WO2020096268A1 - 저온 충격인성이 우수한 열연 강판 및 그 제조방법 - Google Patents

저온 충격인성이 우수한 열연 강판 및 그 제조방법 Download PDF

Info

Publication number
WO2020096268A1
WO2020096268A1 PCT/KR2019/014541 KR2019014541W WO2020096268A1 WO 2020096268 A1 WO2020096268 A1 WO 2020096268A1 KR 2019014541 W KR2019014541 W KR 2019014541W WO 2020096268 A1 WO2020096268 A1 WO 2020096268A1
Authority
WO
WIPO (PCT)
Prior art keywords
less
steel sheet
rolled steel
hot
impact toughness
Prior art date
Application number
PCT/KR2019/014541
Other languages
English (en)
French (fr)
Inventor
공정현
이문수
Original Assignee
주식회사 포스코
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 포스코 filed Critical 주식회사 포스코
Priority to US17/291,361 priority Critical patent/US20220002828A1/en
Priority to CN201980080745.4A priority patent/CN113166906B/zh
Priority to EP19882479.9A priority patent/EP3859044A4/en
Publication of WO2020096268A1 publication Critical patent/WO2020096268A1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/58Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.5% by weight of manganese
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B1/00Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations
    • B21B1/16Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling wire rods, bars, merchant bars, rounds wire or material of like small cross-section
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B3/00Rolling materials of special alloys so far as the composition of the alloy requires or permits special rolling methods or sequences ; Rolling of aluminium, copper, zinc or other non-ferrous metals
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/004Heat treatment of ferrous alloys containing Cr and Ni
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/005Heat treatment of ferrous alloys containing Mn
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/008Heat treatment of ferrous alloys containing Si
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0205Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0263Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment following hot rolling
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/004Very low carbon steels, i.e. having a carbon content of less than 0,01%
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/42Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/50Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2201/00Treatment for obtaining particular effects
    • C21D2201/05Grain orientation
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/005Ferrite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/008Martensite

Definitions

  • the present invention relates to a hot-rolled steel material and a method of manufacturing the same, and more particularly, to a hot-rolled steel sheet having excellent impact characteristics of 6 mm or more in thickness and a method of manufacturing the same.
  • a fastening part called a flange is often used when connecting these parts. Since the number of machining steps can be reduced and the working space can be reduced in the exhaust system parts of automobiles, flange joining is actively adopted. Further, in view of securing noise and rigidity due to vibration, a thick flange having a thickness of 6 mm or more is often used.
  • STS409L steel grade is a steel grade with 11% Cr stabilized with C and N as Ti and has excellent anti-sensitization and processability. It is mainly used at temperatures below 700 °C, and has some corrosion resistance even to condensate components generated in automobile exhaust systems. It is the most widely used steel grade because it has a.
  • ferritic stainless steel also has a persistent problem of poor impact toughness.
  • the toughness is low, plate fracture occurs due to brittle crack propagation in the manufacturing process of the steel sheet, or cracks are generated by the impact applied during flange processing.
  • a thick material having a thickness of 6.0 mm or more has a problem in that, during hot rolling, it is difficult to obtain fine grains due to a lack of rolling reduction, and brittleness is further increased by formation of coarse grains and non-uniform grains, resulting in poor impact characteristics.
  • the carbon steel for flange has a problem of corrosion resistance for heat, and the ferritic stainless steel has a problem of thermal shock characteristics, and it is difficult to find a satisfactory flange material that can solve this at the same time.
  • the embodiments of the present invention to solve the above problems, to provide a hot rolled steel sheet with improved corrosion resistance and low-temperature impact toughness by securing fine ferrite grains through alloy composition control by adding Cr, Ni, Mn, and Cu of 10.5% or less .
  • the hot rolled steel sheet excellent in low-temperature impact toughness according to an embodiment of the present invention, in weight%, C: more than 0.03% or less, Si: 0.1 to 1.0%, Mn: more than 0 and 2.0% or less, P: 0.04% or less, Cr: 1.0 to 10.0%, Ni: 0 to 1.5%, Ti: 0.01 to 0.5%, Cu: 0 to 2.0%, N: 0 to 0.03% or less, Al: 0.1% or less, remaining Fe and other unavoidable impurities It includes, and the value of the following formula (1) satisfies 200 to 1,150, the average grain size of the grain size of the grains of the cross-sectional microstructure in the right angle direction of rolling is 5 ° or more is 50 ⁇ m or less.
  • C, Mn, Ni, Cu, Si, Ti, Cr, P, Al and N mean the content (% by weight) of each element.
  • the thickness of the hot rolled steel sheet is 6.0 to 25.0 mm, and the Charpy impact energy of -20 ° C may be 100 J / cm 2 or more.
  • Equation (1) may satisfy 200 to 700.
  • the hot-rolled steel sheet may satisfy the following formula (2).
  • the average size of grains having a difference in orientation between the grains of the microstructure of 15 to 180 ° may be 70 ⁇ m or less.
  • the average size of crystal grains having a difference in azimuth between 5 to 180 ° between the grains of the microstructure may be 50 ⁇ m or less.
  • the average size of the crystal grains having an azimuth difference between 2 to 180 ° between the grains of the microstructure may be 30 ⁇ m or less.
  • Method for manufacturing a hot-rolled steel sheet having excellent low-temperature impact toughness in weight%, C: more than 0.03% or less, Si: 0.1 to 1.0%, Mn: more than 0 and 2.0% or less, P: 0.04% Or less, Cr: 1.0 to 10.0%, Ni: more than 0 and 1.5% or less, Ti: 0.01 to 0.5%, Cu: more than 0 and 2.0% or less, N: more than 0 and 0.03% or less, Al: 0.1% or less, remaining Fe and others Heating the slab containing inevitable impurities to 1,220 ° C. or less; Rough rolling the heated slab; Finishing rolling the rough rolling bar; And winding the hot-rolled steel sheet; wherein, the rolling reduction in the final rolling mill of the rough rolling is 27% or more, and the winding temperature is 850 ° C or less.
  • the slab may satisfy a value of the following formula (1) in the range of 200 to 1,150.
  • the slab may satisfy the value of the formula (1) in the range of 200 to 700.
  • the temperature of the rough rolling bar may be 1,020 to 970 ° C.
  • the finish rolling end temperature may be 920 ° C or less.
  • the thickness of the hot rolled steel sheet may be 6.0 to 25.0 mm.
  • the microstructure of the cross-section in the rolling right angle direction of the wound hot-rolled steel sheet may have an average grain size of 50 ⁇ m or less with an orientation difference between grains of 5 ° or more.
  • the annealing temperature range may be 850 °C or less.
  • the microstructure grain size of a hot-rolled steel sheet having a thickness of 6.0 mm or more containing 10.0% or less of Cr can be refined to show a high Charpy impact energy value.
  • 1 and 2 are cross-sectional microstructure IPF (ND) EBSD pictures and IQ EBSD pictures of 9A steel.
  • 3 and 4 are cross-sectional microstructure IPF (ND) EBSD pictures and IQ EBSD pictures of 9B steel.
  • 5 and 6 are cross-sectional microstructure IPF (ND) EBSD pictures and IQ EBSD pictures of 9C steel.
  • FIG. 7 and 8 are cross-sectional microstructure IPF (ND) EBSD pictures and IQ EBSD pictures of 9D steel.
  • 9 to 11 are graphs showing Charpy impact energy values at -20, 0 ° C and + 20 ° C in the Inventive Example and Comparative Example according to the present invention.
  • the hot rolled steel sheet excellent in low-temperature impact toughness according to an embodiment of the present invention, in weight%, C: more than 0.03% or less, Si: 0.1 to 1.0%, Mn: more than 0 and 2.0% or less, P: 0.04% or less, Cr: 1.0 to 10.0%, Ni: 0 to 1.5%, Ti: 0.01 to 0.5%, Cu: 0 to 2.0%, N: 0 to 0.03% or less, Al: 0.1% or less, remaining Fe and other unavoidable impurities It includes, and the value of the following formula (1) satisfies 200 to 1,150, the average grain size of the grain size of the grains of the cross-sectional microstructure in the right angle direction of rolling is 5 ° or more is 50 ⁇ m or less.
  • C, Mn, Ni, Cu, Si, Ti, Cr, P, Al and N mean the content (% by weight) of each element.
  • hot rolling of a hot-rolled steel sheet having a thickness of 6.0 mm or more is difficult to obtain a fine grain size due to a lack of rolling reduction compared to a steel sheet having a thickness of 6.0 mm or less, and brittleness is further increased by formation of coarse grains and non-uniform grains.
  • the Cr content of the ferrite phase stabilizing element increases to 11% or more, the brittleness becomes more severe, and it is also undesirable in terms of economy.
  • the Cr content of the hot-rolled steel plate with a thickness of 6.0 mm or more is limited to 10.0% or less, and by adding Ni, Mn, or Cu, a fraction of austenite phase other than a ferrite single phase is controlled to a certain amount or more at a hot-rolled reheating temperature of 1,220 ° C. or less.
  • a hot-rolled reheating temperature 1,220 ° C. or less.
  • the hot-rolled steel sheet according to the present invention can control the average grain size of the microstructure of a cross-section perpendicular to the rolling direction after hot rolling is finished to 30 ⁇ m or less.
  • the term 'hot rolled steel sheet' means a ferritic hot rolled steel sheet having a thickness of 6.0 mm or more.
  • the hot rolled steel sheet excellent in low-temperature impact toughness according to an embodiment of the present invention, in weight%, C: more than 0.03% or less, Si: 0.1 to 1.0%, Mn: more than 0 and 2.0% or less, P: 0.04% or less, Cr: 1.0 to 10.0%, Ni: 0 to 1.5%, Ti: 0.01 to 0.5%, Cu: 0 to 2.0%, N: 0 to 0.03% or less, Al: 0.1% or less, remaining Fe and other unavoidable impurities It includes.
  • the unit is weight%.
  • the content of C and N is more than 0 and less than 0.03%.
  • the Ti (C, N) carbonitride forming element C and N existing in an intrusive form, when the content is high, exist as a solid solution without forming Ti (C, N) carbonitride, thereby lowering the elongation and low-temperature impact toughness of the material.
  • the content of the Cr 23 C 6 carbides is generated and intergranular corrosion occurs, so it is preferable to control the content to 0.03% or less.
  • the content of Si is 0.1 to 1.0%.
  • Si is a deoxidizing element and is added in an amount of 0.1% or more for deoxidation, and as it is a ferrite phase forming element, the stability of the ferrite phase increases as the content increases.
  • Si content is more than 1.0%, it is preferable to control the steelmaking Si inclusions to 1.0% or less since an increase in surface inclusions and surface defects may occur.
  • the content of Mn is more than 0 and not more than 2.0%.
  • Mn is an austenite phase stabilizing element, and is added to secure a certain level of austenite phase fraction at the hot rolling reheating temperature, but if the content is high, it forms precipitates such as MnS to decrease the pitting resistance, so it is controlled to 2.0% or less. desirable.
  • the content of P is 0.04% or less.
  • P is contained as an impurity in ferrochrome, a raw material of stainless steel, it is determined by the purity and amount of ferrochrome. However, since P is a harmful element, it is preferable to have a low content, but since low P ferrochrome is expensive, it should be set to 0.04% or less, which is a range that does not significantly degrade material or corrosion resistance. More preferably, it can be limited to 0.03% or less.
  • the content of Cr is 1.0 to 10.0%.
  • Cr is added to 1.0% or more to secure corrosion resistance of the steel sheet.
  • the content of Cr is low, corrosion resistance is reduced in a condensed water atmosphere, and when the content is high, strength is increased and elongation and impact toughness are reduced.
  • the content is limited to 10.0% or less in order to secure low-temperature impact toughness.
  • the content of Ni is more than 0 and 1.5% or less.
  • Ni is an austenite phase stabilizing element, and is effective for suppressing the growth of the formula and also for improving the toughness of the hot rolled steel sheet when added in small amounts. It is added in order to secure a certain level of austenite phase fraction at the related hot-rolling reheating temperature to be described later (1). However, the addition of a large amount may cause material hardening and toughness deterioration due to solid solution strengthening, and since it is an expensive element, it may be limited to 1.5% or less in consideration of the content relationship with Mn and Cu.
  • the content of Ti is 0.01 to 0.5%.
  • Ti is an effective element that fixes C and N to prevent intergranular corrosion.
  • Ti content is lowered, intergranular corrosion occurs at a weld, etc., resulting in a problem of deterioration in corrosion resistance. Therefore, Ti should be added at least 0.01% or more.
  • the amount of Ti added is too high, the steel-making inclusions increase to cause many surface defects such as scab, and the nozzle is clogged when playing, so the content is limited to 0.5% or less, and 0.35% or less It is more preferable to limit to.
  • the content of Cu is more than 0 and 2.0% or less.
  • Cu is an austenite phase stabilizing element, and is added to ensure a certain level of austenite phase fraction at the hot rolling reheating temperature related to Formula (1), which will be described later.
  • a certain amount is added, it serves to improve corrosion resistance, but excessive addition lowers toughness by precipitation hardening, so it is preferable to limit it to 2.0% or less in consideration of the content relationship with Mn and Ni.
  • the content of Al is 0.1% or less.
  • Al is useful as a deoxidizing element and its effect can be expressed at 0.005% or more.
  • the excessive addition causes the lowering of ductility and toughness at room temperature, so the upper limit is set to 0.1% and need not be contained.
  • the thickness of the hot rolled steel sheet to improve low-temperature impact toughness in the present invention is 6.0 to 25.0 mm.
  • the thickness of the hot rolled steel sheet according to the present invention for solving this is set to 6.0 mm or more.
  • the upper limit may be 25.0 mm in consideration of the thickness of the rough-rolled bar after rough-rolling. Preferably, it may be 12.0 mm or less to be suitable for manufacturing use.
  • the hot-rolled steel sheet excellent in low-temperature impact toughness according to an embodiment of the present invention satisfies the value of the following formula (1) in the range of 200 to 1,150.
  • C, Mn, Ni, Cu, Si, Ti, Cr, P, Al and N mean the content (% by weight) of each element.
  • austenite index ( ⁇ index) of formula (1) In order to secure the austenite phase fraction at the reheating temperature for hot rolling, it is preferable to control the austenite index ( ⁇ index) of formula (1) to 200 or more within the range of the alloy composition described above. Austenite phase transformation and recrystallization are induced by securing an austenite index of 200 or more in a reheating temperature range of about 1,200 ° C., thereby obtaining a final ferrite phase of fine grains.
  • the microstructure of the final hot-rolled steel sheet will undergo some martensite phase transformation, not a ferrite single phase.
  • the microstructure containing a part of the martensite phase has excellent impact toughness at room temperature, but very low impact toughness at low temperature.
  • the fraction of austenite phase at reheating temperature is very important, and can be controlled through the austenite index ( ⁇ index) of equation (1) presented in the present invention. Therefore, the austenite index ( ⁇ index) of formula (1) is limited to 1,150 or less, and more preferably to 700 or less.
  • the final ferrite microstructure may be divided into a complete crystal grain and a sub-crystal grain in which recrystallization is performed according to a misorientation between crystal grains.
  • a subcrystalline grain is a semi-crystalline grain that is formed to reduce the unstable energy that increases as dislocations are generated and to achieve a thermodynamic equilibrium. It is also called a contour.
  • atoms move to non-uniform deformations and non-equilibrium positions, thereby generating dislocations, lamination defects, etc.
  • the existence of these defects increases the free energy of the system, so it recovers spontaneously without defects.
  • the dislocations of the blades may undergo dislocation sliding even at a relatively low temperature, a small-diameter boundary with a small angle of the arranged disparity boundaries may be formed, and an area surrounded by the small-diameter boundary is called a sub-crystal.
  • a crystal grain having a misorientation between 15 to 180 ° between grains may be referred to as a complete grain with recrystallization, and a grain having 2 to 15 ° grains may be referred to as a subcrystalline grain.
  • the crystal grains having an orientation difference between 2 to 5 ° and 5 to 15 ° are further divided.
  • the hot-rolled steel sheet can secure fine ferrite crystal grains through austenite phase transformation and recrystallization.
  • the average grain size of the grain difference between the grains of the microstructure of the cross-section of the hot-rolled steel sheet according to an embodiment of the present invention is 5 ° or less.
  • the average size of the complete grains having an azimuth difference between the grains of 15 to 180 ° may be 70 ⁇ m or less, and the grains of the 5 to 180 ° azimuth difference including the sub grains having an azimuth difference of 5 to 15 ° have an average size It may be 50 ⁇ m or less.
  • crystal grains having a 2 to 180 ° azimuth difference including up to sub-crystals having an azimuth difference between 2 and 5 ° may have an average size of 30 ⁇ m or less.
  • the sub-crystal grains affect the fine grain-in-bar impact toughness
  • the complete crystal grains having a recrystallized orientation difference of 15 to 180 ° have a greater effect on the impact toughness. This is expected because the impact energy is absorbed at the grain boundary, and the grain boundary of the complete grain can absorb more impact energy than the sub grain.
  • the hot-rolled steel sheet having excellent low-temperature impact toughness of the present invention may exhibit a Charpy impact energy of 100 J / cm 2 or more at -20 ° C.
  • a method of manufacturing a hot rolled steel sheet having excellent low-temperature impact toughness is C: more than 0.03% or less, Si: 0.1 to 1.0%, Mn: more than 0 and 2.0% or less, P: 0.04% or less, Cr: 1.0 to 10.0%, Ni: 0 to 1.5%, Ti: 0.01 to 0.5%, Cu: 0 to 2.0%, N: 0 to 0.03% or less, Al: 0.1% or less, including the remaining Fe and other unavoidable impurities Heating the slab to 1,220 °C or less; Rough rolling the heated slab; Finishing rolling the rough rolling bar; And winding the hot rolled steel sheet.
  • alloy composition of the slab may satisfy the value of the following formula (1) in the range of 200 to 1,150 as described above, more preferably in the range of 200 to 700.
  • the heated slab After heating the slab containing the alloy element of the composition to 1,220 ° C or less prior to hot rolling, the heated slab can be rough rolled.
  • the slab heating temperature is preferably 1,220 ° C. or less for dislocation generation through low-temperature hot rolling, and when the slab temperature is too low, rough rolling is impossible, so the lower heating temperature limit may be 1,150 ° C. or higher.
  • the rolling reduction in the last rolling mill of the rough rolling can be controlled to 27% or more.
  • the reduction ratio is lowered, so that the amount of dislocation is reduced as the stress applied to the material is low. Therefore, as the thickness of the hot rolled steel sheet becomes thicker, the heating furnace temperature before hot rolling is made as low as possible, and when hot rolling, the load distribution of the rough rolling is moved to the rear stage, and the temperature is lowered at the lower stage than the shear stage.
  • the reduction ratio in the final rolling mill of the rough rolling to 27% or more, it is possible to smoothly generate dislocations of the hot rolled steel sheet.
  • the temperature of the rough rolling bar manufactured through the rough rolling process may be 1,020 to 970 ° C, and may be wound after finish rolling to a thickness of 6.0 to 25.0 mm.
  • the finish rolling end temperature may be 960 ° C or less. More preferably, the finish rolling end temperature may be 920 ° C or less.
  • the coiling temperature may be 850 ° C or lower.
  • the coiling temperature When the coiling temperature is higher than 850 ° C, it may be in the austenite phase region, and thus it is preferable to wind it at 850 ° C or less since a martensite phase may be generated in the cooling process.
  • Hot rolled annealing can be performed on the wound hot-rolled steel sheet as necessary.
  • the hot-rolled annealing temperature may be 850 ° C or less.
  • the microstructure of the cross-section in the rolling right-angle direction of the wound hot-rolled steel sheet may have an average grain size of 50 ⁇ m or less with an orientation difference between grains of 5 ° or more.
  • the slab of the composition shown in Table 1 below was heated to 1,200 ° C, and then the final rolling mill rolling reduction was 30%, so that the temperature of the rough rolling bar before finish rolling was about 1,000 ° C, and the end rolling finish temperature was 910 ° C. Hot rolled to a thickness of 10.0 mm.
  • the 9A to 9D steel type hot rolled steel sheet was wound at 750 ° C, and the austenite index ( ⁇ index) value of Formula (1) was shown.
  • FIGS. 1 and 2 are cross-section microstructure IPF (ND) EBSD pictures and IQ EBSD pictures of 9A steel
  • FIGS. 3 and 4 are cross-section microstructure IPF (ND) EBSD pictures and IQ EBSD pictures of 9B steel
  • FIGS. 5 and 6 are 9C Steel cross section microstructure IPF (ND) EBSD picture and IQ EBSD picture
  • FIGS. 7 and 8 are 9D steel cross section microstructure IPF (ND) EBSD picture and IQ EBSD picture.
  • Comparative Example 1 in which the austenite index ( ⁇ index) was controlled to 1,185 at a hot-rolling reheating temperature of 1,200 ° C.
  • ⁇ index austenite index
  • ferrite measured by the High Angle Grain Boundary method with an azimuth difference between grains of 15 ° or more The size of the crystal grains is formed to be about 19 ⁇ m, and the sizes of the crystal grains measured by the Low Angel Grain Boundary method with azimuth difference between the grains of 5 ° and 2 ° or more are fine, 14 ⁇ m and 13 ⁇ m, respectively.
  • the austenite content at the hot-rolling reheating temperature was too high, so that the microstructure of the final hot-rolled material was transformed into some martensite phase rather than a ferrite single phase.
  • the martensitic structure is known to have excellent impact toughness at room temperature, but very low impact toughness at low temperatures.
  • the austenite index ( ⁇ index) of Equation (1) is 610 and 210, respectively, and it can be seen that the austenite index is low when compared with the comparative example 9A steel. Accordingly, when the orientation difference between the crystal grains is 5 ° or more, the grain sizes of the 9B steel and the 9C steel are finely formed to 11 ⁇ m and 16 ⁇ m, respectively, and are composed of a ferrite single phase without a martensite phase. The fine grains of the ferrite single phase are factors influencing the improvement of impact toughness.
  • FIGS. 1 to 6 it can be seen that the 9A steel EBSD photographs of FIGS. 1 and 2 show no significant difference in grain size compared to the 9B and 9C steel EBSD photographs of FIGS. 3 to 6.
  • the average grain size of the 9A steel was slightly larger than that of the 9B and 9C steels, it was generally less than 50 ⁇ m.
  • some martensite phases were formed in the ferrite phase, and it could be assumed that the average grain size was measured lower.
  • Comparative Example 2 9D steel having an austenite index ( ⁇ index) of formula (1) of 105 and less than 200 it was found that the average size of grains having an azimuth difference between grains of 5 ° or more is about 98 ⁇ m, exceeding 70 ⁇ m. Can be. In addition, it was confirmed that the average grain size of the azimuth difference between the crystal grains of 15 ° or more and 2 ° or more was more than twice the target value of the present invention.
  • 9D steel is made of a ferrite single phase, it can be seen that the grain size is very coarse.
  • 9 to 11 are graphs showing Charpy impact energy of 9A to 9D steel at -20 ° C, 0 ° C, and 20 ° C, respectively.
  • 9A steel in which the ⁇ index of Equation (1) is controlled to 1,185 is high shock absorption energy of 250 J / cm 2 or more at + 20 ° C.
  • a sharp decrease was observed from 0 ° C, and at a low temperature of -20 ° C, most showed a very low shock absorption energy value of 10 J / cm 2 or less. This is considered to be due to the high ⁇ index in the low-Cr steel, part of the microstructure is transformed into a martensite phase, the impact toughness at low temperature is considered to be rapidly reduced.
  • the energy absorption energy values of the 9B and 9C steel black coils which are examples of the present invention, are controlled to be low at ⁇ and 610, respectively, to 180 J / cm 2 or higher at both room temperature + 20 ° C and low temperature of 0 ° C and -20 ° C. It was measured, and exhibited excellent impact toughness without lowering the impact absorption energy even at low temperatures.
  • the 9D steel in which the ⁇ index of Equation (1) was controlled to 105 showed very high impact toughness of 25 J / cm 2 or less at 0 ° C. and 20 ° C. as well as at a low temperature of ⁇ 20 ° C. This is considered to be due to the fact that the low ⁇ index does not secure fine ferrite crystal grains and is made of coarse ferrite crystal grains.
  • the hot-rolled steel sheet having a thickness of 6 mm or more according to the present invention can be applied as a product for automobile flanges by showing a Charpy impact absorption energy of 100 J / cm 2 or more through refinement of grains in a tissue.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Steel (AREA)

Abstract

두께 6mm 이상인 충격 특성이 우수한 열연 강판 및 그 제조방법이 개시된다. 본 발명의 일 실시예에 따른 저온 충격인성이 우수한 열연 강판은, 중량%로, C: 0 초과 0.03% 이하, Si: 0.1 내지 1.0%, Mn: 0 초과 2.0% 이하, P: 0.04% 이하, Cr: 1.0 내지 10.0%, Ni: 0 초과 1.5% 이하, Ti: 0.01 내지 0.5%, Cu: 0 초과 2.0% 이하, N: 0 초과 0.03% 이하, Al: 0.1% 이하, 나머지 Fe 및 기타 불가피한 불순물을 포함하고, 하기 식 (1)의 값이 200 내지 1,150을 만족하며, 압연 직각 방향 단면 미세조직의 결정립간 방위차가 5° 이상인 평균 결정립 크기가 50㎛ 이하이다. (1) 1001.5*C + 1150.6*Mn + 2000*Ni + 395.6*Cu - 0.7*Si - 1.0*Ti - 45*Cr - 1.0*P - 1.0*Al + 1020.5*N

Description

저온 충격인성이 우수한 열연 강판 및 그 제조방법
본 발명은 열연 후물재와 그 제조방법에 관한 것으로, 보다 상세하게는 두께 6mm 이상인 충격 특성이 우수한 열연 강판 및 그 제조방법에 관한 것이다.
자동차의 배기가스 경로는 다양한 부품으로 구성되어 있어, 이들 부품을 연결시킬 때 플랜지로 불리는 체결 부품을 사용하는 경우가 많다. 자동차의 배기계 부품에서는 가공공정 수를 저감할 수 있음과 동시에 작업 공간을 좁게 할 수 있기 때문에, 플랜지 접합이 적극적으로 채용되고 있다. 또한, 진동에 의한 소음 및 강성 확보의 관점에서, 6㎜ 두께 이상의 두꺼운 플랜지가 사용되는 경우가 많다.
플랜지는 종래 탄소강을 이용하여 제조되었으나, 탄소강은 부식이 빠르게 발생하여 외면에 붉은 녹이 심하게 발생하는 열위한 내식성 때문에 최근에는 페라이트계 스테인리스강이 주로 사용되고 있다. STS409L 강종은 11% Cr에 C, N을 Ti으로 안정화하여 용접부의 예민화 방지와 가공성이 우수한 강종으로 700℃ 이하의 온도에 주로 사용되고 있으며, 자동차 배기계에서 발생하는 응축수 성분에 대하여서도 다소의 부식저항성을 가지고 있기 때문에 가장 많이 사용되고 있는 강종이다.
하지만 페라이트계 스테인리스강 또한 열위한 충격인성이라는 고질적인 문제가 있다. 인성이 낮으면 강판의 제조 과정에서 취성 크랙 전파에 의한 판 파단이 발생하거나, 플랜지 가공 시 가해지는 충격에 의해 크랙이 발생한다. 또한, 두께 6.0mm 이상의 후물재는 열간 압연 시, 압하량의 부족으로 미세한 결정립을 얻기 힘들고 조대한 결정립 및 불균일한 결정립의 형성에 의해 취성이 더욱 심화되어 충격 특성이 열위해지는 문제가 있다.
이렇듯 플랜지용 탄소강은 열위한 내식성 문제가, 페라이트계 스테인리스강은 열위한 충격 특성 문제가 있으며, 이를 동시에 해소할 수 있는 만족스러운 플랜지용 소재는 찾기 힘든 실정이다.
본 발명의 실시예들은 상기와 같은 문제점을 해결하여, 10.5% 이하 Cr과 Ni, Mn, Cu 첨가하여 합금조성 제어를 통한 미세한 페라이트 결정립을 확보함으로써 내식성 및 저온 충격인성이 향상된 열연 강판을 제공하고자 한다.
본 발명의 일 실시예에 따른 저온 충격인성이 우수한 열연 강판은, 중량%로, C: 0 초과 0.03% 이하, Si: 0.1 내지 1.0%, Mn: 0 초과 2.0% 이하, P: 0.04% 이하, Cr: 1.0 내지 10.0%, Ni: 0 초과 1.5% 이하, Ti: 0.01 내지 0.5%, Cu: 0 초과 2.0% 이하, N: 0 초과 0.03% 이하, Al: 0.1% 이하, 나머지 Fe 및 기타 불가피한 불순물을 포함하고, 하기 식 (1)의 값이 200 내지 1,150을 만족하며, 압연 직각 방향 단면 미세조직의 결정립간 방위차가 5° 이상인 평균 결정립 크기가 50㎛ 이하이다.
(1) 1001.5*C + 1150.6*Mn + 2000*Ni + 395.6*Cu - 0.7*Si - 1.0*Ti - 45*Cr - 1.0*P - 1.0*Al + 1020.5*N
여기서, C, Mn, Ni, Cu, Si, Ti, Cr, P, Al 및 N은 각 원소의 함량(중량%)를 의미한다.
또한, 본 발명의 일 실시예에 따르면, 상기 열연 강판의 두께는 6.0 내지 25.0mm이며, -20℃ 샤르피 충격에너지가 100J/㎠ 이상일 수 있다.
또한, 본 발명의 일 실시예에 따르면, 상기 식 (1)의 값이 200 내지 700을 만족할 수 있다.
또한, 본 발명의 일 실시예에 따르면, 상기 열연 강판은 하기 식 (2)를 만족할 수 있다.
(2) Ti/(C+N) ≥ 10.0
또한, 본 발명의 일 실시예에 따르면, 상기 미세조직의 결정립간 방위차가 15 내지 180°인 결정립들의 평균 크기가 70㎛ 이하일 수 있다.
또한, 본 발명의 일 실시예에 따르면, 상기 미세조직의 결정립간 방위차가 5 내지 180°인 결정립들의 평균 크기가 50㎛ 이하일 수 있다.
또한, 본 발명의 일 실시예에 따르면, 상기 미세조직의 결정립간 방위차가 2 내지 180°인 결정립들의 평균 크기가 30㎛ 이하일 수 있다.
본 발명의 일 실시예에 따른 저온 충격인성이 우수한 열연 강판 제조방법은, 중량%로, C: 0 초과 0.03% 이하, Si: 0.1 내지 1.0%, Mn: 0 초과 2.0% 이하, P: 0.04% 이하, Cr: 1.0 내지 10.0%, Ni: 0 초과 1.5% 이하, Ti: 0.01 내지 0.5%, Cu: 0 초과 2.0% 이하, N: 0 초과 0.03% 이하, Al: 0.1% 이하, 나머지 Fe 및 기타 불가피한 불순물을 포함하는 슬라브를 1,220℃ 이하로 가열하는 단계; 가열된 상기 슬라브를 조압연하는 단계; 조압연 바(bar)를 마무리압연하는 단계; 및 열연 강판을 권취하는 단계;를 포함하고, 상기 조압연의 마지막 압연밀에서의 압하율은 27% 이상이며, 상기 권취 온도는 850℃ 이하이다.
또한, 본 발명의 일 실시예에 따르면, 상기 슬라브는 하기 식 (1)의 값이 200 내지 1,150 범위를 만족할 수 있다.
(1) 1001.5*C + 1150.6*Mn + 2000*Ni + 395.6*Cu - 0.7*Si - 1.0*Ti - 45*Cr - 1.0*P - 1.0*Al + 1020.5*N
또한, 본 발명의 일 실시예에 따르면, 상기 슬라브는 상기 식 (1)의 값이 200 내지 700 범위를 만족할 수 있다.
또한, 본 발명의 일 실시예에 따르면, 상기 조압연 바의 온도는 1,020 내지 970℃일 수 있다.
또한, 본 발명의 일 실시예에 따르면, 상기 마무리압연 종료 온도는 920℃ 이하일 수 있다.
또한, 본 발명의 일 실시예에 따르면, 상기 열연 강판의 두께는 6.0 내지 25.0mm일 수 있다.
또한, 본 발명의 일 실시예에 따르면, 상기 권취된 열연 강판의 압연 직각 방향 단면 미세조직은, 결정립간 방위차가 5° 이상인 평균 결정립 크기가 50㎛ 이하일 수 있다.
또한, 본 발명의 일 실시예에 따르면, 상기 권취된 열연 강판을 소둔하는 단계;를 더 포함하고, 소둔 온도범위는 850℃ 이하일 수 있다.
본 발명의 실시예에 따르면, 10.0% 이하 Cr을 포함하는 두께 6.0mm 이상의 열연 강판의 미세조직 결정립 크기를 미세화하여 높은 샤르피 충격에너지 값을 나타낼 수 있다.
도 1, 2는 9A 강의 단면 미세조직 IPF(ND) EBSD 사진과 IQ EBSD 사진이다.
도 3, 4는 9B 강의 단면 미세조직 IPF(ND) EBSD 사진과 IQ EBSD 사진이다.
도 5, 6은 9C 강의 단면 미세조직 IPF(ND) EBSD 사진과 IQ EBSD 사진이다.
도 7, 8은 9D 강의 단면 미세조직 IPF(ND) EBSD 사진과 IQ EBSD 사진이다.
도 9 내지 11은 본 발명의 실시예에 따른 발명예와 비교예의 -20, 0℃, +20℃에서의 샤르피 충격에너지값을 나타낸 그래프이다.
본 발명의 일 실시예에 따른 저온 충격인성이 우수한 열연 강판은, 중량%로, C: 0 초과 0.03% 이하, Si: 0.1 내지 1.0%, Mn: 0 초과 2.0% 이하, P: 0.04% 이하, Cr: 1.0 내지 10.0%, Ni: 0 초과 1.5% 이하, Ti: 0.01 내지 0.5%, Cu: 0 초과 2.0% 이하, N: 0 초과 0.03% 이하, Al: 0.1% 이하, 나머지 Fe 및 기타 불가피한 불순물을 포함하고, 하기 식 (1)의 값이 200 내지 1,150을 만족하며, 압연 직각 방향 단면 미세조직의 결정립간 방위차가 5° 이상인 평균 결정립 크기가 50㎛ 이하이다.
(1) 1001.5*C + 1150.6*Mn + 2000*Ni + 395.6*Cu - 0.7*Si - 1.0*Ti - 45*Cr - 1.0*P - 1.0*Al + 1020.5*N
여기서, C, Mn, Ni, Cu, Si, Ti, Cr, P, Al 및 N은 각 원소의 함량(중량%)를 의미한다.
이하에서는 본 발명의 실시 예를 첨부 도면을 참조하여 상세히 설명한다. 이하의 실시 예는 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 본 발명의 사상을 충분히 전달하기 위해 제시하는 것이다. 본 발명은 여기서 제시한 실시 예만으로 한정되지 않고 다른 형태로 구체화될 수도 있다. 도면은 본 발명을 명확히 하기 위해 설명과 관계 없는 부분의 도시를 생략하고, 이해를 돕기 위해 구성요소의 크기를 다소 과장하여 표현할 수 있다.
페라이트계 열연 후판의 인성을 개선하는 방법에 대하여 다양한 방법이 검토되어 왔다. 우선 열연 권취 온도를 하향하거나, 수냉 등의 급냉 처리를 하여 소재의 취성을 악화시키는 라베스 상(Laves Phase)을 억제하는 방법이 있다. 그러나, 이는 코일 권취 시 낮은 온도로 인하여 판의 표면에 긁힘 흔적이 남는 등 불량 코일을 야기시키거나, 급격한 냉각 속도로 인해 판의 변형이 불균일해져 부분적으로 균열이 발생되는 문제점이 제기되어 실제 생산 적용에 어려운 부분이 있다. 더욱이, 6.0mm 이상 두께의 열연 강판의 열간 압연은, 6.0mm 이하 두께의 강판에 비하여 압하량 부족으로 미세한 결정립 크기를 얻기 힘들고, 조대한 결정립 및 불균일한 결정립의 형성에 따라 취성도 더욱 심화된다. 또한, 페라이트상 안정화 원소인 Cr 함량이 11% 이상으로 높아질수록 취성 현상은 더욱 심해지며 경제적인 면에서도 바람직하지 않다.
본 발명에서는, 두께 6.0mm 이상 열연 후판의 Cr 함량을 10.0% 이하로 제한하고, Ni, Mn 또는 Cu를 첨가함으로써 1,220℃ 이하의 열연 재가열 온도에서 페라이트 단상이 아닌 오스테나이트상 분율을 일정량 이상으로 제어하여 열간 압연 중 오스테나이트 상변태 및 재결정을 유도하고, 이를 통해 권취 시 최종 미세한 페라이트 결정립을 확보하고자 한다. 본 발명에 따른 열연 강판은 열간 압연이 종료된 후 압연 직각 방향 단면 미세조직의 평균 결정립 크기를 30㎛ 이하로 제어할 수 있다.
본 명세서에서 '열연 강판'은 두께 6.0mm 이상의 페라이트계 열연 강판을 의미한다.
본 발명의 일 실시예에 따른 저온 충격인성이 우수한 열연 강판은, 중량%로, C: 0 초과 0.03% 이하, Si: 0.1 내지 1.0%, Mn: 0 초과 2.0% 이하, P: 0.04% 이하, Cr: 1.0 내지 10.0%, Ni: 0 초과 1.5% 이하, Ti: 0.01 내지 0.5%, Cu: 0 초과 2.0% 이하, N: 0 초과 0.03% 이하, Al: 0.1% 이하, 나머지 Fe 및 기타 불가피한 불순물을 포함한다.
이하, 본 발명의 실시예에서의 합금성분 원소 함량의 수치한정 이유에 대하여 설명한다. 이하에서는 특별한 언급이 없는 한 단위는 중량%이다.
C와 N의 함량은 0 초과 0.03% 이하이다.
Ti(C, N) 탄질화물 형성원소로 침입형으로 존재하는 C 및 N은, 함량이 높아지면 Ti(C, N) 탄질화물 형성하지 않고 고용 상태로 존재하여 소재의 연신율 및 저온 충격인성을 저하시키고, 용접 후 600℃ 이하에서 장시간 사용하는 경우 Cr23C6 탄화물이 생성되어 입계부식이 발생되기 때문에 그 함량은 각각 0.03% 이하로 제어하는 것이 바람직하다.
Si의 함량은 0.1 내지 1.0%이다.
Si은 탈산 원소로 탈산을 위해 0.1% 이상 첨가되며, 페라이트상 형성원소이므로 함량 증가시 페라이트상의 안정성이 높아진다. Si의 함량이 1.0% 초과인 경우, 제강성 Si 개재물의 증가 및 표면결함 등이 발생할 수 있어 1.0% 이하로 제어하는 것이 바람직하다.
Mn의 함량은 0 초과 2.0% 이하이다.
Mn은 오스테나이트상 안정화 원소로, 열연 재가열 온도에서 일정 수준의 오스테나이트상 분율을 확보하기 위해 첨가되지만, 함량이 높아지면 MnS 등의 석출물을 형성하여 내공식성을 저하시키므로 2.0% 이하로 제어하는 것이 바람직하다.
P의 함량은 0.04% 이하이다.
P는 스테인리스강의 원료인 페로크롬에 불순물로서 포함되기 때문에 페로크롬의 순도와 양으로 결정된다. 그러나, P는 유해한 원소이므로 함량이 낮은 것이 바람직하지만 저P의 페로크롬은 고가이기 때문에 재질이나 내식성을 크게 열화시키지 않는 범위인 0.04% 이하로 한다. 보다 바람직하게는 0.03% 이하로 제한할 수 있다.
Cr의 함량은 1.0 내지 10.0%이다.
Cr은 강판의 내식성을 확보하기 위해 1.0% 이상 첨가된다. Cr의 함량이 낮으면 응축수 분위기에서 내식성이 저하되고, 함량이 높아지면 강도가 높아져 연신율, 충격인성이 저하된다. 특히 11.0% 이상을 포함하는 페라이트계 스테인리스강의 경우에는 취성 현상이 더욱 심해지는바, 본 발명에서는 저온 충격인성을 확보하고자 그 함량을 10.0% 이하로 제한한다.
Ni의 함량은 0 초과 1.5% 이하이다.
Ni은 오스테나이트상 안정화 원소로, 공식의 진전 억제에 효과적이며 소량 첨가시 열연 강판의 인성 향상에도 효과적이다. 후술할 식 (1) 관련 열연 재가열 온도에서 일정 수준의 오스테나이트상 분율을 확보하기 위해 첨가된다. 그러나, 다량의 첨가는 오히려 고용 강화에 의한 재질 경화 및 인성 저하를 초래할 우려가 있고, 고가의 원소이므로 Mn, Cu와의 함량 관계를 고려하여 1.5% 이하로 제한할 수 있다.
Ti의 함량은 0.01 내지 0.5%이다.
Ti은 C, N을 고정하여 입계부식 발생을 방지하는 유효한 원소이다. Ti 함량이 낮아지면 용접부 등에 입계부식이 발생하여 내식성이 저하하는 문제점이 발생하기 때문에, Ti은 최소 0.01% 이상 첨가하여야 한다. C, N을 충분히 고정하기 위해서는 10*(C+N) 이상으로 제어하는 것이 바람직하다. 그러나, Ti의 첨가량이 너무 높아지면 제강성 개재물이 증가하여 스캡(scab)과 같은 표면결함이 많이 발생하고, 연주시 노즐 막힘 현상이 발생하기 때문에 그 함량을 0.5% 이하로 제한하며, 0.35% 이하로 제한하는 것이 더욱 바람직하다.
Cu의 함량은 0 초과 2.0% 이하이다.
Cu는 오스테나이트상 안정화 원소로, 후술할 식 (1) 관련 열연 재가열 온도에서 일정 수준의 오스테나이트상 분율을 확보하기 위해 첨가된다. 일정량 첨가되면 내식성을 향상시키는 역할을 하나, 과도한 첨가는 석출 경화에 의해 인성을 저하시키므로 Mn, Ni과의 함량 관계를 고려하여 2.0% 이하로 제한함이 바람직하다.
Al의 함량은 0.1% 이하이다.
Al은 탈산 원소로서 유용하고 그 효과는 0.005% 이상에서 발현될 수 있다. 그러나 과도한 첨가는 상온 연성 저하 및 인성의 저하를 초래하기 때문에 그 상한을 0.1%로 하며, 함유하지 않아도 된다.
본 발명에서 저온 충격인성을 향상시키고자 하는 열연 강판의 두께는 6.0 내지 25.0mm이다. 상술한 바와 같이, 열연 후판에서는 압하량 부족으로 인해 취성 문제가 있으며, 이를 해결하기 위한 본 발명에 따른 열연 강판의 두께는 6.0mm 이상으로 한다. 다만, 조압연을 거친 조압연 바(bar)의 두께를 고려하여 상한은 25.0mm일 수 있다. 바람직하게는, 제조 용도에 적합하도록 12.0mm 이하일 수 있다.
본 발명의 일 실시예에 따른 저온 충격인성이 우수한 열연 강판은, 하기 식 (1)의 값이 200 내지 1,150 범위를 만족한다.
(1) 1001.5*C + 1150.6*Mn + 2000*Ni + 395.6*Cu - 0.7*Si - 1.0*Ti - 45*Cr - 1.0*P - 1.0*Al + 1020.5*N
여기서, C, Mn, Ni, Cu, Si, Ti, Cr, P, Al 및 N은 각 원소의 함량(중량%)를 의미한다.
열간 압연을 위한 재가열 온도에서 오스테나이트상 분율을 확보하기 위해, 상술한 합금 조성의 범위 내에서 식 (1)의 오스테나이트 지수(γ지수)를 200 이상으로 제어하는 것이 바람직하다. 1,200℃ 전후의 재가열 온도범위에서 200 이상의 오스테나이트 지수를 확보함으로써 오스테나이트 상변태 및 재결정을 유도하고, 이를 통해 미세한 결정립의 최종 페라이트상을 얻을 수 있다.
그러나 재가열 온도에서의 오스테나이트상 분율이 지나치게 높을 경우, 최종 열연 강판의 미세조직이 페라이트 단상이 아닌 일부 마르텐사이트상 변태가 일어나게 된다. 마르텐사이트상이 일부 포함된 미세조직은 상온에서의 충격인성은 우수하나, 저온에서의 충격인성은 매우 열위하다. 재가열 온도에서의 오스테나이트상 분율은 매우 중요하며, 본 발명에서 제시한 식 (1)의 오스테나이트 지수(γ지수)를 통해 제어가 가능하다. 따라서, 식 (1)의 오스테나이트 지수(γ지수)는 1,150 이하로 제한하며, 700 이하로 제한하는 것이 더욱 바람직하다.
최종 페라이트상 미세조직은 결정립간 방위차(misorientation)에 따라 재결정이 이루어진 완전한 결정립과 아결정립으로 구분될 수 있다.
아결정립이란 전위가 생성됨에 따라 증가되는 불안정 에너지를 감소시키고 열역학적 평형을 이루기 위해 형성되는 준결정립으로, 컨투어(contour)라 불리기도 한다. 열간 압연에 의해 불균일한 변형과 비평형 위치로 원자의 이동이 일어나게 되어 전위, 적층결함 등이 생성되는데, 이러한 결함의 존재는 계의 자유에너지를 증가시키므로 결함이 없는 상태로 자발적으로 회복하게 된다. 결함들 중 칼날 전위들은 비교적 낮은 온도에서도 전위 활주가 일어날 수 있으며, 배열된 불일치 경계들의 각도가 작은 소경각경계가 형성될 수 있고, 소경각경계로 둘러싸인 구역을 아결정립이라 부른다.
예를 들어, 결정립간 방위차(misorientation)가 15 내지 180°인 결정립을 재결정이 이루어진 완전한 결정립이라 칭할 수 있으며, 2 내지 15°인 결정립을 아결정립이라 칭할 수 있다. 본 발명에서는 아결정립 중에서도 결정립간 방위차가 2 내지 5°인 결정립과 5 내지 15°인 결정립으로 추가 구분하였다.
본 발명의 합금 조성 및 식 (1)의 범위를 만족하는 경우, 열연 강판은 오스테나이트 상변태 및 재결정을 통해 미세한 페라이트상 결정립을 확보할 수 있다.
본 발명의 일 실시예에 따른 열연 강판의 압연 직각 방향 단면 미세조직의 결정립간 방위차가 5° 이상인 평균 결정립 크기는 50㎛ 이하를 만족한다.
구체적으로, 결정립간 방위차가 15 내지 180°인 완전한 결정립들의 평균 크기는 70㎛ 이하일 수 있으며, 결정립간 방위차가 5 내지 15°인 아결정립을 포함하는 5 내지 180° 방위차의 결정립들은 평균 크기가 50㎛ 이하일 수 있다. 또한, 결정립간 방위차가 2 내지 5°인 아결정립까지 포함하는 2 내지 180° 방위차의 결정립들은 평균 크기가 30㎛ 이하일 수 있다.
아결정립은 미세한 결정립인바 충격 인성에 영향을 미치긴 하나, 재결정된 방위차 15 내지 180°의 완전한 결정립이 충격 인성에 더욱 큰 영향을 미친다. 이는 충격 에너지를 결정립계(Grain boundary)에서 흡수하며, 아결정립에 비하여 완전한 결정립의 결정립계가 더욱 많은 충격 에너지를 흡수할 수 있기 때문으로 예측된다.
이에 따른 본 발명의 저온 충격인성이 우수한 열연 강판은 -20℃ 샤르피 충격에너지가 100J/㎠ 이상을 나타낼 수 있다.
다음으로, 본 발명의 일 실시예에 따른 충격 인성이 우수한 페라이트계 스테인리스 열연 무소둔 강판의 제조방법에 대하여 설명한다.
본 발명의 일 실시예에 따른 저온 충격인성이 우수한 열연 강판 제조방법은, C: 0 초과 0.03% 이하, Si: 0.1 내지 1.0%, Mn: 0 초과 2.0% 이하, P: 0.04% 이하, Cr: 1.0 내지 10.0%, Ni: 0 초과 1.5% 이하, Ti: 0.01 내지 0.5%, Cu: 0 초과 2.0% 이하, N: 0 초과 0.03% 이하, Al: 0.1% 이하, 나머지 Fe 및 기타 불가피한 불순물을 포함하는 슬라브를 1,220℃ 이하로 가열하는 단계; 가열된 상기 슬라브를 조압연하는 단계; 조압연 바(bar)를 마무리압연하는 단계; 및 열연 강판을 권취하는 단계;를 포함한다.
합금원소 함량의 수치 한정 이유 및 열연 강판의 두께에 대한 설명은 상술한 바와 같다.
또한, 슬라브의 합금 조성은 상술한 이유와 같이 아래 식 (1)의 값이 200 내지 1,150 범위를 만족할 수 있으며, 더욱 바람직하게는 200 내지 700 범위를 만족할 수 있다.
(1) 1001.5*C + 1150.6*Mn + 2000*Ni + 395.6*Cu - 0.7*Si - 1.0*Ti - 45*Cr - 1.0*P - 1.0*Al + 1020.5*N
상기 조성의 합금원소를 포함하는 슬라브를 열간 압연에 앞서 1,220℃ 이하로 가열한 후, 가열된 슬라브를 조압연할 수 있다. 슬라브 가열 온도는 저온 열간 압연을 통한 전위 생성을 위해 1,220℃ 이하가 바람직하며, 슬라브 온도가 지나치게 낮을 경우 조압연이 불가능하므로 가열 온도 하한은 1,150℃ 이상일 수 있다.
이때, 조압연 마지막 압연밀에서의 압하율을 27% 이상으로 제어할 수 있다. 일반적으로, 열연 강판의 두께가 두꺼워지면 압하율이 낮아지므로, 소재가 받는 응력이 낮음에 따라 전위(dislocation)의 생성량도 감소한다. 따라서, 열연 강판의 두께가 두꺼워질수록 열간 압연 전 가열로 온도를 가능한 낮은 온도로 하여, 열간 압연 시 조압연의 부하 배분을 후단으로 이동시켜 전단보다 온도가 낮은 후단에서 강압하를 실시한다. 이처럼 조압연 마지막 압연밀에서의 압하율을 27% 이상으로 강압하함으로써 열연 강판의 전위 생성을 원활하게 할 수 있다.
조압연 공정을 통해 제조된 조압연 바(bar)의 온도는 1,020 내지 970℃일 수 있으며, 6.0 내지 25.0mm 두께로 마무리압연된 후 권취될 수 있다. 마무리압연 종료 온도는 960℃ 이하일 수 있다. 보다 바람직하게는, 마무리압연 종료 온도는 920℃ 이하일 수 있다.
권취 온도는 850℃ 이하일 수 있다. 권취 온도가 850℃ 초과인 경우 오스테나이트상 영역에 해당할 수 있어 냉각 과정에서 마르텐사이트상이 생성될 수 있기 때문에 850℃ 이하에서 권취하는 것이 바람직하다.
권취된 열연 강판에 대하여, 필요에 따라 열연 소둔을 수행할 수 있다. 이때 열연 소둔 온도는 850℃ 이하일 수 있다.
권취된 열연 강판의 압연 직각 방향 단면 미세조직은, 결정립간 방위차가 5° 이상인 평균 결정립 크기가 50㎛ 이하일 수 있다.
이하 본 발명의 바람직한 실시예를 통해 보다 상세히 설명하기로 한다.
실시예
아래 표 1에 나타난 조성의 슬라브를 1,200℃로 가열한 뒤 조압연 마지막 압연밀 압하율을 30%로 하여, 마무리압연 전 조압연 바의 온도는 약 1,000℃, 그리고 마무리압연 종료 온도는 910℃가 되도록 10.0mm 두께로 열간 압연하였다.
강종(중량%) C Si Mn P Cr Ni Ti Cu N Al
9A 0.007 0.5 <0.05 0.02 9.0 0.50 0.2 <0.05 0.008 <0.01
9B 0.007 0.5 <0.05 0.02 9.0 0.50 0.2 <0.05 0.008 <0.01
9C 0.007 0.5 <0.05 0.02 9.0 0.30 0.2 <0.05 0.008 <0.01
9D 0.006 0.57 0.29 0.02 11.1 0.13 0.2 <0.05 0.007 <0.01
표 2에 기재된 것처럼, 9A 내지 9D 강종 열연 강판을 750℃에서 권취하였고, 식 (1)의 오스테나이트 지수(γ지수) 값을 나타내었다.
구분 권취온도(℃) 식 (1)(γ지수)
9A 750 1,185
9B 750 610
9C 750 210
9D 750 105
1. 미세 조직
식 (1)의 오스테나이트 지수(γ지수)를 1,185로 제어한 9A 강과, 610로 제어한 9B 강, 210로 제어한 9C 강 및 105로 제어한 9D 강의 TD 단면 1/4 두께 지점의 미세조직을 관찰하여 아래 표 3과 도 1 내지 8에 나타내었다.
도 1, 2는 9A 강의 단면 미세조직 IPF(ND) EBSD 사진과 IQ EBSD 사진이고, 도 3, 4는 9B 강의 단면 미세조직 IPF(ND) EBSD 사진과 IQ EBSD 사진이고, 도 5, 6은 9C 강의 단면 미세조직 IPF(ND) EBSD 사진과 IQ EBSD 사진이고, 도 7, 8은 9D 강의 단면 미세조직 IPF(ND) EBSD 사진과 IQ EBSD 사진이다.
구분 강종 결정립 평균 크기(㎛)
15~180° 5~180° 2~180°
비교예 1 9A 19.57 14.39 13.62
발명예 1 9B 48.50 10.68 8.25
발명예 2 9C 23.42 16.05 15.06
비교예 2 9D 150.1 98.2 76.1
1,200℃의 열연 재가열 온도에서 오스테나이트 지수(γ지수)를 1,185로 제어시킨 비교예 1 9A 강의 TD 단면의 미세조직을 관찰한 결과, 결정립간 방위차가 15° 이상의 High Angle Grain Boundary법으로 측정된 페라이트 결정립의 크기는 약 19㎛로 형성되어 있으며, 결정립간 방위차가 5° 및 2° 이상의 Low Angel Grain Boundary법으로 측정된 결정립의 크기는 각각 14㎛ 및 13㎛로 미세하게 나타났다. 그러나, 열연 재가열 온도에서의 오스테나이트 함량이 지나치게 높아 최종 열연재의 미세조직이 페라이트 단상이 아닌 일부 마르텐사이트상으로 변태되었다. 마르텐사이트상으로 구성된 조직은 상온에서의 충격인성은 우수하나 저온에서의 충격인성은 매우 열위한 것으로 알려져 있다.
발명예 1 및 2에 해당하는 9B 강과 9C 강의 경우 식 (1)의 오스테나이트 지수(γ지수)는 각각 610, 210으로, 비교예인 9A 강과 비교할 때 낮게 나타남을 알 수 있다. 이에 따라, 결정립간 방위차가 5° 이상일 경우 9B 강 및 9C 강의 결정립 크기는 각각 11㎛ 및 16㎛로 미세하게 형성되어 있으며, 마르텐사이트상이 없는 페라이트 단상으로 구성되어 있었다. 이러한 페라이트 단상의 미세 결정립은 충격인성의 향상에 큰 영향을 미치는 인자이다.
도 1 내지 6을 참조하면, 도 1 및 2의 9A 강 EBSD 사진은 도 3 내지 6의 9B, 9C 강 EBSD 사진과 비교하여 결정립 크기에 큰 차이가 보이지 않음을 알 수 있다. 9A 강의 평균 결정립 크기가 9B, 9C 강에 비하여 다소 큰 편이긴 하지만 대체적으로 50㎛ 이하로 나타났다. 그러나 도 2에 나타난 바와 같이 페라이트상 내에 일부 마르텐사이트상이 생성되었고, 이로 인해 평균 결정립 크기가 더욱 낮게 측정되었을 것으로 추측할 수 있었다.
식 (1)의 오스테나이트 지수(γ지수)가 105로 200 미만인 비교예 2 9D 강종의 경우, 결정립간 방위차가 5° 이상인 결정립들의 평균 크기는 약 98㎛로 70㎛를 초과하여 조대한 것을 알 수 있다. 또한, 결정립간 방위차 15° 이상 및 2° 이상의 평균 결정립 크기도 본 발명 목표치의 2배를 웃도는 것을 확인할 수 있었다.
도 7 및 8을 참조하면, 9D 강은 페라이트 단상으로 이루어져 있으나 결정립 크기가 매우 조대한 것을 확인할 수 있다.
2. 충격인성 평가
9A 내지 9D 강을 ASTM E 23 규격으로 각 온도에서 샤르피 충격 시험을 실시하여 그 결과를 아래 표 4에 나타내었다.
샤르피 충격 에너지 (J/cm2)
온도 No. 비교예 1(9A) 발명예 1(9B) 발명예 2(9C) 비교예 2(9D)
-20℃ 1 10.71 325.14 348.05 6.38
2 11.18 180.84 339.18 6.75
3 7.98 335.99 344.89 6.38
0℃ 1 16.75 315.53 341.13 10.42
2 35.11 322.58 339.80 8.57
3 17.69 325.14 337.90 9.68
20℃ 1 256.18 330.25 329.61 22.97
2 265.88 327.70 335.99 24.93
3 345.51 324.50 338.54 24.93
도 9 내지 11는 각각 -20℃, 0℃, 20℃에서의 9A~9D 강의 샤르피 충격에너지를 나타내는 그래프이다.
표 4 및 도 9 내지 11을 참조하면, 각 온도에서 충격 흡수 에너지를 측정한 결과, 식 (1)의 γ지수가 1,185로 제어된 9A 강은 +20℃에서 250 J/㎠ 이상의 높은 충격 흡수 에너지값을 나타내었으나, 0℃부터 급격한 감소가 나타나면서 -20℃의 저온에서는 대부분 10 J/㎠ 이하의 매우 낮은 충격 흡수 에너지값을 나타내었다. 이는 저Cr 강재에서 높은 γ지수로 인해 미세조직의 일부가 마르텐사이트상으로 변태되어 저온에서의 충격인성이 급격히 저하된 것으로 생각된다.
그러나, 본 발명예인 9B 및 9C 강 블랙 코일의 충격 흡수 에너지값은 γ지수가 각각 610 및 210으로 낮게 제어되어 상온 +20℃를 비롯하여 0℃ 및 -20℃의 저온에서 모두 180 J/㎠ 이상으로 측정되었고, 저온에서도 충격 흡수 에너지의 저하 없이 우수한 충격인성을 나타내었다.
반대로, 식 (1)의 γ지수가 105로 제어된 9D 강은 -20℃ 저온뿐만 아니라 0℃ 및 20℃에서도 25 J/㎠ 이하의 매우 열위한 충격인성을 나타내었다. 이는 γ지수가 낮아 미세한 페라이트상 결정립을 확보하지 못하고 조대한 페라이트상 결정립으로 이루어졌기 때문으로 파악된다.
상술한 바에 있어서, 본 발명의 예시적인 실시예들을 설명하였지만, 본 발명은 이에 한정되지 않으며 해당 기술 분야에서 통상의 지식을 가진 자라면 다음에 기재하는 청구범위의 개념과 범위를 벗어나지 않는 범위 내에서 다양한 변경 및 변형이 가능함을 이해할 수 있을 것이다.
본 발명에 따른 두께 6mm 이상의 열연 강판은 조직의 결정립 미세화를 통해 -20℃ 샤르피 충격흡수 에너지가 100J/㎠ 이상을 나타내어 자동차 플랜지용 제품으로 적용될 수 있다.

Claims (15)

  1. 중량%로, C: 0 초과 0.03% 이하, Si: 0.1 내지 1.0%, Mn: 0 초과 2.0% 이하, P: 0.04% 이하, Cr: 1.0 내지 10.0%, Ni: 0 초과 1.5% 이하, Ti: 0.01 내지 0.5%, Cu: 0 초과 2.0% 이하, N: 0 초과 0.03% 이하, Al: 0.1% 이하, 나머지 Fe 및 기타 불가피한 불순물을 포함하고,
    하기 식 (1)의 값이 200 내지 1,150을 만족하며,
    압연 직각 방향 단면 미세조직의 결정립간 방위차가 5° 이상인 평균 결정립 크기가 50㎛ 이하인 저온 충격인성이 우수한 열연 강판.
    (1) 1001.5*C + 1150.6*Mn + 2000*Ni + 395.6*Cu - 0.7*Si - 1.0*Ti - 45*Cr - 1.0*P - 1.0*Al + 1020.5*N
    (여기서, C, Mn, Ni, Cu, Si, Ti, Cr, P, Al 및 N은 각 원소의 함량(중량%)를 의미한다)
  2. 제1항에 있어서,
    두께가 6.0 내지 25.0mm이며,
    -20℃ 샤르피 충격에너지가 100J/㎠ 이상인 저온 충격인성이 우수한 열연 강판.
  3. 제1항에 있어서,
    상기 식 (1)의 값이 200 내지 700을 만족하는 저온 충격인성이 우수한 열연 강판.
  4. 제1항에 있어서,
    하기 식 (2)를 만족하는 저온 충격인성이 우수한 열연 강판.
    (2) Ti/(C+N) ≥ 10.0
  5. 제1항에 있어서,
    상기 미세조직의 결정립간 방위차가 15 내지 180°인 결정립들의 평균 크기가 70㎛ 이하인 저온 충격인성이 우수한 열연 강판.
  6. 제1항에 있어서,
    상기 미세조직의 결정립간 방위차가 5 내지 180°인 결정립들의 평균 크기가 50㎛ 이하인 저온 충격인성이 우수한 열연 강판.
  7. 제1항에 있어서,
    상기 미세조직의 결정립간 방위차가 2 내지 180°인 결정립들의 평균 크기가 30㎛ 이하인 저온 충격인성이 우수한 열연 강판.
  8. 중량%로, C: 0 초과 0.03% 이하, Si: 0.1 내지 1.0%, Mn: 0 초과 2.0% 이하, P: 0.04% 이하, Cr: 1.0 내지 10.0%, Ni: 0 초과 1.5% 이하, Ti: 0.01 내지 0.5%, Cu: 0 초과 2.0% 이하, N: 0 초과 0.03% 이하, Al: 0.1% 이하, 나머지 Fe 및 기타 불가피한 불순물을 포함하는 슬라브를 1,220℃ 이하로 가열하는 단계;
    가열된 상기 슬라브를 조압연하는 단계;
    조압연 바(bar)를 마무리압연하는 단계; 및
    열연 강판을 권취하는 단계;를 포함하고,
    상기 조압연의 마지막 압연밀에서의 압하율은 27% 이상이며,
    상기 권취 온도는 850℃ 이하인 저온 충격인성이 우수한 열연 강판 제조방법.
  9. 제8항에 있어서,
    상기 슬라브는 하기 식 (1)의 값이 200 내지 1,150 범위를 만족하는 저온 충격인성이 우수한 열연 강판 제조방법.
    (1) 1001.5*C + 1150.6*Mn + 2000*Ni + 395.6*Cu - 0.7*Si - 1.0*Ti - 45*Cr - 1.0*P - 1.0*Al + 1020.5*N
    (여기서, C, Mn, Ni, Cu, Si, Ti, Cr, P, Al 및 N은 각 원소의 함량(중량%)를 의미한다)
  10. 제9항에 있어서,
    상기 슬라브는 상기 식 (1)의 값이 200 내지 700 범위를 만족하는 저온 충격인성이 우수한 열연 강판 제조방법.
  11. 제8항에 있어서,
    상기 조압연 바의 온도는 1,020 내지 970℃인 저온 충격인성이 우수한 열연 강판 제조방법.
  12. 제8항에 있어서,
    상기 마무리압연 종료 온도는 920℃ 이하인 저온 충격인성이 우수한 열연 강판 제조방법.
  13. 제8항에 있어서,
    상기 열연 강판의 두께는 6.0 내지 25.0mm인 저온 충격인성이 우수한 열연 강판 제조방법.
  14. 제8항에 있어서,
    상기 권취된 열연 강판의 압연 직각 방향 단면 미세조직은,
    결정립간 방위차가 5° 이상인 평균 결정립 크기가 50㎛ 이하인 저온 충격인성이 우수한 열연 강판 제조방법.
  15. 제8항에 있어서,
    상기 권취된 열연 강판을 소둔하는 단계;를 더 포함하고,
    상기 소둔의 온도범위는 850℃ 이하인 저온 충격인성이 우수한 열연 강판 제조방법.
PCT/KR2019/014541 2018-11-06 2019-10-31 저온 충격인성이 우수한 열연 강판 및 그 제조방법 WO2020096268A1 (ko)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US17/291,361 US20220002828A1 (en) 2018-11-06 2019-10-31 Hot-rolled steel sheet with excellent low-temperature impact toughness and manufacturing method therefor
CN201980080745.4A CN113166906B (zh) 2018-11-06 2019-10-31 具有优异的低温冲击韧性的热轧钢板及其制造方法
EP19882479.9A EP3859044A4 (en) 2018-11-06 2019-10-31 HOT-ROLLED STEEL SHEET WITH EXCELLENT LOW TEMPERATURE IMPACT RESISTANCE AND PROCESS FOR ITS MANUFACTURING

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020180135153A KR102173277B1 (ko) 2018-11-06 2018-11-06 저온 충격인성이 우수한 열연 강판 및 그 제조방법
KR10-2018-0135153 2018-11-06

Publications (1)

Publication Number Publication Date
WO2020096268A1 true WO2020096268A1 (ko) 2020-05-14

Family

ID=70611067

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2019/014541 WO2020096268A1 (ko) 2018-11-06 2019-10-31 저온 충격인성이 우수한 열연 강판 및 그 제조방법

Country Status (5)

Country Link
US (1) US20220002828A1 (ko)
EP (1) EP3859044A4 (ko)
KR (1) KR102173277B1 (ko)
CN (1) CN113166906B (ko)
WO (1) WO2020096268A1 (ko)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000144258A (ja) * 1998-11-02 2000-05-26 Kawasaki Steel Corp 耐リジング性に優れたTi含有フェライト系ステンレス鋼板の製造方法
JP2009068034A (ja) * 2007-09-11 2009-04-02 Jfe Steel Kk 伸びフランジ加工性に優れたフェライト系ステンレス鋼板およびその製造方法
KR20160123371A (ko) * 2014-03-26 2016-10-25 닛폰 스틸 앤드 스미킨 스테인레스 스틸 코포레이션 페라이트계 스테인리스 압연 강판과 그 제조 방법 및 플랜지 부품
JP2016191150A (ja) * 2015-03-30 2016-11-10 新日鐵住金ステンレス株式会社 靭性に優れたステンレス鋼板およびその製造方法
US9493865B2 (en) * 2008-07-31 2016-11-15 Jfe Steel Corporation Thick-walled high-strength hot rolled steel sheet with excellent low-temperature toughness and method of producing same

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1219719B1 (en) * 2000-12-25 2004-09-29 Nisshin Steel Co., Ltd. A ferritic stainless steel sheet good of workability and a manufacturing method thereof
JP4185425B2 (ja) * 2002-10-08 2008-11-26 日新製鋼株式会社 成形性と高温強度・耐高温酸化性・低温靱性とを同時改善したフェライト系鋼板
CA2799696C (en) * 2010-05-31 2015-11-17 Jfe Steel Corporation Structural stainless steel sheet having excellent corrosion resistance at weld and method for manufacturing same
CN103348023B (zh) * 2011-02-08 2015-11-25 新日铁住金不锈钢株式会社 铁素体系不锈钢热轧钢板及其制造方法、以及铁素体系不锈钢板的制造方法
JP5884183B2 (ja) * 2013-03-28 2016-03-15 Jfeスチール株式会社 構造用ステンレス鋼板
KR101758481B1 (ko) * 2015-12-14 2017-07-17 주식회사 포스코 내식성 및 저온인성이 우수한 파이프용 강재 및 그 제조방법
JP6022097B1 (ja) * 2016-03-30 2016-11-09 日新製鋼株式会社 Ti含有フェライト系ステンレス鋼板および製造方法
CN106435360A (zh) * 2016-10-25 2017-02-22 武汉科技大学 高强韧耐腐耐候钢板及其制造方法
MX2019010232A (es) * 2017-02-28 2019-10-15 Nippon Steel Corp Chapa de acero inoxidable ferritico, bobina caliente y miembro de brida de escape de automovil.

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000144258A (ja) * 1998-11-02 2000-05-26 Kawasaki Steel Corp 耐リジング性に優れたTi含有フェライト系ステンレス鋼板の製造方法
JP2009068034A (ja) * 2007-09-11 2009-04-02 Jfe Steel Kk 伸びフランジ加工性に優れたフェライト系ステンレス鋼板およびその製造方法
US9493865B2 (en) * 2008-07-31 2016-11-15 Jfe Steel Corporation Thick-walled high-strength hot rolled steel sheet with excellent low-temperature toughness and method of producing same
KR20160123371A (ko) * 2014-03-26 2016-10-25 닛폰 스틸 앤드 스미킨 스테인레스 스틸 코포레이션 페라이트계 스테인리스 압연 강판과 그 제조 방법 및 플랜지 부품
JP2016191150A (ja) * 2015-03-30 2016-11-10 新日鐵住金ステンレス株式会社 靭性に優れたステンレス鋼板およびその製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3859044A4 *

Also Published As

Publication number Publication date
CN113166906B (zh) 2023-02-24
CN113166906A (zh) 2021-07-23
KR102173277B1 (ko) 2020-11-03
EP3859044A4 (en) 2021-12-22
EP3859044A1 (en) 2021-08-04
US20220002828A1 (en) 2022-01-06
KR20200052053A (ko) 2020-05-14

Similar Documents

Publication Publication Date Title
WO2018074887A1 (ko) 고강도 철근 및 이의 제조 방법
WO2018117712A1 (ko) 저온인성 및 항복강도가 우수한 고 망간 강 및 제조 방법
WO2017111290A1 (ko) Pwht 저항성이 우수한 저온 압력용기용 강판 및 그 제조 방법
WO2017222159A1 (ko) 가공성이 우수한 고강도 냉연강판 및 그 제조 방법
WO2018117477A1 (ko) 내식성 및 성형성이 우수한 듀플렉스 스테인리스강 및 이의 제조 방법
WO2019117430A1 (ko) 고온 내산화성이 우수한 페라이트계 스테인리스강 및 그 제조방법
WO2020060051A1 (ko) 충격 인성이 우수한 페라이트계 스테인리스 열연 무소둔 강판 및 그 제조방법
WO2017052005A1 (ko) 페라이트계 스테인리스강 및 이의 제조 방법
WO2019117432A1 (ko) 충격 인성이 우수한 페라이트계 스테인리스강 및 그 제조방법
WO2021010599A2 (ko) 강도가 향상된 오스테나이트계 스테인리스강 및 그 제조 방법
WO2011081236A1 (ko) 열간 프레스 가공성이 우수한 열처리 강화형 강판 및 그 제조방법
WO2020096268A1 (ko) 저온 충격인성이 우수한 열연 강판 및 그 제조방법
WO2019132179A1 (ko) 고강도 고인성 열연강판 및 그 제조방법
WO2021125564A1 (ko) 클램프용 고강도 페라이트계 스테인리스강 및 그 제조방법
WO2017222122A1 (ko) 철근 및 이의 제조 방법
WO2018110866A1 (ko) 충격 인성이 개선된 페라이트계 스테인리스강 및 이의 제조 방법
WO2020085687A1 (ko) 클램프용 고강도 페라이트계 스테인리스강 및 그 제조방법
WO2019039774A1 (ko) 저온 충격인성이 개선된 페라이트계 스테인리스강 및 이의 제조 방법
WO2020130257A1 (ko) 연성 및 가공성이 우수한 고강도 강판 및 그 제조방법
WO2019093689A1 (ko) 파단 특성이 우수한 고강도, 저인성 냉연강판 및 그 제조 방법
WO2020130614A2 (ko) 구멍확장성이 우수한 고강도 열연강판 및 그 제조방법
WO2021025248A1 (ko) 고온 내크립 특성이 향상된 페라이트계 스테인리스강 및 그 제조 방법
WO2023121133A1 (ko) 내식성과 성형성이 향상된 배기계 강관용 강판 및 그 제조방법
WO2022131540A1 (ko) 저온 충격인성이 우수한 고경도 방탄강 및 이의 제조방법
WO2017111437A1 (ko) 린 듀플렉스 스테인리스강 및 이의 제조 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19882479

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019882479

Country of ref document: EP

Effective date: 20210430