WO2020130279A1 - 고강도 스테인리스강 - Google Patents

고강도 스테인리스강 Download PDF

Info

Publication number
WO2020130279A1
WO2020130279A1 PCT/KR2019/010786 KR2019010786W WO2020130279A1 WO 2020130279 A1 WO2020130279 A1 WO 2020130279A1 KR 2019010786 W KR2019010786 W KR 2019010786W WO 2020130279 A1 WO2020130279 A1 WO 2020130279A1
Authority
WO
WIPO (PCT)
Prior art keywords
stainless steel
strength
content
phase
value
Prior art date
Application number
PCT/KR2019/010786
Other languages
English (en)
French (fr)
Inventor
전종진
박미남
김상석
Original Assignee
주식회사 포스코
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 포스코 filed Critical 주식회사 포스코
Priority to US17/312,119 priority Critical patent/US11952649B2/en
Priority to EP19897657.3A priority patent/EP3882367A4/en
Priority to JP2021536010A priority patent/JP7108143B2/ja
Priority to CN201980083762.3A priority patent/CN113227431B/zh
Publication of WO2020130279A1 publication Critical patent/WO2020130279A1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/004Heat treatment of ferrous alloys containing Cr and Ni
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/005Heat treatment of ferrous alloys containing Mn
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/008Heat treatment of ferrous alloys containing Si
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0205Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0236Cold rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0263Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment following hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/42Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/18Hardening; Quenching with or without subsequent tempering
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/001Austenite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/005Ferrite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/008Martensite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/04Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing
    • C21D8/0421Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing characterised by the working steps
    • C21D8/0436Cold rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • C21D9/48Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals deep-drawing sheets

Definitions

  • the present invention relates to high-strength stainless steel, and more particularly, to a stainless steel having excellent yield strength through the formation of a processed organic martensite phase and an increase in martensitic phase strength.
  • Austenitic stainless steel is a representative stainless steel that is most often used because of its excellent properties such as moldability, corrosion resistance, and weldability.
  • one of the characteristics of austenitic stainless steel is that it is accompanied by phase transformation during processing. That is, if the sufficiently high-alloy state is not maintained with the elements that stabilize the austenite phase, the austenite phase transforms into a martensite phase during plastic deformation, resulting in a significant increase in strength.
  • STS301 series stainless steel which is one of the representative steel grades, is characterized by unstable phase stability, so that the degree of work hardening due to plastic deformation is large.
  • the yield strength of the heat-treated STS301 steel is around 300 MPa, but when it is cold-pressed by more than 75%, the yield strength increases to 1,800 MPa level due to the increase in the processing organic martensite phase. Therefore, the STS301 series is a full hard material and has been used in fields requiring high elastic stress and high strength such as automobile gaskets and springs.
  • the STS301 series of full hard materials are being used as a foldable smartphone folding material, and the trend is to design a smaller radius of curvature of the folding part in consideration of the aesthetics of the external design.
  • Existing STS301-based materials are difficult to obtain a yield strength of 2,000 MPa or higher even at a 75% cold rolling reduction rate.
  • the present invention is to provide a stainless steel having excellent yield strength of cold rolled materials compared to the existing STS301 series stainless steel by realizing an increase in the fraction of martensitic phase and an increase in martensitic phase through control of alloying components.
  • High-strength stainless steel according to an embodiment of the present invention, by weight, C: 0.14 to 0.20%, Si: 0.8 to 1.0%, Mn: more than 0.5%, Cr: 15.0 to 17.0%, Ni: 4.0 to 5.0%, Mo: 0.6 to 0.8%, Cu: 0.5% or less, N: 0.05 to 0.11%, remaining Fe and unavoidable impurities, C+N: 0.25% or more and Md30 value represented by the following formula (1) This 40°C or higher is satisfied.
  • C, N, Si, Mn, Cr, Ni, Cu, Mo means the content (% by weight) of each element.
  • the Ms value represented by the following formula (2) may satisfy -110°C or less.
  • the Ms value represented by the formula (2) may be less than -117°C or the value of the formula (3) below may satisfy 17.0 or more.
  • the matrix structure includes an area fraction of 45% or more of the martensite phase, a residual austenite phase, and a ferrite phase, and the ferrite phase may be 4% or less.
  • the stainless steel is a cold rolled material having a reduction ratio of 60% or more, and a yield strength of 2,200 MPa or more.
  • High-strength stainless steel according to an embodiment of the present invention can exhibit a high strength and excellent fatigue properties with a yield strength of 2,200 MPa or more of a rolling reduction 60% cold rolled material.
  • 1 is a graph showing the correlation between Md30, (C+N) content and yield strength (YS).
  • Figure 2 is a graph showing the yield strength of Comparative Example 1 and Inventive Example 1 according to the rolling reduction.
  • Figure 3 is a graph showing the stress-strain curve of the invention and comparative examples according to an embodiment of the present invention.
  • High-strength stainless steel according to an embodiment of the present invention, by weight, C: 0.14 to 0.20%, Si: 0.8 to 1.0%, Mn: more than 0.5%, Cr: 15.0 to 17.0%, Ni: 4.0 to 5.0%, Mo: 0.6 to 0.8%, Cu: 0.5% or less, N: 0.05 to 0.11%, remaining Fe and unavoidable impurities, C+N: 0.25% or more and Md30 value represented by the following formula (1) This 40°C or higher is satisfied.
  • a metastable austenitic stainless steel suitable for hardening by austenite phase martensitic transformation by cold working is suitable.
  • the Md30 temperature range is limited by optimizing the content of the austenite stabilizing element. Through transformation, the transformation of the processed organic martensite phase was induced, and the C+N content was controlled to secure the strength of the final cold rolled material.
  • the method of implementing high yield strength according to the present invention consists of (1) controlling Md30 to 40° C. or higher to increase the fraction of processed organic martensite phase, and (2) containing C+N content of 0.25% or higher to increase martensite phase strength. do.
  • High-strength stainless steel by weight, C: 0.14 to 0.20%, Si: 0.8 to 1.0%, Mn: more than 0.5%, Cr: 15.0 to 17.0%, Ni: 4.0 to 5.0%, Mo: 0.6 to 0.8%, Cu: 0.5% or less, N: 0.05 to 0.11%, remaining Fe and unavoidable impurities.
  • the unit is weight%.
  • the content of C is 0.14 to 0.20%.
  • C is an austenite phase-forming element, and is an effective element for increasing material strength by solid solution strengthening.
  • it is preferable to add 0.14% or more to secure a yield strength of 2,200 MPa or more at a reduction ratio of 60% or more.
  • carbide-forming elements such as Cr, which are effective for corrosion resistance.
  • the content of Si is 0.8 to 1.0%.
  • Si is partially added for the deoxidation effect, and it is preferable to add 0.8% or more for the purpose of solid solution strengthening.
  • the Si content In the case of excessive steel, the slag fluidity decreases during steelmaking, and the inclusion is formed by combining with oxygen to decrease corrosion resistance. Therefore, it is preferable to limit the Si content to 0.8 to 1.0%.
  • the content of Mn is more than 0 and 0.5% or less.
  • Mn The higher the content of Mn, the better the effect of improving the N solubility, but if the content is excessive, it combines with S in steel to form MnS and degrade corrosion resistance, as well as to decrease hot workability. Therefore, it is desirable to limit the content of Mn to 0.5% or less.
  • the content of Cr is 15.0 to 17.0%.
  • Cr is an essential element for securing corrosion resistance of stainless steel. If the content is increased, the corrosion resistance increases, but the fraction of the processed organic martensite phase decreases due to the downward Md30, making it difficult to secure strength. Therefore, the content of Cr is limited to 15.0 to 17.0% in order to secure corrosion resistance and strength of stainless steel.
  • the content of Ni is 4.0 to 5.0%.
  • Ni is an austenite stabilizing element and plays a major role in controlling Md30. If the Ni content is too low, there is a possibility that the austenite phase stability decreases and a thermal martensite phase is formed in the cooling process. Conversely, an excessive increase in Ni content decreases the fraction on the processed organic martensite due to downward Md30, thereby limiting the Ni content to 4.0 to 5.0%.
  • the content of Mo is 0.6 to 0.8%.
  • Mo is an essential element for securing corrosion resistance together with Cr, and greatly contributes to a solid solution strengthening effect. However, it is preferable to limit the content of Mo to 0.6 to 0.8%, as excessive hot workability deterioration may occur.
  • the content of Cu is 0.5% or less.
  • Cu has an effect of softening the material with an austenitic stabilizing element similar to Ni, so it is preferable to control it to 0.5% or less.
  • the content of N is 0.05 to 0.11%.
  • N is an austenite phase-forming element, and is an effective element for improving the strength of a material by solid solution strengthening.
  • it is required to add 0.05% or more since it greatly contributes to the strengthening effect in the transformation of the processed organic martensite phase.
  • it is preferable to limit it to 0.11% or less because excessive cracking may cause surface cracks by N pore formation.
  • the C+N content satisfies 0.25% or more.
  • the rest of the stainless steel excluding the alloy elements described above, is made of Fe and other unavoidable impurities.
  • the Md30 value represented by the following formula (1) satisfies 40° C. or higher, and the matrix structure is an area fraction of 45% or more of the processed organic martensite phase and the residual austenite phase, and Ferrite phase.
  • Md30 the temperature (°C) at which 50% of the phase transformation to martensite occurs when a 30% strain is given.
  • the high-strength stainless steel according to the present invention can control the Md30 value to 40°C or higher on the basis of the above-described alloy component system, thereby securing an area fraction of 45% or more of the martensite phase of the cold rolled material having a rolling reduction of 60% or more.
  • the above-described C+N content is controlled to 0.25% or more to secure the strength of the martensite phase.
  • the base structure other than the martensitic phase includes an austenite phase and some ferrite phases. Specifically, it is composed of a ferrite phase of 4% or less, and the rest of the metastable austenite phase, which was formed as an initial structure before cold rolling.
  • the high-strength stainless steel of the present invention may exhibit a yield strength of 2,200 MPa or more of a cold rolled material having a reduction ratio of 60% or more. More preferably, a yield strength of 2,300 MPa or more may be exhibited in a cold rolled material having a reduction ratio of 70%.
  • FIG. 1 is a graph showing the correlation between Md30, (C+N) content and yield strength (YS).
  • Md30 value of the formula (1) and the C + N content satisfies both the scope of the present invention, it can be seen that the yield strength of the final cold rolled material is more than 2,200MPa.
  • the Ms value represented by the following formula (2) may satisfy -110°C or less.
  • the Ms value represented by the formula (2) may be less than -117°C or the value of the formula (3) below may satisfy 17.0 or more.
  • the stability of the austenite phase decreases, and accordingly, even if the Ms value is sufficiently low, thermal martensite may be generated. It is difficult to express all of the formation dependence of the thermal martensite phase on cooling only with the Ms value, which means that it is complexly dependent on the Ni and C+N contents, especially the Ni content. Therefore, in order to suppress the formation of the thermal martensite phase, it is preferable to satisfy any one or more of the Ms value of -117°C or less or the Ni/(C+N) value of 17.0 or more.
  • High-strength stainless steel according to an embodiment of the present invention can be prepared by a general hot rolling-annealing-cold rolling stainless steel manufacturing process. After hot rolling, the temperature can be maintained within 10 minutes in a temperature range of 1,050 to 1,100°C, followed by water cooling, and cold rolling can be performed at a reduction rate of 60% or more.
  • Inventive Example 1 was designed to satisfy the component system according to the present invention, C+N and Md30 range.
  • Comparative Example 1 which corresponds to the existing 301 steel, exhibited a yield strength of 2,000 MPa or more only when it reached 80% cold rolling reduction. Even the 301 steel with a high work hardening rate showed a yield strength not exceeding 1,600 MPa at a rolling reduction of 60%.
  • Inventive Example 1 exhibited a yield strength of 2,200 MPa or more at a 60% reduction rate, and a yield strength of 2,400 MPa at a 75% reduction rate.
  • Figure 2 is a graph showing the yield strength of Comparative Example 1 and Inventive Example 1 according to the rolling reduction based on the data in Table 2. Referring to Figure 2, it can be seen that the increase in strength according to the reduction ratio of Example 1 of the present invention compared to Comparative Example 1. As described above, it has been confirmed that the objective of the present invention can be achieved by sufficiently forming the processed organic martensite phase through Md30 control and increasing the strength of the processed organic martensite phase generated by satisfying the C+N content.
  • the stainless steel of the component system shown in Table 3 below Lab It was vacuum melted to prepare an ingot. After confirming whether or not N pores were produced in the manufactured ingot, it was reheated and hot rolled. After annealing at a temperature of 1,050 to 1,100°C, an initial ferrite fraction was measured using a ferrite scope. Thereafter, cold rolling was performed to a final rolling reduction of 70% to measure the fraction and yield strength of the processed organic martensite.
  • the experimental steel grade was fixed in the range of 15.0 to 17.0% of Cr, and of 0.7% of Mo, and the contents of C, Mn, Ni, and N, which affect the stability of the austenite phase, were changed. .
  • Md30, Ms, Ni/(C+N), initial ferrite phase ( ⁇ ) fraction, N Pore formation, cold rolling reduction rate at 70% of processing organic martensite phase ( ⁇ ') fraction and yield strength (YS) It is shown in Table 4 below.
  • Figure 3 is a graph showing the stress-strain curve of the invention and comparative examples according to an embodiment of the present invention. It will be described with reference to Figure 3 and Table 3 and Table 4.
  • Comparative Example 6 has a high Ni content of 6.0%, but a C+N content of 0.25% or more.
  • the yield strength of the final cold-rolled material satisfying the C+N range was 2,165 MPa, which was close to 2,200 MPa, but the Md30 value was very low, resulting in less processing organic martensite phase after cold rolling.
  • Comparative Example 7 Also, as in Comparative Example 6, the C+N content satisfies 0.25% or more, resulting in a high yield strength of 2,199 MPa, but the low Md30 value did not sufficiently produce the processed organic martensite phase after cold rolling.
  • Comparative Examples 8 and 9 show the case where thermal martensite was formed in the cooling process.
  • the thermal martensite was generated because the Ms value was higher than -110°C, and the C+N content was somewhat low, but cold rolling was not possible due to the thermal martensite generation, so the final yield strength was not measured.
  • Comparative Example 9 Cold rolling was also impossible due to the formation of thermal martensite.
  • Inventive Examples 1 and 2 satisfy all of the alloy composition of the present invention, and after 70% cold rolling according to an Md30 value of 40°C or higher, 45% or more of processed organic martensite was produced.
  • the C+N content was contained in an appropriate amount of 0.251% and 0.292%, respectively, and as shown in FIGS. 1 and 2, the yield strength of the final cold rolled material was measured to be 2,300 MPa or more.
  • N Pore was generated in the ingot because the N content exceeded 0.11%.
  • C+N satisfies approximately 0.25% or more even with a low C content due to the high N content, but the yield strength is excellent, but surface cracks were found by the formation of N Pore in the steel surface layer.
  • the high-strength stainless steel according to the present invention can exhibit high strength and excellent fatigue properties, and thus can be used as a back-plate material for a foldable display.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Sheet Steel (AREA)
  • Heat Treatment Of Steel (AREA)

Abstract

가공유기 마르텐사이트상 생성 및 마르텐사이트상 강도 증가를 통해 2,200MPa 이상의 항복강도를 갖는 스테인리스강이 개시된다. 본 발명의 일 실시예에 따른 고강도 스테인리스강은, 중량%로, C: 0.14 내지 0.20%, Si: 0.8 내지 1.0%, Mn: 0 초과 0.5% 이하, Cr: 15.0 내지 17.0%, Ni: 4.0 내지 5.0%, Mo: 0.6 내지 0.8%, Cu: 0.5% 이하, N: 0.05 내지 0.11%, 나머지 Fe 및 불가피한 불순물을 포함하고, C+N: 0.25% 이상 및 Md30 값이 40℃ 이상을 만족한다.

Description

고강도 스테인리스강
본 발명은 고강도 스테인리스강에 대한 것으로, 보다 상세하게는 가공유기 마르텐사이트상 생성 및 마르텐사이트상 강도 증가를 통해 우수한 항복강도를 갖는 스테인리스강에 관한 것이다.
오스테나이트계 스테인리스강은 성형성, 내식성, 용접성 등 물성이 탁월하여 가장 많이 사용되는 대표적인 스테인리스강이다. 특히 오스테나이트계 스테인리스강의 특징 중의 하나는 가공 시 상변태를 동반한다는 것이다. 즉 오스테나이트상을 안정화시키는 원소들로 충분히 고합금 상태를 유지하지 않는 경우, 오스테나이트상은 소성변형 도중 마르텐사이트상으로 변태하여 강도가 크게 증가하게 된다. 그 중에서도 대표적인 강종의 하나인 STS301 계열의 스테인리스강은, 상안정성이 불안정하여 소성변형에 따른 가공경화의 정도가 큰 것이 가장 큰 특징이다. 예를 들어 열처리된 STS301 강의 항복강도는 300MPa 전후이나, 이를 75% 이상 냉간압하 시 가공유기 마르텐사이트상 증가에 의해 항복강도가 1,800MPa 수준으로 증가한다. 따라서 STS301 계열은 Full Hard 소재로서 자동차 가스켓이나 스프링 등과 같이 높은 탄성응력 및 고강도를 요구하는 분야에 사용되어 왔다.
최근에는 폴더블(Foldable) 스마트폰 접이부 소재로 STS301 계열의 Full Hard 소재를 적용 중에 있으며, 외부 디자인의 심미성을 고려해 접이부의 곡률반경을 더욱 작게 설계하는 것이 트렌드이다. 곡률반경이 작을수록 접이부 소재의 두께가 얇아지게 되고, 얇아진 소재의 강도를 보완하기 위해 소재 자체의 항복강도가 적어도 2,000MPa 이상 수준이 요구된다. 기존의 STS301 계열의 소재는 75% 냉간압하율에서도 2,000MPa 이상의 항복강도를 얻기가 수월하지 않다. 뿐만 아니라 냉간압하율 85% 이상에서 2,000MPa 이상의 강도를 확보할 수 있으나, 최종 열처리 후 잔류응력이 일부 존재하여 평탄도 확보가 쉽지 않은 상황이다. 따라서 75% 이하의 압하율에서도 기존 STS301 강 대비 항복강도가 우수한 소재 개발이 필요하다.
본 발명은 합금성분 제어를 통해 가공유기 마르텐사이트상 분율 증가 및 마르텐사이트상 강도 증가를 구현하여, 기존의 STS301 계열 스테인리스강 대비 냉연재의 항복강도가 우수한 스테인리스강을 제공하고자 한다.
본 발명의 일 실시예에 따른 고강도 스테인리스강은, 중량%로, C: 0.14 내지 0.20%, Si: 0.8 내지 1.0%, Mn: 0 초과 0.5% 이하, Cr: 15.0 내지 17.0%, Ni: 4.0 내지 5.0%, Mo: 0.6 내지 0.8%, Cu: 0.5% 이하, N: 0.05 내지 0.11%, 나머지 Fe 및 불가피한 불순물을 포함하고, C+N: 0.25% 이상 및 하기 식 (1)로 표현되는 Md30 값이 40℃ 이상을 만족한다.
(1) Md30(℃) = 551 - 462*(C+N) - 9.2*Si - 8.1*Mn - 13.7*Cr - 29*(Ni+Cu) - 18.5*Mo
여기서, C, N, Si, Mn, Cr, Ni, Cu, Mo는 각 원소의 함량(중량%)을 의미한다.
또한, 본 발명의 일 실시예에 따르면, 하기 식 (2)로 표현되는 Ms 값이 -110℃ 이하를 만족할 수 있다.
(2) Ms(℃) = 502 - 810*C - 1230*N - 13*Mn - 30*Ni - 12*Cr - 54*Cu - 46*Mo
또한, 본 발명의 일 실시예에 따르면, 상기 식 (2)로 표현되는 Ms 값이 -117℃ 이하 또는 하기 식 (3)의 값이 17.0 이상을 만족할 수 있다.
(3) Ni/(C+N)
또한, 본 발명의 일 실시예에 따르면, 기지조직은 면적분율로, 45% 이상의 마르텐사이트상과 잔부 오스테나이트상 및 페라이트상을 포함하며, 페라이트상은 4% 이하일 수 있다.
또한, 본 발명의 일 실시예에 따르면, 상기 스테인리스강은 압하율 60% 이상의 냉간압연재이며, 항복강도가 2,200MPa 이상일 수 있다.
본 발명의 실시예에 따른 고강도 스테인리스강은 압하율 60% 냉연재의 항복강도가 2,200MPa 이상으로 고강도 및 우수한 피로 특성을 나타낼 수 있다.
도 1은 Md30, (C+N) 함량과 항복강도(YS)와의 상관관계를 나타낸 그래프이다.
도 2는 압하율에 따른 비교예 1과 발명예 1의 항복강도를 나타내는 그래프이다.
도 3은 본 발명의 실시예에 따른 발명예와 비교예의 응력-변형 곡선을 나타낸 그래프이다.
본 발명의 일 실시예에 따른 고강도 스테인리스강은, 중량%로, C: 0.14 내지 0.20%, Si: 0.8 내지 1.0%, Mn: 0 초과 0.5% 이하, Cr: 15.0 내지 17.0%, Ni: 4.0 내지 5.0%, Mo: 0.6 내지 0.8%, Cu: 0.5% 이하, N: 0.05 내지 0.11%, 나머지 Fe 및 불가피한 불순물을 포함하고, C+N: 0.25% 이상 및 하기 식 (1)로 표현되는 Md30 값이 40℃ 이상을 만족한다.
(1) Md30(℃) = 551 - 462*(C+N) - 9.2*Si - 8.1*Mn - 13.7*Cr - 29*(Ni+Cu) - 18.5*Mo
이하에서는 본 발명의 실시 예를 첨부 도면을 참조하여 상세히 설명한다. 이하의 실시 예는 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 본 발명의 사상을 충분히 전달하기 위해 제시하는 것이다. 본 발명은 여기서 제시한 실시 예만으로 한정되지 않고 다른 형태로 구체화될 수도 있다. 도면은 본 발명을 명확히 하기 위해 설명과 관계 없는 부분의 도시를 생략하고, 이해를 돕기 위해 구성요소의 크기를 다소 과장하여 표현할 수 있다.
최근 폴더블(Foldable) 스마트폰 접이부 또는 스프링 용도 등으로의 적용을 위해 소형화 및 박판화가 진행되고 있으며, 이렇게 작고 얇아진 강판 소재는 곡률반경이 작고 부하방향이 변동하는 응력에 대한 우수한 탄성응력과 피로 특성이 요구된다. 특히, 피로 파괴는 부하방향이 변동하는 응력이 되풀이될 때 일어나는 파괴 형식으로, 응력이 탄성한계 이하일 경우에도 일어나며 거시적으로 인지할 수 있는 소성변형을 동반하지 않는 것이 특징이다. 피로 특성 향상을 위해서는 탄성한계 응력이 비례하여 증가할 수 있도록 재료의 강도 상승이 본질적으로 필요하다.
이러한 용도로의 사용에 있어서는, 냉간 가공함으로써 오스테나이트상의 마르텐사이트상 변태에 의해 경화되는 준안정 오스테나이트계 스테인리스강이 적합한 바, 본 발명에서는 오스테나이트 안정화 원소의 함량을 최적화함으로써 Md30 온도범위 한정을 통해 변형 중 가공유기 마르텐사이트상 변태를 유도하고, 최종 냉연재의 강도 확보를 위해 C+N 함량을 제어하였다.
본 발명에 따른 고 항복강도 구현 방법은 (1) 가공유기 마르텐사이트상 분율 증가를 위해 Md30을 40℃ 이상으로 제어, (2) 마르텐사이트상 강도 증가를 위해 C+N 함량 0.25% 이상 함유로 구성된다.
본 발명의 일 실시예에 따른 고강도 스테인리스강은, 중량%로, C: 0.14 내지 0.20%, Si: 0.8 내지 1.0%, Mn: 0 초과 0.5% 이하, Cr: 15.0 내지 17.0%, Ni: 4.0 내지 5.0%, Mo: 0.6 내지 0.8%, Cu: 0.5% 이하, N: 0.05 내지 0.11%, 나머지 Fe 및 불가피한 불순물을 포함한다.
이하, 본 발명의 실시예에서의 합금원소 함량의 수치 한정 이유에 대하여 설명한다. 이하에서는 특별한 언급이 없는 한 단위는 중량%이다.
C의 함량은 0.14 내지 0.20%이다.
C는 오스테나이트상 형성 원소로, 고용강화에 의한 재료 강도 증가에 유효한 원소이다. 뿐만 아니라 가공 도중 마르텐사이트상 변태 시에도 강화 효과에 크게 기여하므로, 60% 이상의 압하율에서 2,200MPa 이상의 항복강도를 확보하기 위해서는 0.14% 이상 첨가하는 것이 바람직하다. 그러나, 과다 첨가의 경우 소재 제조 시 중심부에 편석 및 조대한 탄화물을 형성하여 후공정인 열간압연 - 소둔 - 냉간압연 - 냉연소둔 공정에 악영향을 끼치고, 내식성에 유효한 Cr과 같은 탄화물 형성 원소와 쉽게 결합하여 결정립계 주위의 Cr 함량을 낮추어 내부식성을 감소시키기 때문에 내식성 극대화를 위해서는 0.2% 이하의 범위 내에서 첨가하는 것이 바람직하다.
Si의 함량은 0.8 내지 1.0%이다.
Si은 탈산효과를 위하여 일부 첨가되며, 고용강화 목적으로 0.8% 이상 첨가가 바람직하다. 과다할 경우 제강 시 슬래그 유동성을 저하시키고, 산소와 결합하여 개재물을 형성하여 내식성을 저하시킨다. 따라서, Si 함량은 0.8 내지 1.0%로 한정하는 것이 바람직하다.
Mn의 함량은 0 초과 0.5% 이하이다.
Mn은 함량이 높을수록 N의 고용도를 개선하는 효과가 있으나, 함량이 과다하면 강 중의 S와 결합하여 MnS를 형성하고 내식성을 떨어뜨릴 뿐만 아니라 열간가공성도 저하시킨다. 따라서, Mn의 함량을 0.5% 이하로 제한하는 것이 바람직하다.
Cr의 함량은 15.0 내지 17.0%이다.
Cr은 스테인리스강의 내식성 확보를 위한 필수 원소이다. 함량을 증가시키면 내식성이 증가하나 Md30 하향으로 인해 가공유기 마르텐사이트상 분율이 감소하여 강도 확보가 어렵다. 따라서 스테인리스강의 내식성 및 강도 확보를 위해서 Cr의 함량을 15.0 내지 17.0%로 제한한다.
Ni의 함량은 4.0 내지 5.0%이다.
Ni은 Mn 및 N와 함께 오스테나이트 안정화 원소로 Md30 제어에 주된 역할을 한다. Ni 함량이 너무 낮을 경우 오스테나이트상 안정도가 떨어져 냉각과정에서 열적 마르텐사이트상이 형성될 가능성이 있다. 반대로, 과도한 Ni 함량 증가는 Md30 하향으로 인해 가공유기 마르텐사이트상 분율이 감소하므로, Ni의 함량을 4.0 내지 5.0%로 제한한다.
Mo의 함량은 0.6 내지 0.8%이다.
Mo은 Cr과 함께 내식성 확보를 위한 필수 원소이며, 고용강화 효과에 크게 기여한다. 그러나 과도할 경우 열간가공성 저하가 발생할 수 있으므로, Mo의 함량을 0.6 내지 0.8%로 한정하는 것이 바람직하다.
Cu의 함량은 0.5% 이하이다.
Cu는 Ni과 유사하게 오스테나이트상 안정화 원소로 소재를 연질화시키는 효과가 있으므로, 0.5% 이하로 제어하는 것이 바람직하다.
N의 함량은 0.05 내지 0.11%이다.
N는 C와 마찬가지로 오스테나이트상 형성 원소로 고용강화에 의한 소재의 강도 개선에 유효한 원소이며, 이와 동시에 가공유기 마르텐사이트상 변태 시에도 강화 효과에 크게 기여하므로 0.05% 이상 첨가가 필요하다. 그러나, 과다 첨가 시 N 기공(pore) 형성에 의해 표면 크랙을 유발할 수 있으므로 0.11% 이하로 한정하는 것이 바람직하다.
또한, 본 발명의 일 실시예에 따르면, C+N 함량은 0.25% 이상을 만족한다.
압하율 60% 이상 냉연재에서 본 발명이 목적하는 2,200MPa 이상의 항복강도를 달성하기 위해서는, 후술할 Md30에 따른 가공유기 마르텐사이트상 분율 확보와 함께 강도 증가가 요구된다. C+N의 함량을 0.25% 이상으로 제어함으로써 가공유기 마르텐사이트상의 강도 증가를 구현할 수 있다. 0.14 내지 0.2%의 C 및 0.05 내지 0.11%의 N 각각의 범위를 만족하더라도 C+N 함량이 0.25%에 미달하는 경우 최종 냉연재의 항복강도를 2,200MPa 이상 확보하기 어렵다.
상술한 합금원소들을 제외한 스테인리스강의 나머지는 Fe 및 기타 불가피한 불순물로 이루어진다.
또한, 본 발명의 일 실시예에 따르면, 하기 식 (1)로 표현되는 Md30 값이 40℃ 이상을 만족하며, 기지조직은 면적분율로, 45% 이상의 가공유기 마르텐사이트상과 잔부 오스테나이트상 및 페라이트상을 포함한다.
(1) Md30(℃) = 551 - 462*(C+N) - 9.2*Si - 8.1*Mn - 13.7*Cr - 29*(Ni+Cu) - 18.5*Mo
준안정 오스테나이트계 스테인리스강은, 마르텐사이트 변태 개시온도(Ms) 이상의 온도에서 소성가공에 의해 마르텐사이트 변태가 발생한다. 이러한 가공에 의해 상변태를 일으키는 상한 온도는 Md 값으로 나타내며, 특히 30% 변형을 부여할 때 마르텐사이트로의 상변태가 50%가 일어나는 온도(℃)를 Md30이라 칭한다. Md30 값이 높으면 가공유기 마르텐사이트상의 생성이 쉬운 것에 반해 Md30 값이 낮으면 가공유기 마르텐사이트상의 생성이 상대적으로 어려운 강종으로 판단할 수 있다. 이러한 Md30 값을 통해 통상의 준안정 오스테나이트계 스테인리스강의 오스테나이트 안정화도를 판단할 수 있는 지표로 사용된다.
종래 Md30과 피로 특성의 상관관계에 대하여, 변형 중 오스테나이트상에서 가공유기 마르텐사이트상으로 변태되기 쉬운 것이 재료의 피로 특성에 가장 큰 영향을 미친다는 연구가 있었다. 그러나, 피로 특성 향상은 적정 범위의 Md30 제어만으로는 부족하며, 강도와의 관계에서 더 큰 비례성을 갖는 것으로 확인된다. 동일한 Md30 값에 대하여 동일한 가공 이력으로 특정량의 가공유기 마르텐사이트상이 생성되더라도 강도가 확보되지 않으면 피로 특성의 큰 향상을 기대하기 힘들다. 일반적으로 강도가 높은 재료가 탄성 한계 응력도 높아 피로 특성도 우수하기 때문이다.
본 발명에 따른 고강도 스테인리스강은 상술한 합금 성분계를 기초로 하여 Md30 값이 40℃ 이상으로 제어함으로써, 압하율 60% 이상 냉연재의 가공유기 마르텐사이트상 면적분율을 45% 이상 확보할 수 있다. 이에 더하여, 상술한 C+N 함량을 0.25% 이상으로 제어하여 마르텐사이트상의 강도를 확보한다.
마르텐사이트상 외의 기지조직은 오스테나이트상과 일부 페라이트상을 포함하며, 구체적으로 냉간압연 전까지 초기 조직으로 생성된 4% 이하의 페라이트상과 나머지 준안정 오스테나이트상으로 이루어진다.
이에 따른 본 발명의 고강도 스테인리스강은, 압하율 60% 이상 냉연재의 항복강도가 2,200MPa 이상을 나타낼 수 있다. 보다 바람직하게는, 70% 압하율의 냉연재에서 2,300MPa 이상의 항복강도를 나타낼 수 있다.
도 1은 Md30, (C+N) 함량과 항복강도(YS)와의 상관관계를 나타낸 그래프이다. 도 1을 참조하면, 식 (1)의 Md30 값과 C+N 함량이 본 발명의 범위를 모두 만족하는 경우, 최종 냉연재의 항복강도가 2,200MPa 이상으로 나타남을 알 수 있다.
또한, 본 발명의 일 실시예에 따르면, 하기 식 (2)로 표현되는 Ms 값이 -110℃ 이하를 만족할 수 있다.
(2) Ms(℃) = 502 - 810*C - 1230*N - 13*Mn - 30*Ni - 12*Cr - 54*Cu - 46*Mo
마르텐사이트 변태 개시온도 Ms를 -110℃ 이하로 제어함으로써 냉각 시 열적(Thermal) 마르텐사이트상 형성을 억제할 수 있다. 열적 마르텐사이트가 페라이트 초기 조직과 함께 생성되는 경우, 냉간압연에 있어서 취성 문제로 인해 60% 이상의 압하율로 압연하는 것이 불가능해진다.
한편, Ms 값이 -110℃ 이하이더라도 냉각 과정에서 열적 마르텐사이트상이 생성되는 경우가 있다. 상기 식 (2)의 Ms 예측식이 Ni 함량에 따라 크게 변화하기 때문이며, 이를 보완하기 위해 주요 오스테나이트 안정화 원소인 Ni과 C+N의 비를 도입하였다.
본 발명의 일 실시예에 따르면, 상기 식 (2)로 표현되는 Ms 값이 -117℃ 이하 또는 하기 식 (3)의 값이 17.0 이상을 만족할 수 있다.
(3) Ni/(C+N)
Ni 함량이 낮으면 오스테나이트상 안정도가 낮아지고, 이에 따라 Ms 값이 충분히 낮아도 열적 마르텐사이트가 생성될 우려가 있다. Ms 값만으로는 냉각 시 열적 마르텐사이트상의 생성 의존성을 모두 표현하는 것은 어려우며, Ni과 C+N 함량, 특히 Ni 함량에도 복합적으로 의존함을 의미한다. 따라서, 열적 마르텐사이트상의 형성을 억제하기 위해서는 Ms 값 -117℃ 이하 또는 Ni/(C+N) 값 17.0 이상을 어느 하나 이상 만족하는 것이 바람직하다.
본 발명의 일 실시예에 따른 고강도 스테인리스강은 일반적인 열간압연 - 소둔 - 냉간압연의 스테인리스강 제조공정으로 제조될 수 있다. 열간압연 후 1,050 내지 1,100℃ 온도범위에서 10분 이내로 유지한 후 수냉할 수 있으며, 냉간압연은 압하율 60% 이상 실시할 수 있다.
상술한 것처럼, 열간압연 후 소둔 시 수냉하여도 냉각과정에서 열적 마르텐사이트상이 형성되지 않으며, 냉간압연에 의해 가공유기 마르텐사이트상 분율을 확보할 수 있다.
이하 본 발명의 바람직한 실시예를 통해 보다 상세히 설명하기로 한다.
실시예
먼저, 본 발명에서 달성하고자 하는 목표 물성인 항복강도 2,200 MPa 이상을 구현할 수 있는지 확인하고자 하였다. 기존 301 강종 성분계 범위에 속하는 비교예 1과 비교하였으며, 발명예 1은 본 발명에 따른 성분계, C+N 및 Md30 범위를 만족하도록 설계하였다.
구분 C Si Mn Cr Ni Mo Cu N C+N Md30
비교예 1 0.103 1.11 1.11 17.1 6.5 0.7 0.2 0.064 0.167 13.1
발명예 1 0.157 0.93 0.3 15.8 5 0.71 0.2 0.094 0.251 43.7
위 비교예 1과 발명예 1을 대상으로 냉간압연 압하율에 따른 항복강도를 측정하여 아래 표 2에 나타내었다.
구분 압하율 항복강도(MPa)
비교예 1 0% 341
10% 581
20% 836
30% 1,118
40% 1,316
50% 1,437
60% 1,592
70% 1,742
75% 1,969
80% 2,111
발명예 1 0% 368
10% 560
20% 1,104
30% 1,587
40% 1,820
50% 2,107
60% 2,253
70% 2,311
75% 2,424
80% 2,548
기존 301 강종에 해당하는 비교예 1은 80% 냉연 압하율에 이르러서야 2,000 MPa 이상의 항복강도를 나타내었다. 가공경화율이 높은 301 강종이라도 압하율 60%에서는 1,600 MPa에 미치지 못하는 항복강도를 나타내었다.
반면, 본 발명에 따른 발명예 1은 60% 압하율에서 2,200 MPa 이상의 항복강도를 나타내었으며, 75% 압하율에서는 2,400 MPa 급의 항복강도를 나타내었다.
도 2는 표 2의 데이터를 바탕으로 압하율에 따른 비교예 1과 발명예 1의 항복강도를 나타내는 그래프이다. 도 2 를 참조하면, 비교예 1에 비하여 본 발명예 1의 압하율에 따른 강도 증가가 이루어진 것을 알 수 있다. 이처럼, Md30 제어를 통해 가공유기 마르텐사이트상을 충분히 형성하고, C+N 함량을 만족함으로써 생성되는 가공유기 마르텐사이트상의 강도를 상승시키고자 하는 본 발명의 목적을 달성할 수 있음이 확인되었다.
다음으로, 성분계 각 합금원소의 함량, 그에 따른 Md30, 그리고 제조과정에서 생성되는 페라이트상 및 마르텐사이트상 등 각 범위들의 기술적/임계적 의의를 살펴보기 위해, 아래 표 3에 나타낸 성분계의 스테인리스강을 Lab. 진공용해를 하여 잉곳(Ingot)으로 제조하였다. 제조된 잉곳의 N 기공(pore) 발생여부를 확인한 후, 재가열하여 열간압연하였으며, 1,050 내지 1,100℃의 온도에서 소둔을 행한 후 페라이트스코프를 이용하여 초기 페라이트 분율을 측정하였다. 이후 최종 압하율 70%까지 냉간압연하여 가공유기 마르텐사이트상 분율 및 항복강도를 측정하였다.
구분 C Si Mn Cr Ni Mo Cu N C+N
비교예 1 0.103 1.11 1.11 17.1 6.5 0.7 0.2 0.064 0.167
비교예 2 0.081 0.89 1.11 17 6.4 0.7 0.2 0.1 0.181
비교예 3 0.078 0.87 1.1 17 6.4 0.68 0.21 0.03 0.108
비교예 4 0.081 0.29 0.29 15.8 6.6 0 0.2 0.11 0.191
비교예 5 0.082 0.88 0.3 15.9 6.1 0.74 0.2 0.101 0.183
비교예 6 0.154 0.89 0.3 16 6 0.71 0.2 0.098 0.252
비교예 7 0.203 0.89 0.3 15.8 5 0.71 0.21 0.093 0.296
비교예 8 0.149 0.9 0.31 16.1 4 0.7 0.2 0.092 0.241
비교예 9 0.199 0.9 0.31 16.1 2.96 0.69 0.2 0.105 0.304
발명예 1 0.157 0.93 0.3 15.8 5 0.71 0.2 0.094 0.251
발명예 2 0.196 0.9 0.3 15.9 4.1 0.68 0.2 0.096 0.292
비교예 10 0.13 0.89 0.31 16 4.9 0.72 0.19 0.12 0.25
비교예 11 0.125 0.9 0.31 15.9 5 0.69 0.2 0.13 0.255
비교예 12 0.128 0.89 0.29 16.1 4.5 0.7 0.2 0.12 0.248
비교예 13 0.115 0.9 0.29 16 4.5 0.68 0.2 0.14 0.255
비교예 14 0.088 0.93 0.3 16.2 5.1 0.77 0.18 0.17 0.258
표 3에 기재된 바와 같이, 실험 강종은 내식성 확보를 위해 Cr은 15.0 ~ 17.0% 범위, Mo은 0.7%로 고정하고, 오스테나이트상 안정도에 영향을 미치는 C, Mn, Ni, N 함량에 변화를 주었다.
이에 따른 Md30, Ms, Ni/(C+N), 초기 페라이트상(α) 분율, N Pore 형성여부, 냉연 압하율 70%에서의 가공유기 마르텐사이트상(α') 분율 및 항복강도(YS)를 아래 표 4에 나타내었다.
구분 Md30(℃) Ms(℃) Ni/(C+N) α상 분율(면적%) N Pore형성여부 가공유기α'상 분율(면적%) 항복강도(MPa)
비교예 1 13.1 -117.8 38.9 0.6 × 28.9 1,742
비교예 2 47.0 -51.0 59.3 3.7 × 53.7 1,873
비교예 3 12.9 -140.0 35.4 1.7 × 30.0 1,704
비교예 4 44.1 -101.1 34.6 3.1 × 46.2 1,853
비교예 5 41.7 -111.2 33.3 1.8 × 47.6 1,894
비교예 6 11.8 -162.6 23.8 1.0 × 34.8 2,165
비교예 7 22.9 -164.3 16.9 1.7 × 41.2 2,199
비교예 8 73.5 -92.1 16.6 31.4(α'상 형성) × - -
비교예 9 74.8 -116.9 9.7 10.9(α'상 형성) × - -
발명예 1 43.7 -127.8 19.9 3.3 × 57.1 2,311
발명예 2 50.3 -134.6 14.0 1.9 × 52.3 2,394
비교예 10 44.7 -137.3 19.6 1.9 54.5 2,369
비교예 11 41.0 -146.5 19.6 1.9 53.8 2,275
비교예 12 56.1 -124.3 18.1 3.9 63.0 2,331
비교예 13 54.5 -136.2 17.6 3.4 57.8 2,351
비교예 14 31.5 -174.8 19.8 3.9 54.6 2,106
도 3은 본 발명의 실시예에 따른 발명예와 비교예의 응력-변형 곡선을 나타낸 그래프이다. 도 3과 표 3 및 표 4를 참조하여 살펴보기로 한다.
비교예 1 내지 5는 모두 Ni 함량이 6.0% 이상으로 높고, C+N 함량은 0.2%에 미치지 못하여 높은 Ni/(C+N) 값을 나타낸다.
비교예 1, 2는 Md30 값이 낮아 오스테나이트 안정도가 높기 때문에 냉간압연 후 가공유기 마르텐사이트상이 30.0% 이하로 적게 생성되었으나, 비교예 3 내지 5는 Md30 값이 40℃ 이상을 만족함에 따라 70% 냉간압연 후 가공유기 마르텐사이트상이 45% 이상 생성되었다.
그러나, 도 3에 나타난 바와 같이, 비교예 3 내지 5는 C+N 함량이 0.25% 이상을 만족하지 못함에 따라, Md30 값이 40℃ 이상을 만족함에도, 최종 냉연재의 항복강도가 1,900MPa 수준으로 낮게 나타남을 알 수 있다.
비교예 6은 Ni 함량이 6.0%로 높지만, C+N 함량은 0.25% 이상을 만족한다. C+N 범위를 만족하여 최종 냉연재의 항복강도는 2,165MPa로 2,200MPa에 근접하게 나타났지만, Md30 값이 매우 낮아 냉간압연 후 가공유기 마르텐사이트상이 적게 생성되었다. 비교예 7 또한 비교예 6과 같이, C+N 함량이 0.25% 이상을 만족하여 항복강도가 2,199MPa로 높게 나타났지만, Md30 값이 낮아 냉간압연 후 가공유기 마르텐사이트상이 충분히 생성되지 않았다.
비교예 6, 7로부터 알 수 있는 것처럼, C+N 함량이 0.25% 이상이지만 Md30 값이 낮은 경우에는 항복강도는 2,200MPa를 초과하지 않는다. 즉, Md30을 제어하여 가공유기 마르텐사이트상 분율을 45% 이상으로 증가시키는 것과 동시에 C+N 함량을 증가시켜 마르텐사이트상 자체의 강도를 향상시킴으로써 2,200MPa 이상의 고 항복강도 구현이 가능함을 확인할 수 있다.
비교예 8, 9는 냉각 과정에서 열적 마르텐사이트가 생성된 경우를 나타내고 있다. 비교예 8은 Ms 값이 -110℃보다 높아 열적 마르텐사이트가 생성되었으며, C+N 함량이 다소 낮지만 열적 마르텐사이트 생성 때문에 냉간압연이 불가하여 최종 항복강도는 측정하지 못하였다. 비교예 9 또한 열적 마르텐사이트의 생성으로 인해 냉간압연이 불가하였다.
비교예 8과 9의 Ms 값을 살펴보면, 비교예 9는 Ms 값이 -116.9℃로 -110℃보다 낮음에도 불구하고 열적 마르텐사이트상이 생성된 것을 확인할 수 있다. 이는 전술한 바와 같이, Ms 값만으로 냉각 시 열적 마르텐사이트상 생성 의존성을 모두 표현하는 것은 어려우며, Ni과 C+N 함량, 특히 Ni 함량에도 복합적으로 의존함을 의미한다. Ms 값이 -110℃ 이하인 경우라도 Ni/(C+N) 값이 17.0 이하라면 Ni 함량 부족으로 인하여 열적 마르텐사이트상이 생성될 수 있음을 확인할 수 있었다. 즉, Ms 값이 -110℃ 이하인 경우라 하더라도 Ms 값 -117℃ 이상 및 Ni/(C+N) 값이 17.0 이하를 동시에 만족하는 경우에는 열적 마르텐사이트가 생성될 수 있다.
한편, 위에서 살펴보았던 비교예 3은, Ms 값이 -51℃로 상당히 높음에도 불구하고 냉각 과정에서 열적 마르텐사이트가 생성되지 않았는데, 이는 높은 Ni 함량으로 인하여 Ni/(C+N) 값이 높기 때문으로 추측되었다.
발명예 1 및 2는 본 발명의 합금 조성을 모두 만족하며, 40℃ 이상의 Md30 값에 따라 70% 냉간압연 후 45% 이상의 가공유기 마르텐사이트가 생성되었다. 또한, C+N 함량이 각각 0.251%, 0.292%로 적정량 함유되어, 도 1 및 2에 나타난 바와 같이 최종 냉연재의 항복강도는 2,300MPa 이상으로 측정되었다.
비교예 10 내지 14는 N 함량이 0.11%를 초과하여 잉곳에서 N Pore가 발생하였다. N 함량이 높아 낮은 C 함량에도 C+N은 대략 0.25% 이상을 만족하여 항복강도가 우수하지만, 강 표층에 N Pore 형성에 의해 표면 크랙이 발견되었다.
상술한 바에 있어서, 본 발명의 예시적인 실시예들을 설명하였지만, 본 발명은 이에 한정되지 않으며 해당 기술 분야에서 통상의 지식을 가진 자라면 다음에 기재하는 청구범위의 개념과 범위를 벗어나지 않는 범위 내에서 다양한 변경 및 변형이 가능함을 이해할 수 있을 것이다.
본 발명에 따른 고강도 스테인리스강은 고강도 및 우수한 피로 특성을 나타낼 수 있어, 폴더블 형태의 디스플레이용 백-플레이트 소재 등으로 활용될 수 있다.

Claims (5)

  1. 중량%로, C: 0.14 내지 0.20%, Si: 0.8 내지 1.0%, Mn: 0 초과 0.5% 이하, Cr: 15.0 내지 17.0%, Ni: 4.0 내지 5.0%, Mo: 0.6 내지 0.8%, Cu: 0.5% 이하, N: 0.05 내지 0.11%, 나머지 Fe 및 불가피한 불순물을 포함하고,
    C+N: 0.25% 이상 및 하기 식 (1)로 표현되는 Md30 값이 40℃ 이상을 만족하는 고강도 스테인리스강.
    (1) Md30(℃) = 551 - 462*(C+N) - 9.2*Si - 8.1*Mn - 13.7*Cr - 29*(Ni+Cu) - 18.5*Mo
    (여기서, C, N, Si, Mn, Cr, Ni, Cu, Mo는 각 원소의 함량(중량%)을 의미한다)
  2. 제1항에 있어서,
    하기 식 (2)로 표현되는 Ms 값이 -110℃ 이하를 만족하는 고강도 스테인리스강.
    (2) Ms(℃) = 502 - 810*C - 1230*N - 13*Mn - 30*Ni - 12*Cr - 54*Cu - 46*Mo
  3. 제2항에 있어서,
    상기 식 (2)로 표현되는 Ms 값이 -117℃ 이하 또는 하기 식 (3)의 값이 17.0 이상을 만족하는 고강도 스테인리스강.
    (3) Ni/(C+N)
  4. 제1항에 있어서,
    기지조직은 면적분율로, 45% 이상의 마르텐사이트상과 잔부 오스테나이트상 및 페라이트상을 포함하며,
    상기 페라이트상은 4% 이하인 고강도 스테인리스강.
  5. 제1항에 있어서,
    상기 스테인리스강은 압하율 60% 이상의 냉간압연재이며,
    항복강도가 2,200MPa 이상인 고강도 스테인리스강.
PCT/KR2019/010786 2018-12-18 2019-08-23 고강도 스테인리스강 WO2020130279A1 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US17/312,119 US11952649B2 (en) 2018-12-18 2019-08-23 High-strength stainless steel
EP19897657.3A EP3882367A4 (en) 2018-12-18 2019-08-23 STAINLESS STEEL WITH HIGH MECHANICAL RESISTANCE
JP2021536010A JP7108143B2 (ja) 2018-12-18 2019-08-23 高強度ステンレス鋼
CN201980083762.3A CN113227431B (zh) 2018-12-18 2019-08-23 高强度不锈钢

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020180164564A KR102169457B1 (ko) 2018-12-18 2018-12-18 고강도 스테인리스강
KR10-2018-0164564 2018-12-18

Publications (1)

Publication Number Publication Date
WO2020130279A1 true WO2020130279A1 (ko) 2020-06-25

Family

ID=71101501

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2019/010786 WO2020130279A1 (ko) 2018-12-18 2019-08-23 고강도 스테인리스강

Country Status (6)

Country Link
US (1) US11952649B2 (ko)
EP (1) EP3882367A4 (ko)
JP (1) JP7108143B2 (ko)
KR (1) KR102169457B1 (ko)
CN (1) CN113227431B (ko)
WO (1) WO2020130279A1 (ko)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20230026705A (ko) * 2021-08-18 2023-02-27 주식회사 포스코 오스테나이트계 스테인리스강 및 그 제조 방법
CN115821170A (zh) * 2022-06-27 2023-03-21 浙江吉森金属科技有限公司 一种抗氢脆无磁不锈钢及其制造方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004018989A (ja) * 2002-06-20 2004-01-22 Honda Motor Co Ltd マルテンサイト系鋼からなる鋼帯およびこの鋼帯を使用した自動車の無断変速機用フープの製造方法
JP2008248271A (ja) * 2007-03-29 2008-10-16 Daido Steel Co Ltd 高強度ステンレス鋼及びこれを用いた高強度ステンレス鋼線
JP2011202237A (ja) * 2010-03-26 2011-10-13 Nippon Steel & Sumikin Stainless Steel Corp 構造部材用高強度および高延性オーステナイト系ステンレス鋼板およびその製造方法
KR101401625B1 (ko) * 2010-10-07 2014-06-02 닛폰 스틸 앤드 스미킨 스테인레스 스틸 코포레이션 내피로성이 우수한 석출 경화형 준안정 오스테나이트계 스테인리스 강선 및 그 제조 방법
KR101600251B1 (ko) * 2014-06-11 2016-03-04 닛폰 스틸 앤드 스미킨 스테인레스 스틸 코포레이션 고강도 복상 스테인리스 강선재, 고강도 복상 스테인리스 강선과 그 제조 방법 및 스프링 부품
KR101623290B1 (ko) * 2011-12-28 2016-05-20 주식회사 포스코 고강도 오스테나이트계 스테인리스강 및 그 제조방법

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB832562A (en) 1956-11-05 1960-04-13 Allegheny Ludlum Steel Improvements in the heat treatment of stainless steel
JPH08134595A (ja) * 1994-11-11 1996-05-28 Nippon Steel Corp 耐応力腐食割れ特性に優れた高強度ステンレス鋼板
JP4223161B2 (ja) 1999-10-13 2009-02-12 日新製鋼株式会社 超高強度準安定オーステナイト系ステンレス鋼材および製造法
JP2001131713A (ja) 1999-11-05 2001-05-15 Nisshin Steel Co Ltd Ti含有超高強度準安定オーステナイト系ステンレス鋼材および製造法
JP4518645B2 (ja) * 2000-01-21 2010-08-04 日新製鋼株式会社 高強度高靱性マルテンサイト系ステンレス鋼板並びに冷延耳切れ抑止方法および鋼板製造法
JP3877590B2 (ja) * 2001-12-25 2007-02-07 日新製鋼株式会社 高弾性準安定オーステナイト系ステンレス鋼板およびその製造法
TWI271438B (en) * 2003-05-09 2007-01-21 Nippon Mining Co Metastable austenite series stainless steel strap with excellent fatigue resistance
JP4519513B2 (ja) * 2004-03-08 2010-08-04 新日鐵住金ステンレス株式会社 剛性率に優れた高強度ステンレス鋼線およびその製造方法
JP4319083B2 (ja) * 2004-04-14 2009-08-26 新日鐵住金ステンレス株式会社 剛性率に優れたばね向け高強度鋼線用の準安定オーステナイト系ステンレス鋼線
JP4315049B2 (ja) * 2004-05-11 2009-08-19 大同特殊鋼株式会社 強度,疲労強度,耐食性及び耐磨耗性に優れた薄鋼帯板及びその製造方法
JP5014915B2 (ja) * 2007-08-09 2012-08-29 日新製鋼株式会社 Ni節減型オーステナイト系ステンレス鋼
JPWO2014157146A1 (ja) 2013-03-26 2017-02-16 日新製鋼株式会社 オーステナイト系ステンレス鋼板およびそれを用いた高強度鋼材の製造方法
JP6005234B1 (ja) 2015-09-29 2016-10-12 日新製鋼株式会社 疲労特性に優れた高強度ステンレス鋼板およびその製造方法
JP6222504B1 (ja) 2016-06-01 2017-11-01 株式会社特殊金属エクセル 準安定オーステナイト系ステンレス鋼帯または鋼板並びにその製造方法
JP6815766B2 (ja) 2016-07-08 2021-01-20 日鉄ステンレス株式会社 ステンレス鋼
JP6782601B2 (ja) * 2016-10-05 2020-11-11 日鉄ステンレス株式会社 耐温間リラクセーション特性に優れる高強度ステンレス鋼線およびその製造方法、ならびにばね部品

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004018989A (ja) * 2002-06-20 2004-01-22 Honda Motor Co Ltd マルテンサイト系鋼からなる鋼帯およびこの鋼帯を使用した自動車の無断変速機用フープの製造方法
JP2008248271A (ja) * 2007-03-29 2008-10-16 Daido Steel Co Ltd 高強度ステンレス鋼及びこれを用いた高強度ステンレス鋼線
JP2011202237A (ja) * 2010-03-26 2011-10-13 Nippon Steel & Sumikin Stainless Steel Corp 構造部材用高強度および高延性オーステナイト系ステンレス鋼板およびその製造方法
KR101401625B1 (ko) * 2010-10-07 2014-06-02 닛폰 스틸 앤드 스미킨 스테인레스 스틸 코포레이션 내피로성이 우수한 석출 경화형 준안정 오스테나이트계 스테인리스 강선 및 그 제조 방법
KR101623290B1 (ko) * 2011-12-28 2016-05-20 주식회사 포스코 고강도 오스테나이트계 스테인리스강 및 그 제조방법
KR101600251B1 (ko) * 2014-06-11 2016-03-04 닛폰 스틸 앤드 스미킨 스테인레스 스틸 코포레이션 고강도 복상 스테인리스 강선재, 고강도 복상 스테인리스 강선과 그 제조 방법 및 스프링 부품

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3882367A4 *

Also Published As

Publication number Publication date
EP3882367A1 (en) 2021-09-22
US11952649B2 (en) 2024-04-09
US20220033941A1 (en) 2022-02-03
CN113227431B (zh) 2022-12-20
EP3882367A4 (en) 2022-03-09
JP7108143B2 (ja) 2022-07-27
KR20200075656A (ko) 2020-06-26
CN113227431A (zh) 2021-08-06
KR102169457B1 (ko) 2020-10-23
JP2022514678A (ja) 2022-02-14

Similar Documents

Publication Publication Date Title
WO2020101227A1 (ko) 비자성 오스테나이트계 스테인리스강 및 그 제조방법
WO2014104706A1 (ko) 용접열영향부 인성이 우수한 고강도 오스테나이트계 강재 및 그 제조방법
WO2020130279A1 (ko) 고강도 스테인리스강
WO2017034216A1 (ko) 고 경도 강판 및 그 제조방법
WO2017111290A1 (ko) Pwht 저항성이 우수한 저온 압력용기용 강판 및 그 제조 방법
WO2016105094A1 (ko) 항복강도 및 충격인성이 우수한 슈퍼 듀플렉스 스테인리스강 및 그 제조방법
WO2020101226A1 (ko) 고강도 비자성 오스테나이트계 스테인리스강 및 그 제조방법
WO2019039768A1 (ko) 열간가공성 및 내수소취성이 우수한 저ni 오스테나이트계 스테인리스강
WO2018117477A1 (ko) 내식성 및 성형성이 우수한 듀플렉스 스테인리스강 및 이의 제조 방법
WO2019112142A1 (ko) 내식성이 우수한 고경도 오스테나이트계 스테인리스강
WO2020085684A1 (ko) 극저온 인성 및 연성이 우수한 압력용기용 강판 및 그 제조 방법
WO2019132226A1 (ko) 절곡성이 향상된 린 듀플렉스강 및 그 제조방법
WO2017111250A1 (ko) 내식성 및 가공성이 향상된 린 듀플렉스 스테인리스강 및 이의 제조 방법
WO2017209431A1 (ko) 내식성 및 가공성이 향상된 오스테나이트계 스테인리스강 및 이의 제조 방법
WO2020122320A1 (ko) 성형성 및 고온 특성이 우수한 저cr 페라이트계 스테인리스강 및 그 제조방법
WO2021125564A1 (ko) 클램프용 고강도 페라이트계 스테인리스강 및 그 제조방법
WO2021256590A1 (ko) 철근 및 그 제조방법
KR20180018908A (ko) 니켈 저감형 듀플렉스 스테인리스강 및 이의 제조 방법
WO2019117465A1 (ko) 구멍 확장성이 우수한 듀플렉스 스테인리스강 및 그 제조방법
WO2017111437A1 (ko) 린 듀플렉스 스테인리스강 및 이의 제조 방법
WO2020085687A1 (ko) 클램프용 고강도 페라이트계 스테인리스강 및 그 제조방법
WO2020130257A1 (ko) 연성 및 가공성이 우수한 고강도 강판 및 그 제조방법
WO2018030690A1 (ko) 굽힘 가공성이 우수한 린 듀플렉스 스테인리스강
WO2021045358A1 (ko) 고강도 비자성 오스테나이트계 스테인리스강
WO2022131752A1 (ko) 지연파괴 저항성이 향상된 선재, 부품 및 그 제조방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19897657

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021536010

Country of ref document: JP

Kind code of ref document: A

Ref document number: 2019897657

Country of ref document: EP

Effective date: 20210615

NENP Non-entry into the national phase

Ref country code: DE