WO2018110866A1 - 충격 인성이 개선된 페라이트계 스테인리스강 및 이의 제조 방법 - Google Patents

충격 인성이 개선된 페라이트계 스테인리스강 및 이의 제조 방법 Download PDF

Info

Publication number
WO2018110866A1
WO2018110866A1 PCT/KR2017/013742 KR2017013742W WO2018110866A1 WO 2018110866 A1 WO2018110866 A1 WO 2018110866A1 KR 2017013742 W KR2017013742 W KR 2017013742W WO 2018110866 A1 WO2018110866 A1 WO 2018110866A1
Authority
WO
WIPO (PCT)
Prior art keywords
less
stainless steel
ferritic stainless
excluding
rolling
Prior art date
Application number
PCT/KR2017/013742
Other languages
English (en)
French (fr)
Inventor
공정현
이문수
Original Assignee
주식회사 포스코
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 포스코 filed Critical 주식회사 포스코
Publication of WO2018110866A1 publication Critical patent/WO2018110866A1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0263Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment following hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/26Ferrous alloys, e.g. steel alloys containing chromium with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/28Ferrous alloys, e.g. steel alloys containing chromium with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/005Ferrite

Definitions

  • the present invention relates to a ferritic stainless steel and a method of manufacturing the same, and more particularly to a ferritic stainless steel and its manufacturing method with improved impact toughness.
  • ferritic stainless steels are widely used in building materials, kitchen containers, home appliances, automobile exhaust systems, and the like.
  • Ferritic stainless steels are inferior to austenite stainless steels in workability, toughness, and high temperature strength, but are inexpensive because they do not contain a large amount of Ni and have low thermal expansion.
  • ferritic stainless steels containing high Cr and Nb are inferior to workability and impact toughness as their thickness becomes thicker than austenitic stainless steels. Therefore, during the cold rolling to the target thickness of the hot-rolled annealing steel sheet of 5.0mmt or more after hot rolling, there is a problem such that brittle cracks are generated at the brittle heat, or cracks propagate, causing fracture of the plate.
  • ferritic stainless steel containing a large amount of Nb segregates at the grain boundaries together with C and N, which are intrusive elements, thereby interfering with dislocation propagation, thereby increasing resistance to stress propagation and dislocation propagation and increasing plastic deformation.
  • C and N which are intrusive elements
  • Embodiments of the present invention to provide a ferritic stainless steel with improved impact toughness through grain refinement and texture control through the control of the alloy component and manufacturing process of the ferritic stainless steel.
  • embodiments of the present invention is to provide a method of manufacturing a ferritic stainless steel that can improve the impact toughness by controlling the slab reheating temperature, reduction rate and rolling temperature during hot rolling.
  • Ferritic stainless steel with improved impact toughness according to an embodiment of the present invention, in weight percent, Cr: 18.0 to 20.0%, Nb: 0.4 to 2.0%, Ti: 0.1% or less (excluding 0), C: 0.03 % Or less (excluding 0), N: 0.03% or less (excluding 0), remaining Fe and other unavoidable impurities, satisfying the following formulas (1) to (3), and has a thickness of 5.0 mm or more.
  • ⁇ -fiber (111) refers to a group of agglomerates of azimuth generated in a direction perpendicular to the (111) plane of the agglomerates.
  • the ferritic stainless steel may satisfy the following formula (4).
  • Si 0.6% or less (excluding 0), Mn: 0.5% or less (excluding 0), Ni: 0.1 to 0.5%, Cu: 0.4 to 0.6%, and Al: 0.01% or less It may further include (except zero).
  • the ferritic stainless steel may be a hot rolled annealing steel sheet having a thickness of 5.0 to 7.0mm.
  • the Charpy impact test value of 20 may be 70 J / cm 2 or more.
  • Method for producing a ferritic stainless steel with improved impact toughness according to an embodiment of the present invention, by weight, Cr: 18.0 to 20.0%, Nb: 0.4 to 2.0%, Ti: 0.1% or less (excluding 0), C : 0.03% or less (excluding 0), N: 0.03% or less (excluding 0), and hot rolling a ferritic stainless steel containing the remaining Fe and other unavoidable impurities and satisfying the following formula (1)
  • hot rolling is carried out to reheat the slab to 1,200 or less, to reduce the rolling reduction in the final rolling of the rough rolling to 35% or more, to the temperature passed at the end of the rough rolling, from 950 to 1,020, and to the final finish rolling temperature to 900 or less.
  • Hot rolled annealing steel sheet having a final plate thickness of 5.0 mm or more is manufactured.
  • hot-rolled annealing heat treatment may be performed at 1,050 ° C or less.
  • the hot rolled annealing steel sheet may satisfy the following formula (2) and formula (3).
  • ⁇ -fiber (111) refers to a group of agglomerate tissues generated in a direction perpendicular to the (111) plane of the agglomerates.
  • the hot-rolled annealing steel sheet has a thickness of 5.0 to 7.0mm, 20 Charpy impact test value may be 70J / cm 2 or more.
  • Embodiments of the present invention can improve the impact toughness of the ferritic stainless steel through the control of the alloy components of the ferritic stainless steel and the slab reheating temperature, the reduction ratio and the rolling temperature during hot rolling to control the grain refinement and texture control. .
  • 1 is a graph illustrating the impact toughness of a 5 mm thick ferritic stainless steel according to an embodiment of the present invention.
  • Figure 2 is a graph for explaining the impact toughness of 7mm thick ferritic stainless steel according to an embodiment of the present invention.
  • FIG. 3 is a graph for explaining the phase fraction of the texture according to the manufacturing process of the ferritic stainless steel according to an embodiment of the present invention.
  • FIG. 4 is a graph illustrating a ratio of coarse grains having an average particle diameter of 150 ⁇ m or more according to a manufacturing process of a ferritic stainless steel according to an embodiment of the present invention.
  • Ferritic stainless steel with improved impact toughness according to an embodiment of the present invention, in weight percent, Cr: 18.0 to 20.0%, Nb: 0.4 to 2.0%, Ti: 0.1% or less (excluding 0), C: 0.03 % Or less (excluding 0), N: 0.03% or less (excluding 0), remaining Fe and other unavoidable impurities, satisfying the following formulas (1) to (3), and has a thickness of 5.0 mm or more.
  • ⁇ -fiber (111) refers to a group of agglomerates of azimuth generated in a direction perpendicular to the (111) plane of the agglomerates.
  • Ferritic stainless steel with improved impact toughness according to an embodiment of the present invention, in weight percent, Cr: 18.0 to 20.0%, Nb: 0.4 to 2.0%, Ti: 0.1% or less (excluding 0), C: 0.03 % Or less (excluding 0), N: 0.03% or less (excluding 0), remaining Fe and other unavoidable impurities.
  • Cr is an element effective for improving the corrosion resistance of steel, and in the present invention, Cr is added at least 18.0%. However, if the content is excessive, not only the manufacturing cost increases rapidly, but also the problem of grain boundary corrosion occurs, so it is limited to 20.0% or less.
  • Nb preferentially bonds with C and N, which are invasive elements, to form a precipitate that suppresses deterioration of corrosion resistance.
  • NbN adheres to TiN and precipitates, and when NbN is precipitated, the degree of corrosion resistance is not affected around TiN. A small amount of Cr deficient region is formed. If the content of Nb is less than 0.4%, there is a problem that the high temperature strength of the material is inferior due to less Nb dissolved in the material.If the content of Nb is more than 2.0%, the raw material cost is increased, and precipitates segregate at the grain boundaries, so that There is a problem that the toughness is inferior as it interferes with the propagation, and the resistance to the propagation of stress and dislocation is increased to lower the plastic deformation capacity.
  • Ti is an element effective to reduce the amount of solid solution carbon and solid solution nitrogen in steel by fixing C and N, and to improve the high temperature strength and corrosion resistance of the steel.
  • Ti When the content is excessive, Ti not only increases manufacturing cost but also Ti-based inclusions. Formation causes surface defects, limited to 0.1% or less.
  • the Ti component in molten steel exists as an inevitable impurity, and the manufacturing cost increases to completely remove it to 0%, which may be 0.001% or more.
  • the content of Ti may be 0.001 to 0.1%.
  • C is an intrusion type element, and when the amount is increased, it is limited to 0.03% or less because workability during molding decreases as the elongation decreases.
  • the lower limit of the content may be 0.002% or more in consideration of the cost in the steelmaking operation process.
  • the content of C may be 0.002 to 0.03%.
  • N is an element that precipitates austenite during hot rolling to promote recrystallization, but when the content thereof is excessive, N is limited to 0.03% or less, since the ductility of steel is lowered.
  • the lower limit of the content may be 0.002% or more in consideration of the cost in the steelmaking operation process.
  • the content of N may be 0.002 to 0.03%.
  • the ferritic stainless steel is Si: 0.6% or less (excluding 0), Mn: 0.5% or less (excluding 0), Ni: 0.1 to 0.5%, Cu: 0.4 to 0.6% and Al: 0.01 It may further include% or less (excluding 0).
  • Si is an element added for deoxidation and ferrite stabilization of molten steel during steelmaking. However, if the content is excessive, hardening of the material causes the ductility of the steel to be lowered, so it is limited to 0.6% or less. Preferably the content of Si may be 0.01 to 0.5%.
  • Mn may be added in an amount of 0.01% or more as an element added in terms of corrosion resistance. However, when more than 0.5%, the impurities of the material increase, so there is a problem that the elongation and corrosion resistance is poor. Preferably the content of Mn may be 0.01 to 0.5%.
  • Ni may be added 0.1% or more as an element to improve the corrosion resistance. However, if a large amount is added, it may be hardened as well as stress corrosion cracking, so it is preferable to set it to 0.5% or less.
  • Cu may be added at least 0.4% as an element added for improving corrosion resistance. However, if the content is excessive, workability may decrease, so it is preferable to limit the content to 0.6% or less.
  • Aluminum is a powerful deoxidizer, which lowers the oxygen content in molten steel.
  • the content is excessive, the sleeve defect of the cold rolled strip occurs due to the increase in the non-metallic inclusions, and the weldability is deteriorated, so it is limited to 0.01% or less.
  • the content of Al may be 0.001 to 0.1%.
  • P is an unavoidable impurity contained in steel and is an element that causes grain boundary corrosion during pickling or inhibits hot workability. Therefore, P is preferably controlled as low as possible. In the present invention, the upper limit of the content of P is controlled to 0.05%.
  • S is an inevitable impurity contained in steel, and is an element that is the main cause of segregation at grain boundaries and impairs hot workability. Therefore, it is preferable to control the content as low as possible.
  • the upper limit of the content of S is controlled to 0.005%.
  • Ferritic stainless steel containing a large amount of Nb segregates along with C and N, which are intrusive elements, at the grain boundary, thereby interfering with dislocation propagation, thereby increasing resistance to stress propagation and dislocation propagation and rapidly deteriorating plastic deformation. There is a problem that the toughness is inferior.
  • the temperature of the furnace before hot rolling is lowered and the rough rolling load distribution during the hot rolling is moved to the rear end, so that a strong reduction is performed at the rear end having a lower temperature than the front end, and thus the nucleation site ( After inducing more sites), it was intended to obtain uniform and fine crystals by promoting recrystallization and homogenization of the internal crystals during hot rolling annealing.
  • ⁇ -fiber (111) refers to a group of agglomeration tissue formed in a direction perpendicular to the (111) plane of the tissue.
  • the ferritic stainless steel according to an embodiment of the present invention is a hot rolled annealing steel sheet having a thickness of 5.0 mm or more, for example, a hot rolled annealing steel sheet having a thickness of 5.0 to 7.0 mm.
  • the ferritic stainless steel satisfies the following formula (1).
  • the ferritic stainless steel satisfies the following formula (2).
  • ⁇ -fiber (111) is a texture known to improve the toughness of the material, it is possible to increase the phase percentage of the ⁇ -fiber (111) texture through the accumulation of strain energy through the control of the hot rolling conditions of the present invention have. If the value of B is less than 17.0%, sufficient impact toughness desired in the present invention cannot be obtained.
  • the ⁇ -fiber (111) phase fraction can be achieved through the control of the hot rolling conditions of the present invention, ferritic stainless steel produced according to the existing process ⁇ -fiber (111) phase fraction less than about 14.0% And Charpy impact test value of 20 °C is less than 20J / cm 2 there is a problem that has a thermal impact toughness.
  • the ferritic stainless steel satisfies the following formula (3).
  • the ferritic stainless steel satisfies the following formula (4).
  • the Charpy impact test value of 20 may be 70 J / cm 2 or more, thereby improving the impact toughness of the stainless steel.
  • the slab reheating temperature, rough rolling rate, and hot rolled coil winding temperature should be controlled during hot rolling process to form sufficient deformation structure in the hot rolled material.
  • the manufacturing method of the ferritic stainless steel according to an embodiment of the present invention for producing the ferritic stainless steel by weight, Cr: 18.0 to 20.0%, Nb: 0.4 to 2.0%, Ti: 0.1% or less Hot rolling a ferritic stainless steel (excluding 0), C: 0.03% or less (excluding 0), N: 0.03% or less (excluding 0), and remaining Fe and other unavoidable impurities.
  • the slab reheating temperature is lowered as much as possible during hot rolling, and the rough rolling load distribution is moved to the rear end to increase the temperature.
  • the nucleation site can be induced as much as possible to increase the fine grains.
  • recrystallization and homogenization of the material may be promoted to obtain uniform and fine grains in both the width direction and the length direction of the cross section of the material.
  • the slab reheating temperature is 1,200 ° C. or less
  • the rolling reduction rate in the final rolling of rough rolling is 35% or more
  • the temperature passed through the rough rolling is 950 to 1,020 ° C.
  • the final finish rolling temperature is 900 ° C. or less.
  • the hot rolled coil having a thickness of 5 mm was prepared by controlling the temperature at 1,020 ° C and performing the final finishing rolling temperature at 900 ° C. And annealing heat treatment was performed at 900 degreeC.
  • Example 1 manufactured to 7mm Except that the thickness of the hot rolled coil in Example 1 manufactured to 7mm was performed the same.
  • Example 2 Except that in Example 2 in the last rolling (R4) and immediately before rolling (R3) of the rough rolling was carried out with a reduction ratio of 25% respectively, the rest was performed the same.
  • FIG. 1 is a graph illustrating the impact toughness of a 5 mm thick ferritic stainless steel according to an embodiment of the present invention.
  • Figure 2 is a graph for explaining the impact toughness of 7mm thick ferritic stainless steel according to an embodiment of the present invention.
  • FIG. 1 is a graph showing Charpy impact energy of Example 1 and Comparative Example 1
  • FIG. 2 is a graph showing Charpy impact energy of Example 2 and Comparative Example 2.
  • FIG. 3 is a graph for explaining the phase fraction of the texture according to the manufacturing process of the ferritic stainless steel according to an embodiment of the present invention.
  • FIG. 3 is a graph showing the measurement of the phase percentage of the texture of the hot-rolled annealing steel sheet of Examples 1, 2, Comparative Examples 1 and 2.
  • A means Comparative Example 1
  • C means Comparative Example 2
  • B means Example 1
  • D means Example 2.
  • FIG. 4 is a graph illustrating a ratio of coarse grains having an average particle diameter of 150 ⁇ m or more according to a manufacturing process of a ferritic stainless steel according to an embodiment of the present invention.
  • Figure 4 shows the coarse grain ratio of the hot-rolled annealing steel sheet manufactured according to the existing process, and when the reheating temperature is lowered (down the heating table), when the sheet temperature is lowered (down the cracker), the rough rolling reduction rate to the rear step down
  • It is a graph which measured and measured the coarse grain ratio of the hot-rolled annealing steel plate manufactured according to the case where it was controlled in one case (falling down), and when all of them were controlled (low temperature + falling downfall).
  • the steel sheet (Comparative Example 1), which has been weakly reduced to 25% at the existing high temperature hot rolling temperature and the rear end, has a coarse grain ratio of more than 30%.
  • the steel sheet (low temperature + trailing) which controlled all hot rolling conditions by lowering the reheat temperature (down the heating table), lowering the plate temperature (down the cracking table), and setting the rough rolling reduction rate to the lower step down pressure (lower step down pressure). Under coercion), it has a coarse grain ratio of 8% or less.
  • the ferritic stainless steel is controlled by controlling the alloying element and controlling the slab reheating temperature, the reduction ratio, and the rolling temperature during hot rolling to control grain refinement and texture. It can be seen that the impact toughness of the steel can be improved.
  • Ferritic stainless steel with improved impact toughness according to embodiments of the present invention is excellent in physical properties and can be variously applied to structural materials such as building materials and automobile exhaust system parts.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Steel (AREA)

Abstract

충격 인성이 개선된 페라이트계 스테인리스강 및 이의 제조 방법이 개시된다. 본 발명의 일 실시예에 따른 페라이트계 스테인리스강은, 중량%로, Cr: 18.0 내지 20.0%, Nb: 0.4 내지 2.0%, Ti: 0.1% 이하(0 제외), C: 0.03% 이하, N: 0.03% 이하, 나머지 Fe 및 기타 불가피한 불순물을 포함하며, γ-fiber (111) 상분율이 17.0% 이상이고, 150㎛ 이상의 결정립 비율이 8.0% 이하이며, 5.0mm 이상의 두께를 가진다. 이에 따라, 상온 20℃의 샤르피 충격시험값이 70J/cm2 이상을 가져 충격 인성을 향상시킬 수 있다.

Description

충격 인성이 개선된 페라이트계 스테인리스강 및 이의 제조 방법
본 발명은 페라이트계 스테인리스강 및 이의 제조 방법에 관한 것으로, 보다 상세하게는 충격 인성이 개선된 페라이트계 스테인리스강 및 이의 제조 방법에 관한 것이다.
스테인리스강 중 특히 페라이트계 스테인리스강은 건축 자재, 주방 용기, 가전 제품, 자동차 배기계 부품 등에 널리 사용되고 있다.
페라이트계 스테인리스 강은 오스테나이트계 스테인리스 강에 비해 가공성, 인성 및 고온 강도에서는 떨어지지만 다량의 Ni을 함유하고 있지 않기 때문에 저렴하고 또한 열팽창이 작기 때문에 최근 자동차 배기계 부품 재료 등에 선호되어서 사용되고 있다.
특히, 고Cr을 함유하면서 Nb을 함유한 페라이트계 스테인리스 강은 오스테나이트계 스테인리스 강에 비해 그 두께가 두꺼워질수록 가공성 및 충격 인성이 열위해진다. 따라서, 열간 압연 이후 5.0mmt 이상의 열연 소둔 강판을 목표로 하는 두께로 냉간 압연 하는 도중 취성의 열위로 취성 크랙이 발생하거나 크랙이 전파하여 판의 파단이 발생하는 등의 문제점이 있다.
또한, Nb을 다량 함유하고 있는 페라이트계 스테인리스강은 Nb가 침입형 원소인 C 및 N와 함께 입계에 편석하여 전위의 전파를 방해하여 응력의 전파 및 전위의 전파에 대한 저항이 증가하고 소성 변형능이 급격히 저하되어 인성이 열위 해지는 문제점이 있다.
Nb를 함유한 페라이트계 스테인리스강 열연재의 인성을 개선하는 방법에 대해서 지금까지 다양한 방법이 검토되어 왔다. 예를 들어, 열연 권취 온도를 하향하거나 수냉하는 등의 급냉 처리를 하여 소재의 취성 특성을 악화시키는 라베스(laves) 상을 억제하는 방법이 있으나 이는 실제 공정 적용에 어려우며, 코일 권취시 낮은 온도로 인하여 판의 표면에 긁힘 흔적이 남는 등 불량 코일을 야기시키거나, 급격한 냉각 속도로 인해 판의 변형이 불균일해져 부분적으로 균열이 발생되는 문제점이 있다.
또한, 5.0mm 두께 이상의 페라이트계 스테인리스 열연 소둔 강판을 제조하기 위하여 슬라브의 열간 압연 시 압하량의 부족으로 미세한 결정립을 얻기 힘들고 조대 결정립 및 불균일한 크기의 결정립의 형성에 따라 취성도 더욱 심화 되는 문제점이 있다.
본 발명의 실시예들은 페라이트계 스테인리스강의 합금 성분 및 제조 공정의 제어를 통하여 결정립 미세화 및 집합조직 제어를 통하여 충격 인성이 개선된 페라이트계 스테인리스강을 제공하고자 한다.
또한, 본 발명의 실시예들은 열간 압연시 슬라브 재가열 온도, 압하율 및 압연 온도 등을 제어하여 충격 인성을 향상시킬 수 있는 페라이트계 스테인리스강의 제조 방법을 제공하고자 한다.
본 발명의 일 실시예에 따른 충격 인성이 개선된 페라이트계 스테인리스강은, 중량%로, Cr: 18.0 내지 20.0%, Nb: 0.4 내지 2.0%, Ti: 0.1% 이하(0 제외), C: 0.03% 이하(0 제외), N: 0.03% 이하(0 제외), 나머지 Fe 및 기타 불가피한 불순물을 포함하며, 하기 식 (1) 내지 식 (3)을 만족하며, 5.0mm 이상의 두께를 가진다.
A: (Nb+Ti)/(C+N) ≥ 25 ------ 식 (1)
B: γ-fiber (111) 상분율 ≥ 17.0% ------ 식 (2)
C: 150㎛ 이상의 결정립 비율 ≤ 8.0% ------ 식 (3)
여기서, γ-fiber (111)는 집합조직들의 (111)면에 직각인 방향으로 생성되는 방위의 집합조직군을 의미한다.
또한, 본 발명의 일 실시예에 따르면, 상기 페라이트계 스테인리스강은 하기 식 (4)를 만족할 수 있다.
(A*B)-(A*C)/100 ≥ 2.25 ------ 식 (4)
또한, 본 발명의 일 실시예에 따르면, Si: 0.6% 이하(0 제외), Mn: 0.5% 이하(0 제외), Ni: 0.1 내지 0.5%, Cu: 0.4 내지 0.6% 및 Al: 0.01% 이하(0 제외)를 더 포함할 수 있다.
또한, 본 발명의 일 실시예에 따르면, 상기 페라이트계 스테인리스강은 5.0 내지 7.0mm의 두께를 가지는 열연 소둔 강판일 수 있다.
또한, 본 발명의 일 실시예에 따르면, 20의 샤르피 충격시험값이 70J/cm2 이상일 수 있다.
본 발명의 일 실시예에 따른 충격 인성이 개선된 페라이트계 스테인리스강의 제조 방법은, 중량%로, Cr: 18.0 내지 20.0%, Nb: 0.4 내지 2.0%, Ti: 0.1% 이하(0 제외), C: 0.03% 이하(0 제외), N: 0.03% 이하(0 제외), 나머지 Fe 및 기타 불가피한 불순물을 포함하며 하기 식 (1)을 만족하는 페라이트계 스테인리스강을 열간 압연하는 단계를 포함하며, 열간 압연시, 슬라브의 재가열 온도를 1,200 이하, 조압연의 마지막 압연에서의 압하율을 35% 이상, 조압연 후단에서 통판되는 온도를 950 내지 1,020, 최종 마무리 압연 온도를 900 이하로 열간 압연을 수행하여, 최종 판두께 5.0mm 이상의 열연 소둔 강판을 제조한다.
A: (Nb+Ti)/(C+N) ≥ 25 ------ 식 (1)
또한, 본 발명의 일 실시예에 따르면, 열간 압연 수행 후, 1,050℃ 이하로 열연 소둔 열처리를 수행할 수 있다.
또한, 본 발명의 일 실시예에 따르면, 상기 열연 소둔 강판은 하기 식 (2) 및 식 (3)을 만족할 수 있다.
B: γ-fiber (111) 상분율 ≥ 17.0% ------ 식 (2)
C: 150㎛ 이상의 결정립 비율 ≤ 8.0% ------ 식 (3)
여기서, γ-fiber (111)는 집합조직들의 (111)면에 직각인 방향으로 생성되는 방위의 집합조직군을 의미한다.
또한, 본 발명의 일 실시예에 따르면, 상기 열연 소둔 강판은 5.0 내지 7.0mm의 두께를 가지며, 20의 샤르피 충격시험값이 70J/cm2 이상일 수 있다.
본 발명의 실시예들은 페라이트계 스테인리스강의 합금 성분의 제어 및 열간 압연시 슬라브 재가열 온도, 압하율 및 압연 온도 등을 제어하여 결정립 미세화 및 집합조직 제어를 통하여 페라이트계 스테인리스강의 충격 인성을 향상시킬 수 있다.
도 1은 본 발명의 일 실시예에 따른 5mm 두께의 페라이트계 스테인리스강의 충격 인성을 설명하기 위한 그래프이다.
도 2는 본 발명의 일 실시예에 따른 7mm 두께의 페라이트계 스테인리스강의 충격 인성을 설명하기 위한 그래프이다.
도 3은 본 발명의 일 실시예에 따른 페라이트계 스테인리스강의 제조 공정에 따른 집합조직의 상분율을 설명하기 위한 그래프이다.
도 4는 본 발명의 일 실시예에 따른 페라이트계 스테인리스강의 제조 공정에 따른 평균 입경이 150㎛ 이상의 조대 결정립의 비율을 설명하기 위한 그래프이다.
본 발명의 일 실시예에 따른 충격 인성이 개선된 페라이트계 스테인리스강은, 중량%로, Cr: 18.0 내지 20.0%, Nb: 0.4 내지 2.0%, Ti: 0.1% 이하(0 제외), C: 0.03% 이하(0 제외), N: 0.03% 이하(0 제외), 나머지 Fe 및 기타 불가피한 불순물을 포함하며, 하기 식 (1) 내지 식 (3)을 만족하며, 5.0mm 이상의 두께를 가진다.
A: (Nb+Ti)/(C+N) ≥ 25 ------ 식 (1)
B: γ-fiber (111) 상분율 ≥ 17.0% ------ 식 (2)
C: 150㎛ 이상의 결정립 비율 ≤ 8.0% ------ 식 (3)
여기서, γ-fiber (111)는 집합조직들의 (111)면에 직각인 방향으로 생성되는 방위의 집합조직군을 의미한다.
이하에서는 본 발명의 실시 예를 첨부 도면을 참조하여 상세히 설명한다. 이하의 실시 예는 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 본 발명의 사상을 충분히 전달하기 위해 제시하는 것이다. 본 발명은 여기서 제시한 실시 예만으로 한정되지 않고 다른 형태로 구체화될 수도 있다. 도면은 본 발명을 명확히 하기 위해 설명과 관계 없는 부분의 도시를 생략하고, 이해를 돕기 위해 구성요소의 크기를 다소 과장하여 표현할 수 있다.
본 발명의 일 실시예에 따른 충격 인성이 개선된 페라이트계 스테인리스강은, 중량%로, Cr: 18.0 내지 20.0%, Nb: 0.4 내지 2.0%, Ti: 0.1% 이하(0 제외), C: 0.03% 이하(0 제외), N: 0.03% 이하(0 제외), 나머지 Fe 및 기타 불가피한 불순물을 포함한다.
Cr: 18.0 내지 20.0%
Cr은 강의 내식성 향상에 효과적인 원소로, 본 발명에서는 18.0% 이상 첨가한다. 다만, 그 함량이 과다할 경우, 제조 비용이 급증할 뿐만 아니라, 입계 부식이 일어나는 문제가 있는 바, 20.0% 이하로 한정한다.
Nb: 0.4 내지 2.0%
Nb는 침입형 원소인 C, N과 우선적으로 결합해 내식성의 저하를 억제하는 석출물을 형성하며, NbN은 TiN에 부착하여 석출되며, NbN이 석출될 때에는 TiN의 주위에 내식성에는 영향을 주지 않는 정도의 소량의 Cr결핍 영역이 형성된다. Nb의 함량이 0.4% 미만이면 소재 내에 고용되는 Nb가 적어 소재의 고온 강도가 열위해지는 문제가 있고, Nb의 함량이 2.0%를 초과하면 원료비가 상승할 뿐만 아니라, 석출물이 입계에 편석하여 전위의 전파를 방해하며, 응력 및 전위의 전파에 대한 저항이 증가하여 소성 변형능이 저하됨에 따라 인성이 열위해지는 문제가 있다.
Ti: 0.1% 이하(0 제외)
Ti는 C 및 N을 고정하여 강 중 고용 탄소 및 고용 질소의 양을 저감하고, 강의 고온 강도 및 내식성 향상에 효과적인 원소로, 그 함량이 과다할 경우, 제조 비용이 급증할 뿐만 아니라, Ti계 개재물 형성으로 인해 표면 결함이 야기되는 바, 0.1% 이하로 한정한다. 다만 용강 중의 Ti 성분을 불가피한 불순물로서 존재하며 이를 0%로 완전히 제거하기에는 제조 비용이 상승함으로 0.001% 이상으로 할 수 있다. 바람직하게는 Ti의 함량은 0.001 내지 0.1% 일 수 있다.
C: 0.03% 이하(0 제외)
C는 침입형 원소로써, 첨가량이 증가할 경우 연신율 저하에 따라 성형시 가공성이 저하되기 때문에 0.03% 이하로 한정하였다. 바람직하게는, 함량의 하한은 제강 조업 과정에서의 비용을 고려하여 0.002% 이상으로 할 수 있다. 바람직하게는 C의 함량은 0.002 내지 0.03% 일 수 있다.
N: 0.03% 이하(0 제외)
N는 열간 압연시 오스테나이트를 석출시켜 재결정을 촉진시키는 역할을 하는 원소이나, 그 함량이 과다할 경우, 강의 연성을 저하하는 바, 0.03% 이하로 한정하였다. 바람직하게는, 함량의 하한은 제강 조업 과정에서의 비용을 고려하여 0.002% 이상으로 할 수 있다. 바람직하게는 N의 함량은 0.002 내지 0.03% 일 수 있다.
또한, 예를 들어, 상기 페라이트계 스테인리스강은, Si: 0.6% 이하(0 제외), Mn: 0.5% 이하(0 제외), Ni: 0.1 내지 0.5%, Cu: 0.4 내지 0.6% 및 Al: 0.01% 이하(0 제외)를 더 포함할 수 있다.
Si: 0.6% 이하(0 제외)
Si은 제강시 용강의 탈산과 페라이트 안정화를 위해 첨가되는 원소이다. 다만, 그 함량이 과다할 경우, 재질의 경화를 일으켜 강의 연성이 저하되는 바, 0.6% 이하로 한정한다. 바람직하게는 Si의 함량은 0.01 내지 0.5% 일 수 있다.
Mn: 0.5% 이하(0 제외)
Mn은 내식성의 측면에서 첨가되는 원소로서 0.01% 이상 첨가될 수 있다. 다만, 0.5% 초과시 소재의 불순물이 증가하여 연신율과 내식성이 떨어지는 문제가 있다. 바람직하게는 Mn의 함량은 0.01 내지 0.5% 일 수 있다.
Ni: 0.1 내지 0.5%
Ni은 내식성을 향상시키는 원소로서 0.1% 이상 첨가될 수 있다. 다만, 다량 첨가하게 되면 경질화된 뿐만 아니라 응력부식균열이 발생될 우려가 있으므로 0.5% 이하로 하는 것이 바람직하다.
Cu: 0.4 내지 0.6%
Cu는 내식성 개선을 위해 첨가되는 원소로서 0.4% 이상 첨가될 수 있다. 다만, 그 함량이 과도하면 가공성이 저하될 수 있으므로 0.6% 이하로 한정하는 것이 바람직하다.
Al: 0.01% 이하(0 제외)
알루미늄은 강력한 탈산제로써, 용강 중 산소의 함량을 낮추는 역할을 한다. 다만, 그 함량이 과다할 경우, 비금속 개재물 증가로 인해 냉연 스트립의 슬리브 결함이 발생함과 동시에, 용접성을 열화시키는 바, 0.01% 이하로 한정한다. 바람직하게는 Al의 함량은 0.001 내지 0.1% 일 수 있다.
P: 0.05% 이하, S: 0.005% 이하
P는 강 중 불가피하게 함유되는 불순물로써, 산세시 입계 부식을 일으키거나 열간 가공성을 저해하는 주요 원인이 되는 원소이므로, 그 함량을 가능한 한 낮게 제어하는 것이 바람직하다. 본 발명에서는 상기 P의 함량의 상한을 0.05%로 관리한다.
S은 강 중 불가피하게 함유되는 불순물로써, 결정립계에 편석되어 열간 가공성을 저해하는 주요 원인이 되는 원소이므로, 그 함량을 가능한 한 낮게 제어하는 것이 바람직하다. 본 발명에서는 상기 S의 함량의 상한을 0.005%로 관리한다.
Nb을 다량 함유하고 있는 페라이트계 스테인리스강은 Nb가 침입형 원소인 C 및 N와 함께 입계에 편석하여 전위의 전파를 방해하여 응력의 전파 및 전위의 전파에 대한 저항이 증가하고 소성 변형능이 급격히 저하되어 인성이 열위 해지는 문제점이 있다.
또한, 5.0mm 두께 이상의 페라이트계 스테인리스 열연 소둔 강판을 제조하기 위하여 슬라브의 열간 압연 시 압하량의 부족으로 미세한 결정립을 얻기 힘들고 조대 결정립 및 불균일한 크기의 결정립의 형성에 따라 취성도 더욱 심화 되는 문제점이 있다.
본 발명에서는, 이러한 단점을 극복하기 위하여 열간 압연 전 가열로 온도를 저하시키고 열간 압연시 조압연 부하 배분을 후단으로 이동시켜, 전단보다 통판되는 온도가 낮은 후단에서 강한 압하를 수행함으로써 핵생성 사이트(site)를 더욱 많이 유발시킨 후, 열연 소둔 시 소재 내부 결정의 재결정 및 균질화를 촉진시켜 균일하고 미세한 결정을 얻고자 하였다.
또한, 이러한 제조 공정을 제어함을 통하여 소재의 인성을 향상시키는 것으로 알려진 γ-fiber(111)가 차지하는 상분율을 증가시켜 5.0mm 이상 두께를 가지며, Nb가 첨가된 페라이트계 스테인리스강의 충격 인성을 더욱 향상 시키고자 하였다.
여기서, γ-fiber(111)는 집합조직들의 (111)면에 직각인 방향으로 생성되는 방위의 집합조직군을 의미한다.
즉, 본 발명의 일 실시예에 따른 페라이트계 스테인리스강은 5.0mm 이상의 두께를 가지는 열연 소둔 강판이며, 예를 들어, 5.0 내지 7.0mm의 두께를 가지는 열연 소둔 강판이다.
상기 페라이트계 스테인리스강은 하기 식 (1)을 만족한다.
A: (Nb+Ti)/(C+N) ≥ 25 ------ 식 (1)
상기 A의 값이 25 미만인 경우, Nb 및 Ti의 함량이 적어 고온 강도가 저하되는 문제점이 있으며, C 및 N의 함량이 많아 가공성이 저하되는 문제점이 있다.
상기 페라이트계 스테인리스강은 하기 식 (2)를 만족한다.
B: γ-fiber(111) 상분율 ≥ 17.0% ------ 식 (2)
γ-fiber(111)는 소재의 인성을 향상시키는 것으로 알려진 집합조직으로, 본 발명의 열간 압연 조건의 제어를 통한 변형 에너지의 축적을 통하여 γ-fiber(111) 집합조직의 상분율을 증가시킬 수 있다. 상기 B의 값이 17.0% 미만인 경우 본 발명에서 목적하는 충분한 충격 인성을 얻을 수 없다. 이러한 γ-fiber(111) 상분율은 본 발명의 열간 압연 조건의 제어를 통하여 달성할 수 있으며, 기존의 공정에 따라 제조된 페라이트계 스테인리스강은 γ-fiber(111) 상분율이 약 14.0% 미만이며 20℃의 샤르피 충격시험값이 20J/cm2 미만으로 열위한 충격 인성을 가지는 문제점이 있다.
상기 페라이트계 스테인리스강은 하기 식 (3)을 만족한다.
C: 평균 입경이 150㎛ 이상의 결정립 비율 ≤ 8.0% ------ 식 (3)
상기 C의 값이 8.0% 초과인 경우 조대 결정립이 과도함에 따라 취성이 열화되는 문제점이 있다.
상기 페라이트계 스테인리스강은 하기 식 (4)를 만족한다.
(A*B)-(A*C) ≥ 2.25 ------ 식 (4)
이에 따라, 본 발명의 일 실시예에 따른 페라이트계 스테인리스강은, 20의 샤르피 충격시험값이 70J/cm2 이상을 가져 스테인리스강의 충격 인성이 개선될 수 있다.
열연 소재에 충분한 변형 조직을 형성하기 위하여는 열연 공정 중에 슬라브 재가열 온도, 조압연 압하율, 열연 코일 권취 온도를 제어하여야 한다.
상기 페라이트계 스테인리스강을 제조하기 위한, 본 발명의 일 실시예에 따른 페라이트계 스테인리스강의 제조 방법에 따르면, 중량%로, Cr: 18.0 내지 20.0%, Nb: 0.4 내지 2.0%, Ti: 0.1% 이하(0 제외), C: 0.03% 이하(0 제외), N: 0.03% 이하(0 제외), 나머지 Fe 및 기타 불가피한 불순물을 포함하는 페라이트계 스테인리스강을 열간 압연하는 단계 포함한다.
5mm 두께 이상의 열간 압연 강판을 제조하기 위하여 기존의 압하량 부족에 의한 조대 결정립 형성을 방지하기 위하여는, 열간 압연시 슬라브의 재가열 온도를 최대한 낮추고, 조압연 부하 배분을 후단으로 이동시켜 통판되는 온도가 전단보다 낮은 후단 즉 조압연의 마지막 압연시 35% 이상으로 강하게 압하함으로써, 핵생성 사이트를 최대한 많이 유발시켜 미세 결정립을 증가시킬 수 있다.
이후, 열연 소둔 열처리를 수행함으로써 소재의 재결정 및 균질화를 촉진시켜 소재 단면의 폭 방향 및 길이 방향으로 모두 균일하고 미세한 결정립을 얻을 수 있다.
즉, 열간 압연시, 슬라브의 재가열 온도를 1,200℃ 이하, 조압연의 마지막 압연에서의 압하율을 35% 이상, 조압연 후단에서 통판되는 온도를 950 내지 1,020℃, 최종 마무리 압연 온도를 900℃ 이하로 수행하고, 이후 1,050℃ 이하로 열연 소둔 열처리를 수행함으로써, 이에, 최종 판두께 5.0mm 이상의 열연 소둔 강판을 제조할 수 있다.
이하, 실시예들을 통하여 본 발명의 보다 상세하게 설명하고자 한다.
실시예 1
19Cr-0.4Nb STS 430J1L강 슬라브를 가열대에서 1,180℃로 재가열하고, 조압연의 마지막 압연(R4) 및 직전 압연(R3)시 각각 35%의 압하율로 수행하고, 조압연 후단에서 통판되는 온도를 1,020℃로 제어하고, 최종 마무리 압연 온도를 900℃로 수행하여 5mm 두께의 열연 코일을 제조하였다. 그리고, 900℃에서 소둔 열처리를 수행하였다.
실시예 2
상기 실시예 1에서 열연 코일의 두께를 7mm로 제조한 것을 제외하고는 나머지는 동일하게 수행하였다.
비교예 1
상기 실시예 1에서 조압연의 마지막 압연(R4) 및 직전 압연(R3)시 각각 25%의 압하율로 수행한 것을 제외하고는 나머지는 동일하게 수행하였다.
비교예 2
상기 실시예 2에서 조압연의 마지막 압연(R4) 및 직전 압연(R3)시 각각 25%의 압하율로 수행한 것을 제외하고는 나머지는 동일하게 수행하였다.
이후 상기 실시예들 및 비교예들의 샤르피 충격값을 측정하여 하기 표 1에 나타내었다. 상기 샤르피 충격값은 ASTM E23 규격에 따른 샤르피 충격 시험을 통하여 측정하였다.
샤르피 충격 에너지(J/cm2)
-20℃ -10℃ 0℃ 10℃ 20℃ 40℃ 60℃
실시예 1 6.26 6.98 32.46 81.46 189.62 232.94 244.52
실시예 2 5.90 8.07 11.34 14.20 72.01 160.54 190.10
비교예 1 4.36 5.30 7.68 9.12 15.64 84.52 251.66
비교예 2 6.54 8.07 8.94 15.56 19.32 36.81 159.96
도 1은 본 발명의 일 실시예에 따른 5mm 두께의 페라이트계 스테인리스강의 충격 인성을 설명하기 위한 그래프이다. 도 2는 본 발명의 일 실시예에 따른 7mm 두께의 페라이트계 스테인리스강의 충격 인성을 설명하기 위한 그래프이다.
도 1은 상기 실시예 1 및 비교예 1의 샤르피 충격 에너지를 그래프로 도시한 것이며, 도 2는 상기 실시예 2 및 비교예 2의 샤르피 충격 에너지를 그래프로 도시한 것이다.
도 1 및 도 2를 참조하면, 기존의 고온 열연 온도 및 후단에서 25%로 약압하 한 강판(비교예 1, 2)에 비해 1200 이하의 저온 및 후단에서 35%로 강압하 한 강판(실시예 1, 2)의 충격 값이 전반적으로 낮은 온도인 왼쪽으로 이동한 것을 알 수 있다. 또한, 동일 온도에서도 0℃ 이상 상온에서는 실시예들이 모두 비교예에 비하여 높은 충격값을 나타내고 있다.
상기 표 1을 참조하면, 상온 20의 충격 시험 결과, 저온 열연 및 통판되는 온도가 전단보다 낮은 후단에서 강압하 한 5.0mm 두께의 강판(실시예 1)에서는 180J/cm2 이상으로 나타났고, 7.0mm 두께의 강판(실시예 2)에서는 70J/cm2 이상의 충격 값을 나타내 기존 소재에 비해 충격 인성이 매우 향상 된 것을 알 수 있다. 이는 미세한 결정립의 균일한 분포와, 소재의 인성을 향상시키는 것으로 알려진 (111) 방향으로 성장하는 γ-fiber(111)가 차지하는 상분율이 증가 했기 때문인 것으로 판단 된다.
도 3은 본 발명의 일 실시예에 따른 페라이트계 스테인리스강의 제조 공정에 따른 집합조직의 상분율을 설명하기 위한 그래프이다.
도 3은 상기 실시예 1, 2, 비교예 1 및 2의 열연 소둔 강판의 집합조직의 상분율을 측정하여 도시한 그래프이다. 도 3에서 A는 비교예 1, C는 비교예 2를 의미하며, B는 실시예 1, D는 실시예 2를 의미한다.
도 3을 참조하면, 기존의 고온 열연 온도 및 후단에서 25%로 약압하 한 강판(비교예 1, 2)에 비해 1200 이하의 저온 및 후단에서 35%로 강압하 한 강판(실시예 1, 2)의 γ-fiber(111) 상분율이 17% 이상으로 증가하는 것을 알 수 있다.
도 4는 본 발명의 일 실시예에 따른 페라이트계 스테인리스강의 제조 공정에 따른 평균 입경이 150㎛ 이상의 조대 결정립의 비율을 설명하기 위한 그래프이다.
도 4는 기존의 공정에 따라 제조된 열연 소둔 강판의 조대 결정립 비율, 그리고 재가열 온도를 하향한 경우(가열대 하향), 통판 온도를 하향한 경우(균열대 하향), 조압연 압하율을 후단 강압하로 한 경우(후단강압하), 이들을 모두 제어한 경우(저온+후단강압하) 각각에 따라 제조된 열연 소둔 강판의 조대 결정립 비율을 측정하여 도시한 그래프이다.
도 4를 참조하면, 기존의 고온 열연 온도 및 후단에서 25%로 약압하 한 강판(비교예 1)의 경우 30% 초과의 조대 결정립 비율을 가짐을 알 수 있으며,
재가열 온도를 하향한 강판(가열대 하향), 그리고 이에 추가로 통판 온도를 하향한 강판(균열대 하향)의 경우, 모두 15% 초과의 조대 결정립 비율을 가짐을 알 수 있다. 이에 더하여 조압연 압하율을 후단 강압하로 한 강판(후단강압하)의 경우 10 초과 15% 미만의 조대 결정립 비율을 가짐을 알 수 있다.
이와 달리, 재가열 온도를 하향(가열대 하향)하고, 통판 온도를 하향(균열대 하향)하고, 조압연 압하율을 후단 강압하(후단강압하)로 하여 모든 열연 조건을 제어한 강판(저온+후단강압하)의 경우 8% 이하의 조대 결정립 비율을 가짐을 알 수 있다.
결과적으로, 페라이트계 스테인리스강의 열연 소둔 강판의 충격 인성을 개선하기 위하여, 합금 성분의 제어 및 열간 압연시 슬라브 재가열 온도, 압하율 및 압연 온도 등을 제어하여 결정립 미세화 및 집합조직 제어를 통하여 페라이트계 스테인리스강의 충격 인성을 향상시킬 수 있음을 알 수 있다.
상술한 바에 있어서, 본 발명의 예시적인 실시예들을 설명하였지만, 본 발명은 이에 한정되지 않으며 해당 기술 분야에서 통상의 지식을 가진 자라면 다음에 기재하는 특허청구범위의 개념과 범위를 벗어나지 않는 범위 내에서 다양한 변경 및 변형이 가능함을 이해할 수 있을 것이다.
본 발명의 실시예들에 따른 충격 인성이 개선된 페라이트계 스테인리스강은 물성이 우수하여 건축 자재, 자동차 배기계 부품등 구조재 분야에 다양하게 적용 가능하다.

Claims (9)

  1. 중량%로, Cr: 18.0 내지 20.0%, Nb: 0.4 내지 2.0%, Ti: 0.1% 이하(0 제외), C: 0.03% 이하(0 제외), N: 0.03% 이하(0 제외), 나머지 Fe 및 기타 불가피한 불순물을 포함하며, 하기 식 (1) 내지 식 (3)을 만족하며, 5.0mm 이상의 두께를 가지는 충격 인성이 개선된 페라이트계 스테인리스강.
    A: (Nb+Ti)/(C+N) ≥ 25 ------ 식 (1)
    B: γ-fiber (111) 상분율 ≥ 17.0% ------ 식 (2)
    C: 150㎛ 이상의 결정립 비율 ≤ 8.0% ------ 식 (3)
    여기서, γ-fiber (111)는 집합조직들의 (111)면에 직각인 방향으로 생성되는 방위의 집합조직군을 의미한다.
  2. 제1항에 있어서,
    상기 페라이트계 스테인리스강은 하기 식 (4)를 만족하는 충격 인성이 개선된 페라이트계 스테인리스강.
    (A*B)-(A*C)/100 ≥ 2.25 ------ 식 (4)
  3. 제1항에 있어서,
    Si: 0.6% 이하(0 제외), Mn: 0.5% 이하(0 제외), Ni: 0.1 내지 0.5%, Cu: 0.4 내지 0.6% 및 Al: 0.01% 이하(0 제외)를 더 포함하는 충격 인성이 개선된 페라이트계 스테인리스강.
  4. 제1항에 있어서,
    상기 페라이트계 스테인리스강은 5.0 내지 7.0mm의 두께를 가지는 열연 소둔 강판인 충격 인성이 개선된 페라이트계 스테인리스강.
  5. 제1항에 있어서,
    20℃의 샤르피 충격시험값이 70J/cm2 이상인 충격 인성이 개선된 페라이트계 스테인리스강.
  6. 중량%로, Cr: 18.0 내지 20.0%, Nb: 0.4 내지 2.0%, Ti: 0.1% 이하(0 제외), C: 0.03% 이하(0 제외), N: 0.03% 이하(0 제외), 나머지 Fe 및 기타 불가피한 불순물을 포함하며 하기 식 (1)을 만족하는 페라이트계 스테인리스강을 열간 압연하는 단계를 포함하며,
    열간 압연시, 슬라브의 재가열 온도를 1,200℃ 이하, 조압연의 마지막 압연에서의 압하율을 35% 이상, 조압연 후단에서 통판되는 온도를 950 내지 1,020℃, 최종 마무리 압연 온도를 900℃ 이하로 열간 압연을 수행하여, 최종 판두께 5.0mm 이상의 열연 소둔 강판을 제조하는 충격 인성이 개선된 페라이트계 스테인리스강의 제조 방법.
    A: (Nb+Ti)/(C+N) ≥ 25 ------ 식 (1)
  7. 제6항에 있어서,
    열간 압연 수행 후, 1,050℃ 이하로 열연 소둔 열처리를 수행하는 충격 인성이 개선된 페라이트계 스테인리스강의 제조 방법.
  8. 제6항에 있어서,
    상기 열연 소둔 강판은 하기 식 (2) 및 식 (3)을 만족하는 충격 인성이 개선된 페라이트계 스테인리스강의 제조 방법.
    B: γ-fiber (111) 상분율 ≥ 17.0% ------ 식 (2)
    C: 150㎛ 이상의 결정립 비율 ≤ 8.0% ------ 식 (3)
    여기서, γ-fiber (111)는 집합조직들의 (111)면에 직각인 방향으로 생성되는 방위의 집합조직군을 의미한다.
  9. 제8항에 있어서,
    상기 열연 소둔 강판은 5.0 내지 7.0mm의 두께를 가지며, 20℃의 샤르피 충격시험값이 70J/cm2 이상인 충격 인성이 개선된 페라이트계 스테인리스강의 제조 방법.
PCT/KR2017/013742 2016-12-13 2017-11-29 충격 인성이 개선된 페라이트계 스테인리스강 및 이의 제조 방법 WO2018110866A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2016-0169692 2016-12-13
KR1020160169692A KR20180068087A (ko) 2016-12-13 2016-12-13 충격 인성이 개선된 페라이트계 스테인리스강 및 이의 제조 방법

Publications (1)

Publication Number Publication Date
WO2018110866A1 true WO2018110866A1 (ko) 2018-06-21

Family

ID=62558864

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2017/013742 WO2018110866A1 (ko) 2016-12-13 2017-11-29 충격 인성이 개선된 페라이트계 스테인리스강 및 이의 제조 방법

Country Status (2)

Country Link
KR (1) KR20180068087A (ko)
WO (1) WO2018110866A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20210011412A (ko) * 2018-07-18 2021-02-01 제이에프이 스틸 가부시키가이샤 페라이트계 스테인리스 강판 및 그의 제조 방법

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0741854A (ja) * 1993-07-27 1995-02-10 Nippon Steel Corp 靱性に優れたフェライト単相ステンレス熱延鋼板の製造方法
JP2001200343A (ja) * 2000-01-18 2001-07-24 Sanyo Special Steel Co Ltd 冷間加工性に優れたフェライト系ステンレス鋼
JP2003138348A (ja) * 2001-10-31 2003-05-14 Kawasaki Steel Corp フェライト系ステンレス鋼板およびその製造方法
KR100681669B1 (ko) * 2005-09-14 2007-02-09 주식회사 포스코 가공성 및 내식성이 개선된 페라이트계 스테인레스강의 제조방법
KR20160123371A (ko) * 2014-03-26 2016-10-25 닛폰 스틸 앤드 스미킨 스테인레스 스틸 코포레이션 페라이트계 스테인리스 압연 강판과 그 제조 방법 및 플랜지 부품

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09256064A (ja) * 1996-03-22 1997-09-30 Nippon Steel Corp ローピング特性に優れたフェライト系ステンレス鋼薄板の製造方法
JP4239257B2 (ja) * 1998-11-02 2009-03-18 Jfeスチール株式会社 耐リジング性に優れたTi含有フェライト系ステンレス鋼板の製造方法
JP2001181798A (ja) * 1999-12-20 2001-07-03 Kawasaki Steel Corp 曲げ加工性に優れたフェライト系ステンレス熱延鋼板およびその製造方法ならびに冷延鋼板の製造方法
KR101421832B1 (ko) 2012-12-20 2014-07-22 주식회사 포스코 내리징성이 우수한 페라이트계 스테인리스강 제조 방법

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0741854A (ja) * 1993-07-27 1995-02-10 Nippon Steel Corp 靱性に優れたフェライト単相ステンレス熱延鋼板の製造方法
JP2001200343A (ja) * 2000-01-18 2001-07-24 Sanyo Special Steel Co Ltd 冷間加工性に優れたフェライト系ステンレス鋼
JP2003138348A (ja) * 2001-10-31 2003-05-14 Kawasaki Steel Corp フェライト系ステンレス鋼板およびその製造方法
KR100681669B1 (ko) * 2005-09-14 2007-02-09 주식회사 포스코 가공성 및 내식성이 개선된 페라이트계 스테인레스강의 제조방법
KR20160123371A (ko) * 2014-03-26 2016-10-25 닛폰 스틸 앤드 스미킨 스테인레스 스틸 코포레이션 페라이트계 스테인리스 압연 강판과 그 제조 방법 및 플랜지 부품

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20210011412A (ko) * 2018-07-18 2021-02-01 제이에프이 스틸 가부시키가이샤 페라이트계 스테인리스 강판 및 그의 제조 방법
KR102490247B1 (ko) * 2018-07-18 2023-01-18 제이에프이 스틸 가부시키가이샤 페라이트계 스테인리스 강판 및 그의 제조 방법

Also Published As

Publication number Publication date
KR20180068087A (ko) 2018-06-21

Similar Documents

Publication Publication Date Title
WO2020060051A1 (ko) 충격 인성이 우수한 페라이트계 스테인리스 열연 무소둔 강판 및 그 제조방법
WO2017111290A1 (ko) Pwht 저항성이 우수한 저온 압력용기용 강판 및 그 제조 방법
WO2020067752A1 (ko) 구멍확장성이 높은 고강도 냉연강판, 고강도 용융아연도금강판 및 이들의 제조방법
WO2017104969A1 (ko) 용접 후 열처리 저항성이 우수한 압력용기 강판 및 그 제조방법
WO2020111863A1 (ko) 냉간가공성 및 ssc 저항성이 우수한 초고강도 강재 및 그 제조방법
WO2018117477A1 (ko) 내식성 및 성형성이 우수한 듀플렉스 스테인리스강 및 이의 제조 방법
WO2022119253A1 (ko) 굽힘가공성이 우수한 초고강도 냉연강판 및 그 제조방법
WO2017052005A1 (ko) 페라이트계 스테인리스강 및 이의 제조 방법
WO2019132179A1 (ko) 고강도 고인성 열연강판 및 그 제조방법
WO2019117432A1 (ko) 충격 인성이 우수한 페라이트계 스테인리스강 및 그 제조방법
WO2021010599A2 (ko) 강도가 향상된 오스테나이트계 스테인리스강 및 그 제조 방법
WO2018110866A1 (ko) 충격 인성이 개선된 페라이트계 스테인리스강 및 이의 제조 방법
WO2020040388A1 (ko) 인성 및 부식피로특성이 향상된 스프링용 선재, 강선 및 이들의 제조방법
WO2010074458A2 (ko) 딥드로잉성이 우수하고 고항복비를 갖는 고강도 냉연강판, 이를 이용한 용융아연도금강판, 합금화 용융아연도금강판 및 이들의 제조방법
WO2021125564A1 (ko) 클램프용 고강도 페라이트계 스테인리스강 및 그 제조방법
WO2017222122A1 (ko) 철근 및 이의 제조 방법
WO2020085687A1 (ko) 클램프용 고강도 페라이트계 스테인리스강 및 그 제조방법
WO2019039774A1 (ko) 저온 충격인성이 개선된 페라이트계 스테인리스강 및 이의 제조 방법
WO2020130257A1 (ko) 연성 및 가공성이 우수한 고강도 강판 및 그 제조방법
WO2020111859A1 (ko) 고온강도가 우수한 중고온용 강판 및 그 제조방법
WO2009157661A9 (ko) 표면특성 및 내2차 가공취성이 우수한 소부경화강 및 그 제조방법
WO2023234503A1 (ko) 초고강도 냉연강판 및 그 제조방법
WO2020111858A1 (ko) 수소유기균열 저항성이 우수한 압력용기용 강재 및 그 제조방법
WO2020096268A1 (ko) 저온 충격인성이 우수한 열연 강판 및 그 제조방법
WO2023214634A1 (ko) 냉연 강판 및 그 제조방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17882233

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17882233

Country of ref document: EP

Kind code of ref document: A1