WO2022124609A1 - 연성 및 성형성이 우수한 고강도 용융아연도금강판 및 그 제조방법 - Google Patents

연성 및 성형성이 우수한 고강도 용융아연도금강판 및 그 제조방법 Download PDF

Info

Publication number
WO2022124609A1
WO2022124609A1 PCT/KR2021/016592 KR2021016592W WO2022124609A1 WO 2022124609 A1 WO2022124609 A1 WO 2022124609A1 KR 2021016592 W KR2021016592 W KR 2021016592W WO 2022124609 A1 WO2022124609 A1 WO 2022124609A1
Authority
WO
WIPO (PCT)
Prior art keywords
less
steel sheet
hot
dip galvanized
excluding
Prior art date
Application number
PCT/KR2021/016592
Other languages
English (en)
French (fr)
Inventor
최강현
안연상
류주현
Original Assignee
주식회사 포스코
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 포스코 filed Critical 주식회사 포스코
Priority to JP2023534273A priority Critical patent/JP2023554277A/ja
Priority to CN202180082737.0A priority patent/CN116635556A/zh
Priority to US18/265,246 priority patent/US20240026483A1/en
Priority to EP21903656.3A priority patent/EP4261314A4/en
Publication of WO2022124609A1 publication Critical patent/WO2022124609A1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/50Controlling or regulating the coating processes
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/38Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of manganese
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/18Hardening; Quenching with or without subsequent tempering
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/18Hardening; Quenching with or without subsequent tempering
    • C21D1/19Hardening; Quenching with or without subsequent tempering by interrupted quenching
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/74Methods of treatment in inert gas, controlled atmosphere, vacuum or pulverulent material
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/84Controlled slow cooling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/002Heat treatment of ferrous alloys containing Cr
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/005Heat treatment of ferrous alloys containing Mn
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/008Heat treatment of ferrous alloys containing Si
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0205Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0236Cold rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0263Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment following hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0273Final recrystallisation annealing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0278Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips involving a particular surface treatment
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/22Ferrous alloys, e.g. steel alloys containing chromium with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/26Ferrous alloys, e.g. steel alloys containing chromium with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/28Ferrous alloys, e.g. steel alloys containing chromium with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/32Ferrous alloys, e.g. steel alloys containing chromium with boron
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/60Ferrous alloys, e.g. steel alloys containing lead, selenium, tellurium, or antimony, or more than 0.04% by weight of sulfur
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/02Pretreatment of the material to be coated, e.g. for coating on selected surface areas
    • C23C2/022Pretreatment of the material to be coated, e.g. for coating on selected surface areas by heating
    • C23C2/0222Pretreatment of the material to be coated, e.g. for coating on selected surface areas by heating in a reactive atmosphere, e.g. oxidising or reducing atmosphere
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/02Pretreatment of the material to be coated, e.g. for coating on selected surface areas
    • C23C2/022Pretreatment of the material to be coated, e.g. for coating on selected surface areas by heating
    • C23C2/0224Two or more thermal pretreatments
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/04Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the coating material
    • C23C2/06Zinc or cadmium or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/26After-treatment
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/26After-treatment
    • C23C2/28Thermal after-treatment, e.g. treatment in oil bath
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/26After-treatment
    • C23C2/28Thermal after-treatment, e.g. treatment in oil bath
    • C23C2/29Cooling or quenching
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/34Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the shape of the material to be treated
    • C23C2/36Elongated material
    • C23C2/40Plates; Strips
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/001Austenite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/002Bainite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/005Ferrite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/008Martensite
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Definitions

  • the present invention relates to the production of high-strength hot-dip galvanized steel sheet with a tensile strength of 980 MPa or higher, which is mainly used for structural members of automobiles.
  • the present invention relates to a hot-dip galvanized steel sheet having a ratio (YS/TS) of 0.65 or more and excellent in ductility and formability, and a method for manufacturing the same.
  • precipitation-reinforced high-strength steel is a technology that secures strength by adding carbon and nitride forming elements such as Nb, Ti, V, etc. to precipitate carbon and nitride, and refining crystal grains through suppression of grain growth by fine precipitates.
  • the above technique has the advantage of being easy to secure high strength compared to the low manufacturing cost, but since the recrystallization temperature is rapidly increased due to fine precipitates, there is a disadvantage that high-temperature annealing must be performed to cause sufficient recrystallization to secure ductility.
  • precipitation-reinforced steel which is strengthened by precipitating carbon and nitride on a ferrite matrix, has a problem in that it is difficult to obtain high-strength steel of 600 MPa or more.
  • transformation-reinforced high-strength steel is DP (Dual Phase) steel composed of a soft ferrite matrix and two hard martensite phases, and TRIP (Transformation Induced Plasticity) steel with high ductility by using transformation-induced plasticity of retained austenite.
  • CP Complexed Phase steel composed of a complex structure of ferrite and hard bainite or martensite has been developed.
  • high-strength steel sheets are required to improve fuel efficiency and durability, and demand for high-strength steel sheets with a tensile strength of 780-980 MPa or more is increasing for vehicle body structures or reinforcement materials in terms of collision safety and passenger protection.
  • DP steel has excellent ductility and is the most widely used automotive steel sheet, but has a low yield ratio (YR) and poor formability and workability. Moreover, in the trend of the steel sheet gradually increasing in strength, cracks or wrinkles occur during press forming of automobile parts, making it difficult to manufacture complex parts. In the case of TRIP steel, the yield ratio is superior to that of DP steel, so the workability is good.
  • high-strength steel can be applied to more complex parts by manufacturing steel that satisfies a certain level of yield ratio while securing high ductility of existing DP steel through careful heat treatment. This can be achieved by utilizing the latest heat treatment technology, Quenching and Partitioning (Q&P) heat treatment to secure retained austenite.
  • Q&P Quenching and Partitioning
  • Patent Document 1 As a prior art for simultaneously securing the ductility and workability of the high-tensile steel sheet, the invention disclosed in Patent Document 1 is exemplified.
  • austenite that cannot be stabilized depending on the Q&P temperature, so fresh martensite (FM) is formed in the final cooling step.
  • FM fresh martensite
  • the invention disclosed in patent document 2 is mentioned.
  • the above technology utilizes tempered martensite generated through quenching heat treatment to obtain high strength and high ductility at the same time, and provides a method of manufacturing a cold rolled steel sheet excellent in plate shape after continuous annealing.
  • the carbon content is high at 0.2% or more, so the weldability is inferior, and the Si addition amount is also high at 1.0% or more, so there is a problem that dents may occur in the furnace during annealing.
  • Patent Document 3 which is a prior art, provides a method for manufacturing a high-strength cold-rolled steel sheet with excellent hole expandability through quenching and reheating.
  • Patent Document 1 Japanese Patent Laid-Open No. JP2002-177278
  • Patent Document 2 Japanese Patent Application Laid-Open No. JP2010-090432
  • Patent Document 3 Korean Patent Publication No. KR2016-0173006
  • the present invention relates to a hot-dip galvanized steel sheet having a yield strength (YS) and elongation (EL) relational expression YS ⁇ EL of 9000 or more and a yield ratio (YS/TS) of 0.65 or more, excellent in ductility and formability, used for automotive structural members, and
  • An object of the present invention is to provide a method for manufacturing the same.
  • the subject of this invention is not limited to the above-mentioned content.
  • the subject of the present invention will be understood from the overall content of the present specification, and those of ordinary skill in the art to which the present invention pertains will have no difficulty in understanding the additional subject of the present invention.
  • One aspect of the present invention is
  • the microstructure of the base steel sheet in area%, is the sum of bainite and tempered martensite: 70% or more, ferrite: 10% or less, and the remainder consists of fresh martensite and retained austenite, and the retained austenite fraction is the area It relates to a hot-dip galvanized steel sheet excellent in ductility and formability of 5% or less in %.
  • the continuously annealed steel sheet is first cooled at an average cooling rate of 10 °C or less to a temperature range of 630 to 680 °C, and secondary cooled at an average cooling rate of 5 °C or higher to a temperature of 300 to 350 °C using hydrogen gas. After, after reheating to a temperature of 400 ⁇ 480 °C, the process of holding for 60 seconds or more; and
  • Hot-dip galvanized steel sheet with excellent ductility and formability including a step of cooling at an average cooling rate of 5°C or higher to a temperature of Ms-100°C or lower after hot-dip galvanizing treatment at the maintained temperature of 400 to 450°C; it's about how
  • the microstructure of the hot-dip galvanized steel sheet is composed of, in area%, the sum of bainite and tempered martensite: 70% or more, ferrite: 10% or less, the remainder fresh martensite and retained austenite, and the retained austenite fraction This area % may be 5% or less.
  • It may further include a process of alloying heat treatment on the manufactured hot-dip galvanized steel sheet.
  • the present invention has a useful effect in manufacturing high-strength hot-dip galvanized steel sheet having an excellent yield ratio (YS/TS) compared to conventional DP steel while satisfying high ductility, which is a characteristic of DP steel, by optimizing the components and manufacturing process.
  • YS/TS yield ratio
  • high ductility which is a characteristic of DP steel
  • FIG. 1 is a diagram showing the change in the yield strength (YS) and the elongation (EL) relational expression YS ⁇ EL according to the yield ratio (YS / TS) in an embodiment of the present invention.
  • FIG. 2 is a diagram showing changes in the yield strength (YS) and elongation (EL) relational expression YS ⁇ EL according to Relation 1 in an embodiment of the present invention.
  • FIG 3 is a diagram showing a change in the hole expandability value according to Relation 1 in an embodiment of the present invention.
  • the present inventors confirmed that the workability can be improved by increasing the yield ratio compared to the conventional DP steel when the retained austenite, ferrite, bainite, and fresh martensite are introduced into the final microstructure by optimizing the steel composition and manufacturing process. did In addition, this microstructure change has the effect of improving ductility by relieving the concentration of local stress and strain after necking and delaying the generation, growth, and coalescence of voids that cause ductile failure, and furthermore, the residual amount of less than 5% during final cooling It was confirmed through an experiment that austenite was formed to further improve ductility, and the present invention was completed based on the experimental results.
  • the present invention reduces the fraction of ferrite and martensite compared to the conventional DP steel and introduces retained austenite and bainite, thereby increasing the yield ratio compared to the conventional DP steel, thereby securing workability.
  • it helps to improve ductility by forming a large amount of movable dislocations around retained austenite during plastic deformation.
  • This precisely controlled composite structure steel can secure ductility while maintaining a higher yield ratio compared to existing DP steel. Through this, it is possible to manufacture a high-tensile hot-dip galvanized steel sheet having excellent ductility and workability.
  • the hot-dip galvanized steel sheet having excellent ductility and formability of the present invention is, by weight, carbon (C): 0.06 to 0.16%, silicon (Si): 0.8% or less (excluding 0%), manganese (Mn): 2.1 ⁇ 2.7%, Molybdenum (Mo): 0.4% or less (excluding 0%), Chromium (Cr): 1% or less (excluding 0%), Phosphorus (P): 0.1% or less (excluding 0%), Sulfur (S) : 0.02% or less, aluminum (sol.Al): 1% or less (excluding 0%), titanium (Ti): 0.001 to 0.04%, niobium (Nb): 0.001 to 0.04%, nitrogen (N): 0.01% or less (excluding 0%), boron (B): 0.01% or less, antimony (Sb): 0.05% or less, the remainder including Fe and other unavoidable impurities, C, The components of Si, Al, Mn, Cr, Mo
  • Carbon (C) is a very important element added to strengthen the metamorphic structure. Carbon promotes the formation of hard martensite in composite steel to improve strength. As the carbon content increases, the amount of martensite increases. However, if the content exceeds 0.16%, the strength of martensite increases, but the difference in strength with ferrite with a low carbon concentration becomes large. Due to this difference in strength, fracture easily occurs at the interphase interface during plastic deformation, thereby reducing ductility and work hardening rate. In addition, due to poor weldability, welding defects occur when processing customer parts. On the other hand, when the carbon content is lowered to less than 0.06%, it is difficult to secure the desired strength.
  • the carbon content it is preferable to limit the carbon content to a range of 0.06 to 0.16%, and more preferably, to control it to a range of 0.07 to 0.15%.
  • Silicon (Si) is a ferrite stabilizing element and contributes to the formation of retained austenite by promoting ferrite transformation and promoting carbon concentration in untransformed austenite during the Q&P process. In addition, it is effective in reducing the interphase hardness difference by increasing the strength of ferrite through solid solution strengthening, and is a useful element that can secure strength without reducing the ductility of the steel sheet. However, when it exceeds 0.8%, it causes surface scale defects to adversely affect the plating surface quality, and also lowers weldability and chemical conversion treatment property, so that the upper limit of the addition amount is limited to 0.8%. More preferably, it is controlled to 0.7% or less.
  • Manganese (Mn) is an element for reinforcing steel while preventing hot brittleness due to the generation of FeS by refining particles without reducing ductility and completely precipitating sulfur (S) in the steel as MnS. At the same time, in composite steel, it serves to lower the critical cooling rate at which the martensite phase is obtained, thereby facilitating the formation of martensite.
  • the content is less than 2.1%, it is difficult to secure the strength targeted in the present invention, whereas if it exceeds 2.7%, problems such as weldability and hot-rollability are highly likely to occur, and martensite is formed excessively to the material This is unstable, and there is a problem in that Mn-Bands (bands of Mn oxide) are formed in the tissue, which increases the risk of processing cracks and plate breakage. In addition, there is a problem that Mn oxide is eluted on the surface during annealing, greatly impairing plating properties. Therefore, in the present invention, it is preferable to limit the content of Mn to 2.1 to 2.7%, and more preferably, to control it in the range of 2.3 to 2.5%.
  • Molybdenum is an element that delays the transformation of austenite into pearlite and improves the refinement and strength of ferrite. Such Mo improves the hardenability of steel and has the advantage that the yield ratio can be controlled by finely forming martensite at grain boundaries.
  • the higher the content the higher the manufacturing cost increases, which is disadvantageous in terms of cost. Therefore, it is preferable to appropriately control the content.
  • the content of Mo is limited to 0.4% or less, and 0% is excluded in consideration of the amount unavoidably added for manufacturing. More preferably, the Mo content is controlled to 0.3% or less.
  • Chromium (Cr) is a component added to improve hardenability of steel and secure high strength. And as an element that plays a very important role in the formation of martensite, it is advantageous in manufacturing a composite steel having high ductility by minimizing a decrease in elongation compared to an increase in strength.
  • Cr-based carbides such as Cr 23 C 6 are formed. Some of these carbides are dissolved in the annealing process, and some remain undissolved. After cooling, the amount of solid solution C in martensite is lowered to an appropriate level It is an element advantageous for manufacturing composite structure steel with a low yield ratio by suppressing the occurrence of elongation at the yield point because it can be controlled.
  • the content of Cr when the content exceeds 1%, the effect is not only saturated, but there is a problem in cold rolling performance due to excessive hot-rolling strength increase. There is a problem in that the elongation decreases due to coarsening. Therefore, in the present invention, it is preferable to limit the content of Cr to 1% or less, and 0% is excluded in consideration of the amount unavoidably added in manufacturing. More preferably, the Cr content is controlled to 0.6% or less.
  • ⁇ P 0.1% or less (excluding 0%)
  • Phosphorus (P) is a substitution element having the greatest solid solution strengthening effect, and is the most advantageous element for improving in-plane anisotropy and securing strength without increasing formability.
  • Phosphorus (P) is a substitution element having the greatest solid solution strengthening effect, and is the most advantageous element for improving in-plane anisotropy and securing strength without increasing formability.
  • Phosphorus (P) is a substitution element having the greatest solid solution strengthening effect, and is the most advantageous element for improving in-plane anisotropy and securing strength without increasing formability.
  • the possibility of brittle fracture increases significantly, and there is a problem in that the possibility of plate breakage of the slab during hot rolling and acting as an element impairing the plating surface properties. 0% is excluded in consideration of the added level.
  • S is an impurity element that is unavoidably added to steel, and it is an element that reduces ductility and weldability, so it is important to manage it as low as possible.
  • S Sulfur
  • 0% is excluded in consideration of the level that is unavoidably added during the manufacturing process.
  • Aluminum for acid value (sol.Al) is an element added for grain size refinement and deoxidation of steel, and is a ferrite stabilizing element similar to Si. And it is an effective component for improving martensite hardenability and forming retained austenite by distributing carbon in ferrite to austenite.
  • it is a useful element that can improve the ductility of the steel sheet by effectively suppressing the precipitation of carbides in the bainite when maintained in the bainite region during annealing.
  • the content exceeds 1.0%, it is advantageous to increase the strength due to the effect of grain refinement, but there is a problem that not only increases the possibility of surface defects of the plated steel sheet due to excessive formation of inclusions during the steel making operation, but also increases the manufacturing cost. . Therefore, in the present invention, it is preferable to control the content of sol.Al to 1.0% or less.
  • Titanium (Ti) and niobium (Nb) are effective elements for increasing the strength of a steel sheet and refining grains by forming nano-precipitates. When these elements are added, they combine with carbon to form very fine nano-precipitates. These nano-precipitates serve to reduce the hardness difference between the phases by strengthening the matrix.
  • the content of Ti and Nb is less than 0.001%, respectively, it is difficult to secure such an effect, and when the content exceeds 0.04%, respectively, the manufacturing cost increases and ductility may be greatly reduced due to excessive precipitates. Therefore, it is preferable to limit the Ti and Nb contents to 0.001 to 0.04%, respectively, and more preferably, to control them in the range of 0.005 to 0.02%, respectively.
  • ⁇ N 0.01% or less (excluding 0%)
  • Nitrogen (N) is a component that has an effective action to stabilize austenite, but when it exceeds 0.01%, there is a problem in that the refining cost of steel rises rapidly, and the risk of cracking during casting due to formation of AlN is greatly increased, so its upper limit It is preferable to limit it to 0.01%. However, 0% is excluded in consideration of the unavoidably added level.
  • Boron (B) is a component that delays the transformation of austenite into pearlite during the cooling process during annealing, and is a hardenable element that suppresses ferrite formation and promotes martensite formation. However, if the content exceeds 0.003%, excessive B is concentrated on the surface, which may lead to deterioration of plating adhesion, so the content is controlled to 0.003% or less. More preferably, the B content is controlled to 0.002% or less.
  • Antimony (Sb) is distributed at grain boundaries and delays diffusion of oxidizing elements such as Mn, Si, and Al through grain boundaries to suppress surface thickening of oxides, and also suppresses surface thickening due to temperature rise and changes in hot rolling process. It has an excellent effect on However, when the content exceeds 0.05%, the effect is not only saturated, but also the manufacturing cost and processability are inferior, so the content is limited to 0.05% or less. More preferably, the Sb content is controlled to 0.03% or less.
  • the hot-dip galvanized steel sheet of the present invention can secure ductility while improving workability by increasing the yield ratio compared to the existing DP steel.
  • the microstructure and phase fraction control conditions as follows.
  • the microstructure fraction, distribution and concentration of components in the microstructure will be described.
  • the hot-dip galvanized steel sheet of the present invention in terms of area%, has a microstructure, the sum of bainite and tempered martensite: 70% or more, ferrite: 10% or less, and the balance consists of fresh martensite and retained austenite, The residual austenite fraction is 5% or less in terms of area%. If the sum of bainite and tempered martensite is less than 70% or ferrite exceeds 10%, there is a problem in that a desired yield ratio cannot be secured. In addition, there is a problem in that the content of Si and Al must be increased in order for the retained austenite to exceed 5%.
  • the present invention can manufacture a hot-dip galvanized steel sheet having a yield strength (YS) and elongation (EL) relational formula YS ⁇ EL of 9000 or more and a yield ratio (YS/TS) of 0.65 or more.
  • YS yield strength
  • EL elongation
  • YS/TS yield ratio
  • Si and Al are ferrite stabilizing elements that contribute to the formation of retained austenite and martensite by promoting ferrite transformation and promoting C concentration into untransformed austenite.
  • C is also an element contributing to martensite formation and fraction adjustment by promoting C concentration in untransformed austenite.
  • Mn, Cr, Mo, and B are elements contributing to the improvement of hardenability, their contribution to the concentration of C in austenite is relatively low compared to C, Si, and Al. Therefore, it is very important to adjust the ratio of C, Si, Al and other hardenable elements Mn, Cr, Mo, and B well.
  • the yield strength (YS), elongation (EL) relational expression YS ⁇ EL according to the yield ratio (YS / TS) can be secured to 9000 or more, , furthermore, it is possible to secure a hole expandability value of 30% or more by securing the fraction of bainite and tempered martensite to 70% or more and at the same time reducing the interphase hardness difference.
  • the value defined by Relation 1 exceeds 0.35, the above-described effect disappears.
  • the composite structure in which ferrite, bainite, martensite, and retained austenite are simultaneously formed disperses each phase finely and uniformly and at the same time reduces the difference in hardness between phases. can improve
  • this microstructure change has the effect of improving ductility by relieving the concentration of local stress and strain after necking and delaying the generation, growth, and coalescence of voids that cause ductile failure.
  • HER hole expansion ratio
  • YS yield strength
  • EL elongation
  • YS/TS yield ratio
  • bainite has the effect of reducing the difference in hardness between the phases of ferrite and martensite.
  • the process of partially forming ferrite is also important.
  • the fraction of ferrite can be controlled to 10% or less through single-phase station annealing or single-phase station direct annealing, and a small amount of additional ferrite can be formed in the slow cooling section. Through this, further improvement of ductility is promoted.
  • by precipitating fine nano-precipitates in ferrite it is possible to further reduce the difference in hardness between phases to improve workability.
  • the desired strength can be secured by introducing a small amount of fresh martensite during final cooling.
  • the method for manufacturing a hot-dip galvanized steel sheet of the present invention includes a step of preparing a steel slab satisfying the compositional components and Relational Equation 1, and then reheating it; a process of hot rolling the reheated slab so that the temperature at the exit side of the finish rolling becomes Ar3 ⁇ Ar3 + 50 °C, and then winding it at 400 ⁇ 650 °C and cooling it to room temperature at an average cooling rate of 0.1 °C or less; manufacturing a cold rolled steel sheet by cold rolling the cooled hot rolled steel sheet at a reduction ratio of 40 to 70%; continuous annealing of the cold-rolled steel sheet at a temperature of 820 to 860°C; The continuously annealed steel sheet is first cooled at an average cooling rate of 10 °C or less to a temperature range of 630 to 680 °C, and secondary cooled at an average cooling rate of 5 °C or higher to a temperature of 300 to 350 °C using hydrogen gas.
  • the slab reheating process is a process of heating a steel slab in order to smoothly perform a subsequent rolling process and obtain sufficient properties of a target steel sheet.
  • the present invention is not particularly limited to such reheating conditions, and normal reheating conditions are sufficient.
  • One example is to reheat in the temperature range of 1100 ⁇ 1300 °C.
  • the reheated steel slab is finish hot rolled so that the temperature at the exit side of the finish rolling is Ar3 ⁇ Ar3 + 50 °C.
  • the present invention is not limited to a specific hot rolling condition at this time, and a normal hot rolling temperature may be used.
  • the cold rolled steel sheet is manufactured by cold rolling the cooled hot rolled steel sheet at a reduction ratio of 40 to 70%.
  • cold rolling is performed at a reduction ratio of 40 to 70%. If the cold rolling reduction ratio is less than 40%, it is difficult to secure the target thickness as well as difficult to correct the shape of the steel sheet. There is a problem that brings Therefore, in the present invention, it is preferable to limit the cold rolling reduction to 40 to 70%.
  • continuous annealing is performed on the cold-rolled steel sheet in a temperature range of 820 to 860°C.
  • This continuous annealing process is to form ferrite and austenite at the same time as recrystallization, and to distribute carbon.
  • the continuous annealing temperature is less than 820° C., it is difficult to secure a sufficient austenite fraction, so that the desired martensite, bainite and retained austenite fractions cannot be obtained after annealing.
  • productivity declines and excessive austenite is formed, and the bainite and martensite fractions after cooling significantly increase, which increases yield strength and decreases ductility, making it difficult to secure high ductility properties.
  • the surface thickening caused by elements such as Si, Mn, and B that reduce the wettability of hot-dip galvanizing may deteriorate, resulting in deterioration of the plating surface quality.
  • the continuously annealed steel sheet is first cooled at an average cooling rate of 10° C. or less to a temperature range of 630 to 680° C., and an average cooling rate of 5° C. or more to a temperature of 300 to 350° C. using hydrogen gas. After secondary cooling, reheat to a temperature of 400 to 480 °C, and hold for 60 seconds or more.
  • the continuously annealed steel sheet is first cooled at an average cooling rate of 10°C or less to a temperature range of 630-680°C, and 5°C/s or more up to a temperature range of 300-360°C using a hydrogen quenching facility using hydrogen gas. Secondary cooling at an average cooling rate introduces some fresh martensite. Then, it is immediately reheated to a temperature of 400 ⁇ 480°C and maintained for more than 60 seconds to form bainite, and carbon is concentrated in the surrounding untransformed austenite.
  • the quenching temperature it is very important to control the quenching temperature to 300 ⁇ 360°C below Ms, which is the martensite formation temperature during secondary cooling. If the quenching temperature exceeds 360° C., the initially formed fraction of martensite is very small or it is difficult to form martensite, so carbon partitioning does not occur smoothly, so that it is difficult to form a desired fraction of retained austenite during final cooling. On the other hand, if it is less than 300°C, the plate shape may deteriorate and equipment load may occur.
  • the reheating temperature it is important to control the reheating temperature to 400 ⁇ 480 °C higher than the Ms temperature. If the reheating temperature is less than 400 °C, the formation of bainite does not occur quickly and the carbon partitioning is not made smoothly. That is, it is very important to carefully control the secondary quenching temperature and reheating temperature during Q&P annealing to form a desired microstructure.
  • fresh martensite adjacent to bainite is adjacent to bainite by hot-dip galvanizing treatment of the maintained steel sheet at a temperature of 400 to 450° C.
  • a final product in which is formed can be manufactured.
  • the temper rolling may be performed at a reduction ratio of less than 1%.
  • the present invention may further include a step of alloying heat treatment on the manufactured hot-dip galvanized steel sheet.
  • Steel slabs having the composition shown in Table 1 were prepared. And after reheating the steel slab to a temperature range of 1050 to 1250 °C, finish hot rolling was performed at a temperature of 950 °C within the range of Ar3 to Ar3 + 50 °C.
  • the hot-rolled steel sheets in this way were wound at 400 to 650° C. and then cooled at a cooling rate of 0.1° C. or less per second to prepare a hot-rolled steel sheet. After pickling the hot-rolled steel sheet, it was cold-rolled at a reduction ratio of 40 to 70%. Thereafter, the cold-rolled steel sheet was subjected to continuous annealing at the temperature shown in Table 2 below, and then Q&P heat treatment was performed under the conditions shown in Table 2 below.
  • the QP heat-treated cold-rolled steel sheet is then subjected to hot-dip galvanizing treatment, alloying heat treatment, and final cooling to introduce fresh martensite and retained austenite, followed by temper rolling of less than 1% to obtain a hot-dip galvanized steel sheet. prepared.
  • microstructure and mechanical properties were evaluated for each of the steel sheets prepared as described above, and the results are shown in Table 3 below.
  • a tensile test for each test piece was performed in the L direction using ASTM standards to evaluate tensile properties (tensile strength (TS), yield strength (YS), and elongation (El)).
  • TS tensile strength
  • El elongation
  • the microstructure fraction was used by analyzing the matrix structure at the plate thickness of 1/4t of the annealed steel sheet. Specifically, ferrite, bainite, fresh martensite, and austenite fractions were measured using FE-SEM and image analyzer after nital corrosion. In addition, hole expandability was measured using a hole expandability tester.
  • N was contained as an impurity element within the range of 30-50 ppm.
  • F stands for ferrite
  • B stands for bainite
  • TM stands for tempered martensite
  • FM stands for fresh martensite
  • RA retained austenite
  • the yield strength (YS) and the elongation relation YS ⁇ EL are 9000 or more, and the yield When the ratio (YS/TS) is 0.65 or more, it can be seen that the material and workability of the steel sheet targeted in the present invention can be secured.
  • Comparative Example 1 the steel composition was within the range of the present invention, but the secondary cooling temperature was too low, so that the fraction of retained austenite exceeded 5%, and a load was generated on the equipment due to the excessive cooling rate.
  • the steel composition component was within the range of the present invention, but the secondary cooling temperature was too high, so that tempered martensite was not sufficiently formed and carbon partitioning did not occur, so that the target yield ratio could not be obtained.
  • Comparative Example 3 the steel composition was within the range of the present invention, but the reheating temperature was too low to obtain the desired strength because tempered martensite was excessively formed. The target yield ratio cannot be obtained because the martensite fraction is high.
  • Comparative Examples 5-10 is a case where both the steel composition component and the manufacturing process conditions are outside the scope of the present invention. Specifically, in Comparative Examples 5-6, the steel composition component is outside the scope of the present invention, and the continuous annealing temperature and reheating temperature are within the scope of the invention. , ferrite was formed excessively, and the desired yield ratio could not be obtained. In addition, in Comparative Examples 7-8, the steel composition was outside the scope of the present invention, the secondary cooling temperature and the reheating temperature were too high, and the target yield ratio could not be obtained, and in Comparative Examples 9-10, the reheating temperature was too high, the target I could't get the surrender fee.
  • Figure 1 shows the change of the relationship formula YS ⁇ EL in the yield strength (YS) and the elongation (EL) according to the yield ratio (YS / TS) in Examples of the present invention (invention steel 1-6 and comparative steel 5-10)
  • Figure 2 is a figure showing the change in yield strength (YS) and elongation (EL) relational expression YS ⁇ EL according to Relational Equation 1 in an embodiment of the present invention (invention steel 1-6 and comparative steel 5-10)
  • Figure 3 is a figure showing the change of the hole expandability value according to the relation 1 in the embodiment of the present invention (invention steel 1-6 and comparative steel 5-10).
  • invention steel 1-6 in FIGS. 1-3 shows the invention steel corresponding to invention example 1-6,

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Thermal Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Heat Treatment Of Sheet Steel (AREA)
  • Heat Treatment Of Steel (AREA)

Abstract

연성 및 성형성이 우수한 고강도 용융아연도금강판이 제공된다. 본 발명의 용융아연도금강판은, 중량%로, 탄소(C): 0.06~0.16%, 실리콘(Si): 0.8% 이하(0% 제외), 망간(Mn): 2.1~2.7%, 몰리브덴(Mo): 0.4% 이하(0% 제외), 크로뮴(Cr): 1% 이하(0% 제외), 인(P): 0.1% 이하(0% 제외), 황(S): 0.02% 이하, 알루미늄(sol.Al): 1% 이하(0% 제외), 타이타늄(Ti): 0.001~0.04%, 나이오븀(Nb): 0.001~0.04%, 질소(N): 0.01% 이하(0% 제외), 붕소(B): 0.01% 이하, 안티몬(Sb): 0.05% 이하, 잔부 Fe 및 기타 불가피한 불순물을 포함하고, 소지강판 두께 1/4t 지점의 기지조직 내 소강 성분 중 C, Si, Al, Mn, Cr, Mo 및 B의 성분이 관계식 1을 만족하고, 소지강판의 미세조직이, 면적%로, 베이나이트 및 템퍼드 마르텐사이트의 합: 70% 이상, 페라이트: 10% 이하, 잔부 프레시 마르텐사이트와 잔류 오스테나이트로 구성되며, 상기 잔류 오스테나이트 분율이 면적%로 5% 이하이다.

Description

연성 및 성형성이 우수한 고강도 용융아연도금강판 및 그 제조방법
본 발명은 주로 자동차 구조부재용으로 사용되는 인장강도 980MPa급 이상의 고강도 용융아연도금강판의 제조에 관한 것으로, 보다 상세하게는 항복강도(YS) 및 연신율(EL) 관계식 YS×EL이 9000 이상이면서, 항복비(YS/TS)가 0.65 이상인 연성 및 성형성이 우수한 용융아연도금강판 및 그 제조방법에 관한 것이다.
최근 자동차 산업에서 지구 환경 보전을 위한 규제가 점점 강화되어 가는 추세이다. 그로 인해 연비 규제가 강화되고 있으며, 이를 해결하기 위한 경량화 및 고강도 강판의 사용이 요구되고 있다. 또한 탑승자 보호를 위한 충격 안전성 규제 또한 확대되고 있으며, 차체의 내충격성 향상을 위해 멤버(member), 시트 레일(seat rail) 및 필러(pillar) 등의 구조부재에 항복강도가 우수한 고강도강이 채용되고 있다. 그러나 강판의 고강도화는 연성 및 성형성의 저하를 초래할 수 있다. 이를 해결하기 위해, 고강도와 높은 성형성을 동시에 만족하는 재료의 개발이 요구되고 있다. 일반적으로 강판의 강도 증가에 따라 연신율이 감소하게 됨으로써 가공성이 저하되는 문제점이 발생하므로, 이를 보완할 수 있는 재료의 개발이 요구되고 있는 실정이다. 통상적으로, 강을 강화하는 방법으로는 고용강화, 석출강화, 결정립 미세화에 의한 강화, 변태강화 등이 연구되어 왔다. 그러나, 상기한 방법 중 고용강화 및 결정립 미세화를 이용한 강재는 인장강도 490MPa급 이상의 고강도강을 제조하기가 매우 어렵다는 문제점이 있다.
한편, 석출강화형 고강도 강은 Nb, Ti, V 등과 같은 탄, 질화물 형성원소를 첨가함으로써 탄, 질화물을 석출시켜, 미세 석출물에 의한 결정립 성장 억제를 통해 결정립을 미세화시켜 강도를 확보하는 기술이다. 상기 기술은 낮은 제조원가 대비 높은 강도를 확보하기 쉽다는 장점을 가지고 있으나, 미세 석출물에 의해 재결정온도가 급격히 상승하게 됨으로써, 충분한 재결정을 일으켜 연성을 확보하기 위해서는 고온 소둔을 실시하여야 한다는 단점이 있다. 또한, 페라이트 기지에 탄, 질화물을 석출시켜 강화하는 석출강화강은 600MPa급 이상의 고강도 강을 얻기 곤란하다는 문제점이 있다.
한편, 변태강화형 고강도강은 연질의 페라이트 기지와 경질의 마르텐사이트 2상으로 구성된 DP(Dual Phase)강, 잔류 오스테나이트의 변태유기 소성을 이용하여 고연성을 확보한 TRIP(Transformation Induced Plasticity)강 혹은 페라이트와 경질의 베이나이트 또는 마르텐사이트의 복합 조직으로 구성되는 CP(Complexed Phase)강 등 여러 가지가 개발되어 왔다. 최근 자동차용 강판은 연비향상이나 내구성 향상을 위하여 더욱 고강도의 강판이 요구되고 있으며, 충돌 안전성 및 승객의 보호차원에서 차체 구조용이나 보강재로서 인장강도 780~980MPa 이상의 고강도 강판의 수요가 증가하고 있다. 그 중에서 DP강은 연성이 우수하며 가장 범용적으로 쓰이는 자동차 강판이지만, 항복비(Yield Ratio, YR)가 낮고 성형성 및 가공성이 열위한 단점을 가지고 있다. 더욱이 강판이 점차로 고강도화되는 추세에서 자동차 부품을 프레스 성형하는 도중 크랙이나 주름이 발생하여 복잡한 부품을 제조하는 데 어려움을 겪고 있다. TRIP강의 경우 DP강 대비 항복비가 우수하여 가공성이 양호하나, 높은 연신율의 확보를 위해 Si, Al을 다량 첨가하여 용접성이 열위한 단점이 있다.
이러한 기존 DP강의 단점들을 극복하기 위하여, 주의깊은 열처리를 통해 기존 DP강의 높은 연성을 확보하면서도 일정 수준 이상의 항복비를 만족하는 강재를 제조함으로써 보다 복잡한 부품에 고강도강을 확대 적용할 수 있다. 이는 잔류 오스테나이트를 확보할 수 있는 최신 열처리 기술인 Q&P(Quenching and Partitioning) 열처리를 활용하여 달성할 수 있다.
상기 고장력강판의 연성 및 가공성을 동시에 확보하기 위한 종래기술로는 특허문헌 1에 개시된 발명을 들 수 있다. 상기 기술에서는 Q&P 온도에 따라 안정화되지 못하는 오스테나이트가 상당량 존재하여 프레시 마르텐사이트(FM)가 최종 냉각 단계에서 형성되는데, 프레시 마르텐사이트는 탄소함량이 높아 구멍확장성을 저해하므로 열처리 온도는 주의깊게 선정되어야 한다.
또다른 종래기술로서 특허문헌 2에 개시된 발명을 들 수 있다. 상기 기술은 퀜칭 열처리를 통해 생성되는 템퍼드 마르텐사이트를 활용하여 고강도와 고연성을 동시에 얻으며, 연속소둔 후의 판형상도 뛰어난 냉연강판의 제조방법을 제공한다. 그러나 상기 기술은 탄소가 0.2% 이상으로 높아서 용접성이 열위하며, Si 첨가량도 1.0% 이상으로 높아 소둔시 로내 덴트가 발생할 수 있는 문제점이 있다.
그리고 종래기술인 특허문헌 3에 개시된 발명은 퀜칭 및 재가열을 통해 구멍확장성이 우수만 고강도 냉연강판을 제조하는 방법을 제공하는데, 역시 Si 첨가량이 1.3% 이상으로 높아 로내 덴트가 발생할 수 있다.
[선행기술문헌]
[특허문헌]
(특허문헌 1) 일본 공개특허공보 JP2002-177278호
(특허문헌 2) 일본 공개특허공보 JP2010-090432호
(특허문헌 3) 대한민국 공개특허공보 KR2016-0173006호
본 발명은 항복강도(YS) 및 연신율(EL) 관계식 YS×EL이 9000 이상이면서, 항복비(YS/TS)가 0.65 이상인, 자동차 구조부재용으로 사용되는 연성 및 성형성이 우수한 용융아연도금강판 및 그 제조방법을 제공함을 목적으로 한다.
한편, 본 발명의 과제는 상술한 내용에 한정하지 않는다. 본 발명의 과제는 본 명세서의 내용 전반으로부터 이해될 수 있을 것이며, 본 발명이 속하는 기술분야에서 통상의 지식을 가지는 자라면 본 발명의 부가적인 과제를 이해하는데 아무런 어려움이 없을 것이다.
본 발명의 일측면은,
중량%로, 탄소(C): 0.06~0.16%, 실리콘(Si): 0.8% 이하(0% 제외), 망간(Mn): 2.1~2.7%, 몰리브덴(Mo): 0.4% 이하(0% 제외), 크로뮴(Cr): 1% 이하(0% 제외), 인(P): 0.1% 이하(0% 제외), 황(S): 0.02% 이하, 알루미늄(sol.Al): 1% 이하(0% 제외), 타이타늄(Ti): 0.001~0.04%, 나이오븀(Nb): 0.001~0.04%, 질소(N): 0.01% 이하(0% 제외), 붕소(B): 0.01% 이하, 안티몬(Sb): 0.05% 이하, 잔부 Fe 및 기타 불가피한 불순물을 포함하고,
소지강판 두께 1/4t 지점의 기지조직 내 소강 성분 중 C, Si, Al, Mn, Cr, Mo 및 B의 성분이 하기 관계식 1을 만족하고,
소지강판의 미세조직이, 면적%로, 베이나이트 및 템퍼드 마르텐사이트의 합: 70% 이상, 페라이트: 10% 이하, 잔부 프레시 마르텐사이트와 잔류오스테나이트로 구성되며, 상기 잔류오스테나이트 분율이 면적%로 5% 이하인 연성 및 성형성이 우수한 용융아연도금강판에 관한 것이다.
[관계식 1]
(4×C + Si + Al)/(Mn + Cr + 5×Mo + 200×B)≤0.35
상기 용융아연 도금강판은, 구멍확장성(Hole Expansion Ratio, HER)이 30% 이상이며, 항복강도(YS) 및 연신율(EL) 관계식 YS×EL이 9000 이상이면서, 항복비(YS/TS)가 0.65 이상일 수 있다.
또한 본 발명의 다른 측면은,
상기 조성성분과 관계식 1을 만족하는 강 슬라브를 마련한 후, 이를 재가열하는 공정;
상기 재가열된 슬라브를 마무리압연 출구측 온도가 Ar3~Ar3+50℃가 되도록 열간압연하고, 이어, 400~650℃에서 권취한 후 0.1℃이하의 평균냉각속도로 상온까지 냉각시키는 공정;
상기 냉각된 열연강판을 40~70%의 압하율로 냉간압연하여 냉연강판을 제조하는 공정;
상기 냉연강판을 820~860℃의 온도에서 연속 소둔하는 공정;
상기 연속소둔된 강판을 630~680℃의 온도범위까지 10℃이하의 평균냉각속도로 1차 냉각하고, 수소 가스를 이용하여 300~350℃의 온도까지 5℃이상의 평균 냉각속도로 2차 냉각한 후, 400~480℃의 온도까지 재가열한 후, 60초 이상 유지하는 공정; 및
상기 유지된 400~450℃의 온도에서 용융아연도금 처리한 후, Ms~100℃이하의 온도까지 5℃이상의 평균냉각속도로 냉각하는 공정;을 포함하는 연성 및 성형성이 우수한 용융아연도금강판 제조방법에 관한 것이다.
상기 용융아연도금강판의 미세조직이, 면적%로, 베이나이트 및 템퍼드 마르텐사이트의 합: 70% 이상, 페라이트: 10% 이하, 잔부 프레시 마르텐사이트, 잔류오스테나이트로 구성되며, 잔류오스테나이트 분율이 면적%로 5% 이하일 수 있다.
상기 제조된 용융아연도금강판에 합금화 열처리하는 공정을 추가로 포함할 수도 있다.
상술한 바와 같이, 본 발명은 성분 및 제조공정을 최적화하여, DP강의 특성인 높은 연성을 만족하면서도, 종래의 DP강 대비 항복비(YS/TS)가 우수한 고강도 용융아연도금강판을 제조함에 유용한 효과가 있다. 이로 인해 프레스 성형시 발생하는 크랙 등 가공 결함을 방지함으로써, 높은 성형성을 요구하는 복잡한 형상을 갖는 자동차용 구조부재에 다양하게 이용될 수 있으며, 아울러 재질 및 도금 특성을 일시에 확보할 수 있는 장점이 있다.
도 1은 본 발명의 실시예에서 항복비 (YS/TS)에 따른 항복강도(YS)와 연신율(EL) 관계식 YS×EL의 변화를 나타내는 그림이다.
도 2는 본 발명의 실시예에서 관계식 1에 따른 항복강도(YS)와 연신율(EL) 관계식 YS×EL의 변화를 나타내는 그림이다.
도 3은 본 발명의 실시예에서 관계식 1에 따른 구멍확장성 값의 변화를 나타내는 그림이다.
이하, 본 발명을 설명한다.
본 발명자들은 강 조성성분 및 제조공정을 최적화하여 최종 미세조직에 잔류 오스테나이트 및 페라이트, 베이나이트, 프레시 마르텐사이트를 도입하게 되면 종래의 DP강 대비 항복비를 상향하여 가공성을 향상시킬 수 있음을 확인하였다. 또한 이러한 미세조직 변화는 necking 이후에 국부적인 응력 및 변형의 집중을 완화시켜 연성파괴를 일으키는 void의 생성 및 성장, 합체를 지연시킴으로써 연성이 향상되는 효과가 있으며, 나아가 최종 냉각 시 5% 이하의 잔류오스테나이트가 형성되어 연성을 더욱 향상시킬 수 있다는 것을 실험을 통해 확인하고, 그 실험결과에 기초하여 본 발명을 완성하게 되었다.
즉, 본 발명은 기존 DP강 대비 페라이트 및 마르텐사이트의 분율을 감소시키고 잔류 오스테나이트와 베이나이트를 도입함으로써, 기존 DP강 대비 항복비를 증가시켜 가공성을 확보할 수 있다. 또한 소성변형시 잔류 오스테나이트 주변에서 다량의 가동전위를 형성하여 연성 향상에 도움을 준다. 이렇게 정밀 제어한 복합조직강은 기존 DP강 대비 높은 항복비를 유지하면서도 연성을 확보할 수 있다. 이를 통해, 우수한 연성 및 가공성을 갖는 고장력 용융아연도금강판을 제조할 수 있다.
이러한 본 발명의 연성 및 성형성이 우수한 용융아연도금강판은, 중량%로, 탄소(C): 0.06~0.16%, 실리콘(Si): 0.8% 이하(0% 제외), 망간(Mn): 2.1~2.7%, 몰리브덴(Mo): 0.4% 이하(0% 제외), 크로뮴(Cr): 1% 이하(0% 제외), 인(P): 0.1% 이하(0% 제외), 황(S): 0.02% 이하, 알루미늄(sol.Al): 1% 이하(0% 제외), 타이타늄(Ti): 0.001~0.04%, 나이오븀(Nb): 0.001~0.04%, 질소(N): 0.01% 이하(0% 제외), 붕소(B): 0.01% 이하, 안티몬(Sb): 0.05% 이하, 잔부 Fe 및 기타 불가피한 불순물을 포함하고, 소지강판 두께 1/4t 지점의 기지조직 내 소강 성분 중 C, Si, Al, Mn, Cr, Mo 및 B의 성분이 하기 관계식 1을 만족하고, 소지강판의 미세조직이, 면적%로, 베이나이트 및 템퍼드 마르텐사이트의 합: 70% 이상, 페라이트: 10% 이하, 잔부 프레시 마르텐사이트와 잔류오스테나이트로 구성되며, 상기 잔류 오스테나이트 분율이 면적%로 5% 이하이다.
이하, 먼저 본 발명의 용융아연도금강판을 이루는 소지강판의 합금 조성성분 및 그 함량 제한사유를 설명한다. 여기에서, "%"는 달리 규정하는 없다면 중량%를 나타낸다.
·C: 0.06~0.16%
탄소(C)는 변태조직의 강화를 위해 첨가되는 매우 중요한 원소이다. 탄소는 복합조직강에서 경한 마르텐사이트의 형성을 촉진하여 강도를 향상시킨다. 탄소 함량이 증가하게 되면 마르텐사이트의 양이 증가하게 된다. 하지만 그 함량이 0.16%를 초과하면 마르텐사이트의 강도는 높아지나 탄소 농도가 낮은 페라이트와의 강도 차이가 커지게 된다. 이러한 강도 차이로 인해 소성 변형시 상간 계면에서 파괴가 쉽게 발생하기 때문에 연성과 가공경화율이 저하된다. 또한 용접성이 열위하여 고객사 부품가공시 용접결함이 발생한다. 반면에 탄소 함량이 0.06% 미만으로 낮아지면 원하는 강도를 확보하기 어렵다.
따라서 이를 고려하여, 본 발명에서는 상기 탄소함량을 0.06~0.16% 범위로 제한함이 바람직하며, 보다 바람직하게는, 0.07~0.15% 범위로 제어하는 것이다.
·Si: 0.8% 이하(0% 제외)
규소(Si)는 페라이트 안정화 원소로, 페라이트 변태를 촉진시키고 Q&P 공정 중 미변태 오스테나이트 내 탄소 농축을 조장하여 잔류 오스테나이트 형성에 기여하는 원소이다. 또한 고용강화를 통해 페라이트의 강도를 높여 상간경도차를 줄이는데 효과적이며, 강판의 연성을 저하시키지 않으면서 강도를 확보할 수 있는 유용한 원소이다. 하지만, 0.8%를 초과하게 되면 표면 스케일 결함을 유발하여 도금 표면품질에 악영향을 미치고, 또한 용접성 및 화성 처리성을 떨어뜨리기 때문에 첨가량을 상한을 0.8%로 제한하였다. 보다 바람직하게는, 0.7% 이하로 제어하는 것이다.
·Mn: 2.1~2.7%
망간(Mn)은 연성의 저하 없이 입자를 미세화시키며, 강중 황(S)을 완전히 MnS로 석출시켜, FeS의 생성에 의한 열간취성을 방지함과 더불어 강을 강화시키는 원소이다. 동시에 복합조직강에서는 마르텐사이트상이 얻어지는 임계냉각속도를 낮추는 역할을 하게 되어 마르텐사이트의 형성을 보다 용이하게 한다. 그 함량이 2.1% 미만인 경우 본 발명에서 목표로 하는 강도 확보에 어려움이 있는 반면, 2.7%를 초과하게 되면 용접성, 열간압연성 등의 문제가 발생될 가능성이 높고, 마르텐사이트가 과잉으로 형성되어 재질이 불안정하고, 조직 내 Mn-Band(Mn 산화물의 띠)가 형성되어 가공크랙 및 판파단 발생 위험이 높아지는 문제가 있다. 또한, 소둔시 Mn 산화물이 표면에 용출되어 도금성을 크게 저해하는 문제가 있다. 따라서, 본 발명에서는 Mn의 함량을 2.1~2.7%로 제한함이 바람직하며, 보다 바람직하게는, 2.3 ~ 2.5% 범위로 제어하는 것이다.
·Mo: 0.4% 이하(0% 제외)
몰리브덴(Mo)은 오스테나이트가 펄라이트로 변태되는 것을 지연시킴과 동시에 페라이트의 미세화 및 강도를 향상시키는 원소이다. 이러한 Mo는 강의 경화능을 향상시키며, 마르텐사이트를 결정립계에 미세하게 형성시켜 항복비 제어가 가능한 장점이 있다. 다만, 고가의 원소로서 그 함량이 높아질수록 제조 원가가 상승하여 원가적 측면에서 불리해지는 문제가 있으므로, 그 함량을 적절히 제어하는 것이 바람직하다. 상술한 효과를 얻기 위하여 최대 0.4%로 첨가하는 것이 바람직하며, 만일 상기 Mo의 함량이 0.4%를 초과하게 되면 합금원가의 급격한 상승을 초래하여 경제성이 떨어지고, 지나친 결정립 미세화 효과와 고용강화 효과로 인해 오히려 강의 연성이 저하되는 문제가 있다. 따라서, 본 발명에서는 Mo의 함량을 0.4% 이하로 제한하였으며, 제조상 불가피하게 첨가되는 양을 고려하여 0%는 제외한다. 보다 바람직하게는, Mo 함량을 0.3 % 이하로 제어하는 것이다.
·Cr: 1% 이하(0% 제외)
크롬(Cr)은 강의 경화능을 향상시키고 고강도를 확보하기 위해 첨가되는 성분이다. 그리고 마르텐사이트 형성에 매우 중요한 역할을 하는 원소로서, 강도 상승 대비 연신율 하락을 최소화시켜 고연성을 갖는 복합조직강의 제조에도 유리하다. 특히, 열간압연 과정에서 Cr23C6과 같은 Cr계 탄화물을 형성하는데, 이 탄화물은 소둔 과정에서 일부는 용해되고, 일부는 용해되지 않고 남아, 냉각 후 마르텐사이트내 고용 C 량을 적정수준 이하로 제어할 수 있어서 항복점 연신 발생을 억제하여 항복비가 낮은 복합조직강 제조에 유리한 원소이다. 하지만, 그 함량이 1%를 초과하게 되면 그 효과가 포화될 뿐만 아니라, 과도한 열연강도 증가로 냉간압연성이 열위한 문제가 있고, Cr계 탄화물의 분율이 높아지고 조대화됨으로써, 소둔 후 마르텐사이트 크기가 조대화되어 연신율 저하를 초래하는 문제가 있다. 따라서 본 발명에서는 Cr의 함량을 1% 이하로 제한하는 것이 바람직하며, 제조상 불가피하게 첨가되는 양을 고려하여 0%를 제외한다. 보다 바람직하게는, Cr 함량을 0.6% 이하로 제어하는 것이다.
·P: 0.1% 이하(0% 제외)
인(P)은 고용강화효과가 가장 큰 치환형 원소로서, 면내 이방성을 개선하고, 성형성을 크게 해지지 않으면서 강도 확보에 가장 유리한 원소이다. 하지만, 과잉 첨가할 경우 취성파괴 발생 가능성이 크게 증가하여 열간압연 도중 슬라브의 판파단 발생 가능성 및 도금표면 특성을 저해하는 원소로 작용하는 문제가 있어, 본 발명에서는 최대 0.1%로 제한하며, 다만 불가피하게 첨가되는 수준을 고려하여 0%는 제외한다.
·S: 0.02% 이하(0% 제외)
황(S)은 강 중 불가피하게 첨가되는 불순물 원소로서 연성 및 용접성을 저하하는 원소이므로 가능한 한 낮게 관리하는 것이 중요하다. 특히, 적열 취성을 발생시킬 가능성을 높이는 문제가 있으므로, 그 함량을 0.02% 이하로 제어하는 것이 바람직하다. 다만, 제조과정 중에 불가피하게 첨가되는 수준을 고려하여 0%는 제외한다.
·sol.Al: 1.0% 이하(0% 제외)
산가용 알루미늄(sol.Al)은 강의 입도 미세화와 탈산을 위해 첨가되는 원소로 Si과 유사하게 페라이트 안정화 원소이다. 그리고 페라이트 내 탄소를 오스테나이트로 분배하여 마르텐사이트 경화능을 향상시키고 잔류 오스테나이트를 형성시키는 데 유효한 성분이다. 또한 소둔 중 베이나이트 영역에서 유지 시 베이나이트 내 탄화물의 석출을 효과적으로 억제시켜 강판의 연성을 향상시킬 수 있는 유용한 원소이다. 하지만, 그 함량이 1.0%를 초과하게 되면 결정립 미세화 효과로 강도 상승에는 유리한 반면 제강 연주 조업시 개재물의 과다 형성으로 도금강판 표면 불량이 발생할 가능성이 높아질 뿐만 아니라, 제조원가의 상승을 초래하는 문제가 있다. 따라서, 본 발명에서는 sol.Al의 함량을 1.0% 이하로 제어하는 것이 바람직하다.
·Ti, Nb: 각 0.001~0.04%
타이타늄(Ti) 및 나이오븀(Nb)은 강판의 강도 상승 및 나노 석출물 형성에 의한 결정립 미세화에 유효한 원소이다. 이들 원소를 첨가하게 되면 탄소와 결합하여 매우 미세한 나노석출물을 형성하게 된다. 이러한 나노석출물은 기지조직을 강화시켜 상간의 경도차를 감소시키는 역할을 한다. 상기 Ti 및 Nb의 함량이 각각 0.001% 미만의 경우에는 이와 같은 효과를 확보하기 어렵고, 그 함량이 각각 0.04%를 초과하게 되면 제조비용 상승 및 과다한 석출물로 인하여 연성을 크게 저하시킬 수 있다. 따라서 Ti, Nb 함량을 각각 0.001~0.04%로 제한하는 것이 바람직하며, 보다 바람직하게는, 각각 0.005~0.02% 범위로 제어하는 것이다.
·N: 0.01% 이하(0% 제외)
질소(N)는 오스테나이트를 안정화시키는데 유효한 작용을 하는 성분이지만, 0.01%를 초과하는 경우 강의 정련 비용이 급격히 상승하는 문제가 있고, AlN 형성 등에 의해 연주시 크랙이 발생할 위험성이 크게 증가되므로 그 상한을 0.01%로 한정하는 것이 바람직하다. 다만, 불가피하게 첨가되는 수준을 고려하여 0%는 제외한다.
·B: 0.003% 이하
붕소(B)는 소둔 중 냉각하는 과정에서 오스테나이트가 펄라이트로 변태되는 것을 지연시키는 성분으로, 페라이트 형성을 억제하고, 마르텐사이트 형성을 촉진하는 경화능 원소이다. 하지만, 그 함량이 0.003%를 초과하면 표면에 과다한 B이 농화되어 도금밀착성의 열화를 초래할 수 있으므로 그 함량을 0.003% 이하로 제어한다. 보다 바람직하게는, B 함량을 0.002% 이하로 제어하는 것이다.
·Sb : 0.05%이하
안티몬(Sb)은 결정립계에 분포하여 Mn, Si, Al 등 산화성 원소의 결정립계를 통한 확산을 지연시킴으로써 산화물의 표면 농화를 억제하며, 또한 온도 상승 및 열연 공정 변화에 따른 표면 농화물의 조대화를 억제하는데 탁월한 효과가 있다. 하지만, 그 함량이 0.05% 를 넘게 되면 그 효과가 포화될 뿐만 아니라 제조 비용 및 가공성이 열위하기 때문에 그 함량을 0.05% 이하로 제한한다. 보다 바람직하게는, Sb 함량을 0.03% 이하로 제어하는 것이다.
본 발명은 상기 성분 이외에도 잔부 Fe 및 기타 불가피한 불순물로 이루어지는 것이 바람직하다.
다음으로, 본 발명의 용융아연도금강판은 기존 DP강 대비 항복비를 높여 가공성을 향상시키면서도 연성을 확보할 수 있다. 이를 위해서는 상기 합금 조성에 더하여, 하기와 같은 소지강판 미세조직 및 상분율 제어 조건을 만족할 필요가 있다. 이하, 미세조직 분율, 분포 및 미세조직내 성분 농도에 대해 설명한다.
본 발명의 용융아연도금강판은, 그 미세조직이, 면적%로, 베이나이트 및 템퍼드 마르텐사이트의 합: 70% 이상, 페라이트: 10% 이하, 잔부 프레시 마르텐사이트와 잔류 오스테나이트로 구성되며, 상기 잔류오스테나이트 분율이 면적%로 5% 이하이다. 만일 베이나이트 및 템퍼드 마르텐사이트의 합이 70% 미만이거나 페라이트가 10%를 초과하면 원하는 항복비를 확보하지 못하는 문제가 있다. 또한 잔류 오스테나이트가 5%를 초과하려면 Si, Al의 함량을 높여야 하는 문제가 있다.
본 발명의 용융아연도금강판은, 소지강판 두께 1/4t 지점의 기지조직 내 소강 성분 중 C, Si, Al, Mn, Cr, Mo 및 B의 성분이 하기 관계식 1은 만족한다.
[관계식 1]
(4×C + Si + Al)/(Mn + Cr + 5×Mo + 200×B)≤0.35
본 발명은 강판의 항복강도(YS)와 연신율(EL) 관계식 YS×EL이 9000 이상이면서, 항복비(YS/TS)가 0.65 이상인 용융아연도금강판을 제조할 수 있다. 이를 위해, 소지강판 두께 1/4t 지점의 기지조직 내 소강 성분 중 C, Si, Al, Mn, Cr, Mo 및 B의 성분이 상기 관계식 1을 만족하도록 제어하는 것이 제어하는 것이 중요하다. Si과 Al은 페라이트 안정화 원소로 페라이트 변태를 촉진시키고 미변태 오스테나이트로의 C 농축을 조장함으로써 잔류 오스테나이트 및 마르텐사이트 형성에 기여하는 원소이다. C 또한 미변태 오스테나이트에 C 농축을 조장함으로써, 마르텐사이트 형성 및 분율 조정에 기여하는 원소이다. 반면 Mn, Cr, Mo, B는 경화능 향상에 기여하는 원소이기는 하나 C, Si, Al 대비 오스테나이트 내 C 농축에 기여하는 효과가 상대적으로 낮다. 따라서 C, Si, Al과 기타 경화능 원소 Mn, Cr, Mo, B의 비율을 잘 조정하는 것이 매우 중요하다.
만일 상기 관계식 1에 의해 정의되는 값이 0.35 이하일 경우, 상기에서 언급한 것처럼 항복비 (YS/TS)에 따른 항복강도(YS), 연신율(EL) 관계식 YS×EL을 9000 이상으로 확보할 수 있으며, 나아가, 베이나이트 및 템퍼드 마르텐사이트의 분율을 70% 이상으로 확보함과 동시에 상간경도차를 감소시켜 구멍확장성 값을 30% 이상 확보할 수 있다. 반면에 상기 관계식 1에 의해 정의되는 값이 0.35를 초과하면 전술한 효과가 사라진다.
이렇게 페라이트, 베이나이트, 마르텐사이트, 잔류오스테나이트가 동시에 형성된 복합조직은 각각의 상들을 미세하고 균일하게 분산시킴과 동시에 상간경도차를 감소시킴으로써, 종래의 DP강 대비 항복비가 우수하여 가공성 및 성형성을 향상시킬 수 있다. 또한 이러한 미세조직 변화는 necking 이후에 국부적인 응력 및 변형의 집중을 완화시켜 연성파괴를 일으키는 void의 생성 및 성장, 합체를 지연시킴으로써 연성이 향상되는 효과가 있다.
이를 통하여, 구멍확장성(Hole Expansion Ratio, HER)이 30% 이상이며, 항복강도(YS) 및 연신율(EL) 관계식 YS×EL이 9000 이상이면서, 항복비(YS/TS)가 0.65 이상인 용융아연도금강판을 제공할 수 있다.
다음으로, 본 발명의 연성 및 성형성이 우수한 용융아연도금강판의 제조방법에 대하여 설명한다.
본 발명은 DP강의 특성인 Lean한 성분계 및 높은 연성을 만족하면서도, 종래의 DP강 대비 항복비(YS/TS)를 향상시키기 위해서는 조직 및 성분의 제어와 주의 깊은 열처리가 필수적이다. 먼저, 소량의 잔류 오스테나이트를 도입하는 것이 중요하다. 잔류 오스테나이트는 변태유기소성을 일으켜 강판의 연성을 향상시키는 데에 도움을 준다. 이러한 잔류 오스테나이트의 도입을 위해, 급냉시 Ms 이하의 온도까지 냉각하여 일부 마르텐사이트를 형성시킨 후, 곧바로 Ms 이상의 온도로 재가열하여 파티셔닝 과정을 거친다. 이때 베이나이트가 다량 형성되며, C가 안정적으로 분배되고 최종 조직에서 잔류 오스테나이트 형성에 기여한다. 또한 베이나이트는 페라이트와 마르텐사이트의 상간 경도차를 줄여주는 효과가 있다. 추가적인 연성의 확보를 위해 페라이트를 일부 형성시키는 과정도 중요하다. 단상역 소둔 또는 단상역 직하 소둔을 통해 페라이트의 분율을 10% 이하로 제어하고, 서냉구간에서 미량의 추가 페라이트를 형성시킬 수 있다. 이를 통해 추가적인 연성의 향상을 도모한다. 또한 미세한 나노석출물을 페라이트 내에 석출시킴으로써 추가적으로 상간 경도차를 저감하여 가공성을 향상시킬 수 있다. 마지막으로 최종 냉각시 소량의 프레시 마르텐사이트를 도입함으로써 원하는 강도를 확보할 수 있다.
이를 위한 본 발명의 용융아연도금강판 제조방법은, 상기 조성성분과 관계식 1을 만족하는 강 슬라브를 마련한 후, 이를 재가열하는 공정; 상기 재가열된 슬라브를 마무리압연 출구측 온도가 Ar3~Ar3+50℃가 되도록 열간압연하고, 이어, 400~650℃에서 권취한 후 0.1℃이하의 평균냉각속도로 상온까지 냉각시키는 공정; 상기 냉각된 열연강판을 40~70%의 압하율로 냉간압연하여 냉연강판을 제조하는 공정; 상기 냉연강판을 820~860℃의 온도에서 연속 소둔하는 공정; 상기 연속소둔된 강판을 630~680℃의 온도범위까지 10℃이하의 평균냉각속도로 1차 냉각하고, 수소가스를 이용하여 300~350℃의 온도까지 5℃이상의 평균 냉각속도로 2차 냉각한 후, 400~480℃의 온도까지 재가열한 후, 60초 이상 유지하는 공정; 및 상기 유지된 400~450℃의 온도에서 용융아연도금 처리한 후, Ms~100℃이하의 온도까지 5℃이상의 평균냉각속도로 냉각하는 공정;을 포함한다.
먼저, 상기 조성성분을 갖는 강 슬라브를 마련한 후, 이를 재가열한다. 슬라브 재가열공정은 후속하는 압연 공정을 원활히 수행하고, 목표로 하는 강판의 물성을 충분히 얻기 위하여 강 슬라브를 가열하는 공정이다. 본 발명은 이러한 재가열조건에 특별히 제한되지 않으며, 통상의 재가열조건이면 족하다. 그 일례로 1100~1300℃의 온도범위에서 재가열하는 것이다.
이어, 본 발명에서는 상기 재가열된 강 슬라브를 마무리압연 출구측 온도가 Ar3~Ar3+50℃가 되도록 마무리 열간압연한다. 본 발명은 이때 특정한 열간압연 조건에 제한되지 않으며 통상의 열간압연온도를 이용할 수 있다.
이후, 본 발명에서는 상기 마무리 열간압연된 강판을 400~650℃의 온도 범위에서 권취한 후 0.1℃이하의 평균 냉각속도로 상온까지 냉각함으로써, 오스테나이트 핵생성 사이트가 되는 탄화물을 미세하게 분산된 열연강판을 제조한다. 상기 열연공정을 통하여 미세한 탄화물을 고르게 분산시킴으로써 소둔시 탄화물이 용해되면서 오스테나이트를 미세 분산 형성시켜 결과적으로 소둔 후 미세한 마르텐사이트를 균일 분산시킬 수 있다.
그리고 본 발명에서는 상기 냉각된 열연강판을 40~70%의 압하율로 냉간압연하여 냉연강판을 제조한다.
상기 권취된 열연강판을 산세한 후, 40~70%의 압하율로 냉간압연을 실시한다. 만일 상기 냉간 압하율이 40% 미만이면 목표로 하는 두께를 확보하기 어려울 뿐만 아니라 강판의 형상교정이 어려운 반면, 70%를 초과하게 되면 강판 에지(edge)부의 크랙이 발생할 가능성이 높고 냉간압연 부하를 가져오는 문제점이 있다. 따라서 본 발명에서는 상기 냉간압하율을 40~70%로 제한하는 것이 바람직하다.
이어, 본 발명에서는 상기 냉연강판을 820~860℃의 온도범위에서 연속소둔을 실시한다. 이러한 연속소둔공정은 재결정과 동시에 페라이트와 오스테나이트를 형성하고, 탄소를 분배하기 위한 것이다. 만일 상기 연속 소둔온도가 820℃ 미만이면 충분한 오스테나이트 분율을 확보하기 어려워 소둔 후 목적하는 마르텐사이트, 베이나이트 및 잔류 오스테나이트 분율을 확보할 수 없다. 반면, 860℃를 초과하면 생산성 하락 및 과다한 오스테나이트가 형성되어 냉각 후 베이나이트 및 마르텐사이트 분율이 크게 증가하여 항복강도가 증가하고 연성이 감소하여, 고연성 특성을 확보하기 어렵다. 또한 Si, Mn 및 B 등 용융아연도금의 젖음성을 저하시키는 원소들에 의한 표면농화가 심해져 도금표면품질이 저하될 수 있다.
그리고 본 발명에서는 상기 연속소둔된 강판을 630~680℃의 온도범위까지 10℃이하의 평균냉각속도로 1차 냉각하고, 수소 가스를 이용하여 300~350℃의 온도까지 5℃이상의 평균 냉각속도로 2차 냉각한 후, 400~480℃의 온도까지 재가열한 후, 60초 이상 유지한다.
상기 연속소둔된 강판을 630~680℃의 온도범위까지 10℃이하의 평균 냉각속도로 1차 냉각하고, 수소 가스를 이용한 수소급냉설비를 이용하여 300~360℃의 온도범위까지 5℃/s 이상의 평균냉각속도로 2차 냉각하여 일부 프레시 마르텐사이트를 도입한다. 그리고 곧바로 400~480℃의 온도까지 재가열한 후 60초 이상 유지하여 베이나이트를 형성시키며 주변의 미변태 오스테나이트에 탄소를 농축시킨다.
이때 2차 냉각 시 급냉온도는 마르텐사이트 형성온도인 Ms 이하 300~360℃로 제어하는 것이 매우 중요하다. 만일 상기 급냉온도가 360℃를 초과하게 되면 초기 형성되는 마르텐사이트 분율이 매우 적거나 마르텐사이트 형성이 어려워, 탄소 파티셔닝이 원활하게 일어나지 않아 최종 냉각시 원하는 분율의 잔류 오스테나이트를 형성시키기 어렵다. 반면에 300℃ 미만이면 판 형상이 열위해지며 및 설비 부하가 발생할 수 있다.
또한 상기 재가열온도는 Ms 온도 이상인 400~480℃로 제어하는 것이 중요하다. 재가열온도가 400℃ 미만이면 베이나이트 형성이 빠르게 일어나지 않아 탄소 파티셔닝이 원활하게 이루어지지 않으며, 480℃를 초과하면 역시 베이나이트가 적게 형성되어 최종냉각 시 프레시 마르텐사이트의 분율이 늘어나게 된다. 즉 Q&P 소둔시 2차 급냉온도 및 재가열온도를 주의깊게 제어하여, 원하는 미세조직을 형성시키는 것이 매우 중요하다.
후속하여, 본 발명에서는 상기 유지된 강판을 400~450℃의 온도에서 용융아연도금 처리한 후, Ms~100℃ 이하의 온도까지 5℃ 이상의 평균냉각속도로 냉각함으로써 베이나이트에 인접하여 프레시 마르텐사이트가 형성된 최종 제품을 제조할 수 있다. 이때 필요에 따라, 1% 미만의 압하율로 조질압연을 실시할 수도 있다.
그리고 본 발명에서는 상기 제조된 용융아연도금강판에 합금화 열처리하는 공정을 추가로 포함할 수도 있다.
이하, 실시예를 통하여 본 발명을 상세히 설명한다.
(실시예)
하기 표 1과 같은 조성을 갖는 강 슬라브들을 마련하였다. 그리고 상기 강 슬라브를 1050~1250℃의 온도범위로 재가열한 후, Ar3~Ar3+50℃ 범위내의 950℃의 온도에서 마무리 열간압연하였다. 이와 같이 열간압연된 강판들을 400~650℃에서 권취한 후 초당 0.1℃ 이하의 냉각속도로 냉각하여 열연강판을 제조하였다. 열연강판을 산세한 후 40~70%의 압하율로 냉간 압연하였다. 이후, 상기 냉간압연된 강판을 하기 표 2의 온도에서 연속소둔을 실시한 후, 하기 표 2와 같은 조건으로 Q&P 열처리를 실시하였다. 상기 QP 열처리된 냉연강판은 이후, 용융아연도금 처리한 후, 합금화 열처리를 행하고, 최종 냉각하여 프레시 마르텐사이트 및 잔류 오스테나이트를 도입한 후, 1% 미만의 조질압연을 실시하여 용융아연도금강판을 제조하였다.
상기와 같이 제조된 각각의 강판에 대하여 미세조직 및 기계적 특성을 평가하여 그 결과를 하기 표 3에 나타내었다. 이때, 각각의 시험편에 대한 인장시험을 ASTM규격을 이용하여 L방향으로 실시하여 인장물성(인장강도(TS), 항복강도(YS) 및 연신율(El))을 평가하였다. 그리고 미세조직 분율은 소둔처리된 강판의 판두께 1/4t 지점에서 기지조직을 분석하여 그 결과를 이용하였다. 구체적으로, Nital 부식후 FE-SEM과 Image analyzer를 이용하여 페라이트, 베이나이트, 프레시 마르텐사이트, 오스테나이트 분율을 측정하였다. 또한 구멍확장성 시험기를 이용하여 구멍확장성을 측정하였다.
Figure PCTKR2021016592-appb-img-000001
*상기 표 1의 강판 조성들에서 N은 30~50ppm 범위 이내로 불순원소로 함유되었음
Figure PCTKR2021016592-appb-img-000002
Figure PCTKR2021016592-appb-img-000003
*표 3에서 F는 페라이트, B는 베이나이트, TM은 템퍼드 마르텐사이트, FM은 프레시 마르텐사이트, 그리고 RA는 잔류 오스테나이트를 의미함.
상기 표 1-3에 나타난 바와 같이, 강 조성성분 및 제조공정 조건이 본 발명의 요건을 충족하는 발명예 1-6의 경우, 항복강도(YS), 연신율 관계식 YS×EL이 9000 이상이며, 항복비(YS/TS)가 0.65 이상으로, 본 발명에서 목표로 하는 강판의 재질 및 가공성을 확보할 수 있음을 알 수 있다.
이에 반하여, 강 조성성분 및 제조공정 조건이 본 발명범위를 벗어나거나 강 내부 조직 분율 및 점유비가 본 발명의 범주를 벗어난 비교예 1~10의 경우, 항복강도(YS), 연신율 관계식 YS×EL이 9000 미만이거나, 항복비(YS/TS)가 0.65 미만임을 알 수 있다. 따라서 본 발명에서 목표로 하는 강판의 강도, 연성, 가공성 및 용접성을 동시에 확보할 수 없었다.
구체적으로, 비교예 1은 강 조성성분은 본 발명범위 내이나 2차 냉각온도가 너무 낮아 잔류 오스테나이트의 분율이 5%를 초과하였으며, 과도한 냉각 속도로 인해 설비에 부하가 발생하였다.
비교예 2는 강 조성성분은 본 발명범위 내이나 2차 냉각온도가 너무 높아 템퍼드 마르텐사이트가 충분히 형성되지 않음과 동시에 탄소 파티셔닝이 발생하지 않아 목표하는 항복비를 얻을 수 없다.
비교예 3은 강 조성성분은 본 발명범위 내이나 재가열온도가 너무 낮아 템퍼드 마르텐사이트가 과도하게 형성되어 원하는 강도를 얻을 수 없으며, 비교예 4는 재가열온도가 너무 높아 베이나이트 분율이 낮아지고 프레시 마르텐사이트 분율이 높아져 목표하는 항복비를 얻을 수 없다.
비교예 5-10은 강 조성성분 및 제조공정 조건이 본 발명범위를 모두 벗어난 경우로서, 구체적으로, 비교예 5-6은 강 조성성분이 본 발명범위를 벗어나고 연속 소둔 온도와 재가열온도가 발명 범위를 벗어나, 페라이트가 과도하게 형성되어 원하는 항복비를 얻을 수 없었다. 또한 비교예 7-8은 강 조성성분이 본 발명범위를 벗어나고 2차 냉각온도와 재가열온도가 너무 높아, 목표하는 항복비를 얻을 수 없었으며, 비교예 9-10은 재가열 온도가 너무 높아, 목표하는 항복비를 얻을 수 없었다.
한편 도 1은 본 발명의 실시예(발명강 1-6과 비교강 5-10)에서 항복비 (YS/TS)에 따른 항복강도(YS)와 연신율(EL) 관계식 YS×EL의 변화를 나타내는 그림을, 도 2는 본 발명의 실시예(발명강 1-6과 비교강 5-10)에서 관계식 1에 따른 항복강도(YS)와 연신율(EL) 관계식 YS×EL의 변화를 나타내는 그림을, 그리고 도 3은 본 발명의 실시예(발명강 1-6과 비교강 5-10)에서 관계식 1에 따른 구멍확장성 값의 변화를 나타내는 그림이다. 한편 도 1-3에서 발명강 1-6은 발명예 1-6에 대응하는 발명강을 나타낸다,
이상에서 설명한 바와 같이, 본 발명의 상세한 설명에서는 본 발명의 바람직한 실시 예에 관하여 설명하였으나, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자라면 본 발명의 범주에서 벗어나지 않는 한도 내에서 여러 가지 변형이 가능함은 물론이다. 따라서 본 발명의 권리 범위는 설명된 실시 예에 국한되어 정해져서는 안 되며, 후술하는 청구범위뿐만 아니라, 이와 균등한 것들에 의해 정해져야 한다.

Claims (6)

  1. 중량%로, 탄소(C): 0.06~0.16%, 실리콘(Si): 0.8% 이하(0% 제외), 망간(Mn): 2.1~2.7%, 몰리브덴(Mo): 0.4% 이하(0% 제외), 크로뮴(Cr): 1% 이하(0% 제외), 인(P): 0.1% 이하(0% 제외), 황(S): 0.02% 이하, 알루미늄(sol.Al): 1% 이하(0% 제외), 타이타늄(Ti): 0.001~0.04%, 나이오븀(Nb): 0.001~0.04%, 질소(N): 0.01% 이하(0% 제외), 붕소(B): 0.01% 이하, 안티몬(Sb): 0.05% 이하, 잔부 Fe 및 기타 불가피한 불순물을 포함하고,
    소지강판 두께 1/4t 지점의 기지조직 내 소강 성분 중 C, Si, Al, Mn, Cr, Mo 및 B의 성분이 하기 관계식 1을 만족하고,
    소지강판의 미세조직이, 면적%로, 베이나이트 및 템퍼드 마르텐사이트의 합: 70% 이상, 페라이트: 10% 이하, 잔부 프레시 마르텐사이트와 잔류 오스테나이트로 구성되며, 상기 잔류오스테나이트 분율이 면적%로 5% 이하인 연성 및 성형성이 우수한 용융아연도금강판.
    [관계식 1]
    (4×C + Si + Al)/(Mn + Cr + 5×Mo + 200×B)≤0.35
  2. 제 1항에 있어서, 상기 용융아연 도금강판은, 구멍확장성(Hole Expansion Ratio, HER)이 30% 이상이며, 항복강도(YS) 및 연신율(EL) 관계식 YS×EL이 9000 이상이면서, 항복비(YS/TS)가 0.65 이상인 것을 특징으로 하는 연성 및 성형성이 우수한 용융아연도금강판.
  3. 중량%로, 탄소(C): 0.06~0.16%, 실리콘(Si): 0.8% 이하(0% 제외), 망간(Mn): 2.1~2.7%, 몰리브덴(Mo): 0.4% 이하(0% 제외), 크로뮴(Cr): 1% 이하(0% 제외), 인(P): 0.1% 이하(0% 제외), 황(S): 0.02% 이하, 알루미늄(sol.Al): 1% 이하(0% 제외), 타이타늄(Ti): 0.001~0.04%, 나이오븀(Nb): 0.001~0.04%, 질소(N): 0.01% 이하(0% 제외), 붕소(B): 0.01% 이하, 안티몬(Sb): 0.05% 이하, 잔부 Fe 및 기타 불가피한 불순물을 포함하고, 하기 관계식 1을 만족하는 강 슬라브를 마련한 후, 이를 재가열하는 공정;
    상기 재가열된 슬라브를 마무리압연 출구측 온도가 Ar3~Ar3+50℃가 되도록 열간압연하고, 이어, 400~650℃에서 권취한 후 0.1℃이하의 평균냉각속도로 상온까지 냉각시키는 공정;
    상기 냉각된 열연강판을 40~70%의 압하율로 냉간압연하여 냉연강판을 제조하는 공정;
    상기 냉연강판을 820~860℃의 온도에서 연속 소둔하는 공정;
    상기 연속소둔된 강판을 630~680℃의 온도범위까지 10℃이하의 평균냉각속도로 1차 냉각하고, 수소가스를 이용하여 300~350℃의 온도까지 5℃이상의 평균 냉각속도로 2차 냉각한 후, 400~480℃의 온도까지 재가열한 후, 60초 이상 유지하는 공정; 및
    상기 유지된 400~450℃의 온도에서 용융아연도금 처리한 후, Ms~100℃이하의 온도까지 5℃이상의 평균냉각속도로 냉각하는 공정;을 포함하는 연성 및 성형성이 우수한 용융아연도금강판 제조방법.
    [관계식 1]
    (4×C + Si + Al)/(Mn + Cr + 5×Mo + 200×B)≤0.35
  4. 제 3항에 있어서, 상기 용융아연도금강판의 미세조직이, 면적%로, 베이나이트 및 템퍼드 마르텐사이트의 합: 70% 이상, 페라이트: 10% 이하, 잔부 프레시 마르텐사이트, 잔류 오스테나이트로 구성되며, 잔류오스테나이트 분율이 면적%로 5% 이하인 것을 특징으로 하는 연성 및 성형성이 우수한 용융아연도금강판 제조방법.
  5. 제 3항에 있어서, 상기 제조된 용융아연도금강판에 합금화 열처리하는 공정을 추가로 포함하는 연성 및 성형성이 우수한 용융아연도금강판 제조방법.
  6. 제 3항에 있어서, 상기 제조된 용융아연도금강판에 1% 미만의 압하율로 조질압연을 실시하는 것을 특징으로 하는 연성 및 성형성이 우수한 용융아연도금강판 제조방법.
PCT/KR2021/016592 2020-12-09 2021-11-15 연성 및 성형성이 우수한 고강도 용융아연도금강판 및 그 제조방법 WO2022124609A1 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2023534273A JP2023554277A (ja) 2020-12-09 2021-11-15 延性及び成形性に優れた高強度溶融亜鉛めっき鋼板及びその製造方法
CN202180082737.0A CN116635556A (zh) 2020-12-09 2021-11-15 延展性和成型性优异的高强度热浸镀锌钢板及其制造方法
US18/265,246 US20240026483A1 (en) 2020-12-09 2021-11-15 High-strength hot-dip galvanized steel sheet with high ductility and excellent formability, and manufacturing method for same
EP21903656.3A EP4261314A4 (en) 2020-12-09 2021-11-15 HIGH STRENGTH HOT-DIP GALVANIZED STEEL SHEET WITH HIGH DUCTILITY AND EXCELLENT FORMABILITY AND MANUFACTURING METHODS THEREFOR

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2020-0171101 2020-12-09
KR1020200171101A KR102490312B1 (ko) 2020-12-09 2020-12-09 연성 및 성형성이 우수한 고강도 용융아연도금강판

Publications (1)

Publication Number Publication Date
WO2022124609A1 true WO2022124609A1 (ko) 2022-06-16

Family

ID=81974671

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2021/016592 WO2022124609A1 (ko) 2020-12-09 2021-11-15 연성 및 성형성이 우수한 고강도 용융아연도금강판 및 그 제조방법

Country Status (6)

Country Link
US (1) US20240026483A1 (ko)
EP (1) EP4261314A4 (ko)
JP (1) JP2023554277A (ko)
KR (1) KR102490312B1 (ko)
CN (1) CN116635556A (ko)
WO (1) WO2022124609A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024033688A1 (en) * 2022-08-12 2024-02-15 Arcelormittal A cold rolled martensitic steel and method of producing thereof

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024128709A1 (ko) * 2022-12-12 2024-06-20 주식회사 포스코 용융아연도금강판 및 그 제조방법

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002177278A (ja) 2000-12-15 2002-06-25 Hitachi Medical Corp 超音波診断装置
JP2010090432A (ja) 2008-10-08 2010-04-22 Jfe Steel Corp 延性に優れる超高強度冷延鋼板およびその製造方法
JP2012117148A (ja) * 2010-11-12 2012-06-21 Jfe Steel Corp 均一伸びとめっき性に優れた高強度溶融亜鉛めっき鋼板およびその製造方法
KR101597473B1 (ko) * 2011-07-29 2016-02-24 신닛테츠스미킨 카부시키카이샤 굽힘성이 우수한 고강도 아연 도금 강판 및 그 제조 방법
KR20190133739A (ko) * 2017-03-31 2019-12-03 닛폰세이테츠 가부시키가이샤 냉간 압연 강판 및 용융 아연 도금 냉간 압연 강판
KR20200075991A (ko) * 2018-12-18 2020-06-29 주식회사 포스코 가공성이 우수한 냉연강판, 용융아연도금강판 및 이들의 제조방법
JP6777274B1 (ja) * 2019-02-06 2020-10-28 日本製鉄株式会社 溶融亜鉛めっき鋼板およびその製造方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3613868B1 (en) * 2017-04-21 2021-11-17 Nippon Steel Corporation High strength hot-dip galvanized steel sheet and production method therefor
KR102276741B1 (ko) * 2018-09-28 2021-07-13 주식회사 포스코 구멍확장성이 높은 고강도 냉연강판, 고강도 용융아연도금강판 및 이들의 제조방법
WO2020162561A1 (ja) * 2019-02-06 2020-08-13 日本製鉄株式会社 溶融亜鉛めっき鋼板およびその製造方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002177278A (ja) 2000-12-15 2002-06-25 Hitachi Medical Corp 超音波診断装置
JP2010090432A (ja) 2008-10-08 2010-04-22 Jfe Steel Corp 延性に優れる超高強度冷延鋼板およびその製造方法
JP2012117148A (ja) * 2010-11-12 2012-06-21 Jfe Steel Corp 均一伸びとめっき性に優れた高強度溶融亜鉛めっき鋼板およびその製造方法
KR101597473B1 (ko) * 2011-07-29 2016-02-24 신닛테츠스미킨 카부시키카이샤 굽힘성이 우수한 고강도 아연 도금 강판 및 그 제조 방법
KR20190133739A (ko) * 2017-03-31 2019-12-03 닛폰세이테츠 가부시키가이샤 냉간 압연 강판 및 용융 아연 도금 냉간 압연 강판
KR20200075991A (ko) * 2018-12-18 2020-06-29 주식회사 포스코 가공성이 우수한 냉연강판, 용융아연도금강판 및 이들의 제조방법
JP6777274B1 (ja) * 2019-02-06 2020-10-28 日本製鉄株式会社 溶融亜鉛めっき鋼板およびその製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4261314A4

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024033688A1 (en) * 2022-08-12 2024-02-15 Arcelormittal A cold rolled martensitic steel and method of producing thereof

Also Published As

Publication number Publication date
KR102490312B1 (ko) 2023-01-19
KR20220081529A (ko) 2022-06-16
EP4261314A4 (en) 2024-05-15
US20240026483A1 (en) 2024-01-25
CN116635556A (zh) 2023-08-22
EP4261314A1 (en) 2023-10-18
JP2023554277A (ja) 2023-12-27

Similar Documents

Publication Publication Date Title
WO2020130560A1 (ko) 가공성이 우수한 냉연강판, 용융아연도금강판 및 이들의 제조방법
WO2015174605A1 (ko) 연성이 우수한 고강도 냉연강판, 용융아연도금강판 및 이들의 제조방법
KR102020411B1 (ko) 가공성이 우수한 고강도 강판 및 이의 제조방법
WO2016098964A1 (ko) 재질 불균일이 작고 성형성이 우수한 고강도 냉연강판, 용융아연도금강판, 및 그 제조 방법
WO2018110867A1 (ko) 항복강도, 연성 및 구멍확장성이 우수한 고강도 냉연강판, 용융아연도금강판 및 이들의 제조방법
WO2016098963A1 (ko) 구멍확장능이 우수한 용융아연도금강판, 합금화 용융아연도금강판 및 그 제조방법
WO2009145563A2 (ko) 열처리성이 우수한 초고강도 열간성형 가공용 강판, 열처리 경화형 부재 및 이들의 제조방법
WO2020050573A1 (ko) 항복강도비가 우수한 초고강도 고연성 강판 및 그 제조방법
WO2022124609A1 (ko) 연성 및 성형성이 우수한 고강도 용융아연도금강판 및 그 제조방법
WO2020067752A1 (ko) 구멍확장성이 높은 고강도 냉연강판, 고강도 용융아연도금강판 및 이들의 제조방법
WO2010074370A1 (ko) 고강도 고연신 강판 및 열연강판, 냉연강판, 아연도금강판 및 아연도금합금화강판의 제조방법
WO2018080133A1 (ko) 구멍확장성 및 항복비가 우수한 초고강도 강판 및 그 제조방법
WO2017155263A1 (ko) 소부경화성 및 내시효성이 우수한 용융 아연계 도금강판 및 그 제조방법
WO2015099222A1 (ko) 용접성 및 버링성이 우수한 열연강판 및 그 제조방법
WO2018105904A1 (ko) 소부 경화성 및 상온 내시효성이 우수한 용융 아연계 도금강판 및 그 제조방법
KR102200227B1 (ko) 가공성이 우수한 냉연강판, 용융아연 도금강판 및 그 제조방법
WO2021117989A1 (ko) 초고강도 냉연강판 및 이의 제조방법
JP6843245B2 (ja) 曲げ性及び伸びフランジ性に優れた高張力亜鉛系めっき鋼板及びその製造方法
WO2022119253A1 (ko) 굽힘가공성이 우수한 초고강도 냉연강판 및 그 제조방법
WO2024128709A1 (ko) 용융아연도금강판 및 그 제조방법
WO2024136353A1 (ko) 강판 및 그 제조방법
WO2024136222A1 (ko) 냉연강판 및 이의 제조방법
WO2020130257A1 (ko) 연성 및 가공성이 우수한 고강도 강판 및 그 제조방법
WO2024144044A1 (ko) 내부식성 초고강도 냉연강판 및 그 제조방법
WO2009157661A9 (ko) 표면특성 및 내2차 가공취성이 우수한 소부경화강 및 그 제조방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21903656

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 18265246

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2023534273

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 202180082737.0

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021903656

Country of ref document: EP

Effective date: 20230710