CN102782169A - 对焊后热处理具有优异抗性的高强度钢板及其制备方法 - Google Patents

对焊后热处理具有优异抗性的高强度钢板及其制备方法 Download PDF

Info

Publication number
CN102782169A
CN102782169A CN2010800648940A CN201080064894A CN102782169A CN 102782169 A CN102782169 A CN 102782169A CN 2010800648940 A CN2010800648940 A CN 2010800648940A CN 201080064894 A CN201080064894 A CN 201080064894A CN 102782169 A CN102782169 A CN 102782169A
Authority
CN
China
Prior art keywords
steel plate
heat treatment
excellent resistance
high tensile
steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN2010800648940A
Other languages
English (en)
Other versions
CN102782169B (zh
Inventor
洪淳泽
张成豪
卢允祚
朴在贤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Posco Holdings Inc
Original Assignee
Posco Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=44226971&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=CN102782169(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Posco Co Ltd filed Critical Posco Co Ltd
Publication of CN102782169A publication Critical patent/CN102782169A/zh
Application granted granted Critical
Publication of CN102782169B publication Critical patent/CN102782169B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/50Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/46Ferrous alloys, e.g. steel alloys containing chromium with nickel with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/48Ferrous alloys, e.g. steel alloys containing chromium with nickel with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/004Dispersions; Precipitations
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/005Ferrite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/009Pearlite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/50Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for welded joints

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Steel (AREA)

Abstract

本发明涉及一种具有优异焊后热处理(PWHT)抗性的钢板,其中所述钢板的强度和韧性即使在实施长时间轧制后的焊后热处理(PWHT,)也不会发生降低。更具体而言,本发明涉及一种对焊后热处理(PWHT)具有优异抗性的钢板及其制备方法,其中所述钢板含有以重量%计的:0.1-0.3%的C;0.15-0.50%的Si;0.6-1.2%的Mn;0.035%以下的P;0.020%以下的S;0.001-0.05%的Al;0.01-0.35%的Cr;0.005-0.2%的Mo;0.005-0.05%的V;0.001-0.05%的Nb;0.001-0.05%的Ti;0.0005-0.005%的Ca;0.05-0.5%的Ni;选自0.005-0.5%的Cu、0.005-0.2%的Co和0.005-0.2%的W中的一种以上;及余量物Fe和不可避免的杂质。

Description

对焊后热处理具有优异抗性的高强度钢板及其制备方法
技术领域
本发明涉及一种用于处在潮湿的硫化氢环境中的原油精炼设备、储油罐、热交换器、反应炉、冷凝器等的钢板,更具体而言,涉及一种对焊后热处理(PWHT,Post Weld Heat Treatment)也具有优异强度和韧性的钢板,及该钢板的制备方法。
背景技术
由于高油价时代及近来日益短缺的石油供应,导致近年来正积极开采处于恶劣环境中的油田的趋势,据此用于精炼和储存原油的钢材厚度日益增加。
实施焊后热处理(PWHT,Post Weld Heat Treatment)是为了消除在用具有稳定形状和尺寸的物体进行焊接期间产生的应力,和防止钢在焊接——在上述使钢增厚的基础上——后结构发生变形。但是,经过很长时间的PWHT处理的钢板存在的一个问题在于,钢板的抗拉强度可能会由于钢板结构的粗大化而降低。
更确切而言,长时间的PWHT处理后导致这样一种现象:由于基质结构(Matrix)和晶粒边界的软化、晶粒的生长、碳化物的粗大化等,钢板的强度和韧性同时降低。
日本专利公开文本No.1997-256037中公开了一种防止在经上述长时间的PWHT热处理后物理性能特性降低的方法,该方法通过下述操作能够保证实施PWHT时间最长至16小时:对钢锭实施加热和热轧处理,以重量%计,所述钢锭含有0.05-0.20%的C、0.02-0.5%的Si、0.2-2.0%的Mn、0.005-0.10%的Al,且根据需要,其还含有选自Cu、Ni、Cr、Mo、V、Nb、Ti、B和Ca及稀土元素中的一种或两种以上,余量物为铁和不可避免的杂质;在室温下空气冷却经热轧的钢板;和在Ac1至Ac3的转换点下加热并进行缓慢冷却。
但是,上述技术存在的问题为,当钢的增厚和焊接条件较严格时,上述PWHT保证时间极为不够,且无法采用比所述PWHT保证时间更长的PWHT处理。
因此,需要对具有严格的增厚和焊接条件的PWHT的抗性高的钢,使得钢板的强度和韧性即使在实施长时间的PWHT之后也不会降低。
发明内容
技术问题
本发明的一个目的是提供一种具有优异焊后热处理(PWHT)抗性的高强度钢板,其强度和韧性即使在实施长时间的焊后热处理(PostWeld Heat Treatment,PWHT)之后也不会降低;和一种该钢板的制备方法。
技术方案
本发明提供一种对焊后热处理(PWHT)具有优异抗性的高强度钢板,该钢板的组成为,含有以重量%计的:0.1-0.3%的C;0.15-0.50%的Si;0.6-1.2%的Mn;0.035%以下的P;0.020%以下的S;0.001-0.05%的Al;0.01-0.35%的Cr;0.005-0.2%的Mo;0.005-0.05%的V;0.001-0.05%的Nb;0.001-0.05%的Ti;0.0005-0.005%的Ca;0.05-0.5%的Ni;选自0.005-0.5%的Cu、0.005-0.2%的Co和0.005-0.2%的W中的一种以上物质;和Fe以及不可避免的杂质,其中所述组成满足以下关系式:
Cu+Ni+Cr+Mo:1.5%以下,
Cr+Mo:0.4%以下,
V+Nb:0.1%以下,且
Ca/S:1.0以下。
此外,本发明提供一种具有优异焊后热处理(PWHT)抗性的高强度钢板的制备方法,该方法包括以下步骤:
将满足所述组成范围的钢锭再加热至1050℃-1250℃的温度范围;
在Tnr至Tnr+100℃的温度范围内热轧该经再加热的钢锭;
通过将所述经热轧的钢板在850℃-950℃的温度范围内保持1.3×t+(10-30分钟)而实施热处理,其中t为钢材的厚度(mm);和
以0.1-10℃/sec的冷却速率冷却所述经热处理的钢板。
发明效果
根据本发明,可提供一种具有500MPa以上的强度并且强度和韧性即使在PWHT达到100小时后仍不会劣化、且具有优异抗氢诱导开裂性的高压容器用钢板。
具体实施方式
下文将详细描述本发明。
首先,详细描述本发明的组分范围(下文称为“重量百分比(wt%)”)。
碳(C)的含量优选限制在0.1-0.3wt%范围内。C作为一种提高钢板强度的元素,存在的问题为,当C含量小于0.1wt%时,基质相中钢板的强度降低;当C含量大于0.3wt%时,钢板的结构中发生离析,从而使抗氢诱导开裂性变差。
硅(Si)的含量优选限制在0.15-0.50wt%范围内。Si为一种能有效脱氧和强化固溶体的元素,且Si元素的添加能达到提高冲击转变温度(impact transition temperature)的效果。虽然为实现所述效果,Si的添加量应为0.15wt%以上,但当Si的添加量大于0.5wt%时,存在降低焊接性且在钢板表面严重形成氧化膜的问题。
锰(Mn)的含量优选限制在0.6-1.2wt%范围内。Mn优选控制在含量为1.2wt%以下,因为Mn会与S一起形成非金属夹杂物MnS,从而降低室温下的延伸率和低温韧性。但是,鉴于本发明的性质,当添加的Mn的含量小于0.6wt%时,难以确保合适的强度,因此Mn的含量限制在0.6-1.2wt%范围内。
铝(Al)的含量优选限制在0.001-0.5wt%范围内。Al与上述Si共同作为炼钢工艺中的强脱氧剂之一,当Al的含量小于0.001wt%时,存在的问题是脱氧效果极差;当Al的添加量大于0.05wt%时,存在上述脱氧效果饱和且制造成本增加的问题。
虽然磷(P)作为一种使低温韧性变差的元素,但是由于在炼钢工艺中除去磷(P)的成本过高,因此磷(P)的含量优选控制在0.035wt%以下的范围内。
硫(S)与磷(P)一样,也是一种不利地影响低温韧性的元素,同磷(P)的情形一样,由于在炼钢工艺中除去硫(S)的成本过高,因此硫(S)的含量优选控制在0.020wt%以下的范围内。
铬(Cr)的含量优选限制在0.01-0.35wt%范围内。由于铬(Cr)是一种能增加强度的元素,因此在本发明中为获得增加强度的效果,Cr的添加量应为0.01wt%以上,但是由于铬(Cr)是一种相对昂贵的元素,如果铬(Cr)的添加量大于0.35wt%,则会导致制造成本的增加,因此铬(Cr)的含量优选控制在0.35wt%或更小。
钼(Mo)的含量优选限制在0.005-0.2wt%范围内。Mo是一种防止钢板由硫化物而发生开裂的元素,且同Cr的情况相同,也是一种有效增加钢板强度的元素。虽然,为获得所述效果,Mo的添加量应为0.005wt%以上,但是,由于Mo也是一种相对昂贵的元素,会导致制造成本增加,因此Mo的含量优选限制在0.2wt%以下。
钒(V)的含量优选限制在0.005-0.05wt%范围内。V同Cr和Mo的情况一样,也是一种能有效增加钢板强度的元素。因此,为提高增加钢板强度的效果,V的添加量应为0.005wt%以上,但是,由于V是一种相对昂贵的元素,因此V的添加量优选为0.05wt%以下。
铌(Nb)的含量优选限制在0.001-0.05wt%范围内。Nb是一种重要的元素,其以固溶体形态存在于奥氏体中用以增加奥氏体的硬化性,且其沉淀成为与基质(Matrix)相匹配的碳氮化物(Nb(C,N))用以增加钢板的强度。虽然为实现所述效果,Nb的添加量应为0.001wt%以上,但是Nb的含量优选限制在0.05wt%以下,因为在连铸工艺中,当大量添加Nb时其以粗大沉淀物的形式存在,由此会起到氢诱导开裂性的位点的作用。
钛(Ti)的含量优选限制在0.001-0.05wt%范围内。Ti同Nb一样,是一种增加钢板强度的重要元素,其沉淀成为碳氮化物(Ti(C,N))。虽然为实现所述效果,Ti的添加量应为0.001wt%以上,但是Ti的含量优选限制在0.05wt%以下,因为在连铸工艺中,当大量添加Ti时其以粗大沉淀物的形式存在,由此会起到氢诱导开裂性的位点的作用。
钙(Ca)的含量优选限制在0.0005-0.005wt.%范围内。Ca的添加量应为0.0005wt%以上,以使Ca生成CaS,用以抑制非金属夹杂物MnS。但是,Ca含量的上限值优选限制在0.005wt%,因为如果Ca的含量超过0.005wt%,其会与钢中所含的O反应而生成非金属夹杂物CaO。
镍(Ni)的含量优选限制在0.05-0.5wt%范围内。Ni是一种对提高钢板的低温韧性最有效的元素,为实现该效果,其添加量应为0.05wt%以上,但是由于Ni是一种相对昂贵的元素,会导致制造成本增加,因此Ni的添加量优选为0.5wt%以下。
本发明的上述组成中含有选自Cu、Co和W中的一种以上。
铜(Cu)的添加量优选为0.005-0.5wt%。Cu在通过由固溶强化或e-Cu沉淀等强化基质(matrix)来实施的PWHT之后也可防止钢板的强度劣化,并可防止经过基质强化和抑制回复(recovery)而引起的钢板强度和韧性的劣化。由于Cu相对昂贵,其添加量优选在0.005-0.5wt%范围内。
钴(Co)的添加量优选为0.005-0.2wt%。虽然Co是一种有效防止基质结构软化的元素,但由于Co相对昂贵,因此其添加范围优选为0.005-0.2wt%。
钨(W)的添加量优选为0.005-0.2wt%。W的添加量优选为0.005wt%以上,因为其具有下述特性:其可通过形成WC或降低渗碳体(Cementite)的沉淀分率来防止渗碳体生长或渗碳体凝固抑制,从而防止钢板的强度和韧性的劣化。因为W相对昂贵,因此W的添加量更优选在0.005-0.2wt%范围内。
在考虑到本发明的钢材可用作高压容器用钢材的情况下,以下元素例如Cu、Ni、Cr、Mo、V、Nb等的元素含量优选满足以下关系式:
Cu+Ni+Cr+Mo:1.5wt%以下
Cr+Mo:0.4wt%以下
V+Nb:0.1wt%以下
Ca/S:1.0以下。
更确切而言,Cu+Ni+Cr+Mo、Cr+Mo及V+Nb的数值关系式分别受高压容器用钢的基本规格(ASTM A20)的限制。相应地,Cu+Ni+Cr+Mo、Cr+Mo及V+Nb的含量分别限制在1.5wt%以下、0.4wt%以下及0.1wt%以下。根据本发明的实施方案,所不包含的合金元素可按0计算。
Ca/S的比例是通过对MnS夹杂物进行球化处理而提高钢板的抗氢诱导开裂性的一个必要组成比例。该比例控制在1.0以下,因为如果Ca/S的比例达不到1.0,其效果难以预期。
该组成中含有Fe及不可避免的杂质作为余量物。
下文对本发明的微细结构进行详细描述。
如果将具有上述组成的钢通过下文描述的一种操作进行适宜的受控轧制和热处理,则其微细结构可形成为铁素体结构或铁素体和珠光体的混合结构。在所述结构中优选不包含低温结构,但是可含有最多10wt%的贝氏体。将结构控制为上述形式的原因在于,本发明的钢板在抗氢诱导开裂性方面应是优异的,且应具有合适的强度和韧性。
此外,为确保抗氢诱导开裂性,带化指数值(Banding Index)(通过ASTM E-1268测得)优选为0.25以下,所述带化指数值表示形成了多少对氢诱导开裂脆弱的带状结构。如果带化指数值(Banding Index)超过0.25,则其微细结构中的抗氢诱导开裂性迅速降低。
钢板的厚度方向的中心部(3/8至5/8t,t:钢板厚度)优选具有50μm以下的铁素体晶粒平均尺寸,这是因为:当上述铁素体晶粒的尺寸过大时,会降低钢板的强度和韧性。虽然晶粒尺寸不具有下限,由于在本发明的目标钢材中通常难以得到小于5μm的晶粒,因此晶粒尺寸可为5μm以上。
下文将详细描述本发明的制备方法。
本发明将满足上述组成范围的钢锭再加热至1050-1250℃的温度范围,如果上述再加热温度低于1050℃,则难以得到溶质原子的固溶体,且如果上述再加热温度高于1250℃,则奥氏体晶粒尺寸变得太粗大从而不利于钢板性能。
在本发明的制备方法中,实施上述再加热处理之后,需要进行重结晶受控轧制处理、热处理和PWHT热处理,从而使本发明的钢板具有铁素体+珠光体双相复合结构以获得氢诱导裂化抗性,并使带化指数值(Banding Index)(通过ASTM E-1268测得)变为0.25以下。
所述重结晶受控轧制通过在非重结晶温度以上的温度下热轧上述经再加热的钢锭而进行。上述非重结晶温度Tnr可通过下式计算。
Tnr(℃)=
887+464×C+890×Ti+363×Al-357×Si+(6446×Nb-644×Nb1/2)+(732×V-230×V1/2)
为了使带化指数值(Banding Index)(通过ASTM E-1268测得)为0.25以下,重结晶受控轧制是最重要的变量,重结晶受控轧制优选通过在Tnr至Tnr+100℃温度范围内对每个轧制道次施加10%以上的轧缩率(rolling reduction),从而得到30%以上的累计轧缩率。如果上述累计轧缩率小于30%,则带化指数值(Banding Index)无法预期达到0.25以下。此外,限制重结晶受控轧制的温度是为了控制带化指数,是为了在晶粒未粗大化的状态下抑制带结构。更具体而言,温度低于非重结晶温度范围(Tnr)时是不利的,因为奥氏体将会扁平化形成为薄饼状,使得带化指数值增加。反之,温度过高也是不利的,因为晶粒尺寸会过大。
随后,进行上述热轧,并对经冷却的热轧钢板进行热处理。所述热处理在850℃-950℃的温度范围下进行1.3×t+(10-30分钟),其中t为钢材厚度(mm)。如果上述热处理温度小于850℃,则由于固溶溶质原子难以再固溶,从而难以确保钢板的强度;而如果上述热处理温度大于950℃,则由于晶粒生长,从而不利于钢板的低温韧性。
对热处理的持续时间进行限制,因为如果上述持续时间小于1.3×t+10分钟(t为钢材厚度(mm)),则难以使结构均化;如果持续时间大于1.3×t+30分钟(t为钢材厚度(mm)),则生产率降低。
以上述钢板中心部的冷却速率为基准,对经热处理的钢板以0.1-10℃/sec的冷却速率进行冷却,如果冷却速率小于0.1℃/sec,则很可能在冷却期间发生铁素体晶粒的粗大化;如果冷却速率大于10℃/sec,则产生过多的第二相(10%以上的贝氏体分率)的可能性很高。
上述冷却速率是为了将钢板中心部的铁素体平均粒径调节为50μm以下。
PWHT处理是经过上述热处理工艺制备的本发明钢板所需要的,以便消除由在制造高压容器期间所增加的焊接操作而产生的残余应力。虽然钢板的强度和韧性在对钢板实施长时间的PWHT之后通常会劣化,但是通过本发明制备的钢板具有这样的优点:可以在无大幅度降低钢板的强度或韧性(即使在600℃-640℃的常规PWHT温度条件下对钢板进行长达(至100小时)的PWHT)的情况下,进行焊接工作。特别是,即使在实施100小时的PWHT之后,本发明的钢板仍具有450MPa以上的抗拉强度,满足在-50℃下的50J以上的却贝冲击能量值(Charpyimpact energy value)。
下文将参照以下实施方案详细描述本发明。但是,提供以下实施方案仅是为了说明目的,本发明范围不应以任何方式受限于此。
实施方案
以下表1分别展示了本发明钢和比较钢的化学组分。通过对具有表1所示组分的钢锭在表2的钢板厚度及再加热温度条件下进行轧制、热处理和冷却而制备了钢板。
将在上述条件下所制备的钢板在下表2中所示条件下进行PWHT等之后,对钢板的屈服强度、抗拉强度、低温韧性以及裂纹长度比(CLR,Crack Length Ratio,%)进行了检测,将其检测结果示于下表2中。
在下表2中,低温韧性值是用却贝冲击能量值进行评估的,所述却贝冲击能量值通过对具有V凹口的试样在-50℃下进行却贝冲击试验而得到;并且裂纹长度比(Crack Length Ratio,%)是根据NACE标准TM0277来进行测量的。
[表1]
Figure BDA00002066048700081
[表2]
Figure BDA00002066048700091
从上述表1和2的结果可以看到,满足本发明组成和制备条件的本发明钢在PWHT时间达到50-100小时后,其强度和韧性也未降低。反之,当将比较钢与本发明钢进行比较时,可以证实,虽然当PWHT时间较小时,比较钢的强度和韧性水平几乎与本发明钢相等,但是,在PWHT时间达到50小时以上的时间后,比较钢的强度和韧性与本发明钢相比明显劣化。
特别是,可以看到,本发明钢的低温韧性值即使在PWHT时间达到100小时后也未明显降低,而比较钢的低温韧性值发生明显降低。
另一方面,可以看到,在H2S气体(酸气,Sour Gas)气氛中,本发明钢的表示抗氢诱导开裂性的CLR(Crack Length Ratio,%)要优异得多。由此通过本发明的实施例可以看出,由于表示由铁素体和珠光体的复合结构构成的微细结构均化程度的带化指数(Banding Index)被控制在0.25以下,因此本发明钢具有优异的CLR(裂纹长度比)。

Claims (7)

1.一种对焊后热处理具有优异抗性的高强度钢板,以重量%计,其组成为:
0.1-0.3%的C;0.15-0.50%的Si,0.6-1.2%的Mn;0.035%以下的P;0.020%以下的S;0.001-0.05%的Al;0.01-0.35%的Cr;0.005-0.2%的Mo;0.005-0.05%的V;0.001-0.05%的Nb;0.001-0.05%的Ti;0.0005-0.005%的Ca;0.05-0.5%的Ni;选自0.005-0.5%的Cu、0.005-0.2%的Co以及0.005-0.2%的W中的一种以上;和Fe以及不可避免的杂质作为余量物,
其中所述组成满足以下关系式:
Cu+Ni+Cr+Mo:1.5%以下,
Cr+Mo:0.4%以下,
V+Nb:0.1%以下,
Ca/S:1.0以下。
2.权利要求1的对焊后热处理具有优异抗性的高强度钢板,其中所述钢板的微细结构形成为铁素体结构或铁素体和珠光体的混合结构,且所述钢板的中心部的铁素体晶粒平均尺寸为50μm以下。
3.权利要求1的对焊后热处理具有优异抗性的高强度钢板,其中所述钢板的带化指数值(Banding Index)(根据ASTM E-1268测得)为0.25以下。
4.权利要求1的对焊后热处理具有优异抗性的高强度钢板,其中即使在实施100小时的焊后热处理(Post Weld Heat Treatment,PWHT)之后,所述钢板仍具有450MPa以上的抗拉强度,且在-50℃下具有50J以上的却贝冲击能量值。
5.一种对焊后热处理具有优异抗性的高强度钢板的制备方法,该方法包括以下步骤:
将钢锭再加热至1050-1250℃的温度范围的步骤,所述钢锭具有以重量百分比计的以下组成:
0.1-0.3%的C;0.15-0.50%的Si;0.6-1.2%的Mn;0.035%以下的P;0.020%以下的S;0.001-0.05%的Al;0.01-0.35%的Cr;0.005-0.2%的Mo;0.005-0.05%的V;0.001-0.05%的Nb;0.001-0.05%的Ti;0.0005-0.005%的Ca;0.05-0.5%的Ni;选自0.005-0.5%的Cu、0.005-0.2%的Co以及0.005-0.2%的W中的一种以上;和Fe以及不可避免的杂质作为余量物,其中所述组成满足以下关系式:
Cu+Ni+Cr+Mo:1.5%以下,
Cr+Mo:0.4%以下,
V+Nb:0.1%以下,
Ca/S:1.0以下;
在Tnr至Tnr+100℃的温度范围内对所述经再加热的钢锭进行热轧的步骤;
通过将经热轧的钢板在850℃-950℃的温度范围内保持1.3×t+(10-30分钟)而进行热处理的步骤,其中t为钢的厚度(mm);和
对所述经热处理的钢板以0.1-10℃/sec的冷却速率进行冷却的步骤。
6.权利要求5的对焊后热处理具有优异抗性的高强度钢板的制备方法,其中所述热轧步骤通过对每个轧制道次施加10%以上的轧缩率而进行,从而使累计轧缩率形成为30%以上。
7.权利要求5的对焊后热处理具有优异抗性的高强度钢板的制备方法,其中所述冷却步骤通过控制冷却速率使得钢板中心部的铁素体晶粒平均尺寸调节为50μm以下。
CN201080064894.0A 2009-12-28 2010-12-22 对焊后热处理具有优异抗性的高强度钢板及其制备方法 Active CN102782169B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
KR10-2009-0132129 2009-12-28
KR1020090132129A KR101322067B1 (ko) 2009-12-28 2009-12-28 용접 후 열처리 저항성이 우수한 고강도 강판 및 그 제조방법
PCT/KR2010/009225 WO2011081350A2 (ko) 2009-12-28 2010-12-22 용접 후 열처리 저항성이 우수한 고강도 강판 및 그 제조방법

Publications (2)

Publication Number Publication Date
CN102782169A true CN102782169A (zh) 2012-11-14
CN102782169B CN102782169B (zh) 2014-11-19

Family

ID=44226971

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201080064894.0A Active CN102782169B (zh) 2009-12-28 2010-12-22 对焊后热处理具有优异抗性的高强度钢板及其制备方法

Country Status (5)

Country Link
EP (1) EP2520680B1 (zh)
JP (1) JP5657026B2 (zh)
KR (1) KR101322067B1 (zh)
CN (1) CN102782169B (zh)
WO (1) WO2011081350A2 (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104109801A (zh) * 2014-07-30 2014-10-22 宝山钢铁股份有限公司 高韧性、抗pwht软化脆化的钢板及其制造方法
CN104195465A (zh) * 2014-07-24 2014-12-10 安徽广源科技发展有限公司 一种耐低温耐腐蚀用合金钢及其制造方法
CN110088344A (zh) * 2016-12-23 2019-08-02 株式会社Posco 具有优异的抗氢致开裂性的压力容器用钢及其制造方法
CN111527227A (zh) * 2017-12-26 2020-08-11 株式会社Posco 抗氢致开裂性优异的钢材及其制造方法
CN114585760A (zh) * 2019-10-22 2022-06-03 株式会社Posco 高温焊后热处理耐性优异的压力容器用钢板及其制造方法

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101417231B1 (ko) * 2011-12-28 2014-07-08 주식회사 포스코 저온인성 및 인장특성이 우수한 압력용기용 극후강판 및 그 제조 방법
JP6201376B2 (ja) * 2013-04-01 2017-09-27 Jfeスチール株式会社 耐食性に優れる原油タンク用鋼材および原油タンク
KR101758497B1 (ko) * 2015-12-22 2017-07-27 주식회사 포스코 Pwht 저항성이 우수한 저온 압력용기용 강판 및 그 제조 방법
CN105671436B (zh) * 2016-02-05 2017-10-03 山东钢铁股份有限公司 抗高温pwht软化的低焊接裂纹敏感系数原油储罐用高强韧性钢板及其制造方法
KR101917453B1 (ko) * 2016-12-22 2018-11-09 주식회사 포스코 극저온 충격인성이 우수한 후강판 및 이의 제조방법
CN112813353B (zh) * 2021-01-29 2022-05-27 日钢营口中板有限公司 一种超高温spwht高韧性正火容器用钢及制造方法
US11788951B2 (en) 2021-03-19 2023-10-17 Saudi Arabian Oil Company Testing method to evaluate cold forming effects on carbon steel susceptibility to hydrogen induced cracking (HIC)
US11656169B2 (en) 2021-03-19 2023-05-23 Saudi Arabian Oil Company Development of control samples to enhance the accuracy of HIC testing

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6179745A (ja) * 1984-09-28 1986-04-23 Nippon Steel Corp 溶接継手熱影響部靭性のすぐれた鋼材の製造法
JPH08283905A (ja) * 1995-02-16 1996-10-29 Nippon Steel Corp 疲労強度が優れた溶接継手
CN1418978A (zh) * 2001-11-14 2003-05-21 住友金属工业株式会社 抗疲劳龟裂扩展性优良的钢材及其制造方法
CN1662668A (zh) * 2002-06-19 2005-08-31 新日本制铁株式会社 原油油槽用钢及其制造方法、原油油槽及其防腐蚀方法

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1078910C (zh) * 1996-02-13 2002-02-06 新日本制铁株式会社 具有优异疲劳强度的焊接接头
JPH09256037A (ja) * 1996-03-22 1997-09-30 Nippon Steel Corp 応力除去焼鈍処理用の厚肉高張力鋼板の製造方法
JPH11131177A (ja) * 1997-08-29 1999-05-18 Nippon Steel Corp 溶接後熱処理の省略可能な中常温圧力容器用鋼板およびその製造方法
CZ293084B6 (cs) 1999-05-17 2004-02-18 Jinpo Plus A. S. Ocele pro žárupevné a vysokopevné tvářené součásti, obzvláště trubky, plechy a výkovky
JP2004027355A (ja) * 2001-11-14 2004-01-29 Sumitomo Metal Ind Ltd 疲労き裂進展抵抗特性に優れた鋼材とその製造方法
JP5028760B2 (ja) * 2004-07-07 2012-09-19 Jfeスチール株式会社 高張力鋼板の製造方法および高張力鋼板
JP4718866B2 (ja) * 2005-03-04 2011-07-06 新日本製鐵株式会社 溶接性およびガス切断性に優れた高張力耐火鋼およびその製造方法
JP2008100277A (ja) * 2006-10-23 2008-05-01 Jfe Steel Kk 靭性に優れた溶接部を有する低降伏比厚肉電縫鋼管の製造方法
KR100833071B1 (ko) 2006-12-13 2008-05-27 주식회사 포스코 내hic특성이 우수한 인장강도 600㎫급 압력용기용 강판및 그 제조 방법
KR100833070B1 (ko) 2006-12-13 2008-05-27 주식회사 포스코 내hic특성이 우수한 인장강도 500㎫급 압력용기용 강판및 그 제조 방법
EA013145B1 (ru) 2007-03-30 2010-02-26 Сумитомо Метал Индастриз, Лтд. Трубы нефтяного сортамента для развальцовки в скважине и способ их производства
JP2009041073A (ja) * 2007-08-09 2009-02-26 Sumitomo Metal Ind Ltd 溶接部からの延性き裂発生に対する抵抗性に優れる高張力鋼溶接継手およびその製造方法
JP4326020B1 (ja) * 2008-03-28 2009-09-02 株式会社神戸製鋼所 耐応力除去焼鈍特性と低温継手靭性に優れた高強度鋼板
JP5716640B2 (ja) 2011-11-21 2015-05-13 新日鐵住金株式会社 熱間鍛造用圧延棒鋼

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6179745A (ja) * 1984-09-28 1986-04-23 Nippon Steel Corp 溶接継手熱影響部靭性のすぐれた鋼材の製造法
JPH08283905A (ja) * 1995-02-16 1996-10-29 Nippon Steel Corp 疲労強度が優れた溶接継手
CN1418978A (zh) * 2001-11-14 2003-05-21 住友金属工业株式会社 抗疲劳龟裂扩展性优良的钢材及其制造方法
CN1662668A (zh) * 2002-06-19 2005-08-31 新日本制铁株式会社 原油油槽用钢及其制造方法、原油油槽及其防腐蚀方法

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104195465A (zh) * 2014-07-24 2014-12-10 安徽广源科技发展有限公司 一种耐低温耐腐蚀用合金钢及其制造方法
CN104109801A (zh) * 2014-07-30 2014-10-22 宝山钢铁股份有限公司 高韧性、抗pwht软化脆化的钢板及其制造方法
CN110088344A (zh) * 2016-12-23 2019-08-02 株式会社Posco 具有优异的抗氢致开裂性的压力容器用钢及其制造方法
CN110088344B (zh) * 2016-12-23 2021-04-30 株式会社Posco 具有优异的抗氢致开裂性的压力容器用钢及其制造方法
US11578376B2 (en) 2016-12-23 2023-02-14 Posco Co., Ltd Steel for pressure vessels having excellent resistance to hydrogen induced cracking and manufacturing method thereof
CN111527227A (zh) * 2017-12-26 2020-08-11 株式会社Posco 抗氢致开裂性优异的钢材及其制造方法
CN114585760A (zh) * 2019-10-22 2022-06-03 株式会社Posco 高温焊后热处理耐性优异的压力容器用钢板及其制造方法

Also Published As

Publication number Publication date
EP2520680B1 (en) 2016-10-26
WO2011081350A2 (ko) 2011-07-07
CN102782169B (zh) 2014-11-19
KR101322067B1 (ko) 2013-10-25
JP2013515861A (ja) 2013-05-09
JP5657026B2 (ja) 2015-01-21
WO2011081350A3 (ko) 2011-11-17
EP2520680A4 (en) 2014-11-19
EP2520680A2 (en) 2012-11-07
KR20110075630A (ko) 2011-07-06

Similar Documents

Publication Publication Date Title
CN102782169B (zh) 对焊后热处理具有优异抗性的高强度钢板及其制备方法
KR101094310B1 (ko) 저온인성이 우수한 용접성 초고강도강 및 그 제조방법
CN111465711B (zh) 拉伸强度和低温冲击韧性优异的用于压力容器的钢板及其制造方法
CN102199723B (zh) 一种高强度冷轧热镀锌析出强化钢及其制造方法
CN111479945B (zh) 具有优秀硬度和冲击韧性的耐磨损钢及其制造方法
CN108368591B (zh) 具有优异的焊后热处理耐性的压力容器钢板及其制造方法
KR101839235B1 (ko) 구멍확장성 및 항복비가 우수한 초고강도 강판 및 그 제조방법
US20160184875A1 (en) Hot rolled steel sheet for oil country tubular goods, method for manufacturing the same and steel pipe manufactured using the same
US8652273B2 (en) High tensile steel for deep drawing and manufacturing method thereof and high-pressure container produced thereof
KR101253888B1 (ko) 용접 후 열처리 저항성이 우수한 고강도 강판 및 그 제조방법
KR101271968B1 (ko) 용접 후 열처리 저항성이 우수한 중고온용 강판 및 그 제조방법
KR102142782B1 (ko) 크리프 강도가 우수한 크롬-몰리브덴 강판 및 그 제조방법
KR20210000844A (ko) Pwht 저항성이 우수한 압력용기 강판 및 그 제조방법
CN114080463B (zh) 高强度钢板及其制造方法
KR101353858B1 (ko) 용접 후 열처리 저항성이 우수한 압력용기용 강판 및 그 제조 방법
KR101455458B1 (ko) 강재 및 그 제조 방법
KR101406561B1 (ko) 충격인성이 우수한 고강도 열연강판 및 그 제조방법
CN114585760B (zh) 高温焊后热处理耐性优异的压力容器用钢板及其制造方法
KR101482341B1 (ko) 용접 후 열처리 저항성이 우수한 압력용기용 강판 및 그 제조 방법
CN110088339B (zh) 具有优异pwht抗力的压力容器钢板及其制造方法
KR101095911B1 (ko) 저온인성이 우수한 용접성 초고강도강
CN113981317A (zh) 一种刀具用含氮马氏体不锈钢及其制造方法
KR20140030577A (ko) 차체 구조용 열연강판 및 그 제조방법
CN114846167A (zh) 加工性优异的高强度钢板及其制造方法
CN114787408A (zh) 加工性优异的高强度钢板及其制造方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CP03 Change of name, title or address
CP03 Change of name, title or address

Address after: Seoul, South Kerean

Patentee after: POSCO Holdings Co.,Ltd.

Address before: Gyeongbuk Pohang City, South Korea

Patentee before: POSCO

TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20230519

Address after: Gyeongbuk, South Korea

Patentee after: POSCO Co.,Ltd.

Address before: Seoul, South Kerean

Patentee before: POSCO Holdings Co.,Ltd.