WO2016157762A1 - 水アトマイズ金属粉末の製造方法 - Google Patents

水アトマイズ金属粉末の製造方法 Download PDF

Info

Publication number
WO2016157762A1
WO2016157762A1 PCT/JP2016/001412 JP2016001412W WO2016157762A1 WO 2016157762 A1 WO2016157762 A1 WO 2016157762A1 JP 2016001412 W JP2016001412 W JP 2016001412W WO 2016157762 A1 WO2016157762 A1 WO 2016157762A1
Authority
WO
WIPO (PCT)
Prior art keywords
cooling
water
metal powder
temperature
molten metal
Prior art date
Application number
PCT/JP2016/001412
Other languages
English (en)
French (fr)
Inventor
誠 中世古
由紀子 尾▲崎▼
中村 尚道
Original Assignee
Jfeスチール株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jfeスチール株式会社 filed Critical Jfeスチール株式会社
Priority to US15/561,661 priority Critical patent/US10589356B2/en
Priority to SE1750987A priority patent/SE542692C2/en
Priority to CA2976743A priority patent/CA2976743C/en
Priority to CN201680019417.XA priority patent/CN107427926B/zh
Priority to KR1020177027657A priority patent/KR102020548B1/ko
Priority to JP2016544876A priority patent/JP6299873B2/ja
Publication of WO2016157762A1 publication Critical patent/WO2016157762A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/06Making metallic powder or suspensions thereof using physical processes starting from liquid material
    • B22F9/08Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying
    • B22F9/082Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying atomising using a fluid
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/002Making metallic powder or suspensions thereof amorphous or microcrystalline
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/002Making metallic powder or suspensions thereof amorphous or microcrystalline
    • B22F9/008Rapid solidification processing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/06Making metallic powder or suspensions thereof using physical processes starting from liquid material
    • B22F9/08Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/06Making metallic powder or suspensions thereof using physical processes starting from liquid material
    • B22F9/08Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying
    • B22F9/10Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying using centrifugal force
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C45/00Amorphous alloys
    • C22C45/02Amorphous alloys with iron as the major constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • H01F1/153Amorphous metallic alloys, e.g. glassy metals
    • H01F1/15308Amorphous metallic alloys, e.g. glassy metals based on Fe/Ni
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/06Making metallic powder or suspensions thereof using physical processes starting from liquid material
    • B22F9/08Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying
    • B22F9/082Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying atomising using a fluid
    • B22F2009/0824Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying atomising using a fluid with a specific atomising fluid
    • B22F2009/0828Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying atomising using a fluid with a specific atomising fluid with water
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/06Making metallic powder or suspensions thereof using physical processes starting from liquid material
    • B22F9/08Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying
    • B22F9/082Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying atomising using a fluid
    • B22F2009/0832Handling of atomising fluid, e.g. heating, cooling, cleaning, recirculating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/06Making metallic powder or suspensions thereof using physical processes starting from liquid material
    • B22F9/08Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying
    • B22F9/082Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying atomising using a fluid
    • B22F2009/086Cooling after atomisation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/06Making metallic powder or suspensions thereof using physical processes starting from liquid material
    • B22F9/08Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying
    • B22F9/082Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying atomising using a fluid
    • B22F2009/086Cooling after atomisation
    • B22F2009/0872Cooling after atomisation by water
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2999/00Aspects linked to processes or compositions used in powder metallurgy

Definitions

  • the present invention relates to a method for producing metal powder (hereinafter, also referred to as water atomized metal powder) using a water atomizer, and more particularly to a method for improving the cooling rate of metal powder after water atomization.
  • the atomizing method includes a water atomizing method in which a metal powder is obtained by injecting a high-pressure water jet into a molten metal flow, and a gas atomizing method in which an inert gas is injected in place of the water jet.
  • the flow of molten metal is divided by a water jet sprayed from a nozzle to form a powder metal (metal powder), and the metal powder is cooled by a water jet to atomize metal Obtaining powder.
  • the flow of the molten metal is divided by an inert gas sprayed from a nozzle to form a powdered metal. Thereafter, the powdered metal is usually dropped into a water tank provided under the atomizing device or a drum of flowing water, and the powdered metal (metal powder) is cooled to obtain an atomized metal powder. .
  • Patent Document 1 describes a method for producing a metal powder in which the cooling rate until solidification is 10 5 K / s or more when a metal powder is obtained by cooling and solidifying while scattering molten metal. .
  • the above-described cooling rate is obtained by bringing the scattered molten metal into contact with the coolant flow generated by swirling the coolant along the inner wall surface of the cylindrical body. It is supposed to be done.
  • the flow rate of the coolant flow generated by swirling the coolant is preferably 5 to 100 m / s.
  • Patent Document 2 describes a method for producing rapidly solidified metal powder.
  • the cooling liquid is supplied from the outer peripheral side of the upper end of the cylindrical portion of the cooling container whose inner peripheral surface is a cylindrical surface, and is allowed to flow down while swirling along the inner peripheral surface of the cylindrical portion, A layered swirl cooling liquid layer having a cavity at the center is formed by the centrifugal force generated by the swirl, and a molten metal is supplied to the inner peripheral surface of the swirl cooling liquid layer to rapidly cool and solidify.
  • the cooling efficiency is good and a high-quality rapidly solidified powder can be obtained.
  • Patent Document 3 discloses a gas jet nozzle for injecting a gas jet onto a flowing molten metal to divide it into droplets, and a cooling cylinder having a cooling liquid layer flowing down while turning to the inner peripheral surface.
  • An apparatus for producing metal powder by a gas atomizing method is provided. According to the technique described in Patent Document 3, the molten metal is divided into two stages by a gas jet nozzle and a swirling cooling liquid layer, and a finely cooled rapidly solidified metal powder is obtained.
  • Patent Document 4 molten metal is supplied into a liquid refrigerant, a vapor film that covers the molten metal is formed in the refrigerant, and the resulting vapor film is collapsed so that the molten metal and the refrigerant are in direct contact with each other.
  • a method for producing amorphous metal fine particles is described in which boiling due to natural nucleation occurs, and the molten metal is rapidly cooled and amorphized by using the pressure wave to form amorphous metal fine particles.
  • the collapse of the vapor film covering the molten metal can be achieved by bringing the temperature of the molten metal supplied to the refrigerant into direct contact with the refrigerant so that the interface temperature is lower than the film boiling lower limit temperature and higher than the spontaneous nucleation temperature or is irradiated with ultrasonic waves. Or that is possible.
  • Patent Document 5 when the molten material is supplied as a droplet or a jet flow into the liquid refrigerant, the temperature of the molten material is directly brought into contact with the liquid refrigerant. It is set so that it is in a molten state above the production temperature, and the relative speed difference between the speed of the molten material and the speed of the liquid refrigerant flow when entering the liquid refrigerant flow is 10 m / s or more.
  • Patent Document 6 a raw material obtained by adding a functional additive to a base material is melted and supplied into a liquid refrigerant so that it is refined by vapor explosion and cooled at the time of solidification by cooling.
  • the step of obtaining homogeneous functional fine particles that are polycrystalline or amorphous without segregation by controlling the amount of the particles, and the step of obtaining functional members by solidifying the functional fine particles and the fine particles of the base material as raw materials The manufacturing method of the functional member which comprises these is described.
  • JP 2010-150587 Japanese Patent Publication No.7-107167 Japanese Patent No. 3932573 Japanese Patent No. 3461344 Japanese Patent No.4793872 Japanese Patent No. 4784990
  • the vapor film covering the molten metal is collapsed by using a steam explosion that is chain-boiled to a nucleate-boiling state, thereby reducing the size of the metal particles. Furthermore, it intends to make it amorphous. It is an effective method to remove the vapor film of the film boiling by using the vapor explosion.
  • the boiling curve shown in FIG. 6 is used. As can be seen, at least initially, the surface temperature of the metal particles needs to be cooled to below the MHF (Minimum Heat Flux) point.
  • MHF Minimum Heat Flux
  • FIG. 6 is an explanatory diagram schematically showing the relationship between the cooling capacity and the surface temperature of the material to be cooled, which is called a boiling curve, when the refrigerant is liquid. From FIG. 6, when the surface temperature of the metal particles is high, the cooling to the MHF point temperature is the cooling in the film boiling region. Cooling in the film boiling region is weak cooling because a vapor film is interposed between the surface to be cooled and the cooling water. Therefore, when cooling is started from the MHF point or higher for the purpose of making the metal powder amorphous, there is a problem that the cooling rate for making amorphous becomes insufficient.
  • metal powder is manufactured using the gas atomization method.
  • the gas atomization method requires a large amount of inert gas for atomization, the manufacturing cost is low. There is a problem of inviting soaring.
  • the present invention solves the problems of the prior art and utilizes the water atomization method, which is an inexpensive method for producing metal powder, and can rapidly cool the metal powder, thereby producing an amorphous metal powder.
  • An object of the present invention is to provide a method for producing water atomized metal powder.
  • the molten metal is pulverized using a water atomized metal powder production apparatus as shown in FIG.
  • the molten metal 1 flows down from the container such as the tundish 3 as a molten metal flow 8 into the chamber 9 through the molten metal guide nozzle 4.
  • the inside of the chamber 9 has an inert gas atmosphere by opening the inert gas valve 11.
  • Sprayed water (water jet) 7 is sprayed to the molten metal stream 8 that has flowed down through the nozzle 6 disposed in the nozzle header 5, and the molten metal stream 8 is divided into metal powder 8a.
  • the divided molten metal powder 8a is solidified by subsequent cooling with a water jet (cooling water).
  • the temperature of the cooling water rises due to melting sensible heat and solidification latent heat. For this reason, the temperature (MHF point) at which the film boiling state changes to the transition boiling state decreases, and the cooling time in the film boiling state becomes longer. Therefore, the cooling rate is lowered, and the cooling rate necessary for bringing the metal powder into an amorphous state cannot be achieved.
  • the present inventors first studied diligently about various factors affecting the MHF point in cooling using jet water. As a result, it was found that the influence of the temperature and the injection pressure of the cooling water is large.
  • SUS304 steel plate (size: 20 mm thickness x 150 mm width x 150 mm length) was used as the material.
  • a thermocouple was inserted into the material from the back side, and the temperature at a position 1 mm (width center, length center) from the surface could be measured.
  • the material was placed in an oxygen-free atmosphere heating furnace and heated to 1200 ° C. or higher. The heated material was taken out, and immediately, cooling water was sprayed onto the material from an atomizing cooling nozzle while changing the amount of water and the injection pressure, and the temperature change at a position 1 mm from the surface was measured. From the temperature data obtained, the cooling capacity during cooling was estimated by calculation. A boiling curve was created from the obtained cooling capacity, and the point at which the cooling capacity suddenly increased was judged to be a point where film boiling changed to transition boiling, and the MHF point was determined.
  • Fig. 1 shows that when cooling water with a water temperature of 30 ° C used in the normal water atomization method is injected at an injection pressure of 1 MPa, the MHF point is about 700 ° C while cooling water is being injected.
  • cooling water having a water temperature of 10 ° C. or less is injected at an injection pressure of 5 MPa or more, it can be seen that the MHF point is 1000 ° C. or more in a state where the cooling water is being injected. That is, by lowering the cooling water temperature (water temperature) to 10 ° C or lower and increasing the injection pressure to 5 MPa or higher, the MHF point rises and the temperature at which film boiling changes to transition boiling is 1000 ° C or higher. It was found that the temperature was high.
  • the temperature of the metal powder after atomization of the molten metal has a surface temperature of about 1000 to 1300 ° C., and water jet cooling with a cooling capacity having an MHF point below the surface temperature of such metal powder.
  • the film boiling region having a low cooling capacity is cooled at the start of the cooling. From this, if cooling starts with water jet cooling where the MHF point is higher than the surface temperature of the metal powder including the molten state, cooling of the metal powder can be started at least from the transition boiling region, compared to the film boiling region. Cooling is promoted, and the cooling rate of the metal powder can be remarkably increased.
  • the temperature of the cooling water (water jet) injected into the molten metal stream rises, and it is possible to achieve the desired rapid cooling required to make the metal powder amorphous. Can not. Accordingly, the present inventors perform secondary cooling on the divided metal powder in addition to cooling (primary cooling) in which the molten metal flow is sprayed on the molten metal flow to divide and cool the molten metal flow. I thought of that.
  • the present inventors further added new cooling water to the metal powder containing the molten state divided by the primary cooling, preferably cooling water having an injection pressure of 5 MPa or more and a water temperature of 10 ° C. or less. It has been found that it is effective to apply cooling to supply the water. Furthermore, it is efficient that the secondary cooling is performed from a temperature range where the surface temperature of the metal powder including the molten state is lower than the MHF point of the secondary cooling and higher than the required cooling start temperature for amorphization. I found out.
  • the MHF point of the secondary cooling becomes high temperature by storing the metal powder containing the molten state that has been divided and cooled (primary cooling) in the container together with the cooling water, It was found that the cooling capacity was improved. The experimental results that became the basis of this knowledge will be described next.
  • SUS304 steel plate (size: 20 mm thickness x 150 mm width x 150 mm length) was used as the material.
  • a thermocouple was inserted into the material from the back side, and the temperature at a position 1 mm (width center, length center) from the surface could be measured. Then, the material was placed in an oxygen-free atmosphere heating furnace and heated to 1200 ° C. or higher. The heated material was taken out, and a frame (width 148 mm ⁇ length 148 mm ⁇ height 50 mm) was placed on the material so as to constitute a container in which cooling water was accumulated by the material and the frame.
  • cooling water was sprayed from the atomizing cooling nozzle onto the material while changing the water temperature and the spraying pressure, and the temperature change at a position of 1 mm from the surface was measured. From the temperature data obtained, the cooling capacity during cooling was estimated by calculation. A boiling curve was created from the obtained cooling capacity, and the point at which the cooling capacity suddenly increased was judged to be a point where film boiling changed to transition boiling, and the MHF point was determined.
  • FIG. 2 also shows the case of no frame in FIG.
  • Fig. 2 shows that the MHF point rises by placing a frame on the material (steel plate) and making it into a container shape (with a frame) compared to the case without a frame. From FIG. 2, it was found that this increase in MHF point becomes significant when the water temperature is 30 ° C. or lower. This is presumably because the cooling water was agitated in the container by making the container shape (with a frame), and the water vapor film was easily peeled off by the flow along the surface of the surface to be cooled, thereby improving the cooling ability. It is also considered that the shock wave generated when water collides with the water pool surface in the container at high speed facilitates the transition from film boiling to transition boiling, thereby improving the cooling ability.
  • the present inventors have further found that the molten metal or metal powder divided into a powder by the water atomization method is placed on the path along which it falls together with the cooling water. It has been found that if a collision plate is provided as a means for subsequent cooling, the cooling performance is similarly high.
  • the present invention has been completed based on such findings and further studies. That is, the gist of the present invention is as follows. (1) In a method for producing a water atomized metal powder in which water is injected into a molten metal stream, the molten metal stream is divided into a metal powder, and the metal powder is cooled, in addition to the cooling, the metal powder Secondary cooling with a cooling capacity having a minimum heat flow rate point (MHF point) higher than the surface temperature of the metal powder is performed, and the secondary cooling is performed such that the temperature of the metal powder after the cooling is the minimum heat in the secondary cooling.
  • MHF point minimum heat flow rate point
  • a method for producing water atomized metal powder which is carried out from a temperature range below the flow rate point (MHF point) and above the required cooling start temperature for amorphization.
  • the secondary cooling is cooling by a collision plate installed on the cooling water after cooling, the divided molten metal falling together with the cooling water, and the falling path of the metal powder.
  • Method for producing water atomized metal powder is performed by injecting water having a water temperature of 30 ° C. or lower or an injection pressure of 5 MPa or more to divide the molten metal flow to form a metal powder.
  • a method for producing water atomized metal powder wherein the powder is cooled.
  • the molten metal is made of an Fe—B alloy or an Fe—Si—B alloy
  • the water atomized metal powder is an amorphous metal powder. The manufacturing method of the water atomized metal powder which is a powder containing% or more.
  • the metal powder can be rapidly cooled at a rate of 10 5 K / s or more by a simple method.
  • This facilitates the production of amorphous water atomized metal powder, which is advantageous for the production of dust cores, and enables easy and inexpensive production of metal powder for dust cores with low iron loss.
  • water atomized powder is less likely to be spherical, there is an effect that it is more suitable for producing a dust core than gas atomized powder.
  • the critical cooling rate for amorphization is 1.0 ⁇ 10 6 K / s for a typical amorphous alloy, Fe—B alloy (Fe 83 B 17 ), and Fe—Si—B alloy (Fe 79 In Si 10 B 11 ), 1.8 ⁇ 10 5 K / s is exemplified, but according to the present invention, it is easy to ensure such a critical cooling rate for amorphization. There is also an effect.
  • FIG. 1 is a graph showing the influence of the coolant temperature and injection pressure on the MHF point.
  • FIG. 2 is a graph showing the influence of the “frame” on the relationship between the MHF point, the coolant temperature and the injection pressure.
  • FIG. 3 is an explanatory view schematically showing an example of a schematic configuration of a water atomized metal powder production apparatus suitable for carrying out the present invention.
  • FIG. 4 is an explanatory view schematically showing an example of a schematic configuration of a water atomized metal powder production apparatus suitable for carrying out the present invention.
  • FIG. 5 is an explanatory view schematically showing an example of a schematic configuration of a water atomized metal powder production apparatus suitable for carrying out the present invention.
  • FIG. 6 is an explanatory diagram schematically showing an outline of a boiling curve.
  • FIG. 7 is an explanatory view schematically showing a schematic configuration of a conventional water atomized metal powder production apparatus.
  • a metal material as a raw material is melted to form a molten metal.
  • a metal material used as a raw material any of pure metals, alloys, pig irons and the like conventionally used as powders can be applied.
  • iron-based alloys such as pure iron, low alloy steel, stainless steel, non-ferrous metals such as Ni and Cr, non-ferrous alloys, or amorphous alloys (amorphous alloys) such as Fe-B alloys, Fe-Si-B alloys Examples include alloys and Fe-Ni-B alloys.
  • the above alloy may contain an element other than the above element as an impurity.
  • the method for melting the metal material is not particularly limited, but any conventional melting means such as an electric furnace or a vacuum melting furnace can be applied.
  • the melted molten metal is transferred from a melting furnace to a container such as a tundish, and is made into water atomized metal powder in a water atomized metal powder production apparatus.
  • a water atomized metal powder production apparatus An example of a preferred water atomized metal powder production apparatus used in the present invention is shown in FIG.
  • FIG. 3A shows the configuration of the entire apparatus.
  • FIG. 3B shows details of the water atomized metal powder production apparatus 14.
  • the molten metal 1 flows down from the container such as the tundish 3 as a molten metal flow 8 into the chamber 9 through the molten metal guide nozzle 4.
  • the inside of the chamber 9 has an inert gas atmosphere by opening the inert gas valve 11.
  • the inert gas include nitrogen gas and argon gas.
  • Sprayed water (water jet) 7 is sprayed on the molten metal stream 8 that has flowed down through the nozzle 6 disposed in the nozzle header 5, the molten metal stream 8 is divided, and further cooled to obtain a metal powder 8 a To do.
  • the position A where the molten metal flow 8 and the jet water (water jet) 7 are in contact with each other is an appropriate distance from the molten metal guide nozzle 4 so that the molten metal flow 8 is irradiated with heat radiation and inert gas. This is preferable from the viewpoint of cooling to the vicinity of the melting point by the cooling action, and from the viewpoint of preventing the jump water of the spray water 7 from contacting the molten metal guide nozzle 4.
  • the injection water (water jet) 7 used is an injection water having an injection pressure that can divide the molten metal flow 8
  • the injection pressure and water temperature are Although not limited, it is preferable that the water temperature is 30 ° C. or lower, or the injection pressure is 5 MPa or higher. In particular, when the water temperature is as high as 20 ° C. or higher, the cooling rate of the metal powder becomes slow, and even if secondary cooling is performed, it becomes difficult to secure an amorphous metal powder.
  • the water temperature is preferably 10 ° C. or lower, more preferably 5 ° C. or lower.
  • the injection water 7 is injected into the molten metal flow 8 at the position A as described above, and the molten metal flow is divided, and the divided metal powder (in the molten state is also obtained).
  • (Including) 8a is first cooled (primary cooling). Further, secondary cooling is performed on the metal powder (including a molten state) 8a at a position B separated from the position A by an appropriate distance.
  • the cooling jet water 21 is jetted.
  • the water temperature and the injection pressure of the cooling water 21 used in the secondary cooling are not particularly limited, but in order to cool to the transition boiling state or further to the nucleate boiling state, the MHF point should be higher than 1000 ° C.
  • the cooling water having a water temperature of 10 ° C. or lower is preferably a cooling water having an injection pressure of 5 MPa or higher.
  • the spray angle of the cooling water 21 is preferably 5 to 45 ° so that it can be uniformly sprayed onto the metal powder falling together with the primary cooling water, and the nozzle 26 for performing the secondary cooling is 2 to It is preferable to arrange about eight and cool the falling metal powder from almost the entire circumference. Moreover, you may use the water of the system
  • the MHF point becomes low temperature, and it becomes difficult to secure a desired cooling rate.
  • the injection pressure of the cooling water 21 in the secondary cooling is less than 5 MPa, even if the water temperature of the cooling water is 10 ° C. or lower, the cooling cannot be performed so that the MHF point becomes a desired temperature. It becomes difficult to secure speed. For this reason, it is preferable to limit the injection pressure of the cooling water 21 to 5 MPa or more. Note that even if the injection pressure is increased beyond 10 MPa, the increase in the MHF point is saturated, so the injection pressure is preferably 10 MPa or less.
  • the “desired cooling rate” is the lowest cooling rate at which amorphization can be achieved, and is an average of 10 5 to 10 6 K / in the required cooling temperature range for preventing crystallization.
  • the cooling rate is about s.
  • the “necessary cooling temperature range for preventing crystallization” here refers to the range from the necessary cooling start temperature for amorphization to the first crystallization temperature (for example, 400 to 600 ° C.) as the cooling end temperature.
  • the required cooling start temperature for amorphization varies depending on the composition of the molten metal, for example, 900 to 1100 ° C. can be exemplified.
  • the secondary cooling is preferably performed from a temperature range in which the temperature of the metal powder after cooling (primary cooling) is equal to or lower than the MHF point of the secondary cooling and higher than the necessary cooling start temperature for amorphization.
  • primary cooling the temperature of the metal powder after cooling exceeds the MHF point of secondary cooling
  • the secondary cooling cannot be made into a transition boiling state or further into a nucleate boiling state, and it becomes difficult to secure a desired cooling rate.
  • the temperature of the metal powder after cooling is lower than the required cooling start temperature for amorphization, the temperature of the metal powder becomes too low, making it difficult to secure a desired cooling rate, and crystallization is likely to proceed. Become.
  • the cooling water used for the jet water 7 is a heat exchanger such as a chiller 16 that cools the cooling water to a low temperature in advance in a cooling water tank 15 (heat insulating structure) provided outside the water atomized metal powder production apparatus 14. It is preferable to store it as cooling water with a low water temperature. Since a general cooling water production machine freezes the heat exchanger and it is difficult to generate cooling water of less than 3-4 ° C, a mechanism for replenishing ice into the tank is provided by the ice production machine. Also good. Furthermore, it goes without saying that the cooling water tank 15 is provided with a high-pressure pump 17 for boosting and sending the cooling water used for the jet water 7 and a pipe 18 for supplying the cooling water from the high-pressure pump to the nozzle header 5. Absent.
  • the cooling water used for the cooling water 21 is preliminarily stored in a cooling water tank 15 (heat insulating structure) provided outside the water atomized metal powder production apparatus 14 in the same manner as the cooling water used for the water 7. It is preferable to use stored cooling water.
  • the cooling water tank 15 has a system different from the cooling water used for the jet water 7, and the high pressure pump 27 for boosting and feeding the cooling water used for the cooling jet water 21, and the high pressure pump 27 to the secondary cooling nozzle 26.
  • a pipe 28 for supplying cooling water is provided.
  • a surge tank, a switching valve, etc. may be provided in the middle of the piping to facilitate easy injection of high-pressure water.
  • the secondary cooling is preferably a cooling that can cool the divided metal powder 8a to a transition boiling state or even a nucleate boiling state. Therefore, the secondary cooling start position (position B: the position of the secondary cooling nozzle) is such that the surface temperature of the water-atomized metal powder 8a is lower than the MHF point of the secondary cooling and prevents crystallization. It is preferable to set the position to be equal to or higher than the required cooling start temperature.
  • the surface temperature of the metal powder 8a can be adjusted by changing the distance between the atomized position A and the secondary cooling start position (position B). Therefore, it is preferable that the secondary cooling nozzle 26 is disposed so as to be movable in the vertical direction.
  • the secondary cooling is cooling by the container 41 disposed on the downstream side of the position A, instead of the cooling by the cooling jet water described above.
  • FIG. 4A shows the entire apparatus
  • FIG. 4B shows the details of the water atomized metal powder production apparatus 14.
  • the container 41 is a cooling path (atomized cooling water) used for the division of the molten metal flow 8 and the subsequent cooling of the metal powder, the divided molten metal, and the falling path of the metal powder in the middle of cooling at the position A. It is arranged at the position B on the downstream side.
  • the position B is a position where the surface temperature of the metal powder 8a is equal to or lower than the MHF point and equal to or higher than a necessary cooling start temperature for preventing crystallization, and is a secondary cooling start position.
  • the water vapor film on the surface of the metal powder is easily peeled off due to the flow along the surface of the metal powder simultaneously stirred.
  • a shock wave generated when water collides with a water pool surface formed in the container at a high speed facilitates a transition from film boiling to transition boiling.
  • the container 41 to be arranged can accommodate cooling water (atomized cooling water, divided molten metal, and / or metal powder) used for the division of the molten metal flow 8 and the subsequent cooling of the metal powder. If the container is too large, shock waves are less likely to be generated. If the amount of atomized cooling water is about 200 L / min, the inner diameter is 50 to 150 mm and the depth is 30 to A container of about 100 mm is sufficient, but the container is preferably made of metal in terms of strength, but may be made of ceramic.
  • cooling water atomized cooling water, divided molten metal, and / or metal powder
  • the secondary cooling may be cooling by disposing the collision plate 42 instead of cooling by disposing the container 41 described above.
  • FIG. 5A shows a case where the collision plate 42 has an inverted conical shape.
  • FIG. 5B shows a case of a disc type, and
  • FIG. 5C shows a case of a conical type.
  • the collision plate 42 is disposed at the secondary cooling start position (position B) on the downstream side of the position A, which is the falling path of the atomized cooling water, the divided molten metal, and the metal powder, similarly to the container 41.
  • position B the secondary cooling start position
  • the metal powder easily moves from the film boiling state to the transition boiling state due to a shock wave generated when the atomized cooling water and the metal powder collide with the collision plate 42.
  • the cooling can be performed with high cooling ability.
  • the collision plate 42 only needs to be able to block the falling path of the atomized cooling water, the molten metal, and the metal powder being cooled, and the shape may be a disk shape, a cone shape, an inverted cone shape, or the like, but is particularly limited. There is no need. Since it is effective for generating shock waves to have a shape that can form a vertical plane with respect to the falling path, it is preferable to avoid the inverted cone type (FIG. 5C).
  • Example 1 Metal powder was manufactured using the water atomized metal powder manufacturing apparatus shown in FIG.
  • Fe-B based alloy (Fe 83 B 17 ) composition of 83% Fe-17% B in at%, and Fe-Si-B based alloy of 79% Fe-10% Si-11% B in at% (Fe 79 Si 10 B 11 )
  • Ingredients are mixed (partially containing impurities) so that the composition becomes Fe 79 Si 10 B 11 , melted in melting furnace 2 at about 1550 ° C., and about 50 kgf of molten metal is added. Obtained.
  • the obtained molten metal 1 was gradually cooled to 1350 ° C. in the melting furnace 2 and then poured into the tundish 3. Note that the inside of the chamber 9 was previously opened with an inert gas valve 11 to create a nitrogen gas atmosphere.
  • the high-pressure pump 17 Before injecting molten metal into the tundish 3, the high-pressure pump 17 is operated to supply cooling water from the cooling water tank 15 (capacity: 10 m 3 ) to the nozzle header 5, and from the water injection nozzle 6 to the injection water. (Fluid) 7 was left in a jetted state.
  • the secondary cooling water high-pressure pump 27 is operated, the secondary cooling water valve 22 is opened, and cooling water is supplied from the cooling water tank 15 (capacity: 10 m 3 ) to the secondary cooling nozzle 26, The cooling water 21 was kept in the jetting state.
  • the position A where the molten metal flow 8 contacts the spray water 7 was set at a position 80 mm from the molten metal guide nozzle 4.
  • the secondary cooling nozzle 26 was installed at the position B.
  • the position B was 100 to 800 mm from the position A described above.
  • the jet water 7 has a jet pressure of 1 MPa or 5 MPa, a water temperature of 30 ° C. ( ⁇ 2 ° C.) or 8 ° C. ( ⁇ 2 ° C.), and the jet pressure of the cooling jet water 21 used for the secondary cooling is 5 MPa.
  • the water temperature was 20 ° C. ( ⁇ 2 ° C.) or 8 ° C. ( ⁇ 2 ° C.).
  • the water temperature was adjusted with a chiller 16 provided outside the cooling water tank 15.
  • the molten metal 1 injected into the tundish 3 flows down into the chamber 9 through the molten metal guide nozzle 4 as a molten metal flow 8, and the jet water (fluid) whose water temperature and jet pressure are changed as shown in Table 1 ) 7, divided into metal powder, cooled while mixed with cooling water, and further cooled by cooling water 21 injected from the secondary cooling nozzle 26, and recovered from the recovery port 13. It recovered as a metal powder.
  • the example which did not perform secondary cooling was made into the comparative example.
  • the surface temperature of the metal powder before secondary cooling was estimated from the experimental result of the primary cooling performed separately.
  • the MHF point for secondary cooling was estimated from a separate experiment and described.
  • the halo peak from the amorphous and the diffraction peak from the crystal are measured by X-ray diffraction method, and the crystal is calculated from the integrated intensity ratio of the diffraction X-rays of both.
  • the crystallization rate was determined, and the amorphous ratio (amorphous degree:%) was calculated from (1-crystallization rate). A case where the degree of amorphousness (amorphization ratio) was 90% or more was evaluated as “ ⁇ ”, and other cases were evaluated as “ ⁇ ”.
  • Each of the inventive examples is a water atomized metal powder having an amorphous degree of 90% or more. Therefore, in the present invention, a cooling rate of 1.8 ⁇ 10 5 K / s to 1.0 ⁇ 10 6 K / s or more which is a critical cooling rate for amorphization is obtained.
  • the comparative examples (powder No. 1 and No. 2) in which secondary cooling was not performed had an amorphous degree of less than 90%.
  • Powder No. 3 and No. 6 have a higher water temperature of secondary cooling cooling jet water, and powder No. 7 has a lower jet pressure of the jet water for dividing the molten metal flow.
  • powder No. 8 and No. 9 have a cooling start position of secondary cooling close to position A, so that the cooling start temperature of secondary cooling is near the MHF point, and the amorphous degree is 90% or more. , Has become lower.
  • the cooling start position of secondary cooling is far from position A, so the time to start cooling of secondary cooling becomes longer, and the powder surface temperature becomes too low, resulting in slower cooling.
  • the degree of amorphousness is 90% or more, but it is low.
  • the secondary cooling start position position B is too far from the position A, and the temperature of the metal powder is less than the required cooling start temperature, and it is considered that crystallization has progressed.
  • Example 2 Metal powder was manufactured using the water atomized metal powder manufacturing apparatus shown in FIG.
  • Fe-B based alloy (Fe 83 B 17 ) composition of 83% Fe-17% B in at%, and Fe-Si-B based alloy of 79% Fe-10% Si-11% B in at% (Fe 79 Si 10 B 11 )
  • Ingredients are mixed (partially containing impurities) so that the composition becomes Fe 79 Si 10 B 11 , melted in melting furnace 2 at about 1550 ° C., and about 50 kgf of molten metal is added. Obtained.
  • the obtained molten metal 1 was gradually cooled to 1350 ° C. in the melting furnace 2 and then poured into the tundish 3. Note that the inside of the chamber 9 was previously opened with an inert gas valve 11 to create a nitrogen gas atmosphere.
  • the high-pressure pump 17 is operated to supply cooling water from the cooling water tank 15 (capacity: 10 m 3 ) to the nozzle header 5, and from the water injection nozzle 6 to the injection water. (Fluid) 7 was left in a jetted state.
  • the metal container 41 was arrange
  • the size of the metal container 41 was 100 mm outer diameter ⁇ 90 mm inner diameter ⁇ 40 mm depth.
  • the position A where the molten metal flow 8 contacts the spray water 7 was set at a position 80 mm from the molten metal guide nozzle 4. Further, the secondary cooling container 41 was installed at the position B. The position B was each position 100 to 800 mm from the position A described above (the position of the container bottom).
  • the jet water 7 is jet pressure: 3 MPa or 5 MPa, water temperature: 40 ° C. ( ⁇ 2 ° C.) or 20 ° C. ( ⁇ 2 ° C.), and the water temperature is a chiller 16 provided outside the cooling water tank 15. It was adjusted.
  • the molten metal 1 injected into the tundish 3 flows down into the chamber 9 through the molten metal guide nozzle 4 as a molten metal flow 8, and as shown in Table 2 It was made to contact and parted into metal powder.
  • the divided metal powder was mixed with the cooling water, dropped while being cooled, accommodated in the container 41, stirred with the cooling water in the container 41, cooled, and recovered from the recovery port 13.
  • the metal powder accommodated in the container is also exposed to a shock wave generated when the falling cooling water collides with the water pool surface in the container at high speed.
  • the example which did not perform secondary cooling was made into the comparative example. Further, the surface temperature of the metal powder before secondary cooling and the MHF point of secondary cooling were estimated in the same manner as in (Example 1) and are also shown in the table.
  • the X-ray diffraction method was used to measure the halo peak from the amorphous and the diffraction peak from the crystal, and from the integrated intensity ratio of both diffracted X-rays, In the same manner as in Example 1, the crystallization ratio was obtained, and the amorphous ratio (amorphous degree:%) was calculated from (1-crystallization ratio). A case where the degree of amorphousness was 90% or more was evaluated as “ ⁇ ”, and a case where it was less than 90% was evaluated as “ ⁇ ”.
  • All examples of the present invention are water atomized metal powder having an amorphous degree of 90% or more.
  • the comparative examples (powder No. 2-1, No. 2-7) in which secondary cooling was not performed had an amorphous degree of less than 90%.
  • the examples outside the preferred range of the present invention have a low degree of amorphousness.
  • the water temperature of the spray water (primary cooling water) for dividing the molten metal flow is outside the preferred range, the secondary cooling start temperature becomes high, and the film boiling region Cooling is longer, and amorphousness is lower than 90%.
  • powder No.2-4, No.2-10 because the installation position of the container 41 is close to the position A that is the position where the molten metal flow is divided, the cooling start temperature of the secondary cooling is increased, Amorphous degree is 90% or more, but low.
  • powder Nos. 2-5 and 2-11 have a long time until the cooling of the secondary cooling starts because the installation position of the container 41 is away from the position A, which is the position where the molten metal flow is divided. Therefore, the surface temperature of the metal powder is lowered and the cooling is slowed down, and the amorphous degree is 90% or more, but it is low.
  • Powder No.2-6 and No.2-12 are amorphous because the secondary cooling start position (position B) is too far from the position A, the metal powder temperature is lower than the required cooling start temperature, and crystallization proceeds. The degree is less than 90%. (Example 3) Metal powder was manufactured using the water atomized metal powder manufacturing apparatus shown in FIG.
  • Fe-B based alloy (Fe 83 B 17 ) composition of 83% Fe-17% B in at%, and Fe-Si-B based alloy of 79% Fe-10% Si-11% B in at% (Fe 79 Si 10 B 11 )
  • Ingredients are mixed (partially containing impurities) so that the composition becomes Fe 79 Si 10 B 11 , melted in melting furnace 2 at about 1550 ° C., and about 50 kgf of molten metal is added. Obtained.
  • the obtained molten metal 1 was gradually cooled to 1350 ° C. in the melting furnace 2 and then poured into the tundish 3. Note that the inside of the chamber 9 was previously opened with an inert gas valve 11 to create a nitrogen gas atmosphere.
  • the high pressure pump is operated to supply cooling water from the cooling water tank (capacity: 10 m 3 ) to the nozzle header 5 and from the water injection nozzle 6 to the injection water (fluid) ) 7 was left in the injected state.
  • a metal collision plate 42 is disposed on the cooling water and metal powder falling path downstream of position A so that the falling water atomized cooling water collides with the divided metal powder. Secondary cooling was performed. After the secondary cooling, the metal powder was recovered from the recovery port 13.
  • the size of the metal collision plate 42 is a surface perpendicular to the falling direction of the metal powder and occupies an area of 100 mm in diameter. This size is such that it can collide with almost the entire amount of falling metal powder after water atomization.
  • the shape of the collision plate 42 was one of an inverted conical shape (a), a disc shape (b), and a conical shape (c) as shown in FIG. Needless to say, all of them were formed so as to occupy the above-mentioned area on the surface perpendicular to the falling direction of the metal powder.
  • the position A where the molten metal flow 8 contacts the spray water 7 was set at a position 80 mm from the molten metal guide nozzle 4.
  • the collision plate 42 for secondary cooling was installed at the secondary cooling start position (position B).
  • the position B was 100 to 800 mm from the position A described above.
  • the jet water 7 is jet pressure: 3MPa or 5MPa, water temperature: 40 ° C ( ⁇ 2 ° C) or 20 ° C ( ⁇ 2 ° C), and the water temperature is adjusted with a chiller provided outside the cooling water tank. .
  • the example which does not install the collision board 42 was made into the comparative example. Further, the surface temperature of the metal powder before secondary cooling and the MHF point of secondary cooling were estimated in the same manner as in Example 1 and are also shown in the table.
  • the X-ray diffraction method was used to measure the halo peak from the amorphous and the diffraction peak from the crystal, and from the integrated intensity ratio of both diffracted X-rays, In the same manner as in Example 1, the amorphous ratio (amorphous degree:%) was calculated. A case where the degree of amorphousness was 90% or more was evaluated as “ ⁇ ”, and a case where it was less than 90% was evaluated as “ ⁇ ”.
  • All examples of the present invention are water atomized metal powder having an amorphous degree of 90% or more.
  • the comparative examples (powder No. 3-1, No. 3-9) in which the secondary cooling was not performed had an amorphous degree of less than 90%.
  • the examples outside the preferred range of the present invention have a low degree of amorphousness.
  • the water temperature of the jet water (primary cooling water) for dividing the molten metal flow is outside the preferred range, the secondary cooling start temperature becomes higher than the MHF point, Cooling in the film boiling region has become longer, and the amorphousness is less than 90%.
  • powder Nos. 3-5 and 3-13 have a conical plate shape (Fig. 5 (c)) that deviates from the preferred range, so that the effect of secondary cooling is small and the degree of amorphousness is low. It is low. However, the degree of amorphousness is higher than when no secondary cooling is performed.
  • powder No. 3-6 and No. 3-14 are close to the position A where the impingement plate 42 is placed, which is the position where the molten metal flow is divided, so that the cooling start temperature of the secondary cooling becomes high and amorphous.
  • the degree is over 90%, but it is low.
  • powder No. 3-7 and No. 3-15 have a time until the cooling start of the secondary cooling since the installation position of the collision plate 42 is away from the position A which is the position where the molten metal flow is divided. It becomes longer, the surface temperature of the metal powder becomes lower, the cooling becomes slower, and the amorphous degree is 90% or more, but it is lower. Powder No. 3-8 and No. 3-16 have a cooling start temperature lower than the required cooling start temperature and an amorphous degree of less than 90%.

Abstract

 溶融金属流に、好ましくは水温:30℃以下の水を噴射し、該溶融金属流を分断し冷却して金属粉末とし、該金属粉末に二次冷却を行い、水アトマイズ金属粉末とする。二次冷却に噴射水を用いる場合、水温は10℃以下が好ましい。溶融金属流を分断した冷却水とともに金属粉末を収容し冷却可能な容器、又は溶融金属流を分断した冷却水とともに金属粉末を衝突させ冷却可能な衝突板を用いた二次冷却の場合には、水温は30℃以下が好ましい。二次冷却を行うことで、膜沸騰状態の冷却から遷移沸騰状態又は核沸騰状態の冷却が実現でき、金属粉末をアモルファス化できるまでの急速冷却を簡便に行うことができる。なお、分断された金属粉の二次冷却に際しては、金属粉の温度がMHF点以下で非晶質化のための必要冷却開始温度以上となった以降に行う。

Description

水アトマイズ金属粉末の製造方法
 本発明は、水アトマイズ装置を用いた金属粉末(以下、水アトマイズ金属粉末ともいう)の製造方法に係り、とくに水アトマイズ後の金属粉末の冷却速度向上方法に関する。
 従来から、金属粉末を製造する方法として、アトマイズ法がある。このアトマイズ法には、溶融金属の流れに高圧の水ジェットを噴射して金属粉末を得る水アトマイズ法、水ジェットに代えて不活性ガスを噴射するガスアトマイズ法がある。
 水アトマイズ法では、ノズルより噴射した水ジェットで溶融金属の流れを分断し、粉末状の金属(金属粉末)とするとともに、水ジェットで粉末状の金属(金属粉末)の冷却も行ってアトマイズ金属粉末を得ている。一方、ガスアトマイズ法では、ノズルより噴射した不活性ガスにより溶融金属の流れを分断し、粉末状の金属とする。その後、通常、粉末状の金属を、アトマイズ装置の下に備えられた水槽、あるいは流水のドラム中に落下させて、粉末状の金属(金属粉末)の冷却を行ってアトマイズ金属粉末を得ている。
 近年、省エネルギーの観点から、例えば電気自動車やハイブリッド車に使用されるモーターコアの低鉄損化が要望されている。従来、モーターコアは、電磁鋼板を積層させて製作されてきたが、最近では、形状設計の自由度が高い金属粉末(電磁鉄粉)を用いて作製したモーターコアが注目されている。このようなモーターコアを低鉄損化するためには、使用する金属粉末の低鉄損化が必要となる。低鉄損の金属粉末とするには、金属粉末を非晶質化(アモルファス化)することが有効であると考えられる。しかし、アトマイズ法で、非晶質化した金属粉末を得るためには、溶融状態を含む高温状態にある金属粉末を超急冷することにより、結晶化を防ぐ必要がある。
 そのため、金属粉末を急冷する方法がいくつか提案されている。
 例えば、特許文献1には、溶融金属を飛散させつつ冷却・固化させ金属粉末を得る際に、固化するまでの冷却速度が10K/s以上とする金属粉末の製造方法が記載されている。特許文献1に記載された技術では、飛散させた溶融金属を、筒状体の内壁面に沿って冷却液を旋回させることにより生じた冷却液流に接触させることにより、上記した冷却速度が得られるとしている。そして、冷却液を旋回させることにより生じた冷却液流の流速は5~100m/sとすることが好ましいとしている。
 また、特許文献2には、急冷凝固金属粉末の製造方法が記載されている。特許文献2に記載された技術では、内周面が円筒面である冷却容器の円筒部上端部外周側より、冷却液を周方向より供給し円筒部内周面に沿って旋回させながら流下させ、その旋回による遠心力で、中心部に空洞を有する層状の旋回冷却液層を形成し、その旋回冷却液層の内周面に金属溶湯を供給して急冷凝固させる。これにより、冷却効率がよく、高品質の急冷凝固粉末が得られるとしている。
 また、特許文献3には、流下する溶融金属にガスジェットを噴射して溶滴に分断するためのガスジェットノズルと、内周面に旋回しながら流下する冷却液層を有する冷却用筒体とを備える、ガスアトマイズ法による金属粉末の製造装置が記載されている。特許文献3に記載された技術では、溶融金属が、ガスジェットノズルと旋回する冷却液層とにより、二段階に分断され、微細化された急冷凝固金属粉末が得られるとしている。
 また、特許文献4には、溶融金属を液状の冷媒中に供給し、冷媒中で溶融金属を覆う蒸気膜を形成し、できた蒸気膜を崩壊させて溶融金属と冷媒とを直接接触させて自然核生成による沸騰を起こさせ、その圧力波を利用し溶融金属を引きちぎりながら急速に冷却しアモルファス化して、アモルファス金属微粒子とする、アモルファス金属微粒子の製造方法が記載されている。溶融金属を覆う蒸気膜の崩壊は、冷媒へ供給する溶融金属の温度を冷媒に直接接触した場合に界面温度が膜沸騰下限温度以下で自発核生成温度以上の温度とするか、超音波照射するか、により可能であるとしている。
 また、特許文献5には、溶融した材料を、液体冷媒の中に液滴又はジェット流として供給する際に、溶融した材料の温度を、液体冷媒と直接接触する際に、液体冷媒の自発核生成温度以上で溶融状態であるように設定し、さらに、液体冷媒の流れに入ったときの溶融した材料の速度と液体冷媒の流れの速度との相対速度差を10m/s以上となるようにして、溶融した材料の周囲に形成された蒸気膜を強制的に崩壊させて自発核生成による沸騰を生じさせ、微粒化すると共に冷却固化する微粒子の製造方法が記載されている。これにより、従来は困難であった材料でも、微粒子化、非晶質化することができるとしている。
 また、特許文献6には、母材となる材料に機能性添加材を添加した原料を溶融し、液体冷媒の中に供給することにより、蒸気爆発により微細化するとともに冷却固化する際に冷却速度を制御することにより偏析のない多結晶又は非晶質である均質な機能性微粒子を得る工程と、この機能性微粒子と前記母材の微粒子とを原料として用いて固化して機能部材を得る工程とを具備する機能部材の製造方法が記載されている。
特開2010-150587号公報 特公平7-107167号公報 特許3932573号公報 特許第3461344号公報 特許第4793872号公報 特許第4784990号公報
 通常、高温の溶融金属を急冷するために、溶融金属に冷却水を接触させても、溶融金属表面が冷却水と完全に接触することは難しい。というのは、冷却水が、高温の溶融金属表面(被冷却面)に触れた瞬間に、気化し、被冷却面と冷却水との間に蒸気膜を形成し、いわゆる膜沸騰状態となる。そのため、蒸気膜の存在により、冷却の促進が妨げられる。
 特許文献1~3に記載された技術は、冷却液を旋回させて形成した冷却液層中に溶融金属を供給して、金属粒子の周りに形成された蒸気膜を剥がそうとするものである。しかし、分断された金属粒子の温度が高いと冷却液層中では膜沸騰状態になりやすく、しかも冷却液層中に供給された金属粒子は冷却液層とともに移動する。このため、冷却液層との相対速度差が少なく、膜沸騰状態を回避することは難しいという問題があった。
 また、特許文献4~6に記載された技術では、連鎖的に膜沸騰状態から核沸騰状態になる蒸気爆発を利用して、溶融金属を覆う蒸気膜を崩壊させて、金属粒子の微細化、さらには非晶質化を図るとしている。蒸気爆発を利用して膜沸騰の蒸気膜を取り去ることは有効な方法であるが、膜沸騰状態から連鎖的に核沸騰状態にして蒸気爆発を生じさせるためには、図6に示す沸騰曲線からわかるように、少なくとも最初に、金属粒子の表面温度をMHF(極小熱流速;Minimum Heat Flux)点以下まで冷却する必要がある。図6は、沸騰曲線と呼ばれ、冷媒を液体とした場合の、冷却能力と被冷却材の表面温度との関係を模式的に示した説明図である。図6から、金属粒子の表面温度が高い場合には、MHF点温度までの冷却は、膜沸騰領域での冷却となる。膜沸騰領域での冷却では被冷却面と冷却水の間に蒸気膜が介在するため、弱冷却となる。そのため、金属粉末の非晶質化を目的としてMHF点以上から冷却を始めると、非晶質化のための冷却速度が不足するという問題があった。
 また、特許文献1~6に記載された技術では、ガスアトマイズ法を利用して金属粉末を製造しているが、ガスアトマイズ法では、アトマイズのために大量の不活性ガスを必要とするため、製造コストの高騰を招くという問題がある。
 本発明は、かかる従来技術の問題を解決し、安価な金属粉末の製造方法である水アトマイズ法を利用し、金属粉末の急速冷却が可能で、非晶質状態の金属粉末とすることができる、水アトマイズ金属粉末の製造方法を提供することを目的とする。
 通常の水アトマイズ法では、例えば、図7に示すような水アトマイズ金属粉末製造装置を利用して溶融金属の粉末化を行っている。溶融金属1は、タンディッシュ3等の容器から、溶湯ガイドノズル4を介して、チャンバー9内に、溶融金属流8として流下される。なお、チャンバー9内は、不活性ガスバルブ11を開けて不活性ガス雰囲気としておくことはいうまでもない。流下された溶融金属流8に、ノズルヘッダー5に配設されたノズル6を介し噴射水(水ジェット)7を噴射し、該溶融金属流8を分断して金属粉末8aとする。分断された溶融状態の金属粉末8aは、その後の水ジェット(冷却水)による冷却により、凝固する。その際、溶解顕熱と凝固潜熱により冷却水(水ジェット)の温度が上昇する。そのため、膜沸騰状態から遷移沸騰状態に変わる温度(MHF点)が低下し、膜沸騰状態で冷却される時間が長くなる。よって、冷却速度が低下し、金属粉末を非晶質状態とするために必要な冷却速度を達成することができなくなる。
 そこで、本発明者らは、上記した目的を達成するため、まず、噴射水を用いた冷却におけるMHF点におよぼす各種要因について鋭意検討した。その結果、冷却水の温度および噴射圧の影響が大きいことを知見した。
 まず、本発明者らが行った基礎的実験結果について、説明する。
 素材としてSUS304鋼板(大きさ:20mm厚×150mm幅×150mm長さ)を用いた。なお、素材には、裏面から熱電対を挿入し、表面から1mmの位置(幅中央、長さ中央)の温度を測定可能とした。そして、素材を、無酸素雰囲気加熱炉に装入し、1200℃以上に加熱した。加熱された素材を取り出し、直ちに、該素材にアトマイズ用冷却ノズルから冷却水を、水量および噴射圧を変化させて噴射し、表面から1mmの位置の温度変化を測定した。得られた温度データから、計算で冷却時の冷却能力を推定した。得られた冷却能力から沸騰曲線を作成し、急激に冷却能力が上昇する点を膜沸騰から遷移沸騰に変わる点と判断し、MHF点を求めた。
 得られた結果を図1に示す。
 図1から、通常の水アトマイズ法で使用されている水温:30℃の冷却水を、噴射圧:1MPaで噴射すると、冷却水を噴射している状態でMHF点は700℃程度となる。一方、水温:10℃以下の冷却水を、噴射圧:5MPa以上で噴射すると、冷却水を噴射している状態でMHF点は1000℃以上となることがわかる。すなわち、冷却水の温度(水温)を10℃以下と低くすること、および、噴射圧を5MPa以上と高くすることにより、MHF点が上昇し、膜沸騰から遷移沸騰に変わる温度が1000℃以上と高温となることを見出した。
 通常、溶融金属をアトマイズした後の金属粉末の温度は、1000~1300℃程度の表面温度を有しており、このような金属粉末の表面温度以下のMHF点を有する冷却能力の水噴射冷却で冷却を開始すると、冷却開始時は、冷却能が低い膜沸騰領域の冷却となる。このことから、MHF点が溶融状態を含む金属粉末の表面温度より高い水噴射冷却で冷却を開始すれば、少なくとも遷移沸騰領域から金属粉末の冷却を開始することができ、膜沸騰領域に比べて冷却が促進され、金属粉末の冷却速度を著しく高くすることができる。
 しかし、通常の水アトマイズ法では、溶融金属流に噴射した冷却水(水ジェット)の温度が上昇し、金属粉末を非晶質状態とするために必要な、所望の急速冷却を達成することができない。そこで、本発明者らは、溶融金属流に水ジェット(噴射水)を吹き付けて溶融金属流を分断し冷却する冷却(一次冷却)に加えてさらに、分断された金属粉末に二次冷却を施すことに想到した。
 そして、二次冷却として、本発明者らは、一次冷却により分断された溶融状態を含む金属粉末にさらに、新しい冷却水、好ましくは、噴射圧:5MPa以上でかつ水温:10℃以下の冷却水を供給する冷却を施すことが有効であることを見出した。さらに、二次冷却は、溶融状態を含む金属粉末の表面温度が、二次冷却のMHF点以下で非晶質化のための必要冷却開始温度以上の温度範囲から行うことが効率的であることを知見した。
 また、分断され、冷却(一次冷却)された、溶融状態を含む金属粉末を、冷却水と一緒に容器に収容して二次冷却を行うことによっても、二次冷却のMHF点が高温となり、冷却能が向上することを知見した。この知見の基礎となった実験結果について、つぎに説明する。
 素材としてSUS304鋼板(大きさ:20mm厚×150mm幅×150mm長さ)を用いた。なお、素材には、裏面から熱電対を挿入し、表面から1mmの位置(幅中央、長さ中央)の温度を測定可能とした。そして、素材を、無酸素雰囲気加熱炉に装入し、1200℃以上に加熱した。加熱された素材を取り出し、該素材の上に、枠(幅148mm×長さ148mm×高さ50mm)を、素材と枠とにより冷却水が溜まる容器を構成するように置いた。直ちに、該素材にアトマイズ用冷却ノズルから冷却水を、水温および噴射圧を変化させて噴射し、表面から1mmの位置の温度変化を測定した。得られた温度データから、計算で冷却時の冷却能力を推定した。得られた冷却能力から沸騰曲線を作成し、急激に冷却能力が上昇する点を膜沸騰から遷移沸騰に変わる点と判断し、MHF点を求めた。
 得られた結果を図2に示す。なお、図2には、図1の枠無しの場合も併記した。
 図2から、素材(鋼板)の上に枠を置き、容器状(枠あり)とすることにより、枠無しの場合に比べて、MHF点が上昇することがわかる。図2から、このMHF点の上昇は水温が30℃以下である場合に顕著になることを知見した。これは、容器状(枠あり)とすることにより、容器内で冷却水が攪拌され、被冷却面の表面に沿う流れにより、水蒸気膜が剥がされやすくなり、冷却能が向上したためと考えられる。また、容器内の水溜り面に水が高速で衝突する際に発生する衝撃波が、膜沸騰から遷移沸騰へと移りやすくし、冷却能を向上させたためとも考えられる。
 このような衝撃波の影響が有効であることから、さらに本発明者らは、水アトマイズ法で、粉末状に分断された溶融金属あるいは金属粉末が、冷却水とともに落下していく経路上に、二次冷却の手段として衝突板を配設すれば、同様に冷却能の高い冷却となることを知見した。
 このような冷却能が高い冷却方法で金属粉末を冷却すれば、金属粉末の非晶質化に必須である、結晶化温度域の急冷が容易に実現可能となることを知見した。
 本発明は、かかる知見に基づき、さらに検討を加えて完成されたものである。すなわち、本発明の要旨はつぎのとおりである。
(1)溶融金属流に水を噴射し、該溶融金属流を分断して金属粉末とし、該金属粉末を冷却する水アトマイズ金属粉末の製造方法において、前記冷却に加えて前記金属粉末にさらに、前記金属粉末の表面温度より高い極小熱流速点(MHF点)を有する冷却能力の二次冷却を施し、前記二次冷却は、前記冷却後の前記金属粉末の温度が該二次冷却における極小熱流速点(MHF点)以下で非晶質化のための必要冷却開始温度以上の温度範囲から行う、水アトマイズ金属粉末の製造方法。
(2)(1)において、前記二次冷却が、前記溶融金属流の分断に使用する水とは異なる水を使用して、水噴射を行う冷却である、水アトマイズ金属粉末の製造方法。
(3)(2)において、前記水噴射を行う冷却が、水温:10℃以下、噴射圧:5MPa以上の噴射水を使用する冷却である、水アトマイズ金属粉末の製造方法。
(4)(1)において、前記二次冷却が、前記冷却後の冷却水、該冷却水とともに落下する分断された溶融金属、および金属粉末の落下経路上に設置された容器による冷却である、水アトマイズ金属粉末の製造方法。
(5)(1)において、前記二次冷却が、前記冷却後の冷却水、該冷却水とともに落下する分断された溶融金属、および金属粉末の落下経路上に設置された衝突板による冷却である、水アトマイズ金属粉末の製造方法。
(6)(4)又は(5)において、前記冷却が、前記水温:30℃以下、あるいはさらに、噴射圧:5MPa以上の水を噴射し、前記溶融金属流を分断して金属粉末とし該金属粉末を冷却する、水アトマイズ金属粉末の製造方法。
(7)(1)ないし(6)のいずれかにおいて、前記溶融金属が、Fe-B系合金、あるいはFe-Si-B系合金からなり、前記水アトマイズ金属粉末が非晶質金属粉末を90%以上含有する粉末である、水アトマイズ金属粉末の製造方法。
 本発明によれば、簡便な方法で、10K/s以上の、金属粉末の急速冷却が可能となる。これにより、圧粉磁芯の製造に有利な、非晶質状態の水アトマイズ金属粉末の製造が容易となり、低鉄損の圧粉磁芯用金属粉末を容易に、しかも安価に製造でき、産業上格段の効果を奏する。また、本発明によれば、形状が複雑な低鉄損の圧粉磁芯の製造が容易となるという効果もある。また、水アトマイズ粉は球形になりにくいので、ガスアトマイズ粉よりは、圧粉磁芯の製造用として好適であるという効果もある。
 また、非晶質化の臨界冷却速度は、代表的なアモルファス合金である、Fe-B系合金(Fe83B17)では1.0×10K/s、Fe-Si-B系合金(Fe79 Si10 B11)では、1.8×10K/s、がそれぞれ例示されているが、本発明によれば、このような、非晶質化の臨界冷却速度を確保することは容易であるという効果もある。
図1は、MHF点に及ぼす冷却水の水温および噴射圧の影響を示すグラフである。 図2は、MHF点と冷却水の水温および噴射圧の関係に及ぼす「枠」の影響を示すグラフである。 図3は、本発明の実施に好適な、水アトマイズ金属粉末製造装置の概略構成の一例を模式的に示す説明図である。 図4は、本発明の実施に好適な、水アトマイズ金属粉末製造装置の概略構成の一例を模式的に示す説明図である。 図5は、本発明の実施に好適な、水アトマイズ金属粉末製造装置の概略構成の一例を模式的に示す説明図である。 図6は、沸騰曲線の概略を模式的に示す説明図である。 図7は、従来の水アトマイズ金属粉末製造装置の概略構成を模式的に示す説明図である。
 本発明では、まず、原料である金属材料を溶解し、溶融金属とする。原材料として使用する金属材料としては、従来から粉末として使用されている純金属、合金、銑鉄等がいずれも適用できる。例えば、純鉄、低合金鋼、ステンレス鋼などの鉄基合金、Ni、Cr等の非鉄金属、非鉄合金、あるいはアモルファス合金(非晶質合金)としてFe-B系合金、Fe-Si-B系合金、Fe-Ni-B合金等が例示できる。なお、上記した合金は、上記した元素以外の元素を不純物として含む場合があることは言うまでもない。
 なお、金属材料の溶解方法はとくに限定する必要はないが、電気炉、真空溶解炉等の、常用の溶解手段がいずれも適用できる。
 溶解された溶融金属は、溶解炉からタンディッシュ等の容器に移され、水アトマイズ金属粉末製造装置内で、水アトマイズ金属粉とされる。本発明で使用される好ましい水アトマイズ金属粉末製造装置の一例を図3に示す。
 水アトマイズ法を利用する本発明を、図3を利用して、説明する。図3(a)は装置全体の構成を示す。図3(b)は、水アトマイズ金属粉末製造装置14の詳細を示す。
 溶融金属1は、タンディッシュ3等の容器から、溶湯ガイドノズル4を介して、チャンバー9内に、溶融金属流8として流下される。なお、チャンバー9内は、不活性ガスバルブ11を開けて不活性ガス雰囲気としておくことはいうまでもない。なお、不活性ガスとしては、窒素ガス、アルゴンガスが例示できる。
 流下された溶融金属流8に、ノズルヘッダー5に配設されたノズル6を介し、噴射水(水ジェット)7を噴射し、該溶融金属流8を分断し、更に冷却して金属粉末8aとする。なお、溶融金属流8と噴射水(水ジェット)7とが接触する位置Aは、溶湯ガイドノズル4から適正な距離だけ離れた位置とすることが、溶融金属流8を熱放射と不活性ガスの冷却作用により融点近傍まで冷却させるという観点、および噴射水7の飛び水が溶湯ガイドノズル4に接触するのを防ぐという観点から好ましい。
 本発明で、溶融金属流8を分断するために、使用する噴射水(水ジェット)7は、溶融金属流8を分断できる程度の噴射圧を有する噴射水であれば、その噴射圧、水温は限定されないが、水温:30℃以下、あるいはさらに噴射圧:5MPa以上とすることが好ましい。とくに、水温が20℃超えと高いと、金属粉末の冷却速度が遅くなり、二次冷却を施しても、非晶質状態の金属粉末を確保できにくくなる。なお水温は、好ましくは10℃以下、さらに好ましくは5℃以下である。
 本発明の水アトマイズによる金属粉末の製造では、上記したように位置Aで、溶融金属流8に噴射水7を噴射し、溶融金属流の分断と、分断された金属粉末(溶融状態のものも含む)8aの冷却(一次冷却)を、まず行う。さらに、金属粉末(溶融状態のものも含む)8aに、上記した位置Aから適正距離だけ離れた位置Bで、二次冷却を施す。
 二次冷却としては、図3(b)に示すように、冷却噴射水21を噴射する冷却とすることが好ましい。二次冷却で使用する冷却噴射水21の水温および噴射圧はとくに限定されないが、遷移沸騰状態、あるいはさらに核沸騰状態までの冷却とするために、MHF点が1000℃を超える高温となるように、水温:10℃以下の冷却水を、噴射圧:5MPa以上の冷却水とすることが好ましい。なお、冷却噴射水21の噴射角度は、一次冷却水とともに落下する金属粉末に均一に噴射できるように、5~45°とすることが好ましく、かつ、二次冷却を行うノズル26は、2~8本程度配置して、落下する金属粉末をほぼ全周から冷却することが好ましい。また、冷却噴射水21は、溶融金属流8を分断するための噴射水とは異なる系統の水を使用してもよい。
 二次冷却における冷却噴射水21の液温(水温)が10℃を超えて高くなると、MHF点が低温となり、所望の冷却速度を確保できにくくなる。このため、二次冷却の冷却噴射水21の液温(水温)は10℃以下に限定することが好ましい。なお、好ましくは8℃以下である。また、二次冷却における冷却噴射水21の噴射圧が5MPa未満では、冷却水の水温が10℃以下となっても、MHF点が所望の温度となる冷却とすることができなくなり、所望の冷却速度を確保できにくくなる。このため、冷却噴射水21の噴射圧は5MPa以上に限定することが好ましい。なお、噴射圧:10MPaを超えて高くしてもMHF点の上昇が飽和するため、噴射圧は10MPa以下とすることが好ましい。
 なお、ここでいう「所望の冷却速度」とは、非晶質化を達成できる最低の冷却速度である、結晶化を防ぐための必要冷却温度範囲内での平均で10~10K/s程度の冷却速度である。
 ここでいう「結晶化を防ぐための必要冷却温度範囲」とは、非晶質化のための必要冷却開始温度から冷却終了温度として第一結晶化温度(例えば400~600℃)までの範囲をいう。非晶質化のための必要冷却開始温度としては溶湯の組成によって異なるが、例えば900~1100℃が例示できる。
 また、二次冷却は、冷却(一次冷却)後の金属粉末の温度が、二次冷却のMHF点以下で非晶質化のための必要冷却開始温度以上の温度範囲から行うことが好ましい。冷却後の金属粉末の温度が二次冷却のMHF点超えでは、二次冷却を遷移沸騰状態あるいはさらに核沸騰状態までの冷却とすることができず、所望の冷却速度を確保できにくくなる。また、冷却後の金属粉末の温度が非晶質化のための必要冷却開始温度未満では、金属粉末の温度が低くなりすぎて、所望の冷却速度を確保できにくくなり、結晶化が進行しやすくなる。
 噴射水7に用いられる冷却水は、水アトマイズ金属粉末製造装置14の外部に設けられた、冷却水タンク15(断熱構造)に、あらかじめ冷却水を低温に冷却するチラー16などの熱交換器で低水温の冷却水として貯蔵しておくことが好ましい。なお、一般的な冷却水製造機では熱交換器内が凍結するために3~4℃未満の冷却水を生成することが難しいため、氷製造機によって氷をタンク内に補給する機構を設けてもよい。さらに、冷却水タンク15には、噴射水7に用いられる冷却水を昇圧・送水する高圧ポンプ17、高圧ポンプからノズルヘッダー5に冷却水を供給する配管18が配設されることはいうまでもない。
 また、冷却噴射水21に用いられる冷却水は、噴射水7に用いられる冷却水と同様に、水アトマイズ金属粉末製造装置14の外部に設けられた、冷却水タンク15(断熱構造)に、あらかじめ貯蔵された冷却水とすることが好ましい。冷却水タンク15には、噴射水7に用いられる冷却水とは別系統で、冷却噴射水21に用いられる冷却水を昇圧・送水する高圧ポンプ27、高圧ポンプ27から二次冷却用ノズル26に冷却水を供給する配管28が配設されることはいうまでもない。なお、配管の途中に、サージタンク、切替弁等を設けて、突発的に高圧水の噴射を行いやすくしてもよい。
 なお、二次冷却は、分断された金属粉末8aに、遷移沸騰状態、あるいはさらに核沸騰状態までの冷却を施すことが可能な冷却とすることが好ましい。そのため、二次冷却の開始位置(位置B:二次冷却用ノズルの位置)は、水アトマイズされた金属粉末8aの表面温度が、二次冷却のMHF点以下で、かつ結晶化を防ぐための必要冷却開始温度以上となる位置とすることが好ましい。金属粉末8aの表面温度は、アトマイズされた位置Aと二次冷却の冷却開始位置(位置B)までの距離を変更することにより調整が可能である。そのため、二次冷却用ノズル26は、上下方向に移動自在に配設することが好ましい。
 また、二次冷却を、上記した冷却噴射水による冷却に代えて、位置Aの下流側に配設された容器41による冷却とすることが好ましい。この場合の、水アトマイズ金属粉末製造装置の一例を図4に示す。図4(a)は装置の全体を、図4(b)は水アトマイズ金属粉末製造装置14の詳細を示す。
 容器41は、溶融金属流8の分断とその後の金属粉末の冷却に用いられた冷却水(アトマイズ冷却水)、分断された溶融金属、および冷却途中の金属粉末の落下経路である、位置Aの下流側の前記位置Bに配設される。位置Bは、金属粉末8aの表面温度が、MHF点以下でかつ結晶化を防ぐための必要冷却開始温度以上となる位置であり、二次冷却開始位置とする。このような位置Bに容器41(好ましくは容器の底面位置が位置Bとなるように)を配設することにより、容器内に冷却水が収容され水溜りを形成するとともに、容器内で冷却水が攪拌され、同時に収容された金属粉末の表面に沿う流れにより、金属粉末表面の水蒸気膜が剥がされやすくなる。また、容器内に形成される水溜り面に水が高速で衝突する際に発生する衝撃波が、膜沸騰から遷移沸騰への遷移を生じやすくする、と考えられる。
 なお、配設される容器41は、溶融金属流8の分断とその後の金属粉末の冷却に用いられた冷却水(アトマイズ冷却水、分断された溶融金属、および/または金属粉末が収容可能な程度の大きさの容器とすることが好ましい。容器が大きすぎると、衝撃波が発生しにくくなる。アトマイズ冷却水の量が、200L/min程度であれば、内径が50~150mm、深さが30~100mm程度の容器で十分である。容器は、強度的には金属製とすることが望ましいが、セラミック製としてもよい。
 また、二次冷却を、上記した容器41の配設による冷却に代えて、衝突板42の配設による冷却としてもよい。この場合の、水アトマイズ金属粉末製造装置の一例を図5に示す。図5(a)は、衝突板42が逆円錐型の場合であり、円盤型の場合を図5(b)に、円錐型の場合を図5(c)に、それぞれ示す。
 衝突板42は、容器41と同様にアトマイズ冷却水、分断された溶融金属、および金属粉末の落下経路である、位置Aの下流側の二次冷却開始位置(前記位置B)に配設する。このような位置に衝突板42を配設することにより、衝突板42にアトマイズ冷却水および金属粉末が衝突する際に発生する衝撃波により、金属粉末は、膜沸騰状態から遷移沸騰状態へと移りやすくなり、同様に、冷却能の高い冷却とすることができる。
 衝突板42は、アトマイズ冷却水、溶融金属、および冷却途中の金属粉末の落下経路を遮ることができればよく、その形状は、円盤型、円錐型、逆円錐型等が考えられるが、とくに限定する必要はない。落下経路に対し、垂直面を形成することができる形状とすることが衝撃波の発生に有効であることから、逆円錐型(図5(c))とすることは避けることが好ましい。
 以下、実施例に基づき、さらに本発明について説明する。
(実施例1)
 図3に示す水アトマイズ金属粉末製造装置を用いて金属粉末を製造した。
 at%で、83%Fe‐17%BのFe-B系合金(Fe83B17)組成、および、at%で、79%Fe-10%Si-11%BのFe-Si-B系合金(Fe79 Si10 B11)組成となるように、それぞれ原料を配合(一部、不純物を含むこと避けられない)し、溶解炉2で約1550℃で溶解し、溶融金属を各約50kgfを得た。得られた溶融金属1を溶解炉2中で1350℃まで徐冷したのち、タンディッシュ3に注入した。なお、チャンバー9内は、あらかじめ不活性ガスバルブ11を開けて窒素ガス雰囲気としておいた。また、溶融金属をタンディッシュ3に注入する前に、高圧ポンプ17を稼動して、冷却水タンク15(容量:10m)から冷却水をノズルヘッダー5に供給し、水噴射ノズル6から噴射水(流体)7が噴射された状態としておいた。また、二次冷却水用高圧ポンプ27を稼動し、二次冷却水用バルブ22を開放して、冷却水タンク15(容量:10m)から冷却水を二次冷却用ノズル26に供給し、冷却噴射水21を噴射状態としておいた。
 なお、溶融金属流8が、噴射水7と接触する位置Aは、溶湯ガイドノズル4から80mmの位置に設定した。また、二次冷却用ノズル26は、位置Bに設置した。位置Bとしては、上記した位置Aから100~800mmの各位置とした。また、噴射水7は、噴射圧:1MPaまたは5MPa、水温:30℃(±2℃)または8℃(±2℃)とし、また、二次冷却で用いる冷却噴射水21の噴射圧は、5MPaとし、水温:20℃(±2℃)または8℃(±2℃)とした。なお、水温は、冷却水タンク15の外部に設けられるチラー16で調整した。
 タンディッシュ3に注入された溶融金属1を、溶湯ガイドノズル4を介してチャンバー9内に、溶融金属流8として流下し、表1に示すように水温および噴射圧を変化させた噴射水(流体)7と接触させて、分断して金属粉末とするとともに、冷却水と混ざりながら冷却され、さらに二次冷却用ノズル26から噴射された冷却噴射水21で二次冷却して、回収口13から金属粉末として回収した。なお、二次冷却を行わなかった例を比較例とした。また、二次冷却前の金属粉末の表面温度を、別途行った一次冷却の実験結果から推定した。また、二次冷却のMHF点は、別途行った実験から推定して、表記した。
 得られた金属粉末について、金属粉末以外のゴミを除去したのち、X線回折法により、アモルファスからのハローピーク、および結晶からの回折ピークを測定し、両者の回折X線の積分強度比から結晶化率を求め、(1-結晶化率)からアモルファスの割合(アモルファス度:%)を算出した。アモルファス度(非晶質化率)が90%以上である場合を「○」とし、それ以外は「×」と評価した。
 得られた結果を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 本発明例はいずれも、アモルファス度が90%以上の水アトマイズ金属粉末となっている。このことから、本発明では、非晶質化の臨界冷却速度である1.8×10K/s~1.0×10K/s以上の冷却速度が得られたことになる。一方、二次冷却を行わなかった比較例(粉末No.1、No.2)は、アモルファス度が90%未満であった。
 なお、本発明例のうち、一部は、アモルファス度が低めとなっている。粉末No.3、No.6は、二次冷却の冷却噴射水の水温が高めであり、また、粉末No.7は、溶融金属流の分断のための噴射水の噴射圧が好適範囲を低く外れ、また、粉末No.8、No.9は、二次冷却の冷却開始位置が位置Aに近いため、二次冷却の冷却開始温度がMHF点付近となり、アモルファス度が90%以上であるが、低めとなっている。また、粉末No.10は、二次冷却の冷却開始位置が位置Aから離れているため、二次冷却の冷却開始までの時間が長くなり、粉体表面温度が低くなりすぎて冷却が遅くなり、アモルファス度が90%以上であるが、低めとなっている。また、粉末No.11は、二次冷却開始位置(位置B)が位置Aから離れすぎ、金属粉末の温度が必要冷却開始温度未満となり、結晶化が進行したものと考えられる。
(実施例2)
 図4に示す水アトマイズ金属粉末製造装置を用いて金属粉末を製造した。
 at%で、83%Fe‐17%BのFe-B系合金(Fe83B17)組成、および、at%で、79%Fe-10%Si-11%BのFe-Si-B系合金(Fe79 Si10 B11)組成となるように、それぞれ原料を配合(一部、不純物を含むこと避けられない)し、溶解炉2で約1550℃で溶解し、溶融金属を各約50kgfを得た。得られた溶融金属1を溶解炉2中で1350℃まで徐冷したのち、タンディッシュ3に注入した。なお、チャンバー9内は、あらかじめ不活性ガスバルブ11を開けて窒素ガス雰囲気としておいた。また、溶融金属をタンディッシュ3に注入する前に、高圧ポンプ17を稼動して、冷却水タンク15(容量:10m)から冷却水をノズルヘッダー5に供給し、水噴射ノズル6から噴射水(流体)7が噴射された状態としておいた。なお、位置Aの下流側の冷却水および金属粉末の落下経路上に、金属製の容器41を配設し、水アトマイズ後の冷却水と分断された金属粉末とを収容した。金属製の容器41の大きさは、外径100mm×内径90mm×深さ40mmとした。
 なお、溶融金属流8が、噴射水7と接触する位置Aは、溶湯ガイドノズル4から80mmの位置に設定した。また、二次冷却用の容器41は、位置Bに設置した。位置Bとしては、上記した位置Aから100~800mmの各位置(容器底の位置)とした。また、噴射水7は、噴射圧:3MPaまたは5MPa、水温:40℃(±2℃)または20℃(±2℃)とし、なお、水温は、冷却水タンク15の外部に設けられるチラー16で調整した。
 タンディッシュ3に注入された溶融金属1を、溶湯ガイドノズル4を介してチャンバー9内に、溶融金属流8として流下し、表2に示すように水温および噴射圧を変化させた噴射水7と接触させて、分断して金属粉末とした。分断された金属粉末は、冷却水と混ざり、冷却されながら落下し、容器41内に収容され、容器41内で、冷却水とともに攪拌され、冷却されて、回収口13から回収された。なお、容器内に収容された金属粉末は、落下する冷却水が容器内の水溜り面に高速で衝突する際に発生する衝撃波にも晒される。なお、二次冷却を行わなかった例を比較例とした。また、二次冷却前の金属粉末の表面温度、二次冷却のMHF点を(実施例1)と同様に推定して表中に併記した。
 得られた金属粉末について、金属粉末以外のゴミを除去したのち、X線回折法により、アモルファスからのハローピーク、および結晶からの回折ピークを測定し、両者の回折X線の積分強度比から、実施例1と同様に、結晶化率を求め、(1-結晶化率)からアモルファスの割合(アモルファス度:%)を算出した。アモルファス度が90%以上である場合を「○」とし、90%未満を「×」と、同様に、評価した。
 得られた結果を表2に示す。
Figure JPOXMLDOC01-appb-T000002
 本発明例はいずれも、アモルファス度が90%以上の水アトマイズ金属粉末となっている。一方、二次冷却を行わなかった比較例(粉末No.2-1、No.2-7)は、アモルファス度が90%未満であった。なお、本発明例のうち、本発明の好適範囲を外れる例は、アモルファス度が低めとなっている。
 粉末No.2-3、No.2-9は、溶融金属流の分断のための噴射水(一次冷却水)の水温が好適範囲を高く外れ、二次冷却開始温度が高くなり、膜沸騰領域での冷却が長くなり、アモルファス度が90%未満と低めとなっている。
 また、粉末No.2-4、No.2-10は、容器41の設置位置が、溶融金属流の分断位置である位置Aに近いため、二次冷却の冷却開始温度が高めとなったため、アモルファス度が90%以上であるが、低めとなっている。
 また、粉末No.2-5、No.2-11は、容器41の設置位置が、溶融金属流の分断位置である位置Aから離れているため、二次冷却の冷却開始までの時間が長くなり、金属粉末表面温度が低くなり冷却が遅くなり、アモルファス度が90%以上であるが、低めとなっている。粉末No.2-6、No.2-12は、二次冷却開始位置(位置B)が、位置Aから離れすぎ、金属粉末の温度が必要冷却開始温度未満となり、結晶化が進行し、アモルファス度が90%未満となっている。
(実施例3)
 図5に示す水アトマイズ金属粉末製造装置を用いて金属粉末を製造した。
 at%で、83%Fe‐17%BのFe-B系合金(Fe83B17)組成、および、at%で、79%Fe-10%Si-11%BのFe-Si-B系合金(Fe79 Si10 B11)組成となるように、それぞれ原料を配合(一部、不純物を含むこと避けられない)し、溶解炉2で約1550℃で溶解し、溶融金属を各約50kgfを得た。得られた溶融金属1を溶解炉2中で1350℃まで徐冷したのち、タンディッシュ3に注入した。なお、チャンバー9内は、あらかじめ不活性ガスバルブ11を開けて窒素ガス雰囲気としておいた。また、溶融金属をタンディッシュ3に注入する前に、高圧ポンプを稼動して、冷却水タンク(容量:10m)から冷却水をノズルヘッダー5に供給し、水噴射ノズル6から噴射水(流体)7が噴射された状態としておいた。なお、位置Aの下流側の冷却水および金属粉末の落下経路上に、金属製の衝突板42を配設し、落下してくる水アトマイズ後の冷却水と分断された金属粉末とを衝突させる、二次冷却を行った。二次冷却後、金属粉末は回収口13から回収された。
 金属製の衝突板42の大きさは、金属粉末の落下方向と垂直な面で、直径100mmφの面積を占めるものとした。この大きさは、水アトマイズ後の落下する金属粉末のほぼ全量と衝突可能な大きさである。
 衝突板42の形状は、図5に示すように逆円錐状(a)、円盤状(b)、円錐状(c)、のいずれかとした。いずれも、金属粉末の落下方向と垂直な面で、ほぼ上記した面積を占めるように、形成されたことはいうまでもない。
 なお、溶融金属流8が、噴射水7と接触する位置Aは、溶湯ガイドノズル4から80mmの位置に設定した。また、二次冷却用の衝突板42は、二次冷却開始位置(位置B)に設置した。位置Bとしては、上記した位置Aから100~800mmの各位置とした。また、噴射水7は、噴射圧:3MPaまたは5MPa、水温:40℃(±2℃)または20℃(±2℃)とし、なお、水温は、冷却水タンクの外部に設けられるチラーで調整した。なお、衝突板42の設置を行わない(二次冷却を行わない)例を比較例とした。また、二次冷却前の金属粉末の表面温度、二次冷却のMHF点を実施例1と同様に推定して表中に併記した。
 得られた金属粉末について、金属粉末以外のゴミを除去したのち、X線回折法により、アモルファスからのハローピーク、および結晶からの回折ピークを測定し、両者の回折X線の積分強度比から、実施例1と同様に、アモルファスの割合(アモルファス度:%)を算出した。アモルファス度が90%以上である場合を「○」とし、90%未満は「×」と、同様に、評価した。
 得られた結果を表3に示す。
Figure JPOXMLDOC01-appb-T000003
 本発明例はいずれも、アモルファス度が90%以上の水アトマイズ金属粉末となっている。一方、二次冷却を行わなかった比較例(粉末No.3-1、No.3-9)は、アモルファス度が90%未満であった。なお、本発明例のうち、本発明の好適範囲を外れる例は、アモルファス度が低めとなっている。
 粉末No.3-3、No.3-11は、溶融金属流の分断のための噴射水(一次冷却水)の水温が好適範囲を高く外れ、二次冷却開始温度がMHF点より高くなり、膜沸騰領域での冷却が長くなり、アモルファス度が90%未満と低めとなっている。
 また、粉末No.3-5、No.3-13は、衝突板42の形状が円錐状(図5(c))で好適な範囲を外れるため、二次冷却の効果が少なく、アモルファス度が低くなっている。しかし、二次冷却を行わない場合よりも、アモルファス度は高くなっている。
 また、粉末No.3-6、No.3-14は、衝突板42の設置位置が、溶融金属流の分断位置である位置Aに近いため、二次冷却の冷却開始温度が高くなり、アモルファス度が90%以上であるが、低めとなっている。
 また、粉末No.3-7、No.3-15は、衝突板42の設置位置が、溶融金属流の分断位置である位置Aから離れているため、二次冷却の冷却開始までの時間が長くなり、金属粉末表面温度が低くなり冷却が遅くなり、アモルファス度が90%以上であるが、低めとなっている。粉末No.3-8、No.3-16は、冷却開始温度が必要冷却開始温度未満となり、アモルファス度が90%未満となっている。
1  溶融金属(溶湯)
2  溶解炉
3  タンディッシュ
4  溶湯ガイドノズル
5  ノズルヘッダー
6  水噴射ノズル
7  噴射水
8  溶融金属流
8a 金属粉末
9  チャンバー
10 ホッパー
11 不活性ガスバルブ
12 オーバーフローバルブ
13 金属粉回収バルブ
14 水アトマイズ金属粉末製造装置
15 冷却水タンク
16 チラー(低温冷却水製造装置)
17 高圧ポンプ
18 冷却水配管
21 二次冷却水(冷却噴射水)
22 二次冷却水用バルブ
26 二次冷却水噴射ノズル
27 二次冷却水用高圧ポンプ
28 二次冷却水用冷却水配管
41 容器
42 衝突板
 

Claims (7)

  1.  溶融金属流に水を噴射し、該溶融金属流を分断して金属粉末とし、該金属粉末を冷却する水アトマイズ金属粉末の製造方法において、前記冷却に加えて前記金属粉末にさらに、前記金属粉末の表面温度より高い極小熱流速点(MHF点)を有する冷却能力の二次冷却を施し、
     前記二次冷却は、前記冷却後の前記金属粉末の温度が該二次冷却における極小熱流速点(MHF点)以下で非晶質化のための必要冷却開始温度以上の温度範囲から行う、水アトマイズ金属粉末の製造方法。
  2.  前記二次冷却が、前記溶融金属流の分断に使用する水とは異なる水を使用して、水噴射を行う冷却である、請求項1に記載の水アトマイズ金属粉末の製造方法。
  3.  前記水噴射を行う冷却が、水温:10℃以下、噴射圧:5MPa以上の噴射水を使用する冷却である、請求項2に記載の水アトマイズ金属粉末の製造方法。
  4.  前記二次冷却が、前記冷却後の冷却水、該冷却水とともに落下する分断された溶融金属、および金属粉末の落下経路上に設置された容器による冷却である、請求項1に記載の水アトマイズ金属粉末の製造方法。
  5.  前記二次冷却が、前記冷却後の冷却水、該冷却水とともに落下する分断された溶融金属、および金属粉末の落下経路上に設置された衝突板による冷却である、請求項1に記載の水アトマイズ金属粉末の製造方法。
  6.  前記冷却が、前記水温:30℃以下、あるいはさらに、噴射圧:5MPa以上の水を噴射し、前記溶融金属流を分断して金属粉末とし該金属粉末を冷却する、請求項4又は5に記載の水アトマイズ金属粉末の製造方法。
  7.  前記溶融金属が、Fe-B系合金、あるいはFe-Si-B系合金からなり、前記水アトマイズ金属粉末が非晶質金属粉末を90%以上含有する粉末である、請求項1ないし6のいずれかに記載の水アトマイズ金属粉末の製造方法。
     
     
PCT/JP2016/001412 2015-03-30 2016-03-14 水アトマイズ金属粉末の製造方法 WO2016157762A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
US15/561,661 US10589356B2 (en) 2015-03-30 2016-03-14 Method for producing water-atomized metal powder
SE1750987A SE542692C2 (en) 2015-03-30 2016-03-14 Method for producing water-atomized metal powder
CA2976743A CA2976743C (en) 2015-03-30 2016-03-14 Method for producing water-atomized metal powder
CN201680019417.XA CN107427926B (zh) 2015-03-30 2016-03-14 水雾化金属粉末的制造方法
KR1020177027657A KR102020548B1 (ko) 2015-03-30 2016-03-14 물 애토마이즈 금속 분말의 제조 방법
JP2016544876A JP6299873B2 (ja) 2015-03-30 2016-03-14 水アトマイズ金属粉末の製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015068227 2015-03-30
JP2015-068227 2015-03-30

Publications (1)

Publication Number Publication Date
WO2016157762A1 true WO2016157762A1 (ja) 2016-10-06

Family

ID=57004087

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/001412 WO2016157762A1 (ja) 2015-03-30 2016-03-14 水アトマイズ金属粉末の製造方法

Country Status (7)

Country Link
US (1) US10589356B2 (ja)
JP (1) JP6299873B2 (ja)
KR (1) KR102020548B1 (ja)
CN (1) CN107427926B (ja)
CA (1) CA2976743C (ja)
SE (1) SE542692C2 (ja)
WO (1) WO2016157762A1 (ja)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107876789A (zh) * 2017-12-14 2018-04-06 民乐县锦世建材新材料有限责任公司 一种水雾化生产金属粉末的方法
WO2018123809A1 (ja) * 2016-12-28 2018-07-05 Dowaエレクトロニクス株式会社 銅粉およびその製造方法
JP2018109225A (ja) * 2016-12-28 2018-07-12 Dowaエレクトロニクス株式会社 銅粉およびその製造方法
WO2019111951A1 (ja) * 2017-12-07 2019-06-13 Jfeスチール株式会社 アトマイズ金属粉末の製造方法
WO2020110708A1 (ja) * 2018-11-29 2020-06-04 三菱日立パワーシステムズ株式会社 金属粉末製造装置
KR102193651B1 (ko) * 2019-07-26 2020-12-21 코오롱인더스트리 주식회사 금속분말 제조장치
KR20210071152A (ko) * 2019-12-05 2021-06-16 (주)선영시스텍 금속 분말 냉각장치 및 방법
SE1950902A2 (en) * 2017-01-27 2023-04-18 Jfe Steel Corp Method for manufacturing soft magnetic iron powder

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102303461B1 (ko) * 2014-03-31 2021-09-16 제이에프이 스틸 가부시키가이샤 아토마이즈 금속 분말의 제조 방법
US10589356B2 (en) 2015-03-30 2020-03-17 Jfe Steel Corporation Method for producing water-atomized metal powder
KR102339241B1 (ko) 2018-03-09 2021-12-14 충남대학교산학협력단 구형 금속 입자의 제조방법
CN109338249A (zh) * 2018-09-18 2019-02-15 湖南省冶金材料研究院有限公司 一种铁基非晶软磁合金材料及制备方法
EP3838451B1 (en) 2018-10-11 2024-01-10 JFE Steel Corporation Method for producing water-atomized metal powder
EP3838450B1 (en) * 2018-10-11 2024-01-17 JFE Steel Corporation Method for manufacturing water-atomized metal powder
CN113828783A (zh) * 2020-06-24 2021-12-24 湖南天际智慧材料科技有限公司 一种非晶粉末快速冷却生产设备及其方法
CN113828782A (zh) * 2020-06-24 2021-12-24 湖南天际智慧材料科技有限公司 一种非晶材料的生产方法及其设备
CN113828781A (zh) * 2020-06-24 2021-12-24 湖南天际智慧材料科技有限公司 一种水雾化法生产非晶态粉末的装置和方法
CN113828780A (zh) * 2020-06-24 2021-12-24 湖南天际智慧材料科技有限公司 一种二次急冷式非晶粉末生产设备及其方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000317513A (ja) * 1999-05-07 2000-11-21 Sumitomo Metal Ind Ltd 熱延鋼板の巻取温度制御方法
JP2007291454A (ja) * 2006-04-25 2007-11-08 Seiko Epson Corp 金属粉末製造装置、金属粉末および成形体
JP2009061485A (ja) * 2007-09-07 2009-03-26 Shun Sato 非晶質合金箔帯及びその製造方法

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3845805A (en) * 1972-11-14 1974-11-05 Allied Chem Liquid quenching of free jet spun metal filaments
US4647305A (en) 1983-07-19 1987-03-03 Nippon Kinzoku Co., Ltd. Process for manufacturing amorphous alloy powders
JPH03232908A (ja) 1990-02-07 1991-10-16 Mitsubishi Materials Corp 水アトマイズ装置
JPH07107167B2 (ja) 1990-05-10 1995-11-15 株式会社クボタ 急冷凝固金属粉末の製造方法及び製造装置
JPH07107167A (ja) 1993-10-04 1995-04-21 Matsushita Electric Ind Co Ltd ボタン電話装置
JP3932573B2 (ja) 1996-08-30 2007-06-20 セイコーエプソン株式会社 金属粉末の製造装置
US7008463B2 (en) 2000-04-21 2006-03-07 Central Research Institute Of Electric Power Industry Method for producing amorphous metal, method and apparatus for producing amorphous metal fine particles, and amorphous metal fine particles
AU2004216300B2 (en) 2003-02-28 2008-07-31 Central Research Institute Of Electric Power Industry Method and apparatus for producing fine particles
JP2004349364A (ja) 2003-05-21 2004-12-09 Seiko Epson Corp 永久磁石材料粉末及びその製造方法、並びに永久磁石
JP4562022B2 (ja) 2004-04-22 2010-10-13 アルプス・グリーンデバイス株式会社 非晶質軟磁性合金粉末及びそれを用いた圧粉コアと電波吸収体
JP4784990B2 (ja) 2006-08-07 2011-10-05 財団法人電力中央研究所 機能部材の製造方法
JP5481718B2 (ja) 2008-12-24 2014-04-23 セイコーエプソン株式会社 粉末冶金用金属粉末の製造方法
CN103209791B (zh) 2010-09-15 2016-10-05 Posco公司 铁系粉末的制备方法
CN102717087A (zh) 2012-06-12 2012-10-10 金川集团股份有限公司 一种水雾化制备球形金属粉末的方法
CN103600084A (zh) 2013-09-12 2014-02-26 苏州米莫金属科技有限公司 一种粉末冶金高压水雾化制粉装置
KR102303461B1 (ko) * 2014-03-31 2021-09-16 제이에프이 스틸 가부시키가이샤 아토마이즈 금속 분말의 제조 방법
US10589356B2 (en) 2015-03-30 2020-03-17 Jfe Steel Corporation Method for producing water-atomized metal powder
JP6707845B2 (ja) 2015-11-25 2020-06-10 セイコーエプソン株式会社 軟磁性粉末、圧粉磁心、磁性素子および電子機器

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000317513A (ja) * 1999-05-07 2000-11-21 Sumitomo Metal Ind Ltd 熱延鋼板の巻取温度制御方法
JP2007291454A (ja) * 2006-04-25 2007-11-08 Seiko Epson Corp 金属粉末製造装置、金属粉末および成形体
JP2009061485A (ja) * 2007-09-07 2009-03-26 Shun Sato 非晶質合金箔帯及びその製造方法

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7039126B2 (ja) 2016-12-28 2022-03-22 Dowaエレクトロニクス株式会社 銅粉およびその製造方法
JP2018109225A (ja) * 2016-12-28 2018-07-12 Dowaエレクトロニクス株式会社 銅粉およびその製造方法
US11692241B2 (en) 2016-12-28 2023-07-04 Dowa Electronics Materials Co., Ltd. Copper powder and method for producing same
TWI778997B (zh) * 2016-12-28 2022-10-01 日商同和電子科技有限公司 銅粉、該銅粉的製造方法、使用該銅粉之導電性糊、及使用該導電性糊之導電性膜的製造方法
WO2018123809A1 (ja) * 2016-12-28 2018-07-05 Dowaエレクトロニクス株式会社 銅粉およびその製造方法
CN110114174A (zh) * 2016-12-28 2019-08-09 同和电子科技有限公司 铜粉及其制造方法
SE1950902A2 (en) * 2017-01-27 2023-04-18 Jfe Steel Corp Method for manufacturing soft magnetic iron powder
JP6575723B1 (ja) * 2017-12-07 2019-09-18 Jfeスチール株式会社 アトマイズ金属粉末の製造方法
WO2019111951A1 (ja) * 2017-12-07 2019-06-13 Jfeスチール株式会社 アトマイズ金属粉末の製造方法
CN107876789A (zh) * 2017-12-14 2018-04-06 民乐县锦世建材新材料有限责任公司 一种水雾化生产金属粉末的方法
CN113165074A (zh) * 2018-11-29 2021-07-23 三菱动力株式会社 金属粉末制造装置
WO2020110708A1 (ja) * 2018-11-29 2020-06-04 三菱日立パワーシステムズ株式会社 金属粉末製造装置
JP2020084293A (ja) * 2018-11-29 2020-06-04 三菱日立パワーシステムズ株式会社 金属粉末製造装置
JP7102325B2 (ja) 2018-11-29 2022-07-19 三菱重工業株式会社 金属粉末製造装置
KR102193651B1 (ko) * 2019-07-26 2020-12-21 코오롱인더스트리 주식회사 금속분말 제조장치
KR102336852B1 (ko) * 2019-12-05 2021-12-15 (주)선영시스텍 금속 분말 냉각장치 및 방법
KR20210071152A (ko) * 2019-12-05 2021-06-16 (주)선영시스텍 금속 분말 냉각장치 및 방법

Also Published As

Publication number Publication date
CN107427926B (zh) 2019-10-29
KR20170122253A (ko) 2017-11-03
SE542692C2 (en) 2020-06-30
JP6299873B2 (ja) 2018-03-28
KR102020548B1 (ko) 2019-09-10
CA2976743A1 (en) 2016-10-06
US10589356B2 (en) 2020-03-17
JPWO2016157762A1 (ja) 2017-04-27
US20180071826A1 (en) 2018-03-15
CA2976743C (en) 2021-01-12
SE1750987A1 (en) 2017-10-10
CN107427926A (zh) 2017-12-01

Similar Documents

Publication Publication Date Title
JP6299873B2 (ja) 水アトマイズ金属粉末の製造方法
JP6266636B2 (ja) アトマイズ金属粉末の製造方法
JP6372440B2 (ja) 水アトマイズ金属粉末の製造方法
JP6372441B2 (ja) 水アトマイズ金属粉末の製造方法
JP2020105593A (ja) アトマイズ金属粉末の製造方法
JP6372442B2 (ja) 水アトマイズ金属粉末の製造方法
JP6406156B2 (ja) 水アトマイズ金属粉末の製造方法
JP2018104787A (ja) アトマイズ金属粉末の製造方法及びアトマイズ金属粉末の製造装置
JP6372443B2 (ja) 水アトマイズ金属粉末の製造方法
JP6721137B1 (ja) 水アトマイズ金属粉末の製造方法
JP6575723B1 (ja) アトマイズ金属粉末の製造方法
JP6881549B2 (ja) 軟磁性鉄粉の製造方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2016544876

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16771656

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 1750987-8

Country of ref document: SE

ENP Entry into the national phase

Ref document number: 2976743

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 15561661

Country of ref document: US

ENP Entry into the national phase

Ref document number: 20177027657

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16771656

Country of ref document: EP

Kind code of ref document: A1