WO2011081350A2 - 용접 후 열처리 저항성이 우수한 고강도 강판 및 그 제조방법 - Google Patents

용접 후 열처리 저항성이 우수한 고강도 강판 및 그 제조방법 Download PDF

Info

Publication number
WO2011081350A2
WO2011081350A2 PCT/KR2010/009225 KR2010009225W WO2011081350A2 WO 2011081350 A2 WO2011081350 A2 WO 2011081350A2 KR 2010009225 W KR2010009225 W KR 2010009225W WO 2011081350 A2 WO2011081350 A2 WO 2011081350A2
Authority
WO
WIPO (PCT)
Prior art keywords
steel sheet
less
heat treatment
high strength
strength steel
Prior art date
Application number
PCT/KR2010/009225
Other languages
English (en)
French (fr)
Other versions
WO2011081350A3 (ko
Inventor
홍순택
장성호
노윤조
박재현
Original Assignee
주식회사 포스코
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=44226971&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2011081350(A2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by 주식회사 포스코 filed Critical 주식회사 포스코
Priority to EP10841182.8A priority Critical patent/EP2520680B1/en
Priority to JP2012546997A priority patent/JP5657026B2/ja
Priority to CN201080064894.0A priority patent/CN102782169B/zh
Publication of WO2011081350A2 publication Critical patent/WO2011081350A2/ko
Publication of WO2011081350A3 publication Critical patent/WO2011081350A3/ko

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/46Ferrous alloys, e.g. steel alloys containing chromium with nickel with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/48Ferrous alloys, e.g. steel alloys containing chromium with nickel with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/50Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/004Dispersions; Precipitations
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/005Ferrite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/009Pearlite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/50Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for welded joints

Definitions

  • the present invention relates to a steel sheet used in a crude oil refinery, a storage tank, a heat exchanger, a reactor, a condenser, etc. in a wet hydrogen sulfide environment, and more particularly, strength and toughness in post-weld heat treatment (PWHT). It relates to an excellent steel sheet and a method of manufacturing the same.
  • PWHT post-weld heat treatment
  • C 0.05 to 0.20%, Si: 0.02 to 0.5%, Mn: 0.2 to 2.0%, Al as a means for preventing the deterioration of physical properties due to the long-term PWHT heat treatment.
  • 0.005 to 0.10% if necessary, containing one or two or more of Cu, Ni, Cr, Mo, V, Nb, Ti, B, Ca, and rare earth elements, the remainder being a slab of iron and unavoidable impurities
  • PWHT guarantee time was made possible by 16 hours by the process of air-cooling at room temperature, heating and slow cooling at the Ac1-Ac3 transformation point.
  • the PWHT guarantee time shown in the above technique is very insufficient when the materialization and welding conditions are severe, and there is a problem that the application of the PWHT for a long time is impossible.
  • One aspect of the present invention is to provide a high-strength steel sheet excellent in post-weld heat treatment (PWHT) resistance and its manufacturing method does not decrease the strength and toughness even after a long post-weld heat treatment (PWHT).
  • PWHT post-weld heat treatment
  • C 0.1-0.3%, Si: 0.15-0.50%, Mn: 0.6-1.2%, P: 0.035% or less, S: 0.020% or less, Al: 0.001-0.05%, Cr: 0.01 0.35%, Mo: 0.005-0.2%, V: 0.005-0.05%, Nb: 0.001-0.05%, Ti: 0.001-0.05%, Ca: 0.0005-0.005%, Ni: 0.05-0.5%, Cu : 0.005-0.5%, Co: 0.005-0.2% and W; At least one selected from the group consisting of 0.005 to 0.2%, the remainder includes Fe and inevitable impurities, and the composition provides a high strength steel sheet excellent in post-weld heat treatment resistance satisfying the following relational formula.
  • V + Nb 0.1% or less
  • the present invention comprises the steps of reheating the steel slab satisfying the composition range to a temperature range of 1050 ⁇ 1250 °C;
  • It provides a method for producing a high strength steel sheet excellent in heat treatment resistance after welding comprising the step of cooling the heat-treated steel sheet at a cooling rate of 0.1 ⁇ 10 °C / sec.
  • a steel plate for pressure vessels having a strength of 500 MPa or more, which does not deteriorate in strength and toughness even after 100 hours of PWHT, and which is excellent in hydrogen organic crack resistance.
  • composition range of the present invention will be described in detail (hereinafter,% by weight).
  • the content of carbon (C) is preferably limited to 0.1 to 0.3%.
  • C is an element that improves the strength, and if its content is less than 0.1%, its own strength on the matrix is lowered, and if it is more than 0.3%, segregation occurs in the structure, thereby degrading hydrogen organic crack resistance.
  • the content of silicon (Si) is preferably limited to 0.15 to 0.50%.
  • Si is an effective element for deoxidation and solid solution strengthening and is added for impact transition temperature synergistic effect. In order to achieve this effect, 0.15% or more should be added, but when added in excess of 0.5%, there is a problem in that weldability is degraded and an oxide film is severely formed on the surface of the steel sheet.
  • the content of manganese (Mn) is preferably limited to 0.6 ⁇ 1.2%. Since Mn forms MnS, which is a non-metallic inclusion drawn together with S, lowers the normal temperature elongation and low temperature toughness, it is preferably managed at 1.2% or less. However, when Mn is added in an amount of less than 0.6% due to the characteristics of the present invention, it is difficult to secure appropriate strength, so the content thereof is limited to 0.6 to 1.2%.
  • the content of aluminum (Al) is preferably limited to 0.001 to 0.5%.
  • Al is one of the strong deoxidizers in the steelmaking process together with Si, and the deoxidation effect is insignificant at less than 0.001%, and when added in excess of 0.05%, the deoxidation effect is saturated and the manufacturing cost increases.
  • Phosphorus (P) is an element that impairs low temperature toughness, but excessive cost is required to be removed in the steelmaking process, so it is preferable to manage it within the range of 0.035% or less.
  • S Sulfur
  • S is also an element that adversely affects low-temperature toughness in addition to P, but like P, it may be excessively expensive to remove in the steelmaking process, it is preferable to manage within 0.020% or less.
  • Cr chromium
  • the content of chromium (Cr) is preferably limited to 0.01 to 0.35%. Since Cr is an element that increases strength, it should be added at least 0.01% in order to increase the strength in the present invention, but since it is an expensive element, when it is added in excess of 0.35%, it will increase the manufacturing cost, so it is managed at 0.35% or less. It is desirable to.
  • Mo molybdenum
  • Mo is not only an element effective for increasing the strength but also an element for preventing the occurrence of cracking due to sulfides. In order to achieve the above effect, 0.005% or more should be added, but since Mo also causes an increase in the manufacturing cost of expensive elements, it is preferable to limit it to 0.2% or less.
  • V vanadium
  • the content of vanadium (V) is preferably limited to 0.005 to 0.05%.
  • V is an element effective for increasing the strength, such as Cr and Mo. Therefore, the effect of increasing the strength can be achieved by adding 0.005% or more, but it is preferable to add it to 0.05% or less due to the high price.
  • the content of niobium (Nb) is preferably limited to 0.001 to 0.05%.
  • Nb is an important element that increases the strength by solidifying the austenite to increase the hardenability of the austenite and precipitated as carbonitrides (Nb (C, N)) matching with the matrix (Matrix). If the content is added more than 0.001% to obtain the above effect, but when added in a large amount may appear as a coarse precipitate in the process of playing the role of hydrogen organic crack site, the content is preferably limited to 0.05% or less Do.
  • the content of titanium (Ti) is preferably limited to 0.001 to 0.05%.
  • Ti is precipitated as carbonitride (Ti (C, N)) like Nb, and is an important element for increasing strength.
  • the content is preferably limited to 0.05% or less.
  • the content of calcium (Ca) is preferably limited to 0.0005 to 0.005%.
  • Ca is produced as CaS and added to suppress the non-metallic inclusions of MnS, which must be added at least 0.0005%.
  • the upper limit is preferably limited to 0.005% because it reacts with O contained in the steel to generate CaO, which is a nonmetallic inclusion.
  • Ni nickel
  • the content of nickel (Ni) is preferably limited to 0.05 to 0.5%.
  • Ni is the most effective element for improving low temperature toughness, and the above content can be obtained when its content is added at 0.05% or more, but it is preferable to add it at 0.5% or less because it causes an increase in manufacturing cost with expensive elements.
  • the present invention includes at least one member selected from the group consisting of Cu, Co and W in the composition.
  • the content of copper (Cu) is preferably added 0.005 ⁇ 0.5%.
  • Cu prevents the deterioration of strength even after PWHT heat treatment due to the strengthening of matrix by solid solution strengthening or e-Cu precipitation, and also prevents deterioration of strength and toughness through matrix reinforcement and recovery inhibition.
  • Co cobalt
  • the content of cobalt (Co) is preferably added 0.005 ⁇ 0.2%.
  • Co is an element effective in preventing the softening of the matrix structure, but is expensive, and therefore Co is preferably added within the range of 0.005 to 0.2%.
  • the content of tungsten (W) is preferably added 0.005 ⁇ 0.2%.
  • W is preferably added in an amount of 0.005% or more because WC has a property of forming WC or decreasing cementite precipitation fraction and preventing cementite growth / aggregation inhibition to prevent deterioration of strength and toughness.
  • the W since the W is expensive, it is more preferable to add within the range of 0.005 to 0.2%.
  • the steel of the present invention can be used as a steel for pressure vessels, in consideration of this, the content of elements such as Cu, Ni, Cr, Mo, V, and Nb preferably satisfies the following relationship.
  • V + Nb 0.1% or less
  • the relationship between Cu + Ni + Cr + Mo, Cr + Mo and V + Nb is a numerical value limited by the basic standard (ASTM A20) of steel for pressure vessels, and accordingly Cu + Ni + Cr + Mo content is Below 1.5%, the Cr + Mo content is limited to 0.4% or less, and the V + Nb content is limited to 0.1% or less.
  • alloy elements not included according to the embodiment of the present invention may be calculated as zero.
  • the Ca / S ratio is an essential component ratio for spheroidizing MnS inclusions to improve hydrogen organic cracking resistance.
  • the Ca / S ratio exceeds 1.0, the effect is hardly expected, so the ratio is adjusted to 1.0 or less.
  • the rest consists of Fe and unavoidable impurities.
  • the appropriate control rolling and heat treatment by the process described below to the steel having the above composition can be made of the microstructure of the ferrite or a mixed structure of ferrite and pearlite, it is preferable that the low-temperature tissue is not included in the tissue as possible Up to 10% may contain bainite.
  • the reason for controlling the tissue in the above-described form is to have excellent resistance to hydrogen-organic cracks, which is the object of the present invention, and to have appropriate strength and toughness.
  • a banding index (measured according to ASTM E-1268) indicating how much band structure is vulnerable to hydrogen organic cracking is 0.25 or less.
  • banding index (Banding Index) value exceeds 0.25, the hydrogen organic crack resistance is sharply reduced in the microstructure.
  • the average size of a ferrite grain is 50 micrometers or less. This is because when the size of the ferrite grains is excessive, the strength and toughness may be reduced. There is no lower limit to the size of the crystal grains, but since the steels targeted in the present invention are generally hard to obtain crystal grains smaller than 5 ⁇ m, the grain size may be 5 ⁇ m or more.
  • the present invention reheats the steel slab that satisfies the composition range to a temperature range of 1050 ⁇ 1250 °C. If the reheating temperature is lower than 1050 °C, solute of the solute atoms is difficult, if it exceeds 1250 °C austenite grain size becomes too coarse to damage the properties of the steel sheet.
  • the recrystallization controlled rolling, heat treatment, PWHT so that the banding index (measured according to ASTM E-1268) is 0.25 or less Heat treatment is required.
  • Recrystallization controlled rolling is performed by hot rolling the reheated steel slab at a temperature above the unrecrystallization.
  • T nr which is the recrystallization temperature can be calculated from the following equation.
  • T nr (°C) 887 + 464 x C + 890 x Ti + 363 x Al-357 x Si + (6446 x Nb-644 x Nb 1/2 ) + (732 x V-230 x V 1/2 )
  • Recrystallized controlled rolling is the most important variable for the banding index (measured according to ASTM E-1268) to be less than 0.25, and recrystallized controlled rolling is used for each rolling in the temperature range of T nr to T nr + 100 ° C. It is preferable to apply a reduction ratio of 10% or more per pass to give a cumulative reduction of 30% or more. This is because if the cumulative reduction is less than 30%, a banding index of 0.25 or less cannot be expected.
  • the reason for limiting the temperature of the recrystallization control rolling is also to control the bending index to suppress the band structure in the state where the grains are not coarsened. More specifically, when the temperature is lower than the recrystallization reference temperature (Tnr), the austenite becomes a pancake and the banding index becomes high. On the contrary, when the temperature is excessively high, the grain size becomes excessively undesirable. not.
  • the hot rolling is performed, and the cooled hot rolled steel sheet is heat treated.
  • the heat treatment is maintained in the temperature range of 850 ⁇ 950 °C condition of 1.3 x t + (10-30 minutes), where t means the thickness of the steel (mm).
  • t means the thickness of the steel (mm).
  • the reason for limiting the heat treatment holding time is that if the holding time is less than 1.3 ⁇ t + 10 minutes (t means the thickness of the steel (mm)), it is difficult to homogenize the tissue, and 1.3 ⁇ t + 30 minutes (t is This is because if the thickness (mm) of the steel is exceeded, productivity is impaired.
  • the retained steel sheet is cooled at a rate of 0.1 to 10 ° C./sec based on the central cooling rate. At lower cooling rates, ferrite grain coarsening may occur during cooling, and at a higher cooling rate, excessive second phase (bainite This is because the fraction is likely to occur more than 10%.
  • the cooling rate is to adjust the average grain size of the ferrite in the center of the steel sheet to 50 ⁇ m or less.
  • the steel sheet of the present invention manufactured through the heat treatment process requires a PWHT treatment for removal of residual stress by a welding process added during the production of a pressure vessel.
  • the steel sheet produced by the present invention is a large strength and toughness even if a long time ( ⁇ 100 hours) at 600 ⁇ 640 °C, a typical PWHT temperature condition It has the advantage that welding construction is possible without deterioration.
  • the steel sheet of the present invention has a tensile strength of 450 MPa or more even after 100 hours of PWHT, and the Charpy impact energy value at -50 ° C satisfies 50 J or more.
  • Table 1 shows the chemical components of the inventive steel and the comparative steel, respectively. Steel slabs having the composition shown in Table 1 were subjected to the steel sheet thickness, reheating temperature, rolling, heat treatment, and cooling of Table 2 to prepare steel sheets.
  • the inventive steel that satisfies the composition and the manufacturing conditions of the present invention, even if the PWHT time is 50 hours or more to 100 hours, the strength and toughness does not decrease, Deviation from the composition and manufacturing conditions of the present invention, when compared with the invention steel, when the PWHT time is small, the strength and toughness is almost the same level as the invention steel, but as the PWHT time is longer than 50 hours, the strength compared to the invention steel It can be seen that the toughness is significantly deteriorated.
  • the low temperature toughness value is severely lowered in the comparative steel, while the low temperature toughness value is not largely reduced even after 100 hours of PWHT.
  • the CLR Cell Length Ratio,%, which represents the resistance of hydrogen organic cracking under H 2 S (Sour Gas) gas atmosphere
  • the banding index which represents the degree of homogenization of the microstructure composed of the composite structure of the ferrite and the pearlite, is controlled to be 0.25 or less. Can be.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Steel (AREA)

Abstract

본 발명은 장시간의 압연 후 열처리(PWHT, Post Weld Heat Treatment, PWHT)를 행해도 강도 및 인성의 저하가 발생하지 않는 PWHT 저항성이 우수한 강판에 관한 것으로서, 중량%로, C: 0.1~0.3%, Si: 0.15~0.50%, Mn: 0.6~1.2%, P: 0.035%이하, S: 0.020%이하, Al: 0.001~0.05%, Cr: 0.01~0.35%, Mo: 0.005~0.2%, V: 0.005~0.05%, Nb: 0.001~0.05%, Ti: 0.001~0.05%, Ca: 0.0005~0.005%, Ni: 0.05~0.5%를 포함하고, Cu: 0.005~0.5%, Co: 0.005~0.2% 및 W; 0.005~0.2%로 이루어진 그룹에서 선택된 1종 이상, 나머지는 Fe 및 불가피한 불순물을 포함하여 이루어지는 용접 후 열처리 저항성이 우수한 고강도 강판 및 그 제조방법에 관한 것이다.

Description

용접 후 열처리 저항성이 우수한 고강도 강판 및 그 제조방법
본 발명은 습윤 황화수소 환경에서의 원유정제 설비, 저장탱크, 열교환기, 반응로, 응축기 등에 사용되는 강판에 관한 것으로서, 보다 상세하게는 용접 후 열처리(PWHT, Post Weld Heat Treatment)에도 강도와 인성이 우수한 강판 및 그 제조방법에 관한 것이다.
최근 석유의 품귀 현상 및 고유가 시대를 맞이하여 열악한 환경의 유전이 활발하게 개발되는 추세에 따라 원유의 정제 및 저장용 강재에 대하여 후물화가 이루어지고 있다.
상기와 같은 강재의 후물화 이외에도 강재를 용접한 경우에 용접 후 구조물의 변형을 방지하고, 형상 및 치수를 안정시키기 위한 목적으로, 용접시 발생된 응력을 제거하기 위하여, 용접 후 열처리(PWHT, Post Weld Heat Treatment)를 행하게 된다. 그러나 장시간의 PWHT 공정을 행한 강판은 그 조직의 조대화로 인하여 강판의 인장강도가 저하되는 문제가 있다.
즉, 장시간 PWHT 후에는 기지조직(Matrix) 및 결정립계의 연화, 결정립 성장, 탄화물의 조대화 등에 따라 강도 및 인성이 동시에 저하되는 현상을 초래하게 된다.
상기 장시간 PWHT 열처리에 따른 물성의 저하를 방지하기 위한 수단으로 일본특허 공개번호 1997-256037호에서는 중량%로,C: 0.05∼0.20%,Si: 0.02∼0.5%,Mn: 0.2∼2.0%,Al: 0.005∼0.10%,필요에 따라 Cu,Ni,Cr,Mo,V,Nb,Ti,B,Ca,희토류 원소 중 1 종 또는 2종 이상을 함유하고,잔부가 철 및 불가피한 불순물로 된 슬래브를 가열 및 열간 압연을 행한 후,실온에서 공냉하고,Ac1∼Ac3 변태점에서 가열하고 서냉하는 공정에 의해, PWHT 보증시간을 16시간까지 가능하게 하였다.
그러나, 상기 기술에 나타난 PWHT 보증 시간은 후물화 및 용접부 조건이 가혹한 경우에는 매우 부족하며, 그 이상의 장시간 PWHT의 적용은 불가능한 문제점을 갖고 있다.
따라서, 강재의 후물화 및 용접부 조건의 가혹화에 동반되어, 장시간의 PWHT 후에도 강도와 인성이 저하되지 않는 PWHT에 대한 저항성이 큰 강재가 요구되고 있다.
본 발명의 일측면은 장시간의 용접 후 열처리(Post Weld Heat Treatment, PWHT) 후에도 강도와 인성이 저하되지 않는 용접 후 열처리(PWHT) 저항성이 우수한 고강도 강판 및 그 제조방법을 제공하고자 하는 것이다.
본 발명은 중량%로, C: 0.1~0.3%, Si: 0.15~0.50%, Mn: 0.6~1.2%, P: 0.035%이하, S: 0.020%이하, Al: 0.001~0.05%, Cr: 0.01~0.35%, Mo: 0.005~0.2%, V: 0.005~0.05%, Nb: 0.001~0.05%, Ti: 0.001~0.05%, Ca: 0.0005~0.005%, Ni: 0.05~0.5%를 포함하고, Cu: 0.005~0.5%, Co: 0.005~0.2% 및 W; 0.005~0.2%로 이루어진 그룹에서 선택된 1종 이상, 나머지는 Fe 및 불가피한 불순물을 포함하고, 상기 조성은 하기 관계식을 만족하는 용접 후 열처리 저항성이 우수한 고강도 강판을 제공한다.
Cu + Ni + Cr + Mo: 1.5% 이하
*Cr + Mo: 0.4% 이하
V + Nb: 0.1% 이하
Ca/S: 1.0 이하
또한, 본 발명은 상기 조성범위를 만족하는 강 슬라브를 1050~1250℃의 온도범위로 재가열하는 단계;
상기 재가열된 강 슬라브를 Tnr~Tnr+100℃의 온도 범위에서 열간압연하는 단계;
상기 열간압연된 열연강판을 850~950℃의 온도범위에서 1.3×t + (10~30분) (단, t는 강재의 두께(㎜)를 의미)의 시간동안 유지하는 열처리 단계; 및
상기 열처리된 강판을 0.1~10℃/sec의 냉각속도로 냉각하는 단계를 포함하는 용접 후 열처리 저항성이 우수한 고강도 강판의 제조방법을 제공한다.
본 발명에 의하면, 500MPa급 이상의 강도를 가지면서, 100시간에 이르는 PWHT 후에도 강도 및 인성이 열화되지 않으며, 내수소 유기균열성이 우수한 압력용기용 강판을 제공할 수 있다.
이하, 본 발명에 대하여 상세히 설명한다.
먼저, 본 발명의 조성범위에 대하여 상세히 설명한다(이하, 중량%)
탄소(C)의 함량은 0.1~0.3%로 한정하는 것이 바람직하다. C는 강도를 향상시키는 원소로서, 그 함량이 0.1% 미만에서는 기지 상의 자체적인 강도가 저하되고, 0.3%를 초과하는 경우에는 조직내에 편석이 발생하여 수소유기 균열 저항성을 저하시키는 문제점이 있다.
실리콘(Si)의 함량은 0.15~0.50%로 한정하는 것이 바람직하다. Si는 탈산 및 고용강화에 효과적인 원소이며, 충격 천이 온도 상승효과를 위하여 첨가되는 원소이다. 이러한 효과를 달성하기 위해서는 0.15% 이상 첨가되어야 하나, 0.5%를 초과하여 첨가되는 경우에는 용접성이 저하되고 강판 표면에 산화 피막이 심하게 형성되는 문제점이 있다.
망간(Mn)의 함량은 0.6~1.2%로 한정하는 것이 바람직하다. Mn은 S와 함께 연신된 비금속 개재물인 MnS를 형성하여 상온 연신율 및 저온인성을 저하시키므로 1.2% 이하로 관리하는 것이 바람직하다. 그러나 본 발명의 특성상 Mn이 0.6% 미만으로 첨가되는 경우에는 적절한 강도를 확보하기 어려우므로 그 함량은 0.6~1.2%로 한정한다.
알루미늄(Al)의 함량은 0.001~0.5%로 한정하는 것이 바람직하다. Al은 상기 Si와 더불어 제강 공정에서 강력한 탈산제의 하나이며, 0.001% 미만에서는 상기 탈산효과가 미미하고, 0.05%를 초과하여 첨가되는 경우에는 상기 탈산효과는 포화되고 제조원가가 상승하는 문제점이 있다.
인(P)은 저온인성을 해치는 원소이나, 제강공정에서 제거하는데 과다한 비용이 소요되므로, 0.035% 이하의 범위내에서 관리하는 것이 바람직하다.
황(S) 역시 P와 더불어, 저온인성에 악영향을 주는 원소이지만, P와 마찬가지로 제강 공정에서 제거하는데 과다한 비용이 소요될 수 있으므로, 0.020% 이하의 범위 내에서 관리하는 것이 바람직하다.
크롬(Cr)의 함량은 0.01~0.35%로 한정하는 것이 바람직하다. Cr은 강도를 증가시키는 원소이므로, 본 발명에서 강도 증가 효과를 위해서는 0.01% 이상 첨가되어야 하나, 고가의 원소이므로, 0.35%를 초과하여 첨가하는 경우에는 제조비용의 상승을 초래하므로 0.35% 이하로 관리하는 것이 바람직하다.
몰리브덴(Mo)의 함량은 0.005~0.2%로 한정하는 것이 바람직하다. Mo은 Cr과 마찬가지로, 강도 증대에 유효한 원소일 뿐만 아니라, 황화물에 의한 균열 발생을 방지하는 원소이다. 상기 효과를 위해서는 0.005%이상 첨가되어야 하나, Mo 역시 고가의 원소로 제조비용의 상승을 초래하므로, 0.2% 이하로 한정하는 것이 바람직하다.
바나듐(V)의 함량은 0.005~0.05%로 한정하는 것이 바람직하다. V은 Cr, Mo와 같이 강도의 증대에 효과적인 원소이다. 따라서, 0.005% 이상 첨가되어야 강도 증대의 효과를 도모할 수 있으나, 고가인 관계로 0.05% 이하로 첨가함이 바람직하다.
니오븀(Nb)의 함량은 0.001~0.05%로 한정하는 것이 바람직하다. Nb는 오스테나이트에 고용되어 오스테나이트의 경화능을 증대시키고, 기지(Matrix)와 정합을 이루는 탄질화물(Nb(C,N))로 석출됨으로써, 강도를 증가시키는 중요한 원소이다. 그 함량이 0.001% 이상 첨가되어야 상기 효과를 얻을 수 있으나, 다량으로 첨가시에는 연주 과정에서 조대한 석출물로 나타나 수소유기균열의 사이트의 역할을 할 수 있으므로 그 함량은 0.05% 이하로 제한하는 것이 바람직하다.
티타늄(Ti)의 함량은 0.001~0.05%로 한정하는 것이 바람직하다. Ti는 Nb와 같이 탄질화물(Ti(C,N))로 석출됨으로써,강도를 증가시키는 중요한 원소이다. 그 함량이 0.001% 이상 첨가되어야 상기 효과를 얻을 수 있으나 다량으로 첨가시 연주 과정에서 조대한 석출물로 나타나 수소유기균열의 사이트의 역할을 할 수 있으므로 그 함량은 0.05% 이하로 제한하는 것이 바람직하다.
칼슘(Ca)의 함량은 0.0005~0.005%로 한정하는 것이 바람직하다. Ca은 CaS로 생성되어 MnS의 비금속개재물을 억제하기 위해 첨가하는 바, 이를 위해서는 0.0005% 이상 첨가되어야 한다. 그러나, 그 함량이 0.005%를 초과하면 강중에 함유된 O와 반응하여 비금속개재물인 CaO를 생성하므로 그 상한치는 0.005%로 한정하는 것이 바람직하다.
니켈(Ni)의 함량은 0.05~0.5%로 한정하는 것이 바람직하다. Ni은 저온 인성의 향상에 가장 효과적인 원소로서, 그 함량이 0.05% 이상 첨가되어야 상기 효과를 얻을 수 있으나, 고가의 원소로 제조비용 상승을 초래하므로 0.5% 이하로 첨가하는 것이 바람직하다.
본 발명은 상기 조성에 Cu, Co 및 W로 이루어진 그룹에서 선택된 1종 이상을 포함한다.
구리(Cu)의 함량은 0.005~0.5%를 첨가하는 것이 바람직하다. Cu는 고용강화 또는 e-Cu석출 등에 의한 기지조직(matrix)의 강화에 따른 PWHT열처리 후에도 강도의 열화를 방지하며, 기지 강화 및 recovery 억제를 통한 강도 및 인성의 열화를 방지한다. 다만, 고가이므로 그 함량을 0.005~0.5%의 범위 내에서 첨가함이 바람직하다.
코발트(Co)의 함량은 0.005~0.2%를 첨가하는 것이 바람직하다. Co는 기지조직의 연화를 방지하는데 효과적인 원소이긴 하지만 고가이므로 0.005~0.2%의 범위 내에서 첨가함이 바람직하다.
텅스텐(W)의 함량은 0.005~0.2%를 첨가하는 것이 바람직하다. W는 WC 형성하거나 시멘타이트(Cementite) 석출분율을 감소시켜, 시멘타이트 성장/응집억제를 방지하여 강도 및 인성의 열화를 방지할 수 있는 특성을 가지므로 0.005% 이상 첨가되는 것이 바람직하다. 다만, 상기 W가 고가이므로 0.005~0.2%의 범위 내에서 첨가함이 보다 바람직하다.
본 발명의 강재는 압력용기용 강재로 사용할 수 있으므로 이를 고려할 경우 하기 Cu, Ni, Cr, Mo, V, Nb 등의 원소들의 함량은 다음의 관계를 만족하는 것이 바람직하다.
Cu + Ni + Cr + Mo: 1.5% 이하
Cr + Mo: 0.4% 이하
V + Nb: 0.1% 이하
Ca/S: 1.0 이하
즉, Cu + Ni + Cr + Mo, Cr + Mo 및 V + Nb의 관계는 압력용기용 강재의 기본 규격(ASTM A20)에서 각각 제한하고 있는 수치로서, 이에 따라 Cu + Ni + Cr + Mo함량은 1.5% 이하로, Cr + Mo함량은 0.4% 이하로, 그리고 V + Nb함량은 0.1% 이하로 제한한다. 다만, 본 발명의 실시태양에 따라 포함되지 않은 합금 원소는 0으로 계산할 수 있다.
그리고 Ca/S 비는 MnS 개재물을 구상화시켜 수소유기균열 저항성을 향상시키는 필수 구성비로서 1.0을 초과하는 경우에는 그 효과를 기대하기 어려우므로 그 비율을 1.0 이하가 되도록 조절한다.
나머지는 Fe 및 불가피한 불순물로 이루어진다.
이하, 본 발명의 미세조직에 대하여 상세히 설명한다.
상기와 같은 조성을 갖는 강을 후술하는 과정에 의해 적정한 제어압연 및 열처리를 하면 그 미세조직이 페라이트 또는 페라이트와 펄라이트의 혼합조직으로 이루어질 수 있으며, 상기 조직내에는 저온조직은 가급적 포함되지 않는 것이 바람직하지만 10%까지는 베이나이트가 포함될 수 있다. 조직을 상술한 형태로 제어하는 이유는 본 발명에서 대상으로 하는 수소유기균열에 대한 저항성이 우수하고 적절한 강도와 인성을 가지도록 하기 위함이다.
또한, 수소유기균열 저항성을 확보하기 위해서는 수소유기균열에 취약한 밴드 조직이 얼마나 형성되었는가를 나타내는 밴딩 인덱스(Banding Index)(ASTM E-1268에 따라 측정됨)가 0.25 이하인 것이 바람직하다. 상기 밴딩 인덱스(Banding Index)값이 0.25를 초과하게 되면 그 미세 조직에서는 수소유기균열 저항성이 급격히 저하된다.
강판 두께방향 중심부(3/8~5/8t, t: 강판의 두께) 페라이트 결정립 평균크기가 50㎛ 이하인 것이 바람직하다. 이는 상기 페라이트 결정립의 크기가 과대할 경우에는 강도와 인성이 저하할 우려가 있기 때문이다. 결정립의 크기에 대한 하한은 없으나, 본 발명에서 대상으로하는 강재에서는 대체로 5㎛ 미만의 결정립은 얻기 곤란하므로 결정립의 크기는 5㎛ 이상으로 할 수도 있다.
이하, 본 발명의 제조방법에 대하여 상세히 설명한다.
본 발명은 상기 조성범위를 만족하는 강 슬라브를 1050~1250℃의 온도범위로 재가열한다. 상기 재가열 온도가 1050℃보다 낮을 경우 용질원자의 고용이 어렵고, 1250℃를 초과하면 오스테나이트 결정립 크기가 너무 조대하게 되어 강판의 성질을 해치기 때문이다.
상기 재가열 후 본 발명에서는 수소유기균열 저항성을 갖기 위한 페라이트+펄라이트 2상 복합조직을 갖고, 밴딩 인덱스(Banding Index)(ASTM E-1268에 따라 측정)가 0.25이하가 되도록 재결정 제어 압연, 열처리, PWHT 열처리가 요구된다.
재결정 제어 압연은 상기 재가열된 강 슬라브를 미재결정 이상의 온도에서 열간압연을 행함으로 이루어진다. 상기 미재결정 온도인 Tnr은 하기 식으로부터 계산이 가능하다.
Tnr(℃) = 887+464×C+890×Ti+363×Al-357×Si+(6446×Nb-644×Nb1/2)+(732×V-230×V1/2)
밴딩 인덱스(Banding Index)(ASTM E-1268에 따라 측정)값이 0.25이하로 나오기 위해서는 재결정 제어 압연이 가장 중요한 변수이며, 재결정 제어 압연은 Tnr~Tnr+100℃의 온도 범위 구간에서 각 압연 패스당 10% 이상의 압하율을 가하여, 누적압하량 30% 이상을 부여하는 것이 바람직하다. 상기 만일 누적 압하량이 30% 미만인 경우에는 밴딩 인덱스(Banding Index) 0.25이하를 기대할 수 없기 때문이다. 또한, 재결정 제어압연의 온도를 한정하는 이유 역시 밴딩 인덱스를 제어하기 위한 것으로서 결정립이 조대화되지 않은 상태에서 밴드조직을 억제하기 위한 것이다. 보다 상세하게는 온도가 재결정역 기준 온도(Tnr) 보다 낮을 경우에는 오스테나이트가 팬 케익화 되어 밴딩 인덱스가 높아지게 되어 바람직하지 않고, 반대로 온도가 과다하게 높을 경우에는 결정립의 크기가 과대하게 되어 바람직하지 않다.
이후, 상기 열간압연을 행하고, 냉각된 열연강판을 열처리한다. 상기 열처리는 850~950℃의 온도범위에서 1.3×t + (10~30분) (단, t는 강재의 두께(㎜)를 의미)의 조건으로 유지한다. 상기 열처리의 온도가 850℃ 미만에서는 고용 용질 원소들의 재고용이 어려워 강도의 확보가 어려워지고, 반면에 열처리 온도가 950℃를 초과하게 되면 결정립의 성장이 일어나 저온 인성을 해치게 된다.
상기 열처리 유지시간의 제약을 두는 이유는 상기 유지시간이 1.3×t + 10분(t는 강재의 두께(㎜)를 의미)보다 적으면 조직의 균질화가 어렵고, 1.3×t + 30분(t는 강재의 두께(㎜)를 의미)을 초과하면 생산성을 해치기 때문이다.
상기 유지된 강판을 중심부 냉각속도 기준으로 0.1~10℃/sec로 냉각한다.그 이하의 냉각 속도에서는 냉각 중 페라이트 결정립 조대화가 발생될 수 있고 그 이상의 냉각 속도에서는 과대한 제2상(베이나이트 분율 10% 이상)이 발생 할 가능성이 높기 때문이다.
상기 냉각속도는 강판의 중심부 페라이트의 평균결정립 크기를 50㎛이하로 조정하기 위함이다.
상기 열처리 공정을 거쳐 제조된 본 발명의 강판은 압력용기의 제작시 부가되는 용접공정에 의해 잔류응력의 제거 등을 위하여 PWHT 처리가 필요하다. 일반적으로 장시간 PWHT 열처리 이후에는 강도 및 인성의 열화가 발생되는데, 상기 본 발명에 의해 제조된 강판은 통상적인 PWHT 온도 조건인 600 ~ 640℃에서 장시간(~100시간)실시하여도 강도 및 인성의 큰 저하 없이 용접시공이 가능하다는 장점을 가지고 있다. 특히, 본 발명의 강판은 100시간의 PWHT 후에도 450MPa 이상의 인장강도를 갖고, -50℃에서의 샤르피 충격 에너지값이 50J 이상을 만족한다.
이하, 본 발명의 실시예에 대하여 상세히 설명한다. 다만, 본 발명은 하기 실시예에 한정되는 것은 아니다.
(실시예)
하기 표 1에는 발명강과 비교강의 화학성분을 각각 나타낸 것이다. 표 1과 같은 조성을 갖는 강 슬라브를 표 2의 강판 두께, 재가열 온도, 압연, 열처리 및 냉각을 행하여 강판을 제조하였다.
상기 조건으로 제조된 강판에 대하여 PWHT 등을 하기 표2와 같은 조건으로 실시한 후 항복강도, 인장강도, 저온 인성 및 크랙 길이비(CLR, Crack Length Ratio, %)를 조사하여 그 결과를 하기 표 2에 나타내었다.
단, 저온 인성은 -50℃에서 V노치를 갖는 시편을 샤르피 충격 시험을 행하여 얻은 샤르피 충격 에너지값으로 평가한 것이고, 하기 표2에서 크랙 길이비(Crack Length Ratio, %)는 NACE TM0277 규격에 따라 측정된 것이다.
표 1
구분 C Mn Si P S Cu Ni Cr Mo V Nb Ti Co W Ca
발명강 1 0.17 1.10 0.30 0.01 0.0015 0.15 0.20 0.05 0.12 0.005 0.015 0.003 - 0.10 0.0015
발명강 2 0.18 1.05 0.35 0.08 0.0012 - 0.15 0.10 0.10 0.010 0.014 0.012 0.10 - 0.0025
발명강 3 0.16 1.10 0.30 0.01 0.0015 0.20 0.20 0.05 0.12 0.005 0.015 0.015 - 0.10 0.0020
발명강 4 0.15 1.05 0.25 0.08 0.0012 - 0.15 0.10 0.10 0.010 0.014 0.012 0.10 - 0.0018
비교강 1 0.17 1.05 0.25 0.01 0.0015 - 0.20 0.15 0.08 0.010 0.010 0.010 - - 0.0025
비교강 2 0.15 1.15 0.25 0.01 0.0014 - 0.15 0.20 0.15 0.009 0.012 0.012 - - 0.0023
표 2
구분 강판두께(㎜) 재가열온도(℃) 누적압하량(%) 열처리조건(℃,분) 냉각속도(℃/초) PWHT 온도(℃) PWHT시간(Hr) 중심부페라이트평균입도(㎛) 밴딩 인덱스(Banding Index) YS(MPa) TS(MPa) -50℃충격인성(J) CLR(%)
발명강 1 13 1150 60 890,50 1.0 620 6 15 0.18 380 545 203 0.03
25 1100 75 900,60 0.7 620 16 23 0.12 375 540 197 0.0
50 1180 55 890,80 0.8 610 50 25 0.15 360 539 213 0.0
80 1200 50 900,125 0.5 610 100 37 0.08 359 522 186 0.0
발명강 2 30 1100 80 910,60 110 610 6 19 0.12 355 542 173 0.0
75 1150 65 910,120 120 610 16 26 0.11 354 539 180 0.0
80 1200 60 890,125 120 610 50 37 0.13 350 531 175 0.0
80 1200 50 890,125 120 610 100 33 0.07 350 519 170 0.0
발명강 3 30 1100 80 910,60 110 610 6 21 0.16 355 535 173 0.0
75 1150 65 910,120 120 610 16 27 0.07 354 537 180 0.0
80 1200 60 890,125 120 610 50 32 0.13 350 533 175 0.0
80 1200 50 890,125 120 610 100 38 0.11 350 528 175 0.0
발명강 4 50 1100 60 910,80 110 610 6 15 0.09 355 542 173 0.0
75 1150 55 910,120 120 610 16 23 0.10 354 535 180 0.0
80 1200 60 890,125 120 610 50 28 0.08 350 538 175 0.0
80 1200 50 890,125 120 610 100 35 0.11 350 521 175 0.0
비교강 1 50 1200 - 900,85 공냉 620 16 25 0.26 370 536 166 35
50 1150 - 900,80 공냉 620 50 51 0.36 325 461 27 20
75 1100 - 900,120 공냉 620 100 58 0.27 329 547 23 25
비교강 2 50 1100 - 900,80 공냉 620 16 35 0.26 360 525 178 30
60 1100 - 900,100 공냉 620 50 50 0.29 333 468 29 35
75 1180 - 900,120 공냉 620 100 51 0.26 328 460 18 25
상기 표 1 및 2의 결과에서 알 수 있듯이, 본 발명의 조성 및 제조조건을 만족하는 발명강은 PWHT 시간이 50시간 이상 100시간에 이르게 되어도, 강도와 인성이 저하되지 않는 것에 비해, 비교강은 본 발명의 조성과 제조조건을 벗어나는 것으로서, 발명강과 비교할 때, PWHT 시간이 작을 경우에는 강도와 인성이 발명강과 거의 동등한 수준을 보이고 있으나, PWHT 시간이 50 시간 이상 길어짐에 따라, 발명강에 비해 강도와 인성이 현저히 열화되는 것을 확인할 수 있다.
특히, 발명강에서는 100시간의 PWHT후에도 저온인성값의 저하가 크지 않음에 비해, 비교강에서는 저온인성값의 저하가 심한 것을 알 수 있다.
한편, H2S(Sour Gas)가스 분위기하에서의 수소유기 균열의 저항성을 나타내는 CLR(Crack Length Ratio, %)은 발명강이 월등히 우수함을 알 수 있다. 이와 같이, 발명강이 CLR에 있어서 우수한 이유는 페라이트 및 펄라이트의 복합조직으로 구성되는 미세 조직의 균질화 정도를 나타내는 밴딩 인덱스(Banding Index)가 0.25 이하로 낮게 제어됨에 기인한 것임을 본 실시예를 통해 알 수 있다.

Claims (7)

  1. 중량%로, C: 0.1~0.3%, Si: 0.15~0.50%, Mn: 0.6~1.2%, P: 0.035%이하, S: 0.020%이하, Al: 0.001~0.05%, Cr: 0.01~0.35%, Mo: 0.005~0.2%, V: 0.005~0.05%, Nb: 0.001~0.05%, Ti: 0.001~0.05%, Ca: 0.0005~0.005%, Ni: 0.05~0.5%를 포함하고, Cu: 0.005~0.5%, Co: 0.005~0.2% 및 W; 0.005~0.2%로 이루어진 그룹에서 선택된 1종 이상, 나머지는 Fe 및 불가피한 불순물을 포함하고,
    상기 조성은 하기 관계식을 만족하는 용접 후 열처리 저항성이 우수한 고강도 강판.
    Cu + Ni + Cr + Mo: 1.5% 이하
    Cr + Mo: 0.4% 이하
    V + Nb: 0.1% 이하
    Ca/S: 1.0 이하
  2. 청구항 1에 있어서,
    상기 강판의 미세 조직은 페라이트 또는 페라이트와 펄라이트의 혼합조직으로 이루어져 있고, 이때 강판 중심부 페라이트 결정립 평균크기가 50㎛이하인 용접 후 열처리 저항성이 우수한 고강도 강판.
  3. 청구항 1에 있어서,
    상기 강판은 밴딩 인덱스(Banding Index)(ASTM E-1268에 따라 측정)가 0.25이하인 용접 후 열처리 저항성이 우수한 고강도 강판.
  4. 청구항 1에 있어서,
    상기 강판은 100시간 용접 후 열처리(Post Weld Heat Treatment, PWHT)에도 인장강도가 450MPa 이상이고, -50℃에서의 샤르피 충격 에너지값이 50J이상인 용접 후 열처리 저항성이 우수한 고강도 강판.
  5. 중량%로, C: 0.1~0.3%, Si: 0.15~0.50%, Mn: 0.6~1.2%, P: 0.035%이하, S: 0.020%이하, Al: 0.001~0.05%, Cr: 0.01~0.35%, Mo: 0.005~0.2%, V: 0.005~0.05%, Nb: 0.001~0.05%, Ti: 0.001~0.05%, Ca: 0.0005~0.005%, Ni: 0.05~0.5%를 포함하고, Cu: 0.005~0.5%, Co: 0.005~0.2% 및 W; 0.005~0.2%로 이루어진 그룹에서 선택된 1종 이상, 나머지는 Fe 및 불가피한 불순물을 포함하고,
    상기 조성은 하기 관계식을 만족하는 강 슬라브를 1050~1250℃의 온도범위로 재가열하는 단계;
    상기 재가열된 강 슬라브를 Tnr~Tnr+100℃의 온도 범위에서 열간압연하는 단계;
    상기 열간압연된 열연강판을 850~950℃의 온도범위에서 1.3×t + (10~30분) (단, t는 강재의 두께(㎜)를 의미)의 시간동안 유지하는 열처리 단계; 및
    상기 열처리된 강판을 0.1~10℃/sec의 냉각속도로 냉각하는 단계
    를 포함하는 용접 후 열처리 저항성이 우수한 고강도 강판의 제조방법.
    Cu + Ni + Cr + Mo: 1.5% 이하
    Cr + Mo: 0.4% 이하
    V + Nb: 0.1% 이하
    Ca/S: 1.0 이하
  6. 청구항 5에 있어서,
    상기 열간압연하는 단계는 각 압연 패스당 10% 이상의 압하율을 가하여, 누적압하량 30% 이상으로 행하는 용접 후 열처리 저항성이 우수한 고강도 강판의 제조방법.
  7. 청구항 5에 있어서,
    상기 냉각하는 단계는 강판의 중심부 페라이트의 평균결정립 크기를 50㎛이하가 되도록 제어하는 용접 후 열처리 저항성이 우수한 고강도 강판의 제조방법.
PCT/KR2010/009225 2009-12-28 2010-12-22 용접 후 열처리 저항성이 우수한 고강도 강판 및 그 제조방법 WO2011081350A2 (ko)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP10841182.8A EP2520680B1 (en) 2009-12-28 2010-12-22 High strength steel sheet having excellent resistance to post weld heat treatment and method for manufacturing same
JP2012546997A JP5657026B2 (ja) 2009-12-28 2010-12-22 溶接後熱処理抵抗性に優れた高強度鋼板及びその製造方法
CN201080064894.0A CN102782169B (zh) 2009-12-28 2010-12-22 对焊后热处理具有优异抗性的高强度钢板及其制备方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020090132129A KR101322067B1 (ko) 2009-12-28 2009-12-28 용접 후 열처리 저항성이 우수한 고강도 강판 및 그 제조방법
KR10-2009-0132129 2009-12-28

Publications (2)

Publication Number Publication Date
WO2011081350A2 true WO2011081350A2 (ko) 2011-07-07
WO2011081350A3 WO2011081350A3 (ko) 2011-11-17

Family

ID=44226971

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2010/009225 WO2011081350A2 (ko) 2009-12-28 2010-12-22 용접 후 열처리 저항성이 우수한 고강도 강판 및 그 제조방법

Country Status (5)

Country Link
EP (1) EP2520680B1 (ko)
JP (1) JP5657026B2 (ko)
KR (1) KR101322067B1 (ko)
CN (1) CN102782169B (ko)
WO (1) WO2011081350A2 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112813353A (zh) * 2021-01-29 2021-05-18 五矿营口中板有限责任公司 一种超高温spwht高韧性正火容器用钢及制造方法

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101417231B1 (ko) * 2011-12-28 2014-07-08 주식회사 포스코 저온인성 및 인장특성이 우수한 압력용기용 극후강판 및 그 제조 방법
JP6201376B2 (ja) * 2013-04-01 2017-09-27 Jfeスチール株式会社 耐食性に優れる原油タンク用鋼材および原油タンク
CN104195465A (zh) * 2014-07-24 2014-12-10 安徽广源科技发展有限公司 一种耐低温耐腐蚀用合金钢及其制造方法
CN104109801B (zh) * 2014-07-30 2016-04-27 宝山钢铁股份有限公司 高韧性、抗pwht软化脆化的钢板及其制造方法
KR101758497B1 (ko) * 2015-12-22 2017-07-27 주식회사 포스코 Pwht 저항성이 우수한 저온 압력용기용 강판 및 그 제조 방법
CN105671436B (zh) * 2016-02-05 2017-10-03 山东钢铁股份有限公司 抗高温pwht软化的低焊接裂纹敏感系数原油储罐用高强韧性钢板及其制造方法
KR101917453B1 (ko) 2016-12-22 2018-11-09 주식회사 포스코 극저온 충격인성이 우수한 후강판 및 이의 제조방법
KR101899691B1 (ko) * 2016-12-23 2018-10-31 주식회사 포스코 수소유기균열 저항성이 우수한 압력용기용 강재 및 그 제조방법
KR101999024B1 (ko) * 2017-12-26 2019-07-10 주식회사 포스코 수소유기균열 저항성이 우수한 강재 및 그 제조방법
KR102280641B1 (ko) * 2019-10-22 2021-07-22 주식회사 포스코 고온 용접후열처리 저항성이 우수한 압력용기용 강판 및 그 제조방법
US11788951B2 (en) 2021-03-19 2023-10-17 Saudi Arabian Oil Company Testing method to evaluate cold forming effects on carbon steel susceptibility to hydrogen induced cracking (HIC)
US11656169B2 (en) 2021-03-19 2023-05-23 Saudi Arabian Oil Company Development of control samples to enhance the accuracy of HIC testing

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09256037A (ja) 1996-03-22 1997-09-30 Nippon Steel Corp 応力除去焼鈍処理用の厚肉高張力鋼板の製造方法

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6179745A (ja) * 1984-09-28 1986-04-23 Nippon Steel Corp 溶接継手熱影響部靭性のすぐれた鋼材の製造法
JP3795949B2 (ja) * 1995-02-16 2006-07-12 新日本製鐵株式会社 疲労強度が優れた溶接継手
CN1078910C (zh) * 1996-02-13 2002-02-06 新日本制铁株式会社 具有优异疲劳强度的焊接接头
JPH11131177A (ja) * 1997-08-29 1999-05-18 Nippon Steel Corp 溶接後熱処理の省略可能な中常温圧力容器用鋼板およびその製造方法
CZ293084B6 (cs) 1999-05-17 2004-02-18 Jinpo Plus A. S. Ocele pro žárupevné a vysokopevné tvářené součásti, obzvláště trubky, plechy a výkovky
EP1312690B1 (en) * 2001-11-14 2006-08-09 Sumitomo Metal Industries, Ltd. Steel material having improved fatigue crack driving resistance and manufacturing process therefor
JP2004027355A (ja) * 2001-11-14 2004-01-29 Sumitomo Metal Ind Ltd 疲労き裂進展抵抗特性に優れた鋼材とその製造方法
JP4267367B2 (ja) 2002-06-19 2009-05-27 新日本製鐵株式会社 原油油槽用鋼およびその製造方法、原油油槽およびその防食方法
JP5028760B2 (ja) * 2004-07-07 2012-09-19 Jfeスチール株式会社 高張力鋼板の製造方法および高張力鋼板
JP4718866B2 (ja) * 2005-03-04 2011-07-06 新日本製鐵株式会社 溶接性およびガス切断性に優れた高張力耐火鋼およびその製造方法
JP2008100277A (ja) * 2006-10-23 2008-05-01 Jfe Steel Kk 靭性に優れた溶接部を有する低降伏比厚肉電縫鋼管の製造方法
KR100833071B1 (ko) 2006-12-13 2008-05-27 주식회사 포스코 내hic특성이 우수한 인장강도 600㎫급 압력용기용 강판및 그 제조 방법
KR100833070B1 (ko) 2006-12-13 2008-05-27 주식회사 포스코 내hic특성이 우수한 인장강도 500㎫급 압력용기용 강판및 그 제조 방법
AU2008207591B2 (en) 2007-03-30 2011-09-01 Nippon Steel Corporation Oil country tubular good for expansion in well and manufacturing method thereof
JP2009041073A (ja) * 2007-08-09 2009-02-26 Sumitomo Metal Ind Ltd 溶接部からの延性き裂発生に対する抵抗性に優れる高張力鋼溶接継手およびその製造方法
JP4326020B1 (ja) * 2008-03-28 2009-09-02 株式会社神戸製鋼所 耐応力除去焼鈍特性と低温継手靭性に優れた高強度鋼板
JP5716640B2 (ja) 2011-11-21 2015-05-13 新日鐵住金株式会社 熱間鍛造用圧延棒鋼

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09256037A (ja) 1996-03-22 1997-09-30 Nippon Steel Corp 応力除去焼鈍処理用の厚肉高張力鋼板の製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2520680A4

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112813353A (zh) * 2021-01-29 2021-05-18 五矿营口中板有限责任公司 一种超高温spwht高韧性正火容器用钢及制造方法

Also Published As

Publication number Publication date
KR101322067B1 (ko) 2013-10-25
CN102782169B (zh) 2014-11-19
WO2011081350A3 (ko) 2011-11-17
EP2520680A2 (en) 2012-11-07
KR20110075630A (ko) 2011-07-06
CN102782169A (zh) 2012-11-14
JP2013515861A (ja) 2013-05-09
JP5657026B2 (ja) 2015-01-21
EP2520680B1 (en) 2016-10-26
EP2520680A4 (en) 2014-11-19

Similar Documents

Publication Publication Date Title
WO2011081350A2 (ko) 용접 후 열처리 저항성이 우수한 고강도 강판 및 그 제조방법
WO2019117536A1 (ko) 인장강도 및 저온충격인성이 우수한 압력용기용 강판 및 그 제조방법
WO2014104706A1 (ko) 용접열영향부 인성이 우수한 고강도 오스테나이트계 강재 및 그 제조방법
WO2020130560A1 (ko) 가공성이 우수한 냉연강판, 용융아연도금강판 및 이들의 제조방법
WO2017104969A1 (ko) 용접 후 열처리 저항성이 우수한 압력용기 강판 및 그 제조방법
WO2020111863A1 (ko) 냉간가공성 및 ssc 저항성이 우수한 초고강도 강재 및 그 제조방법
KR20130076570A (ko) 저온인성 및 인장특성이 우수한 압력용기용 극후강판 및 그 제조 방법
WO2017034216A1 (ko) 고 경도 강판 및 그 제조방법
WO2018117450A1 (ko) 저온인성 및 후열처리 특성이 우수한 내sour 후판 강재 및 그 제조방법
WO2018117496A1 (ko) 고온 템퍼링 열처리 및 용접 후 열처리 저항성이 우수한 압력용기용 강재 및 이의 제조방법
WO2019124671A1 (ko) 용접부 인성이 우수한 저온용 강재 및 그 제조방법
KR101253888B1 (ko) 용접 후 열처리 저항성이 우수한 고강도 강판 및 그 제조방법
WO2020085684A1 (ko) 극저온 인성 및 연성이 우수한 압력용기용 강판 및 그 제조 방법
WO2020111857A1 (ko) 크리프 강도가 우수한 크롬-몰리브덴 강판 및 그 제조방법
WO2011081236A1 (ko) 열간 프레스 가공성이 우수한 열처리 강화형 강판 및 그 제조방법
WO2019125076A1 (ko) 우수한 경도와 충격인성을 갖는 내마모강 및 그 제조방법
KR20120067149A (ko) 용접 후 열처리 저항성이 우수한 중고온용 강판 및 그 제조방법
WO2019124793A1 (ko) 고강도 강판 및 그 제조방법
WO2013100625A1 (ko) 인성 및 용접성이 우수한 내마모강
WO2017222122A1 (ko) 철근 및 이의 제조 방법
WO2020111859A1 (ko) 고온강도가 우수한 중고온용 강판 및 그 제조방법
WO2020111705A1 (ko) 연신율이 우수한 고강도 열연강판 및 그 제조방법
WO2020130257A1 (ko) 연성 및 가공성이 우수한 고강도 강판 및 그 제조방법
WO2020111858A1 (ko) 수소유기균열 저항성이 우수한 압력용기용 강재 및 그 제조방법
WO2021025248A1 (ko) 고온 내크립 특성이 향상된 페라이트계 스테인리스강 및 그 제조 방법

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080064894.0

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10841182

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012546997

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2010841182

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2010841182

Country of ref document: EP