WO2020130257A1 - 연성 및 가공성이 우수한 고강도 강판 및 그 제조방법 - Google Patents

연성 및 가공성이 우수한 고강도 강판 및 그 제조방법 Download PDF

Info

Publication number
WO2020130257A1
WO2020130257A1 PCT/KR2019/008695 KR2019008695W WO2020130257A1 WO 2020130257 A1 WO2020130257 A1 WO 2020130257A1 KR 2019008695 W KR2019008695 W KR 2019008695W WO 2020130257 A1 WO2020130257 A1 WO 2020130257A1
Authority
WO
WIPO (PCT)
Prior art keywords
steel sheet
less
ductility
workability
strength steel
Prior art date
Application number
PCT/KR2019/008695
Other languages
English (en)
French (fr)
Inventor
이재훈
한상호
Original Assignee
주식회사 포스코
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 포스코 filed Critical 주식회사 포스코
Priority to EP19900121.5A priority Critical patent/EP3901308B1/en
Priority to JP2021535132A priority patent/JP7291222B2/ja
Priority to CN201980084857.7A priority patent/CN113227427A/zh
Priority to US17/297,733 priority patent/US20220042130A1/en
Publication of WO2020130257A1 publication Critical patent/WO2020130257A1/ko
Priority to JP2023035491A priority patent/JP2023071938A/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/04Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/002Heat treatment of ferrous alloys containing Cr
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/005Heat treatment of ferrous alloys containing Mn
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/008Heat treatment of ferrous alloys containing Si
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0205Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0236Cold rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0263Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment following hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0273Final recrystallisation annealing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/04Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing
    • C21D8/0421Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing characterised by the working steps
    • C21D8/0426Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/04Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing
    • C21D8/0421Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing characterised by the working steps
    • C21D8/0436Cold rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/04Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing
    • C21D8/0447Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing characterised by the heat treatment
    • C21D8/0473Final recrystallisation annealing
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/005Ferrous alloys, e.g. steel alloys containing rare earths, i.e. Sc, Y, Lanthanides
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/008Ferrous alloys, e.g. steel alloys containing tin
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/22Ferrous alloys, e.g. steel alloys containing chromium with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/24Ferrous alloys, e.g. steel alloys containing chromium with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/26Ferrous alloys, e.g. steel alloys containing chromium with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/28Ferrous alloys, e.g. steel alloys containing chromium with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/30Ferrous alloys, e.g. steel alloys containing chromium with cobalt
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/32Ferrous alloys, e.g. steel alloys containing chromium with boron
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/34Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/38Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/60Ferrous alloys, e.g. steel alloys containing lead, selenium, tellurium, or antimony, or more than 0.04% by weight of sulfur
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/18Hardening; Quenching with or without subsequent tempering
    • C21D1/19Hardening; Quenching with or without subsequent tempering by interrupted quenching
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/18Hardening; Quenching with or without subsequent tempering
    • C21D1/19Hardening; Quenching with or without subsequent tempering by interrupted quenching
    • C21D1/20Isothermal quenching, e.g. bainitic hardening
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/18Hardening; Quenching with or without subsequent tempering
    • C21D1/19Hardening; Quenching with or without subsequent tempering by interrupted quenching
    • C21D1/22Martempering
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/001Austenite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/002Bainite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/005Ferrite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/008Martensite
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium

Definitions

  • the present invention relates to a steel sheet that can be used in automobile parts, and the like, and relates to a steel sheet having excellent ductility and workability, a high strength, and a method of manufacturing the same.
  • Tempered martensite made by tempering hard martensite, is a softened martensite, and shows a difference in strength from the existing non-tempered martensite (fresh martensite). Inhibiting fresh martensite and forming tempered martensite increases ductility and processability.
  • Patent documents 3 and 4 disclose TRIP steels having excellent ductility and workability.
  • Korean Patent Publication No. 10-2014-0012167 it tried to improve ductility and processability, including polygonal ferrite, residual austenite, and martensite, but secured high strength by using bainite as the main phase. It can be seen that TS ⁇ El also does not satisfy more than 22,000 MPa%.
  • One aspect of the present invention is to provide a high-strength steel sheet having excellent ductility and workability by optimizing the composition and microstructure of the steel sheet and a method for manufacturing the same.
  • C more than 0.25% to 0.75%
  • Si 4.0% or less
  • Mn 0.9 to 5.0%
  • Al 5.0% or less
  • P 0.15% or less
  • S 0.03% or less
  • N 0.03% or less
  • the rest contains Fe and unavoidable impurities
  • the microstructure contains tempered martensite, bainite, and retained austenite
  • a high strength steel sheet excellent in ductility and workability satisfying the following [Relational Formula 1] It is about.
  • Another aspect of the present invention is weight%, C: more than 0.25% to 0.75%, Si: 4.0% or less, Mn: 0.9 to 5.0%, Al: 5.0% or less, P: 0.15% or less, S: 0.03% Or less, N: 0.03% or less, the rest of the step of heating a steel slab containing Fe and unavoidable impurities, and hot rolling;
  • the wound steel sheet is heat-annealed for 600 to 1700 seconds in a temperature range of 650 to 850°C;
  • Heating the cold rolled steel sheet to Ar3 or higher (primary heating), and maintaining it for at least 50 seconds (primary holding);
  • Cooling to an average cooling rate of 1°C/s or more and a temperature range of 100 to 300°C (primary cooling);
  • Heating the primary cooled steel sheet to a temperature range of 300 to 500°C (secondary heating), and maintaining at least 50 seconds (secondary maintenance) in this temperature range;
  • It relates to a method of manufacturing a high-strength steel sheet excellent in ductility and processability, including the step of cooling to room temperature (secondary cooling).
  • the present inventors of the present invention include bainite, tempered martensite, and in the transformation induced plasticity (TRIP) steel containing residual austenite, to promote the stabilization of residual austenite, and to retain residual austenite size and Through the shape, it was recognized that the effect on strength, ductility and workability was affected. By investigating this, a method capable of improving the ductility and workability of high-strength steel was devised, and the present invention has been reached.
  • TRIP transformation induced plasticity
  • the steel sheet of the present invention by weight (hereinafter, %), C: more than 0.25% to 0.75%, Si: 4.0% or less, Mn: 0.9 to 5.0%, Al: 5.0% or less, P: 0.15% or less, S: 0.03% or less, N: 0.03% or less, the rest include Fe and unavoidable impurities.
  • C is an indispensable element for imparting the strength of the steel sheet, and is a stabilizing element of retained austenite that increases the ductility of the steel sheet. If the C content is 0.25% or less, it is difficult to secure the required tensile strength, and if it exceeds 0.75%, cold rolling is difficult to produce a steel sheet. Therefore, the content of C is preferably greater than 0.25% to less than 0.75%. The content of C is more preferably 0.31 to 0.75%.
  • the Si is an element having an effect of improving strength by solid solution strengthening, and is an element that strengthens ferrite, homogenizes the structure, and improves processability. In addition, it is an element that suppresses precipitation of cementite and contributes to the formation of residual austenite.
  • the Si exceeds 4.0%, the plating defect problem such as unplating in the plating process and the weldability of the steel sheet are lowered, so the Si content is preferably 4.0% or less.
  • the Al is an element that deoxidizes by bonding with oxygen in the steel.
  • Si it is an element that suppresses the precipitation of cementite and stabilizes the retained austenite.
  • the Al content exceeds 5.0%, the workability of the steel sheet is deteriorated and inclusions are increased. Therefore, the Al content is preferably 5.0% or less.
  • the sum of Si and Al (Si+Al) is preferably 1.0 to 6.0%.
  • the Si and Al are components that affect the formation of microstructures in the present invention and affect the ductility and bending workability. Therefore, in order to have excellent ductility and bending workability, it is preferable that the total amount of Si and Al is 1.0 to 6.0%. More preferably, it contains 1.5 to 4.0%.
  • the Mn is an element useful for increasing strength and ductility together. Although the above effect can be obtained at 0.9% or more, when it exceeds 5.0%, the weldability and impact toughness of the steel sheet is deteriorated. In addition, when Mn is included in excess of 5.0%, the bainite transformation time increases, and C concentration in austenite is insufficient, so that the required fraction of retained austenite cannot be obtained. Therefore, the content of Mn is preferably 0.9 to 5.0%.
  • Phosphorus (P) 0.15% or less
  • the P is an element that is contained as impurities and deteriorates impact toughness. Therefore, it is preferable to manage the content of P to 0.15% or less.
  • the S is an element that is contained as an impurity to make MnS in the steel sheet, and deteriorates ductility. Therefore, the content of S is preferably 0.03% or less.
  • the N is an element that is contained as an impurity to produce nitride during continuous casting to cause cracking of the slab. Therefore, the content of N is preferably 0.03% or less.
  • the steel sheet of the present invention has an alloy composition that can be additionally included in addition to the above-described alloy components, which will be described in detail below.
  • the Ti, Nb and V are elements that make precipitates to refine crystal grains. It may be contained in order to improve the strength and impact toughness of the steel sheet. When each content of Ti, Nb, and V exceeds 0.5%, not only the impact toughness is lowered due to excessive precipitate formation, but also a cause of increase in manufacturing cost, and therefore, each content of Ti, Nb, and V is preferably 0.5% or less Do.
  • Cr and Mo are elements that suppress austenite decomposition during alloying treatment and stabilize austenite in the same manner as Mn.
  • each content of Cr and Mo exceeds 3.0%, the bainite transformation time increases, and the concentration of C in austenite is insufficient, so that a required fraction of austenite cannot be obtained. Therefore, it is preferable that each content of Cr and Mo is 3.0% or less.
  • Cu and Ni are elements that stabilize austenite and inhibit corrosion.
  • the Cu and Ni are concentrated to the surface of the steel sheet to prevent hydrogen invasion that moves into the steel sheet, thereby suppressing hydrogen delay destruction.
  • each content of Cu and Ni exceeds 4.5%, it causes not only excessive characteristic effects, but also an increase in manufacturing cost. Therefore, it is preferable that each content of Cu and Ni is 4.5% or less.
  • the B is an element that improves hardenability to increase strength and suppress nucleation of grain boundaries.
  • the content of B exceeds 0.005%, it causes not only excessive characteristic effects but also an increase in manufacturing cost. Therefore, the content of B is preferably 0.005% or less.
  • the REM refers to a total of 17 elements of Sc, Y and lanthanoid.
  • REM except Ca, Mg and Y can improve the ductility of the steel sheet by spheroidizing the sulfide.
  • each content of REM excluding Ca, Mg and Y exceeds 0.05%, it causes not only excessive characteristic effects but also manufacturing cost increase. Therefore, each content of REM excluding Ca, Mg, and Y is preferably 0.05% or less.
  • the W and Zr are elements that improve the hardenability and increase the strength of the steel sheet.
  • each content of the W and Zr exceeds 0.5%, it causes not only excessive characteristic effects but also an increase in manufacturing cost. Therefore, it is preferable that each content of W and Zr is 0.5% or less.
  • the Sb and Sn are elements that improve the plating wettability and plating adhesion of the steel sheet.
  • each content of the Sb and Sn exceeds 0.5%, the brittleness of the steel sheet increases, and cracking may occur during hot working or cold working. Therefore, each content of the Sb and Sn is preferably 0.5% or less.
  • Y and Hf are elements that improve the corrosion resistance of the steel sheet.
  • each content of Y and Hf exceeds 0.2%, ductility of the steel sheet may be deteriorated. Therefore, each content of Y and Hf is preferably 0.2% or less.
  • the Co is an element that promotes bainite transformation and increases the TRIP effect.
  • the content of Co is preferably 1.5% or less.
  • the microstructure of the steel sheet of the present invention includes tempered martensite, bainite and residual austenite.
  • Preferred examples include, by volume fraction, 30-75% tempered martensite, 10-50% bainite, 10-40% residual austenite, and 5% or less ferrite and other inevitable tissue.
  • the inevitable tissue include fresh martensite, pearlite, martensite Austenite Constituent (M-A), and the like. When the fresh martensite or pearlite is excessively formed, the ductility and workability of the steel sheet may be deteriorated or the fraction of retained austenite may be reduced.
  • Si and Al contents ([Si+Al] ⁇ , weight%) contained in the retained austenite are included in the steel sheet, and Si and Al contents ([Si+Al]av, weight%) It is preferable that the value divided by is 0.55 to 0.85.
  • the steel sheet of the present invention has a product of tensile strength and elongation (TS ⁇ El) of 22,000 MPa% or more, and R/t (R is a minimum bending radius (mm) that does not crack after a 90° bending test, and t is a steel sheet Thickness (mm)) of 0.5 to 3.0, excellent balance of strength and ductility, excellent workability.
  • TS ⁇ El tensile strength and elongation
  • R/t R is a minimum bending radius (mm) that does not crack after a 90° bending test
  • t is a steel sheet Thickness (mm)) of 0.5 to 3.0, excellent balance of strength and ductility, excellent workability.
  • the steel sheet containing the retained austenite has excellent ductility and workability due to the transformation organic plasticity generated during transformation from austenite to martensite during processing.
  • TS ⁇ El may be less than 22,000 MPa% or R/t may exceed 3.0.
  • the fraction of the retained austenite is preferably 10 to 40%.
  • both non-tempered martensite fresh martensite
  • tempered martensite are microstructures that improve the strength of the steel sheet.
  • fresh martensite has a property of significantly reducing the ductility of the steel sheet. This is because the microstructure of tempered martensite is softened by tempering heat treatment. Therefore, it is preferable to utilize tempered martensite in order to provide a steel sheet excellent in balance and workability of strength and ductility of the present invention.
  • TS ⁇ El is difficult to secure more than 22,000 MPa%, and when it exceeds 75%, ductility and workability are reduced, and TS ⁇ El is less than 22,000 MPa% Or R/t is not preferred to exceed 3.0.
  • bainite In order to improve the balance and workability of the strength and ductility of the steel sheet, it is preferable to contain bainite appropriately.
  • the bainite fraction volume fraction
  • TS ⁇ El is 22,000 MPa% or more and R/t is 0.5 to 3.0.
  • more than 50% of bainite decreases the tempered martensite fraction relatively, and TS x El becomes less than 22,000 MPa%, which is undesirable.
  • a steel ingot or steel slab having the above-described alloy composition is prepared, and the steel ingot or steel slab is heated and hot-rolled, followed by annealing, winding, pickling, and cold rolling to prepare a cold-rolled steel sheet. .
  • the steel ingot or steel slab it is preferable to heat the steel ingot or steel slab to a temperature of 1000 to 1350°C and finish hot roll to a temperature of 800 to 1000°C.
  • the heating temperature is less than 1000°C, there is a possibility that hot rolling will be performed below the finish hot rolling temperature range. Further, when the heating temperature exceeds 1350°C, there is a possibility that the melting point of the steel is reached and melted.
  • the finish hot rolling temperature is less than 800°C, the high strength of the steel may place a heavy burden on the rolling mill.
  • the finish hot-rolling temperature exceeds 1000°C, after hot rolling, the grains of the steel sheet are coarse to deteriorate the physical properties of the high-strength steel sheet.
  • the hot-rolled steel sheet In order to refine the crystal grains of the hot-rolled steel sheet, it is preferable to cool at a cooling rate of 10° C./s or more after finishing hot rolling, and to wind at a temperature of 300 to 600° C.
  • the coiling temperature is less than 300°C, coiling is not easy, and when it exceeds 600°C, a scale generated on the surface of the hot-rolled steel sheet is formed up to the inside of the steel sheet, thereby making pickling difficult.
  • the hot-rolled annealing heat treatment is preferably performed for 600 to 1700 seconds in a temperature range of 650 to 850°C.
  • the heat-annealed annealing temperature is less than 650°C or less than 600 seconds, cold rolling may not be easy due to high strength of the hot-annealed steel sheet.
  • the hot-rolled annealing heat treatment temperature exceeds 850°C or exceeds 1700 seconds, pickling may not be easy due to a scale deeply formed inside the steel sheet.
  • the pickling and cold rolling conditions are not particularly limited, and the cold rolling is preferably set to a cumulative rolling reduction of 30 to 90%. When the cumulative reduction ratio of cold rolling exceeds 90%, there is a possibility that it is difficult to perform cold rolling in a short time due to the high strength of the steel sheet.
  • the cold rolled steel sheet may be made of an unplated cold rolled steel sheet through an annealing heat treatment process, or may be made of a plated steel sheet through a plating process to impart corrosion resistance.
  • plating methods such as hot-dip galvanizing, electro-galvanizing, and hot-dip aluminum plating can be applied, and the method and type are not particularly limited.
  • an annealing heat treatment process is performed.
  • an example will be described in detail.
  • the cold-rolled steel sheet is heated to Ac3 or higher (primary heating), and maintained for 50 seconds or longer (primary maintenance).
  • the primary heating or primary holding temperature is less than Ac3
  • ferrite may be formed, and bainite, retained austenite, and tempered martensite are not sufficiently formed, so that [Si+Al] ⁇ / [Si+Al] of the steel sheet ]av and TS ⁇ El can be reduced.
  • the primary holding time is less than 50 seconds, the structure cannot be sufficiently homogenized, thereby deteriorating the physical properties of the steel sheet.
  • the upper limit of the primary heating temperature and the upper limit of the primary feeding time are not particularly limited, but in order to suppress the decrease in toughness due to grain coarsening, the primary heating temperature is 950°C or less, and the primary holding time is 1200 seconds or less. It is preferred to.
  • the primary cooling stop temperature is less than 100°C, tempered martensite is excessively formed, and there is insufficient residual austenite to [Si+Al] ⁇ / [Si+Al]av, TS ⁇ El and bending of the steel sheet. Processability can be reduced.
  • the primary cooling stop temperature exceeds 300°C, bainite is excessive and the tempered martensite is insufficient, which may degrade TS ⁇ El of the steel sheet.
  • Secondary heating it is preferable to heat (secondary heating) to a temperature range of 300 to 500°C at a heating rate of 5°C/s or more, and to maintain at least 50 seconds (secondary maintenance) in this temperature range.
  • the upper limit of the heating rate is not particularly required, and is preferably 100°C/s or less. If the second heating or the second holding temperature is less than 300°C or the holding time is less than 50 seconds, tempered martensite is excessive, and the Si and Al content in the retained austenite is insufficient to control the residual austenite fraction. It is difficult. As a result, [Si+Al] ⁇ /[Si+Al]av, TS ⁇ El and bending workability of the steel sheet can be reduced.
  • a steel slab having a thickness of 100 mm having an alloy composition (the rest is Fe and an unavoidable impurity) according to Table 1 was prepared, heated at 1200° C., and then hot rolled at 900° C., averaged at 30° C./s It was cooled at a cooling rate and wound at 450 to 550°C to produce a hot rolled steel sheet with a thickness of 3 mm.
  • the hot-rolled steel sheet was heat-annealed under the conditions of Tables 2 and 3. Thereafter, the surface scale was removed by pickling, followed by cold rolling to a thickness of 1.5 mm.
  • the microstructure of the steel sheet thus manufactured was observed, and the results are shown in Tables 6 and 7.
  • ferrite (F), bainite (B), tempered martensite (TM), and pearlite (P) were observed through SEM after the etched surface of the polished specimen.
  • bainite and tempered martensite which are difficult to distinguish, calculated fractions using an expansion curve after the evaluation of the orientation.
  • fresh martensite (FM) and residual austenite (residual ⁇ ) are also difficult to distinguish
  • the fraction of martensite and residual austenite observed by the SEM is subtracted from the fraction of residual austenite calculated by X-ray diffraction. The value was determined as the fresh martensite fraction.
  • the Si and Al content ([Si+Al] ⁇ ) contained in the retained austenite was determined using the EPMA (Electron Probe MicroAnalyser) to determine the Sl+Al content measured in the retained austenite phase.
  • the [Si+Al]av means the average Si+Al content of the entire steel sheet.
  • TS ⁇ El and R/t were evaluated by tensile test and V-bending test.
  • TS ⁇ El was determined by evaluating the test pieces collected according to JIS 5 standards based on the 90° direction with respect to the rolling direction of the rolled sheet.
  • R/t was determined by dividing the minimum bending radius R, which does not cause cracks after the 90° bending test, by dividing the thickness t of the sheet by taking a specimen based on the 90° direction with respect to the rolling direction of the rolled sheet.
  • the comparative examples of Nos. 15 and 16 are when the secondary heating or holding temperature is low or high, and residual austenite is not formed in an appropriate range, so [Si+Al] ⁇ /[Si+Al]av is 0.85. Exceeded, it can be seen that TS x El is less than 22,000 MPa%. Particularly, in the case of No. 15, tempered martensite was also excessively formed, and R/t exceeded 3.0.
  • Comparative Examples No. 17 and 18 the second holding time was insufficient or excessive.
  • Comparative Examples No. 17 excessive tempered martensite was formed and residual austenite was insufficient, [Si+Al] ⁇ /[Si+Al]av exceeds 0.85, TS ⁇ El becomes less than 22,000 MPa%, and R/t exceeds 3.0.
  • No. 18 it was found that the residual austenite was insufficient, and [Si+Al] ⁇ /[Si+Al]av exceeded 0.85 and TS ⁇ El was less than 22,000 MPa%.
  • Comparative Examples No. 41 to 49 the manufacturing conditions suggested in the present invention are satisfied, but the alloy composition is out of the range. In these cases, it can be confirmed that the conditions of [Si+Al] ⁇ /[Si+Al]av, TS ⁇ El, and R/t of the present invention are not satisfied.
  • the comparative example of No.43 is a case where the sum of Si and Al (Al+Si) in the alloy composition of the present invention is less than 1.0%, [Si+Al] ⁇ / [Si+Al]av, TS ⁇ El, It can be seen that all the conditions of R/t are not satisfied.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Abstract

본 발명은 자동차 부품 등에 사용될 수 있는 강판에 관한 것으로서, 강도와 연성의 밸런스가 우수하고, 우수한 가공성을 갖는 강판과 이를 제조하는 방법에 관한 것이다.

Description

연성 및 가공성이 우수한 고강도 강판 및 그 제조방법
본 발명은 자동차 부품 등에 사용될 수 있는 강판에 관한 것으로서, 연성 및 가공성이 우수하고, 높은 강도를 갖는 강판과 이를 제조하는 방법에 관한 것이다.
최근 자동차 산업은 지구 환경을 보호하기 위하여 소재 경량화를 도모하고, 동시에 탑승자 안정성을 확보할 수 있는 방안에 주목하고 있다. 이러한 안정성과 경량화 요구에 부응하기 위해 고강도 강판의 적용이 급격히 증가하고 있다. 일반적으로 강판의 고강도화가 이루어질수록 연성과 가공성은 저하되기 때문에, 자동차 부재용 강판에 있어서, 강도뿐만 아니라, 연성 및 가공성이 우수한 강판이 요구되고 있다.
강판의 연성을 개선하는 기술로써, 템퍼드 마르텐사이트를 활용하는 방법이 한국 공개특허공보 제10-2006-0118602호 및 일본 공개특허공보 제2009-019258호에 개시되어 있다. 경질의 마르텐사이트를 템퍼링(tempering)시켜 만든 템퍼드 마르텐사이트는 연질화된 마르텐사이트이며, 기존의 템퍼링되지 않은 마르텐사이트(프레시 마르텐사이트)와 강도의 차이를 보인다. 프레시 마르텐사이트를 억제시키고 템퍼드 마르텐사이트를 형성하게 되면 연성과 가공성이 증가한다.
그러나 한국 공개특허공보 제10-2006-0118602호 및 일본 공개특허공보 제2009-019258호에 개시된 기술로는 인장강도와 연신율의 곱(TS×El)이 22,000MPa% 이상을 만족하지 못하고, 이는 우수한 강도와 연성이 모두 우수한 강판을 확보하기 어렵다는 것을 의미한다.
한편, 자동차 부재용 강판은 고강도이면서 연성과 가공성이 우수한 특성을 모두 얻기 위해서 잔류 오스테나이트의 변태유기소성을 이용한 TRIP(Transformation Induced Plasticity)강이 개발되었다. 특허문헌 3 및 4에서는 연성 및 가공성이 우수한 TRIP강이 개시되어 있다.
한국 공개특허공보 제10-2014-0012167호에서는 다각형의 페라이트와 잔류 오스테나이트 및 마르텐사이트를 포함하여, 연성과 가공성을 향상시키고자 하였으나, 베이나이트를 주상(主相)으로 하고 있어 높은 강도를 확보하지 못하고, TS×El도 22,000MPa% 이상을 만족하지 못하는 것을 알 수 있다.
한국 공개특허공보 제10-2010-0092503호에서는 페라이트 형성과, 잔류 오스테나이트의 미세화 및 템퍼드 마르텐사이트를 포함하는 복합 조직을 형성하여 연성 및 가공성을 향상시키고 있으나, 연질의 페라이트가 다량 포함되어 있어, 높은 강도를 확보하기 어려운 문제가 있다.
지금까지도 높은 강도를 가지면서, 동시에 연성 및 가공성이 우수한 강판에 대한 요구를 충족시키지 못하고 있는 실정이다.
본 발명의 일측면은 강판의 조성 및 미세조직을 최적화하여 우수한 연성 및 가공성을 갖는 고강도 강판과 이를 제조하는 방법에 대해 제공하고자 하는 것이다.
본 발명의 과제는 상술한 사항에 한정되지 않는다. 본 발명의 추가적인 과제는 명세서 전반적인 내용에 기술되어 있으며, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자라면 본 발명의 명세서에 기재된 내용으로부터 본 발명의 추가적인 과제를 이해하는데 아무런 어려움이 없을 것이다.
본 발명의 일태양은 중량%로, C: 0.25% 초과~0.75%, Si: 4.0% 이하, Mn: 0.9~5.0%, Al: 5.0% 이하, P: 0.15% 이하, S: 0.03% 이하, N: 0.03% 이하, 나머지는 Fe 및 불가피한 불순물을 포함하고, 미세조직은 템퍼드 마르텐사이트, 베이나이트 및 잔류 오스테나이트를 포함하고, 하기 [관계식 1]을 만족하는 연성 및 가공성이 우수한 고강도 강판에 관한 것이다.
[관계식 1]
0.55 ≤ [Si+Al]γ / [Si+Al]av ≤ 0.85
(단, [Si+Al]γ는 잔류 오스테나이트 내 포함된 Si 및 Al 함량(중량%)이고, [Si+Al]av는 강판에 포함된 Si 및 Al의 함량(중량%)임)
본 발명의 또다른 일태양은 중량%로, C: 0.25% 초과~0.75%, Si: 4.0% 이하, Mn: 0.9~5.0%, Al: 5.0% 이하, P: 0.15% 이하, S: 0.03% 이하, N: 0.03% 이하, 나머지는 Fe 및 불가피한 불순물을 포함하는 강 슬라브를 가열하고, 열간압연하는 단계;
상기 열간압연된 강판을 권취하는 단계;
상기 권취된 강판은 650~850℃의 온도범위에서 600~1700초 동안 열연소둔 열처리하는 단계;
상기 열연소둔 열처리된 강판을 냉간압연하는 단계;
상기 냉연압연된 강판을 Ar3 이상으로 가열(1차 가열)하여, 50초 이상 유지(1차 유지)하는 단계;
평균 냉각속도 1℃/s 이상으로, 100~300℃의 온도범위까지 냉각(1차 냉각)하는 단계;
상기 1차 냉각된 강판을 300~500℃의 온도범위까지 가열(2차 가열)하고, 이 온도범위에서 50초 이상 유지(2차 유지)하는 단계; 및
상온까지 냉각(2차 냉각)하는 단계를 포함하는 연성 및 가공성이 우수한 고강도 강판의 제조방법에 관한 것이다.
본 발명에 의하면, 고강도강의 우수한 연성 및 가공 특성을 확보하여, 경량화 및 안정성이 동시에 요구되는 자동차 구조용 강판을 제공할 수 있다.
본 발명의 발명자들은 베이나이트, 템퍼드 마르텐사이트를 포함하고, 잔류 오스테나이트를 포함하는 변태유기소성(Transformation Induced Plasticity, TRIP)강에 있어서, 잔류 오스테나이트의 안정화를 도모하고, 잔류 오스테나이트 크기와 형상을 통해서 강도와 연성 및 가공성에 영향이 미치는 것을 인지하게 되었다. 이를 규명하여, 고강도강의 연성과 가공성을 향상시킬 수 있는 방법을 고안하고, 본 발명에 이르게 되었다.
이하, 본 발명에 대해서 상세히 설명한다. 먼저 본 발명 강판의 합금조성에 대해서 상세하게 설명한다.
본 발명의 강판은 중량%로(이하, %), C: 0.25% 초과~0.75%, Si: 4.0% 이하, Mn: 0.9~5.0%, Al: 5.0% 이하, P: 0.15% 이하, S: 0.03% 이하, N: 0.03% 이하, 나머지는 Fe 및 불가피한 불순물을 포함한다. 추가적으로, Ti: 0~0.5%, Nb: 0~0.5%, V: 0~0.5%, Cr: 0~3.0%, Mo: 0~3.0%, Cu: 0~4.5%, Ni: 0~4.5%, B: 0~0.005%, Ca: 0~0.05%, Y를 제외하는 REM: 0~0.05%, Mg: 0~0.05%, W: 0~0.5%, Zr: 0~0.5%, Sb: 0~0.5%, Sn: 0~0.5%, Y: 0~0.2%, Hf: 0~0.2% 및 Co: 0~1.5% 등이 포함될 수 있다. 이하, 각 합금조성에 대해서 상세히 설명한다.
탄소(C): 0.25% 초과~0.75%
상기 C는 강판의 강도를 부여하기 위한 불가결한 원소인 동시에, 강판의 연성을 증가시키는 잔류 오스테나이트의 안정화 원소이다. 상기 C 함량이 0.25% 이하이면 필요한 인장강도의 확보가 어렵고, 0.75%를 초과하게 되면 냉간 압연이 어려워 강판을 제조할 수 없다. 따라서, 상기 C의 함량은 0.25% 초과~0.75% 이하인 것이 바람직하다. 상기 C의 함량은 0.31~0.75%인 것이 보다 바람직하다.
실리콘(Si): 4.0% 이하 (0은 제외)
상기 Si은 고용강화에 의한 강도 향상의 효과가 있는 원소이며, 페라이트를 강화시키고 조직을 균일화시키며 가공성을 개선하는 원소이다. 또한, 시멘타이트 석출을 억제시켜 잔류 오스테나이트 생성에 기여하는 원소이다. 상기 Si이 4.0%를 초과하게 되면, 도금공정에서 미도금과 같은 도금결함 문제와 강판의 용접성을 저하시키므로, 상기 Si의 함량은 4.0% 이하인 것이 바람직하다.
알루미늄(Al): 5.0% 이하 (0은 제외)
상기 Al은 강중의 산소와 결합하여 탈산 작용을 하는 원소이다. 또한, Si과 동일하게 시멘타이트 석출을 억제시켜 잔류 오스테나이트를 안정화시키는 원소이다. 상기 Al 함량이 5.0%를 초과하게 되면, 강판의 가공성이 열화되고 개재물을 증가시킨다. 따라서 상기 Al의 함량은 5.0% 이하인 것이 바람직하다.
한편, 상기 Si과 Al의 합량(Si+Al)은 1.0~6.0%인 것이 바람직하다. 상기 Si 및 Al은 본 발명에서 미세조직 형성에 영향을 주어, 연성 및 굽힘 가공성에 영향을 미치는 성분이다. 따라서 우수한 연성 및 굽힘 가공성을 갖기 위해, 상기 Si 및 Al의 합량이 1.0~6.0%인 것이 바람직하다. 보다 바람직하게는 1.5~4.0%를 포함한다.
망간(Mn): 0.9~5.0%
상기 Mn은 강도와 연성을 함께 높이는데 유용한 원소이다. 0.9% 이상에서 상기 효과를 얻을 수 있지만, 5.0%를 초과하게 되면 강판의 용접성과 충격 인성을 저하시킨다. 또한, 5.0% 초과하여 Mn을 포함하게 되면, 베이나이트 변태시간이 증가하여 오스테나이트 중의 C 농화가 충분하지 않아 필요한 잔류 오스테나이트 분율을 확보할 수 없다. 따라서, 상기 Mn의 함량은 0.9~5.0%인 것이 바람직하다.
인(P): 0.15% 이하
상기 P은 불순물로 함유되어 충격인성을 열화시키는 원소이다. 따라서, 상기 P의 함량은 0.15% 이하로 관리하는 것이 바람직하다.
황(S): 0.03% 이하
상기 S은 불순물로 함유되어 강판 중에 MnS를 만들고, 연성을 열화시키는 원소이다. 따라서, 상기 S의 함량은 0.03% 이하인 것이 바람직하다.
질소(N): 0.03% 이하
상기 N는 불순물로 함유되어 연속주조 중에 질화물을 만들어 슬라브의 균열을 일으키는 원소이다. 따라서, 상기 N의 함량은 0.03% 이하인 것이 바람직하다.
나머지는 Fe와 불가피하게 포함되는 불순물을 포함한다. 한편, 본 발명의 강판은 상술한 합금성분 이외에 추가적으로 포함될 수 있는 합금 조성이 존재하며, 이에 대해서는 아래에서 상세히 설명한다.
티타늄(Ti): 0~0.5%, 니오븀(Nb): 0~0.5% 및 바나듐(V): 0~0.5% 중 1종 이상
상기 Ti, Nb 및 V은 석출물을 만들어 결정립을 미세화시키는 원소이다. 강판의 강도와 충격인성을 향상시키기 위해 함유시켜도 좋다. 상기 Ti, Nb 및 V의 각 함량이 0.5%를 초과하게 되면 과도한 석출물 형성으로 충격인성을 저하시킬 뿐만 아니라, 제조원가 상승의 원인이 되므로, 상기 Ti, Nb 및 V의 각 함량은 0.5% 이하인 것이 바람직하다.
크롬(Cr): 0~3.0% 및 몰리브덴(Mo): 0~3.0% 중 1종 이상
상기 Cr 및 Mo은 합금화 처리시 오스테나이트 분해를 억제하고, Mn과 동일하게 오스테나이트를 안정화시키는 원소이다. 상기 Cr 및 Mo의 각 함량이 3.0%를 초과하게 되면 베이나이트 변태시간이 증가하여 오스테나이트 중의 C 농화가 충분하지 않아 필요한 잔류 오스테나이트 분율을 확보할 수 없다. 따라서 상기 Cr 및 Mo의 각 함량은 3.0% 이하인 것이 바람직하다.
구리(Cu): 0~4.5% 및 니켈(Ni): 0~4.5% 중 1종 이상
상기 Cu 및 Ni은 오스테나이트를 안정화시키고, 부식을 억제하는 원소이다. 상기 Cu 및 Ni은 강판 표면으로 농화되어 강판 내로 이동하는 수소 침입을 막아 수소지연파괴를 억제하는 효과도 있다. 상기 Cu 및 Ni의 각 함량이 4.5%를 초과하면 과도한 특성효과뿐만 아니라, 제조원가 상승의 원인이 된다. 따라서, 상기 Cu 및 Ni의 각 함량은 4.5% 이하인 것이 바람직하다.
보론(B): 0~0.005%
상기 B은 담금질성을 향상시켜 강도를 높이고 결정립계의 핵생성을 억제하는 원소이다. 상기 B의 함량이 0.005%를 초과하게 되면 과도한 특성효과뿐만 아니라 제조원가 상승의 원인이 된다. 따라서, 상기 B의 함량은 0.005% 이하인 것이 바람직하다.
칼슘(Ca): 0~0.05%, 마그네슘(Mg): 0~0.05% 및 이트륨(Y)을 제외한 희토류 원소(REM): 0~0.05% 중 1종 이상
상기 REM이란 Sc, Y 및 란타노이드의 합계 17원소를 가리킨다. 상기 Ca, Mg 및 Y을 제외한 REM은 황화물을 구형화시킴으로써 강판의 연성을 향상시킬 수 있다. 상기 Ca, Mg 및 Y을 제외한 REM의 각 함량이 0.05%를 초과하게 되면, 과도한 특성효과뿐만 아니라 제조원가 상승의 원인이 된다. 따라서, Ca, Mg 및 Y을 제외한 REM의 각 함량은 0.05% 이하인 것이 바람직하다.
텅스텐(W): 0~0.5% 및 지르코늄(Zr): 0~0.5% 중 1종 이상
상기 W 및 Zr은 담금질성을 향상시켜 강판의 강도를 증가시키는 원소이다. 상기 W 및 Zr의 각 함량이 0.5%를 초과하게 되면, 과도한 특성효과뿐만 아니라 제조원가 상승의 원인이 된다. 따라서, 상기 W 및 Zr의 각 함량은 0.5% 이하인 것이 바람직하다.
안티몬(Sb): 0~0.5% 및 주석(Sn): 0~0.5% 중 1종 이상
상기 Sb 및 Sn은 강판의 도금 젖음성과 도금 밀착성을 향상시키는 원소이다. 상기 Sb 및 Sn의 각 함량이 0.5%를 초과하게 되면 강판의 취성이 증가하여 열간가공 또는 냉간가공 시 균열이 발생할 수 있다. 따라서, 상기 Sb 및 Sn의 각 함량은 0.5% 이하인 것이 바람직하다.
이트륨(Y): 0~0.2% 및 하프늄(Hf): 0~0.2% 중 1종 이상
상기 Y 및 Hf은 강판의 내식성을 향상시키는 원소이다. 상기 Y 및 Hf의 각 함량이 0.2%를 초과하게 되면 강판의 연성이 열화될 수 있다. 따라서, 상기 Y 및 Hf의 각 함량은 0.2% 이하인 것이 바람직하다.
코발트(Co): 0~1.5%
상기 Co는 베이나이트 변태를 촉진시켜 TRIP 효과를 증가시키는 원소이다. 상기 Co 함량이 1.5% 를 초과하게 되면 강판의 용접성과 연성이 열화될 수 있다. 따라서 상기 Co의 함량은 1.5% 이하인 것이 바람직하다.
본 발명 강판의 미세조직은 템퍼드 마르텐사이트, 베이나이트 및 잔류 오스테나이트를 포함한다. 바람직한 일예로써, 부피 분율로, 30~75%의 템퍼드 마르텐사이트, 10~50%의 베이나이트, 10~40%의 잔류 오스테나이트를 포함하고, 5% 이하의 페라이트 및 기타 불가피한 조직을 포함한다. 상기 불가피한 조직이란 프레시 마르텐사이트(Fresh Martensite), 펄라이트, 도상 마르텐사이트(Martensite Austenite Constituent, M-A) 등이 있다. 상기 프레시 마르텐사이트나 펄라이트가 과도하게 형성되면, 강판의 연성과 가공성이 열위되거나 잔류 오스테나이트의 분율을 저감시킬 수 있다.
하기 관계식 1과 같이, 상기 잔류 오스테나이트에 포함되어 있는 Si 및 Al 함량([Si+Al]γ, 중량%)을 강판에 포함되어 Si 및 Al의 함량([Si+Al]av, 중량%)으로 나눈 값이 0.55~0.85인 것이 바람직하다.
[관계식 1]
0.55 ≤ [Si+Al]γ / [Si+Al]av ≤ 0.85
본 발명의 강판은 인장강도와 연신율의 곱(TS×El)이 22,000MPa% 이상이고, R/t(R은 90° 굽힘 시험 후 크랙이 발생하지 않는 최소 굽힘반경(㎜)이고, t는 강판의 두께(㎜)임)가 0.5~3.0으로서, 강도와 연성의 밸런스가 우수하고, 가공성이 우수하다.
본 발명에서는 고강도뿐만 아니라, 우수한 연성 및 가공성을 확보하기 위해서, 강판의 잔류 오스테나이트를 안정화시키는 것이 중요하다. 잔류 오스테나이트를 안정화시키기 위해서는, 강판의 페라이트, 베이나이트 및 템퍼드 마르텐사이트에서의 C와 Mn을 오스테나이트로 농화시키는 것이 필요하다. 그러나 페라이트를 활용하여 오스테나이트 중으로 C를 농화시키면 페라이트의 낮은 강도 특성 때문에 강판의 강도가 부족할 수 있다. 따라서, 베이나이트 및 템퍼드 마르텐사이트를 활용하여 오스테나이트 중으로 C와 Mn을 농화시키는 것이 바람직하다. 또한, 잔류 오스테나이트 중에 Si 및 Al 함량([Si+Al]γ)을 제어하면, 베이나이트 및 템퍼드 마르텐사이트에서 잔류 오스테나이트 중으로 C와 Mn을 다량 농화시킬 수 있다. 따라서, 잔류 오스테나이트 중의 Si와 Al을 제어하여, 잔류 오스테나이트를 안정화시키는 것이 가능하다. 이에, 본 발명에서는 [Si+Al]γ / [Si+Al]av 을 0.55 이상으로 하여, 잔류 오스테나이트를 안정화시킨다. 다만, [Si+Al]γ / [Si+Al]av 이 0.85를 초과하게 되면, 잔류 오스테나이트 중에 C와 Mn 농화가 불충분하여 잔류 오스테나이트가 인장 변형에 불안정하게 되므로 연성 및 가공성 저하를 야기하여, TS×El이 22,000MPa% 미만이 되거나, R/t가 3.0을 초과하여 바람직하지 않다.
잔류 오스테나이트가 포함된 강판은, 가공 중 오스테나이트에서 마르텐사이트로의 변태시 발생하는 변태유기소성에 의해 우수한 연성 및 가공성을 갖는다. 상기 강판의 잔류 오스테나이트가 10% 미만인 경우에는 TS×El이 22,000MPa% 미만 또는 R/t가 3.0을 초과할 수 있다. 한편, 잔류 오스테나이트 분율이 40%를 초과하게 되면 국부연신율(Local Elingation)이 저하될 수 있다. 따라서, 강도와 연성의 밸런스 및 가공성의 양쪽 모두가 우수한 강판을 얻기 위해서는 상기 잔류 오스테나이트의 분율은 10~40%인 것이 바람직하다.
한편, 템퍼링 되지 않은 마르텐사이트(프레시 마르텐사이트)와 템퍼드 마르텐사이트는 모두 강판의 강도를 향상시키는 미세조직이다. 그러나, 템퍼드 마르텐사이트와 비교할 때, 프레시 마르텐사이트는 강판의 연성을 크게 저하시키는 특성이 있다. 이는 템퍼링 열처리에 의해 템퍼드 마르텐사이트의 미세조직이 연질화되기 때문이다. 따라서, 본 발명의 강도와 연성의 밸런스 및 가공성이 우수한 강판을 제공하기 위해서는 템퍼드 마르텐사이트를 활용하는 것이 바람직하다. 상기 템퍼드 마르텐사이트의 분율(부피분율)이 30% 미만에서는 TS×El이 22,000MPa% 이상 확보하기 어렵고, 75%를 초과하게 되면 연성 및 가공성을 저하시키게 되어, TS×El이 22,000MPa% 미만 또는 R/t가 3.0 초과로 바람직하지 않다.
강판의 강도와 연성의 밸런스 및 가공성을 향상시키기 위해서는 베이나이트를 적절하게 포함하는 것이 바람직하다. 상기 베이나이트 분율(부피 분율)이 10% 이상에서 TS×El이 22,000MPa% 이상 및 R/t가 0.5~3.0을 구현할 수 있다. 그러나, 50% 초과의 베이나이트는 상대적으로 템퍼드 마르텐사이트 분율을 감소시켜 결국 TS×El이 22,000MPa% 미만이 되어 바람직하지 않다.
이하, 본 발명의 강판을 제조하는 방법의 일예에 대해서 상세히 설명한다. 본 발명의 강판 제조방법은 먼저, 전술한 합금조성을 갖는 강괴 또는 강 슬라브를 제조하고, 상기 강괴 또는 강 슬라브를 가열하여 열간압연한 후 소둔, 권취, 산세 및 냉간압연하여 냉간압연된 강판을 준비한다.
일예로써, 상기 강괴 또는 강 슬라브를 1000~1350℃의 온도로 가열하고, 800~1000℃의 온도로 마무리 열간압연하는 것이 바람직하다. 상기 가열온도가 1000℃ 미만일 경우, 마무리 열간압연 온도 구간의 이하에서 열간압연될 소지가 있다. 또한, 가열온도가 1350℃를 초과할 경우에는 강의 융점에 도달하여 녹아버릴 소지가 있다. 한편, 상기 마무리 열간압연 온도가 800℃ 미만일 경우에는 강의 높은 강도 때문에 압연기에 큰 부담을 줄 수 있다. 또한 마무리 열간압연 온도가 1000℃를 초과할 경우에는 열간압연 후 강판의 결정립이 조대하여 상기 고강도 강판의 물성을 저하시킬 수 있다. 상기 열간압연된 강판의 결정립을 미세화하기 위해 마무리 열간압연 후 10℃/s 이상의 냉각속도로 냉각하고, 300~600℃의 온도에서 권취하는 것이 바람직하다. 상기 권취온도가 300℃ 미만에서는 권취가 용이하지 않고, 600℃를 초과하는 경우에는 상기 열간압연된 강판의 표면에 생성되는 스케일(scale)이 상기 강판 내부까지 형성되어 산세를 어렵게 할 소지가 있다.
상기 권취 후에 산세 및 냉간압연을 용이하게 하기 위해서 열연소둔 열처리 공정을 행하는 것이 바람직하다. 상기 열연소둔 열처리는 650~850℃의 온도구간에서 600~1700초 동안 행하는 것이 바람직하다. 상기 열연소둔 열처리 온도가 650℃ 미만이거나 600초 미만 동안 행하게 되면, 상기 열연소둔 열처리된 강판의 강도가 높아 냉간압연이 용이하지 않을 수 있다. 반면, 열연소둔 열처리 온도가 850℃를 초과하거나 1700초 초과해서 행하게 되면, 강판 내부로 깊게 형성된 스케일(scale)에 기인하여 산세가 용이하지 않을 수 있다.
한편, 상기 권취 후에 강판 표면에 생성된 스케일을 제거하기 위해서 산세하고, 냉간압연을 한다. 상기 산세 및 냉간압연 조건을 특별히 제한하는 것은 아니며, 상기 냉간압연은 누적 압하율 30~90%로 하는 것이 바람직하다. 냉간압연 누적 압하율이 90%를 초과하면 상기 강판의 높은 강도로 인하여 냉간압연을 단시간에 수행하기 어려울 소지가 있다.
냉간압연된 강판은 소둔 열처리 공정을 거쳐 미도금의 냉연강판으로 제작되거나, 내식성을 부여하기 위해서 도금공정을 거쳐 도금강판으로 제작될 수 있다. 도금은 용융아연도금, 전기아연도금, 용융알루미늄도금 등의 도금방법을 적용할 수 있고, 그 방법과 종류를 특별히 제한하지 않는다.
본 발명에 따른 고강도 및 우수한 연성과 가공성을 확보하기 위해서, 소둔 열처리 공정을 행한다. 이하 그 일예에 대해 상세히 설명한다.
상기 냉간압연된 강판을 Ac3 이상으로 가열(1차 가열)하고, 50초 이상 유지(1차 유지)한다.
상기 1차 가열 또는 1차 유지 온도가 Ac3 미만인 경우 페라이트가 형성될 수 있고, 베이나이트, 잔류 오스테나이트 및 템퍼드 마르텐사이트가 충분히 형성되지 않아 상기 강판의 [Si+Al]γ / [Si+Al]av, TS×El 을 저하시킬 수 있다. 또한, 1차 유지 시간이 50초 미만인 경우에는 조직을 충분히 균일화시키지 못하여 상기 강판의 물성이 저하된다. 상기 1차 가열온도의 상한과 1차 유시 시간의 상한은 특별히 한정하지 않으나, 결정립 조대화로 인성의 감소를 억제시키기 위해서 1차 가열 온도는 950℃ 이하로 하고, 1차 유지시간은 1200초 이하로 하는 것이 바람직하다.
상기 1차 유지 후, 평균 냉각속도 1℃/s 이상으로 1차 냉각정지온도 100~300℃의 온도범위까지 냉각(1차 냉각)하는 것이 바람직하다. 1차 냉각속도의 상한은 특별히 규정할 필요는 없으며, 100℃/s 이하로 하는 것이 바람직하다. 상기 1차 냉각정지온도가 100℃ 미만인 경우에는 템퍼드 마르텐사이트가 과도하게 형성되고, 잔류 오스테나이트가 부족하여 상기 강판의 [Si+Al]γ / [Si+Al]av, TS×El 및 굽힘 가공성을 저하시킬 수 있다. 반면, 1차 냉각정지온도가 300℃를 초과하게 되면, 베이나이트가 과하게 되고 템퍼드 마르텐사이트가 부족하여 상기 강판의 TS×El을 저하시킬 수 있다.
상기 1차 냉각 후, 5℃/s 이상의 승온속도로 300~500℃의 온도범위까지 가열(2차 가열)하고, 이 온도범위에서 50초 이상 유지(2차 유지)하는 것이 바람직하다. 상기 승온속도의 상한은 특별히 규정할 필요는 없으며, 100℃/s 이하로 하는 것이 바람직하다. 상기 2차 가열 또는 2차 유지 온도가 300℃ 미만이거나, 유지시간이 50초 미만이면, 템퍼드 마르텐사이트가 과하게 되고 잔류 오스테나이트 중의 Si 및 Al 함량 제어가 불충분하여, 잔류 오스테나이트 분율을 확보하기 어렵다. 그 결과, 강판의 [Si+Al]γ / [Si+Al]av, TS×El 및 굽힘 가공성을 저하시킬 수 있다. 반면, 상기 2차 가열 또는 유지 온도가 500℃를 초과하거나, 유지 시간이 172,000초를 초과하는 경우에는 잔류 오스테나이트 중의 Si 및 Al 함량 제어가 불충분하여 잔류 오스테나이트의 분율을 확보하기 어렵다. 그 결과, 상기 강판의 Si+Al]γ / [Si+Al]av 및 TS×El을 저하시킨다.
상기 2차 유지한 다음, 상온까지 1℃/s 이상의 평균 냉각속도로 상온까지 냉각(2차 냉각)하는 것이 바람직하다.
이하, 본 발명의 실시예에 대해서 상세히 설명한다. 하기 실시예는 본 발명의 이해를 위한 것일 뿐, 본 발명의 권리범위를 특정하기 위한 것이 아님을 유의할 필요가 있다. 본 발명의 권리범위는 특허청구범위에 기재된 사항과 이로부터 합리적으로 유추되는 사항에 의해 결정된다.
(실시예)
하기 표 1에 의한 합금 조성(나머지는 Fe와 불가피한 불순물임)을 갖는 두께 100㎜의 강 슬라브를 제조하여, 1200℃에서 가열한 다음, 900℃에서 마무리 열간 압연을 하고, 30℃/s의 평균 냉각속도로 냉각하여 450~550℃에서 권취하여 두께 3㎜의 열연강판을 제조하였다. 상기 열연강판을 표 2 및 3의 조건으로 열연소둔 열처리하였다. 이후, 산세하여 표면 스케일을 제거한 후, 1.5㎜두께까지 냉간압연을 실시하였다.
이후, 상기 표 2 내지 5에 개시된 소둔 열처리 조건으로 열처리를 행하여, 강판을 제조하였다.
이렇게 제조된 강판의 미세조직을 관찰하여 그 결과를 표 6 및 표 7에 나타내었다. 미세조직 중 페라이트(F), 베이나이트(B), 템퍼드 마르텐사이트(TM) 및 펄라이트(P)는 연마된 시편 단면을 나이탈 에칭한 후 SEM을 통하여 관찰하였다. 이중에서 구별이 어려운 베이나이트와 템퍼드 마르텐사이트는 딜라테이션 평가 후에 팽창 곡선을 이용하여 분율을 계산하였다. 한편, 프레시 마르텐사이트(FM)와 잔류 오스테나이트(잔류 γ) 역시 구별이 쉽지 않기 때문에, 상기 SEM로 관찰된 마르텐사이트와 잔류 오스테나이트 분율에서 X선 회절법으로 계산된 잔류 오스테나이트의 분율을 뺀 값을 프레시 마르텐사이트 분율로 결정하였다.
한편, 상기 제조된 강판의 [Si+Al]γ / [Si+Al]av, TS×El, R/t 를 관찰하여, 그 결과를 표 8 및 표 9에 나타내었다.
상기 잔류 오스테나이트에 포함된 Si 및 Al 함량([Si+Al]γ)은 EPMA(Electron Probe MicroAnalyser)를 이용하여 잔류 오스테나이트 상 내에서 측정된 Sl+Al 함량을 결정하였다. 상기 [Si+Al]av는 강판 전체의 평균 Si+Al 함량을 의미한다.
상기 TS×El 및 R/t은 인장시험 및 V-벤딩시험으로 평가되었다. 인장시험은 압연판재의 압연방향에 대해 90°방향을 기준으로 JIS 5호 규격에 의거하여 채취된 시험편으로 평가하여 TS×El을 결정하였다. R/t는 압연판재의 압연방향에 대하여 90°방향을 기준으로 시편을 채취하여 90°굽힘 시험 후 크랙이 발생하지 않는 최소 굽힘반경 R을 판재의 두께 t로 나눈 값으로 결정하였다.
Figure PCTKR2019008695-appb-img-000001
Figure PCTKR2019008695-appb-img-000002
Figure PCTKR2019008695-appb-img-000003
Figure PCTKR2019008695-appb-img-000004
Figure PCTKR2019008695-appb-img-000005
Figure PCTKR2019008695-appb-img-000006
Figure PCTKR2019008695-appb-img-000007
Figure PCTKR2019008695-appb-img-000008
Figure PCTKR2019008695-appb-img-000009
상기 표 1 내지 9에 나타난 바와 같이, 본 발명에서 제시하는 조건 충족하는 발명예의 경우에는 모두 [Si+Al]γ / [Si+Al]av의 값이 0.55~0.85의 범위에 포함되고, TS×El이 22,000MPa% 이상이고, R/t가 0.5~3.0 범위에 포함되어, 강도가 우수하면서, 우수한 연성 및 가공성을 갖는 것을 알 수 있다.
그러나, No.2 내지 5의 비교예는 본 발명의 합금 조성범위는 중복되나, 열간압연 후 열연소둔 온도 및 시간이 본 발명에서 제시된 범위를 벗어나서, 산세 불량이 발생하거나 냉간압연 시 파단이 발생한 것을 확인할 수 있었다.
한편, No.6의 비교예는 냉간압연 후 소둔열처리 과정에서 1차 가열 또는 유지온도가 낮아, 페라이트가 과도하게 형성되었고 베이나이트 및 템퍼드 마르텐사이트 분율이 부족하여, [Si+Al]γ / [Si+Al]av 이 0.85를 초과하고, TS×El이 22,000MPa% 미만이었다. No.7의 비교예는 1차 유지시간이 짧아 조직이 불균일하게 되어, 페라이트 분율이 과도하게 형성되고 베이나이트 및 잔류 오스테나이트 분율이 부족하였다. 그 결과, [Si+Al]γ / [Si+Al]av 이 0.85를 초과하고, R/t가 3.0을 초과하였다. No.8의 비교예는 1차 냉각속도가 낮아 페라이트가 과도하게 형성되고, 잔류 오스테나이트 분율이 부족하여, [Si+Al]γ / [Si+Al]av 이 0.85를 초과하고, TS×El이 22,000MPa% 미만이었다.
또한, No.13의 비교예는 1차 냉각정지 온도가 낮아 템퍼드 마르텐사이트과 과도하게 형성되고, 잔류 오스테나이트 분율이 부족하여, [Si+Al]γ / [Si+Al]av 이 0.85를 초과하고, TS×El이 22,000MPa% 미만이며, R/t가 3.0을 초과하였다. No.14의 비교예는 1차 냉각정지온도가 본 발명에서 제시한 것보다 높아서, 베이나이트가 과도하게 형성되고, 템퍼드 마르텐사이트 형성이 부족하였다. 그 결과, TS×El이 22,000MPa% 미만이었다.
No.15 및 16의 비교예는 2차 가열 또는 유지 온도가 낮거나, 높은 경우로서, 잔류 오스테나이트가 적정 범위로 형성되지 않아, [Si+Al]γ / [Si+Al]av 이 0.85를 초과하고, TS×El이 22,000MPa% 미만이 되는 것을 알 수 있다. 특히, No.15의 경우에는 템퍼드 마르텐사이트도 과도하게 형성되어, R/t가 3.0을 초과하였다.
No.17 및 18의 비교예는 2차 유지시간이 부족하거나, 과도한 경우로서, No.17의 비교예는 템퍼드 마르텐사이트가 과도하게 형성되고, 잔류 오스테나이트가 부족하여, [Si+Al]γ / [Si+Al]av 이 0.85를 초과하고, TS×El이 22,000MPa% 미만이되며, R/t가 3.0을 초과하였다. No.18의 경우에는 잔류 오스테나이트가 부족하여, [Si+Al]γ / [Si+Al]av 이 0.85를 초과하고, TS×El이 22,000MPa% 미만이 되는 것을 알 수 있다.
No.41 내지 49의 비교예는 본 발명에서 제시하는 제조조건은 충족하는 경우이나, 합금 조성범위를 벗어난 경우이다. 이들의 경우에는 본 발명의 [Si+Al]γ / [Si+Al]av, TS×El, R/t의 조건을 모두 충족하지 못하는 것을 확인할 수 있다. 한편, No.43의 비교예는 본 발명의 합금조성에서 Si와 Al의 합량(Al+Si)이 1.0% 미만인 경우로서, [Si+Al]γ / [Si+Al]av, TS×El, R/t의 조건을 모두 충족하지 못하는 것을 확인할 수 있다.

Claims (12)

  1. 중량%로, C: 0.25% 초과~0.75%, Si: 4.0% 이하, Mn: 0.9~5.0%, Al: 5.0% 이하, P: 0.15% 이하, S: 0.03% 이하, N: 0.03% 이하, 나머지는 Fe 및 불가피한 불순물을 포함하고,
    미세조직은 템퍼드 마르텐사이트, 베이나이트 및 잔류 오스테나이트를 포함하고,
    하기 [관계식 1]을 만족하는 연성 및 가공성이 우수한 고강도 강판.
    [관계식 1]
    0.55 ≤ [Si+Al]γ / [Si+Al]av ≤ 0.85
    (단, [Si+Al]γ는 잔류 오스테나이트 내 포함된 Si 및 Al 함량(중량%)이고, [Si+Al]av는 강판에 포함된 Si 및 Al의 함량(중량%)임)
  2. 청구항 1에 있어서,
    상기 강판은 하기 (1) 내지 (9) 중 어느 하나 이상을 더 포함하는 연성 및 가공성이 우수한 고강도 강판.
    (1) Ti: 0~0.5%, Nb: 0~0.5% 및 V: 0~0.5% 중 1종 이상
    (2) Cr: 0~3.0% 및 Mo: 0~3.0% 중 1종 이상
    (3) Cu: 0~4.5% 및 Ni: 0~4.5% 중 1종 이상
    (4) B: 0~0.005%
    (5) Ca: 0~0.05%, Y를 제외하는 REM: 0~0.05% 및 Mg: 0~0.05% 중 1종 이상
    (6) W: 0~0.5% 및 Zr: 0~0.5% 중 1종 이상
    (7) Sb: 0~0.5% 및 Sn: 0~0.5% 중 1종 이상
    (8) Y: 0~0.2% 및 Hf: 0~0.2% 중 1종 이상
    (9) Co: 0~1.5%
  3. 청구항 1에 있어서,
    상기 Si 및 Al의 합량(Si+Al)은 1.0~6.0%인 연성 및 가공성이 우수한 고강도 강판.
  4. 청구항 1에 있어서,
    상기 강판의 미세조직은 부피분율로, 30~75%의 템퍼드 마르텐사이트, 10~50%의 베이나이트, 10~40%의 잔류 오스테나이트, 5% 이하의 페라이트 및 불가피한 조직을 포함하는 연성 및 가공성이 우수한 고강도 강판.
  5. 청구항 1에 있어서,
    상기 강판은 인장강도와 연신율의 곱(TS×El)이 22,000MPa% 이상이고, R/t(R은 90° 굽힘 시험 후 크랙이 발생하지 않는 최소 굽힘반경(㎜)이고, t는 강판의 두께(㎜)임)가 0.5~3.0인 연성 및 가공성이 우수한 고강도 강판.
  6. 중량%로, C: 0.25% 초과~0.75%, Si: 4.0% 이하, Mn: 0.9~5.0%, Al: 5.0% 이하, P: 0.15% 이하, S: 0.03% 이하, N: 0.03% 이하, 나머지는 Fe 및 불가피한 불순물을 포함하는 강 슬라브를 가열하고, 열간압연하는 단계;
    상기 열간압연된 강판을 권취하는 단계;
    상기 권취된 강판은 650~850℃의 온도범위에서 600~1700초 동안 열연소둔 열처리하는 단계;
    상기 열연소둔 열처리된 강판을 냉간압연하는 단계;
    상기 냉연압연된 강판을 Ar3 이상으로 가열(1차 가열)하여, 50초 이상 유지(1차 유지)하는 단계;
    평균 냉각속도 1℃/s 이상으로, 100~300℃의 온도범위까지 냉각(1차 냉각)하는 단계;
    상기 1차 냉각된 강판을 300~500℃의 온도범위까지 가열(2차 가열)하고, 이 온도범위에서 50초 이상 유지(2차 유지)하는 단계; 및
    상온까지 냉각(2차 냉각)하는 단계
    를 포함하는 연성 및 가공성이 우수한 고강도 강판의 제조방법.
  7. 청구항 6에 있어서,
    상기 냉연강판은 하기 (1) 내지 (9) 중 어느 하나 이상을 더 포함하는 연성 및 가공성이 우수한 고강도 강판의 제조방법
    (1) Ti: 0~0.5%, Nb: 0~0.5% 및 V: 0~0.5% 중 1종 이상
    (2) Cr: 0~3.0% 및 Mo: 0~3.0% 중 1종 이상
    (3) Cu: 0~4.5% 및 Ni: 0~4.5% 중 1종 이상
    (4) B: 0~0.005%
    (5) Ca: 0~0.05%, Y를 제외하는 REM: 0~0.05% 및 Mg: 0~0.05% 중 1종 이상
    (6) W: 0~0.5% 및 Zr: 0~0.5% 중 1종 이상
    (7) Sb: 0~0.5% 및 Sn: 0~0.5% 중 1종 이상
    (8) Y: 0~0.2% 및 Hf: 0~0.2% 중 1종 이상
    (9) Co: 0~1.5%
  8. 청구항 6에 있어서,
    상기 강 슬라브를 1000~1350℃로 가열하고, 열간압연은 800~1000℃의 온도범위에서 열간 마무리 압연하는 것을 포함하는 연성 및 가공성이 우수한 고강도 강판의 제조방법.
  9. 청구항 6에 있어서,
    상기 권취는 300~600℃의 온도범위에서 행하는 연성 및 가공성이 우수한 고강도 강판의 제조방법.
  10. 청구항 6에 있어서,
    상기 냉간압연 30~90%의 압하율로 행하는 연성 및 가공성이 우수한 고강도 강판의 제조방법.
  11. 청구항 6에 있어서,
    상기 2차 가열속도는 5℃/s 이상으로 행하는 연성 및 가공성이 우수한 고강도 강판의 제조방법.
  12. 청구항 6에 있어서,
    상기 2차 냉각속도는 1℃/s 이상인 연성 및 가공성이 우수한 고강도 강판의 제조방법.
PCT/KR2019/008695 2018-12-18 2019-07-15 연성 및 가공성이 우수한 고강도 강판 및 그 제조방법 WO2020130257A1 (ko)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP19900121.5A EP3901308B1 (en) 2018-12-18 2019-07-15 High strength steel sheet having excellent ductility and workability, and method for manufacturing same
JP2021535132A JP7291222B2 (ja) 2018-12-18 2019-07-15 延性及び加工性に優れた高強度鋼板、及びその製造方法
CN201980084857.7A CN113227427A (zh) 2018-12-18 2019-07-15 延展性和加工性优异的高强度钢板及其制造方法
US17/297,733 US20220042130A1 (en) 2018-12-18 2019-07-15 High strength steel sheet having excellent ductility and workability, and method for manufacturing same
JP2023035491A JP2023071938A (ja) 2018-12-18 2023-03-08 延性及び加工性に優れた高強度鋼板、及びその製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2018-0163899 2018-12-18
KR1020180163899A KR102276740B1 (ko) 2018-12-18 2018-12-18 연성 및 가공성이 우수한 고강도 강판 및 그 제조방법

Publications (1)

Publication Number Publication Date
WO2020130257A1 true WO2020130257A1 (ko) 2020-06-25

Family

ID=71100525

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2019/008695 WO2020130257A1 (ko) 2018-12-18 2019-07-15 연성 및 가공성이 우수한 고강도 강판 및 그 제조방법

Country Status (6)

Country Link
US (1) US20220042130A1 (ko)
EP (1) EP3901308B1 (ko)
JP (2) JP7291222B2 (ko)
KR (1) KR102276740B1 (ko)
CN (1) CN113227427A (ko)
WO (1) WO2020130257A1 (ko)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114686764B (zh) * 2022-03-30 2022-09-13 福建三宝钢铁有限公司 一种低松弛超高强精轧螺纹钢筋及其制备方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20060118602A (ko) 2004-03-11 2006-11-23 신닛뽄세이테쯔 카부시키카이샤 성형성 및 구멍 확장성이 우수한 용융 아연 도금 복합고강도 강판 및 그 제조 방법
JP2009019258A (ja) 2007-07-13 2009-01-29 Nippon Steel Corp 引張強度が700MPa以上で耐食性、穴拡げ性および延性に優れた合金化溶融亜鉛めっき高強度鋼板及びその製造方法
KR20100092503A (ko) 2008-01-31 2010-08-20 제이에프이 스틸 가부시키가이샤 가공성이 우수한 고강도 용융 아연 도금 강판 및 그 제조 방법
KR20110039395A (ko) * 2008-09-10 2011-04-15 제이에프이 스틸 가부시키가이샤 고강도 강판 및 그 제조 방법
KR20110042369A (ko) * 2008-09-10 2011-04-26 제이에프이 스틸 가부시키가이샤 고강도 강판 및 그 제조 방법
WO2012147898A1 (ja) * 2011-04-25 2012-11-01 Jfeスチール株式会社 加工性と材質安定性に優れた高強度鋼板およびその製造方法
EP2546375A1 (en) * 2010-03-09 2013-01-16 JFE Steel Corporation High-strength pressed member and method for producing same
KR20140012167A (ko) 2011-05-10 2014-01-29 아르셀러미탈 인베스티가시온 와이 데살롤로 에스엘 높은 기계적 강도, 연성 및 성형성 특성들을 갖는 강판, 이 강판들의 제조 방법 및 용도
KR20140043156A (ko) * 2011-07-29 2014-04-08 신닛테츠스미킨 카부시키카이샤 형상 동결성이 우수한 고강도 강판, 고강도 아연 도금 강판 및 그들의 제조 방법

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100840287B1 (ko) * 2006-12-26 2008-06-20 주식회사 포스코 잔류 오스테나이트와 hcp 마르텐사이트 조직이 혼합된복합조직강 및 그의 열처리 방법
JP5402007B2 (ja) * 2008-02-08 2014-01-29 Jfeスチール株式会社 加工性に優れた高強度溶融亜鉛めっき鋼板およびその製造方法
EP3101147B1 (en) * 2014-01-29 2018-08-15 JFE Steel Corporation High-strength cold-rolled steel sheet and method for manufacturing same
KR101594670B1 (ko) * 2014-05-13 2016-02-17 주식회사 포스코 연성이 우수한 고강도 냉연강판, 용융아연도금강판 및 이들의 제조방법
CN105506478B (zh) * 2014-09-26 2017-10-31 宝山钢铁股份有限公司 一种高成形性的冷轧超高强度钢板、钢带及其制造方法
KR101630976B1 (ko) * 2014-12-08 2016-06-16 주식회사 포스코 표면품질 및 도금 밀착성이 우수한 초고강도 용융아연도금강판 및 그 제조방법
JP6620474B2 (ja) * 2015-09-09 2019-12-18 日本製鉄株式会社 溶融亜鉛めっき鋼板および合金化溶融亜鉛めっき鋼板、並びにそれらの製造方法
US10787727B2 (en) * 2016-09-21 2020-09-29 Nippon Steel Corporation Steel sheet
WO2018055425A1 (en) * 2016-09-22 2018-03-29 Arcelormittal High strength and high formability steel sheet and manufacturing method
WO2018115936A1 (en) * 2016-12-21 2018-06-28 Arcelormittal Tempered and coated steel sheet having excellent formability and a method of manufacturing the same
WO2018115935A1 (en) * 2016-12-21 2018-06-28 Arcelormittal Tempered and coated steel sheet having excellent formability and a method of manufacturing the same
JP6849536B2 (ja) * 2017-05-31 2021-03-24 株式会社神戸製鋼所 高強度鋼板およびその製造方法
KR102460214B1 (ko) * 2018-03-30 2022-11-01 닛폰세이테츠 가부시키가이샤 강판 및 그 제조 방법

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20060118602A (ko) 2004-03-11 2006-11-23 신닛뽄세이테쯔 카부시키카이샤 성형성 및 구멍 확장성이 우수한 용융 아연 도금 복합고강도 강판 및 그 제조 방법
JP2009019258A (ja) 2007-07-13 2009-01-29 Nippon Steel Corp 引張強度が700MPa以上で耐食性、穴拡げ性および延性に優れた合金化溶融亜鉛めっき高強度鋼板及びその製造方法
KR20100092503A (ko) 2008-01-31 2010-08-20 제이에프이 스틸 가부시키가이샤 가공성이 우수한 고강도 용융 아연 도금 강판 및 그 제조 방법
KR20110039395A (ko) * 2008-09-10 2011-04-15 제이에프이 스틸 가부시키가이샤 고강도 강판 및 그 제조 방법
KR20110042369A (ko) * 2008-09-10 2011-04-26 제이에프이 스틸 가부시키가이샤 고강도 강판 및 그 제조 방법
EP2546375A1 (en) * 2010-03-09 2013-01-16 JFE Steel Corporation High-strength pressed member and method for producing same
WO2012147898A1 (ja) * 2011-04-25 2012-11-01 Jfeスチール株式会社 加工性と材質安定性に優れた高強度鋼板およびその製造方法
KR20140012167A (ko) 2011-05-10 2014-01-29 아르셀러미탈 인베스티가시온 와이 데살롤로 에스엘 높은 기계적 강도, 연성 및 성형성 특성들을 갖는 강판, 이 강판들의 제조 방법 및 용도
KR20140043156A (ko) * 2011-07-29 2014-04-08 신닛테츠스미킨 카부시키카이샤 형상 동결성이 우수한 고강도 강판, 고강도 아연 도금 강판 및 그들의 제조 방법

Also Published As

Publication number Publication date
EP3901308B1 (en) 2023-06-07
JP7291222B2 (ja) 2023-06-14
KR102276740B1 (ko) 2021-07-13
EP3901308A1 (en) 2021-10-27
EP3901308A4 (en) 2021-10-27
KR20200075337A (ko) 2020-06-26
US20220042130A1 (en) 2022-02-10
CN113227427A (zh) 2021-08-06
JP2023071938A (ja) 2023-05-23
JP2022515107A (ja) 2022-02-17

Similar Documents

Publication Publication Date Title
WO2020130560A1 (ko) 가공성이 우수한 냉연강판, 용융아연도금강판 및 이들의 제조방법
KR102178731B1 (ko) 가공특성이 우수한 고강도 강판 및 그 제조방법
WO2020060051A1 (ko) 충격 인성이 우수한 페라이트계 스테인리스 열연 무소둔 강판 및 그 제조방법
WO2022124609A1 (ko) 연성 및 성형성이 우수한 고강도 용융아연도금강판 및 그 제조방법
US20210310093A1 (en) Hot rolled steel sheet with ultra-high strength and improved formability and method for producing the same
WO2020085684A1 (ko) 극저온 인성 및 연성이 우수한 압력용기용 강판 및 그 제조 방법
WO2015030324A1 (ko) 고강도 열연도금강판 및 그 제조 방법
KR102178728B1 (ko) 강도 및 연성이 우수한 강판 및 그 제조방법
WO2020130257A1 (ko) 연성 및 가공성이 우수한 고강도 강판 및 그 제조방법
WO2010074458A2 (ko) 딥드로잉성이 우수하고 고항복비를 갖는 고강도 냉연강판, 이를 이용한 용융아연도금강판, 합금화 용융아연도금강판 및 이들의 제조방법
WO2019117432A1 (ko) 충격 인성이 우수한 페라이트계 스테인리스강 및 그 제조방법
WO2011081236A1 (ko) 열간 프레스 가공성이 우수한 열처리 강화형 강판 및 그 제조방법
WO2021125564A1 (ko) 클램프용 고강도 페라이트계 스테인리스강 및 그 제조방법
WO2014038759A1 (en) Ferritic lightweight high-strength steel sheet having excelent stiffness and ductility, and method of manufacturing the same
WO2017222122A1 (ko) 철근 및 이의 제조 방법
WO2022097989A1 (ko) 선영성이 우수한 고강도 아연계 도금강판 및 그 제조방법
KR102209575B1 (ko) 강도와 연성의 밸런스 및 가공성이 우수한 강판 및 그 제조방법
WO2021124864A1 (ja) 鋼板及びめっき鋼板
WO2019093689A1 (ko) 파단 특성이 우수한 고강도, 저인성 냉연강판 및 그 제조 방법
WO2019039774A1 (ko) 저온 충격인성이 개선된 페라이트계 스테인리스강 및 이의 제조 방법
WO2022103024A1 (ko) 성형성이 우수한 고강도 아연계 도금강판 및 그 제조방법
WO2018110866A1 (ko) 충격 인성이 개선된 페라이트계 스테인리스강 및 이의 제조 방법
WO2024143832A1 (ko) 고강도 및 고성형성 강판 및 그 제조방법
WO2024144041A1 (ko) 고강도 냉연강판 및 그 제조방법
WO2024005283A1 (ko) 냉연 강판 및 그 제조방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19900121

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021535132

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019900121

Country of ref document: EP

Effective date: 20210719