究開発法人物質・材料研究機構 高強度非磁性オーステナイト系ステンレス鋼材
KR20190066737A (ko) * 2017-12-06 2019-06-14 주식회사 포스코 내식성이 우수한 비자성 오스테나이트계 스테인리스강 및 그 제조방법
KR20190066734A (ko) * 2017-12-06 2019-06-14 주식회사 포스코 내식성이 우수한 고경도 오스테나이트계 스테인리스강

Also Published As

Publication number Publication date
KR20210029464A (ko) 2021-03-16

Similar Documents

Publication Publication Date Title
WO2019112144A1 (ko) 내식성이 우수한 비자성 오스테나이트계 스테인리스강 및 그 제조방법
WO2020101227A1 (ko) 비자성 오스테나이트계 스테인리스강 및 그 제조방법
WO2018074887A1 (ko) 고강도 철근 및 이의 제조 방법
WO2011081350A2 (ko) 용접 후 열처리 저항성이 우수한 고강도 강판 및 그 제조방법
WO2017034216A1 (ko) 고 경도 강판 및 그 제조방법
WO2018117477A1 (ko) 내식성 및 성형성이 우수한 듀플렉스 스테인리스강 및 이의 제조 방법
WO2020067686A1 (ko) 우수한 경도와 충격인성을 갖는 내마모강 및 그 제조방법
WO2022050635A1 (ko) 오스테나이트계 스테인리스강 및 그 제조 방법
WO2021085800A1 (ko) 항복비가 향상된 오스테나이트계 스테인리스강 및 그 제조 방법
WO2021010599A2 (ko) 강도가 향상된 오스테나이트계 스테인리스강 및 그 제조 방법
WO2021045358A1 (ko) 고강도 비자성 오스테나이트계 스테인리스강
WO2011081236A1 (ko) 열간 프레스 가공성이 우수한 열처리 강화형 강판 및 그 제조방법
WO2020111857A1 (ko) 크리프 강도가 우수한 크롬-몰리브덴 강판 및 그 제조방법
WO2020130279A1 (ko) 고강도 스테인리스강
WO2019132226A1 (ko) 절곡성이 향상된 린 듀플렉스강 및 그 제조방법
WO2019125025A1 (ko) 고 강도 오스테나이트계 고 망간 강재 및 그 제조방법
WO2017111250A1 (ko) 내식성 및 가공성이 향상된 린 듀플렉스 스테인리스강 및 이의 제조 방법
WO2015060499A1 (ko) 방진성이 우수한 고강도 고망간 강판 및 그 제조방법
WO2017222122A1 (ko) 철근 및 이의 제조 방법
WO2021261884A1 (ko) 생산성 및 원가 절감 효과가 우수한 고강도 오스테나이트계 스테인리스강 및 이의 제조방법
WO2020036370A1 (ko) 강도가 향상된 오스테나이트계 스테인리스강
WO2022119134A1 (ko) 입계침식이 개선된 페라이트계 스테인리스강 및 그 제조방법
WO2023075282A1 (ko) 자기적 성질이 향상된 페라이트계 스테인리스강 및 그 제조방법
WO2022045595A1 (ko) 심가공성이 향상된 오스테나이트계 스테인리스강
WO2022124526A1 (ko) 내리징성이 향상된 페라이트계 스테인리스강 및 그 제조방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20861058

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20861058

Country of ref document: EP

Kind code of ref document: A1