WO2019111951A1 - アトマイズ金属粉末の製造方法 - Google Patents

アトマイズ金属粉末の製造方法 Download PDF

Info

Publication number
WO2019111951A1
WO2019111951A1 PCT/JP2018/044727 JP2018044727W WO2019111951A1 WO 2019111951 A1 WO2019111951 A1 WO 2019111951A1 JP 2018044727 W JP2018044727 W JP 2018044727W WO 2019111951 A1 WO2019111951 A1 WO 2019111951A1
Authority
WO
WIPO (PCT)
Prior art keywords
molten metal
metal powder
temperature
water
atomized
Prior art date
Application number
PCT/JP2018/044727
Other languages
English (en)
French (fr)
Inventor
誠 中世古
中村 尚道
小林 聡雄
拓也 高下
Original Assignee
Jfeスチール株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jfeスチール株式会社 filed Critical Jfeスチール株式会社
Priority to EP18885010.1A priority Critical patent/EP3722028A4/en
Priority to JP2019507867A priority patent/JP6575723B1/ja
Priority to CA3084963A priority patent/CA3084963C/en
Priority to US16/769,611 priority patent/US20200316688A1/en
Priority to CN201880078464.0A priority patent/CN111432964A/zh
Priority to KR1020207016126A priority patent/KR102455104B1/ko
Publication of WO2019111951A1 publication Critical patent/WO2019111951A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/06Making metallic powder or suspensions thereof using physical processes starting from liquid material
    • B22F9/08Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying
    • B22F9/082Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying atomising using a fluid
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/002Making metallic powder or suspensions thereof amorphous or microcrystalline
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • C22C1/0433Nickel- or cobalt-based alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/10Alloys containing non-metals
    • C22C1/1036Alloys containing non-metals starting from a melt
    • C22C1/1042Alloys containing non-metals starting from a melt by atomising
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C33/00Making ferrous alloys
    • C22C33/02Making ferrous alloys by powder metallurgy
    • C22C33/0207Using a mixture of prealloyed powders or a master alloy
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C33/00Making ferrous alloys
    • C22C33/02Making ferrous alloys by powder metallurgy
    • C22C33/0257Making ferrous alloys by powder metallurgy characterised by the range of the alloying elements
    • C22C33/0278Making ferrous alloys by powder metallurgy characterised by the range of the alloying elements with at least one alloying element having a minimum content above 5%
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C33/00Making ferrous alloys
    • C22C33/02Making ferrous alloys by powder metallurgy
    • C22C33/0257Making ferrous alloys by powder metallurgy characterised by the range of the alloying elements
    • C22C33/0278Making ferrous alloys by powder metallurgy characterised by the range of the alloying elements with at least one alloying element having a minimum content above 5%
    • C22C33/0285Making ferrous alloys by powder metallurgy characterised by the range of the alloying elements with at least one alloying element having a minimum content above 5% with Cr, Co, or Ni having a minimum content higher than 5%
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/10Ferrous alloys, e.g. steel alloys containing cobalt
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/10Ferrous alloys, e.g. steel alloys containing cobalt
    • C22C38/105Ferrous alloys, e.g. steel alloys containing cobalt containing Co and Ni
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/16Ferrous alloys, e.g. steel alloys containing copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/06Making metallic powder or suspensions thereof using physical processes starting from liquid material
    • B22F9/08Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying
    • B22F9/082Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying atomising using a fluid
    • B22F2009/0824Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying atomising using a fluid with a specific atomising fluid
    • B22F2009/0828Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying atomising using a fluid with a specific atomising fluid with water
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/06Making metallic powder or suspensions thereof using physical processes starting from liquid material
    • B22F9/08Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying
    • B22F9/082Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying atomising using a fluid
    • B22F2009/0832Handling of atomising fluid, e.g. heating, cooling, cleaning, recirculating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/06Making metallic powder or suspensions thereof using physical processes starting from liquid material
    • B22F9/08Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying
    • B22F9/082Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying atomising using a fluid
    • B22F2009/086Cooling after atomisation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/06Making metallic powder or suspensions thereof using physical processes starting from liquid material
    • B22F9/08Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying
    • B22F9/082Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying atomising using a fluid
    • B22F2009/086Cooling after atomisation
    • B22F2009/0872Cooling after atomisation by water
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/06Making metallic powder or suspensions thereof using physical processes starting from liquid material
    • B22F9/08Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying
    • B22F9/082Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying atomising using a fluid
    • B22F2009/0888Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying atomising using a fluid casting construction of the melt process, apparatus, intermediate reservoir, e.g. tundish, devices for temperature control
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2301/00Metallic composition of the powder or its coating
    • B22F2301/15Nickel or cobalt
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2301/00Metallic composition of the powder or its coating
    • B22F2301/35Iron
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C2200/00Crystalline structure
    • C22C2200/02Amorphous
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C2202/00Physical properties
    • C22C2202/02Magnetic

Definitions

  • the present invention relates to a method of producing atomized metal powder.
  • the present invention is particularly suitable for producing atomized metal powder in which the total content of iron-based components (Fe, Ni, Co) is 76 at% or more in atomic fraction.
  • the atomizing method includes a water atomizing method in which a metal powder is obtained by injecting a high pressure water jet (high pressure water) into a flow of molten metal, and a gas atomizing method in which an inert gas is injected instead of the water jet.
  • the flow of molten metal is divided by a water jet injected from a nozzle or the like to make a powder metal (metal powder), and the water jet is also performed to cool the powder metal (metal powder) to perform atomization. I have obtained metal powder.
  • the flow of molten metal is divided by the inert gas jetted from the nozzle to make a powder metal, and then a water tank or flowing water provided below the atomizing device is usually provided. The powder is dropped into a drum, and the powder metal (metal powder) is cooled to obtain an atomized metal powder.
  • the water atomization method has a higher production capacity and lower cost than the gas atomization method.
  • the gas atomizing method it is necessary to use an inert gas at the time of atomizing, and the energy power at the time of atomizing is also inferior to the water atomizing method.
  • metal powder produced by gas atomization is almost spherical
  • metal powder produced by water atomization has an irregular shape, and the metal powder is compression molded to produce a motor core etc.
  • the irregularly shaped metal powder of the water atomizing method has an advantage that the powders are more easily entangled and the strength after compression is higher than that of the spherical metal powder of the gas atomizing method.
  • Patent Documents 1 to 11 In order to solve the problem of cooling suppression due to vapor film and film boiling when producing amorphous iron powder, studies have been made on Patent Documents 1 to 11.
  • Patent Document 1 describes a method of producing a metal powder having a cooling rate of 10 5 K / s or more until solidification when the metal powder is obtained by cooling and solidifying while melting the molten metal. .
  • the above-mentioned cooling rate is obtained by bringing the scattered molten metal into contact with the cooling fluid flow generated by swirling the cooling fluid along the inner wall surface of the cylindrical body.
  • the flow velocity of the coolant flow generated by swirling the coolant is preferably 5 to 100 m / s.
  • Patent Document 2 describes a method for producing a rapidly solidified metal powder.
  • the cooling liquid is supplied from the circumferential direction from the outer peripheral side of the upper end of the cylindrical portion of the cooling container whose inner peripheral surface is a cylindrical surface and dropped while being swirled along the inner peripheral surface of the cylindrical portion
  • the swirling centrifugal force by the swirling forms a layered swirling cooling liquid layer having a cavity in the center, and molten metal is supplied to the inner peripheral surface of the swirling cooling liquid layer to rapidly solidify it.
  • molten metal is supplied to the inner peripheral surface of the swirling cooling liquid layer to rapidly solidify it.
  • Patent Document 3 discloses a gas jet nozzle for injecting a gas jet to molten metal flowing down and dividing it into droplets, and a cooling cylinder having a cooling liquid layer flowing down while swirling on an inner peripheral surface.
  • An apparatus for producing a metal powder according to a gas atomization method comprising: In the technology described in Patent Document 3, it is assumed that a molten metal is divided into two stages by a gas jet nozzle and a swirling cooling liquid layer to obtain a finely solidified rapidly solidified metal powder.
  • Patent Document 4 a molten metal is supplied into a liquid refrigerant, a vapor film covering the molten metal is formed in the refrigerant, the formed vapor film is collapsed, and the molten metal is brought into direct contact with the refrigerant.
  • a method of producing amorphous metal fine particles is described in which boiling is caused by natural nucleation and the pressure wave is used to rapidly cool and amorphize the molten metal while tearing it down to form amorphous metal fine particles.
  • the collapse of the vapor film covering the molten metal makes the interface temperature lower than the film boiling lower limit temperature or higher than the spontaneous nucleation temperature or makes ultrasonic irradiation when the temperature of the molten metal supplied to the refrigerant is in direct contact with the refrigerant. It is said that this is possible.
  • Patent Document 5 when supplying the melted material as liquid droplets or a jet stream into the liquid refrigerant, it is assumed that the temperature of the melted material is in a molten state at or above the spontaneous nucleation temperature of the liquid refrigerant. Further, the relative velocity difference between the velocity of the melted material when entering the flow of the liquid refrigerant and the velocity of the flow of the liquid refrigerant is 10 m / s or more to form around the melted material. A method of producing fine particles is described which forcibly collapses the resulting vapor film to cause boiling by spontaneous nucleation, atomizes and cools and solidifies. As a result, even materials that were conventionally difficult can be micronized and amorphized.
  • Patent Document 6 a raw material obtained by adding a functional additive to a material serving as a base material is melted and supplied into the liquid refrigerant, whereby the material is refined by steam explosion and cooled and solidified while cooling.
  • a method of manufacturing a functional member comprising
  • Patent Documents 7 and 8 disclose that a suction pipe is installed below water atomization, and the vapor film around the powder can be broken by suctioning the powder after melt powdering.
  • Patent Document 9 describes that a cooling block is installed below water atomization, and a liquid of 80 kgf / cm 2 or more is jetted, and the powder after molten powder is applied to the cooling block to break the vapor film around the powder. It is done.
  • Patent Document 10 a device for injecting a second liquid is installed below the atomization, and the injection pressure of the liquid is 5 to 20 MPa, and it is covered by forcibly changing the traveling direction of the dispersion containing the molten metal. It has been described to remove the vapor film that is being
  • Patent Document 11 is a patent for ferrous boron-based ferromagnetic material (permanent magnet) containing a rare earth, but the water pressure is made 750 to 1200 kgf / cm 2 for making fine powder, amorphization by water atomization, water temperature It is considered desirable to set the temperature to 20 ° C. or less and to set the amount of water (kg) per 1 kg of iron to 25 to 45 [-].
  • Japanese Patent Laid-Open No. 2010-150587 Japanese Examined Patent Publication 7-107167 Patent No. 3932573 Patent No. 3461344 Patent No. 479 3 872 Patent No. 4784990 Japanese Patent Application Laid-Open No. 60-24302 Japanese Patent Application Laid-Open No. 61-204305 Japanese Patent Application Laid-Open No. 60-24303 JP 2007-291454 A JP 2004-349364 A
  • Patent Documents 1 to 3 supply a molten metal into a coolant liquid layer formed by swirling a coolant and dividing the metal particles into a vapor film formed around the metal particles. Although it is intended to peel off, when the temperature of the divided metal particles is high, film boiling is likely to occur in the coolant layer, and the metal particles supplied in the coolant layer move with the coolant layer. There is a problem that it is difficult to avoid the film boiling state because the relative velocity difference with the cooling liquid layer is small.
  • metal powder is manufactured using gas atomization, but in gas atomization, a large amount of inert gas is required for atomization, so the manufacturing cost Problem of causing soaring of
  • Patent Documents 7 to 10 relate to a water atomization method. Although the techniques described in Patent Documents 7 and 8 can remove the vapor film by suctioning the powder, if there is water around the high temperature object, the water from the inside of the object is continuously vaporized by the heat Because the vapor film is formed, it is difficult to remove the vapor film only by drawing the water and the molten metal together.
  • Patent Document 9 it is possible to break the vapor film by placing a cooling block below the atomization and applying the molten metal covered by the vapor film to the cooling block, but the liquid was used for dividing. If the temperature of the liquid rises, the vapor film is likely to be formed along with it, and the injection pressure (pressure energy) possessed by the liquid is used to divide the amount of energy for breaking the vapor film when it hits the cooling block Run out. Even if the vapor film collapses, the vapor film is immediately restored as long as the molten metal (powder) is at a high temperature. Therefore, it is necessary to always keep the vapor film.
  • Patent Document 10 Even in Patent Document 10, there is a possibility that the vapor film can be removed by changing the traveling direction of the dispersion liquid containing molten metal that has become droplets after atomization by liquid jet spraying, but when changing the traveling direction If the temperature of the molten metal is too high, it may again cover the vapor film due to the surrounding cooling water, and conversely, if the temperature when it hits the cooling block is too low, the molten metal will It may solidify and crystallization may proceed. In particular, when the content of the iron-based element (Fe + Co + Ni) is large, the melting start temperature is high because the melting point is high, the film boiling easily occurs from the beginning of the cooling, and it can not be said that the liquid injection pressure is about 5 to 20 MPa.
  • the content of the iron-based element Fe + Co + Ni
  • powder for permanent magnets, micronized powders be 750 ⁇ 1200kgf / cm 2 to amorphization, that the water temperature and 20 ° C. or less, the amount of water per iron 1 kg 25
  • the amount should be up to 45 L (liters)
  • the amount of water per 1 kg of iron is set to 25 to 45 L, this can not be said to be sufficient for a soft magnetic material having a high iron-based element.
  • the water atomization method is advantageous from the viewpoint of productivity and adhesion between particles.
  • it is advantageous to perform rapid cooling with water after gas atomization as in Patent Documents 1 to 6 in favor of amorphization.
  • it is necessary to add another means because it is covered with a steam film with cooling water that has been atomized around the molten metal that has been divided after atomization, and such means as in Patent Documents 7 to 11 There is.
  • the respective effects are insufficient for amorphizing a soft magnetic material having an iron-based element content of 76 at% or more.
  • the present invention has been completed to solve the above-mentioned problems, and an object of the present invention is to provide a method for producing an atomized metal powder having a high amorphization ratio by a water atomization method.
  • the present inventors have intensively studied to solve the above problems. As a result, high-pressure water is injected into the molten metal, and the molten metal is divided and cooled to obtain atomized metal powder, paying attention to the collision pressure instead of the injection pressure, and further, the molten metal and the high-pressure water By adjusting the state of water on the collision surface, the above problem is solved. More specifically, the present invention provides the following.
  • High-pressure water is jetted against the molten metal falling in the vertical direction to cause collision, and the molten metal is divided into metal powder, and the metal powder is cooled to achieve atomization with an amorphization ratio of 90% or more
  • a method of producing a metal powder The collision pressure when the high pressure water collides with the molten metal is 20 MPa or more, A method of producing an atomized metal powder, wherein the temperature of the molten metal and / or the temperature of the high pressure water is adjusted so that the high pressure water is in a subcritical or supercritical state at the collision surface with the molten metal.
  • the atomized metal powder has a total content of iron-based components (Fe, Ni, Co) of 76.0 at% or more in atomic fraction, and a Cu content of 0.1 at% or more in atomic fraction
  • the atomized metal powder has a total content of iron-based components (Fe, Ni, Co) of more than 82.5 at% and less than 86 at% in atomic fraction, and at least 2 selected from Si, P and B
  • the subcritical state is a pressure of 0.5 to 22 MPa and a water temperature of 150 to 274 ° C.
  • the supercritical state is a pressure of 22 MPa or more and a water temperature of 374 ° C. or more
  • the manufacturing method of the atomized metal powder in any one of-[5].
  • the present invention it is possible to amorphize an atomized metal powder with an amorphization rate of 90% or more.
  • the atomized metal powder obtained in the present invention is subjected to appropriate heat treatment after being formed, nano-sized crystals are precipitated.
  • appropriate heat treatment may be performed after the powder is formed, It has become possible to achieve both low loss and high magnetic flux density.
  • the present invention is suitable for the manufacture of any conventionally known amorphous based soft magnetic material.
  • the amorphization ratio after atomization can be made 90% or more. Furthermore, in the prior art, it was extremely difficult to set the amorphization ratio to an average particle diameter of 90% or more and 5 ⁇ m or more. However, when the production method of the present invention is applied, the amorphization ratio can be made 90% or more even if the average particle diameter is increased. Since the amorphization ratio can be made to be 90% or more and 5 ⁇ m or more in average particle diameter, the saturation magnetic flux density (Bs) value becomes extremely large if appropriate heat treatment is performed after molding.
  • the present invention is suitable for producing atomized metal powder having a high Fe-based component concentration
  • the “amorphization ratio” refers to the halo peak from amorphous (amorphous) and the X-ray diffraction method after removing dust other than metal powder from the obtained metal powder (soft magnetic iron powder)
  • the diffraction peak from the crystal is measured and calculated by the WPPD method.
  • the “WPPD method” mentioned here is an abbreviation of Whole-powder-pattern decomposition method. For the WPPD method, Hideho Toya: Journal of the Crystallographic Society of Japan, vol. 30 (1988), no. 4, pp. 253-258.
  • FIG. 1 is a figure which shows typically an example of the manufacturing apparatus which can be used for the manufacturing method of the atomized metal powder of this invention.
  • FIG. 2 is a figure which shows typically an example of the manufacturing equipment for enforcing the manufacturing method of this invention.
  • FIG. 3 is a diagram showing the relationship between pressure, water temperature, and the state of water.
  • FIG. 4 is a graph showing the relationship between the amorphization ratio and the collision pressure.
  • FIG. 5 is a schematic view for explaining how the collision pressure of molten metal is measured by a collision pressure measurement pressure sensor.
  • FIG. 6 is a diagram showing a BH diagram obtained by VSM.
  • FIG. 1 an example of the manufacturing apparatus which can be used for the manufacturing method of the atomized metal powder of this invention is shown typically.
  • the molten metal 3 in a state where the molten metal 3 is poured into the tundish 2, the molten metal 3 drops from the molten metal injection nozzle 4 by its own weight. Further, as the cooling water supplied to the nozzle header 5, the cooling water 20 (corresponding to high pressure water) is jetted from the cooling nozzle 6. The cooling water 20 collides with the molten metal (falling molten metal) and is atomized to form a metal powder 8 which is a divided molten metal.
  • FIG. 2 an example of the manufacturing equipment for enforcing the manufacturing method of this invention is shown typically.
  • the manufacturing facility shown in FIG. 2 adjusts the temperature of the cooling water in the cooling water tank 15 using the cooling water temperature controller 16, and sends the temperature-controlled cooling water to the high pressure pump 17 for atomizing cooling water, It is sent from the high pressure pump 17 for atomizing cooling water through the pipe 18 for atomizing cooling water to the atomizing device 14 (corresponding to the manufacturing device in FIG. 1), and the high pressure water colliding with the molten metal falling in the vertical direction from the atomizing device 14 The molten metal is divided into metal powder by spraying, and the metal powder is cooled to produce atomized metal powder.
  • the present invention is characterized in that the collision pressure when the cooling water 20 collides with the molten metal is adjusted to 20 MPa or more and the water is in a subcritical or supercritical state at the collision surface.
  • the supercritical state of water is a region of 374 ° C. or more and 22 MPa or more.
  • the subcritical state of water is a high temperature and high pressure state near the critical point, for example, as shown in FIG. 3, a region of 100 ° C. or more and less than 374 ° C. and 0.1 MPa or more and less than 22 MPa, 374 ° C. or more and 2 MPa or more and less than 22 MPa Area of 250 ° C. or more and less than 374 ° C. and 22 MPa or more.
  • the collision pressure when the cooling water 20 collides with the molten metal is 20 MPa or more.
  • the collision pressure is measured with a pressure sensor with a collision surface sensor diameter of ⁇ 2 mm when non-atomizing.
  • the injection pressure of the cooling water 20 further needs to be the pressure or more.
  • the injection pressure is reduced when the cooling water 20 is fanned out, it is preferable to attach a straight-forward type nozzle.
  • the linear distance from the injection port of the cooling water 20 of the cooling nozzle 6 to the molten metal is preferably 150 mm or less. More preferably, it is 100 mm or less.
  • the temperature of the molten metal and / or the temperature of the cooling water are adjusted so that the cooling water 20 is in a subcritical or supercritical state at the collision surface with the molten metal.
  • the adjustment of the temperature of the molten metal can be performed by the heating temperature adjustment by the high frequency output in the melting furnace.
  • the molten metal 3 can be held in the melting furnace after heating to adjust the temperature of the molten metal 3 poured into the tundish 2.
  • the average temperature ((molten metal temperature + cooling water temperature) / 2) of the temperature of the molten metal and the temperature of the cooling water 20 is taken as the temperature of water on the collision surface.
  • the molten metal temperature can be measured using a non-contact thermometer at the atomization point.
  • the temperature of the cooling water can be confirmed from a thermometer (not shown) that measures the water temperature of the cooling water tank 15 of FIG.
  • the collision pressure, the temperature of the molten metal, and the cooling so that the average temperature and the collision pressure become a subcritical or supercritical state. Adjust the temperature of water 20.
  • the temperature of the molten metal may be adjusted in the range of ⁇ 50 °
  • the temperature of the cooling water may be adjusted in the range of ⁇ 5 ° C.
  • FIG. 4 is a graph showing the relationship between the amorphization ratio and the collision pressure.
  • the graph shown in FIG. 4 shows that the total content of iron-based components (Fe, Ni, Co) is 76.0 at.% (Atomic ratio of molten metal (mass ratio: Qaq / Qm) 20) and Cu 0.5 at. % And the total content of iron-based components (Fe, Ni, Co) is 85.8 atomic% (water-soluble metal ratio 35) and contains 0.5 atomic% of Cu.
  • the total content of iron-based components Fe, Ni, Co
  • the total content of iron-based components is 85.8 atomic% (water-soluble metal ratio 35) and contains 0.5 atomic% of Cu.
  • the graph of FIG. 4 about the example whose impact pressure is 20 MPa, it adjusted so that the state of the water of the collision surface of a cooling water and a molten metal might be in a subcritical state.
  • the state of water at the collision surface was adjusted to be in the supercritical state.
  • the state of water on the collision surface was adjusted to be other than the subcritical state and the supercritical state.
  • the amorphization ratio can be 90% or more.
  • the average temperature of the temperature of the molten metal and the temperature of the cooling water it is preferable to set the average temperature of the temperature of the molten metal and the temperature of the cooling water to 374 ° C. or higher when the cooling water (high pressure water) collides with the molten metal. .
  • the average temperature it is preferable to set the average temperature to 374 ° C. or higher, the critical state is approached, and the steam is also densified.
  • the mass ratio (Qaq / Qm) is , 35 or more is preferable.
  • the mass ratio is large, the amorphization ratio tends to increase, and when it is 35 or more, adjustment is easy, and a sufficiently high effect can be obtained.
  • the total content of iron-based components is 76 at% or more in atomic fraction, and the content of Cu is 0.1 at% or more to 2 at% or less in atomic fraction Suitable for the production of certain atomized metal powders.
  • the content of iron-based elements Fe + Co + Ni
  • the melting start temperature is high
  • the cooling start temperature is high
  • film boiling easily occurs from the beginning of cooling, and it is difficult to increase the amorphization ratio to 90% or more by the conventional method Met.
  • the present invention even when the content of the iron-based element (Fe + Co + Ni) is large, the amorphization ratio can be increased.
  • the amorphization ratio can be increased while the content of the iron-based element (Fe + Co + Ni) is increased, so that the magnetic flux density can be increased.
  • the manufacturing method of the present invention contributes to downsizing and high output of the motor.
  • composition of the molten metal is adjusted to the above range, the composition of the atomized metal powder also falls within the above range.
  • the total content of the iron-based components is more than 82.5 at% and less than 86.0 at% in atomic fraction, contains Cu, and contains Si, P and B It is suitable for the production of an atomized metal powder containing at least two selected and having an average particle diameter of 5 ⁇ m or more.
  • the total content of iron-based components (Fe, Ni, Co) exceeds 82.5 at% and less than 86 at% in atomic fraction In this case, the finer the average particle size, the easier it is to be cooled, and the amorphization ratio can be made higher than when the average particle size is large.
  • the average particle diameter is 5 ⁇ m or more, it is extremely difficult to increase the amorphization ratio to 90% or more.
  • the amorphization ratio can be made 90% or more.
  • the standard of the upper limit of the average particle diameter which can make the amorphization ratio 90% or more in the present invention is 75 ⁇ m.
  • a particle size is classified and measured by the sieve method, and an average particle diameter (D50) is calculated by the integration method. Also, laser diffraction / scattering particle size distribution measurement may be used.
  • the molten metal 3 obtained by melting the raw material at a predetermined temperature in a high frequency melting furnace or the like is poured into the tundish 2.
  • the molten metal injection nozzle 4 having a predetermined molten metal injection nozzle diameter is set in advance in the tundish 2.
  • the molten metal 3 enters the tundish 2 the molten metal is pushed out of the molten metal injection nozzle 4 by a free fall or back pressure and falls.
  • the cooling water jetted from the cooling water nozzle 6 of a predetermined water pressure by the high pressure pump 17 for atomized cooling water collides with the molten metal, and the molten metal is crushed, refined, and cooled.
  • the cooling water may be stored in advance in the cooling water tank 15, and the water temperature may be adjusted by the cooling water temperature regulator 16 as necessary.
  • the coolant injection nozzle used was of the straight-ahead type. It was installed by setting the angle of 12 degrees, the vertical direction, and 30 degrees around the molten metal to fall. The effect of the present invention can be obtained even if the mounting angle of the nozzle is adjusted to 5 to 60 degrees.
  • the collision pressure of the molten metal is measured by the collision pressure measurement pressure sensor 51 (see FIG. 5).
  • the collision pressure measurement pressure sensor 51 is set in the direction perpendicular to the injection angle of the nozzle to confirm that it is a predetermined collision pressure.
  • FIG. 5 The collision pressure measurement pressure sensor 51 is set in the direction perpendicular to the injection angle of the nozzle to confirm that it is a predetermined collision pressure.
  • the measurement of the collision pressure at is performed before dropping the molten metal.
  • the molten metal in the form of iron powder is collected by a hopper, dried and classified, and then the amorphization ratio is evaluated. Pass at amorphization rate of 90% or more.
  • soft magnetic materials of the following component systems were prepared. "%" Means “at%”.
  • (I) to (v) are Fe-based soft magnetic materials.
  • (Vi) is a Fe + Co based soft magnetic material.
  • (Vii) is a Fe + Co + Ni soft magnetic material.
  • the atomized metal powders of Examples 1 to 4 were subjected to appropriate heat treatment after molding. Thereby, nano-sized crystals were precipitated. It was also confirmed that both low loss and high magnetic flux density can be achieved. Specifically, it confirmed by the following method.
  • the size of the nanocrystals was determined by XRD (X-ray diffractometer) and then determined using Scheller's equation.
  • K is the form factor (generally 0.9)
  • is the full width at half maximum (with radian value)
  • is the crystal size .
  • K ⁇ / ⁇ cos ⁇ (Scheller's formula)
  • VSM vibration type magnetometer
  • FIG. 6 is open to the public by the National Institute of Advanced Industrial Science and Technology (JST) (Internet URL: https://www.jst.go.jp/pr/report/report27/grf2.html Search date November 16, 2017).
  • JST National Institute of Advanced Industrial Science and Technology
  • atomization start temperature is the temperature of the molten metal at the atomization point.
  • the molten metal temperature at the atomization point was measured by a noncontact thermometer.
  • average temperature is represented by ((molten metal temperature + cooling water temperature) / 2).
  • the molten metal temperature at the atomizing point was measured by a noncontact thermometer, and the cooling water temperature was measured by a thermometer at the water temperature of the cooling water tank.
  • water-melting metal ratio is mass ratio Qaq / Qm.
  • Reference Signs List 2 Tundish 3 molten metal 4 molten metal injection nozzle 5 nozzle header 6 nozzle for cooling 8 metal powder 14 atomizing device 15 cooling water tank 16 temperature controller for cooling water 17 high pressure pump for atomizing cooling water 18 piping for atomizing cooling water 20 cooling Water 51 Impact pressure measurement pressure sensor

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)

Abstract

【課題】水アトマイズ法により、高い非晶質化率を有するアトマイズ金属粉末を製造する方法を提供する。 【解決手段】鉛直方向に落下する溶融金属と衝突する高圧水を噴射し、該溶融金属を分断して金属粉末とし、かつその金属粉末を冷却し、非晶質化率が90%以上のアトマイズ金属粉末を製造する方法であって、前記高圧水が前記溶融金属に衝突する際の衝突圧を20MPa以上とし、前記高圧水が前記溶融金属との衝突面で亜臨界状態または超臨界状態になるように、前記溶融金属の温度及び/又は前記高圧水の温度を調整するアトマイズ金属粉末の製造方法とする。

Description

アトマイズ金属粉末の製造方法
 本発明は、アトマイズ金属粉末の製造方法に関するものである。本発明は、特に、鉄系成分(Fe、Ni、Co)の合計含有量が原子分率で76at%以上であるアトマイズ金属粉末の製造に適する。
 従来から、金属粉末を製造する方法として、アトマイズ法がある。このアトマイズ法には、溶融金属の流れに高圧の水ジェット(高圧水)を噴射して金属粉末を得る水アトマイズ法と、水ジェットに代えて不活性ガスを噴射するガスアトマイズ法などがある。
 水アトマイズ法では、ノズル等より噴射した水ジェットで溶融金属の流れを分断し、粉末状の金属(金属粉末)とするとともに、水ジェットで粉末状の金属(金属粉末)の冷却も行ってアトマイズ金属粉末を得ている。一方、ガスアトマイズ法では、ノズルより噴射した不活性ガスにより溶融金属の流れを分断し、粉末状の金属としたのち、通常、粉末状の金属を、アトマイズ装置の下に備えられた水槽、あるいは流水のドラム中に落下させて、粉末状の金属(金属粉末)の冷却を行ってアトマイズ金属粉末を得ている。
 金属粉末を製造する上では、水アトマイズ法はガスアトマイズ法に比べて、生産能力が高く、低コストである。ガスアトマイズ法では、アトマイズする際に、不活性ガスを使用する必要があり、かつアトマイズする際のエネルギー力も水アトマイズ法には劣る。また、ガスアトマイズ法によって製造された金属粉末はほぼ球形であるのに対して、水アトマイズ法によって製造された金属粉末は不定形状であり、モーターコアなどを製造するためにその金属粉末を圧縮成型した際、ガスアトマイズ法の球形金属粉末より、水アトマイズ法の不定形状な金属粉末のほうが、粉末同士が絡みやすく圧縮後の強度が高くなる利点がある。
 近年、省エネルギーの観点から、例えば電気自動車やハイブリッド車に使用されるモーターコアの低鉄損化及び小型化が要望されている。従来、これらモーターコアは、電磁鋼板を薄くして積層させて製作されてきた。最近では、形状設計の自由度が高い金属粉末を用いて作製したモーターコアが注目されている。このようなモーターコアの低鉄損化のためには、使用する金属粉末の非晶質化(アモルファス化)することが有効であると考えられている。非晶質化した金属粉末を得るためには、溶融状態の高温からアトマイズしながら、アトマイズした金属粉末を冷却媒体で急速冷却することによって結晶化を防ぐ必要がある。また低鉄損化とともにモーターの小型化、高出力化のためには磁束密度を上昇させる必要があり、高磁束密度化にはFe系(Ni,Coを含む)濃度を高くすることが重要で、Fe系濃度が76~90at%程度のモーターコア用非晶質化軟磁性金属粉末が求められている。Fe濃度が80at%クラスになると非晶質化するためには冷却速度が106K/s以上必要とされ、金属粉末の低鉄損化と磁束密度向上を両立させることは非常に困難である。
 特に冷却速度の上昇を妨げている原因として、高温の溶融金属を水によって冷却すると、水が溶融金属に接触した際に、水は一瞬のうちに蒸発して溶融金属の周りに蒸気膜を形成し、被冷却面と水との直接接触を妨げる状態(膜沸騰の発生)になり、冷却速度が上がらなくなることが挙げられる。
 非晶質鉄粉を製造する上で、この蒸気膜・膜沸騰による冷却抑制の問題を解決するために、特許文献1~11にあげる検討がなされてきた。
 例えば、特許文献1には、溶融金属を飛散させつつ冷却・固化させ金属粉末を得る際に、固化するまでの冷却速度が10K/s以上とする金属粉末の製造方法が記載されている。特許文献1に記載された技術では、飛散させた溶融金属を、筒状体の内壁面に沿って冷却液を旋回させることにより生じた冷却液流に接触させることにより、上記した冷却速度が得られるとしている。そして、冷却液を旋回させることにより生じた冷却液流の流速は5~100m/sとすることが好ましいとしている。
 また、特許文献2には、急冷凝固金属粉末の製造方法が記載されている。特許文献2に記載された技術では、内周面が円筒面である冷却容器の円筒部上端部外周側より、冷却液を周方向より供給し円筒部内周面に沿って旋回させながら落下させ、その旋回による遠心力で、中心部に空洞を有する層状の旋回冷却液層を形成し、その旋回冷却液層の内周面に金属溶湯を供給して急冷凝固させる。これにより、冷却効率がよく、高品質の急冷凝固粉末が得られるとしている。
 また、特許文献3には、流下する溶融金属にガスジェットを噴射して溶滴に分断するためのガスジェットノズルと、内周面に旋回しながら流下する冷却液層を有する冷却用筒体とを備える、ガスアトマイズ法による金属粉末の製造装置が記載されている。特許文献3に記載された技術では、溶融金属が、ガスジェットノズルと旋回する冷却液層とにより、二段階に分断され、微細化された急冷凝固金属粉末が得られるとしている。
 また、特許文献4には、溶融金属を液状の冷媒中に供給し、冷媒中で溶融金属を覆う蒸気膜を形成し、できた蒸気膜を崩壊させて溶融金属と冷媒とを直接接触させて自然核生成による沸騰を起こさせその圧力波を利用し溶融金属を引きちぎりながら急速に冷却しアモルファス化して、アモルファス金属微粒子とする、アモルファス金属微粒子の製造方法が記載されている。溶融金属を覆う蒸気膜の崩壊は、冷媒へ供給する溶融金属の温度を冷媒に直接接触した場合に界面温度が膜沸騰下限温度以下で自発核生成温度以上の温度とするか、超音波照射するか、により可能であるとしている。
 また、特許文献5には、溶融した材料を、液体冷媒の中に液滴又はジェット流として供給する際に、溶融した材料の温度を、液体冷媒の自発核生成温度以上で溶融状態であるように設定し、さらに、液体冷媒の流れに入ったときの溶融した材料の速度と液体冷媒の流れの速度との相対速度差を10m/s以上となるようにして、溶融した材料の周囲に形成された蒸気膜を強制的に崩壊させて自発核生成による沸騰を生じさせ、微粒化すると共に冷却固化する微粒子の製造方法が記載されている。これにより、従来は困難であった材料でも、微粒子化、非晶質化することができるとしている。
 また、特許文献6には、母材となる材料に機能性添加材を添加した原料を溶融し、液体冷媒の中に供給することにより、蒸気爆発により微細化するとともに冷却固化する際に冷却速度を制御することにより偏析のない多結晶又は非晶質である均質な機能性微粒子を得る工程と、この機能性微粒子と前記母材の微粒子とを原料として用いて固化して機能部材を得る工程とを具備する機能部材の製造方法が記載されている。
 特許文献7、8では水アトマイズの下方に吸引管を設置し、溶融粉化後の粉末が吸引されることにより粉末周囲の蒸気膜を破壊できることが記載されている。
 特許文献9では水アトマイズの下方に冷却ブロックを設置し、80kgf/cm以上の液体を噴射して、溶融粉化後の粉末を冷却ブロックに当て、粉末周囲の蒸気膜を破壊することが記載されている。
 特許文献10ではアトマイズの下方に第2の液体を噴射する装置を設置して、液体の噴射圧力は5~20MPaで、溶融金属を含む分散液の進行方向を強制的に変化させることにより、覆われている蒸気膜を除去することが記載されている。
 特許文献11では、希土類を含む鉄ボロン系の強磁性材料(永久磁石)の特許であるが、水アトマイズにより微粉、非晶質化するにあたり水圧を750~1200kgf/cmとすること、水温を20℃以下とすること、鉄1kgあたりの水量(kg)を25~45[-]にすることが望ましいとされている。
特開2010-150587号公報 特公平7-107167号公報 特許第3932573号公報 特許第3461344号公報 特許第4793872号公報 特許第4784990号公報 特開昭60-24302号公報 特開昭61-204305号公報 特開昭60-24303号公報 特開2007-291454号公報 特開2004-349364号公報
 特許文献1~3に記載された技術は、分断された金属粒子を、冷却液を旋回させて形成した冷却液層中に溶融金属を供給して、金属粒子の周りに形成された蒸気膜を剥がそうとするものであるが、分断された金属粒子の温度が高いと冷却液層中では膜沸騰状態になりやすく、しかも冷却液層中に供給された金属粒子は冷却液層とともに移動するため、冷却液層との相対速度差が少なく、膜沸騰状態を回避することは難しいという問題がある。
 また、特許文献1~6に記載された技術では、ガスアトマイズ法を利用して金属粉末を製造しているが、ガスアトマイズ法では、アトマイズのために大量の不活性ガスを必要とするため、製造コストの高騰を招くという問題がある。
 特許文献7~10に記載されている技術は、水アトマイズ法に関する。特許文献7および8に記載されている技術は、粉末を吸引することにより蒸気膜を除去できるとあるが、高温物体の周囲に水があれば、物体内部からの熱により水が連続的に気化されて蒸気膜を形成するので、水と溶融金属が一緒に吸引されるだけで蒸気膜を除去することは難しい。
 特許文献9では、アトマイズ下方に冷却ブロックを設置して、蒸気膜に覆われた溶湯を冷却ブロックに当てることにより、蒸気膜を破壊することが可能とされているが、液体を分断に用いた場合、液体の温度が上がること、それに伴い蒸気膜の形成がされやすくなり、また分断に液体がもつ噴射圧(圧力エネルギー)を使用するため、冷却ブロックにあたるときには蒸気膜を破壊するためのエネルギー量が不足する。仮に、蒸気膜を崩壊させたとしても、溶融金属(粉末)が高温である限り、またすぐに蒸気膜が復活する。そのため常に蒸気膜を取り続ける必要がある。
 特許文献10でも、アトマイズ後に液滴になった溶融金属を含む分散液を、液体ジェットスプレーにより進行方向を変えることにより、蒸気膜が除去できるとあるが、進行方向を変える際に、蒸気膜をまとっている溶融金属温度が高すぎると、また再び周囲にある冷却水のために蒸気膜を覆ってしまう可能性があり、逆に冷却ブロックに当たったときの温度が低すぎると、溶融金属が凝固して結晶化が進む可能性がある。特に鉄系元素(Fe+Co+Ni)の含有量が多いと融点が高くなるため冷却開始温度が高く、冷却開始当初から膜沸騰となりやすく、液体噴射圧力が5~20MPa程度では十分とは言えない。
 特許文献11では永久磁石用粉末ではあるが、粉末を微粉化、非晶質化するために750~1200kgf/cmとすること、水温を20℃以下とすること、鉄1kgあたりの水量を25~45L(リットル)にすることが記載されており、これらにより膜沸騰や蒸気膜をとることは示されていないが、噴射圧を60MPa以上の高圧にすることは高圧ポンプ及び高圧配管にコストがかかり、これは製品価格が高くなることを意味する。また鉄1kgあたりの水量を25~45Lとしているが、鉄系元素が高い軟磁性材料にはこれでも十分とは言えない。
 以上、背景技術でも述べたように、生産性や粒同士の接着性の観点からは水アトマイズ法が有利である。また、非晶質化するために急冷却する際には、特許文献1~6のようにガスアトマイズ後に水による急冷却を行なうことが非晶質化に有利である。水アトマイズの場合は、アトマイズ後に分断された溶融金属の周囲にアトマイズを行なった冷却水により蒸気膜で覆われる為、さらに別の手段を加えることが必要で、特許文献7~11のような手段がある。特に鉄系元素が76at%以上の軟磁性材料の非晶質化にはそれぞれの効果が不十分である。
 本発明は、上記課題を解決するために完成されたものであり、水アトマイズ法により、高い非晶質化率を有するアトマイズ金属粉末を製造する方法を提供することを目的とする。
 本発明者らは、上記課題を解決するために鋭意研究を重ねた。その結果、溶融金属に、高圧水を噴射し、該溶融金属を分断して、冷却を行い、アトマイズ金属粉末を得る際に、噴射圧ではなく衝突圧に着目し、さらに、溶融金属と高圧水との衝突面での水の状態を調整することで、上記課題を解決するに至った。より具体的には、本発明は以下のものを提供する。
 [1] 鉛直方向に落下する溶融金属に高圧水を噴射して衝突させ、該溶融金属を分断して金属粉末とし、かつその金属粉末を冷却し、非晶質化率が90%以上のアトマイズ金属粉末を製造する方法であって、
 前記高圧水が前記溶融金属に衝突する際の衝突圧を20MPa以上とし、
 前記高圧水が前記溶融金属との衝突面で亜臨界状態または超臨界状態になるように、前記溶融金属の温度及び/又は前記高圧水の温度を調整するアトマイズ金属粉末の製造方法。
 [2]前記高圧水と前記溶融金属との衝突時において、前記溶融金属の温度と前記高圧水の温度との平均温度を374℃以上とする[1]に記載のアトマイズ金属粉末の製造方法。
 [3]前記溶融金属の単位時間当たりの落下量をQm(kg/min)、前記高圧水の単位時間当たりの噴射量をQaq(kg/min)としたときに、質量比(Qaq/Qm)が35以上である[1]又は[2]に記載のアトマイズ金属粉末の製造方法。
 [4]前記アトマイズ金属粉末は、鉄系成分(Fe、Ni、Co)の合計含有量が原子分率で76.0at%以上であり、Cuの含有量が原子分率で0.1at%以上2.0at%以下である[1]~[3]のいずれかに記載のアトマイズ金属粉末の製造方法。
 [5]前記アトマイズ金属粉末は、鉄系成分(Fe、Ni、Co)の合計含有量が原子分率で82.5at%を超え86at%未満であり、Si、P及びBから選ばれる少なくとも2種とCuを含有し、平均粒径が5μm以上である[1]~[3]のいずれかに記載のアトマイズ金属粉末の製造方法。
[6]前記亜臨界状態は、圧力が0.5~22MPa、かつ、水温が150~274℃であり、前記超臨界状態は、圧力が22MPa以上、かつ、水温が374℃以上である[1]~[5]のいずれかに記載のアトマイズ金属粉末の製造方法。
 本発明によりアトマイズ金属粉末の非晶化率90%以上の非晶質化が可能となった。これにより、本発明で得られたアトマイズ金属粉末を成型後に適切な熱処理を施せば、ナノサイズの結晶が析出する。特に、高Fe系軟磁性材料(鉄系成分(Fe、Ni、Co)の合計含有量が原子分率で76at%以上のもの)であれば、本粉末を成型後に適切な熱処理を施せば、低損失性と高磁束密度を両立できることが可能となった。このように、本発明は、従来知られる任意の非晶質利用軟磁性材料の製造に適する。
 加えて近年では、まてりあVol.41 No.6 P.392, Journal of Applied Physics 105, 013922(2009)、特許第4288687号公報、特許第4310480号公報、特許第4815014号公報、WO2010-084900号、特開2008-231534号公報、特開2008-231533号公報、特許第2710938号公報などに示されるように磁束密度の大きなヘテロアモルファス材料や、ナノ結晶材料が開発されてきている。これらの高Fe系成分濃度の軟磁性材料の水アトマイズによる製造に際して、本発明はきわめて有利に適合する。特にat%でFe系成分濃度が82.5%を超えると、さらには83.5%を超えると、従来技術では非晶化率を高めることが困難であった。しかし、本発明の製造方法を適用すれば、アトマイズ後の非晶質化率を90%以上にすることができる。さらに、従来技術では、非晶質化率を90%以上かつ5μm以上の平均粒径とすることは、極めて困難であった。しかし、本発明の製造方法を適用すれば、平均粒径を大きくしても、非晶質化率を90%以上にできる。非晶質化率を90%以上かつ5μm以上の平均粒径にできることで、成型後に適切な熱処理を施せば、飽和磁束密度(Bs)値が極めて大きくなる。
 また、上記の通り、本発明は、高Fe系成分濃度のアトマイズ金属粉末の製造に好適であるが、高Fe系成分濃度のアトマイズ金属粉末以外のアトマイズ金属粉末の製造方法に本発明を適用すると、従来より、容易に大径の粉末に対しても安定して非晶質粉末が得られる効果を有する。
 なお「非晶質化率」は、得られた金属粉末(軟磁性鉄粉)について、金属粉末以外のゴミを除去したのち、X線回折法により、アモルファス(非晶質)からのハローピークおよび結晶からの回折ピークを測定し、WPPD法により算出する。ここでいう「WPPD法」とは、Whole―powder-pattern decomposition methodの略である。WPPD法については、虎谷秀穂:日本結晶学会誌, vol.30(1988), No.4, P253~258に詳しい説明がある。
図1は、本発明のアトマイズ金属粉末の製造方法に用いることができる製造装置の一例を、模式的に示す図である。 図2は、本発明の製造方法を実施するための製造設備の一例を、模式的に示す図である。 図3は、圧力と水温と水の状態との関係を示す図である。 図4は、非晶質化率と衝突圧との関係を示すグラフである。 図5は、溶融金属の衝突圧を衝突圧測定圧力センサーで測定する様子を説明する模式図である。 図6は、VSMによって得られたB-H線図を示す図である。
 以下、本発明の実施形態について説明する。なお、本発明は以下の実施形態に限定されない。
 図1に、本発明のアトマイズ金属粉末の製造方法に用いることができる製造装置の一例を模式的に示す。図1においてはタンディッシュ2に溶融金属3が注がれた状態で、溶融金属3の自重により、溶融金属注入ノズル4から溶融金属3が落下する。また、ノズルヘッダー5に供給された冷却水は冷却用ノズル6から冷却水20(高圧水に相当)が噴射される。冷却水20が溶融金属(落下する溶融金属)に衝突しアトマイズされ、分断された溶融金属である金属粉末8となる。
 図2には、本発明の製造方法を実施するための製造設備の一例を模式的に示す。図2に示す製造設備は、冷却水用温度調節機16を用いて、冷却水タンク15中の冷却水の温度を調整し、温度調整された冷却水をアトマイズ冷却水用高圧ポンプ17に送り、アトマイズ冷却水用高圧ポンプ17からアトマイズ冷却水用配管18を通して、アトマイズ装置14(図1の製造装置に相当)に送り、このアトマイズ装置14から、鉛直方向に落下する溶融金属と衝突する高圧水を噴射し、該溶融金属を分断して金属粉末とし、かつその金属粉末を冷却して、アトマイズ金属粉末を製造する。
 先ず、本発明においては、冷却水20が溶融金属に衝突したときの衝突圧を20MPa以上及び衝突面で水が亜臨界状態または超臨界状態になるように調整することを特徴とする。水の超臨界状態とは、374℃以上かつ22MPa以上の領域である。水の亜臨界状態とは、臨界点に近い高温高圧状態であり、例えば、図3に示す通り、100℃以上374℃未満かつ0.1MPa以上22MPa未満の領域、374℃以上かつ2MPa以上22MPa未満の領域、250℃以上374℃未満かつ22MPa以上の領域である。
 本発明の製造方法では、冷却水20が溶融金属に衝突したときの衝突圧を20MPa以上とする。衝突圧は、非アトマイズ時に衝突面センサー径φ2mmの圧力センサーで測定する。衝突圧20MPa以上とするためには、冷却水20の噴射圧はさらにその圧力以上が必要である。上記噴射圧は最大98MPaとして衝突圧を調整するためにインバーター方式の高圧ポンプで圧力調整を行うことが好ましい。また、冷却水20を扇状に広げると噴射圧が低下するので、直進タイプのノズルを取り付けることが好ましい。また、冷却用ノズル6と溶融金属との距離を広げると噴射圧が低下するので、冷却用ノズル6の冷却水20の噴射口から溶融金属までの直線距離は150mm以下とすることが望ましい。さらに望ましくは100mm以下である。
 また、本発明では、冷却水20が溶融金属との衝突面で亜臨界状態または超臨界状態になるように、溶融金属の温度及び/又は冷却水の温度を調整する。溶融金属の温度の調整は、溶解炉での高周波出力による加熱温度調整によって行うことができる。また、加熱後に溶解炉で溶融金属3を保持してタンディッシュ2に注がれる溶融金属3の温度を調整することができる。
 本発明の製造方法では、溶融金属の温度と冷却水20の温度との平均温度((溶融金属温度+冷却水温度)/2)を、衝突面での水の温度とする。溶融金属温度は、アトマイズポイントにおいて非接触温度計を用いて測定することができる。冷却水の温度は、図2の冷却水タンク15の水温を測定する温度計(図示せず)から水温を確認することができる。そして、図3に示す、圧力と水温と水の状態との関係に基づいて、亜臨界状態または超臨界状態になる平均温度と衝突圧になるように、衝突圧と、溶融金属温度と、冷却水20の温度とを調整する。なお、溶融金属および冷却水の温度は変動しやすいため、溶融金属温度は±50°の範囲で調整し、冷却水温度は±5℃の範囲で調整してもよい。
 次いで、本発明の効果について説明する。
 図4は、非晶質化率と衝突圧との関係を示すグラフである。図4に示すグラフは、鉄系成分(Fe、Ni、Co)の合計含有量が原子分率で76.0at%(水溶融金属比(質量比:Qaq/Qm)20)でかつCu0.5at%含むアトマイズ金属粉末を製造する場合と鉄系成分(Fe、Ni、Co)の合計含有量が原子分率で85.8at%(水溶融金属比35)でかつCu0.5at%含むアトマイズ金属粉末を製造する場合に関する。また、図4のグラフにおいて、衝突圧が20MPaの例については、冷却水と溶融金属との衝突面の水の状態が亜臨界状態になるように調整した。この20MPaの例よりも高圧力側の衝突圧が22MPa以上の例は、上記衝突面での水の状態が超臨界状態になるように調整した。また、上記20MPaの例よりも低圧力側の例は、上記衝突面の水の状態が、亜臨界状態および超臨界状態以外になるように調整した。
 図4から、衝突圧が20MPa以上であれば、得られるアトマイズ金属粉末の組成の変化や、水溶融金属比の変化、衝突面での水の状態が亜臨界状態であるか超臨界状態であるかに関わらず、90%以上の非晶質化率にすることができる。
 また、本発明の製造方法を実施するにあたっては、冷却水(高圧水)と溶融金属との衝突時において、溶融金属の温度と冷却水の温度との平均温度を374℃以上とすることが好ましい。上記平均温度を374℃以上にすることで臨界状態に近づき、また蒸気も高密度化するという効果がある。
 溶融金属の単位時間当たりの落下量をQm(kg/min)、冷却水(高圧水)の単位時間当たりの噴射量をQaq(kg/min)としたときに、質量比(Qaq/Qm)は、35以上が好ましい。上記質量比が大きいと、非晶質化率が高まりやすく、35以上であれば調整もしやすく、十分高い効果が得られるからである。
 本発明の製造方法は、鉄系成分(Fe、Ni、Co)の合計含有量が原子分率で76at%以上であり、Cuの含有量が原子分率で0.1at%以上2at%以下であるアトマイズ金属粉末の製造に適する。鉄系元素(Fe+Co+Ni)の含有量が多いと融点が高くなるため冷却開始温度が高く、冷却開始当初から膜沸騰となりやすく、従来の方法では非晶質化率を90%以上に高めることは困難であった。本発明によれば、鉄系元素(Fe+Co+Ni)の含有量が多い場合でも、非晶質化率を高めることができる。本発明の製造方法によれば、鉄系元素(Fe+Co+Ni)の含有量を多くしつつ、非晶質化率を高められるので、高磁束密度化できる。その結果、本発明の製造方法は、モーターの小型化、高出力化に寄与する。
 なお、溶融金属の組成を上記範囲に調整すれば、アトマイズ金属粉末の組成も上記範囲内になる。
 本発明の製造方法は、鉄系成分(Fe、Ni、Co)の合計含有量が原子分率で82.5at%を超え86.0at%未満であり、Cuを含み、Si、P及びBから選ばれる少なくとも2種を含有し、平均粒径が5μm以上であるアトマイズ金属粉末の製造に適する。従来の方法では、非常に高い鉄系成分含有量の場合、具体的には、鉄系成分(Fe、Ni、Co)の合計含有量が原子分率で82.5at%を超え86at%未満の場合に、平均粒径を微細にすれば冷却されやすくなり、非晶率化率を平均粒径が大きい場合よりは高くすることができた。しかし、平均粒径が5μm以上の場合に、非晶質化率を90%以上に高めることは極めて困難であった。本発明によれば、平均粒径が5μm以上であっても、非晶質化率を90%以上にすることができる。また、本発明で非晶質化率を90%以上にできる平均粒径の上限の目安は、75μmである。なお、粒径は篩方法により分級して測定し、積算法によって平均粒径(D50)を算出する。また、レーザー回折/散乱式粒度分布測定を用いることもある。
 実施例および比較例の実施を、図1に示す水アトマイズ金属粉製造装置を、図2に示す製造設備に適用して用いて行った。
 高周波溶解炉等によって原料を所定の温度で溶解した溶融金属3を、タンディッシュ2に注ぐ。あらかじめタンディッシュ2内に所定の溶融金属注入ノズル径をもった溶融金属注入ノズル4をセットしておく。タンディッシュ2内に溶融金属3が入ると、自由落下あるいは背圧により溶融金属が溶融金属注入ノズル4から押し出され、落下する。アトマイズ冷却水用高圧ポンプ17によって所定の水圧の冷却水用ノズル6から噴射された冷却水が溶融金属に衝突し、溶融金属は粉砕・微細化し、かつ冷却される。冷却水はあらかじめ冷却水タンク15に溜めておき、必要により冷却水温度調整機16で水温を調整することもある。冷却水噴射ノズルは直進タイプのものを使用した。溶融金属が落下する周囲に12本、鉛直方向と30度の角度を設定して設置した。なお、ノズルの取付角度は5~60度に調整しても本発明の効果が得られる。アトマイズ開始前に、溶融金属の衝突圧を衝突圧測定圧力センサー51で測定する(図5参照)。衝突圧測定圧力センサー51はノズルの噴射角度と鉛直方向にセットして所定の衝突圧であることを確認する。ここで、図5には冷却水が溶融金属に噴射される様子と、衝突圧測定圧力センサー51に向けて噴射される様子を同時に示したが、これは便宜上であり、衝突圧測定圧力センサー51での衝突圧の測定は、溶融金属を落下させる前に行う。鉄粉となった溶融金属は、ホッパーにより回収され、乾燥、分級のち、非晶質化率を評価する。非晶質化率90%以上で合格とする。
 実施例および比較例の製造方法を実施するにあたり、以下の成分系の軟磁性材料を準備した。「%」は「at%」を意味する。(i)~(v)はFe系軟磁性原料である。(vi)はFe+Co系軟磁性材料である。(vii)はFe+Co+Ni系軟磁性材料である。
(i)Fe76%-Si9%-B10%-P5%
(ii)Fe78%-Si9%-B9%-P4%
(iii)Fe80%-Si8%-B8%-P4%
(iv)Fe82.8%-B11%-P5%-Cu1.2%
(v)Fe84.8%-Si4%-B10%-Cu1.2%
(vi)Fe69.8%-Co15%-B10%-P4%-Cu1.2%
(vii)Fe69.8%-Ni1.2%-Co15%-B9.4%-P3.4%-Cu1.2%
 (i)~(vii)は、各目的の配合となるように調整したが、実際の組成については、溶解してアトマイズが終了した時点で、±0.3at%程度の誤差や、その他不純物が含まれる場合がある。また、溶解中、アトマイズ中、アトマイズ後において酸化等により多少の組成の変化が現れることもある。
 実施例1~4および比較例1~3について、表1に示す条件で実施した。平均粒径、非晶質化率は上述の方法で評価した。各実施例、比較例を実施した結果、本発明の範囲内である実施例においてはいずれも非晶質化率90%以上を得ることができた。比較例においては、90%以上の非晶質化率を得ることができなかった。
 実施例1~4のアトマイズ金属粉末を成型後に適切な熱処理を施した。これによりナノサイズの結晶が析出した。また、低損失性と高磁束密度を両立できることを確認した。具体的には以下の方法で確認した。
 ナノ結晶サイズはXRD(X線回折装置)で測定後、シェラーの式を用いて求めた。このシェラーの式においてKは形状因子(一般的に0.9を用いる)、βはピーク半値全幅(ただしラジアン値)、θは2θ=52.505°(Fe110面)、τが結晶サイズとなる。
τ=Kλ/βcosθ    (シェラーの式)
 また得られた粉末の磁性特性はVSM(振動型磁力計)によって調査し、VSMによって得られたB-H線図(図6)から、飽和磁束密度をC点(F点)、保持力をE点、透磁率をBの最大傾き、損失をヒステリシスの面積(C-D-F-G)で求めた。なお、図6は、国立研究開発法人 科学技術振興機構(JST)より一般公開されている(インターネットURL:https://www.jst.go.jp/pr/report/report27/grf2.html 検索日2017年11月16日)。
Figure JPOXMLDOC01-appb-T000001
 表1中、「アトマイズ開始温度」は、アトマイズポイントにおける溶融金属の温度である。アトマイズポイントにおける溶融金属温度は、非接触温度計により測定した。
 表1中、「平均温度」は、((溶融金属温度+冷却水温度)/2)で表される。アトマイズポイントでの溶融金属温度は非接触温度計で測定し、冷却水温度は冷却水タンクの水温を温度計で測定した。
 表1中、「水溶融金属比」は、質量比Qaq/Qmである。
2  タンディッシュ
3  溶融金属
4  溶融金属注入ノズル
5  ノズルヘッダー
6  冷却用ノズル
8  金属粉末
14 アトマイズ装置
15 冷却水タンク
16 冷却水用温度調節機
17 アトマイズ冷却水用高圧ポンプ
18 アトマイズ冷却水用配管
20 冷却水
51 衝突圧測定圧力センサー

Claims (6)

  1.  鉛直方向に落下する溶融金属に高圧水を噴射して衝突させ、該溶融金属を分断して金属粉末とし、かつその金属粉末を冷却し、非晶質化率が90%以上のアトマイズ金属粉末を製造する方法であって、
     前記高圧水が前記溶融金属に衝突する際の衝突圧を20MPa以上とし、
     前記高圧水が前記溶融金属との衝突面で亜臨界状態または超臨界状態になるように、前記溶融金属の温度及び/又は前記高圧水の温度を調整するアトマイズ金属粉末の製造方法。
  2.  前記高圧水と前記溶融金属との衝突時において、前記溶融金属の温度と前記高圧水の温度との平均温度を374℃以上とする請求項1に記載のアトマイズ金属粉末の製造方法。
  3.  前記溶融金属の単位時間当たりの落下量をQm(kg/min)、前記高圧水の単位時間当たりの噴射量をQaq(kg/min)としたときに、質量比(Qaq/Qm)が35以上である請求項1又は2に記載のアトマイズ金属粉末の製造方法。
  4.  前記アトマイズ金属粉末は、鉄系成分(Fe、Ni、Co)の合計含有量が原子分率で76.0at%以上であり、Cuの含有量が原子分率で0.1at%以上2.0at%以下である請求項1~3のいずれかに記載のアトマイズ金属粉末の製造方法。
  5.  前記アトマイズ金属粉末は、鉄系成分(Fe、Ni、Co)の合計含有量が原子分率で82.5at%を超え86.0at%未満であり、Si、P及びBから選ばれる少なくとも2種とCuを含有し、平均粒径が5μm以上である請求項1~3のいずれかに記載のアトマイズ金属粉末の製造方法。
  6. 前記亜臨界状態は、圧力が0.5~22MPa、かつ、水温が150~274℃であり、
     前記超臨界状態は、圧力が22MPa以上、かつ、水温が374℃以上である請求項1~5のいずれかに記載のアトマイズ金属粉末の製造方法。
PCT/JP2018/044727 2017-12-07 2018-12-05 アトマイズ金属粉末の製造方法 WO2019111951A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
EP18885010.1A EP3722028A4 (en) 2017-12-07 2018-12-05 ATOMIZED METAL POWDER PRODUCTION PROCESS
JP2019507867A JP6575723B1 (ja) 2017-12-07 2018-12-05 アトマイズ金属粉末の製造方法
CA3084963A CA3084963C (en) 2017-12-07 2018-12-05 Method for manufacturing atomized metal powder
US16/769,611 US20200316688A1 (en) 2017-12-07 2018-12-05 Method for manufacturing atomized metal powder
CN201880078464.0A CN111432964A (zh) 2017-12-07 2018-12-05 雾化金属粉末的制造方法
KR1020207016126A KR102455104B1 (ko) 2017-12-07 2018-12-05 아토마이즈 금속 분말의 제조 방법

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017234739 2017-12-07
JP2017-234739 2017-12-07

Publications (1)

Publication Number Publication Date
WO2019111951A1 true WO2019111951A1 (ja) 2019-06-13

Family

ID=66751558

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/044727 WO2019111951A1 (ja) 2017-12-07 2018-12-05 アトマイズ金属粉末の製造方法

Country Status (7)

Country Link
US (1) US20200316688A1 (ja)
EP (1) EP3722028A4 (ja)
JP (1) JP6575723B1 (ja)
KR (1) KR102455104B1 (ja)
CN (1) CN111432964A (ja)
CA (1) CA3084963C (ja)
WO (1) WO2019111951A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7296998B2 (ja) * 2021-02-03 2023-06-23 三菱重工業株式会社 金属粉末製造装置
CN114559047B (zh) * 2022-03-12 2023-12-19 郑州航空工业管理学院 一种制备金属基复合材料粉末的真空感应气雾化设备

Citations (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4815014B1 (ja) 1969-09-22 1973-05-11
JPS6024303A (ja) 1983-07-19 1985-02-07 Nippon Kinzoku Kk 非晶質合金粉末の製造方法
JPS6024302A (ja) 1983-07-19 1985-02-07 Nippon Kinzoku Kk 非晶質合金粉末の製造方法
JPS61204305A (ja) 1985-12-24 1986-09-10 Nippon Kinzoku Kk 非晶質合金粉末の製造方法
JPS6455308A (en) * 1987-08-26 1989-03-02 Hitachi Metals Ltd Production of amorphous alloy powder
JPH07107167B2 (ja) 1990-05-10 1995-11-15 株式会社クボタ 急冷凝固金属粉末の製造方法及び製造装置
JP2710938B2 (ja) 1987-12-11 1998-02-10 日立金属株式会社 高飽和磁束密度軟磁性合金
JP2002004015A (ja) * 2000-06-21 2002-01-09 Akihisa Inoue 鉄系アモルファス球状粒子
JP3461344B2 (ja) 2000-04-21 2003-10-27 財団法人電力中央研究所 アモルファス金属の製造方法、アモルファス金属微粒子の製造方法及び製造装置、並びにアモルファス金属微粒子
JP2004349364A (ja) 2003-05-21 2004-12-09 Seiko Epson Corp 永久磁石材料粉末及びその製造方法、並びに永久磁石
JP3932573B2 (ja) 1996-08-30 2007-06-20 セイコーエプソン株式会社 金属粉末の製造装置
JP2007291454A (ja) 2006-04-25 2007-11-08 Seiko Epson Corp 金属粉末製造装置、金属粉末および成形体
JP2008231533A (ja) 2007-03-22 2008-10-02 Hitachi Metals Ltd 軟磁性薄帯、磁心、磁性部品、および軟磁性薄帯の製造方法
JP2008231534A (ja) 2007-03-22 2008-10-02 Hitachi Metals Ltd 軟磁性薄帯、磁心、および磁性部品
JP4288687B2 (ja) 2006-12-04 2009-07-01 株式会社 東北テクノアーチ アモルファス合金組成物
JP2010150587A (ja) 2008-12-24 2010-07-08 Seiko Epson Corp 粉末冶金用金属粉末の製造方法および粉末冶金用金属粉末
WO2010084900A1 (ja) 2009-01-23 2010-07-29 アルプス電気株式会社 Fe基軟磁性合金及び前記Fe基軟磁性合金を用いた圧粉コア
JP4784990B2 (ja) 2006-08-07 2011-10-05 財団法人電力中央研究所 機能部材の製造方法
JP4793872B2 (ja) 2003-02-28 2011-10-12 財団法人電力中央研究所 微粒子の製造方法及び製造装置
WO2016157762A1 (ja) * 2015-03-30 2016-10-06 Jfeスチール株式会社 水アトマイズ金属粉末の製造方法

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4298553A (en) * 1969-09-04 1981-11-03 Metal Innovations, Inc. Method of producing low oxide metal powders
US4647305A (en) * 1983-07-19 1987-03-03 Nippon Kinzoku Co., Ltd. Process for manufacturing amorphous alloy powders
JPH07107167A (ja) 1993-10-04 1995-04-21 Matsushita Electric Ind Co Ltd ボタン電話装置
JP4562022B2 (ja) * 2004-04-22 2010-10-13 アルプス・グリーンデバイス株式会社 非晶質軟磁性合金粉末及びそれを用いた圧粉コアと電波吸収体
JP4775293B2 (ja) * 2007-03-26 2011-09-21 セイコーエプソン株式会社 軟磁性粉末、圧粉磁心および磁性素子
US9190195B2 (en) * 2010-06-09 2015-11-17 Sintokogio, Ltd. Fe-group-based soft magnetic powder
JP6101034B2 (ja) * 2012-10-05 2017-03-22 Necトーキン株式会社 圧粉磁芯の製造方法
JP6075117B2 (ja) * 2013-02-28 2017-02-08 セイコーエプソン株式会社 非晶質合金粉末、圧粉磁心、磁性素子および電子機器
JP6260086B2 (ja) * 2013-03-04 2018-01-17 新東工業株式会社 鉄基金属ガラス合金粉末
JP6308073B2 (ja) * 2013-10-31 2018-04-11 セイコーエプソン株式会社 粉末冶金用金属粉末、コンパウンド、造粒粉末および焼結体
SE542606C2 (en) * 2014-03-31 2020-06-16 Jfe Steel Corp Method for producing atomized metal powder
CN104084596B (zh) * 2014-07-15 2017-05-03 中国科学院宁波材料技术与工程研究所 非晶态粉末的制备方法及装置
JP5932907B2 (ja) * 2014-07-18 2016-06-08 国立大学法人東北大学 合金粉末及び磁性部品
JP6372442B2 (ja) * 2015-07-31 2018-08-15 Jfeスチール株式会社 水アトマイズ金属粉末の製造方法
CN109070205A (zh) * 2016-04-06 2018-12-21 新东工业株式会社 铁基金属玻璃合金粉末
JP6309149B1 (ja) * 2017-02-16 2018-04-11 株式会社トーキン 軟磁性粉末、圧粉磁芯、磁性部品及び圧粉磁芯の製造方法

Patent Citations (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4815014B1 (ja) 1969-09-22 1973-05-11
JPS6024303A (ja) 1983-07-19 1985-02-07 Nippon Kinzoku Kk 非晶質合金粉末の製造方法
JPS6024302A (ja) 1983-07-19 1985-02-07 Nippon Kinzoku Kk 非晶質合金粉末の製造方法
JPS61204305A (ja) 1985-12-24 1986-09-10 Nippon Kinzoku Kk 非晶質合金粉末の製造方法
JPS6455308A (en) * 1987-08-26 1989-03-02 Hitachi Metals Ltd Production of amorphous alloy powder
JP2710938B2 (ja) 1987-12-11 1998-02-10 日立金属株式会社 高飽和磁束密度軟磁性合金
JPH07107167B2 (ja) 1990-05-10 1995-11-15 株式会社クボタ 急冷凝固金属粉末の製造方法及び製造装置
JP3932573B2 (ja) 1996-08-30 2007-06-20 セイコーエプソン株式会社 金属粉末の製造装置
JP3461344B2 (ja) 2000-04-21 2003-10-27 財団法人電力中央研究所 アモルファス金属の製造方法、アモルファス金属微粒子の製造方法及び製造装置、並びにアモルファス金属微粒子
JP2002004015A (ja) * 2000-06-21 2002-01-09 Akihisa Inoue 鉄系アモルファス球状粒子
JP4793872B2 (ja) 2003-02-28 2011-10-12 財団法人電力中央研究所 微粒子の製造方法及び製造装置
JP2004349364A (ja) 2003-05-21 2004-12-09 Seiko Epson Corp 永久磁石材料粉末及びその製造方法、並びに永久磁石
JP2007291454A (ja) 2006-04-25 2007-11-08 Seiko Epson Corp 金属粉末製造装置、金属粉末および成形体
JP4784990B2 (ja) 2006-08-07 2011-10-05 財団法人電力中央研究所 機能部材の製造方法
JP4288687B2 (ja) 2006-12-04 2009-07-01 株式会社 東北テクノアーチ アモルファス合金組成物
JP4310480B2 (ja) 2006-12-04 2009-08-12 株式会社 東北テクノアーチ アモルファス合金組成物
JP2008231534A (ja) 2007-03-22 2008-10-02 Hitachi Metals Ltd 軟磁性薄帯、磁心、および磁性部品
JP2008231533A (ja) 2007-03-22 2008-10-02 Hitachi Metals Ltd 軟磁性薄帯、磁心、磁性部品、および軟磁性薄帯の製造方法
JP2010150587A (ja) 2008-12-24 2010-07-08 Seiko Epson Corp 粉末冶金用金属粉末の製造方法および粉末冶金用金属粉末
WO2010084900A1 (ja) 2009-01-23 2010-07-29 アルプス電気株式会社 Fe基軟磁性合金及び前記Fe基軟磁性合金を用いた圧粉コア
WO2016157762A1 (ja) * 2015-03-30 2016-10-06 Jfeスチール株式会社 水アトマイズ金属粉末の製造方法

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
HIDEO TORAYA, JOURNAL OF THE CRYSTALLOGRAPHIC SOCIETY OF JAPAN, vol. 30, no. 4, 1988, pages 253 - 258
MATERIA JAPAN, vol. 41, no. 6, pages 392
See also references of EP3722028A4
THE JOURNAL OF APPLIED PHYSICS, vol. 105, 2009, pages 013922

Also Published As

Publication number Publication date
CA3084963C (en) 2022-05-03
CA3084963A1 (en) 2019-06-13
CN111432964A (zh) 2020-07-17
US20200316688A1 (en) 2020-10-08
JP6575723B1 (ja) 2019-09-18
KR20200078630A (ko) 2020-07-01
EP3722028A4 (en) 2020-11-18
KR102455104B1 (ko) 2022-10-14
JPWO2019111951A1 (ja) 2019-12-12
EP3722028A1 (en) 2020-10-14

Similar Documents

Publication Publication Date Title
JP6299873B2 (ja) 水アトマイズ金属粉末の製造方法
JP6372440B2 (ja) 水アトマイズ金属粉末の製造方法
JP6372441B2 (ja) 水アトマイズ金属粉末の製造方法
WO2015151420A1 (ja) アトマイズ金属粉末の製造方法
JP5912349B2 (ja) 軟磁性合金粉末、ナノ結晶軟磁性合金粉末、その製造方法、および圧粉磁心
JP2020105593A (ja) アトマイズ金属粉末の製造方法
CN112105472B (zh) 磁芯用粉末、使用其的磁芯和线圈部件
JP6372442B2 (ja) 水アトマイズ金属粉末の製造方法
WO2020075815A1 (ja) 水アトマイズ金属粉末の製造方法
EP3785824A1 (en) Alloy powder, fe-based nanocrystalline alloy powder, and magnetic core
WO2019111951A1 (ja) アトマイズ金属粉末の製造方法
JP6406156B2 (ja) 水アトマイズ金属粉末の製造方法
JP2002249802A (ja) 非晶質軟磁性合金圧密体及びそれを用いた圧粉磁心
JP2018104787A (ja) アトマイズ金属粉末の製造方法及びアトマイズ金属粉末の製造装置
WO2020075814A1 (ja) 水アトマイズ金属粉末の製造方法
JP6372443B2 (ja) 水アトマイズ金属粉末の製造方法
JP6881549B2 (ja) 軟磁性鉄粉の製造方法
KR102308087B1 (ko) 고품위 비정질 연자성 코어 제조 방법
JP6967768B2 (ja) 溶融金属の出湯方法
KR20180056943A (ko) 비정질 연자성 금속 분말 소재

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2019507867

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18885010

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20207016126

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 3084963

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018885010

Country of ref document: EP

Effective date: 20200707