WO2019105418A1 - 双链寡核苷酸、含双链寡核苷酸的组合物与缀合物及制备方法和用途 - Google Patents

双链寡核苷酸、含双链寡核苷酸的组合物与缀合物及制备方法和用途 Download PDF

Info

Publication number
WO2019105418A1
WO2019105418A1 PCT/CN2018/118212 CN2018118212W WO2019105418A1 WO 2019105418 A1 WO2019105418 A1 WO 2019105418A1 CN 2018118212 W CN2018118212 W CN 2018118212W WO 2019105418 A1 WO2019105418 A1 WO 2019105418A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
nucleotide
double
nucleotide sequence
alkyl
Prior art date
Application number
PCT/CN2018/118212
Other languages
English (en)
French (fr)
Inventor
张鸿雁
高山
康代武
Original Assignee
苏州瑞博生物技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 苏州瑞博生物技术有限公司 filed Critical 苏州瑞博生物技术有限公司
Priority to AU2018374219A priority Critical patent/AU2018374219C1/en
Priority to EP18884492.2A priority patent/EP3719128A4/en
Priority to KR1020207015744A priority patent/KR20200091414A/ko
Priority to JP2020529483A priority patent/JP2021504415A/ja
Priority to US16/758,720 priority patent/US11492620B2/en
Priority to CN201880049586.7A priority patent/CN110997919B/zh
Priority to CA3083968A priority patent/CA3083968C/en
Publication of WO2019105418A1 publication Critical patent/WO2019105418A1/zh
Priority to US17/937,639 priority patent/US20230132756A1/en
Priority to JP2023114124A priority patent/JP2023134615A/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/113Non-coding nucleic acids modulating the expression of genes, e.g. antisense oligonucleotides; Antisense DNA or RNA; Triplex- forming oligonucleotides; Catalytic nucleic acids, e.g. ribozymes; Nucleic acids used in co-suppression or gene silencing
    • C12N15/1131Non-coding nucleic acids modulating the expression of genes, e.g. antisense oligonucleotides; Antisense DNA or RNA; Triplex- forming oligonucleotides; Catalytic nucleic acids, e.g. ribozymes; Nucleic acids used in co-suppression or gene silencing against viruses
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/70Carbohydrates; Sugars; Derivatives thereof
    • A61K31/7088Compounds having three or more nucleosides or nucleotides
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/06Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite
    • A61K47/16Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite containing nitrogen, e.g. nitro-, nitroso-, azo-compounds, nitriles, cyanates
    • A61K47/18Amines; Amides; Ureas; Quaternary ammonium compounds; Amino acids; Oligopeptides having up to five amino acids
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/51Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
    • A61K47/54Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic compound
    • A61K47/549Sugars, nucleosides, nucleotides or nucleic acids
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/51Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
    • A61K47/56Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic macromolecular compound, e.g. an oligomeric, polymeric or dendrimeric molecule
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P29/00Non-central analgesic, antipyretic or antiinflammatory agents, e.g. antirheumatic agents; Non-steroidal antiinflammatory drugs [NSAID]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P3/00Drugs for disorders of the metabolism
    • A61P3/06Antihyperlipidemics
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/113Non-coding nucleic acids modulating the expression of genes, e.g. antisense oligonucleotides; Antisense DNA or RNA; Triplex- forming oligonucleotides; Catalytic nucleic acids, e.g. ribozymes; Nucleic acids used in co-suppression or gene silencing
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; CARE OF BIRDS, FISHES, INSECTS; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K2217/00Genetically modified animals
    • A01K2217/05Animals comprising random inserted nucleic acids (transgenic)
    • A01K2217/052Animals comprising random inserted nucleic acids (transgenic) inducing gain of function
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; CARE OF BIRDS, FISHES, INSECTS; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K2227/00Animals characterised by species
    • A01K2227/10Mammal
    • A01K2227/105Murine
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; CARE OF BIRDS, FISHES, INSECTS; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K2267/00Animals characterised by purpose
    • A01K2267/03Animal model, e.g. for test or diseases
    • A01K2267/0337Animal models for infectious diseases
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/10Type of nucleic acid
    • C12N2310/14Type of nucleic acid interfering N.A.
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/30Chemical structure
    • C12N2310/31Chemical structure of the backbone
    • C12N2310/312Phosphonates
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/30Chemical structure
    • C12N2310/31Chemical structure of the backbone
    • C12N2310/315Phosphorothioates
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/30Chemical structure
    • C12N2310/32Chemical structure of the sugar
    • C12N2310/3212'-O-R Modification
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/30Chemical structure
    • C12N2310/32Chemical structure of the sugar
    • C12N2310/3222'-R Modification
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/30Chemical structure
    • C12N2310/34Spatial arrangement of the modifications
    • C12N2310/343Spatial arrangement of the modifications having patterns, e.g. ==--==--==--
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/30Chemical structure
    • C12N2310/34Spatial arrangement of the modifications
    • C12N2310/344Position-specific modifications, e.g. on every purine, at the 3'-end
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/30Chemical structure
    • C12N2310/34Spatial arrangement of the modifications
    • C12N2310/346Spatial arrangement of the modifications having a combination of backbone and sugar modifications

Definitions

  • Double-stranded oligonucleotides are known as active pharmaceutical ingredients.
  • the delivery system is one of the core key technologies in the development of small nucleic acid drugs.
  • a small nucleic acid delivery system is a targeted conjugation delivery technique for hepatocytes.
  • the disclosure provides a double-stranded oligonucleotide comprising a sense strand and an anti-sense strand, each of the sense strand and the antisense strand a modified nucleotide, wherein the sense strand comprises nucleotide sequence 1, and the antisense strand comprises nucleotide sequence 2, and the length of the nucleotide sequence 1 and the nucleotide sequence 2 are both 19 nucleotides, said nucleotide sequence 1 and said nucleotide sequence 2 at least partially complementary to each other to form a double-stranded region, said nucleotide sequence 2 being at least partially identical to the first nucleotide sequence
  • the first stretch of nucleotide sequence is a nucleotide sequence in the target mRNA; at positions 7, 8, and 9 of the nucleotide sequence 1 in the direction from the 5' end to the 3' end
  • the nucleotide is a fluoro-modified nucleo
  • the disclosure also provides a pharmaceutical composition comprising a double-stranded oligonucleotide of the present disclosure, the pharmaceutical composition comprising a double-stranded oligonucleotide of the present disclosure and a pharmaceutically acceptable carrier.
  • the disclosure also provides a conjugate comprising a double-stranded oligonucleotide of the disclosure, the conjugate comprising a double-stranded oligonucleotide of the disclosure and a conjugation linked to the double-stranded oligonucleoside Acid ligand.
  • the disclosure provides a double-stranded oligonucleotide, pharmaceutical composition or conjugate of the present disclosure in the preparation of a pathological condition for the treatment and/or prevention of expression of a particular gene in a hepatocyte or Use in medicines for diseases.
  • the present disclosure provides a method of treating a pathological condition or disease caused by expression of a particular gene in a hepatocyte, the method comprising administering to a subject having the disease a double strand of the disclosure Oligonucleotide, pharmaceutical composition or conjugate.
  • the disclosure provides a method of inhibiting expression of a particular gene in a hepatocyte, the method comprising contacting a double-stranded oligonucleotide, pharmaceutical composition or conjugate of the disclosure with the hepatocyte .
  • the disclosure provides a kit comprising a double-stranded oligonucleotide, pharmaceutical composition or conjugate of the present disclosure.
  • Figures 1-2 show semi-quantitative results of the stability test of siRNA conjugates in Tritosome in vitro.
  • Figures 3-4 show semi-quantitative results of the stability test of siRNA conjugates in human plasma in vitro.
  • Figures 5-6 show semi-quantitative results of the stability test of siRNA conjugates in monkey plasma in vitro.
  • Figures 7-10 are time-dependent metabolic curves showing PK/TK plasma concentrations or tissue concentrations: conjugate A1 in rat plasma at a dose of 10 mg/kg ( Figure 7); 10 mg/kg dose, conjugation A1 in rat liver and kidney (Fig. 8); conjugate A1 in rat plasma at dose of 50 mg/kg (Fig. 9); conjugate A1 in rat liver and kidney at dose of 50 mg/kg Medium ( Figure 10).
  • Figures 20A, 20B, 20C and 20D show different concentrations of conjugate A1 inhibiting the expression effects of GSCM, GSSM, PSCM and PSSM, respectively.
  • Figures 21-22 illustrate the inhibition of target mRNA and off-target mRNA by the conjugates of the present disclosure, respectively, in vitro.
  • Figures 23-25 show the results of stability testing of the conjugates of the present disclosure in vitro, respectively.
  • Figures 26-28 illustrate the inhibition of HBV mRNA by the conjugates of the present disclosure in vivo.
  • Figures 29-31 show the inhibition of HBsAg and HBV DNA expression in the serum of different HBV transgenic mice over time by the conjugates of the present disclosure.
  • Figures 32-34 show the results of stability testing of the conjugates of the present disclosure in vitro.
  • Figures 35-36 show the inhibitory effect of the conjugates of the present disclosure on target mRNA as well as off-target mRNA in vitro.
  • Figure 37 shows the in vivo mRNA inhibitory effect of the conjugates of the present disclosure in the 44 BriHBV model.
  • Figure 38 shows the inhibition of the conjugate of the present disclosure on the change in expression of HBsAg in mice over time.
  • Figure 39 shows the inhibitory effect of the conjugates of the present disclosure on mRNA in M-Tg model mice in vivo.
  • Figures 43-44 illustrate the inhibition of target mRNA and off-target mRNA by the conjugates of the present disclosure in vitro.
  • Figure 45 shows the inhibition of HBV mRNA by the conjugates of the present disclosure in vivo.
  • Figure 46 is a graph showing the inhibition of the morphological changes of HBsAg expression in the serum of HBV transgenic mice over time by the conjugates of the present disclosure.
  • Figure 47 shows the inhibition of HBV mRNA by the conjugates of the present disclosure in M-Tg model mice.
  • Figures 48A-48D show the inhibition of target mRNA and off-target mRNA by siRNA3 in vitro.
  • Figures 49A-49D show the inhibition of target mRNA and off-target mRNA by siRNA E1 of the present disclosure in vitro.
  • Figures 50A and 50B show the inhibition of ANGPTL3 mRNA by siRNA and siRNA conjugates of the present disclosure, respectively, in vitro.
  • Figures 51A-51D show the results of stability experiments of the conjugates of the present disclosure in vitro, respectively.
  • Figures 52A-52D show the inhibition rate of conjugates of the present disclosure on blood lipids, expressed as total cholesterol (CHO) and triglycerides (TG) in serum.
  • Figures 53A-53D show the inhibition of ANGPTL3 mRNA expression by the conjugates of the present disclosure in vivo.
  • Figures 54A-54D show the inhibition of blood lipids by the conjugates of the present disclosure, respectively, expressed as serum total cholesterol (CHO) and triglycerides (TG).
  • CHO serum total cholesterol
  • TG triglycerides
  • Figures 55A and 55B show the inhibition rate of the conjugate of the present disclosure on blood lipids over time, expressed as serum total cholesterol (CHO) and triglyceride (TG);
  • Figure 55C shows the inhibition rate of ANGPTL3 mRNA expression. .
  • Figures 56A and 56B show the rate of inhibition of blood lipids over time by the conjugates of the present disclosure, expressed as serum total cholesterol (CHO) and triglycerides (TG).
  • CHO serum total cholesterol
  • TG triglycerides
  • Figures 57A-57D show the inhibition of blood lipids over time by the conjugates of the present disclosure, expressed as serum total cholesterol (CHO) and triglycerides (TG).
  • CHO serum total cholesterol
  • TG triglycerides
  • Figures 58A and 58B show the inhibition rate of the conjugate of the present disclosure on blood lipids over time, expressed as serum total cholesterol (CHO) and triglyceride (TG);
  • Figure 58C shows the inhibition rate of ANGPTL3 mRNA expression. .
  • Figure 59 shows the inhibition rate of APOC3 expression by the conjugates of the present disclosure in vitro.
  • Figure 60 shows the inhibition rate of APOC3 expression in liver tissue at day 14.
  • Figures 61A and 61B show the inhibition of blood lipids over time by the conjugates of the present disclosure, expressed as serum total cholesterol (CHO) and triglycerides (TG).
  • CHO serum total cholesterol
  • TG triglycerides
  • Figures 62A and 62B show the inhibition of blood lipids over time by the conjugates of the present disclosure, expressed as serum total cholesterol (CHO) and triglycerides (TG).
  • CHO serum total cholesterol
  • TG triglycerides
  • Figures 63A-63D show the inhibition of blood lipids over time by different doses of the conjugates of the present disclosure, expressed as serum total cholesterol (CHO) and triglycerides (TG).
  • CHO serum total cholesterol
  • TG triglycerides
  • Figures 64-65 show the results of in vitro stability testing of the conjugates of the present disclosure.
  • Figures 66-68 show the inhibition of serum surface antigen, serum e antigen, and HBV DNA over time by different doses of the conjugates of the present disclosure.
  • the capital letters C, G, U, A represent the base composition of the nucleotide;
  • the lowercase letter m indicates that the nucleotide adjacent to the left side of the letter m is 2'- a methoxy-modified nucleotide;
  • a lowercase letter f indicates that a nucleotide adjacent to the left side of the letter f is a 2'-fluoro modified nucleotide;
  • a lowercase letter s indicates two adjacent to the left and right of the letter s Phosphorothioate group linkage between nucleotides;
  • P1 indicates that one nucleotide adjacent to the right side of P1 is a nucleotide modified by 5'-phosphate nucleotide or 5'-phosphate analog, especially ethylene Phosphate-modified nucleotide (indicated by VP in the following examples), 5'-phosphate nucleotide (indicated by P in the following examples) or 5'-phosphorot
  • the terms "complementary” or “reverse complementation” are used interchangeably and have the meanings well known to those skilled in the art that in a double stranded nucleic acid molecule, the base of one strand is linked to another strand.
  • the bases on are paired in a complementary manner.
  • the purine base adenine (A) is always paired with the pyrimidine base thymine (T) (or uracil (U) in RNA); the purine base guanine (G) is always with the pyrimidine base.
  • Cytosine (C) is paired. Each base pair includes a purine and a pyrimidine.
  • mismatch in the art means that in a double-stranded nucleic acid, the bases at corresponding positions are not paired in a complementary form.
  • substantially reverse complementation means that there are no more than three base mismatches between the two nucleotide sequences involved; “substantially reverse complementarity” “” means that there are no more than one base mismatch between the two nucleotide sequences; “fully complementary” means that there is no base mismatch between the two nucleotide sequences.
  • nucleotide difference between one nucleotide sequence and another nucleotide sequence means that the base type of the nucleotide at the same position is changed in the former compared with the latter.
  • one nucleotide base is A
  • the corresponding nucleotide base at the same position in the former is U, C, G or T
  • a nucleotide at a home position is replaced with an abasic nucleotide or a nucleotide analog, a nucleotide difference is also considered to occur at that position.
  • nucleoside monomers refers to a modified or unmodified form used in the solid phase synthesis of phosphoramidite, depending on the type and sequence of nucleotides in the double-stranded oligonucleotide, pharmaceutical composition and/or oligonucleotide conjugate to be prepared.
  • Nucleoside monomer unmodified or modified RNA phosphoramidites, sometimes RNA phosphoramidites also known as Nucleoside phosphoramidites.
  • the phosphoramidite solid phase synthesis is a method used in RNA synthesis well known to those skilled in the art.
  • the nucleoside monomers used in the present disclosure are commercially available.
  • a short cross that is not between two letters or between two symbols is the position used to indicate the attachment point of the substituent.
  • -C 1 -C 10 alkyl-NH 2 is attached via a C 1 -C 10 alkyl group.
  • optionally substituted alkyl includes “alkyl” and “substituted alkyl” as defined below.
  • alkyl refers to straight and branched chains having the indicated number of carbon atoms, typically from 1 to 20 carbon atoms, such as from 1 to 10 carbon atoms, such as from 1 to 8 Or 1 to 6 carbon atoms.
  • a C 1 -C 6 alkyl group contains a straight chain and a branched alkyl group of 1 to 6 carbon atoms.
  • alkyl residue having a specific number of carbons it is intended to cover all branched and straight-chain forms having this amount of carbon; thus, for example, "butyl” means including n-butyl, sec-butyl Base, isobutyl and tert-butyl; “propyl” includes n-propyl and isopropyl.
  • An alkylene group is a subset of an alkyl group and refers to a residue that is the same as the alkyl group but has two points of attachment.
  • alkenyl refers to an unsaturated branched or straight-chain alkyl group having at least one carbon-carbon double bond, which is derived from adjacent carbon atoms of the parent alkyl group. Obtained by removing one hydrogen molecule. The group can be in the cis or trans configuration of the double bond.
  • Typical alkenyl groups include, but are not limited to, ethenyl; propenyl, such as prop-1-en-1-yl, prop-1-en-2-yl, prop-2-en-1-yl (allyl Base), prop-2-en-2-yl; butenyl group, for example, but-1-en-1-yl, but-1-en-2-yl, 2-methylprop-1-ene-1- Base, but-2-en-1-yl, but-2-en-2-yl, butan-1,3-dien-1-yl, butan-1,3-dien-2-yl and the like.
  • an alkenyl group has 2 to 20 carbon atoms, and in other embodiments, 2 to 10, 2 to 8, or 2 to 6 carbon atoms.
  • An alkenylene group is a subset of an alkenyl group and refers to a residue that is the same as an alkenyl group but has two points of attachment.
  • alkynyl refers to an unsaturated branched or straight-chain alkyl group having at least one carbon-carbon triple bond which is derived from adjacent carbon atoms of the parent alkyl group. Obtained by removing two hydrogen molecules.
  • Typical alkynyl groups include, but are not limited to, ethynyl; propynyl, such as prop-1-yn-1-yl, prop-2-yn-1-yl; butynyl, such as but-1-yne- 1-yl, but-1-yn-3-yl, but-3-yn-1-yl and the like.
  • an alkynyl group has 2 to 20 carbon atoms, and in other embodiments, 2 to 10, 2 to 8, or 2 to 6 carbon atoms.
  • An alkynylene group is a subset of an alkynyl group and refers to a residue that is the same as an alkynyl group but has two points of attachment.
  • alkoxy refers to an alkyl group of the indicated number of carbon atoms attached through an oxygen bridge, for example, methoxy, ethoxy, propoxy, isopropoxy, n-butoxy, Sec-butoxy, tert-butoxy, pentyloxy, 2-pentyloxy, isopentyloxy, neopentyloxy, hexyloxy, 2-hexyloxy, 3-hexyloxy, 3-methyl Pentyloxy and the like.
  • the alkoxy group usually has 1 to 10, 1 to 8, 1 to 6, or 1 to 4 carbon atoms attached through an oxygen bridge.
  • aryl refers to a radical derived from an aromatic monocyclic or polycyclic hydrocarbon ring system formed by the removal of a hydrogen atom from a ring carbon atom.
  • the aromatic monocyclic or polycyclic hydrocarbon ring system contains only hydrogen and carbon of 6 to 18 carbon atoms, wherein at least one of the rings is completely unsaturated, ie it comprises a ring according to the Hückel theory. Delocalized (4n+2) ⁇ -electron system.
  • the aryl group includes, but is not limited to, a group such as a phenyl group, a fluorenyl group, and a naphthyl group.
  • An arylene group is a subset of an aryl group and refers to a residue that is the same as the aryl group but has two points of attachment.
  • cycloalkyl refers to a non-aromatic carbocyclic ring, typically having from 3 to 7 cyclic carbon atoms. The ring can be saturated or have one or more carbon-carbon double bonds.
  • cycloalkyl groups include cyclopropyl, cyclobutyl, cyclopentyl, cyclopentenyl, cyclohexyl and cyclohexenyl, as well as bridged and caged ring groups such as norbornane.
  • halogen substituent or “halo” refers to fluoro, chloro, bromo and iodo, and the term “halogen” includes fluoro, chloro, bromo and iodo.
  • haloalkyl refers to an alkyl group as defined above, wherein a specified number of carbon atoms are replaced by one or more, up to a maximum allowable number of halogen atoms.
  • haloalkyl groups include, but are not limited to, trifluoromethyl, difluoromethyl, 2-fluoroethyl, and pentafluoroethyl.
  • Heterocyclyl means a stable 3- to 18-membered non-aromatic cyclic group containing from 2 to 12 carbon atoms and from 1 to 6 heteroatoms selected from the group consisting of nitrogen, oxygen and sulfur. Unless otherwise stated in the specification, a heterocyclic group is a monocyclic, bicyclic, tricyclic or tetracyclic system and may include a fused ring or bridged ring system. The hetero atom in the heterocyclic group can be optionally oxidized. One or more nitrogen atoms, if present, are optionally quaternized. Heterocyclyl groups are partially saturated or fully saturated. A heterocyclic group can be attached to the remainder of the molecule through any atom of the ring.
  • heterocyclic groups include, but are not limited to, dioxoalkyl, thienyl [1,3]disulfonyl, decahydroisoquinolinyl, imidazolinyl, imidazolidinyl, isothiazolidinyl, heterophilic Azolidinyl, morpholinyl, octahydroindenyl, octahydroisoindolyl, 2-oxapiperazinyl, 2-oxapiperidinyl, 2-oxapyrimidinyl, oxazolidinyl, piperidine Pyridyl, piperazinyl, 4-piperidinone, pyrrolidinyl, pyrazolidinyl, quinuclidinyl, thiazolidinyl, tetrahydrofuranyl, trisulfonyl, tetrahydropyranyl, thiomorpholinyl, Thiomorpholinyl, 1-oxoal
  • Heteroaryl refers to a radical derived from a 3- to 18-membered aromatic ring radical containing from 2 to 17 carbon atoms and from 1 to 6 heteroatoms selected from the group consisting of nitrogen, oxygen and sulfur.
  • a heteroaryl group can be a monocyclic, bicyclic, tricyclic or tetracyclic ring system in which at least one ring in the ring system is completely unsaturated, ie, according to Hückel theory, comprising a circular delocalization (4n) +2) ⁇ -electron system.
  • Heteroaryl groups include fused ring or bridged ring systems. The heteroatoms in the heteroaryl are optionally oxidized.
  • heteroaryl group is attached to the remainder of the molecule through any atom in the ring.
  • heteroaryl groups include, but are not limited to, azepandinyl, acridinyl, benzimidazolyl, benzindenyl, 1,3-benzobisoxazolyl, benzofuranyl, benzene And oxazolyl, benzo[d]thiazolyl, benzothiadiazolyl, benzo[b][1,4]bisoxazolyl, benzo[b][1,4]oxazolyl, 1 , 4-benzobisoxazolyl, benzonaphthofuranyl, benzodiazolyl, benzodioxanyl, benzopyranyl, benzopyranone, benzofuranyl, benzene And furanone, benzothienyl, benzothiophene [3,2-d]pyrimidin
  • hydroxy protecting groups can be used in the present disclosure.
  • a protecting group renders a chemical functionality insensitive to a particular reaction condition and can be added and removed in that functionality in the molecule without substantially damaging the remainder of the molecule.
  • Representative hydroxy protecting groups are disclosed in Beaucage et al, Tetrahedron 1992, 48, 2223-2311, and Greeneand Wuts, Protective Groups in Organic Synthesis, Chapter 2, 2d ed, John Wiley & Sons, New York, 1991, cited The above documents are incorporated herein in their entirety.
  • the protecting group is stable under basic conditions, but can be removed under acidic conditions.
  • non-exclusive examples of hydroxy protecting groups that may be used herein include dimethoxytrityl (DMT), monomethoxytrityl, 9-phenylxanthene-9-yl ( Pixyl) and 9-(p-methoxyphenyl)xanthene-9-yl (Mox).
  • non-exclusive examples of hydroxy protecting groups that may be used herein include Tr (trityl), MMTr (4-methoxytrityl), DMTr (4,4'-dimethoxy). Trityl) and TMTr (4,4',4"-trimethoxytrityl).
  • subject refers to any animal, such as a mammal or marsupial.
  • Subject matter of the present disclosure includes, but is not limited to, humans, non-human primates (eg, rhesus monkeys or other types of macaques), mice, pigs, horses, donkeys, cows, sheep, rats, and poultry of any kind.
  • therapeutic methods As used herein, “therapeutic methods,” “treatment,” “alleviation,” or “improvement” are used interchangeably herein. These terms refer to methods of obtaining beneficial or desired results, including but not limited to therapeutic benefits.
  • “Therapeutic benefit” means eradication or improvement of a potential disorder to be treated. In addition, the therapeutic benefit is obtained by eradicating or ameliorating one or more physiological symptoms associated with the underlying disorder, thereby observing an improvement in the patient, although the patient may still be afflicted with a potential disorder.
  • prevention and “prevention” are used interchangeably. These terms refer to methods of obtaining beneficial or desired results including, but not limited to, prophylactic benefits.
  • prophylactic benefit the conjugate or composition can be administered to a patient at risk for a particular disease, or to a patient who reports one or more pathological symptoms of the disease, even though the diagnosis of the disease may not have been made.
  • the disclosure provides a double stranded oligonucleotide capable of regulating gene expression.
  • the double-stranded oligonucleotide of the present disclosure contains a nucleotide group as a basic structural unit, which is well known to those skilled in the art, and the nucleotide group contains a phosphate group, a ribose group, and a base, and will not be described herein. .
  • CN102140458B discloses an siRNA that specifically inhibits the HBV gene, and various chemical modification strategies of the siRNA have been studied. The study found that different modification strategies have a very different impact on siRNA stability, biological activity and cytotoxicity. In this study, seven effective modifications were demonstrated. Compared to unmodified siRNA, one of the modified siRNAs improved blood stability while remaining substantially equivalent to unmodified siRNA. Inhibitory activity.
  • the double-stranded oligonucleotide of the present disclosure contains a sense strand and an antisense strand, each nucleotide of the sense strand and the antisense strand being a modified nucleotide, wherein the sense strand comprises a nucleotide sequence 1.
  • the antisense strand comprises a nucleotide sequence 2, and the nucleotide sequence 1 and the nucleotide sequence 2 are 19 nucleotides in length, the nucleotide sequence 1 and the core
  • the nucleotide sequence 2 is at least partially inversely complementary to form a double-stranded region, the nucleotide sequence 2 being at least partially complementary to the first stretch of nucleotide sequence, the first stretch of nucleotide sequence being in the target mRNA a nucleotide sequence;
  • the nucleotides at positions 7, 8, and 9 of the nucleotide sequence 1 are fluoro-modified nucleotides in the direction from the 5' end to the 3' end, the nucleoside
  • Each nucleotide at other positions of acid sequence 1 is independently one of the non-fluorinated modified nucleotides; the first nucleotide at the 5' end of nucleotide sequence 2 is the antisense strand 5
  • Each nucleotide is independently one of the non-fluorinated modified nucleotides.
  • fluoro-modified nucleotide refers to a nucleotide formed by the substitution of a hydroxyl group at the 2'-position of a ribose group of a nucleotide with a fluorine
  • non-fluoro-modified nucleotide refers to a nucleoside.
  • Nucleotide analog refers to the ability to replace a nucleotide in a nucleic acid, but differs in structure from adenine ribonucleotides, guanine ribonucleotides, cytosine ribonucleotides, uridine ribonucleotides or thymus A group of pyrimidine deoxyribonucleotides. Such as an isonucleotide, a bridged nucleic acid (BNA) or an acyclic nucleotide.
  • BNA bridged nucleic acid
  • nucleotide sequence 2 is substantially inversely complementary, substantially completely reverse complementary or fully reverse complementary to the first stretch of nucleotide sequence
  • nucleotides 2-19 of the nucleotide sequence 2 are complementary to the first stretch of nucleotide sequence in the direction from the 5' end to the 3' end.
  • nucleotide at position 1 of nucleotide sequence 2 is A or U, in the direction from the 5' end to the 3' end.
  • nucleotide sequence 1 and the nucleotide sequence 2 are substantially reverse complementary, substantially completely reverse complementary or fully reverse complementary.
  • the sense strand further comprises a nucleotide sequence 3, the antisense strand further comprising a nucleotide sequence 4, and each nucleotide of nucleotide sequence 3 and nucleotide sequence 4 is independently In one of the non-fluoro-modified nucleotides, the nucleotide sequence 3 and the nucleotide sequence 4 are each 1-4 nucleotides in length, and the nucleotide sequence 3 and The nucleotide sequence 4 is of equal length and substantially completely reverse complementary or completely reverse complementary, the nucleotide sequence 3 is ligated to the 5' end of the nucleotide sequence 1, and the nucleotide sequence 4 Attached to the 3' end of the nucleotide sequence 2, the nucleotide sequence 4 is substantially completely reverse complementary or completely reverse complementary to the second nucleotide sequence, and the second nucleotide sequence is And a nucleotide sequence adjacent to the first stretch of nucleotide sequence in the target
  • nucleotide sequence 3 and the nucleotide sequence 4 are completely complementary, and the nucleotide sequence 3 and the nucleotide sequence 4 are each 1 nucleotide in length, and the core
  • the nucleotide sequence 4 is completely reversely complementary to the second nucleotide sequence; alternatively, the nucleotide sequence 3 and the nucleotide sequence 4 are completely complementary, and the nucleotide sequence 3 and the nucleotide are Sequence 4 is 2 nucleotides in length, nucleotide sequence 4 is completely reversely complementary to the second nucleotide sequence; or nucleotide sequence 3 and nucleotide sequence 4 are completely complementary,
  • the nucleotide sequence 3 and the nucleotide sequence 4 are 3 nucleotides in length, and the nucleotide sequence 4 is completely reversely complementary to the second nucleotide sequence; or the nucleotide sequence 3 Fully complementary to the nucleotide sequence 4, the nucleotide sequence 4
  • nucleotide sequence 3 and the nucleotide sequence 4 are completely reverse-complementary, the nucleotide sequence 4 is completely reverse-complementary to the second-stage nucleotide sequence, and the target mRNA-related nucleotide sequence is determined, Nucleotide sequence 3 and the nucleotide sequence 4 are also determined.
  • the length of the sense strand or the antisense strand can independently be 19-23 nucleotides.
  • the double-stranded oligonucleotide further comprises nucleotide sequence 5, each nucleotide of the nucleotide sequence 5 being independently one of non-fluoro-modified nucleotides
  • the nucleotide sequence 5 is 1 to 3 nucleotides in length and is ligated to the 3' end of the antisense strand to constitute the 3' overhang of the antisense strand.
  • the ratio of the length of the sense strand and the antisense strand of the double-stranded oligonucleotide provided by the present disclosure may be 19/19, 19/20, 19/21, 19/22, 20/20, 20/21, 20 /22, 20/23, 21/21, 21/22, 21/23, 21/24, 22/22, 22/23, 22/24, 22/25, 23/23, 23/24, 23/25 Or 23/26.
  • the nucleotide sequence 5 is 2 nucleotides in length and is in the direction of the 5' end to the 3' end, the nucleotide sequence 5 being two consecutive thymidine deoxyribose Nucleotide, two consecutive uracil ribonucleotides, or completely reverse complement to the third stretch of nucleotide sequence, wherein the third stretch of sequence refers to the first stretch of nucleotide sequence or A nucleotide sequence in which the two nucleotide sequences are adjacent and the length is equal to the nucleotide sequence 5.
  • the ratio of the sense strand and the antisense strand of the double-stranded oligonucleotide provided by the present disclosure is 19/21 or 21/23, in which case the double-stranded oligonucleoside provided by the present disclosure
  • the acid has better target mRNA silencing activity.
  • a fluoro-modified nucleotide refers to a nucleotide formed by substituting a hydroxyl group at the 2'-position of a ribose group of a nucleotide with fluorine, as shown in the formula (101), wherein Base represents a base, Selected from C, G, A or U.
  • a non-fluorinated modified nucleotide refers to a nucleotide or nucleotide analog formed by the substitution of a hydroxyl group at the 2'-position of a ribose group of a nucleotide with a non-fluoro group.
  • each non-fluoro modified nucleotide is independently selected from a nucleotide or nucleotide analog formed by the substitution of a hydroxyl group at the 2' position of the ribose group of a nucleotide with a non-fluoro group.
  • Nucleotides formed by substitution of a hydroxyl group at the 2' position of the ribose group with a non-fluoro group are known to those skilled in the art, and such nucleotides may, for example, be selected from 2'-alkoxy-modified nucleotides, 2'- Substituted alkoxy-modified nucleotides, 2'-alkyl modified nucleotides, 2'-substituted alkyl modified nucleotides, 2'-amino modified nucleotides, 2'- One of a substituted amino-modified nucleotide, 2'-deoxynucleotide.
  • the 2'-alkoxy-modified nucleotide can be a methoxy-modified nucleotide (2'-OMe) as shown in formula (102).
  • the 2'-substituted alkoxy-modified nucleotide can be a 2'-O-methoxyethyl modified nucleotide (2'-MOE), as in formula (103) Show.
  • the 2'-deoxynucleotide (DNA) is as shown in formula (105).
  • a nucleotide analog refers to the ability to replace a nucleotide in a nucleic acid, but differs in structure from adenine ribonucleotides, guanine ribonucleotides, cytosine ribonucleotides, uridine ribonucleotides or thymine deoxygenation.
  • the nucleotide analog can be an isonucleotide, a bridged nucleic acid (BNA) or an acyclic nucleotide.
  • the BNA refers to a restricted or inaccessible nucleotide.
  • the BNA may contain a five-membered ring, a six-membered ring, or a seven-membered ring with a bridge structure of "fixed" C3'-endo-glycans.
  • the bridge is typically incorporated into the 2'-, 4'-position of the ribose to provide a 2',4'-BNA nucleotide, such as LNA, ENA, cET BNA, etc., wherein the LNA is as in formula (106).
  • the ENA is as shown in the formula (107)
  • the cET BNA is as shown in the formula (108).
  • An acyclic nucleotide refers to a type of "open-loop" nucleotide formed by the opening of a sugar ring of a nucleotide, such as an unlocked nucleic acid (UNA) or a glycerol nucleic acid (GNA), wherein UNA is as shown in formula (109). , GNA is as shown in equation (110).
  • UNA unlocked nucleic acid
  • GNA glycerol nucleic acid
  • R is selected from H, OH or alkoxy group (O-alkyl group).
  • An isonucleotide refers to a compound formed by a change in the position of a base in a nucleotide on a ribose ring, for example, a base is moved from a 1'-position to a 2'-position or a 3'-position of a ribose ring.
  • the compound is represented by the formula (111) or (112).
  • Base represents a base such as A, U, G, C or T; and R is selected from H, OH, F or a non-fluorine group as described above.
  • the nucleotide analog is selected from the group consisting of an isonucleotide, LNA, ENA, cET, UNA, and GNA.
  • each non-fluoro-modified nucleotide is a methoxy-modified nucleotide, and above and below, the methoxy-modified nucleotide refers to a 2' of a ribose group. a nucleotide formed by substituting a hydroxyl group with a methoxy group.
  • fluoro-modified nucleotide refers to a compound having a structure represented by formula (101) formed by substituting a 2'-hydroxy group of a nucleotide with fluorine;
  • methoxy-modified nucleotide refers to a compound having a structure represented by formula (101) formed by substituting a 2'-hydroxy group of a nucleotide with fluorine;
  • methoxy-modified nucleotide "2 '-Methoxy-modified nucleotides', "nucleotides in which the 2'-hydroxyl group of a ribose group is substituted by a methoxy group” and "2'-methoxyribosyl group” have the same meaning, and all refer to a nucleotide
  • the 2'-hydroxyl group of the ribose group is substituted with a methoxy group to form a structure as shown in the formula (102).
  • the double-stranded oligonucleotides of the present disclosure are resistant to ribonuclease cleavage in blood, thereby increasing the blood stability of the nucleic acid, rendering the nucleic acid more resistant to nuclease hydrolysis while maintaining High target gene regulatory activity.
  • the double-stranded oligonucleotides described in the present disclosure achieve a high degree of balance in plasma stability and gene expression regulation efficiency in animal experiments, and some have the advantage of being simpler and less costly.
  • the nucleotides at positions 7, 8, and 9 of the nucleotide sequence 1 are fluoro-modified nucleotides, and the sense strand
  • the nucleotides in the remaining positions are methoxy-modified nucleotides; and, in the antisense strand, the nucleotides at positions 2, 6, 14, and 16 of the nucleotide sequence 2 are fluorine
  • the modified nucleotide, the nucleotide at the rest of the antisense strand is a methoxy-modified nucleotide.
  • the double-stranded oligonucleotides of the present disclosure further comprise other modified nucleotide groups that do not cause the double-stranded oligonucleotide to modulate target gene expression.
  • the function is significantly weakened or lost.
  • At least one of the phosphate groups in the sense strand and at least one single stranded phosphate-sugar backbone of the antisense strand is a phosphate group having a modifying group.
  • the phosphate group having a modifying group is a phosphorothioate group formed by substituting at least one oxygen atom of a phosphodiester bond in a phosphate group with a sulfur atom, and may be sulfur represented by the formula (121) Phosphoricthioate structure, replacing a non-bridged oxygen atom in a phosphodiester bond with a sulfur atom, replacing a phosphodiester bond with a phosphorothioate diester bond, ie, the linkage between two nucleotides is a phosphorothioate Ester group linkage. This modification stabilizes the structure of the double-stranded oligonucleotide, maintaining high specificity and high affinity for base pairing.
  • the phosphorothioate group linkage is present in at least one of the following positions: the first and second nucleosides at either end of the sense strand or the antisense strand Between acids; between the second and third nucleotides at either end of the sense strand or the antisense strand; or any combination of the above.
  • the phosphorothioate linkage is present at all of the above positions except for the 5' end of the sense strand.
  • the phosphorothioate linkage is present at all of the above positions except for the 3' end of the sense strand.
  • the phosphorothioate linkage is present at at least one of the following locations:
  • the 2' end of the 3' end of the antisense strand is between the 2nd nucleotide and the 3rd nucleotide.
  • the 5' terminal nucleotide of the antisense strand sequence of the double stranded oligonucleotide molecule is a 5'-phosphate nucleotide or a 5'-phosphate analog modified nucleotide.
  • the 5'-phosphate nucleotide has the structure shown in formula (122):
  • nucleotides modified by the 5'-phosphate analog are well known to those skilled in the art, for example, Anastasia Khvorova and Jonathan K. Watts, The chemical evolution of oligonucleotide therapies of clinical utility. Nature Biotechnology, Nucleotides of formula (123) to formula (126) disclosed in 2017, 35(3): 238-48:
  • R represents a group selected from the group consisting of H, OH, F and a methoxy group
  • Base represents a base selected from A, U, C, G or T.
  • the nucleotide modified by the 5'-phosphate analog is a nucleotide containing an E-vinylphosphonate (E-VP) represented by formula (123), or a formula (125) A nucleotide containing a phosphorothioate.
  • E-VP E-vinylphosphonate
  • a double-stranded oligonucleotide such as an siRNA, that inhibits or down-regulates gene expression can be; in some embodiments, can be a double-stranded oligonucleotide that activates or up-regulates gene expression, eg, a saRNA.
  • Double-stranded oligonucleotides employing the modification schemes of the present disclosure unexpectedly increase stability in blood, increase stability in lysosomes, reduce off-target effects, and/or increase double-stranded oligonucleotides active. At the same time, the target gene expression regulating activity was not significantly lowered, showing excellent in vivo inhibitory effects.
  • the modified double-stranded oligonucleotides, pharmaceutical compositions and conjugates provided by the present disclosure can be used to modulate aberrant expression of various genes, and to treat various pathological conditions or diseases caused by abnormal expression of genes.
  • genes may be various endogenous genes in the human or animal body, or may be pathogen genes that are propagated in the human or animal body.
  • a double-stranded oligonucleotide having a specific nucleotide sequence and the modification scheme can be designed and prepared according to the target mRNA of interest.
  • the double-stranded oligonucleotide of the present disclosure may be, for example, the following siRNA:
  • the nucleotide sequence 1 is the sequence shown in SEQ ID NO: 1
  • the nucleotide sequence 2 is the sequence shown in SEQ ID NO: 2;
  • the nucleotide sequence 1 is the sequence shown in SEQ ID NO: 3, and the nucleotide sequence 2 is the sequence shown in SEQ ID NO: 4;
  • the nucleotide sequence 1 is the sequence shown in SEQ ID NO: 5
  • the nucleotide sequence 2 is the sequence shown in SEQ ID NO: 6;
  • the nucleotide sequence 1 is the sequence shown in SEQ ID NO: 7, and the nucleotide sequence 2 is the sequence shown in SEQ ID NO: 8;
  • the nucleotide sequence 1 is the sequence shown in SEQ ID NO: 9, and the nucleotide sequence 2 is the sequence shown in SEQ ID NO: 10;
  • the nucleotide sequence 1 is the sequence shown in SEQ ID NO: 11, and the nucleotide sequence 2 is the sequence shown in SEQ ID NO: 12;
  • the nucleotide sequence 1 is the sequence shown in SEQ ID NO: 13
  • the nucleotide sequence 2 is the sequence shown in SEQ ID NO: 14.
  • the capital letters C, G, U, A represent the base composition of the nucleotide;
  • the lowercase letter m indicates that the nucleotide adjacent to the left side of the letter m is a 2'-methoxy modified nucleotide;
  • lowercase The letter f indicates that one nucleotide adjacent to the left side of the letter f is a 2'-fluoro modified nucleotide.
  • the double-stranded oligonucleotides of the present disclosure may be, for example, the siRNAs shown in Tables 1A-1F:
  • the capital letters C, G, U, A represent the base composition of the nucleotide;
  • the lowercase letter m indicates that the nucleotide adjacent to the left side of the letter m is a 2'-methoxy modified nucleotide;
  • lowercase The letter f indicates that the nucleotide adjacent to the left side of the letter f is a 2'-fluoro modified nucleotide;
  • the lowercase letter s indicates that the connection between two nucleotides adjacent to the letter s is thio Phosphate linkage;
  • P1 indicates that one nucleotide adjacent to the right of P1 is a 5'-phosphate nucleotide or a 5'-phosphate analog modified nucleotide, in some embodiments a vinyl phosphate modification Nucleotide (represented by VP in the following examples), 5'-phosphate modified nucleotide (represented by P in the following examples) or phosphorothioate modified nucleotide (in the
  • double-stranded oligonucleotides described in the present disclosure can be obtained by conventional double-stranded oligonucleotide preparation methods (e.g., methods of solid phase synthesis and liquid phase synthesis). Among them, solid phase synthesis already has commercial customized services.
  • a method of preparing a nucleotide monomer having a corresponding modification and a modification thereof by introducing a modified nucleotide group having a corresponding modification into a double-stranded oligonucleotide described in the present disclosure Methods for introducing a nucleotide group into a double-stranded oligonucleotide are also well known to those skilled in the art.
  • the modified double-stranded oligonucleotides provided by the present disclosure may be used alone or in combination with a pharmaceutically acceptable carrier, or with a conjugated molecule to form a conjugate, or other forms.
  • An effective amount of the double-stranded oligonucleotide, the pharmaceutical composition or conjugate is contacted with a cell to modulate expression of a gene of interest, or the double-stranded oligonucleotide, the pharmaceutical composition or The conjugate is administered to the subject to modulate the expression of the target gene to achieve a pathological condition or disease caused by abnormal expression of the target gene.
  • the blood stability of the double-stranded oligonucleotides of the present disclosure can be further improved, the targeting thereof can be improved, and the double strands of the present disclosure can be solved by forming a pharmaceutical composition with a suitable carrier or forming a conjugate with a suitable conjugated molecule.
  • a pharmaceutical composition with a suitable carrier or forming a conjugate with a suitable conjugated molecule.
  • the double-stranded oligonucleotide after introduction of a targeting vector or conjugated molecule, the double-stranded oligonucleotide also needs to be able to function at the target site, ie, the encapsulation/conjugation of the vector or conjugate molecule does not affect the double-stranded oligonucleoside
  • the activity of the acid itself for example, in the case where the double-stranded oligonucleotide is an siRNA, the RNAi machine that does not affect the loading of the siRNA into the cell, i.e., the RISC complex).
  • these targeting vectors or conjugation molecules are also required to have good biocompatibility and minimal toxicity.
  • the pharmaceutical composition can be systemically distributed to various parts of the body or can be targeted to a specific part of the body.
  • the conjugate is generally targeted, and the type of the conjugated molecule can be adaptively changed according to the expression distribution of the target gene in the human body or the animal to achieve the purpose of delivering the double-stranded oligonucleotide to the relevant site.
  • the conjugate molecule can be a conjugate molecule that targets the liver, lung, kidney, or cancer cells.
  • the present disclosure also provides a pharmaceutical composition
  • a pharmaceutical composition comprising the modified double-stranded oligonucleotide described above and a pharmaceutically acceptable carrier.
  • the pharmaceutically acceptable carrier can be any useful carrier.
  • the present disclosure also provides an oligonucleotide conjugate comprising the modified double-stranded oligonucleotide described above and conjugated to the double-stranded oligo A ligand for a glycoside.
  • the double-stranded oligonucleotide can be delivered to different organs or cells using different conjugation molecules.
  • a conjugating molecule as described below, suitable for delivering the double-stranded oligonucleotide to the liver, modulating the expression of an endogenous gene expressed in the target liver or a pathogen gene gene that is propagated in the liver to achieve expression in the liver.
  • the pathological condition or the purpose of the disease caused by the abnormal expression of an endogenous gene or a pathogen gene that is propagated in the liver is a pathogen gene that is propagated in the liver.
  • the present disclosure provides a double-stranded oligonucleotide, the above-described double-stranded oligonucleotide-containing pharmaceutical composition or the above oligonucleotide conjugate in preparation for treatment and/or prevention Use in drugs for pathological conditions or diseases caused by gene overexpression.
  • the present disclosure provides a method of treating a pathological condition or disease caused by aberrant expression of a gene, the method comprising administering to a subject an effective amount of the above-described double-stranded oligonucleotide, the pharmaceutical composition described above Or the above oligonucleotide conjugate.
  • the disclosure provides a method of modulating gene expression, wherein the method comprises administering an effective amount of the above-described double-stranded oligonucleotide, the above-described pharmaceutical composition, or the above-described oligonucleotide conjugate
  • the cell expressing the gene is contacted.
  • the aberrant expression is overexpression, and accordingly, the modulation is to inhibit the overexpression.
  • the double-stranded oligonucleotide, the above pharmaceutical composition or the above oligonucleotide conjugate is in a pathogenic condition caused by a gene regulating expression in the liver, or a gene abnormal expression in the treatment of hepatocytes or In the disease, it exhibits unexpected stability and activity.
  • Genes expressed in the liver include, but are not limited to, genes such as ApoB, ApoC, ANGPTL3, PCSK9, SCD1, TIMP-1, Col1A1, FVII, STAT3, p53, HBV, HCV, and the like.
  • the specific gene is selected from the group consisting of a hepatitis B virus gene, an angiopoietin-like protein 3 gene, or an apolipoprotein C3 gene.
  • the disease is selected from the group consisting of chronic liver disease, hepatitis, liver fibrosis disease, liver proliferative disease, and dyslipidemia.
  • the dyslipidemia is hypercholesterolemia, hypertriglyceridemia, or atherosclerosis.
  • the above-described double-stranded oligonucleotide, the above pharmaceutical composition or the above oligonucleotide conjugate can also be used for the treatment of other liver diseases, including diseases characterized by unwanted cell proliferation, blood diseases. , metabolic diseases and diseases characterized by inflammation.
  • the proliferative disease of the liver may be a benign or malignant disease such as cancer, hepatocellular carcinoma (HCC), liver metastasis or hepatoblastoma.
  • Liver hematology or inflammatory diseases can be diseases involving clotting factors, complement-mediated inflammation or fibrosis.
  • Metabolic diseases of the liver include dyslipidemia and irregularities in glucose regulation.
  • the present disclosure also provides a kit comprising the above double-stranded oligonucleotide, the above pharmaceutical composition or the above oligonucleotide conjugate.
  • compositions and oligonucleotide conjugates are based on the aforementioned double-stranded oligonucleotides suitable for the regulation of gene expression.
  • pharmaceutically acceptable carriers and ligands in drug conjugates is equally applicable to systemic administration of said modified double-stranded oligonucleotides and delivery of said double-stranded oligonucleotides to a target
  • An organ or tissue, particularly a liver regulates the expression of an endogenous gene expressed in a target organ or tissue of interest or expression of a pathogen gene gene that is propagated in a target organ or tissue.
  • the present disclosure provides a pharmaceutical composition
  • a pharmaceutical composition comprising a double-stranded oligonucleotide as described above as an active ingredient and a pharmaceutically acceptable carrier.
  • the pharmaceutically acceptable carrier may be a carrier conventionally used in the field of double-stranded oligonucleotide administration, such as, but not limited to, magnetic nanoparticles such as Fe 3 O 4 or Fe 2 O 3 -based nanoparticles.
  • carbon nanotubes mesoporous silicon, calcium phosphate nanoparticles, polyethylenimine (PEI), polyamidoamine (PAMAM) dendrimer ), polylysine (poly (L-lysine), PLL), chitosan (chitosan), 1,2-dioleoyl-3-trimethylammonium-propane, DOTAP), poly-D or L-lactic/glycolic acid copolymer (PLGA), poly(2-aminoethyl ethylene phosphate), poly(2-aminoethyl ethylene phosphate), One or more of PPEEA) and poly(2-dimethylaminoethyl methacrylate) (PDMAEMA) and their derivatives.
  • PEI polyethylenimine
  • PAMAM polyamidoamine
  • PAMAM polyamidoamine
  • PLL polylysine
  • chitosan chitosan
  • the pharmaceutical composition has no particular requirement for the amount of double-stranded oligonucleotide and a pharmaceutically acceptable carrier; in some embodiments, the double-stranded oligonucleotide is pharmaceutically acceptable
  • the weight ratio of the carrier may be 1: (1 - 500); in some specific embodiments, the above weight ratio is 1: (1-50).
  • the pharmaceutical composition may further comprise other pharmaceutically acceptable excipients, which may be one or more of the various formulations or compounds conventionally employed in the art.
  • the pharmaceutically acceptable other excipient may include at least one of a pH buffer, a protective agent, and an osmotic pressure adjusting agent.
  • the pH buffer may be a trishydroxymethylaminomethane hydrochloride buffer having a pH of 7.5-8.5 and/or a phosphate buffer having a pH of 5.5-8.5, for example, a phosphoric acid having a pH of 5.5-8.5. Salt buffer.
  • the protective agent may be at least one of inositol, sorbitol, sucrose, trehalose, mannose, maltose, lactose, and glucose.
  • the protective agent may be included in an amount of from 0.01 to 30% by weight based on the total weight of the pharmaceutical composition.
  • the osmotic pressure adjusting agent may be sodium chloride and/or potassium chloride.
  • the osmotic pressure adjusting agent is present in an amount such that the osmotic pressure of the pharmaceutical composition is from 200 to 700 milliosmoles per kilogram.
  • the content of the osmotic pressure adjusting agent can be easily determined by those skilled in the art depending on the desired osmotic pressure.
  • the pharmaceutical composition may be a liquid preparation, such as an injection solution; or a lyophilized powder injection, which is mixed with a liquid adjuvant when administered, and formulated into a liquid preparation.
  • the liquid formulation can be, but is not limited to, for subcutaneous, intramuscular or intravenous administration, and can be, but is not limited to, administered to the lungs by spraying, or administered to other organ tissues (such as the liver) via the lungs by spraying.
  • the pharmaceutical composition is for intravenous administration.
  • the pharmaceutical composition can be in the form of a liposomal formulation.
  • the pharmaceutically acceptable carrier used in the liposome formulation comprises an amine-containing transfection compound (which may also be referred to hereinafter as an organic amine), helper lipid, and/or PEGylation. Lipid. Wherein the organic amine, helper lipid, and PEGylated lipid are each selected from the group consisting of amine-containing transfection compounds described in CN 1033113 A (incorporated herein by reference in its entirety) One or more of the accepted salts or derivatives, helper lipids, and pegylated lipids.
  • the organic amine can be a compound of formula (201) or a pharmaceutically acceptable salt thereof as described in CN1033113A:
  • X 101 and X 102 are each independently O, S, NA or CA, wherein A is hydrogen or a C 1 - C 20 hydrocarbon chain;
  • R 101 , R 102 , R 103 , R 104 , R 105 , R 106 and R 107 are each independently hydrogen, cyclic or acyclic, substituted or unsubstituted, branched or straight-chain aliphatic radical a cyclic, acyclic or acyclic, substituted or unsubstituted, branched or straight chain heteroaliphatic group, substituted or unsubstituted, branched or straight chain acyl group, substituted or not Substituted, branched or straight-chain aryl, substituted or unsubstituted, branched or straight-chain heteroaryl;
  • x is an integer from 1 to 10;
  • n is an integer from 1 to 3
  • m is an integer from 0 to 20
  • p is 0 or 1; and wherein, when m and p are both 0, R 102 is hydrogen;
  • R 103 and the nitrogen in the formula (201) form a structure as shown in the formula (202) or the formula (203):
  • HCC represents a hydrocarbon chain
  • N represents a nitrogen atom represented by the formula (201).
  • R 103 is a polyamine. In other embodiments, R 103 is a ketal. In some embodiments, each of R 101 and R 102 in formula (201) is independently any substituted or unsubstituted, branched or straight chain alkyl or alkenyl group, said alkane
  • the base or alkenyl group has from 3 to about 20 carbon atoms, such as from 8 to about 18 carbon atoms, and from 0 to 4 double bonds, such as from 0 to 2 double bonds.
  • R 103 may be any one of the following formulas (204) - (213):
  • each "HCC” represents a hydrocarbon chain, and each * shows a possible connection point of R 103 with a nitrogen atom in the formula (201), wherein at any * position Each H of H may be replaced to effect attachment to the nitrogen atom in formula (201).
  • the compound of the formula (201) can be produced according to the description in CN1033113A.
  • the organic amine is an organic amine as shown in formula (214) and/or an organic amine as shown in formula (215):
  • the helper lipid is a cholesterol, an analog of cholesterol, and/or a derivative of cholesterol;
  • the PEGylated lipid is 1,2-dipalmitamide-sn-glycero-3-phosphatidylethanolamine-N-[methoxy(polyethylene glycol)]-2000.
  • the molar ratio between the organic amine, the helper lipid, and the PEGylated lipid is (19.7-80): (19.7-80) in the pharmaceutical composition. ): (0.3-50), for example, may be (50-70): (20-40): (3-20).
  • the pharmaceutical composition particles formed from the double-stranded oligonucleotides of the present disclosure and the amine-containing transfection reagent described above have an average diameter of from about 30 nm to about 200 nm, typically from about 40 nm to about 135 nm, more typically
  • the liposome particles have an average diameter of from about 50 nm to about 120 nm, from about 50 nm to about 100 nm, from about 60 nm to about 90 nm, or from about 70 nm to about 90 nm, for example, the average diameter of the liposome particles is about 30, 40, 50, 60, 70, 75, 80, 85, 90, 100, 110, 120, 130, 140, 150 or 160 nm.
  • a double-stranded oligonucleotide and all lipids eg, an organic amine, helper lipid, and/or a pharmaceutical composition formed from a double-stranded oligonucleotide of the present disclosure and an amine-containing transfection reagent described above
  • a pegylated lipid weight ratio weight/weight ratio of from about 1:1 to about 1:50, from about 1:1 to about 1:30, from about 1:3 to about 1:20 From about 1:4 to about 1:18, from about 1:5 to about 1:17, from about 1:5 to about 1:15, from about 1:5 to about 1:12, from about 1:6 To a ratio of about 1:12 or from about 1:6 to about 1:10, for example, the weight ratio of the double-stranded oligonucleotide of the present disclosure to the total lipid is about 1:5, 1:6, 1: 7. 1:8, 1:9, 1:10, 1:11, 1:12, 1:13, 1:14, 1:15, 1:16, 1:17 or
  • the components of the pharmaceutical composition may be present separately upon sale and may be in the form of a liquid formulation when used.
  • the pharmaceutical composition of the double-stranded oligonucleotide provided by the present disclosure and the above pharmaceutically acceptable carrier can be prepared according to various known methods, except that the double-stranded oligonucleoside provided by the present disclosure is used.
  • the acid can be substituted for the existing double-stranded oligonucleotide; in some specific embodiments, it can be prepared as follows:
  • the organic amine, the auxiliary lipid and the PEGylated lipid are suspended in the alcohol according to the above molar ratio and mixed to obtain a lipid solution; the amount of the alcohol is such that the total mass concentration of the obtained lipid solution is 2-25 mg/mL, For example, it can be 8-18 mg/mL.
  • the alcohol is selected from a pharmaceutically acceptable alcohol, such as an alcohol that is liquid near room temperature, for example, ethanol, propylene glycol, benzyl alcohol, glycerin, polyethylene glycol 200, polyethylene glycol 300, polyethylene glycol 400. One or more of them may be, for example, ethanol.
  • the double-stranded oligonucleotide provided by the present disclosure is dissolved in a buffered saline solution to obtain an aqueous solution of a double-stranded oligonucleotide.
  • concentration of the buffered saline solution is 0.05-0.5 M, for example, 0.1-0.2 M, and the pH of the buffered saline solution is adjusted to 4.0-5.5, for example, may be 5.0-5.2, and the amount of the buffered saline solution is such that the double-stranded oligonucleotide is The concentration does not exceed 0.6 mg/mL, and may be, for example, 0.2 to 0.4 mg/mL.
  • the buffer salt is selected from one or more of soluble acetate and soluble citrate, and may be, for example, sodium acetate and/or potassium acetate.
  • the lipid solution and the double-stranded oligonucleotide aqueous solution are mixed, and the mixed product is incubated at 40 to 60 ° C for at least 2 minutes, for example, 5 to 30 minutes, to obtain a liposome preparation after the incubation.
  • the volume ratio of the lipid solution to the aqueous solution of the double-stranded oligonucleotide is 1: (2-5), for example, may be 1:4.
  • the liposome preparation after the incubation is concentrated or diluted to remove impurities and sterilized, and the pharmaceutical composition provided by the present disclosure has the physical and chemical parameters of pH 6.5-8, encapsulation efficiency of not less than 80%, and particle size of 40-200nm, polydispersity index is not higher than 0.30, osmotic pressure is 250-400mOsm/kg; for example, physical and chemical parameters can be pH 7.2-7.6, encapsulation efficiency is not less than 90%, particle size is 60-100nm, more The dispersion index is not higher than 0.20, and the osmotic pressure is 300-400 mOsm/kg.
  • concentration or dilution can be carried out before, after or simultaneously with the removal of impurities.
  • the method of removing impurities can be carried out by various methods, for example, a phase-cut flow system, a hollow fiber column, ultrafiltration under a condition of 100 K Da, and an ultrafiltration exchange solution of phosphate buffer (PBS) having a pH of 7.4.
  • the sterilization method can be carried out by various methods, for example, it can be sterilized by filtration on a 0.22 ⁇ m filter.
  • the present disclosure provides an oligonucleotide conjugate comprising the double-stranded oligonucleotide described above and a conjugation group linked to the double-stranded oligonucleotide group.
  • conjugation means that two or more chemical moieties each having a particular function are linked to each other in a covalently bonded manner; accordingly, the “conjugate” is A compound formed by covalent attachment between the various chemical moieties.
  • oligonucleotide conjugate means a compound formed by covalent attachment of one or more chemical moieties having a particular function to a double-stranded oligonucleotide.
  • conjugates of the present disclosure are sometimes simply referred to as "conjugates”.
  • a "conjugated molecule” is understood to be a specific compound that can be conjugated to a double-stranded oligonucleotide by reaction, ultimately forming an oligonucleotide conjugate of the present disclosure.
  • the type and manner of ligation of such ligands is well known to those skilled in the art and generally functions to bind to specific receptors on the surface of the target cell, mediating delivery of the double-stranded oligonucleotide linked to the ligand to the target cell. .
  • the conjugate group comprises a pharmaceutically acceptable at least one targeting group and an optional linker, and the double stranded oligonucleotide, the linker and the targeting The groups are connected in sequence.
  • the targeting group is from 1 to 6.
  • the targeting group is 2-4.
  • the double stranded oligonucleotide molecule can be non-covalently or covalently conjugated to the conjugated group, for example, can be covalently conjugated to the conjugated group.
  • the conjugation site of the double-stranded oligonucleotide and the conjugating group may be at the 3' end or the 5' end of the double stranded oligonucleotide sense strand, or may be at the 5' end of the antisense strand, and may also be in the double The internal sequence of the strand oligonucleotide.
  • the conjugated site of the double stranded oligonucleotide to the conjugated group is at the 3' end of the sense strand of the double stranded oligonucleotide.
  • the conjugate group can be attached to a phosphate group, a 2'-position hydroxy group, or a base of a nucleotide. In some embodiments, the conjugate group can be attached to the 3'-position hydroxyl group, in which case the nucleotides are linked by a 2'-5' phosphodiester bond.
  • the conjugate group is typically attached to the phosphate group of the nucleotide; when the conjugate group is attached to the double stranded oligonucleotide In the internal sequence, the conjugate group is typically attached to a ribose sugar ring or base.
  • the double-stranded oligonucleotide and the conjugated group may be linked by an acid-labile or reducible chemical bond, and in the acidic environment of the cell endosome, these chemical bonds may be degraded, thereby The double-stranded oligonucleotide becomes free.
  • the conjugating group can be attached to the sense strand of the double stranded oligonucleotide to minimize the effect of conjugation on the activity of the double stranded oligonucleotide.
  • the targeting group can be linked to the double stranded oligonucleotide molecule via a suitable linker, and one skilled in the art can select the appropriate linker depending on the particular type of targeting group.
  • suitable linker one skilled in the art can select the appropriate linker depending on the particular type of targeting group.
  • the types of these linkers, the types of targeting groups, and the manner of attachment to double-stranded oligonucleotides can be found in the disclosure of WO 2015006740 A2, the entire contents of which is incorporated herein by reference.
  • a suitable linker can be a structure as shown in formula (301):
  • k is an integer from 1 to 3;
  • L A is a chain moiety comprising an amide bond having a structure represented by formula (302), each of said L A having an ether bond at its two ends with one of said targeting group and said L C moiety, respectively connection:
  • L B is a chain moiety comprising an N-acylpyrrolidine having a structure represented by the formula (303), the chain moiety having a carbonyl group at one end thereof and being bonded to the L C moiety via an amide bond at the other end Has an oxy group and is linked to the double-stranded oligonucleotide by a phosphate bond:
  • L C is a 2-4 valent linking group based on hydroxymethylaminomethane, dimethylolaminomethane or trishydroxymethylaminomethane, and the L C is via an oxygen atom to each of the L A moieties via an ether linkage. It is linked and is linked to the L B moiety via an amide bond via a nitrogen atom.
  • L C is a trimethylolaminomethane-based tetravalent linking group, linked by -(L A ) 3 trishydroxymethylaminomethane-L B - as a linker
  • An oligonucleotide conjugate formed by an N-acetylgalactosamine molecule and a double-stranded oligonucleotide molecule has the structure shown in the following formula (304):
  • the double helix structure represents a double stranded oligonucleotide.
  • the conjugation site of the double-stranded oligonucleotide and the conjugating group may be at the 3' end or the 5' end of the double stranded oligonucleotide sense strand, or may be at the 5' end of the antisense strand, or In the internal sequence of a double stranded oligonucleotide.
  • the 3' end of the sense strand of the double-stranded oligonucleotide of the present disclosure is passed through a linker-(L A ) 3 trishydroxymethylaminomethane-L B - and three N-acetylgalactose
  • the amine (GalNAc) molecule is covalently conjugated to obtain an oligonucleotide conjugate having a molar ratio of the double-stranded oligonucleotide molecule to the GalNAc molecule of 1:3, which may also be referred to as (GalNAc) 3 -Nu hereinafter. Its structure is as shown in the following formula (305):
  • double helix structure represents the double stranded oligonucleotide
  • the linker is ligated to the 3' end of the sense strand of the double stranded oligonucleotide.
  • a suitable linker can be a structure as shown in formula (306):
  • l is an integer from 0-3;
  • * indicates a site on the linker that is attached to the targeting group via an ether linkage
  • # indicates a site on the linker that is linked to the double-stranded oligonucleotide by a phosphate bond.
  • the oligonucleotide conjugate has a structure as shown in formula (307):
  • double helix structure represents the double stranded oligonucleotide
  • the linker is ligated to the 3' end of the sense strand of the double stranded oligonucleotide.
  • conjugates can be synthesized by methods which have been described in detail in the prior art.
  • the preparation of various conjugates is described in detail, for example, in WO2015006740A2.
  • WO20140255A1 describes a preparation method of the structure represented by the formula (305).
  • a method of preparing the structure represented by the formula (307) is described in Rajeev et al., Chem BioChem 2015, 16, 903-908.
  • the conjugate has the structure shown in Formula (308):
  • n1 is an integer selected from 1-3, and n3 is an integer selected from 0-4;
  • M1, m2 and m3 are independently an integer selected from 2-10;
  • R 10 , R 11 , R 12 , R 13 , R 14 and R 15 are each independently H or selected from the group consisting of C 1 -C 10 alkyl, C 1 -C 10 haloalkane a group and a C 1 -C 10 alkoxy group;
  • R 3 is a group of the structure represented by the formula A59:
  • E 1 is OH, SH or BH 2
  • Nu is a double-stranded oligonucleotide
  • L 1 may be selected from the group consisting of A1-A26 groups or any combination thereof, wherein the structures and definitions of A1-A26 are as follows:
  • j1 is an integer from 1 to 20;
  • j2 is an integer from 1 to 20;
  • R' is a C 1 -C 10 alkyl group
  • Ra is selected from one of the groups of the formula A27-A45:
  • Rb is a C 1 -C 10 alkyl group
  • L 1 is defined as a linear alkyl group, but it may not be a linear group or a different name, such as an amine or alkenyl group replaced the above and / or substitutions generated.
  • the length of L 1 is the number of atoms in the chain connecting the two attachment points.
  • a ring for example, a heterocyclylene group or a heteroarylene group obtained by substituting a carbon atom of the linear alkylene group is counted as one atom.
  • the pharmaceutically acceptable targeting group refers to a ligand that can be routinely used in the field of double-stranded oligonucleotide administration, such as the various ligands described in WO2009082607A2, by way of citation The entire disclosure is incorporated herein.
  • each of said ligands is independently selected from a ligand capable of binding to a cell surface receptor.
  • at least one of the ligands is a ligand capable of binding to a hepatocyte surface receptor.
  • at least one of the ligands is a ligand capable of binding to a mammalian hepatocyte surface receptor.
  • at least one of the ligands is a ligand capable of binding to a human hepatocyte surface receptor.
  • at least one of the ligands is a ligand capable of binding to a hepatic surface asialoglycoprotein receptor (ASGPR).
  • ASGPR hepatic surface asialoglycoprotein receptor
  • the class of these ligands is well known to those skilled in the art and generally functions to bind to specific receptors on the surface of the target cell, mediating delivery of the double-stranded oligonucleotide linked to the ligand to the target cell.
  • the pharmaceutically acceptable targeting group can be any ligand that binds to an asialoglycoprotein receptor (ASGPR) on the surface of a mammalian liver cell.
  • each ligand is independently a asialoglycoprotein, such as asialouromusmucoid (ASOR) or asialofibrate (ASF).
  • the pharmaceutically acceptable targeting group can be selected from one or more of the following ligands or derivatives thereof: lipophilic molecules, such as cholesterol, bile acids, Vitamins (eg vitamin E), lipid molecules of different chain lengths; polymers such as polyethylene glycol; polypeptides such as transmembrane peptides; aptamers; antibodies; quantum dots; saccharides such as lactose, polylactose, mannose Sugar, galactose, N-acetylgalactosamine (GalNAc); folate; receptor ligands expressed by hepatocytes, such as asialoglycoprotein, asialoglycohol residues, lipoproteins (eg high density) Lipoprotein, low density lipoprotein, etc., glucagon, neurotransmitters (such as adrenaline), growth factors, transferrin and the like.
  • lipophilic molecules such as cholesterol, bile acids, Vitamins (eg vitamin E), lipid molecules of different chain lengths
  • polymers such as poly
  • the ligand is a derivative of a sugar or a sugar.
  • At least one of the ligands is a sugar. In some embodiments, each ligand is a sugar. In some embodiments, at least one of the ligands is a monosaccharide, a polysaccharide, a modified monosaccharide, a modified polysaccharide, or a sugar derivative. In some embodiments, at least one of the ligands can be a monosaccharide, a disaccharide or a trisaccharide. In some embodiments, at least one of the ligands is a modified sugar. In some embodiments, each ligand is a modified sugar.
  • each ligand is independently selected from the group consisting of a polysaccharide, a modified polysaccharide, a monosaccharide, a modified monosaccharide, a polysaccharide derivative, or a monosaccharide derivative.
  • each or at least one ligand is selected from the group consisting of glucose and its derivatives, mannan and its derivatives, galactose and its derivatives, xylose and its derivatives, ribose and its derivatives, A group consisting of fucose and its derivatives, lactose and its derivatives, maltose and its derivatives, arabinose and its derivatives, fructose and its derivatives, and sialic acid.
  • each of the ligands may be independently selected from the group consisting of D-mannopose, L-mannopose, D-arabinose, D-nitrofuran, L-nitroxylose, D- Glucose, L-glucose, D-galactose, L-galactose, ⁇ -D-furanmannose, ⁇ -D-furanmannose, ⁇ -D-mannopose, ⁇ -D-mannopyrose, ⁇ -D-glucopyranose, ⁇ -D-glucopyranose, ⁇ -D-glucofuranose, ⁇ -D-glucofuranose, ⁇ -D-fructofuranose, ⁇ -D-pyranose, ⁇ -D-pyridyl Galactose, ⁇ -D-galactopyranosyl, ⁇ -D-galactopyranosylose, ⁇ -D-galactofuranosamine, glucosamine, si
  • the pharmaceutically acceptable targeting group in the oligonucleotide conjugate can be galactose or N-acetylgalactosamine, wherein the galactose or N-acetylgalactosamine molecule can It is one price, two price, three price, and four price.
  • the monovalent, divalent, trivalent, and tetravalent terms described herein refer to the conjugation of a double-stranded oligonucleotide molecule to a galactose or N-acetylgalactosamine molecule containing a targeting group, respectively.
  • the molar ratio of the double-stranded oligonucleotide molecule to the galactose or N-acetylgalactosamine molecule in the oligonucleotide conjugate is 1:1, 1:2 , 1:3 or 1:4.
  • the pharmaceutically acceptable targeting group is N-acetylgalactosamine.
  • the N-acetylgalactosamine molecule is trivalent or tetravalent.
  • the N-acetylgalactosamine molecule when the double stranded oligonucleotide of the present disclosure is conjugated to a conjugating group containing N-acetylgalactosamine, the N-acetylgalactosamine molecule is trivalent.
  • each M 1 represents a targeting group, the definition and optional range of which are the same as described above.
  • each M 1 is independently selected having one affinity ligand for the asialoglycoprotein receptor on the cell surface of mammalian liver.
  • n1 may be an integer from 1 to 3
  • n3 may be an integer from 0 to 4. , ensuring that the number of M 1 ligands in the conjugate is at least 2; in some embodiments, n1+n3 ⁇ 2, such that the number of M 1 ligands is at least 3, such that the M 1 ligand It is easier to bind to the hepatic surface asialoglycoprotein receptor, thereby facilitating the conjugate to enter the cell by endocytosis.
  • n1 is an integer of 1-2
  • n3 is an integer of 0-1
  • n1+n3 2-3.
  • R 10 , R 11 , R 12 , R 13 , R 14 and R 15 are each independently selected from H, C 1 -C 10 alkyl, C 1 -C 10 haloalkyl, and C when one kind of 1 -C 10 alkoxy, not change the nature of the conjugates disclosed herein are object of the present disclosure may be implemented.
  • R 10 , R 11 , R 12 , R 13 , R 14 , and R 15 are each independently selected from the group consisting of H, methyl, and ethyl.
  • R 10 , R 11 , R 12 , R 13 , R 14 and R 15 are both H.
  • R 3 is a group of the structure represented by the formula A59, wherein E 1 is OH, SH or BH 2 , based on consideration of ease of preparation of the raw material, in some embodiments In the case, E 1 is OH or SH.
  • R 2 is selected to achieve the A59 connection N on the backbone nitrogen.
  • the "nitrogen-containing skeleton” means a chain structure in which a carbon atom to which R 10 , R 11 , R 12 , R 13 , R 14 and R 15 are bonded to each other is bonded to N.
  • R 2 can be any linking group capable of attaching the A59 group to the N on the nitrogen-containing backbone in an appropriate manner.
  • the R 2 group needs to contain both a linking site and a linkage to the N on the nitrogen-containing backbone. The junction site of the P phase in R 3 .
  • R 2 is B5, B6, B5' or B6':
  • a site indicating a covalent bond of a group A site indicating a covalent bond of a group.
  • q 2 may range from an integer of 1-10, and in some embodiments, q 2 is an integer from 1 to 5.
  • L 1 is selected from a combination of linkages of one or more of the groups of Formulas A1 to A26.
  • L 1 is selected from the group consisting of a combination of one or more of A1, A4, A5, A6, A8, A10, A11, and A13; in some embodiments, L 1 is selected from the group consisting of A1, A4, A8, A10 and A11 are connected to at least two compositions; in some embodiments, L 1 is selected from A1, A8, A10 connection of the combination of at least two.
  • L 1 can be from 3 to 25 atoms, from 3 to 20 atoms, from 4 to 15 atoms, or from 5 to 12 atoms. In some embodiments, the length of L 1 is 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, and 15 , 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 30, 35, 40, 45, 50, 55, 60 Atom.
  • j1 is an integer from 2 to 10, and in some embodiments, j1 is an integer from 3-5.
  • j2 is an integer from 2 to 10, and in some embodiments, j2 is an integer from 3-5.
  • R' is a C1-C4 alkyl group, and in some embodiments, R' is one of a methyl group, an ethyl group, and an isopropyl group.
  • Ra is one of A27, A28, A29, A30 and A31, and in some embodiments, Ra is A27 or A28.
  • Rb is a C1-C5 alkyl group, and in some embodiments, Rb is one of a methyl group, an ethyl group, an isopropyl group, and a butyl group.
  • the respective formula A1-A26 of j1, j2, R ', Ra , Rb can be selected to achieve 1 M N-linked on the nitrogen-containing ligand backbone between the ligand and M The spatial location is more suitable for the binding of the M 1 ligand to the hepatic surface asialoglycoprotein receptor.
  • the oligonucleotide conjugates of the present disclosure have the formulas (403), (404), (405), (406), (407), (408), (409), (410), (411), (412), (413), (414), (415), (416), (417), (418), (419), (420), (421), or (422) structure:
  • P in Formula A59 can be joined to any possible position in a double stranded oligonucleotide sequence, eg, P in Formula A59 can be joined to a double stranded oligonucleotide sense strand or an antisense strand Any one nucleotide; in some embodiments, P in formula A59 is attached to any one of the nucleotides of the double stranded oligonucleotide sense strand.
  • the P in the formula A59 is linked to the terminus of the sense strand or the antisense strand of the double stranded oligonucleotide; in some embodiments, the P in the formula A59 is linked to the double stranded oligonucleotide sense strand The end.
  • the term refers to the first 4 nucleotides of the sense strand or the antisense strand from its one end.
  • the P in the formula A59 is linked to the terminus of the sense strand or the antisense strand of the double stranded oligonucleotide; in some embodiments, the P in the formula A59 is linked to the sense strand of the double stranded oligonucleotide 3' end.
  • the conjugate provided by the present disclosure upon entry into the cell, can release a single double-stranded oligonucleotide antisense strand upon unwinding, To regulate target gene expression.
  • P in formula A59 can be attached to any possible position on a nucleotide in a double stranded oligonucleotide, for example, the 5' position of a nucleotide, the 2' position of a nucleotide, and the 3' position of a nucleotide. Or on the base of a nucleotide.
  • P in Formula A59 can be joined to the 2', 3' or 5' position of the nucleotide in the double stranded oligonucleotide by formation of a phosphodiester bond.
  • the P in the formula A59 is linked to an oxygen atom formed after dehydrogenation of the 3' hydroxyl group of the 3' terminal nucleotide of the double stranded oligonucleotide sense strand, or P in the formula A59 is substituted by a double strand
  • the hydrogen in the 2'-hydroxyl group of one nucleotide in the sense strand of the oligonucleotide is linked to the nucleotide, or the P in the formula A59 is substituted by the 5' terminal nucleotide of the sense strand of the double stranded oligonucleotide. Hydrogen in the 'hydroxyl group is attached to the nucleotide.
  • each adjacent nucleotide is linked by a phosphodiester bond or a phosphorothioate diester bond, a phosphodiester bond or a thioester
  • the non-bridged oxygen or sulfur atom in the phosphodiester bond has a negative charge, which may exist in the form of a hydroxyl group or a sulfhydryl group, and the hydrogen ion in the hydroxyl group or the thiol group may also be partially or completely substituted by a cation.
  • the cation may be any cation such as one of a metal cation, an ammonium ion NH 4 + , and an organic ammonium cation.
  • the cation is selected from one or more of an alkali metal ion, an ammonium cation formed by a tertiary amine, and a quaternary ammonium cation.
  • the alkali metal ion may be K + and/or Na +
  • the cation formed by the tertiary amine may be an ammonium ion formed by triethylamine and/or an ammonium ion formed by N,N-diisopropylethylamine.
  • a double stranded oligonucleotide or oligonucleotide conjugate of the present disclosure may exist at least in part in the form of a salt.
  • the non-bridging oxygen or sulfur atom in the phosphodiester bond or the phosphorothioate diester bond is at least partially bound to the sodium ion, and the double-stranded oligonucleotide or oligonucleotide of the present disclosure is conjugated
  • the substance is present in the form of a sodium salt or a partial sodium salt.
  • modified nucleotide groups can be introduced into the double-stranded oligonucleotides described in the present disclosure by using nucleoside monomers having corresponding modifications. Methods of preparing nucleoside monomers having corresponding modifications and methods of introducing modified nucleotide groups into double-stranded oligonucleotides are also well known to those skilled in the art. All modified nucleoside monomers are either commercially available or can be prepared by known methods.
  • oligonucleotide conjugates of the present disclosure can be prepared using any reasonable synthetic route.
  • the oligonucleotide conjugate of formula (308) can be prepared by a method comprising, under conditions of solid phase synthesis of phosphoramidite, followed by a double stranded oligonucleotide sense strand and a reverse
  • the nucleotide type and sequence of the sense strand are sequentially linked in the direction of 3' to 5', and the linkage of each nucleoside monomer includes four steps of deprotection, coupling, capping, oxidation or sulfurization; Isolating the sense strand and the antisense strand of the double-stranded oligonucleotide, and annealing, wherein the double-stranded oligonucleotide is the double-stranded oligonucleotide of the above disclosure;
  • the method further comprises contacting the compound represented by the formula (321) with a nucleoside monomer or a nucleotide sequence attached to the solid phase carrier in the presence of a coupling reaction condition and a coupling reagent, such that the formula (321) The compound shown is linked to the nucleotide sequence by a coupling reaction.
  • the compound represented by the formula (321) is also referred to as a conjugation molecule.
  • R 4 is a moiety that is capable of binding to a double-stranded oligonucleotide of the present disclosure. In some embodiments, R 4 is a moiety capable of binding to a double-stranded oligonucleotide of the present disclosure by a covalent bond. In some embodiments, R 4 is a moiety capable of being conjugated to any functional group of a double-stranded oligonucleotide by a phosphodiester bond;
  • Each S 1 is independently a group formed by substituting all of the active hydroxyl groups in M 1 with a YCOO- group, wherein each Y is independently selected from the group consisting of methyl, trifluoromethyl, difluoromethyl, and fluoro One of a group, a trichloromethyl group, a dichloromethyl group, a monochloromethyl group, an ethyl group, a n-propyl group, an isopropyl group, a phenyl group, a halogenated phenyl group, and an alkylphenyl group;
  • n1, n3, m1, m2, m3, R 10, R 11, R 12, R 13, R 14, R 15, L 1, M 1 are each as defined and selectable range as described above.
  • R 4 is to achieve linkage to N on the nitrogen-containing backbone and to provide a suitable reaction site for the synthesis of the oligonucleotide conjugate of formula (308).
  • R 4 includes an R 2 linking group or a protected R 2 linking group, and a functional group capable of forming a structure represented by A59 with a double-stranded oligonucleotide by reaction.
  • R 4 comprises a first functional group that can form a phosphite with a group on a double-stranded oligonucleotide or a nucleoside monomer, and a second functional group that can react with a hydroxyl or amino group to form a covalent bond or Containing a solid phase support joined by the covalent bond.
  • the first functional group is a phosphoramidite, a hydroxyl group, or a protected hydroxyl group.
  • the second functional group is a phosphoramidite, a carboxylic acid, or a carboxylate.
  • the second functional group is a solid support that is linked to other portions of the molecule via a covalent bond, the covalent bond being formed from a hydroxyl group or an amino group.
  • the solid support is linked via a phosphate bond, a carboxylate bond, or an amide bond.
  • the solid support is a resin.
  • the first functional group contains a hydroxyl group, -OR k or a group represented by formula (C3); and the second functional group contains formulas (C1), (C2), (C3), (C1' ) or the structure shown in (C3'):
  • q 1 is an integer from 1 to 4
  • X is O or NH
  • M + is a cation
  • R k is a hydroxy protecting group
  • SPS is a solid phase carrier. Represents a site where a group is covalently attached to the rest of the molecule.
  • the first functional group contains a phosphoramidite group, as shown in formula (C3), and the phosphoramidite group may be a hydroxyl group at any position on the nucleotide, such as a 2' hydroxyl group or The 3' hydroxyl group undergoes a coupling reaction to form a phosphite, and is oxidized or sulfided to form a phosphodiester bond or a phosphorothioate bond represented by the formula A59, and the conjugation molecule is conjugated to the double-stranded oligonucleotide.
  • a phosphoramidite group may be a hydroxyl group at any position on the nucleotide, such as a 2' hydroxyl group or The 3' hydroxyl group undergoes a coupling reaction to form a phosphite, and is oxidized or sulfided to form a phosphodiester bond or a phosphorothioate bond represented by the formula A59
  • the compound of the formula (321) can be conjugated to the nucleotide without affecting the acquisition of the oligonucleotide conjugate represented by the formula (308).
  • the compound of the formula (321) and the hydroxyl group at the terminal nucleotide in the nucleotide sequence are made.
  • the compound of formula (321) is conjugated to a double-stranded oligonucleotide by reaction and formation of a phosphodiester linkage or phosphorothioate linkage during subsequent oxidation or vulcanization.
  • the first functional group contains a protected hydroxyl group.
  • the second functional group comprises a group reactive with a solid support, the reaction providing a conjugation molecule comprising a solid support.
  • the second functional group contains a carboxyl group, a carboxylate or a phosphoramidite, as represented by formula (C1), (C2) or (C3), when the second functional group comprises a carboxyl group or a carboxylate.
  • the compound of the formula (321) is subjected to an esterification reaction or amidation reaction with a solid phase carrier such as a hydroxyl group or an amino group on the resin to form a conjugation molecule comprising a solid phase carrier which is bonded via a carboxylate bond or an amide bond.
  • a solid phase carrier such as a hydroxyl group or an amino group on the resin
  • the compound of the formula (321) is coupled with a general-purpose solid phase carrier, for example, a hydroxyl group on a resin, and is oxidized to form a phosphodiester-linked solid phase carrier. Conjugated molecules.
  • the nucleoside monomer is sequentially linked according to the phosphoramidite solid phase synthesis method, and the sense strand or antisense of the double-stranded oligonucleotide to which the conjugated group is linked is obtained, starting from the above-mentioned product after the solid phase carrier is attached. chain.
  • the first functional group undergoes deprotection and subsequent coupling with a phosphoramidite group on the nucleoside monomer under coupling reaction conditions.
  • the first functional group contains a hydroxyl group or a protected hydroxyl group
  • the second functional group contains a solid phase carrier linked by a carboxylate bond or a solid phase carrier linked by an amide bond, or a phosphate bond.
  • the attached solid support is as shown in formula (C1') or (C3').
  • the nucleoside monomer is sequentially linked according to the solid phase synthesis method of the phosphoramidite to obtain a sense strand of the double-stranded oligonucleotide to which the conjugated group is attached or Antisense chain.
  • the carboxylate can be represented as -COO - M + , wherein M + is a cation, such as one selected from the group consisting of a metal cation, an ammonium cation NH 4 + , and an organoammonium cation.
  • M + is a cation, such as one selected from the group consisting of a metal cation, an ammonium cation NH 4 + , and an organoammonium cation.
  • the metal ion is selected from one of the alkali metal ions, such as K + or Na + .
  • the organic ammonium ion is an ammonium cation or a quaternary ammonium cation formed by a tertiary amine, such as an ammonium ion formed by triethylamine or N, N-di Ammonium ion formed by isopropylethylamine.
  • the carboxylate is a triethylamine carboxylate or an N,N-diisopropylethylamine carboxylate.
  • R 4 comprises a structure of formula (B9), (B10), (B9'), (B10'), (B11), (B12), (B11'), or (B12'):
  • q 1 is an integer from 1 to 4
  • q 2 is an integer from 1 to 10
  • X is O or NH
  • M + is a cation
  • R k is a hydroxy protecting group
  • SPS is a solid phase carrier. Represents a site where a group is covalently attached to the rest of the molecule.
  • q 1 is 1 or 2.
  • q 2 is an integer from 1 to 5.
  • R 4 contains a structure represented by formula (B9) or (B10).
  • R 4 contains a structure represented by formula (B11) or (B12).
  • R k is Tr (trityl), MMTr (4-methoxytrityl), DMTr (4,4'-bismethoxytrityl), TMTr (4 One or more of 4', 4'-trimethoxybenzyl.
  • R k may be DMTr, i.e. methoxytrityl, 4,4'-bis (4,4'-dimethoxytrityl).
  • L 1 is used to connect the ligand to M 1 on the N atom a nitrogen-containing backbone to provide a liver function is an oligonucleotide targeted conjugate. In some embodiments, L 1 comprises any one of A1-A26 or a combination thereof.
  • the conjugated molecule can be linked by the above first functional group and optionally the second functional group as compared to the phosphoramidite solid phase synthesis method well known in the art.
  • An oligonucleotide conjugate to any possible position of the nucleotide sequence for example, the conjugate molecule is attached to the end of the nucleotide sequence and the conjugate molecule is attached to the end of the nucleotide sequence.
  • each S 1 is independently M 1 . In some embodiments, each S 1 is independently a group formed by the protection of at least one reactive hydroxyl group of M 1 by a hydroxy protecting group. In some embodiments, each S 1 is independently a group formed by any of the active hydroxyl groups present in M 1 being protected by a hydroxy protecting group. In some embodiments, any known to those skilled hydroxy protecting groups may be used to protect the reactive hydroxyl groups of M 1.
  • the protected hydroxy group can be represented by the formula YCOO-, wherein each Y is independently selected from the group consisting of a C 1 -C 10 alkyl group and a C 6 -C 10 aryl group, the C The 1- C 10 alkyl group and the C 6 -C 10 aryl group are optionally substituted by one or more substituents selected from the group consisting of halogen and C 1 -C6 alkyl groups.
  • each Y is independently selected from the group consisting of methyl, trifluoromethyl, difluoromethyl, monofluoromethyl, trichloromethyl, dichloromethyl , monochloromethyl, ethyl, n-propyl, isopropyl, phenyl, halophenyl, and C 1 -C 6 alkylphenyl.
  • each S 1 is independently selected from the group consisting of Formulas A46-A54:
  • S 1 is Formula A49 or A50.
  • each Y is independently selected from the group consisting of methyl, trifluoromethyl, difluoromethyl, monofluoromethyl, trichloromethyl, dichloromethyl, monochloromethyl, ethyl, and One of propyl, isopropyl, phenyl, halophenyl, and alkylphenyl; in some embodiments, Y is methyl.
  • the preparation method of the oligonucleotide conjugate of the present disclosure further comprises the step of synthesizing another strand of the double-stranded oligonucleotide (for example, when the above step synthesizes a double linked with a conjugated group)
  • the strand oligonucleotide sense strand also includes the synthesis of the antisense strand of the double-stranded oligonucleotide according to a solid phase synthesis method, and vice versa, separating the sense strand and the antisense strand, and annealing.
  • the solid phase carrier linked to the nucleotide sequence and/or the conjugate group is cleaved while the necessary protecting group is removed (in this case, each of the compounds of the formula (321) Converting the S 1 group to the corresponding M 1 ligand), obtaining a double-stranded oligonucleotide sense strand (or antisense strand) linked to the conjugated group and the corresponding antisense strand (or sense strand), sense strand Annealing with the antisense strand to form a double-stranded RNA structure, the oligonucleotide conjugate of the formula (308) is obtained.
  • the method of preparing the oligonucleotide conjugate comprises the steps of: reacting a compound of formula (321) with a sense strand or an antisense strand in the presence of coupling reaction conditions and a coupling reagent Contact with the first nucleoside monomer at the 3' end, such that the compound of formula (321) is attached to the first nucleotide of the sequence, under the conditions of solid phase synthesis of phosphoramidite, according to the desired sense strand or The antisense strand nucleotide type and sequence, the nucleoside monomers are sequentially linked in the direction of 3' to 5' to synthesize the sense strand or the antisense strand of the double stranded oligonucleotide; wherein the (321) compound is R 4 a compound represented by the formula (321) having a first functional group and a second functional group, the first functional group containing a protected hydroxyl group, and the second functional group having a structure represented by the formula (C
  • the method of preparing the oligonucleotide conjugate comprises the steps of: according to the nucleotide species and order of the sense strand or the antisense strand of the double stranded oligonucleotide, according to 3' to 5
  • the direction of the nucleoside monomer is sequentially linked to synthesize the sense strand and the antisense strand, and the linkage of each nucleoside monomer includes a four-step reaction of deprotection, coupling, capping, oxidation or vulcanization to obtain a solid phase support.
  • the compound of formula (321) is linked to the sense strand attached to the solid support in the presence of a coupling reaction condition and a coupling reagent.
  • the antisense strand on the phase carrier contacts the compound of formula (321) to the sense strand or the antisense strand, wherein the compound of formula (321) is a first functional group in R 4 and the first functional group is a phosphoramidite group.
  • the protecting group is removed and cleaved with the solid phase vector, and separately isolated and purified to obtain a sense strand or an antisense strand of the double-stranded oligonucleotide, annealed, wherein the double-stranded oligonucleotide is sensed
  • a conjugated group is attached to the chain or the antisense strand.
  • the P in Formula A59 is linked to the 3' end of the sense strand in a double stranded oligonucleotide, and the method of making the oligonucleotide conjugate of the present disclosure includes:
  • step (1) the method of removing the formula (321) R k protecting group in the compound comprising the deprotection conditions, the formula (321) contacting the compound with a deprotecting agent.
  • Deprotection conditions include a temperature of 0-50 ° C, in some embodiments 15-35 ° C, a reaction time of 30-300 seconds, in some embodiments 50-150 seconds, and a deprotection reagent may be selected from trifluoroacetic acid One or more of trichloroacetic acid, dichloroacetic acid, monochloroacetic acid, in some embodiments dichloroacetic acid.
  • the molar ratio of the deprotecting agent to the compound of formula (321) is from 10:1 to 1000:1, and in some embodiments from 50:1 to 500:1.
  • the coupling reaction conditions and the coupling reagent may use any conditions and reagents suitable for the above coupling reaction. In some embodiments, the same conditions and reagents as for the coupling reaction in the solid phase synthesis method employed can be used.
  • the conditions of the coupling reaction comprise a reaction temperature of 0-50 °C, and in some embodiments may be 15-35 °C.
  • the molar ratio of the compound of the formula (321) to the nucleoside monomer is from 1:1 to 1:50, in some embodiments from 1:2 to 1:5; the molar ratio of the compound of the formula (321) to the coupling reagent may be 1:1:50, in some embodiments 1:3 to 1:10, reaction time is 200-3000 seconds, and in some embodiments, 500-1500 seconds.
  • the coupling reagent may be selected from one or more of 1H-tetrazole, 5-ethylthio 1H-tetrazole, 5-benzylthio 1H-tetrazole, and in some embodiments 5-B. Thio 1H-tetrazole.
  • the coupling reaction can be carried out in an organic solvent, which may be selected from one or more of anhydrous acetonitrile, anhydrous DMF, anhydrous dichloromethane, and in some embodiments, anhydrous acetonitrile.
  • the organic solvent is used in an amount of from 3 to 50 L/mol, and in some embodiments from 5 to 20 L/mol, relative to the compound of the formula (321).
  • step (2) by the method of solid phase synthesis of phosphoramidite nucleic acid, the nucleoside monomer prepared by the above-mentioned step and linked to the solid phase carrier by the conjugation molecule is started, and the oligomer is synthesized in the direction of 3'-5'.
  • the sense strand S of the nucleotide conjugate At this point, the conjugate group is attached to the 3' end of the resulting sense strand.
  • conditions for solid phase synthesis described in steps (2) and (3) include nucleoside monomer deprotection conditions, type and amount of deprotection reagent, coupling reaction conditions, type and amount of coupling reagent, cap reaction
  • the conditions, the type and amount of the capping reagent, the oxidation reaction conditions, the type and amount of the oxidizing reagent, the vulcanization reaction conditions, the vulcanization reagent and the amount are various reagents, amounts and conditions conventionally used in the art.
  • the solid phase synthesis described in steps (2) and (3) can use the following conditions:
  • Nucleoside monomer deprotection conditions include a temperature of 0-50 ° C, in some embodiments 15-35 ° C, a reaction time of 30-300 seconds, in some embodiments 50-150 seconds, a deprotection reagent can be selected One or more of trifluoroacetic acid, trichloroacetic acid, dichloroacetic acid, monochloroacetic acid, in some embodiments, dichloroacetic acid.
  • the molar ratio of the deprotecting agent to the 4,4'-dimethoxytrityl protecting group on the solid support can be from 2:1 to 100:1, and in some embodiments from 3:1 to 50:1. .
  • the coupling reaction conditions include a temperature of 0-50 ° C, in some embodiments 15-35 ° C, the molar ratio of the nucleic acid sequence attached to the nucleoside monomer on the solid phase support may be 1:1 to 1:50, In some embodiments: 1:5 to 1:15; the molar ratio of the nucleic acid sequence and the coupling reagent attached to the solid support can be from 1:1 to 1:100, and in some embodiments from 1:50 to 1: 80.
  • the reaction time and the choice of coupling reagent are the same as described above.
  • the cap reaction conditions include a temperature of 0-50 ° C, in some embodiments 15-35 ° C, a reaction time of 5-500 seconds, in some embodiments 10-100 seconds, and the capping agent is selected in the same manner as previously described.
  • the molar ratio of the total amount of capping reagent to the nucleic acid sequence attached to the solid support is from 1:100 to 100:1, and in some embodiments from 1:10 to 10:1.
  • the capping reagent uses an equimolar amount of acetic anhydride and N-methylimidazole
  • the molar ratio of the nucleic acid sequence attached to the acetic anhydride, the N-methylimidazole, and the solid phase carrier is 1:1:10-10:10.
  • the oxidation reaction conditions include a temperature of 0-50 ° C, in some embodiments 15-35 ° C, a reaction time of 1-100 seconds, in some embodiments 5-50 seconds, and an oxidizing agent, in some embodiments, iodine. (In some embodiments, provided in the form of iodine water).
  • the molar ratio of the oxidizing reagent to the nucleic acid sequence attached to the solid support in the coupling step may range from 1:1 to 100:1, and in some embodiments from 5:1 to 50:1.
  • the vulcanization reaction conditions include a temperature of 0-50 ° C, in some embodiments 15-35 ° C, a reaction time of 50-2000 seconds, in some embodiments 100-1000 seconds, and a vulcanization reagent in some embodiments is hydrogenation. Xanthogen.
  • the molar ratio of the sulfurizing reagent to the nucleic acid sequence attached to the solid support in the coupling step may range from 10:1 to 1000:1, and in some embodiments from 10:1 to 500:1.
  • the method further comprises isolating the sense strand and the antisense strand of the double stranded oligonucleotide.
  • Methods for isolation are well known to those skilled in the art and generally involve cleavage of the resulting nucleotide sequence from a solid support, removal of protecting groups on bases, phosphates and ligands, purification and desalting. .
  • the synthetic nucleotide sequence is cleaved from the solid phase carrier, and the protecting group on the base, the phosphate group and the ligand is removed, and the conventional cleavage and deprotection in the synthesis of the double-stranded oligonucleotide can be performed.
  • the method is carried out.
  • the obtained nucleotide sequence linked to the solid phase carrier is contacted with concentrated aqueous ammonia; during deprotection, the protecting group YCOO- of the A46-A54 group is converted into a hydroxyl group, and the S1 group is converted into a corresponding M1.
  • a group produces a conjugate of the formula (308).
  • the concentrated ammonia water may be 25-30% by weight of ammonia water, and the amount of concentrated ammonia water may be 0.2 ml/ ⁇ mol-0.8 ml/ ⁇ mol as compared with the target double-stranded oligonucleotide sequence.
  • the method further comprises contacting the nucleotide sequence of the solid phase removal medium with triethylamine trihydrofluoride to remove the 2'-TBDMS protection.
  • the obtained target double-stranded oligonucleotide sequence has a corresponding nucleoside having a free 2'-hydroxy group.
  • the amount of pure triethylamine trihydrofluoride may be from 0.4 ml/ ⁇ mol to 1.0 ml/ ⁇ mol as compared to the target double-stranded oligonucleotide sequence.
  • the preparative ion chromatography purification column can be used to purify the nucleic acid by gradient elution with NaBr or NaCl; after product collection and combination, the reverse phase chromatography purification column can be used for desalting.
  • oligonucleotide conjugate a non-bridged oxygen atom or a sulfur atom in a phosphodiester bond or a phosphorothioate diester bond between nucleotides is substantially bonded to a sodium ion, and the oligonucleotide is conjugated.
  • the substance is basically present in the form of a sodium salt.
  • the sodium ion can be replaced with hydrogen ions and/or other cations using well known ion exchange methods to provide other forms of oligonucleotide conjugates. The cation is as previously described.
  • the purity and molecular weight of the nucleic acid sequence can be detected at any time during the synthesis to better control the quality of the synthesis. Such detection methods are well known to those skilled in the art. For example, nucleic acid purity can be detected by ion exchange chromatography and molecular weight can be determined by LC-MS chromatography.
  • the synthesized sense strand (S chain) and the antisense strand (AS chain) can be simply mixed in an equimolar ratio in water for injection to 70-95 ° C, followed by cooling at room temperature to form a double bond through hydrogen bonding. Chain structure.
  • S chain sense strand
  • AS chain antisense strand
  • the synthesized oligonucleotide conjugate can also be characterized by molecular weight detection or the like using methods such as LC/MS chromatography to determine the synthesis.
  • the oligonucleotide conjugate is an oligonucleotide conjugate designed for the target, and the sequence of the synthesized double-stranded oligonucleotide is the sequence of the desired double-stranded oligonucleotide, for example, as shown in Table 1. One of the sequences of the columns.
  • the compound of the formula (321) can be obtained by a production method comprising: a compound represented by the formula (313) and a cyclic group in an organic solvent under an esterification reaction condition and in the presence of a base and an ester-forming catalyst.
  • the acid anhydride is contacted, ion exchanged, and the compound represented by the formula (321) is obtained:
  • n1, n3, m1, m2, m3, R 10 , R 11 , R 12 , R 13 , R 14 , R 15 , L 1 , S 1 are as defined above;
  • R 6 is a group which provides R 4 in the formula (321). In some embodiments, R 6 has the structure shown by formula (A61):
  • R i is possible to achieve the N-linked nitrogen-containing backbone, and R k O connection has a connection to any free hydroxyl group, R k is a hydroxy protecting group.
  • R 4 contains a first functional group and a second functional group as a hydroxy protecting group, and the second functional group contains a compound of the formula (321) having a structure represented by the formula (C1) or (C2).
  • the esterification reaction conditions include a reaction temperature of 0-100 ° C, and a reaction time of 8-48 hours. In some embodiments, the esterification reaction conditions are a reaction temperature of 10-40 ° C, and a reaction time of 20-30. hour.
  • the organic solvent comprises an epoxy solvent, an ether solvent, a halogenated alkane solvent, dimethyl sulfoxide, N,N-dimethylformamide, and N,N-diisopropylethylamine.
  • the epoxy solvent is dioxane and/or tetrahydrofuran
  • the ether solvent is diethyl ether and/or methyl tert-butyl ether
  • the halogenated alkane solvent is dichloromethane, three One or more of methyl chloride and 1,2-dichloroethane.
  • the organic solvent is dichloromethane.
  • the organic solvent is used in an amount of from 3 to 50 L/mol, and in some embodiments from 5 to 20 L/mol, relative to the compound of the formula (313).
  • the cyclic anhydride is one of succinic anhydride, glutaric anhydride, adipic anhydride, or pimelic anhydride, and in some embodiments is succinic anhydride.
  • the molar ratio of the cyclic anhydride to the compound of formula (313) is from 1:1 to 10:1, and in some embodiments from 2:1 to 5:1.
  • the ester-forming catalyst may be any catalyst that catalyzes the esterification reaction, for example, the catalyst may be 4-dimethylaminopyridine.
  • the molar ratio of the catalyst to the compound of formula (313) is from 1:1 to 10:1, and in some embodiments from 2:1 to 5:1.
  • the base can be any inorganic base, organic base, or a combination thereof.
  • the base may be, for example, a tertiary amine organic base.
  • the tertiary amine organic base is triethylamine or N,N-diisopropylethylamine.
  • the molar ratio of the tertiary amine organic base to the compound of formula (313) is from 1:1 to 20:1, and in some embodiments from 3:1 to 10:1.
  • the ion exchange is the conversion of a compound of formula (321) to the desired carboxylic acid or carboxylate form, and methods of ion exchange are known to those skilled in the art, and suitable ion exchange solutions and exchange conditions can be used to obtain the foregoing.
  • the cation is a M + conjugation molecule and will not be described in detail herein.
  • the ion exchange reaction is carried out using a triethylamine phosphate solution having a concentration of 0.2-0.8 M.
  • the triethylamine phosphate solution The concentration is from 0.4 to 0.6 M, and the triethylamine phosphate solution is used in an amount of from 3 to 6 L/mol, and in a further embodiment from 4 to 5 L/mol, relative to the compound of the formula (313).
  • the compound of formula (321) can be isolated from the reaction mixture using any suitable separation method.
  • the solvent can be removed directly to provide a crude product of the compound of formula (321), which can be used directly in the subsequent reaction.
  • the method for preparing the compound of the formula (321) further comprises the product obtained by the above ion exchange reaction in the presence of a condensing agent and a tertiary amine organic base in an organic solvent under condensation reaction conditions. Further contacting with a solid phase carrier containing an amino group or a hydroxyl group.
  • a compound of the formula (321) in which R 4 contains a first functional group and a second functional group, a first functional group contains a hydroxy protecting group, and a second functional group contains a structure represented by the formula (C1′) is obtained.
  • the solid phase support is one of the vectors used in the solid phase synthesis of double-stranded oligonucleotides, some of which are well known to those skilled in the art.
  • the solid support can be selected from a solid support containing reactive hydroxyl or amino functional groups.
  • the solid support is an amino resin or a hydroxy resin.
  • the amino or hydroxy resin has the following parameters: particle size 100-400 mesh, surface amino or hydroxyl loading of 0.2-0.5 mmol/g.
  • the ratio of the compound represented by the formula (321) to the solid phase carrier is from 10 to 400 ⁇ mol of the compound per gram of the solid phase carrier ( ⁇ mol/g). In some embodiments, the ratio of the compound represented by the formula (321) to the solid phase carrier is from 50 to 200 ⁇ mol/g.
  • the organic solvent may be any suitable solvent or mixed solvent known to those skilled in the art.
  • the organic solvent is acetonitrile, an epoxy solvent, an ether solvent, a halogenated alkane solvent, dimethyl sulfoxide, N,N-dimethylformamide, and N,N-diisopropyl One or more of ethylamine.
  • the epoxy solvent is dioxane and/or tetrahydrofuran
  • the ether solvent is diethyl ether and/or methyl tert-butyl ether
  • the halogenated alkane solvent is dichloromethane, three One or more of methyl chloride and 1,2-dichloroethane.
  • the organic solvent is acetonitrile.
  • the organic solvent is used in an amount of from 20 to 200 L/mol, and in some embodiments from 50 to 100 L/mol, relative to the compound of the formula (321).
  • the condensing agent may be benzotriazol-1-yl-oxytripyrrolidinyl hexafluorophosphate, 3-diethoxyphosphoryl-1,2,3-benzoazole 4 (3H)-keto and/or O-benzotriazole-tetramethylurea hexafluorophosphate, in some embodiments, the condensing agent is O-benzotriazole-tetramethylurea hexafluoro Phosphate ester.
  • the molar ratio of the condensing agent to the compound of formula (321) is from 1:1 to 20:1, and in further embodiments from 1:1 to 5:1.
  • the tertiary amine organic base is triethylamine and/or N,N-diisopropylethylamine, in some embodiments N,N-diisopropylethylamine;
  • the molar ratio of the tertiary amine organic base to the compound of formula (321) is from 1:1 to 20:1, and in some embodiments from 1:1 to 5:1.
  • the method for preparing the compound of the formula (321) may further comprise contacting the obtained condensation product with a capping reagent and an acylation catalyst in an organic solvent under a cap reaction condition, and separating the compound represented by the formula (321). Compound.
  • the capping reaction serves to remove any reactive functional groups that have not been fully reacted to avoid the formation of unnecessary by-products in subsequent reactions.
  • the conditions for the cap reaction include a reaction temperature of 0-50 ° C, in some embodiments 15-35 ° C, a reaction time of 1-10 h, and in some embodiments 3-6 h.
  • the capping reagent can use a capping reagent used in solid phase synthesis of nucleic acids, and capping reagents used in solid phase synthesis of nucleic acids are well known to those skilled in the art.
  • the cap reagent consists of cap reagent A (capA) and cap reagent B (capB), wherein cap reagent A is N-methylimidazole, in some embodiments N-methylimidazole Provided as a mixed solution of pyridine/acetonitrile wherein the volume ratio of pyridine to acetonitrile is from 1:10 to 1:1, in some embodiments from 1:3 to 1:1, the total volume of pyridine and acetonitrile and N-A The volume of the imidazole is from 1:1 to 10:1, and in some embodiments from 3:1 to 7:1.
  • the cap reagent B is acetic anhydride.
  • the capping reagent B is provided as an acetic anhydride in acetonitrile solution, wherein the volume of acetic anhydride and acetonitrile is from 1:1 to 1:10, and in further embodiments: 1:2-1: 6.
  • the ratio of the volume of the pyridine/acetonitrile mixed solution of the N-methylimidazole to the mass of the compound of the formula (321) is 5 ml/g to 50 ml/g, and in some embodiments, 15 ml/g- 30ml/g.
  • the ratio of the volume of the acetic anhydride in acetonitrile solution to the mass of the compound of formula (321) is from 0.5 ml/g to 10 ml/g, and in some embodiments from 1 ml/g to 5 ml/g.
  • the capping reagent uses an equimolar amount of acetic anhydride and N-methylimidazole.
  • the organic solvent is acetonitrile, an epoxy solvent, an ether solvent, a halogenated alkane solvent, dimethyl sulfoxide, N,N-dimethylformamide, and N,N-diisopropyl One or more of ethylamine.
  • the organic solvent is acetonitrile.
  • the organic solvent is used in an amount of from 10 to 50 L/mol, and in some embodiments from 5 to 30 L/mol, relative to the compound of formula (321).
  • the acylation catalyst can be selected from any catalyst that can be used to form an ester condensation or an amide condensation, such as a basic heterocyclic compound.
  • the acylation catalyst is 4-dimethylaminopyridine.
  • the mass ratio of the catalyst to the compound of formula (321) is from 0.001:1 to 1:1, and in some embodiments from 0.01:1 to 0.1:1.
  • the compound of formula (321) can be isolated from the reaction mixture using any suitable separation method.
  • the compound of formula (321) which is selected from the group consisting of acetonitrile, dichloromethane, can be obtained by extensive washing with an organic solvent and filtration to remove unreacted reactants, excess capping reagents, and other impurities.
  • Methanol in some embodiments acetonitrile.
  • the method for preparing the conjugated molecule of formula (321) comprises reacting the compound of formula (313) with phosphorousous acid in an organic solvent under coupling reaction conditions and in the presence of a coupling reagent.
  • the acyl diamine is contacted to obtain a compound of the formula (321).
  • a compound of the formula (321) in which R 4 contains a first functional group and a second functional group, a first functional group contains a hydroxy protecting group, and a second functional group contains a structure represented by the formula (C3) is obtained.
  • the coupling reaction conditions include a temperature of 0 to 50 ° C, for example, 15 to 35 ° C, and a molar ratio of the compound of the formula (313) to the phosphorous diamine may be 1:1 to 1:50, for example,
  • the molar ratio of the compound of the formula (313) to the coupling reagent may be from 1:1 to 1:100, for example from 1:50 to 1:80; and the reaction time may be from 200 to 3000 seconds. For example, 500-1500 seconds.
  • the phosphoramidide for example, bis(diisopropylamino)(2-cyanoethoxy)phosphine, which is commercially available or can be obtained by a method known in the art, can be used.
  • the coupling reagent is selected from one or more of 1H-tetrazole, 5-ethylthio 1H-tetrazole, 5-benzylthio 1H-tetrazole, for example, 5-ethylthio 1H-tetra Azole.
  • the coupling reaction can be carried out in an organic solvent selected from one or more of anhydrous acetonitrile, anhydrous DMF, anhydrous dichloromethane, such as anhydrous acetonitrile.
  • the organic solvent is used in an amount of from 3 to 50 L/mol, for example, from 5 to 20 L/mol, relative to the compound of the formula (313).
  • a hydroxyl group in the compound of the formula (313) is reacted with a phosphorous diamine to form a phosphoramidite group.
  • the solvent can be removed directly to provide a crude product of the compound of formula (321), which can be used directly in the subsequent reaction.
  • the method of preparing the compound of the formula (321) further comprises the steps of further separating the isolated product from the hydroxyl group-containing product under coupling reaction conditions, in an organic solvent, and in the presence of a coupling reagent.
  • the solid support is contacted.
  • the compound of the formula (321) is isolated by a cap reaction and an oxidation reaction.
  • a compound of the formula (321) having a first functional group and a second functional group in R 4 , a hydroxy protecting group in the first functional group, and a second functional group having a structure represented by the formula (C3′) is obtained.
  • the solid phase support is a solid phase support known in the art and useful for solid phase synthesis of nucleic acids, for example, may be a commercially available universal solid phase support after deprotection ( HL UnyLinker TM 300 Oligonucleotide Synthesis Support, Kinovate Life Sciences, structure as shown in Equation B80):
  • the deprotection conditions include a temperature of 0-50 ° C, such as 15-35 ° C; a reaction time of 30-300 seconds, such as 50-150 seconds.
  • the deprotecting agent can be selected from one or more of trifluoroacetic acid, trichloroacetic acid, dichloroacetic acid, monochloroacetic acid, and in some embodiments, the deprotecting reagent is dichloroacetic acid.
  • the molar ratio of the deprotecting agent to the -DMTr(4,4'-dimethoxytrityl) protecting group on the stationary phase is from 2:1 to 100:1, for example from 3:1 to 50:1.
  • the coupling reaction conditions and the choice of coupling reagent can be as described above.
  • the free hydroxyl group formed in the deprotection reaction reacts with the phosphoramidite group to form a phosphite linkage.
  • the cap reaction conditions comprise a temperature of 0-50 ° C, such as 15-35 ° C, a reaction time of 5-500 seconds, such as 10-100 seconds, and the cap reaction is carried out in the presence of a capping agent.
  • the selection and amount of cap reagent can be as described above.
  • the oxidation reaction conditions may include a temperature of 0 to 50 ° C, for example, 15 to 35 ° C, a reaction time of 1 to 100 seconds, for example, 5 to 50 seconds, and the oxidizing agent may be, for example, iodine (in some embodiments, Provided in the form of iodine water).
  • the molar ratio of oxidizing agent to phosphite groups is from 1:1 to 100:1, such as from 5:1 to 50:1.
  • R 6 is one of the groups of formula B7 or B8,
  • the compound of the formula (313) can be obtained by the following production method: in an organic solvent, under the conditions of an amide formation reaction, and in the presence of an amide reaction condensing agent and a tertiary amine organic base, the formula (314) The compound shown is contacted with a compound of formula (A-1) or a compound of formula (A-2), followed by separation:
  • n1, n3, m1, m2, m3, R 10 , R 11 , R 12 , R 13 , R 14 , R 15 , L 1 , S 1 , q 2 and R k are each defined and selected as As mentioned before.
  • the amide forming reaction conditions may include a reaction temperature of 0-100 ° C and a reaction time of 1-48 hours. In some embodiments, the amide forming reaction conditions are a reaction temperature of 10-40 ° C and a reaction time of 2 16 hours.
  • the organic solvent is an alcohol solvent, an epoxy solvent, an ether solvent, a halogenated alkane solvent, dimethyl sulfoxide, N,N-dimethylformamide, and N,N-diiso One or more of propyl ethylamine.
  • the alcohol solvent is, in some embodiments, one or more of methanol, ethanol, propanol, and in some embodiments, ethanol.
  • the epoxy-based solvent is, in some embodiments, dioxane and/or tetrahydrofuran.
  • the ether solvent is, in some embodiments, diethyl ether and/or methyl tert-butyl ether.
  • the halogenated alkane solvent is, in some embodiments, one or more of dichloromethane, chloroform, and 1,2-dichloroethane.
  • the organic solvent is dichloromethane.
  • the organic solvent is used in an amount of from 3 to 50 L/mol, and in a further embodiment from 3 to 20 L/mol, relative to the compound of the formula (314).
  • the amide-forming condensing agent is benzotriazol-1-yl-oxytripyrrolidinyl hexafluorophosphate, 3-diethoxyphosphoryl-1,2,3-benzene Azole 4(3H)-one, 4-(4,6-dimethoxytriazin-2-yl)-4-methylmorpholine hydrochloride, 2-ethoxy-1-ethoxycarbonyl- 1,2-Dihydroquinoline (EEDQ) or O-benzotriazole-tetramethylurea hexafluorophosphate, in a further embodiment 3-diethoxyphosphoryl-1,2,3 - benzoxazole 4(3H)-one.
  • the molar ratio of the amide-forming condensing agent to the compound of formula (314) may range from 1:1 to 10:1, and in some embodiments from 2.5:1 to 5:1.
  • the tertiary amine organic base is triethylamine or N,N-diisopropylethylamine, and in a further embodiment is N,N-diisopropylethylamine.
  • the molar ratio of the tertiary amine organic base to the compound of formula (314) is from 3:1 to 20:1, and in some embodiments from 5:1 to 10:1.
  • the compounds of formula (A-1) and formula (A-2) can be prepared by any suitable means.
  • R k is a DMTr group
  • a compound of formula (A-1) can be prepared by reacting calcium glycerate with DMTrCl; similarly, 3-amino-1,2-propanediol can be first contacted with a cyclic anhydride, followed by The compound of formula (A-2) is then prepared by reaction with DMTrCl, which may be a cyclic anhydride having from 4 to 13, in some embodiments from 4 to 8.
  • the compound of formula (313) can also be prepared by reacting a compound of formula (314) with the cyclic anhydride, 3-amino-1,2-propanediol, and DMTrCl in that order.
  • a compound of formula (314) with the cyclic anhydride, 3-amino-1,2-propanediol, and DMTrCl in that order.
  • the compound of formula (313) can be isolated from the reaction mixture using any suitable separation method.
  • the solvent can be removed directly to provide a crude product of the compound of formula (313) which can be used directly in the subsequent reaction.
  • the compound of formula (314) can be obtained by the following preparation method: the method comprises contacting a compound of formula (315) with a haloacetic acid in an organic solvent under deprotection reaction conditions, followed by Separate:
  • R 7 is selected from the group represented by formula (330), (331), (332) or (333), and in some embodiments, the structure of R 7 is as shown in formula (330):
  • the haloacetic acid can be selected from one or more of the group consisting of dichloroacetic acid, trichloroacetic acid, monochloroacetic acid, and trifluoroacetic acid, and in some embodiments is dichloroacetic acid.
  • the deprotection reaction conditions may include a reaction temperature of 0-100 ° C, a reaction time of 0.1-24 hours, in some embodiments a reaction temperature of 10-40 ° C, and a reaction time of 0.5-16 hours.
  • the organic solvent is an epoxy solvent, an ether solvent, a halogenated alkane solvent, dimethyl sulfoxide, N,N-dimethylformamide, and N,N-diisopropylethylamine.
  • the epoxy-based solvent is, in some embodiments, dioxane and/or tetrahydrofuran, and in some embodiments is diethyl ether and/or methyl tert-butyl ether
  • the halogenated alkane solvent is in some
  • the organic solvent is dichloromethane.
  • the organic solvent is used in an amount of from 3 to 50 L/mol, and in a further embodiment from 5 to 20 L/mol, relative to the compound of the formula (315).
  • the molar ratio of the haloacetic acid to the compound of formula (315) may range from 5:1 to 100:1, and in some embodiments from 10:1 to 50:1.
  • the compound of formula (314) can be isolated from the reaction mixture using any suitable separation method.
  • the solvent can be removed directly to provide a crude product of the compound of formula (314) which can be used directly in the subsequent reaction.
  • the compound of the formula (315) can be obtained by the following production method: the method comprises: in the presence of an amide reaction condensing agent and a tertiary amine organic base in an organic solvent, under the condensation reaction conditions, the formula (317) The compound is contacted with a compound of formula (316) and subsequently isolated:
  • n1, n3, m1, m2, m3, R 7 , R 10 , R 11 , R 12 , R 13 , R 14 , R 15 , L 1 , S 1 are as defined above .
  • the compound of the formula (316) can be, for example, a compound disclosed in J. Am. Chem. Soc. 2014, 136, 16958-16961, or the compound of the formula (316) can be produced by a person skilled in the art by various methods, for example, Certain compounds of formula (316) are prepared by reference to the methods disclosed in Example 1, U.S. Patent No. 8,106,022, the entire disclosure of which is incorporated herein in its entirety by reference.
  • the condensation reaction conditions comprise a reaction temperature of 0-100 ° C, a reaction time of 0.1-24 hours, in some embodiments a reaction temperature of 10-40 ° C, and a reaction time of 0.5-16 hours.
  • the molar ratio of the compound of the formula (316) to the compound of the formula (317) may be from 2:1 to 10:1, and in some embodiments from 2.5:1 to 5:1.
  • the organic solvent is acetonitrile, an epoxy solvent, an ether solvent, a halogenated alkane solvent, dimethyl sulfoxide, N,N-dimethylformamide, and N,N-diisopropyl
  • ethylamines which in some embodiments are dioxane and/or tetrahydrofuran, and in some embodiments are diethyl ether and/or methyl tert-butyl.
  • the alkyl ether which in some embodiments is one or more of dichloromethane, chloroform, and 1,2-dichloroethane, in some embodiments, the organic solvent is acetonitrile .
  • the organic solvent is used in an amount of from 3 to 50 L/mol, and in some embodiments from 5 to 20 L/mol, relative to the compound of the formula (317).
  • the amide-forming condensing agent is benzotriazol-1-yl-oxytripyrrolidinyl hexafluorophosphate, 3-diethoxyphosphoryl-1,2,3-benzene Oxazol 4(3H)-one (DEPBT), O-benzotriazole-tetramethylurea hexafluorophosphate or 4-(4,6-dimethoxytriazin-2-yl)-4-methyl
  • the morpholine hydrochloride may, in a further embodiment, be 4-(4,6-dimethoxytriazin-2-yl)-4-methylmorpholine hydrochloride.
  • the molar ratio of the amide-forming condensing agent to the compound of formula (317) may range from 2:1 to 10:1, and in some embodiments from 2.5:1 to 5:1.
  • the tertiary amine organic base may be N-methylmorpholine, triethylamine or N,N-diisopropylethylamine, in some embodiments N-methylmorpholine; the tertiary amine
  • the molar ratio of the organoorganic base to the compound of formula (317) may range from 3:1 to 20:1, and in some embodiments from 5:1 to 10:1.
  • the compound of formula (315) can be isolated from the reaction mixture using any suitable separation method.
  • the solvent can be removed directly to provide a crude product of formula (315) which can be used directly in the subsequent reaction.
  • a compound of formula (317) is reacted in a single reaction with a sufficient amount of a compound of formula (316) to form the desired compound of formula (315), in which case the individual S 1 -L 1 moieties are identical to each other.
  • the formula (317) with a different batch of the compound of formula (316) compound i.e. compound L 1 and / or S 1 different from formula (316) reacts so that the resulting formula (315)
  • the compound contains two or more kinds of S 1 and/or L 1 .
  • a compound of formula (317) may be first contacted with 2 eq of the first compound of formula (316), and the first S 1 -L may be attached to the two terminal primary amine groups of the compound of formula (317). Part 1 , followed by contacting it with a compound of the second formula (316) of (n3+n1-1) eq (the definitions and ranges of values for n3 and n1 are as described above), in the compound of formula (317) The second S 1 -L 1 moiety is attached to the (n3+n1-1) secondary amine group.
  • the compound of formula (317) can be obtained by a process comprising: contacting a compound of formula (318) with an aqueous solution of methylamine in the presence of an organic solvent under deprotection conditions, Subsequent separation:
  • n1, n3, m1, m2 , m3, R 7, R 10, R 11, R 12, R 13, R 14, R 15 are each as defined and selectable range as described above.
  • the deprotection reaction conditions may include a reaction temperature of 0 to 150 ° C, a reaction time of 5 to 72 hours, in some embodiments, a reaction temperature of 20 to 80 ° C, and a reaction time of 10 to 30 hours.
  • the organic solvent may be selected from the group consisting of alcohols, in some embodiments one of methanol, ethanol, and isopropanol, and in some embodiments, methanol; relative to the compound of formula (318), the organic solvent is used in an amount of 1-20 L/mol, in some embodiments 1.5-10 L/mol.
  • the concentration of the aqueous solution of the methylamine may be from 30 to 40% by mass, and the molar ratio of the methylamine to the compound of the formula (318) may be from 10:1 to 500:1, and in some embodiments from 50:1 to 200: 1.
  • the compound of formula (317) can be isolated from the reaction mixture using any suitable separation method.
  • the solvent can be removed by evaporation, followed by chromatographic separation of the compound of formula (317).
  • the solvent can be removed directly to provide a crude product of the compound of formula (317), which can be used directly in the subsequent reaction.
  • the compound of formula (318) can be obtained by the following preparation method: the method comprises the compound of formula (319) and triphenylchloromethane (in the presence of an organic solvent under the substitution reaction conditions). TrCl), diphenylethylphenylchloromethane, phenyldiethylphenylchloromethane or triethylphenylchloromethane, in some embodiments triphenylchloromethane (TrCl) contact, followed by separation:
  • n1, n3, m1, m2 , m3, R 10, R 11, R 12, R 13, R 14, R 15 are each as defined and selectable range as described above.
  • the substitution reaction conditions may include a reaction temperature of 0-100 ° C and a reaction time of 5 to 72 hours. In some embodiments, the reaction conditions include a reaction temperature of 10 to 40 ° C and a reaction time of 10 to 30 hours.
  • Triphenylchloromethane (TrCl), diphenylethylphenylchloromethane, phenyldiethylphenylchloromethane or triethylphenylchloromethane are commercially available, triphenylchloromethane (TrCl), diphenyl
  • the molar ratio of ethylphenylchloromethane, phenyldiethylphenylchloromethane or triethylphenylchloromethane to the compound of formula (319) may range from 1:1 to 10:1, and in some embodiments, 1: 1-3:1.
  • the organic solvent may be one of an epoxy solvent, an ether solvent, a halogenated alkane solvent, dimethyl sulfoxide, N,N-dimethylformamide, and N,N-diisopropylethylamine or A variety.
  • the epoxy-based solvent may be dioxane and/or tetrahydrofuran in some embodiments, and in some embodiments may be diethyl ether and/or methyl tert-butyl ether, the halogenated alkane solvent. In some embodiments, it can be one or more of dichloromethane, chloroform, and 1,2-dichloroethane; in some embodiments, the organic solvent is dichloromethane.
  • the organic solvent may be used in an amount of from 3 to 50 L/mol, and in some embodiments from 5 to 20 L/mol, relative to the compound of the formula (319).
  • the compound of formula (318) can be isolated from the reaction mixture using any suitable separation method.
  • the solvent can be removed by evaporation, followed by chromatographic separation of the compound of formula (318).
  • the compound of formula (319) can be obtained by the following preparation method: the method comprises contacting a compound of the formula (320) with ethyl trifluoroacetate under an alternative reaction condition in an organic solvent. Subsequent separation:
  • n1, n3, m1, m2, m3, R10, R11, R12, R13, R14, and R15 are as described above.
  • the organic solvent is acetonitrile, an epoxy solvent, an ether solvent, a halogenated alkane solvent, dimethyl sulfoxide, N,N-dimethylformamide, and N,N-diisopropyl One or more of ethylamine.
  • the epoxy-based solvent is dioxane and/or tetrahydrofuran
  • the ether solvent is diethyl ether and/or methyl tert-butyl ether
  • the halogenated alkane solvent is one or more of dichloromethane, chloroform and 1,2-dichloroethane, and in some embodiments, the organic solvent is acetonitrile.
  • the organic solvent may be used in an amount of from 1 to 50 L/mol, and in some embodiments from 1 to 20 L/mol, relative to the compound of the formula (320).
  • the substitution reaction conditions may include a reaction temperature of 0-100 ° C and a reaction time of 5 to 72 hours. In some embodiments, the substitution reaction conditions include a reaction temperature of 10 to 40 ° C and a reaction time of 10 to 30. hour.
  • the molar ratio of ethyl trifluoroacetate to the compound of formula (320) is from 2:1 to 10:1, and in some embodiments from 3:1 to 5:1.
  • the compound of formula (319) can be isolated from the reaction mixture using any suitable separation method.
  • the solvent can be removed by evaporation, followed by chromatographic separation of the compound of formula (319).
  • the solvent can be removed directly to provide a crude product of the compound of formula (319) which can be used directly in the subsequent reaction.
  • oligonucleotide conjugates of the present disclosure may also be used in combination with other pharmaceutically acceptable excipients, which may be one or more of the various formulations or compounds conventionally employed in the art, as described above. Description of the pharmaceutical compositions of the present disclosure.
  • the disclosure provides for the preparation of double-stranded oligonucleotides, pharmaceutical compositions and/or oligonucleotide conjugates provided by the present disclosure for the treatment and/or prevention of expression of a particular gene by a cell.
  • the specific gene is a gene that is abnormally expressed in hepatocytes.
  • the particular gene is an endogenous gene expressed in the liver.
  • the particular gene is a pathogen gene that is propagated in the liver.
  • the specific gene is selected from the group consisting of ApoB, ApoC, ANGPTL3, PCSK9, SCD1, TIMP-1, Col1A1, FVII, STAT3, p53, HBV, HCV, and the like.
  • the specific gene is selected from the group consisting of a hepatitis B virus gene, an angiopoietin-like protein 3 gene, or an apolipoprotein C3 gene.
  • the disease is selected from the group consisting of chronic liver disease, hepatitis, liver fibrosis disease, liver proliferative disease, and dyslipidemia.
  • the dyslipidemia is hypercholesterolemia, hypertriglyceridemia, or atherosclerosis.
  • the disclosure provides a method of treating a pathological condition or disease caused by aberrant expression of a particular gene, the method comprising administering to a subject in need thereof an effective amount of a double-stranded oligo provided by the disclosure Nucleotides, pharmaceutical compositions and/or oligonucleotide conjugates.
  • the specific gene is selected from the group consisting of ApoB, ApoC, ANGPTL3, PCSK9, SCD1, TIMP-1, Col1A1, FVII, STAT3, p53, HBV, HCV, and the like.
  • the specific gene is selected from the group consisting of a hepatitis B virus gene, an angiopoietin-like protein 3 gene, or an apolipoprotein C3 gene.
  • the disease is selected from the group consisting of chronic liver disease, hepatitis, liver fibrosis disease, liver proliferative disease, and dyslipidemia.
  • the dyslipidemia is hypercholesterolemia, hypertriglyceridemia, or atherosclerosis.
  • the conjugates provided by the present disclosure may also be used to treat other liver diseases, including diseases characterized by unwanted cell proliferation, blood diseases, metabolic diseases, and diseases characterized by inflammation.
  • the proliferative disease of the liver may be a benign or malignant disease such as cancer, hepatocellular carcinoma (HCC), liver metastasis or hepatoblastoma.
  • Liver hematology or inflammatory diseases can be diseases involving clotting factors, complement-mediated inflammation or fibrosis.
  • Metabolic diseases of the liver include dyslipidemia and irregularities in glucose regulation.
  • the disease is treated by administering one or more double-stranded oligonucleotides that are highly homologous to the genetic sequence involved in the disease.
  • the disclosure provides a method of inhibiting expression of a particular gene in a cell, the method comprising affixing an effective amount of a double-stranded oligonucleotide, a pharmaceutical composition, and/or an oligonucleotide provided by the present disclosure The compound is contacted with the cells.
  • a double-stranded oligonucleotide, a pharmaceutical composition and/or an oligonucleotide conjugate of the present disclosure By administering a double-stranded oligonucleotide, a pharmaceutical composition and/or an oligonucleotide conjugate of the present disclosure to a subject in need thereof, prevention and/or treatment by a cell can be achieved by a mechanism that regulates gene expression.
  • the pathological condition or the purpose of the disease caused by the expression of a specific gene.
  • the double-stranded oligonucleotides, pharmaceutical compositions and/or oligonucleotide conjugates of the present disclosure are useful for preventing and/or treating the pathological condition or disease, or for preparing for prophylaxis and/or treatment.
  • administering/administering refers to the production of a desired effect by at least partially localizing a double-stranded oligonucleotide, a pharmaceutical composition and/or an oligonucleotide conjugate to a desired site.
  • Routes of administration suitable for the methods of the present disclosure include topical administration and systemic administration.
  • topical administration results in delivery of more double-stranded oligonucleotides, pharmaceutical compositions and/or oligonucleotide conjugates to specific sites compared to the subject's entire body;
  • the double-stranded oligonucleotides, pharmaceutical compositions, and/or oligonucleotide conjugates are delivered to substantially the entire body of the subject. It is contemplated that the present disclosure is directed to providing a means of preventing and/or treating a pathological condition or disease caused by expression of a particular gene in a hepatocyte, in some embodiments, a mode of administration capable of delivering a drug to the liver.
  • Administration can be administered to a subject by any suitable route known in the art including, but not limited to, oral or parenteral routes such as intravenous, intramuscular, subcutaneous, transdermal.
  • Drug can be administered to a subject by any suitable route known in the art including, but not limited to, oral or parenteral routes such as intravenous, intramuscular, subcutaneous, transdermal.
  • Drug airway administration (aerosol), pulmonary administration, nasal administration, rectal administration, and topical administration (including buccal administration and sublingual administration).
  • the frequency of administration can be one or more times per day, every week, every two weeks, every three weeks, every month or every year.
  • the dosage of the double-stranded oligonucleotides, pharmaceutical compositions and/or oligonucleotide conjugates described in the present disclosure may be conventionally dosed in the art, which may be based on various parameters, particularly the subject. Age, weight and gender are determined. Toxicity and efficacy can be determined by standard pharmaceutical procedures in cell culture or laboratory animals, such as determining LD50 (a dose that kills 50% of the population) and ED50 (in a quantitative response, a dose that causes 50% of the maximum response intensity, in a qualitative response) Medium refers to the dose that causes 50% of the subjects to have a positive reaction). The range of human doses can be derived based on data obtained from cell culture assays and animal studies.
  • a pharmaceutical composition and/or an oligonucleotide conjugate as described herein for example, C57BL/6J for male or female, 6-12 weeks old, 18-25 g body weight Or C3H/HeNCrlVr mice, based on the amount of double-stranded oligonucleotide in the double-stranded oligonucleotide, pharmaceutical composition and/or oligonucleotide conjugate: for double-stranded oligonucleotides
  • An oligonucleotide conjugate formed from a pharmaceutically acceptable conjugated molecule may have a double stranded oligonucleotide in an amount of from 0.001 to 100 mg/kg body weight, and in some embodiments from 0.01 to 50 mg/kg body weight, in further In the embodiment, it is 0.05-20 mg/kg body weight, in still further embodiments 0.1-15 mg/kg body weight, and in still further embodiments 0.1-10
  • the hepatocyte is a hepatitis cell, in some embodiments a HepG2.2.15 cell.
  • the hepatocytes can be selected from Hep3B, HepG2, Huh7, etc., or isolated hepatic primary cells, in some embodiments Huh7 liver cancer cells.
  • the expression of a specific gene in hepatocytes is inhibited by the method provided by the present disclosure, and the amount of double-stranded oligonucleotide in the double-stranded oligonucleotide, the pharmaceutical composition and/or the oligonucleotide conjugate provided is The effects obtained by the skilled person in the field are easily determined.
  • the double-stranded oligonucleotide, pharmaceutical composition, and/or oligonucleotide conjugate is an siRNA conjugate
  • the amount of siRNA in the provided siRNA conjugate is such Amount: It is sufficient to reduce the expression of a target gene and result in an extracellular concentration of 1 pM to 1 ⁇ M, or 0.01 nM to 100 nM, or 0.05 nM to 50 nM or to about 5 nM at the surface of the target cell.
  • the amount required to achieve this local concentration will vary with a variety of factors including the method of delivery, the site of delivery, the number of cell layers between the delivery site and the target cell or tissue, whether the delivery is local or systemic, and the like.
  • the concentration at the delivery site can be significantly higher than the concentration at the surface of the target cell or tissue.
  • the present disclosure provides a kit comprising a double-stranded oligonucleotide as described above, a pharmaceutical composition as described above, and/or an oligonucleotide conjugate as described above.
  • kits described herein can provide double stranded oligonucleotides in one container.
  • the kits described herein can comprise a container that provides a pharmaceutically acceptable excipient.
  • other components such as stabilizers or preservatives and the like may also be included in the kit.
  • the kits described herein can comprise at least one additional therapeutic agent in a different container than the container that provides the double-stranded oligonucleotides described herein.
  • the kit can include instructions for mixing the double stranded oligonucleotide with a pharmaceutically acceptable carrier and/or adjuvant or other ingredients, if any.
  • the double-stranded oligonucleotide and a pharmaceutically acceptable carrier and/or adjuvant as well as the double-stranded oligonucleotide composition and/or conjugate, and/or pharmaceutically Acceptable excipients can be provided in any form, such as liquid form, dry form, or lyophilized form.
  • the excipients are substantially pure and/or sterile.
  • sterile water can be provided in a kit of the present disclosure.
  • the implementation of the exemplary embodiments of the following embodiments and double-stranded oligonucleotides in the compositions and/or oligonucleotide conjugates of the present disclosure are small interfering RNAs (siRNAs).
  • siRNAs small interfering RNAs
  • the invention is described in further detail in the examples.
  • the double-stranded oligonucleotides, compositions, and oligonucleotide conjugates of the present disclosure are siRNA, a composition comprising siRNA, and an siRNA conjugate, respectively.
  • siRNAs compositions comprising siRNA, and siRNA conjugates in these embodiments are also referred to as siRNAs of the present disclosure, siRNA compositions of the present disclosure, and siRNA conjugation of the present disclosure for ease of description. Things. This does not mean that the double-stranded oligonucleotides of the present disclosure can only be siRNAs. Instead, the double-stranded oligonucleotides can be other variants disclosed herein or known to those skilled in the art, such as small activating RNAs ( saRNA) and so on.
  • saRNA small activating RNAs
  • compositions and/or conjugates described herein based on detailed description of siRNA, compositions comprising siRNA, and siRNA conjugates. It works similarly.
  • the double-stranded oligonucleotides, compositions or oligonucleotide conjugates provided by the present disclosure may have higher stability, lower toxicity, and/or higher activity in vivo.
  • a double stranded oligonucleotide provided by the present disclosure is a saRNA.
  • a saRNA, saRNA composition or saRNA conjugate provided by the present disclosure exhibits at least 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90% or 95 in vivo. % target gene expression increase rate.
  • a double stranded oligonucleotide provided by the present disclosure is an siRNA.
  • the siRNA, siRNA composition or siRNA conjugate provided by the present disclosure exhibits at least 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90% or 95 in vivo. % target gene expression inhibition rate. In some embodiments, the siRNA, siRNA composition or siRNA conjugate provided by the present disclosure exhibits at least 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90% or 95 in vivo. % inhibition of HBV gene expression. In some embodiments, the siRNA, siRNA composition or siRNA conjugate provided by the present disclosure exhibits at least 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90% or 95 in vivo. % inhibition of HBV gene expression in the liver.
  • the siRNA, siRNA composition or siRNA conjugate provided by the present disclosure exhibits at least 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90% or 95 in vivo. Inhibition rate of HBV gene expression in the liver in % of animal models. In some embodiments, the siRNA, siRNA composition or siRNA conjugate provided by the present disclosure exhibits at least 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90% or 95 in vivo. % HBV surface antigen expression inhibition rate. In some embodiments, the siRNA, siRNA composition or siRNA conjugate provided by the present disclosure exhibits at least 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90% or 95 in vivo. % inhibition of ANGPTL3 gene expression.
  • the siRNA, siRNA composition or siRNA conjugate provided by the present disclosure exhibits at least 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90% or 95 in vivo.
  • % Intrahepatic ANGPTL3 gene expression inhibition rate In some embodiments, the siRNA, siRNA composition or siRNA conjugate provided by the present disclosure exhibits at least 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90% or 95 in vivo. Inhibition rate of intrahepatic ANGPTL3 gene expression in % animal models. In some embodiments, the siRNA, siRNA composition or siRNA conjugate provided by the present disclosure exhibits at least 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90% or 95 in vivo.
  • the siRNA, siRNA composition or siRNA conjugate provided by the present disclosure exhibits at least 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90% or 95 in vivo. % APOC3 gene expression inhibition rate. In some embodiments, the siRNA, siRNA composition or siRNA conjugate provided by the present disclosure exhibits at least 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90% or 95 in vivo. % inhibition of APOC3 gene expression in the liver.
  • the siRNA, siRNA composition or siRNA conjugate provided by the present disclosure exhibits at least 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90% or 95 in vivo. Inhibition rate of intracellular APOC3 gene expression in % animal models. In some embodiments, the siRNA, siRNA composition or siRNA conjugate provided by the present disclosure exhibits at least 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90% or 95 in vivo. Inhibition rate of intracellular APOC3 gene expression in % of human subjects. In some embodiments, the double-stranded oligonucleotides, compositions, or oligonucleotide conjugates provided by the present disclosure do not exhibit significant off-target effects.
  • the off-target effect can be, for example, inhibition of normal expression of a gene of a non-target gene. It is believed that the off-target effect is insignificant if the binding/inhibition of off-target gene expression is less than 50%, 40%, 30%, 20% or 10% compared to the target gene effect.
  • the siRNA, siRNA compositions, and siRNA conjugates of the present disclosure exhibit superior inhibitory effects.
  • the siRNA conjugate provided by the present disclosure exhibits an excellent property of inhibiting HBV gene expression: capable of inhibiting hepatitis B model mice at a dose of 1 mg/kg while having a low off-target effect 66.9%-90.9% of HBV gene expression in the liver.
  • the siRNA conjugates of the present disclosure are also effective in reducing HBV surface antigen expression and HBV DNA in hepatitis B model mice.
  • specific siRNA conjugates formed by specific modified siRNAs and specific conjugate molecules provided by the present disclosure can be used at up to 140 days of experimental time at low doses compared to those provided by the prior art. It continues to show excellent inhibition of HBV expression.
  • the siRNA conjugate provided by the present disclosure exhibits an excellent property of inhibiting HBV gene expression: capable of inhibiting liver of a hepatitis B model mouse at a dose of 1 mg/kg while having a low off-target effect 81.7-89.2% of HBV gene expression.
  • the siRNA conjugates of the present disclosure are also effective in reducing HBV surface antigen expression and HBV DNA in hepatitis B model mice.
  • a particular siRNA conjugate formed by a particular modified siRNA provided by the present disclosure and a particular conjugated molecule can be administered at a low dose compared to a conjugate formed by a conjugated molecule provided by the prior art. It consistently showed excellent inhibition of HBV expression during the experimental period of up to 84 days.
  • the siRNA conjugate provided by the present disclosure exhibits an excellent property of inhibiting HBV gene expression: capable of inhibiting liver of a hepatitis B model mouse at a dose of 1 mg/kg while having a low off-target effect Up to 93.8% of HBV gene expression.
  • the siRNA conjugate of the present disclosure can also effectively reduce the expression of HBV surface antigen in hepatitis B model mice, and can achieve more than 90% inhibition rate of HBV surface antigen expression even at a dose of 3 mg/kg, and effectively inhibit HBV. DNA.
  • specific siRNA conjugates formed by specific modified siRNAs and specific conjugate molecules provided by the present disclosure can be administered at low doses during the 21-day experimental period as compared to the reference conjugates Continued to show a higher inhibition of HBV expression.
  • the siRNA conjugate provided by the present disclosure exhibits an excellent property of inhibiting HBV gene expression: capable of inhibiting liver of a hepatitis B model mouse at a dose of 1 mg/kg while having a low off-target effect Up to 93.63% of HBV X gene gene expression.
  • the siRNA conjugate of the present disclosure can also effectively reduce the expression of HBV surface antigen in hepatitis B model mice, and can achieve 95% or more HBV surface antigen expression inhibition rate even at a dose of 3 mg/kg, and can effectively inhibit HBV DNA.
  • a particular siRNA conjugate formed by a particular modified siRNA provided by the present disclosure and a particular conjugated molecule can be administered at a low dose compared to a conjugate formed by a conjugated molecule provided by the prior art. It continued to show excellent HBV expression inhibitory effect during the experimental period of 56 days, and the HBV X mRNA inhibition rate was above 90%.
  • the siRNA conjugates provided by the present disclosure exhibit superior ANGPTL3 mRNA inhibition efficiency and significantly downregulate blood lipid levels.
  • the ANGPTL3 mRNA inhibition rate of the mouse is as high as 95% or more on day 14 after a single subcutaneous administration; in some embodiments, a single subcutaneous administration, maximum inhibition of triglyceride (TG) The rate was 93%, the maximum inhibition rate of total cholesterol (CHO) was 83%, and the inhibition rate against TG was maintained at 55% or more at 154 days after administration, and the inhibition rate against CHO was maintained at 40% or more.
  • TG triglyceride
  • the siRNA conjugates provided by the present disclosure exhibit a more superior gene inhibition rate and a greater reduction in blood lipid capacity than the conjugates formed by the conjugated molecules provided by the prior art; and, the disclosure provides The siRNA conjugate was able to consistently exhibit excellent lipid inhibition over a period of up to 189 days at low doses and low dosing frequencies.
  • the siRNA conjugates provided by the present disclosure exhibit superior properties for inhibiting APOC3 gene expression: inhibiting at least 88% of APOC3 gene expression in the liver of high-fat model mice at a dose of 1 mg/kg.
  • the modified siRNA and siRNA conjugates provided by the present disclosure exhibit superior gene inhibition rates and low off-target effects compared to conjugates formed by conjugated molecules provided by the prior art; and, the present disclosure The provided siRNA conjugates were able to consistently exhibit excellent lipid inhibition over a period of up to 189 days at low doses and low dosing frequencies.
  • the siRNA conjugates of the present disclosure also exhibit low animal-level toxicity and good safety, for example, in some embodiments, for the conjugates of the present disclosure, even at C57BL/ In the 6J mice, 100 times of the effective concentration was administered (according to the effective concentration of 3 mg/kg), and no obvious toxicity was observed.
  • siRNA, siRNA compositions and siRNA conjugates provided herein are effective in reducing target cell gene expression and exhibit superior delivery potential.
  • HEK293A cells were provided by the Nucleic Acid Technology Laboratory of the Institute of Molecular Medicine, Peking University, containing 20% fetal bovine serum (FBS, Hyclone) and 0.2% by volume of scleromycin double antibody (Penicillin-Streptomycin, Gibco, Invitrogen) The cells were cultured in DMEM complete medium (Hyclone) and cultured at 37 ° C in an incubator containing 5% CO 2 /95% air.
  • FBS fetal bovine serum
  • scleromycin double antibody Penicillin-Streptomycin, Gibco, Invitrogen
  • HepG2.2.15 cells were purchased from ATCC, and cells were cultured in DMEM complete medium (Gibco) containing 10% fetal bovine serum (FBS, Gibco), 2 mM L-glutamine (Gibco) and 380 ⁇ g/ml G418 at 37 °C. Incubate in an incubator containing 5% CO 2 /95% air.
  • Huh7 cells were purchased from ATCC, and cells were cultured in DMEM complete medium (Gibco) containing 10% fetal bovine serum (FBS, Gibco), 2 mM L-glutamine (Gibco) and 380 ⁇ g/ml G418, at 37 ° C. Incubate in an incubator with 5% CO2/95% air.
  • DMEM complete medium Gibco
  • FBS fetal bovine serum
  • Gibco 2 mM L-glutamine
  • G4108 380 ⁇ g/ml G418, at 37 ° C. Incubate in an incubator with 5% CO2/95% air.
  • LipofectamineTM 2000 (Invitrogen) was used as a transfection reagent when transfecting cells with various siRNA or siRNA conjugates synthesized below, unless otherwise indicated, with specific instructions referring to the manufacturer's instructions.
  • the animal models used are as follows:
  • C57BL/6N mice 6-8 weeks old, purchased from Beijing Weitong Lihua Experimental Animal Technology Co., Ltd., hereinafter referred to as C57 mice;
  • HBV transgenic mouse C57BL/6-HBV strain name: B6-Tg HBV/Vst (1.28 copy, genotype A), purchased from Beijing Weitongda Biotechnology Co., Ltd.
  • the mice with COI>10 4 were selected before the experiment, which is also referred to as 1.28 copy mice hereinafter;
  • HBV transgenic mouse C57BL/6J-Tg(Alb1HBV)44Bri/J purchased from the Department of Laboratory Animal Science, Peking University Medical School;
  • HBV transgenic mice named M-TgHBV, purchased from the Animal Department of Shanghai Public Health Center, and preparation methods of transgenic mice are described in Ren J. et al., J. Medical Virology. 2006, 78: 551-560;
  • AAV-HBV transgenic mice AAV-HBV model was prepared according to literature method (Dong Xiaoyan et al, Chin J Biotech 2010, May 25; 26(5): 679-686), rAAV8-1.3HBV, type D (ayw), purchased At Beijing Wujiahe Molecular Medicine Research Institute Co., Ltd., 1 ⁇ 10 12 viral genome(vg)/mL, batch number 2016123011. Dilute to 5 x 10 11 vg/mL with sterile PBS before the experiment. Each mouse was injected with 200 ⁇ L, that is, 1 ⁇ 10 11 vg per mouse. On the 28th day after virus injection, all mice were bled by eyelid (about 100 ⁇ L) for collecting serum to detect HBsAg and HBV DNA;
  • AAV-HBV transgenic mice The same modeling method as above was used, except that the virus was diluted to 1 ⁇ 10 11 vg/mL with sterile PBS before the experiment, and each mouse was injected with 100 ⁇ L of virus. That is, each mouse is injected with 1 ⁇ 10 10 vg;
  • mice 6-8 weeks old, purchased from Beijing Weitong Lihua Experimental Animal Technology Co., Ltd.;
  • Ob/ob mice 6-8 weeks old, purchased from Changzhou Cavans Laboratory Animal Co., Ltd.;
  • Human APOC3 transgenic mouse B6; CBA-Tg (APOC3) 3707Bres/J, purchased from Jackson Laboratory, USA;
  • Metabolic Syndrome Monkey Provided by the Non-Human Primate Research Center of the Institute of Molecular Medicine, Peking University.
  • siRNA of Table 2 was synthesized by the following method.
  • nucleotide composition of the nucleotide indicates deoxythymidine nucleotide; lowercase letter m indicates that the nucleotide adjacent to the left side of the letter m is 2'-A An oxy-modified nucleotide; a lowercase letter f indicates that a nucleotide adjacent to the left side of the letter f is a 2'-fluoro modified nucleotide; a lowercase letter s indicates two nucleus adjacent to the left and right of the letter s
  • the linkage between the nucleotides is a phosphorothioate linkage; VP indicates that one nucleotide to the right of the letter VP is a vinyl phosphate modified nucleotide; P indicates that one nucleotide to the right of the letter P is Phosphate modified nucleotide; Ps indicates that one nucleotide to the right of the letter Ps is a phosphorothioate linkage; VP indicates that one nu
  • nucleoside monomers Utilize universal solid phase carrier (UnyLinker TM loaded HL Solid Supports, Kinovate Life Sciences, Inc.) initiated the cycle by ligating the nucleoside monomers one by one in the 3'-5' direction according to the above sequence.
  • Each nucleoside monomer is linked to include a four-step reaction of deprotection, coupling, capping, and oxidation.
  • the synthesis conditions are given as follows:
  • the nucleoside monomer is provided in a 0.1 M acetonitrile solution.
  • the deprotection reaction conditions are the same for each step, that is, the temperature is 25 ° C, the reaction time is 70 seconds, and the deprotecting reagent is dichloroacetic acid in dichloromethane (3%). v/v), the molar ratio of dichloroacetic acid to the 4,4'-dimethoxytrityl protecting group on the solid support is 5:1.
  • the coupling reaction conditions are the same in each step, including the temperature of 25 ° C, the molar ratio of the nucleic acid sequence and the nucleoside monomer attached to the solid phase carrier is 1:10, and the nucleic acid sequence and the coupling reagent are attached to the solid phase carrier.
  • the ratio was 1:65, the reaction time was 600 seconds, and the coupling reagent was a solution of 5-ethylthio-1H-tetrazole in 0.5 M acetonitrile.
  • the cap conditions were the same for each step, including a temperature of 25 ° C and a reaction time of 15 seconds.
  • the oxidation reaction conditions were the same for each step, including a temperature of 25 ° C, a reaction time of 15 seconds, and an oxidizing reagent of iodine water having a concentration of 0.05 M.
  • the molar ratio of iodine to the nucleic acid sequence attached to the solid support in the coupling step was 30:1.
  • each step of the sulfurization reaction The conditions were the same, including a temperature of 25 ° C and a reaction time of 300 seconds, and the sulfurizing reagent was hydrogenated xanthogen.
  • the molar ratio of the sulfurizing reagent to the nucleic acid sequence attached to the solid support in the coupling step was 120:1.
  • the cleavage and deprotection conditions were as follows: The synthesized nucleotide sequence linked to the carrier was added to a 25 wt% aqueous ammonia solution, and the amount of ammonia water was 0.5 ml/ ⁇ mol, which was reacted at 55 ° C for 16 h, the liquid was removed, and concentrated to dryness in vacuo. After the aqueous ammonia treatment, the product was dissolved with 0.4 ml/ ⁇ mol of N-methylpyrrolidone relative to the amount of single-stranded nucleic acid, followed by the addition of 0.3 ml/ ⁇ mol of triethylamine and 0.6 ml/ ⁇ mol of triethylamine trihydrofluoride.
  • Detection Purity was determined by ion exchange chromatography (IEX-HPLC); molecular weight was analyzed by LC-MS and compared with theoretical values.
  • the sense strand S of the siRNA was synthesized in this step.
  • a universal solid phase carrier (UnyLinkerTM loaded ) is utilized.
  • HL Solid Supports Kinovate Life Sciences, Inc., synthesized the antisense strand AS of siRNA. Deprotection, coupling, capping, oxidation and/or sulfurization reaction conditions, deprotection and cleavage in the solid phase synthesis method, the separation conditions are the same as the synthetic sense strand.
  • VP-Um vinyl phosphate modified 2'-methoxy modified uridine monomer
  • the VP-U-2 molecule was synthesized as follows:
  • the aqueous phase was extracted with dichloromethane (DCM) three times, 300 ml each time, and the organic phase was combined and washed with 5% oxalic acid to pH. ⁇ 5.
  • DCM dichloromethane
  • the crude VP-U-1 was obtained after evaporation of the solvent to dryness and used directly for the subsequent synthesis of VP-U-2.
  • the VP-U-1 crude product was dissolved in 100 ml of dichloromethane, and then stirred in an ice bath for 10 minutes, and then 450 ml of 2% p-toluenesulfonic acid solution (solvent as a solvent of 3:7 by volume) which was previously stored in a refrigerator at 4 ° C was added. - dichloromethane mixed solvent), reacted for 10 minutes. The reaction was quenched by the addition of EtOAc (EtOAc) (EtOAc) The combined aqueous phases were extracted twice with dichloromethane (200 ml), and the organic phase was combined and washed twice with 200 ml of brine, and the solvent was evaporated to dryness.
  • EtOAc EtOAc
  • VP-U-2 (19.84 g, 40.0 mmol), dicyclohexylcarbodiimide (DCC, 16.48 g, 80.0 mmol), pyridine (4.20 g, 53.2 mmol), trifluoroacetic acid (6.61 g, 53.2 mmol)
  • DMSO dimethyl sulfoxide
  • tetraethyl methylene diphosphate 21.44 g, 74.4 mmol
  • t-BuOK 11.36 g, 101.2 mmol
  • the reaction was quenched with water and the aqueous phase was extracted with dichloromethane three times, 200 ml each time.
  • VP-U-4 14.00 g, 22.29 mmol was dissolved in 100 ml of tetrahydrofuran, and triethylamine trihydrofluoric acid (17.96 g, 111.45 mmol) was added, and the mixture was stirred at room temperature for 20 h. The solvent was directly evaporated to dryness, then taken up in dichloromethane and then evaporated to dryness twice twice with 50 ml of dichloromethane. Purified by a 200-300 mesh normal phase silica gel column, packed with petroleum ether, and eluted with a gradient of petroleum ether:ethyl acetate:dichloromethane:methanol:1:1:1:0.05-1:1:1:0.25.
  • VP-U-5 (391 mg, 1.0 mmol), trifluoroacetic acid pyridinium salt (0.232 g, 1.2 mmol), N-methylimidazole (0.099 g, 1.2) was added to 10 ml of anhydrous dichloromethane under argon.
  • Methyl) bis(diisopropylamino)(2-cyanoethoxy)phosphine (0.452 g, 1.5 mmol) was stirred at room temperature for 5 h.
  • VP-U-6 is the target product VP-Um and participates in RNA strand synthesis as a nucleoside monomer.
  • the 5'-phosphate modification was attached to the 5' end of the antisense strand using the following method:
  • the raw material is a phosphorylated structural monomer having the following formula CPR-I, supplied by Suzhou Jima, Cat. No. 13#-2601-XX:
  • the CPR-I monomer is ligated to the antisense strand 5' by deprotection, coupling, capping and oxidation in a four-step reaction according to the solid phase synthesis of phosphoramidite nucleic acid. End. Subsequently, cutting and deprotection were carried out according to the following conditions to obtain an antisense strand:
  • the synthesized vector-linked nucleotide sequence was added to a 25 wt% aqueous ammonia solution, and the amount of ammonia water was 0.5 ml/ ⁇ mol, which was reacted at 55 ° C for 16 h, the liquid was removed, and concentrated to dryness in vacuo.
  • the product was dissolved with 0.4 ml/ ⁇ mol of N-methylpyrrolidone relative to the amount of single-stranded nucleic acid, followed by the addition of 0.3 ml/ ⁇ mol of triethylamine and 0.6 ml/ ⁇ mol of triethylamine trihydrofluoride.
  • 2'-TBDMS protection on ribose was added to a 25 wt% aqueous ammonia solution, and the amount of ammonia water was 0.5 ml/ ⁇ mol, which was reacted at 55 ° C for 16 h, the liquid was removed, and concentrated to dryness in vacuo.
  • the product was dissolved with
  • the product eluate was collected and combined, and subjected to desalting using a reverse phase chromatography purification column.
  • the specific conditions include desalination using a Sephadex column, and the filler was a glucan gel G25, which was eluted with deionized water.
  • the same procedure as above is used, except that the vulcanization reaction is carried out by replacing the above oxidation reaction conditions with a vulcanization reaction condition at the time of connection.
  • siRNA antisense strand was analyzed and detected in the same manner.
  • the instrument and method were the same as the sense strand, and finally the corresponding siRNA antisense strand was obtained.
  • the S chain and the AS chain were mixed in an equimolar ratio, dissolved in water for injection and heated to 95 ° C, and after cooling at room temperature, they were hydrogen-bonded to form a double-stranded structure.
  • siRNA conjugate numbered as conjugate A1 in Table 4A was synthesized by the following method.
  • the L-10 compound was synthesized as follows:
  • GAL-1 N-acetyl-D-galactosamine hydrochloride, CAS No.: 1772-03-8, purchased from Ningbo Hongxiang Biochemical Co., Ltd., 463.8 mmol
  • acetic anhydride purchased from Enox Corporation, 5565.6 mmol
  • GAL-2 (35.1 g, 90.0 mmol) obtained in the step (1-1a) was dissolved in 213 ml of anhydrous 1,2-dichloroethane, and 24.0 g of TMSOTf (CAS) was added in an ice water bath under nitrogen atmosphere. No.: 27607-77-8, purchased from Macleans, 108.0 mmol), reacted overnight at room temperature.
  • GAL-3 (26.9 g, 81.7 mmol) obtained in the step (1-1b) was dissolved in 136 ml of anhydrous 1,2-dichloroethane, and dried. 30 g of molecular sieve powder, and then added 9.0 g of 5-hexen-1-ol (CAS No.: 821-41-0, available from Adamas-beta, 89.9 mmol), stirred at room temperature for 30 minutes, added under ice bath and nitrogen protection. 9.08 g of TMSOTf (40.9 mmol) was stirred at room temperature overnight.
  • GAL-4 (14.9 g, 34.7 mmol) obtained according to the method described in the step (1-1c) was dissolved in a mixed solvent of 77 ml of dichloromethane and 77 ml of acetonitrile, and respectively, 103 ml of deionized water and 29.7 g of periodic acid were added.
  • Sodium (CAS No.: 7790-28-5, purchased from Aladdin, 138.8 mmol), stirred for 10 minutes in an ice water bath, and added with antimony trichloride (CAS No.: 14988-67-0, purchased from Anheji, 238 mg, 1.145 mmol), the temperature of the control system did not exceed 30 ° C, and the reaction was carried out at room temperature overnight.
  • the reaction solution was diluted with 300 ml of water and stirred, and adjusted to pH 7.5 with saturated sodium hydrogencarbonate.
  • the organic phase was separated and discarded, and the aqueous phase was extracted three times with dichloromethane (200 ml), and the organic phase was discarded.
  • the aqueous phase was adjusted to pH 3 with citric acid solids, and extracted twice with dichloromethane (200 ml).
  • the organic phase was combined and dried over anhydrous sodium sulfate. .
  • the crude M-11-T3-Tr obtained in the step (2-1-3) (7.763 g, 10 mmol) was dissolved in 100 ml of methanol, then 100 ml of aqueous methylamine solution (40% by mass) was added, and the reaction was stirred at 50 ° C for 23 h.
  • the insoluble particles were removed by filtration, and the solvent was evaporated to dryness.
  • the solvent was evaporated to drynessjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjj
  • the reaction mixture was diluted with 200 ml of dichloromethane, and the organic phase was washed with 100 ml of saturated sodium hydrogen carbonate, and the organic phase was washed with anhydrous sodium sulfate.
  • the L-5-Tr (5.94 g, 3.456 mmol) obtained in the step (2-1-5) was dissolved in 69 ml of dichloromethane, then dichloroacetic acid (13.367 g, 103.67 mmol) was added, and the reaction was carried out at room temperature for 2 h, and added.
  • DMTrCl (4,4'-bismethoxytrityl chloride, 38.12 g, 112.5 mmol) was dissolved in 450 ml of anhydrous pyridine, and DL-calcium glycerate hydrate (12.88 g, 45.0 mmol) was added at 45 After reacting for 22 h at ° C, the reaction mixture was filtered, and the filter cake was rinsed with 200 ml of DCM, and the filtrate was concentrated to dryness under reduced pressure.
  • an L-10 compound was prepared by attaching an L-9 conjugating molecule to a solid support.
  • the L-9 conjugated molecule obtained in the step (1-1-8) (0.233 g, 0.1126 mmol), O-benzotriazole-tetramethylurea hexafluorophosphate (HBTU, 0.064 g, 0.1689 mmol)
  • HBTU O-benzotriazole-tetramethylurea hexafluorophosphate
  • DIEA diisopropylethylamine
  • dissolve in 19 ml of acetonitrile stir at room temperature for 5 minutes, add ammonia methyl resin (H 2 NResin, 0.901 g, 100-200 mesh) to the reaction solution.
  • CapA and CapB are capping reagent solutions
  • CapA is a pyridine/acetonitrile mixed solution of 20% by volume of N-methylimidazole, and the volume ratio of pyridine to acetonitrile is 3:5
  • CapB is a solution of 20% by volume of acetic anhydride in acetonitrile.
  • sequences of the sense strand and the antisense strand correspond to the S sequence and the AS sequence of conjugate 1 in Table 4, respectively.
  • the nucleoside monomer was ligated one by one from the 3'-5' direction by the solid phase phosphoramidite method using the L-10 compound prepared in the above procedure.
  • Each nucleoside monomer is linked to a four-step reaction of deprotection, coupling, capping, oxidation or sulfurization.
  • a phosphate linkage is used between two nucleotides
  • a nucleoside monomer is attached, a four-step reaction including deprotection, coupling, capping, and oxidation is included.
  • a phosphorothioate is used between two nucleotides, when a nucleoside monomer is attached, a four-step reaction of protection, coupling, capping, and sulfurization is included.
  • the conditions of the above reaction were the same as those used in the synthesis of the sense strand in the above Preparation Example 1.
  • Universal solid phase support (UnyLinkerTM loaded ) by solid phase phosphoramidite method HL Solid Supports, Kinovate Life Sciences, Inc.) initiated the cycle to synthesize the antisense strand AS of conjugate 1.
  • Conditions for deprotection, coupling, capping, oxidation or sulfurization in the solid phase synthesis method, cleavage and deprotection, and purification and desalting conditions are the same as those used in the synthesis of the antisense strand in Preparation Example 1 above.
  • the purity of the above sense strand and the antisense strand are detected by ion exchange chromatography (IEX-HPLC), and the molecular weight is analyzed by liquid chromatography-mass spectrometry (LC-MS), and the measured molecular weight is compared with the theoretical value. For comparison, the synthesized sense strand and the antisense strand were confirmed.
  • IEX-HPLC ion exchange chromatography
  • LC-MS liquid chromatography-mass spectrometry
  • the S chain and the AS chain were respectively dissolved in water for injection to obtain a solution of 40 mg/mL, which was mixed in an equimolar ratio, heated at 50 ° C for 15 min, and cooled at room temperature to form a double-stranded structure by hydrogen bonding.
  • the conjugate was diluted to a concentration of 0.2 mg/mL using ultrapure water (manufactured by Milli-Q ultrapure water meter, resistivity 18.2 M ⁇ *cm (25 ° C)), using a LC-MS, LC-MS, Liquid Chromatography-Mass Spectrometry, purchased from Waters, Model: LCT Premier) for molecular weight testing.
  • the conjugates A2-A7, B1-B2, C2, C12-C13, D2, D12-D13, E1-E4, F1-F3, G1- in Tables 4A-4G were synthesized in the same manner as in Preparation Example 2.
  • the obtained conjugate was confirmed using the same detection method as in Preparation 2. among them:
  • conjugate A5 The theoretical value of conjugate A5 is S: 8218.83, AS: 7703.05, measured value S: 8218, AS: 7702.5;
  • conjugate B1 The theoretical value of conjugate B1 is S: 7407.22, AS: 7208.77, measured value S: 7406.4, AS: 7208.1;
  • conjugate B2 The theoretical value of conjugate B2 is S: 7407.22, AS: 7170.72, measured value S: 7406.5, AS: 7170.1,
  • the theoretical value of the conjugate F2 is S:7649.55, AS: 6945.47, the measured value S: 7648.8, AS: 6994.8;
  • the theoretical value of the conjugate F3 is S:7649.55, AS:7011.53, the measured value S: 7648.8, AS: 7010.9;
  • the theoretical value of the conjugate E1 is S: 7584.5, AS: 7007.46, the measured value S: 7584, AS: 7006.2;
  • the theoretical value of the conjugate E2 is S: 7584.5, AS: 7011.47, the measured value S: 7584, AS: 7011.3;
  • the capital letters C, G, U, A indicate the base composition of the nucleotide;
  • the lowercase letter m indicates that the nucleotide adjacent to the left side of the letter m is a 2'-methoxy modified nucleotide;
  • lowercase The letter f indicates that the nucleotide adjacent to the left side of the letter f is a 2'-fluoro modified nucleotide;
  • the lowercase letter s indicates that the connection between two nucleotides adjacent to the letter s is thio Phosphate group linkage;
  • VP indicates that one nucleotide on the right side of the letter VP is a vinyl phosphate modified nucleotide;
  • P indicates that one nucleotide on the right side of the letter P is a phosphate modified nucleotide;
  • Ps One nucleotide representing the right side of the letter Ps is a phosphorothioate-modified nucleotide.
  • conjugates A12, B8, C4, D4, E10, F12 and G10 (hereinafter, also referred to as P-10 conjugate) can be synthesized according to the following method:
  • the P-10 compound was synthesized as follows:
  • the organic phase was washed with 10 ml of saturated sodium bicarbonate, and the aqueous phase was extracted with dichloromethane (3 ml), 10 ml each time, and the organic phase was washed with 10 ml of brine, and the aqueous phase was extracted twice with 10 ml each time, and the organic phase was combined.
  • P-10 was prepared by the same method as the step (2-1-9) in Preparation 2. The difference is that the P-9 conjugated molecule is substituted for the L-9 conjugated molecule to obtain a P-9 conjugated molecule attached to the solid support.
  • the conjugate was prepared by the same method as the steps (2-2), (2-3A), and (2-4) in Preparation Example 2 except that the P-10 compound was substituted for the L-10 compound to initiate the sense strand. synthesis. Conjugates A12, B8, C4, D4, E10, F12 and G10 are expected to be obtained, the structure of which is shown in formula (404).
  • conjugates A13, B9, C5, D5, E11, F13 and G11 (hereinafter, also referred to as R5 conjugate) can be synthesized according to the following method:
  • the R-5 compound was synthesized as follows:
  • GAL-3 (26.4 g, 80.2 mmol) obtained according to the method described in the step (2-1-1b) was dissolved in 134 ml of anhydrous 1,2-dichloroethane, and added. 60 g of molecular sieve powder, further adding 7-octene-1-ol (11.3 g, 88.2 mmol), stirring for 10 minutes at room temperature, adding trimethylsilyl trifluoromethanesulfonate (8.9 g) under ice bath and nitrogen protection. , 40.1 mmol), and the reaction was stirred at room temperature for 24 hours.
  • GAL-C7-1 (33.3 g, 72.8 mmol) obtained in the step (5-1-1) was dissolved in a mixed solvent of 160 ml of dichloromethane and 160 ml of acetonitrile, and 216 ml of water and sodium periodate solid were respectively added ( 62.3 g, 291.2 mmol), stirred for 10 minutes in an ice water bath, and the catalyst was added to ruthenium trichloride (498 mg, 2.4 mmol). The reaction solution was diluted with 200 ml of water and stirred, and saturated sodium hydrogencarbonate was added to adjust the pH to 7.5.
  • R-2 (2.391 g, 1.532 mmol) and A-1 (2.342 g, 4.596 mmol) were mixed and dissolved in 16 ml of dichloromethane, and 3-diethoxyphosphoryl-1,2,3-oxazole 4 was added.
  • 3H)-ketone (DEPBT) (1.375 g, 4.596 mmol)
  • diisopropylethylamine (1.188 g, 9.191 mmol) was added, and the reaction was stirred at 25 ° C for 2 h.
  • the organic phase was washed with 10 ml of saturated sodium bicarbonate, and the aqueous phase was extracted three times with dichloromethane (10 ml), and the organic phase was washed with 10 ml of saturated brine, and the aqueous phase was extracted twice with 10 ml of dichloromethane.
  • the organic layer was dried over anhydrous sodium sulfate, filtered, and evaporated to dryness.
  • R-3 (795 mg, 0.4074 mmol), succinic anhydride (82 mg, 0.8l48 mmol) and 4-dimethylaminopyridine (DMAP, 100 mg, 0.8148 mmol) were mixed and dissolved in 4 ml of dichloromethane, then diisopropyl B was added.
  • the amine (DIEA, 100 mg, 0.8148 mmol) was stirred at 25 ° C for 18 h.
  • R-5 was prepared by the same method as the step (2-1-9) in Preparation 2. The difference is that the R-4 conjugated molecule replaces the L-9 conjugated molecule to give an R-4 conjugated molecule attached to a solid support.
  • the R5 conjugate was prepared by the same method as the steps (2-2), (2-3A), (2-4) in Preparation Example 2, except that the R-5 compound was substituted for the L-10 compound to initiate justice. Chain synthesis. Conjugates A13, B9, C5, D5, E11, F13 and G11 are expected to have a structure as shown in formula (407).
  • conjugates A14, B10, C6, D6, E12, F14 and G12 (hereinafter, also referred to as LA5 conjugate) can be synthesized according to the following method:
  • LA-5 compound can be synthesized:
  • the LA conjugate was prepared by the same method as the steps (2-2), (2-3A), (2-4) in Preparation Example 2, except that the LA-5 compound was substituted for the L-10 compound to initiate justice. Chain synthesis. Conjugates A14, B10, C6, D6, E12, F14 and G12 are expected to have a structure as shown in formula (412).
  • conjugates A15, B11, C7, D7, E13, F15 and G13 (hereinafter, also referred to as LB5 conjugate) can be synthesized according to the following method:
  • the LB-5 compound was synthesized as follows:
  • LB-3 (822 mg, 0.415 mmol), succinic anhydride (83 g, 0.83 mmol) and 4-dimethylaminopyridine (DMAP, 102 mg, 0.83 mmol) were dissolved in 4 ml of dichloromethane, then DIEA (270 mg, 2.075) Methyl), the reaction was stirred at 25 ° C overnight. The reaction solution was washed three times with 0.5 M triethylamine phosphate, and the aqueous phase was extracted three times with dichloromethane (2 ml).
  • DMAP 4-dimethylaminopyridine
  • LB-5 was prepared by the same method as the step (2-1-9) in Preparation 2. The difference is that the LB-4 conjugated molecule replaces the L-9 conjugated molecule to obtain an LB-4 conjugated molecule linked to a solid support.
  • the LB5 conjugate was prepared by the same method as the steps (2-2), (2-3A), (2-4) in Preparation Example 2, except that the LB-5 compound was substituted for the L-10 compound to initiate justice. Chain synthesis. Conjugates A15, B11, C7, D7, E13, F15 and G13 are expected to have a structure as shown in formula (413).
  • conjugates A16, B12, C8, D8, E14, F16 and G14 (hereinafter, also referred to as V8 conjugate) can be synthesized according to the following method:
  • V8 conjugate was prepared by the same method as the steps (2-2), (2-3A), and (2-4) in Preparation Example 2, except that the V-8 compound was substituted for the L-10 compound to initiate justice. Chain synthesis. Conjugates A15, B12, C8, D8, E14, F16 and G14 (hereinafter also referred to as V8 conjugates) are expected to have a structure as shown in formula (414).
  • conjugates A17, B13, C9, D9, E15, F17 and G15 (hereinafter, also referred to as W8 conjugate) can be synthesized according to the following method:
  • the W-8 compound was synthesized as follows:
  • the crude W-2 (8.012 g, 10 mmol) was dissolved in 100 ml of methanol, then 100 ml of aqueous methylamine solution (40 wt%) was added, and the reaction was stirred at 50 ° C for 23 h. The insoluble granules were removed by filtration, and the solvent was evaporated to dryness. EtOAc was evaporated. EtOAcjjjjjjjjjjjjjjj The organic phase was combined and dried over anhydrous sodium sulfate. After filtration, the solvent was evaporated to dryness under reduced pressure.
  • the solvent was evaporated to dryness overnight on a vacuum oil pump, purified on a 200-300 mesh normal phase silica gel column, packed with petroleum ether, and neutralized with 1 wt% triethylamine.
  • the product eluate was collected, and the solvent was evaporated under reduced pressure.
  • Product W-3 3.062g.
  • W-3 (0.675 g, 1.517 mmol) was mixed with GAL-C7-2 (2.60 g, 5.46 mmol) in 47 ml of acetonitrile, then diisopropylethylamine (1.57 g, 12.14 mmol), and finally 3- Diethoxyphosphoryl-1,2,3-oxazolyl 4(3H)-one (DEPBT, 1.816 g, 6.04 mmol) was stirred at room temperature for 2.5 h.
  • DEPBT 3- Diethoxyphosphoryl-1,2,3-oxazolyl 4(3H)-one
  • the reaction mixture was diluted with 100 ml of methylene chloride, and the organic phase was washed with 80 ml of saturated sodium hydrogen carbonate solution, and the organic phase was washed with 80 ml of brine, and the organic phase was combined and dried over anhydrous sodium sulfate.
  • Purification of 300 mesh normal phase silica gel column, petroleum ether packed column, neutralized silica gel with 1 wt% triethylamine, eluted with dichloromethane:methanol 100:5-100:7 gradient, collected product eluent, decompressed Evaporated to give a pure product W-4 1.610 g.
  • W-8 was prepared by the same method as the step (2-1-9) in Preparation 2. The difference is that the W-9 conjugated molecule replaces the L-9 conjugated molecule to obtain a W-7 conjugated molecule attached to a solid support.
  • the W8 conjugate was prepared by the same method as the steps (2-2), (2-3A), (2-4) in Preparation Example 2, except that the W-8 compound was substituted for the L-10 compound to initiate justice. Chain synthesis. Conjugates A17, B13, C9, D9, E15, F17 and G15 are expected to have a structure as shown in formula (415).
  • conjugates A18, B14, C10, D10, E16, F18 and G16 (hereinafter, also referred to as X8 conjugate) can be synthesized according to the following method:
  • the X8 conjugate was prepared by the same method as the steps (2-2), (2-3A), (2-4) in Preparation Example 2, except that the X-8 compound was substituted for the L-10 compound to initiate justice. Chain synthesis. It is expected that the conjugate can be synthesized. In the present preparation example, it is expected that the conjugates A18, B14, C10, D10, E16, F18 and G16 can be synthesized according to the following method, and the structure is as shown in the formula (421).
  • conjugates A19, B15, C11, D11, E12, F14 and G12 (hereinafter, also referred to as Z5 conjugate) can be synthesized according to the following method:
  • the Z-5 compound was synthesized as follows:
  • the organic phase was washed twice with saturated sodium bicarbonate twice, 30 ml each time, and the aqueous phase was extracted with 10 methylene chloride.
  • the organic phase was combined and washed with 50 ml of saturated brine. After drying, the solvent was evaporated to dryness under reduced pressure, and then evaporated to dryness with vacuo.
  • Z-5 was prepared by the same method as the step (2-1-9) in Preparation 2. The difference is that the Z-4 conjugated molecule replaces the L-9 conjugated molecule to obtain a Z-4 conjugated molecule attached to a solid support.
  • the Z5 conjugate was prepared by the same method as the steps (2-2), (2-3A), (2-4) in Preparation Example 2, except that the Z-5 compound was substituted for the L-10 compound to initiate justice. Chain synthesis. Conjugates A19, B15, C11, D11, E17, F19 and G17 are expected to have a structure as shown in formula (422).
  • conjugates A20-A23, B16-B17, C14, D14, E18-E20, F20 and the comparative conjugates A1, B1 listed in Tables 4A-4G were synthesized (hereinafter, also referred to as FIN). Conjugate). The sequences of the siRNAs conjugated in these conjugates are shown in the corresponding sequences in Tables 4A-4G.
  • the FIN-2 conjugated molecule was synthesized according to the preparation method described in Rajeev et al., ChemBioChem 2015, 16, 903-908, according to the following route:
  • PRO-6 L-hydroxyproline, CAS No.: 51-35-4, available from Ange, 22.4 mmol
  • 1,4-dioxane 1,4-dioxane
  • reaction solution was poured into 150 ml of ice water, extracted with methyl t-butyl ether three times, 100 ml each time, the organic phase was discarded, the aqueous phase was adjusted to pH ⁇ 5 with concentrated HCl, and extracted twice with 100 ml of ethyl acetate. The organic layer was dried over anhydrous sodium sulfate (MgSO4).
  • the silica gel column was basified with pyridine and then dissolved in DCM to dissolve the crude product, first containing 1% (v) /v) dimethyl pyridine was eluted with EtOAc (EtOAc) eluted eluted eluted eluted eluted eluted eluted eluted eluted eluted eluted eluted eluted eluted eluted Calcd for C 41 H 39 NO 6 [M+Na] + 664.2675, found 664.2348; C18 RP-HPLC (batch JJS 160324-1) purity 94.20%.
  • GAL-5 (4.5 g, 10 mmol) obtained according to the method described in (2-1-1) was dissolved in 40 ml of DMF, and 3.9 g of DIEA (N,N-diisopropylethylamine, CAS number: 7087-68-5, purchased from Aladdin, 30mmol) and 3.8g HBTU (benzotriazole-N,N,N',N'-tetramethyluronium hexafluorophosphate, CAS No.:94790-37 -2, commercially available from Aladdin, 11 mmol), stirred at room temperature for 10 minutes, and PRO-10 (4.2 g, 10 mmol) obtained in the step (11-1-1d) was dissolved in 40 ml of DMF, and then added to the above reaction.
  • DIEA N,N-diisopropylethylamine, CAS number: 7087-68-5, purchased from Aladdin, 30mmol
  • HBTU benzotriazole-N,N
  • FIN-1 (3.0 g, 3.53 mmol) obtained in the step (12-1-2) was azeotropically dehydrated with acetonitrile, dried under reduced pressure, dissolved in 10 ml of DMF (molecular sieve soaked in water), and added under a nitrogen atmosphere.
  • g PA bis(diisopropylamino)(2-cyanoethoxy)phosphine, available from Adamas Company, trade number 11356B, 7.06 mmol
  • 346 mg tetrazolium (CAS number: 288-94-8, purchased from Aladdin, 4.94 mmol)
  • the FIN-2 conjugated molecule obtained in the step (12-1-3) is connected to the universal solid phase carrier (UnyLinkerTM loaded ) through three cycles. HL Solid Supports) to achieve attachment of the conjugate group (FIN_FIN_FIN) to the 3' end of the RNA sense strand.
  • the above-described ligation is carried out in accordance with the preparation method described in Rajeev et al., ChemBioChem 2015, 16, 903-908. Specifically, first, starting from the above-mentioned universal solid phase carrier, the hydroxyl protecting group on the solid phase carrier is removed, and Coupling conditions and coupling reagents are coupled to the FIN-2 conjugated molecule in the presence of a coupling reagent, and after the cap reaction and the oxidation reaction, a FIN conjugated molecule attached to the solid phase carrier is obtained; and the attachment to the solid phase carrier is removed.
  • the hydroxy protecting group DMTr on the FIN conjugated molecule is coupled to the FIN-2 conjugated molecule for capping reaction and oxidation reaction, and the above-mentioned deprotection-coupling-cap-oxidation step is repeated once again.
  • One FIN-2 conjugated molecule, the conjugated group (FIN_FIN_FIN) attached to the solid support was obtained.
  • the title conjugate was prepared by the same method as the steps (2-2), (2-3A), (2-4) in Preparation Example 2, except that: 1) obtained by the step (12-2) The compound initiates sense strand synthesis; 2) the conjugated siRNA has the corresponding conjugates A20-A23, B16-B17, C14, D14, E18-E20, F20 and the comparative conjugate A1 shown in Tables 4A-4G. , the sequence of B1.
  • Compound 30 was synthesized according to the preparation method described in WO2014025805A1, ie, the linker-(L A ) 3 trishydroxymethylaminomethane-L B - as described above and the N-acetylgalactosamine molecule as a targeting group (wherein each LA can be linked to an N-acetylgalactosamine molecule, such that a linker can link three N-acetylgalactosamine molecules) a conjugating molecule, also known as a (GalNAc) 3 conjugating molecule, the compound The structure of 30 is as follows:
  • step (2-1-9) of Example 2 was prepared in the same manner, the (GalNAc) 3 conjugated molecule to the solid support, the solid support to obtain a connection (GalNAc) 3 conjugated molecules.
  • the comparative conjugates A3, E2, and F2 were prepared by the same method as the steps (2-2), (2-3A), and (2-4) in Preparation Example 2, except that: 1) by the step (13- 2) The obtained compound initiates sense strand synthesis; 2)
  • the conjugated siRNA has the sequences shown in Tables 4A, 4E, and 4F, numbered A3, E2, and F2.
  • the preparation of the conjugate of the present disclosure described above is completed, it is lyophilized as a solid powder for storage by standard means. In use, it can be used, for example, by reconstituting it with water for injection to a solution of the desired concentration.
  • conjugates of the present disclosure have lower animal level toxicity.
  • Test sample preparation by lysosomal lysate preparation Comparative conjugate A1 and conjugate A21 (provided as a 0.9% sodium chloride aqueous solution having a siRNA concentration of 20 ⁇ M, respectively, 6 ⁇ l each) were respectively associated with 27.2 ⁇ L of citric acid Aqueous sodium (pH 5.0), 4.08 ⁇ L of deionized water and 2.72 ⁇ L of Tritosomes (commercially available from Xenotech, Cat. No. R0610LT, lot No. 1610069) were mixed. Incubate at 37 ° C.
  • Reference sample preparation without lysosomal lysate 1.5 ⁇ l of each of the above conjugates (20 ⁇ M) was mixed with 7.5 ⁇ L of sodium citrate solution (pH 5.0) and 1 ⁇ L of deionized water. Add 30 ⁇ L of 9 M urea solution to denature, then add 8 ⁇ L of 6 ⁇ loading buffer to mix, and immediately freeze the solution in a -80 ° C refrigerator to terminate the reaction.
  • Each conjugate reference sample is labeled Con in the electropherogram.
  • a 16% by weight non-denaturing polyacrylamide gel was prepared. 20 ⁇ l of each of the above test sample and reference sample was applied to the gel, and after electrophoresis for 10 min under a constant current of 20 mA, electrophoresis was continued for 30 min under a constant current of 40 mA. After the end of the electrophoresis, the gel was placed on a shaker and stained with Gelred dye (BioTium, Cat. No. 13G1203) for 10 min. The gel was observed and photographed, and the results are shown in Fig. 1.
  • Figure 1 shows the results of semi-quantitative detection of stability of the tested siRNA conjugates in vitro Tritosome. The results show that the conjugate of the present disclosure can be maintained in Tritosome for a long time without degradation, showing good stability.
  • Figure 2 shows the results of semi-quantitative detection of stability of the tested siRNA conjugates in vitro Tritosome. The results show that the conjugate of the present disclosure can be maintained in Tritosome for a long time without degradation, showing good stability.
  • siRNAs of the present disclosure with specific modifications showed satisfactory stability in lysosomal lysates.
  • Conjugates A1, A6 and comparative siRNA2 (provided as 0.9% sodium chloride aqueous solution having a siRNA concentration of 20 ⁇ M, respectively, 12 ⁇ l each) were mixed with 108 ⁇ L of 90% human plasma (Human plasma, PBS diluted), respectively. Incubate at 37 ° C. 10 ⁇ L of the sample was taken at 0, 2, 4, 6, 8, 24, 48, and 72 hours, and immediately frozen in a freezer at -80 °C in a freezer. After sampling at each time point, the above frozen samples were diluted 5 times with 1 ⁇ PBS (pH 7.4), and 10 ⁇ L of each sample was taken for use.
  • 1 ⁇ PBS pH 7.4
  • Figure 3 shows the results of semi-quantitative detection of the stability of the tested conjugates in human plasma in vitro.
  • Conjugates A1, A6 and comparative siRNA2 (provided as 0.9% sodium chloride in siRNA at a concentration of 20 ⁇ M, respectively, 12 ⁇ l each) were separately seeded with 108 ⁇ L of 90% cynomolgus monkey plasma (Monkey plasma, purchased from Hongquan Bio, Mix HQ70082, diluted in PBS). Incubate at 37 ° C. 10 ⁇ L of the sample was taken at 0, 2, 4, 6, 8, 24, 48, and 72 hours, and immediately frozen in a freezer at -80 °C in a freezer. After sampling at each time point, the above frozen samples were diluted 5 times with 1 ⁇ PBS (pH 7.4), and 10 ⁇ L of each sample was taken for use.
  • 1 ⁇ PBS pH 7.4
  • Figure 4 shows the results of semi-quantitative detection of the stability of the tested siRNA in monkey plasma in vitro.
  • the results show that the siRNA conjugates of the present disclosure did not degrade in cynomolgus plasma until 72 h, showing excellent stability in monkey plasma.
  • Test sample preparation by lysosomal lysate preparation 6 ⁇ l of each of conjugate A2 and comparative siRNA2 (20 ⁇ M) was dissolved in 27.2 ⁇ L of aqueous sodium citrate solution (pH 5.0), 4.08 ⁇ L of deionized water and 2.72 ⁇ L of mouse source, respectively.
  • the enzyme lysate (Rat Liver Tritosomes, Xenotech, Cat. No. R0610.LT, lot number 1610069) was mixed and the final concentration of acid phosphatase was 0.2 mU/ ⁇ L. Incubate at 37 ° C.
  • Reference sample preparation without lysosomal lysate 1.5 ⁇ l each of equimolar amount of conjugate A2 and comparative siRNA2 (20 ⁇ M) and 7.5 ⁇ L of sodium citrate aqueous solution (pH 5.0), 1 ⁇ L of deionized water Mix well, add 30 ⁇ L of 9M urea solution for denaturation, then add 8 ⁇ L of 6 ⁇ loading buffer and mix well, and immediately freeze at -80 ° C refrigerator to terminate the reaction.
  • the reference sample for each sample is labeled M for comparison with the electrophoresis results of the sample.
  • a 16% by weight non-denaturing polyacrylamide gel was prepared. 20 ⁇ l of each of the above test sample and reference sample was applied to the gel, and after electrophoresis for 10 min under a constant current of 20 mA, electrophoresis was continued for 30 min under a constant current of 40 mA. After the end of the electrophoresis, the gel was placed on a shaker and stained with Gelred dye (BioTium, Cat. No. 13G1203) for 10 min. The gel was observed and photographed, and the results are shown in Fig. 5.
  • the stability of the comparative siRNA2 and conjugate A2 in human lysosomal lysates was determined by the same method as in 1) except that the mouse lysosomal lysate was replaced with adult lysosomal lysate (Human Liver Lysosomes). , Xenotech, article number H0610.L, lot number 1610316), the results are shown in Figure 6.
  • siRNA conjugates of the present disclosure exhibit satisfactory stability in both human lysosomal lysates and murine lysosomal lysates, at least for 24 hours without degradation.
  • conjugates A1 were administered to a single subcutaneous injection of rats of each experimental group (10 rats per group, male and female), and the doses were administered at 10 mg/kg and 50 mg/kg. Rat plasma drug concentration and liver and kidney tissue drug drug concentration were measured at each time point.
  • the SD rats used in this experimental example were provided by Beijing Weitong Lihua Experimental Animal Technology Co., Ltd.
  • SD rats were randomly grouped according to the body weight of the rats using the PRISTIMA version 7.2.0 data system, and then each group of conjugates was administered at the designed doses. All animals were dosed according to body weight, single dose (subcutaneous administration), doses of 10 and 50 mg/kg, and 0.9% sodium chloride aqueous solution of 1 mg/ml and 5 mg/ml conjugate, respectively. The volume is 10 ml/kg.
  • the method was as follows: the rats were anesthetized with sodium pentobarbital according to body weight (intraperitoneal injection 60 mg/kg), abdominal aorta blood collection. Euthanasia, general anatomy. The liver and kidney of each rat were sampled and stored in a 1 mL cryotube, and stored at -68 ° C or below until assay analysis.
  • the concentration of conjugate A1 in rat plasma and liver and kidney tissues was quantitatively determined by HPLC-FLD (High Performance Liquid Chromatography), according to the following steps:
  • tissue and cell lysate (supplier: epicentre, article number: MTC096H) to prepare a tissue homogenate of 66.7 mg/mL;
  • tissue samples 75 ⁇ L of tissue sample was added to a 96-well PCR plate, and 5 ⁇ L of proteinase K (supplier: Invitrogen, Cat. No. 25530-015) and 10 ⁇ L of a 10 wt% acetonitrile and 0.01 wt% Tween 20 mixed aqueous solution were added;
  • tissue samples 20 ⁇ L of plasma was added to a 96-well PCR plate, and 45 ⁇ L of tissue and cell lysate, 5 ⁇ L of proteinase K and 20 ⁇ L of 10 wt% acetonitrile and 0.01 wt% Tween 20 mixed aqueous solution were added;
  • the plate was placed in a PCR machine and incubated at 95 ° C for 15 minutes; immediately placed on ice for 5 minutes;
  • Fig. 7 is a graph showing the time-dependent metabolic curve of PK/TK plasma concentration of conjugate A1 in rat plasma at a dose of 10 mg/kg.
  • Fig. 8 is a graph showing the time-dependent metabolic curve of PK/TK tissue concentration in conjugated A1 in rat liver and kidney when the dose was 10 mg/kg.
  • Figure 9 is a graph showing the time-dependent metabolic curve of PK/TK plasma concentration of conjugate A1 in rat plasma at a dose of 50 mg/kg.
  • Fig. 10 is a graph showing the time-dependent metabolic curve of PK/TK tissue concentration in conjugated A1 in rat liver and kidney when administered at a dose of 50 mg/kg.
  • the concentration of the conjugate Al in rat plasma is rapidly increasing at low doses (10 mg/kg) or at relatively higher doses (50 mg/kg). Within the hour, it decreased below the detection limit; while in the liver tissue, a higher stable level of tissue concentration was maintained for at least 168 hours. This indicates that the siRNA conjugates of the present disclosure are capable of being specifically enriched and stable in the liver, with a high degree of targeting.
  • mice with S/COV>10 were randomly divided into groups (all females), each group 4 Only mice were numbered with conjugate A5 and conjugate A7, respectively, and the NS control group was added. All animals were dosed according to body weight, single dose (subcutaneous administration), administered at different doses of 1 mg/kg and 0.1 ml/kg, respectively. The drug was 0.2 mg/ml and 0.9% chlorine at 0.02 mg/ml. Provided as an aqueous sodium solution in a volume of 5 ml/kg.
  • RNA was extracted by Trizol according to the standard procedure of total RNA extraction.
  • HBV and ⁇ -actin were detected using a ⁇ -actin gene as an internal reference gene, and a primer against HBV and a primer against ⁇ -actin.
  • the expression level of HBV mRNA is expressed by the remaining amount of HBV X gene expression, and is calculated as follows:
  • Remaining amount of HBV X gene expression (copy number of HBV X gene in test group / copy number of ⁇ -actin in test group) / (copy number of HBV X gene in control group / copy number of ⁇ -actin in control group) ⁇ 100%, The figure indicates the amount of HBV X/ ⁇ -actin mRNA expression.
  • the inhibition rate of the conjugate to mRNA (the remaining amount of 1-HBV X gene expression) ⁇ 100%
  • control group was a control group of mice administered with NS in the experiment
  • test group was a group of mice administered with different siRNA conjugates. The results are shown in FIG.
  • siRNA conjugates were tested with conjugates A1, A2, A3 and A4, 5 animals per group, and the test data was collected on day 28, for each conjugate, 1 mg/kg and 0.3 mg Two doses of /kg were administered (the volume of the drug remained unchanged, and the concentration of the conjugate solution was adjusted accordingly), and the results are shown in Fig. 13, respectively.
  • the serum HBsAg content was randomly divided into groups (5 in each group), and conjugate A1, contrast conjugate A2, comparative conjugate A3, and NS blank control were administered. . All animals were dosed according to body weight, administered subcutaneously at a dose of 3 mg/kg and 1 mg/kg, using a 0.9% sodium chloride aqueous solution of the conjugate at concentrations of 0.3 mg/ml and 0.1 mg/ml, respectively. The administration volume was 5 ml/kg.
  • Blood was taken from the orbital venous plexus of mice before administration (denoted as D0) and on days 7, 14, 21, 28, 56, 84, 112, 140, 154, 168, and 182 days after administration, and detected at each time point. Serum HBsAg levels; during this period, if the serum HBsAg content in the test results has approached or exceeded the initial value, the detection of the subject is terminated.
  • the eyelids take about 100 ⁇ l of blood each time, and the serum after centrifugation is not less than 20 ⁇ l.
  • the expression level of HBsAg in serum was detected by HBsAg CLIA kit (Antu Bio, CL0310); the DNA in serum was extracted by QIAamp 96 DNA Blood Kit instruction, and quantitative PCR was performed to detect the expression level of HBV DNA.

Abstract

提供了一种经修饰的双链寡核苷酸,正义链包含核苷酸序列1,反义链包含核苷酸序列2,核苷酸序列1和2长度都是19个核苷酸,按照5'末端到3'末端的方向,核苷酸序列1的第7、8、9位的核苷酸以及核苷酸序列2的第2、6、14、16位都是氟代修饰的核苷酸,其他位置的每个核苷酸独立地为非氟代修饰的核苷酸中的一种。还提供了包含该寡核苷酸的药物组合物、缀合物及其制药用途。

Description

双链寡核苷酸、含双链寡核苷酸的组合物与缀合物及制备方法和用途 背景技术
双链寡核苷酸作为药物活性成分已为公众所知。递送系统是小核酸药物开发中的核心关键技术之一。一种小核酸递送系统是针对肝细胞的靶向缀合递送技术。
发明内容
在一些实施方式中,本公开提供一种双链寡核苷酸,所述双链寡核苷酸含有正义链和反义链,所述正义链和反义链的每一个核苷酸均为修饰的核苷酸,其中,所述正义链包含核苷酸序列1,所述反义链包含核苷酸序列2,所述核苷酸序列1和所述核苷酸序列2的长度均为19个核苷酸,所述核苷酸序列1和所述核苷酸序列2至少部分地反向互补形成双链区,所述核苷酸序列2至少部分地与第一段核苷酸序列反向互补,所述第一段核苷酸序列为靶mRNA中的一段核苷酸序列;按照5′末端到3′末端的方向,所述核苷酸序列1的第7、8、9位的核苷酸为氟代修饰的核苷酸,所述核苷酸序列1其他位置的每个核苷酸独立地为非氟代修饰的核苷酸中的一种;所述核苷酸序列2的5′末端的第一个核苷酸是反义链5′末端的第一个核苷酸,所述核苷酸序列2的第2、6、14、16位的核苷酸为氟代修饰的核苷酸,所述核苷酸序列2其他位置的每个核苷酸独立地为非氟代修饰的核苷酸中的一种。
在一些实施方式中,本公开还提供包含本公开的双链寡核苷酸的药物组合物,该药物组合物含有本公开的双链寡核苷酸和药学上可接受的载体。
在一些实施方式中,本公开还提供包含本公开的双链寡核苷酸的缀合物,该缀合物包含本公开的双链寡核苷酸和缀合连接至该双链寡核苷酸的配体。
在一些实施方式中,本公开提供了本公开的双链寡核苷酸、药物组合物或缀合物在制备用于治疗和/或预防由肝细胞中特定基因的表达而引起的病理状况或疾病的药物中的用途。
在一些实施方式中,本公开提供了一种治疗由肝细胞中特定基因的表达而引起的病理状况或疾病的方法,所述方法包括向患有该疾病的受试者给予本公开的双链寡核苷酸、药物组合物或缀合物。
在一些实施方式中,本公开提供了一种抑制肝细胞中特定基因表达的方法,该方法包括将本公开的双链寡核苷酸、药物组合物或缀合物与所述肝细胞进行接触。
在一些实施方式中,本公开提供了一种试剂盒,所述试剂盒包含本公开的双链寡核苷酸、药物组合物或缀合物。
本发明的其他特征和优点将在随后的具体实施方式部分予以详细说明。
以引用的方式并入
本说明书中提及的所有出版物、专利以及专利申请均以引用的方式并入本文,其程度与每一单独的出版物、专利以及专利申请均专门并且单独地以引用的方式并入本文的程度相同。
附图说明
图1-2示出了siRNA缀合物在体外Tritosome中的稳定性试验的半定量结果。
图3-4示出了siRNA缀合物在体外人血浆中的稳定性试验的半定量结果。
图5-6示出了siRNA缀合物在体外猴血浆中的稳定性试验的半定量结果。
图7-10为示出以下PK/TK血浆浓度或组织浓度的经时代谢曲线:10mg/kg剂量下,缀合物A1在大鼠血浆中(图7);10mg/kg剂量下,缀合物A1在大鼠肝和肾中(图8);50mg/kg剂量下,缀合物A1在大鼠血浆中(图9);50mg/kg剂量下,缀合物A1在大鼠肝和肾中(图10)。
图11-14中分别示出了本公开缀合物在44BriHBV模型中抑制HBV mRNA的作用。
图15-16中分别示出了本公开缀合物在AAV-HBV模型中对血清HBsAg和HBV DNA的经时抑制作用。
图17中示出了本公开缀合物在M-Tg模型中对血清HBsAg的随时间变化的抑制作用。
图18-图19中分别示出了本公开缀合物在1.28copy HBV-Tg模型中对血清HBsAg和HBV DNA的随时间变化的抑制作用。
图20A,20B,20C和20D分别示出了不同浓度的缀合物A1抑制GSCM、GSSM、PSCM和PSSM表达效果。
图21-22分别示出了本公开的缀合物在体外对靶mRNA和脱靶mRNA的抑制作用。
图23-25分别示出了本公开的缀合物在体外的稳定性试验结果。
图26-28示出了本公开的缀合物在体内对HBV mRNA的抑制作用。
图29-31示出了本公开的缀合物对不同HBV转基因小鼠血清中HBsAg以及HBV DNA表达的随时间变化的抑制作用。
图32-34示出了本公开的缀合物在体外的稳定性试验结果。
图35-36示出了本公开的缀合物在体外对靶mRNA以及脱靶mRNA的抑制效果。
图37示出了本公开的缀合物在44BriHBV模型中的体内mRNA抑制效果。
图38示出了本公开的缀合物对小鼠中HBsAg表达的随时间变化的抑制作用。
图39示出了本公开的缀合物在体内对M-Tg模型小鼠中的mRNA的抑制作用。
图40-42示出了本公开的缀合物的体外稳定性试验结果。
图43-44示出了本公开的缀合物在体外对靶mRNA与脱靶mRNA的抑制作用。
图45示出了本公开的缀合物在体内对HBV mRNA的抑制作用。
图46示出了本公开的缀合物对HBV转基因小鼠血清中HBsAg表达的随时间变化的抑制作用。
图47示出了本公开的缀合物在M-Tg模型小鼠中对HBV mRNA的抑制作用。
图48A-48D示出了对比siRNA3在体外对靶mRNA与脱靶mRNA的抑制作用。
图49A-49D示出了本公开的siRNA E1在体外对靶mRNA与脱靶mRNA的抑制作用。
图50A和50B分别示出了本公开的siRNA和siRNA缀合物在体外对ANGPTL3 mRNA的抑制作用。
图51A-51D分别示出了本公开的缀合物在体外的稳定性实验结果。
图52A-52D示出了本公开的缀合物在对血脂的抑制率,以血清中的总胆固醇(CHO)和甘油三酯(TG)表示。
图53A-53D示出了本公开的缀合物在体内对ANGPTL3 mRNA表达的抑制率。
图54A-54D分别示出了本公开的缀合物对血脂的抑制率,以血清总胆固醇(CHO)和甘油三酯(TG)表示。
图55A和55B示出了本公开的缀合物对血脂的随时间变化的抑制率,以血清总胆固醇(CHO)和甘油三酯(TG)表示;图55C示出了ANGPTL3 mRNA表达的抑制率。
图56A和56B示出了本公开的缀合物对血脂的随时间变化的抑制率,以血清总胆固醇(CHO)和甘油三酯(TG)表示。
图57A-57D示出了本公开的缀合物对血脂的随时间变化的抑制率,以血清总胆固醇(CHO)和甘油三酯(TG)表示。
图58A和58B示出了本公开的缀合物对血脂的随时间变化的抑制率,以血清总胆固醇(CHO)和甘油三酯(TG)表示;图58C示出了ANGPTL3 mRNA表达的抑制率。
图59示出了本公开的缀合物在体外对APOC3表达的抑制率。
图60示出了在第14天时,肝组织中APOC3表达的抑制率。
图61A和61B示出了本公开的缀合物对血脂的随时间变化的抑制率,以血清总胆固醇(CHO)和甘油三酯(TG)表示。
图62A和62B示出了本公开的缀合物对血脂的随时间变化的抑制率,以血清总胆固醇(CHO)和甘油三酯(TG)表示。
图63A-63D示出了不同剂量的本公开的缀合物对血脂的随时间变化的抑制率,以血清总胆固醇(CHO)和甘油三酯(TG)表示。
图64-65示出了本公开的缀合物的体外稳定性试验结果。
图66-68示出了不同剂量的本公开的缀合物对血清表面抗原、血清e抗原以及HBV DNA的随时间变化的抑制率。
具体实施方式
以下对本公开的具体实施方式进行详细说明。应当理解的是,此处所描述的具体实施方式仅用于说明和解释本公开,并不用于限制本公开。
定义
在上文及下文中,如无特别说明,大写字母C、G、U、A表示核苷酸的碱基组成;小写字母m表示该字母m左侧相邻的一个核苷酸为2′-甲氧基修饰的核苷酸;小写字母f表示该字母f左侧相邻的一个核苷酸为2′-氟修饰的核苷酸;小写字母s表示与该字母s左右相邻的两个核苷酸之间为硫代磷酸酯基连接;P1表示该P1右侧相邻的一个核苷酸为5′-磷酸核苷酸或5′-磷酸类似物修饰的核苷酸,尤指乙烯基磷酸酯修饰的核苷酸(以下实施例中以VP表示)、5′-磷酸核苷酸(以下实施例中以P表示)或5′-硫代磷酸酯修饰的核苷酸(以下实施例中以Ps表示)。
在本文的上下文中,“互补”或“反向互补”一词可互相替代使用,并具有本领域技术人员周知的含义,即,在双链核酸分子中,一条链的碱基与另一条链上的碱基以互补的方式相配对。在DNA中,嘌呤碱基腺嘌呤(A)始终与嘧啶碱基胸腺嘧啶(T)(或者在RNA中为尿嘧啶(U))相配对;嘌呤碱基鸟嘌呤(G)始终与嘧啶碱基胞嘧啶(C)相配对。每个碱基对都包括一个嘌呤和一个嘧啶。当一条链上的腺嘌呤始终与另一条链上的胸腺嘧啶(或尿嘧啶)配对,以及鸟嘌呤始终与胞嘧啶配对时,两条链被认为是彼此相互补的, 以及从其互补链的序列中可以推断出链的序列。与此相应地,“错配”在本领域中意指在双链核酸中,对应位置上的碱基并未以互补的形式配对存在。
在上文及下文中,如无特别说明,“基本上反向互补”是指所涉及的两段核苷酸序列之间存在不多于3个的碱基错配;“实质上反向互补”是指两段核苷酸序列之间存在不多于1个的碱基错配;“完全互补”指两段核苷酸序列之间不存在碱基错配。
在上文及下文中,一个核苷酸序列与另外一个核苷酸序列存在“核苷酸差异”,是指前者与后者相比,相同位置的核苷酸的碱基种类发生了改变,例如,在后者中一个核苷酸碱基为A时,在前者的相同位置处的对应核苷酸碱基为U、C、G或者T的情况下,认定为两个核苷酸序列之间在该位置处存在核苷酸差异。在一些实施方式中,以无碱基核苷酸或者核苷酸类似物代替原位置的核苷酸时,也可认为在该位置处产生了核苷酸差异。
在上文及下文中,特别是在描述本公开的双链寡核苷酸、药物组合物和/或寡核苷酸缀合物的制备方法时,除非特别说明,所述核苷单体(nucleoside monomer)指,根据欲制备的双链寡核苷酸、药物组合物和/或寡核苷酸缀合物中核苷酸的种类和顺序,亚磷酰胺固相合成中使用的修饰或未修饰的核苷单体(unmodified or modified RNA phosphoramidites,有时RNA phosphoramidites也称为Nucleoside phosphoramidites)。亚磷酰胺固相合成为本领域技术人员所公知的RNA合成中所用的方法。本公开所用的核苷单体均可商购得到。
如本文所使用的,不介于两个字母之间或两个符号之间的短横(“-”)是用于指示取代基附着点的位置。例如:-C 1-C 10烷基-NH 2通过C 1-C 10烷基而附着。
如本文所使用的,“任选的”或“任选地”是指其后描述的事件或状况可以发生或不发生,并且所述描述包括事件或状况发生的情况和其中不发生的情况。例如,“任选取代的烷基”包括下面定义的“烷基”和“取代烷基”。本领域技术人员将理解的是,对于包含一个或多个取代基的任何基团,这些基团不打算引入空间上不切实际、合成上不可行和/或内在不稳定的任何取代或取代型式。
如本文所使用的,“烷基”是指具有指定数量的碳原子的直链和支链,所述数量通常为1到20个碳原子,例如1至10个碳原子,如1至8个或1至6个碳原子。例如,C 1-C 6烷基包含1至6个碳原子的直链和支链烷基。当对具有特定数量的碳的烷基残基进行命名时,旨在涵盖所有具有该数量的碳的支链和直链形式;因此,例如,“丁基”意味着包括正丁基、仲丁基、异丁基和叔丁基;“丙基”包括正丙基和异丙基。亚烷基是烷基的子集,指与烷基相同、但具有两个附着点的残基。
如本文所使用的,“烯基”是指具有至少一个碳-碳双键的不饱和支链或直链烷基,所述碳-碳双键是通过从母体烷基的相邻碳原子中除去一个氢分子而获得的。该基团可以处于双键的顺式或反式构型。典型的烯基基团包括但不限于:乙烯基;丙烯基,如丙-1-烯-1-基、丙-1-烯-2-基、丙-2-烯-1-基(烯丙基)、丙-2-烯-2-基;丁烯基,例如丁-1-烯-1-基、丁-1-烯-2-基、2-甲基丙-1-烯-1-基、丁-2-烯-1-基、丁-2-烯-2-基、丁-1,3-二烯-1-基、丁-1,3-二烯-2-基等等。在某些实施方式中,烯基基团具有2到20个碳原子,而在其他实施方式中,具有2至10个、2至8个或2至6个碳原子。亚烯基是烯基的一个子集,指与烯基相同、但具有两个附着点的残基。
如本文所使用的,“炔基”是指具有至少一个碳-碳三键的不饱和支链或直链烷基,所述碳-碳三键是通过从母体烷基的相邻碳原子中除去两个氢分子 而获得的。典型的炔基基团包括但不限于:乙炔基;丙炔基,如丙-1-炔-1-基,丙-2-炔-1-基;丁炔基,例如丁-1-炔-1-基,丁-1-炔-3-基,丁-3-炔-1-基等。在某些实施方式中,炔基具有2到20个碳原子,而在其他实施方式中,具有2至10、2至8或2至6个碳原子。亚炔基是炔基的一个子集,指的是与炔基相同、但有两个附着点的残基。
如本文所使用的,“烷氧基”是指通过氧桥附着的指定数量碳原子的烷基,例如,甲氧基、乙氧基、丙氧基、异丙氧基、正丁氧基、仲丁氧基、叔丁氧基、戊氧基、2-戊氧基、异戊氧基、新戊氧基、己氧基、2-己氧基、3-己氧基、3-甲基戊氧基等。烷氧基通常具有1至10个、1至8个、1至6个,或1至4个通过氧桥附着的碳原子。
如本文所使用的,“芳基”是指衍生自芳香族单环或多环烃环系统、通过从环碳原子中除去氢原子而形成的基团。所述芳香族单环或多环烃环系统仅含有氢和6至18个碳原子的碳,其中所述环系统中的至少一个环是完全不饱和的,即,其根据Hückel理论包含环状、离域的(4n+2)π-电子系统。芳基包括但不限于苯基、芴基和萘基等基团。亚芳基是芳基的一个子集,指与芳基相同、但具有两个附着点的残基。
如本文所使用的,“环烷基”是指非芳香碳环,通常具有3至7个环状碳原子。环可以是饱和的,或具有一个或多个碳-碳双键。环烷基的实例包括环丙基、环丁基、环戊基、环戊烯基、环己基和环己烯基,以及桥联和笼状环基团,如降冰片烷(norbornane)。
如本文所使用的,“卤素取代基”或“卤代”指氟代、氯代、溴代和碘代,术语“卤素”包括氟、氯、溴和碘。
如本文所使用的,“卤代烷基”是指指定数量的碳原子被一个或多个、直至最大允许数量的卤素原子取代的如上述所定义的烷基。卤代烷基的实例包括但不限于三氟甲基、二氟甲基、2-氟乙基和五氟乙基。
“杂环基”是指一个稳定的3-到18-元非芳香环基,包含2-12个碳原子和1-6个杂原子,所述杂原子选自氮、氧和硫。除非说明书中另有说明,杂环基是单环、双环、三环或四环系统,可包括稠环或桥环系统。杂环基团中的杂原子可以任选地被氧化。一个或多个氮原子(如果存在的话)任选地被季铵化。杂环基是部分饱和或完全饱和的。杂环基可以通过环的任何原子附着至分子的其余部分。此类杂环基的实例包括但不限于:二噁烷基、噻吩基[1,3]二硫酰基、十氢异喹啉基、咪唑啉基、咪唑烷基、异噻唑烷基、异恶唑烷基、吗啉基、八氢吲哚基、八氢异吲哚基、2-氧杂哌嗪基、2-氧杂哌啶基、2-氧杂嘧啶基、恶唑烷基、哌啶基、哌嗪基、4-哌啶酮基、吡咯烷基、吡唑烷基、奎宁环基、噻唑烷基、四氢呋喃基、三硫酰基、四氢吡喃基、硫吗啉基、硫杂吗啉基、1-氧杂硫吗啉基和1,1-二氧杂硫吗啉基。
“杂芳基”指由3-至18-元芳香环基团衍生而成的基团,其包含2个至17个碳原子和选自氮、氧和硫的1至6个杂原子。如本文所使用的,杂芳基可以是单环、双环、三环或四环系统,其中环系统中的至少一个环是完全不饱和的,即,根据Hückel理论,包含环状离域(4n+2)π-电子体系。杂芳基包括稠环或桥环系统。杂芳基中的杂原子被任选地氧化。一个或多个氮原子(如果存在的话)任选地被季铵化。杂芳基通过环中的任何原子附着至分子的其余部分。杂芳基的实例包括但不限于:氮杂环庚三烯基、吖啶基、苯并咪唑基、苯并吲哚基、1,3-苯并二恶唑基、苯并呋喃基、苯并恶唑基、苯并[d]噻唑基、苯并噻二唑基、苯并[b][1,4]二恶唑基、苯并[b][1,4]恶唑基、1,4-苯并二恶唑基、苯并萘并呋喃基、苯并二唑基、苯并二氧杂苯基、苯并吡喃基、苯并吡喃酮 基、苯并呋喃基、苯并呋喃酮基、苯并噻吩基、苯并噻吩[3,2-d]嘧啶基、苯并三唑基、苯并[4,6]咪唑[1,2-a]吡啶基、咔唑基、噌啉基、环戊基[d]嘧啶基、6,7-二氢-5H-环戊基[4,5]噻吩[2,3-d]嘧啶基、5,6-二氢苯并[h]喹唑啉基、5,6-二氢苯并[h]辛诺林基、6,7-二氢-5H-苯并[6,7]环庚[1,2-c]哒嗪基、二苯并呋喃基、二苯并噻吩基、呋喃基、呋喃酮基、呋喃[3,2-c]吡啶基、5,6,7,8,9,10-六氢环庚烷[d]嘧啶基、5,6,7,8,9,10-六氢环辛酸[d]哒嗪基、5,6,7,8,9,10-六氢环辛酸[d]吡啶基、异噻唑基、吲唑基、咪唑基、吲哚基、异吲哚基、二氢吲哚基、异二氢氮茚基、异喹啉基、吲哚嗪基、异恶唑基、5,8-甲基-5,6,7,8-四氢喹唑啉基、萘啶酮基、1,6-萘啶酮基、恶二唑基、2-氧氮杂庚基、恶唑基、恶草酰基、5,6,6a,7,8,9,10,10a-八氢苯并[H]喹唑啉基、1-苯基-1H-吡咯基、吩嗪基、吩噻嗪基、吩恶嗪基、邻苯二甲酰基、蝶啶基、嘌呤基、吡咯基、吡唑基、吡唑并[3,4-d]嘧啶基、吡啶基、吡啶并[3,2-d]嘧啶基、吡啶并[3,4-d]嘧啶基、吡嗪基、嘧啶基、哒嗪基、吡咯基、喹唑啉基、喹喔啉基、喹啉基、异喹啉基、四氢喹啉基、5,6,7,8-四氢喹唑啉基、5,6,7,8-四氢苯并[4,5]噻吩[2,3-d]嘧啶基、6,7,8,9四氢-5H-环庚烷[4,5]噻吩[2,3-d]嘧啶基、5,6,7,8-四氢吡啶并[4,5-c]哒嗪基、噻唑基、噻二唑基、三唑基、四唑基、三嗪基、噻吩[2,3-d]嘧啶基、噻吩[3,2-d]嘧啶基、噻吩[2,3-c]普萘基和噻吩基。
在本公开中可以使用各种羟基保护基团。一般来说,保护基团使化学官能度对特定的反应条件不敏感,并且可以在分子中的该官能度上附加以及去除,而不实质上损害分子的其余部分。代表性的羟基保护基团公开于Beaucage等人,Tetrahedron 1992,48,2223-2311,以及Greeneand Wuts,Protective Groups in Organic Synthesis,Chapter 2,2d ed,John Wiley&Sons,New York,1991中,以引用的方式将上述文献整体并入本文。在一些实施方式中,保护基团在碱性条件下稳定,但可以在酸性条件下脱除。在一些实施方式中,本文可使用的羟基保护基的非排他性实例包括二甲氧基三苯甲基(DMT)、单甲氧基三苯甲基、9-苯基黄嘌呤-9-基(Pixyl)和9-(对甲氧基苯基)黄嘌呤-9-基(Mox)。在一些实施方式中,本文可使用的羟基保护基的非排他性实例包括Tr(三苯甲基)、MMTr(4-甲氧基三苯甲基)、DMTr(4,4’-二甲氧基三苯甲基)和TMTr(4,4’,4”-三甲氧基三苯甲基)。
“受试者”一词,如本文所使用的,指任何动物,例如哺乳动物或有袋动物。本公开的主题包括但不限于人类、非人灵长类(例如,恒河猴或其他类型的猕猴)、小鼠、猪、马、驴、牛、绵羊、大鼠和任何种类的家禽。
如本文所使用的,“治疗方法”、“治疗”、“减轻”或“改善”可在此处互换使用。这些术语指的是获得有益的或期望的结果的方法,包括但不限于治疗益处。“治疗益处”意味着根除或改善被治疗的潜在障碍。此外,治疗益处通过根除或改善与潜在障碍相关的一个或多个生理症状,从而在患者中观察到改善而获得,尽管患者可能仍然受到潜在障碍的折磨。
如本文所使用的,“防止”和“预防”可互换使用。这些术语指获得有益或期望的结果的方法,包括但不限于预防性益处。为了获得“预防性益处”,可将缀合物或组合物给予有罹患特定疾病风险的患者,或给予报告疾病的一种或多种病理症状的患者,即便可能该疾病的诊断尚未作出。
修饰的双链寡核苷酸
在一个方面,本公开提供了一种能够调节基因表达的双链寡核苷酸.
本公开的双链寡核苷酸含有核苷酸基团作为基本结构单元,本领域技术人员公知,所述核苷酸基团含有磷酸基团、核糖基团和碱基,在此不再赘述。
CN102140458B公开了一种特异性抑制HBV基因的siRNA,并对该siRNA的多种化学修饰策略进行了研究。该研究发现,不同修饰策略会对siRNA的稳定性、生物活性及细胞毒性等指标产生截然不同的影响。在该研究中,证实了7种有效的修饰方式,与未经修饰的siRNA相比,其中一种修饰方式所得的siRNA在提高血液稳定性的同时,还保持了与未经修饰的siRNA基本相当的抑制活性。
本公开的双链寡核苷酸含有正义链和反义链,所述正义链和反义链的每一个核苷酸均为修饰的核苷酸,其中,所述正义链包含核苷酸序列1,所述反义链包含核苷酸序列2,所述核苷酸序列1和所述核苷酸序列2的长度均为19个核苷酸,所述核苷酸序列1和所述核苷酸序列2至少部分地反向互补形成双链区,所述核苷酸序列2至少部分地与第一段核苷酸序列反向互补,所述第一段核苷酸序列为靶mRNA中的一段核苷酸序列;按照5′末端到3′末端的方向,所述核苷酸序列1的第7、8、9位的核苷酸为氟代修饰的核苷酸,所述核苷酸序列1其他位置的每个核苷酸独立地为非氟代修饰的核苷酸中的一种;所述核苷酸序列2的5′末端的第一个核苷酸是反义链5′末端的第一个核苷酸,所述核苷酸序列2的第2、6、14、16位的核苷酸为氟代修饰的核苷酸,所述核苷酸序列2其他位置的每个核苷酸独立地为非氟代修饰的核苷酸中的一种。在本公开的上下文中,“氟代修饰的核苷酸”指核苷酸的核糖基2′位的羟基被氟取代形成的核苷酸,“非氟代修饰的核苷酸”指核苷酸的核糖基2′位的羟基被非氟基团取代形成的核苷酸或核苷酸类似物。
“核苷酸类似物”指能够在核酸中代替核苷酸,但结构不同于腺嘌呤核糖核苷酸、鸟嘌呤核糖核苷酸、胞嘧啶核糖核苷酸、尿嘧啶核糖核苷酸或胸腺嘧啶脱氧核糖核苷酸的基团。如异核苷酸、桥联的核苷酸(bridged nucleic acid,简称BNA)或无环核苷酸。
在一些实施方式中,核苷酸序列2与第一段核苷酸序列基本上反向互补、基本上完全反向互补或完全反向互补
在一些实施方式中,按照5′末端到3′末端的方向,所述核苷酸序列2的至少第2-19位的核苷酸与第一段核苷酸序列互补。在一些具体的实施方式中,按照5′末端到3′末端的方向,所述核苷酸序列2的第1位的核苷酸为A或U。
在一些实施方式中,所述核苷酸序列1和所述核苷酸序列2基本上反向互补、基本上完全反向互补或完全反向互补。
在一些实施方式中,所述正义链还含有核苷酸序列3,所述反义链还含有核苷酸序列4,核苷酸序列3和核苷酸序列4的每个核苷酸独立地为非氟代修饰的核苷酸中的一种,所述核苷酸序列3和所述核苷酸序列4的长度各自为1-4个核苷酸,所述核苷酸序列3和所述核苷酸序列4长度相等并且基本上完全反向互补或完全反向互补,所述核苷酸序列3连接在所述核苷酸序列1的5′末端,并且所述核苷酸序列4连接在所述核苷酸序列2的3′末端,所述核苷酸序列4与第二段核苷酸序列基本上完全反向互补或完全反向互补,该第二段核苷酸序列是指和靶mRNA中与第一段核苷酸序列相邻、且长度与所述核苷酸序列4相同的核苷酸序列。
在一些实施方式中,所述核苷酸序列3和所述核苷酸序列4完全互补,所述核苷酸序列3和所述核苷酸序列4的长度均为1个核苷酸,核苷酸序列4与第二段核苷酸序列完全反向互补;或者,所述核苷酸序列3和所述核苷酸序列4完全互补,所述核苷酸序列3和所述核苷酸序列4的长度均为2个核苷酸,核苷酸序列4与第二段核苷酸序列完全反向互补;或者所述核苷酸序列3和所述核苷酸序列4完全互补,所述核苷酸序列3和所述核苷酸序列4的长度均为 3个核苷酸,核苷酸序列4与第二段核苷酸序列完全反向互补;或者所述核苷酸序列3和所述核苷酸序列4完全互补,所述核苷酸序列3和所述核苷酸序列4的长度均为4个核苷酸,核苷酸序列4与第二段核苷酸序列完全反向互补。
所述核苷酸序列3和所述核苷酸序列4完全反向互补,核苷酸序列4与第二段核苷酸序列完全反向互补,靶mRNA相关核苷酸序列确定了,所述核苷酸序列3和所述核苷酸序列4也就确定了。
因此,所述正义链或反义链的长度独立地可以是19-23个核苷酸。
在一些实施方式中,所述双链寡核苷酸还含有核苷酸序列5,所述核苷酸序列5的每个核苷酸独立地为非氟代修饰的核苷酸中的一种,所述核苷酸序列5的长度为1至3个核苷酸,连接在所述反义链的3′末端,从而构成所述反义链的3′突出端。
这样,本公开提供的双链寡核苷酸的正义链和反义链的长度之比可以是19/19、19/20、19/21、19/22、20/20、20/21、20/22、20/23、21/21、21/22、21/23、21/24、22/22、22/23、22/24、22/25、23/23、23/24、23/25或23/26。
在一些实施方式中,所述核苷酸序列5的长度为2个核苷酸,并且按照5′末端到3′末端的方向,所述核苷酸序列5为连续的2个胸腺嘧啶脱氧核糖核苷酸、连续的2个尿嘧啶核糖核苷酸、或者与第三段核苷酸序列完全反向互补,所述第三段序列是指靶mRNA中与第一段核苷酸序列或第二段核苷酸序列相邻、并且长度与所述核苷酸序列5相等的核苷酸序列。
因此,在一些实施方式中,本公开提供的双链寡核苷酸的正义链和反义链的长度之比为19/21或21/23,此时,本公开提供的双链寡核苷酸具有更好的靶mRNA沉默活性。
在上文和下文中,氟代修饰的核苷酸指核苷酸的核糖基2′位的羟基被氟取代形成的核苷酸,如式(101)所示,其中的Base表示碱基,选自C、G、A或U。
非氟代修饰的核苷酸指核苷酸的核糖基2′位的羟基被非氟基团取代形成的核苷酸或核苷酸类似物。在一些实施方式中,每一个非氟代修饰的核苷酸独立地选自核苷酸的核糖基2′位的羟基被非氟基团取代形成的核苷酸或核苷酸类似物中的一种。
这些核糖基2′位的羟基被非氟基团取代形成的核苷酸为本领域技术人员所公知,这些核苷酸例如可以选自2′-烷氧基修饰的核苷酸、2′-经取代的烷氧基修饰的核苷酸、2′-烷基修饰的核苷酸、2′-经取代的烷基修饰的核苷酸、2′-氨基修饰的核苷酸、2′-经取代的氨基修饰的核苷酸、2′-脱氧核苷酸中的一种。
在一些实施方式中,2′-烷氧基修饰的核苷酸可以是甲氧基修饰的核苷酸(2′-OMe),如式(102)所示。在一些实施方式中,2′-经取代的烷氧基修饰的核苷酸可以是2′-O-甲氧基乙基修饰的核苷酸(2′-MOE),如式(103)所示。在一些实施方式中,2′-氨基修饰的核苷酸(2′-NH 2)如式(104)所示。在一些实施方式中,2′-脱氧核苷酸(DNA)如式(105)所示。
Figure PCTCN2018118212-appb-000001
核苷酸类似物指能够在核酸中代替核苷酸,但结构不同于腺嘌呤核糖核苷酸、鸟嘌呤核糖核苷酸、胞嘧啶核糖核苷酸、尿嘧啶核糖核苷酸或胸腺嘧啶脱 氧核糖核苷酸的基团。在一些实施方式中,核苷酸类似物可以是异核苷酸、桥联的核苷酸(bridged nucleic acid,简称BNA)或无环核苷酸。
BNA是指受约束的或不能接近的核苷酸。BNA可以含有五元环、六元环、或七元环的具有“固定的”C3′-内切糖缩拢的桥联结构。通常将该桥掺入到该核糖的2′-、4′-位处以提供一个2′,4′-BNA核苷酸,如LNA、ENA、cET BNA等,其中,LNA如式(106)所示,ENA如式(107)所示,cET BNA如式(108)所示。
Figure PCTCN2018118212-appb-000002
无环核苷酸是指核苷酸的糖环被打开形成的一类“开环”核苷酸,如解锁核酸(UNA)或甘油核酸(GNA),其中,UNA如式(109)所示,GNA如式(110)所示。
Figure PCTCN2018118212-appb-000003
上述式(109)和式(110)中,R选自H、OH或烷氧基(O-烷基)。
异核苷酸是指核苷酸中碱基在核糖环上的位置发生改变而形成的化合物,例如,碱基从核糖环的1′-位移动至2′-位或3′-位而形成的化合物,如式(111)或(112)所示。
Figure PCTCN2018118212-appb-000004
上述式(111)-式(112)化合物中,Base表示碱基,例如A、U、G、C或T;R选自H、OH、F或者如上所述的非氟基团。
在一些实施方式中,核苷酸类似物选自异核苷酸、LNA、ENA、cET、UNA和GNA中的一种。在一些实施方式中,每一个非氟代修饰的核苷酸均为甲氧基修饰的核苷酸,在上文和下文中,所述甲氧基修饰的核苷酸指核糖基的2′-羟基被甲氧基取代而形成的核苷酸。
在上文及下文中,“氟代修饰的核苷酸”、“2′-氟修饰的核苷酸”、“核糖基团的2′-羟基被氟取代的核苷酸”和“2′-氟代核糖基”意义相同,均指核苷酸的2′-羟基被氟取代而形成的具有如式(101)所示结构的化合物;“甲氧基修饰的核苷酸”、“2′-甲氧基修饰的核苷酸”、“核糖基团的2′-羟基被甲氧基取代的核苷酸”和“2′-甲氧基核糖基”意义相同,均指核苷酸核糖基团的2′-羟基被甲氧基取代,而形成如式(102)所示的结构。
在一些实施方式中,本公开的双链寡核苷酸可抵抗血液中的核糖核酸酶切割,由此增加核酸的血液稳定性,使核酸具有更强的抵抗核酸酶水解的性能,同时保持较高的靶基因调节活性。
在一些实施方式中,本公开所述的双链寡核苷酸在动物实验中获得了血浆中稳定性和基因表达调节效率的高度平衡,并且有些还具有更加简单,成本更低的优点。下面是一些例子:
按照5′末端到3′末端的方向,在所述正义链中,所述核苷酸序列1的第7、8、9位的核苷酸为氟代修饰的核苷酸,所述正义链中其余位置的核苷酸为甲氧基修饰的核苷酸;并且,在所述反义链中,所述核苷酸序列2的第2、6、14、16位的核苷酸为氟代修饰的核苷酸,所述反义链中其余位置的核苷酸为甲氧基修饰的核苷酸。
在一些实施方式中,本公开的双链寡核苷酸还含有其他修饰的核苷酸基团,所述修饰的核苷酸基团不会导致所述双链寡核苷酸调节靶基因表达的功能明显削弱或丧失。
目前,本领域存在多种可用于修饰双链寡核苷酸的方式,除了上文提及的核糖基团修饰外,还包括骨架修饰(如磷酸基团修饰)及碱基修饰等(例如,请参见Watts,J.K.,G.F.Deleavey and M.J.Damha,Chemically modified siRNA:tools and applications.Drug Discov Today,2008.13(19-20):p.842-55,以引用的方式将其整体内容并入本文)。
在一些实施方式中,所述正义链和所述反义链中至少一条单链的磷酸-糖骨架中的磷酸酯基中的至少1个为具有修饰基团的磷酸酯基。所述具有修饰基团的磷酸酯基为磷酸酯基中的磷酸二酯键中的至少一个氧原子被硫原子取代而形成的硫代磷酸酯基,可以是如式(121)所示的硫代磷酸(phosphorthioate)结构,用一个硫原子取代磷酸二酯键中的非桥氧原子,以硫代磷酸二酯键替换磷酸二酯键,即两个核苷酸之间的连接为硫代磷酸酯基连接。该修饰能稳定双链寡核苷酸的结构,保持碱基配对的高特异性和高亲和力。
Figure PCTCN2018118212-appb-000005
在一些实施方式中,所述双链寡核苷酸中,硫代磷酸酯基连接存在于以下位置中的至少一处:正义链或反义链任意一端的第一个和第二个核苷酸之间;正义链或反义链任意一端的第二个和第三个核苷酸之间;或上述的任意组合。在一些实施方式中,硫代磷酸酯基连接存在于除正义链5′末端以外的全部上述位置处。在一些实施方式中,硫代磷酸酯基连接存在于除正义链3′末端以外的全部上述位置处。在一些实施方式中,硫代磷酸酯基连接存在于以下位置中的至少一处:
所述正义链的5′末端端部第1个核苷酸和第2个核苷酸之间;
所述正义链的5′末端端部第2个核苷酸和第3个核苷酸之间;
所述正义链的3′末端端部第1个核苷酸和第2个核苷酸之间;
所述正义链的3′末端端部第2个核苷酸和第3个核苷酸之间;
所述反义链的5′末端端部第1个核苷酸和第2个核苷酸之间;
所述反义链的5′末端端部第2个核苷酸和第3个核苷酸之间;
所述反义链的3′末端端部第1个核苷酸和第2个核苷酸之间;以及
所述反义链的3′末端端部第2个核苷酸和第3个核苷酸之间。
在一些实施方式中,所述双链寡核苷酸分子的反义链序列5′末端核苷酸为5′-磷酸核苷酸或5′-磷酸类似物修饰的核苷酸。
在一些实施方式中,5′-磷酸核苷酸具有式(122)所示的结构:
Figure PCTCN2018118212-appb-000006
同时,常用的所述5′-磷酸类似物修饰的核苷酸的种类是本领域技术人员公知的,例如,Anastasia Khvorova and Jonathan K.Watts,The chemical evolution of oligonucleotide therapies of clinical utility.Nature Biotechnology,2017,35(3):238-48中公开的式(123)至式(126)所示的核苷酸:
Figure PCTCN2018118212-appb-000007
其中,R表示选自于由H、OH、F和甲氧基所组成的组的基团;Base表示选自A、U、C、G或T的碱基。
在一些实施方式中,5′-磷酸类似物修饰的核苷酸为式(123)所示的含有乙烯基磷酸酯(E-vinylphosphonate,E-VP)的核苷酸,或式(125)所示的含有硫代磷酸酯的核苷酸。
本文所公开的修饰方案可以适用于各种调解基因表达的双链寡核苷酸。在一些实施方式方式中,可以是抑制或下调基因表达的双链寡核苷酸,如siRNA;在一些实施方式中,可以是激活或上调基因表达的双链寡核苷酸,例如,saRNA。
采用本公开修饰方案的双链寡核苷酸出人意料地提高了在血液中的稳定性、提高了在溶酶体中的稳定性、减少了脱靶效应和/或提高了双链寡核苷酸的活性。同时,靶基因表达调节活性并未显著降低,显示出优异的体内抑制效果。
本公开提供的修饰的双链寡核苷酸、药物组合物和缀合物可以用于调节各种基因异常表达,治疗各种由于基因异常表达引起的病理状况或疾病。这些基因可以是人体或动物体内各种内源性基因,也可以是在人体或动物体内繁殖的病原体基因。可以根据目标靶点mRNA设计和制备具有特定核苷酸序列和所述修饰方案的双链寡核苷酸。
按照本公开的一些实施方式,本公开的双链寡核苷酸例如可以为以下的siRNA:
所述核苷酸序列1为SEQ ID NO:1所示的序列,所述核苷酸序列2为SEQ ID NO:2所示的序列;或者
所述核苷酸序列1为SEQ ID NO:3所示的序列,所述核苷酸序列2为SEQ ID NO:4所示的序列;或者
所述核苷酸序列1为SEQ ID NO:5所示的序列,所述核苷酸序列2为SEQ ID NO:6所示的序列;或者
所述核苷酸序列1为SEQ ID NO:7所示的序列,所述核苷酸序列2为SEQ ID NO:8所示的序列;或者
所述核苷酸序列1为SEQ ID NO:9所示的序列,所述核苷酸序列2为SEQ ID NO:10所示的序列;或者
所述核苷酸序列1为SEQ ID NO:11所示的序列,所述核苷酸序列2为SEQ ID NO:12所示的序列;或者
所述核苷酸序列1为SEQ ID NO:13所示的序列,所述核苷酸序列2为SEQ ID NO:14所示的序列:
5′-CmCmUmUmGmAmGfGfCfAmUmAmCmUmUmCmAmAmAm-3′(SEQ ID NO:1)
5′-UmUfUmGmAmAfGmUmAmUmGmCmCmUfCmAfAmGmGm-3′(SEQ ID NO:2)
5′-UmGmCmUmAmUmGfCfCfUmCmAmUmCmUmUmCmUmAm-3′(SEQ ID NO:3)
5′-UmAfGmAmAmGfAmUmGmAmGmGmCmAfUmAfGmCmAm-3′(SEQ ID NO:4)
5′-UmCmUmGmUmGmCfCfUfUmCmUmCmAmUmCmUmGmAm-3′(SEQ ID NO:5)
5′-UmCfAmGmAmUfGmAmGmAmAmGmGmCfAmCfAmGmAm-3′(SEQ ID NO:6)
5′-CmGmUmGmUmGmCfAfCfUmUmCmGmCmUmUmCmAmAm-3′(SEQ ID NO:7)
5′-UmUfGmAmAmGfCmGmAmAmGmUmGmCfAmCfAmCmGm-3′(SEQ ID NO:8)
5′-GmAmAmAmGmUmAfUfGfUmCmAmAmCmGmAmAmUmAm-3′(SEQ ID NO:9)
5′-UmAfUmUmCmGfUmUmGmAmCmAmUmAfCmUfUmUmCm-3′(SEQ ID NO:10)
5′-CmCmAmAmGmAmGfCfAfCmCmAmAmGmAmAmCmUmAm-3′(SEQ ID No:11)
5′-UmAfGmUmUmCfUmUmGmGmUmGmCmUfCmUfUmGmGm-3′(SEQ ID No:12)
5′-CmAmAmUmAmAmAfGfCfUmGmGmAmCmAmAmGmAmAm-3′(SEQ ID No:13)
5′-UmUfCmUmUmGfUmCmCmAmGmCmUmUfUmAfUmUmGm-3′(SEQ ID No:14)
其中,大写字母C、G、U、A表示核苷酸的碱基组成;小写字母m表示该字母m左侧相邻的一个核苷酸为2′-甲氧基修饰的核苷酸;小写字母f表示该字母f左侧相邻的一个核苷酸为2′-氟修饰的核苷酸。
按照本公开的一些实施方式,本公开的双链寡核苷酸例如可以为表1A-1F中示出的siRNA:
表1一些实施方式中的siRNA序列
表1A
Figure PCTCN2018118212-appb-000008
表1B
Figure PCTCN2018118212-appb-000009
Figure PCTCN2018118212-appb-000010
表1C
Figure PCTCN2018118212-appb-000011
表1D
Figure PCTCN2018118212-appb-000012
表1E
Figure PCTCN2018118212-appb-000013
Figure PCTCN2018118212-appb-000014
表1F
Figure PCTCN2018118212-appb-000015
表1G
Figure PCTCN2018118212-appb-000016
Figure PCTCN2018118212-appb-000017
*S:正义链;AS:反义链
其中,大写字母C、G、U、A表示核苷酸的碱基组成;小写字母m表示该字母m左侧相邻的一个核苷酸为2′-甲氧基修饰的核苷酸;小写字母f表示该字母f左侧相邻的一个核苷酸为2′-氟修饰的核苷酸;小写字母s表示与该字母s左右相邻的两个核苷酸之间的连接为硫代磷酸酯基连接;P1表示该P1右侧相邻的一个核苷酸为5′-磷酸核苷酸或5′-磷酸类似物修饰的核苷酸,在一些 实施方式中为乙烯基磷酸酯修饰的核苷酸(以下实施例中以VP表示)、5′-磷酸修饰的核苷酸(以下实施例中以P表示)或硫代磷酸酯修饰的核苷酸(以下实施例中以Ps表示)。
本领域技术人员清楚知晓的是,可以通过本领域常规的双链寡核苷酸制备方法(例如固相合成和液相合成的方法)得到本公开所述的双链寡核苷酸。其中,固相合成已经有商业化订制服务。可以通过使用具有相应修饰的核苷酸单体来将修饰的核苷酸基团引入本公开所述的双链寡核苷酸中,制备具有相应修饰的核苷酸单体的方法及将修饰的核苷酸基团引入双链寡核苷酸的方法也是本领域技术人员所熟知的。
本公开提供的修饰的双链寡核苷酸可以单独使用,或者与药学上可接受的载体形成药物组合物,或者与缀合分子结合形成缀合物,或者其他的形式。将有效量的所述双链寡核苷酸、所述药物组合物或缀合物与细胞接触,以调节目标基因的表达,或者将所述双链寡核苷酸、所述药物组合物或缀合物给与受试者,调节目标基因的表达,达到治疗由于目标基因表达异常引起的病理状况或疾病。
可通过与合适的载体形成药物组合物或与合适的缀合分子形成缀合物,来进一步改善本公开的双链寡核苷酸的血液稳定性、提高其靶向性、解决本公开双链寡核苷酸的体内递送问题等。对于双链寡核苷酸,能够赋予或者提高靶向性的载体或缀合分子将是十分有利的,这会极大提高双链寡核苷酸调节目标基因表达的效率并降低潜在的副作用。进而,在引入靶向性的载体或缀合分子后,双链寡核苷酸还需要能够在靶位点发挥作用,即,载体或缀合分子的包裹/缀合不能影响双链寡核苷酸本身的活性(例如在双链寡核苷酸是siRNA的情况下,不能影响siRNA装载入细胞内的RNAi机器,即RISC复合物)。此外,对于这些靶向载体或缀合分子,还要求其具有良好的生物相容性和尽量低的毒性。
所述药物组合物可以系统性地分布于身体的各个部位或者具有靶向性地富集于身体的特定部位。所述缀合物一般具有靶向性,可以根据靶基因在人体、动物体内的表达分布适应性地改变缀合分子的类型,以达到将所述双链寡核苷酸递送到相关部位的目的,例如,缀合分子可以是靶向肝脏、肺脏、肾脏或癌细胞的缀合分子。
在一些实施方式中,本公开还提供了一种药物组合物,该药物组合物含有上述修饰的双链寡核苷酸和药学上可接受的载体。药学上可接受的载体可以是任何可用的载体。
在一些实施方式中,本公开还提供了一种寡核苷酸缀合物,所述寡核苷酸缀合物含有上述修饰的双链寡核苷酸以及缀合连接至该双链寡核苷酸的配体。根据靶基因的表达分布,可以采用不同的缀合分子,将双链寡核苷酸递送到不同的脏器或细胞中。如下述的缀合分子,适用于将所述双链寡核苷酸递送到肝脏,调节目标肝脏中表达的内源性基因或在肝脏中繁殖的病原体基因基因的表达,达到治疗肝脏中表达的内源性基因或在肝脏中繁殖的病原体基因异常表达引起的病理状况或疾病的目的。
在一些实施方式中,本公开提供了一种该双链寡核苷酸、上述含有双链寡核苷酸的药物组合物或上述寡核苷酸缀合物在制备用于治疗和/或预防由基因过量表达引起的病理状况或疾病的药物中的用途。
在一些实施方式中,本公开提供了一种治疗由基因异常表达引起的病理状况或疾病的方法,所述方法包括向受试者给予有效量的上述双链寡核苷酸、上述药物组合物或上述寡核苷酸缀合物。
在一些实施方式中,本公开提供了一种调节基因表达的方法,其中,所述方法包括将有效量的上述双链寡核苷酸、上述药物组合物或上述寡核苷酸缀合物与所述表达该基因的细胞进行接触。在一些实施方式中,所述异常表达为过量表达,相应地,所述调节为对所述过量表达进行抑制。
在一些实施方式中,上述双链寡核苷酸、上述药物组合物或上述寡核苷酸缀合物在调节肝脏中表达的基因,或者在治疗肝细胞中基因异常表达而引起的病理状况或疾病中,表现出出乎意料的稳定性和活性。在肝脏中表达的基因包括但不限于ApoB、ApoC、ANGPTL3、PCSK9、SCD1、TIMP-1、Col1A1、FVII、STAT3、p53、HBV、HCV等基因。在一些实施方式中,所述特定基因选自乙型肝炎病毒基因、血管生成素样蛋白3基因或者载脂蛋白C3基因。相应地,所述疾病选自慢性肝病、肝炎、肝纤维化疾病、肝增生性疾病和血脂异常。在一些实施方式中,所述血脂异常为高胆固醇血症、高甘油三酯血症或动脉粥样硬化。
在一些实施方式中,上述双链寡核苷酸、上述药物组合物或上述寡核苷酸缀合物也可以用于治疗其他肝脏疾病,包括以不需要的细胞增殖为特征的疾病、血液疾病、代谢疾病和以炎症为特征的疾病。肝脏的增殖疾病可以是良性或恶性疾病,例如癌症、肝细胞癌(HCC)、肝转移或肝母细胞瘤。肝脏血液学或炎症疾病可以是涉及凝血因子、补体介导的炎症或纤维化的疾病。肝脏的代谢疾病包括血脂异常和葡萄糖调节的不规则性。
本公开还提供了一种试剂盒,所述试剂盒包含上述双链寡核苷酸、上述药物组合物或上述寡核苷酸缀合物。
下面关于药物组合物和寡核苷酸缀合物的描述基于前述适用于能够调节基因的表达的双链寡核苷酸。但是该描述中关于药学上可接受的载体和药物缀合物中配体的描述同样适用于所述修饰的双链寡核苷酸在全身用药和将所述双链寡核苷酸递送到靶器官或组织,特别是肝脏,调节目标靶器官或组织中表达的内源性基因或在靶器官或组织中繁殖的病原体基因基因的表达的情况。
药物细合物
在一个方面,本公开提供了一种药物组合物,所述药物组合物含有如上所述的双链寡核苷酸作为活性成分和药学上可接受的载体。
所述药学上可接受的载体可以是双链寡核苷酸给药领域常规使用的载体,例如但不限于磁性纳米粒(magnetic nanoparticles,如基于Fe 3O 4或Fe 2O 3的纳米粒)、碳纳米管(carbon nanotubes)、介孔硅(mesoporous silicon)、磷酸钙纳米粒(calcium phosphate nanoparticles)、聚乙烯亚胺(polyethylenimine,PEI)、聚酰胺型树形高分子(polyamidoamine(PAMAM)dendrimer)、聚赖氨酸(poly(L-lysine),PLL)、壳聚糖(chitosan)、1,2-二油酰基-3-三甲铵丙烷(1,2-dioleoyl-3-trimethylammonium-propane,DOTAP)、聚D型或L型乳酸/羟基乙酸共聚物(poly(D&L-lactic/glycolic acid)copolymer,PLGA)、聚(氨乙基乙撑磷酸酯)(poly(2-aminoethyl ethylene phosphate),PPEEA)和聚(甲基丙烯酸-N,N-二甲氨基乙酯)(poly(2-dimethylaminoethyl methacrylate),PDMAEMA)以及它们的衍生物中的一种或多种。
在一些实施方式中,所述药物组合物中,对双链寡核苷酸和药学上可接受的载体的含量没有特别要求;在一些实施方式中,双链寡核苷酸与药学上可接受的载体的重量比可以为1∶(1-500);在一些具体的实施方式中,上述重量比为1∶(1-50)。
在一些实施方式中,所述药物组合物中,还可以包含药学上可接受的其它 辅料,该辅料可以为本领域常规采用的各种制剂或化合物的一种或多种。例如,所述药学上可接受的其它辅料可以包括pH值缓冲液、保护剂和渗透压调节剂中的至少一种。
所述pH值缓冲液可以为pH值7.5-8.5的三羟甲基胺基甲烷盐酸盐缓冲液和/或pH值5.5-8.5的磷酸盐缓冲液,例如可以为pH值5.5-8.5的磷酸盐缓冲液。
所述保护剂可以为肌醇、山梨醇、蔗糖、海藻糖、甘露糖、麦芽糖、乳糖和葡糖糖中的至少一种。以所述药物组合物的总重量为基准,所述保护剂的含量可以为0.01-30重量%。
所述渗透压调节剂可以为氯化钠和/或氯化钾。所述渗透压调节剂的含量使所述药物组合物的渗透压为200-700毫渗摩尔/千克。根据所需渗透压,本领域技术人员可以容易地确定所述渗透压调节剂的含量。
在一些实施方式中,所述药物组合物可以为液体制剂,例如注射液;也可以为冻干粉针剂,实施给药时与液体辅料混合,配制成液体制剂。所述液体制剂可以但不限于用于皮下、肌肉或静脉注射给药,也可以但不限于通过喷雾给药到肺脏、或通过喷雾经肺脏给药到其它脏器组织(如肝脏)。在一些具体的实施方式中,所述药物组合物用于静脉注射给药。
在一些实施方式中,所述药物组合物可以为脂质体制剂的形式。在一些实施方式中,所述脂质体制剂中使用的药学上可接受的载体包含含胺的转染化合物(下文也可将其称为有机胺)、辅助脂质和/或聚乙二醇化脂质。其中,所述有机胺、辅助脂质和聚乙二醇化脂质可分别选自于CN1033113A(通过引用的方式将其整体并入本文)中所描述的含胺的转染化合物或其药学上可接受的盐或衍生物、辅助脂质和聚乙二醇化脂质中的一种或多种。
在一些实施方式中,所述有机胺可为CN1033113A中描述的如式(201)所示的化合物或其药学上可接受的盐:
Figure PCTCN2018118212-appb-000018
其中:
X 101和X 102各自独立地是O、S、N-A或C-A,其中A是氢或C 1-C 20烃链;
Y和Z各自独立地是C=O、C=S、S=O、CH-OH或SO 2
R 101、R 102、R 103、R 104、R 105、R 106和R 107各自独立地是氢,环状或无环的、被取代的或未被取代的、支链或直链脂族基团,环状或无环的、被取代的或未被取代的、支链或直链杂脂族基团,被取代的或未被取代的、支链或直链酰基,被取代的或未被取代的、支链或直链芳基,被取代的或未被取代的、支链或直链杂芳基;
x是1-10的整数;
n是1-3的整数,m是0-20的整数,p是0或1;并且其中,当m和p均为0时,R 102是氢;
并且,如果n或m中的至少一个是2,那么R 103和在式(201)中的氮形成如式(202)或式(203)所示的结构:
Figure PCTCN2018118212-appb-000019
其中,g、e和f各自独立地是1-6的整数,“HCC”表示烃链,且每个*N代表式(201)中示出的氮原子。
在一些实施方式中,R 103是多胺。在其它实施方式中,R 103是缩酮。在一些实施方式中,在式(201)中的R 101和R 102中的每一个独立地是任意的被取代的或未被取代的、支链或直链烷基或烯基,所述烷基或烯基具有3至约20个碳原子,诸如8至约18个碳原子,和0至4个双键,诸如0至2个双键。
在一些实施方式中,如果n和m中的每一个独立地具有1或3的值,R 103可以是下述式(204)-式(213)中的任一个:
Figure PCTCN2018118212-appb-000020
Figure PCTCN2018118212-appb-000021
其中,式(204)-式(213)中,每个“HCC”代表烃链,且每个*显示R 103与在式(201)中的氮原子的可能连接点,其中在任意*位置上的每个H可以被替换以实现与在式(201)中的氮原子的连接。
其中,式(201)所示化合物可以根据CN1033113A中的描述制备。
在一些具体的实施方式中,所述有机胺为如式(214)所示的有机胺和/或如式(215)所示的有机胺:
Figure PCTCN2018118212-appb-000022
所述辅助脂质为胆固醇、胆固醇的类似物和/或胆固醇的衍生物;
所述聚乙二醇化脂质为1,2-二棕榈酰胺-sn-甘油-3-磷脂酰乙醇胺-N-[甲氧基(聚乙二醇)]-2000。
在一些实施方式中,所述药物组合物中,所述有机胺、所述辅助脂质和所述聚乙二醇化脂质三者之间的摩尔比为(19.7-80)∶(19.7-80)∶(0.3-50),例如可以为(50-70)∶(20-40)∶(3-20)。
在一些实施方式中,由本公开的双链寡核苷酸与上述含胺的转染试剂形成的药物组合物颗粒具有约30nm至约200nm的平均直径,通常为约40nm至约135nm,更通常地,该脂质体颗粒的平均直径是约50nm至约120nm、约50nm至约100nm、约60nm至约90nm或约70nm至约90nm,例如,该脂质体颗粒的平均直径是约30、40、50、60、70、75、80、85、90、100、110、120、130、140、150或160nm。
在一些实施方式中,由本公开的双链寡核苷酸与上述含胺的转染试剂形成的药物组合物中,双链寡核苷酸与全部脂质(例如有机胺、辅助脂质和/或聚乙二醇化脂质)的重量比(重量/重量比)在从约1∶1至约1∶50、从约1∶1至约1∶30、从约1∶3至约1∶20、从约1∶4至约1∶18、从约1∶5至约1∶17、从约1∶5至约1∶15、从约1∶5至约1∶12、从约1∶6至约1∶12或从约1∶6至约1∶10的范围内,例如,本公开的双链寡核苷酸与全部脂质的重量比为约1∶5、1∶6、1∶7、1∶8、1∶9、1∶10、1∶11、1∶12、1∶13、1∶14、1∶15、1∶16、1∶17或1∶18。
在一些实施方式中,所述药物组合物在销售时各组分可以独立存在,在使用时可以液体制剂的形式存在。在一些实施方式中,本公开提供的双链寡核苷酸与上述药学上可接受的载体形成的药物组合物可以按照已知的各种方法制备,只是用本公开提供的双链寡核苷酸替代现有双链寡核苷酸即可;在一些具体的实施方式中,可以按照如下方法制备:
将有机胺、辅助脂质和聚乙二醇化脂质按照上述摩尔比悬浮于醇中并混匀得到脂质溶液;醇的用量使得到的脂质溶液的总质量浓度为2-25mg/mL,例如可以为8-18mg/mL。所述醇选自药学上可接受的醇,诸如在室温附近为液体的醇,例如,乙醇、丙二醇、苯甲醇、甘油、聚乙二醇200,聚乙二醇300,聚乙二醇400中的一种或多种,例如可以为乙醇。
将本公开提供的双链寡核苷酸溶解于缓冲盐溶液中,得到双链寡核苷酸水溶液。缓冲盐溶液的浓度为0.05-0.5M,例如可以为0.1-0.2M,调节缓冲盐溶液的pH至4.0-5.5,例如可以为5.0-5.2,缓冲盐溶液的用量使双链寡核苷酸的浓度不超过0.6mg/mL,例如可以为0.2-0.4mg/mL。所述缓冲盐选自可溶性醋酸盐、可溶性柠檬酸盐中的一种或多种,例如可以为醋酸钠和/或醋酸钾。
将脂质溶液和双链寡核苷酸水溶液混合,将混合后得到的产物在40-60℃孵育至少2分钟,例如可以为5-30分钟,得到孵育后的脂质体制剂。脂质溶液和双链寡核苷酸水溶液的体积比为1∶(2-5),例如可以为1∶4。
将孵育后的脂质体制剂浓缩或稀释,去除杂质,除菌,得到本公开提供的药物组合物,其理化参数为pH值为6.5-8,包封率不低于80%,粒径为40-200nm,多分散指数不高于0.30,渗透压为250-400mOsm/kg;例如理化参数可以为pH值为7.2-7.6,包封率不低于90%,粒径为60-100nm,多分散指数不高于0.20,渗透压为300-400mOsm/kg。
其中,浓缩或稀释可以在去除杂质之前、之后或同时进行。去除杂质的方法可以采用现有各种方法,例如可以使用切相流系统,中空纤维柱,在100K Da条件下超滤,超滤交换溶液为pH7.4的磷酸盐缓冲液(PBS)。除菌的方法可以采用现有各种方法,例如可以在0.22μm滤器上过滤除菌。
寡核苷酸缀合物
在一个方面,本公开提供了一种寡核苷酸缀合物,所述寡核苷酸缀合物包含上述的双链寡核苷酸以及连接至该双链寡核苷酸的缀合基团。
在本公开的上下文中,除非另有说明,“缀合”是指两个或多个各自具有特定功能的化学部分之间以共价连接的方式彼此连接;相应地,“缀合物”是指该各个化学部分之间通过共价连接而形成的化合物。进一步地,“寡核苷酸缀合物”表示一个或多个具有特定功能的化学部分共价连接至双链寡核苷酸上而形成的化合物。在下文中,有时也将本公开的寡核苷酸缀合物简称为“缀合物”。更具体地,在本公开的上下文中,“缀合分子”应当理解为可通过反应缀合至双链寡核苷酸、最终形成本公开的寡核苷酸缀合物的特定化合物。所述配体的种类和连接方式为本领域技术人员所公知,其作用一般是与靶细胞表面的特异性受体相结合,介导与配体连接的双链寡核苷酸递送至靶细胞。
一般来说,所述缀合基团包含药学上可接受的至少一个靶向基团和任选的接头(linker),并且,所述双链寡核苷酸、所述接头和所述靶向基团依次连接。在一种实施方式中,所述靶向基团为1-6个。在一种实施方式中,所述靶向基团为2-4个。所述双链寡核苷酸分子可以非共价或共价缀合至所述缀合基团,例如可以共价缀合至所述缀合基团。双链寡核苷酸与缀合基团的缀合位点可以在双链寡核苷酸正义链的3′端或5′端,也可在反义链的5′端,还可以在双链寡核苷酸的内部序列中。在一些具体的实施方式中,所述双链寡核苷酸与缀合基团的缀合位点在双链寡核苷酸正义链的3′末端。
在一些实施方式中,所述缀合基团可以连接在核苷酸的磷酸基团、2′-位羟基或者碱基上。在一些实施方式中,所述缀合基团可以连接在3′-位羟基上,此时核苷酸之间采用2′-5′磷酸二酯键连接。当缀合基团连接在双链寡核苷酸链的末端时,所述缀合基团通常连接在核苷酸的磷酸基团上;当缀合基团连接在双链寡核苷酸的内部序列时,所述缀合基团通常连接在核糖糖环或者碱基上。各种连接方式可参考:Muthiah Manoharan et.al.siRNA conjugates carrying sequentially assembled trivalent N-acetylgalactosamine linked through nucleosides elicit robust gene silencing in vivo in hepatocytes.ACS Chemical biology,2015,10(5):1181-7.
在一些实施方式中,所述双链寡核苷酸与缀合基团间可以通过酸不稳定的、或可还原的化学键相连,在细胞内涵体的酸性环境下,这些化学键可降解,从而使双链寡核苷酸成为自由状态。对于不可降解的缀合方式,缀合基团可连接至双链寡核苷酸的正义链,从而尽量降低缀合对双链寡核苷酸活性的影响。
靶向基团可经由合适的接头与双链寡核苷酸分子相连,本领域技术人员可以根据靶向基团的具体类型选择合适的接头。这些接头、靶向基团的种类以及与双链寡核苷酸的连接方式可参见WO2015006740A2的公开内容,通过引用的方式将其整体内容并入本文。
在一些实施方式中,当所述靶向基团为N-乙酰半乳糖胺时,合适的接头可以为如式(301)所示的结构:
Figure PCTCN2018118212-appb-000023
其中,k为1-3的整数;
L A为具有如式(302)所示结构的包含酰胺键的链状部分,每个所述L A 在其两端分别与一个所述靶向基团和所述L C部分通过醚键相连接:
Figure PCTCN2018118212-appb-000024
L B为具有如式(303)所示结构的包含N-酰基吡咯烷的链状部分,所述链状部分在其一端具有羰基并与所述L C部分通过酰胺键相连接,在另一端具有氧基并与所述双链寡核苷酸通过磷酸酯键相连接:
Figure PCTCN2018118212-appb-000025
L C为基于羟甲基氨基甲烷、二羟甲基氨基甲烷或三羟甲基氨基甲烷的2-4价连接基团,所述L C经由氧原子与各个所述L A部分通过醚键相连接,并且经由氮原子与所述L B部分通过酰胺键相连接。
在一些实施方式中,当n=3,L C为基于三羟甲基氨基甲烷的4价连接基团时,由作为接头的-(L A) 3三羟甲基氨基甲烷-L B-连接N-乙酰半乳糖胺分子和双链寡核苷酸分子所形成的寡核苷酸缀合物,其结构如下式(304)所示:
Figure PCTCN2018118212-appb-000026
式中,双螺旋结构表示双链寡核苷酸。
同样,双链寡核苷酸与缀合基团的缀合位点可以在双链寡核苷酸正义链的3′端或5′端,也可在反义链的5′端,还可以在双链寡核苷酸的内部序列中。
在一些具体的实施方式中,本公开所述双链寡核苷酸的正义链3′末端通过接头-(L A) 3三羟甲基氨基甲烷-L B-与三个N-乙酰半乳糖胺(GalNAc)分子共价缀合,得到双链寡核苷酸分子与GalNAc分子的摩尔比为1∶3的寡核苷酸缀合物,下文也可将其称为(GalNAc) 3-Nu,其结构如下式(305)所示:
Figure PCTCN2018118212-appb-000027
其中,双螺旋结构表示所述双链寡核苷酸;并且
所述接头连接至所述双链寡核苷酸的正义链3′末端。
在一些实施方式中,当所述靶向基团为N-乙酰半乳糖胺时,合适的接头可以为如式(306)所示的结构:
Figure PCTCN2018118212-appb-000028
其中,l为0-3的整数;
*表示接头上通过醚键与靶向基团连接的位点;
#表示接头上通过磷酸酯键与双链寡核苷酸连接的位点。
在一些具体的实施方式中,当l=2时,所述寡核苷酸缀合物具有如式(307)所示的结构:
Figure PCTCN2018118212-appb-000029
其中,双螺旋结构表示所述双链寡核苷酸;并且
所述接头连接至所述双链寡核苷酸的正义链3′末端。
上述缀合物可以通过现有技术中已经详细描述的方法进行合成。例如,WO2015006740A2中详细描述了多种缀合物的制备。又如,WO20140255A1中记载了式(305)所示结构的制备方法。再如Rajeev等人,ChemBioChem 2015,16,903-908中描述了式(307)所示结构的制备方法。
在一些实施方式中,所述缀合物具有式(308)所示的结构:
Figure PCTCN2018118212-appb-000030
其中,n1为选自1-3的整数,n3为选自0-4的整数;
m1、m2和m3独立地为选自2-10的整数;
R 10、R 11、R 12、R 13、R 14和R 15各自独立地为H,或选自于由以下基团所组成的组:C 1-C 10烷基、C 1-C 10卤代烷基以及C 1-C 10烷氧基;
R 3为式A59所示结构的基团:
Figure PCTCN2018118212-appb-000031
其中,E 1为OH、SH或BH 2,Nu为双链寡核苷酸;
R 2是长度为1-20个碳原子的直链亚烷基,其中一个或多个碳原子任选地被选自于以下基团所组成的组中的一个或多个所替换:C(O)、NH、O、S、CH=N、S(O) 2、C 2-C 10亚烯基、C 2-C 10亚炔基、C 6-C 10亚芳基、C 3-C 18亚杂环基和C 5-C 10亚杂芳基,并且其中,R 2可任选地具有由以下基团所组成的组中的任何一个或多个的取代基:C 1-C 10烷基、C 6-C 10芳基、C 5-C 10杂芳基、C 1-C 10卤代烷基、-OC 1-C 10烷基、-OC 1-C 10烷基苯基、-C 1-C 10烷基-OH、-OC 1-C 10卤代烷基、-SC 1-C 10烷基、-SC 1-C 10烷基苯基、-C 1-C 10烷基-SH、-SC 1-C 10卤代烷基、卤素取代基、-OH、-SH、-NH 2、-C 1-C 10烷基-NH 2、-N(C 1-C 10烷基)(C 1-C 10烷基)、-NH(C 1-C 10烷基)、氰基、硝基、-CO2H、-C(O)O(C 1-C 10烷基)、-CON(C 1-C 10烷基)(C 1-C 10烷基)、-CONH(C 1-C 10烷基)、-CONH 2,-NHC(O)(C 1-C 10烷基)、-NHC(O)(苯基)、-N(C 1-C 10烷基)C(O)(C 1-C 10烷基)、-N(C 1-C 10烷基)C(O)(苯基)、-C(O)C 1-C 10烷基、-C(O)C 1-C 10烷基苯基、-C(O)C 1-C 10卤烷基、-OC(O)C 1-C 10烷基、-SO 2(C 1-C 10烷基)、-SO 2(苯基)、-SO 2(C 1-C 10卤代烷基)、-SO 2NH 2、-SO 2NH(C 1-C 10烷基)、-SO 2NH(苯基)、-NHSO 2(C 1-C 10烷基)、-NHSO 2(苯基)和-NHSO 2(C 1-C 10卤代烷基);
每个L 1是长度为1-70个碳原子的直链亚烷基,其中一个或多个碳原子任选地被选自于以下基团所组成的组中的一个或多个所替换:C(O)、NH、O、S、CH=N、S(O) 2、C 2-C 10亚烯基、C 2-C 10亚炔基、C 6-C 10亚芳基、C 3-C 18亚杂环基和C 5-C 10亚杂芳基,并且其中,L 1可任选地具有由以下基团所组成的组中的 任何一个或多个的取代基:C 1-C 10烷基、C 6-C 10芳基、C 5-C 10杂芳基、C 1-C 10卤代烷基、-OC 1-C 10烷基、-OC 1-C 10烷基苯基、-C 1-C 10烷基-OH、-OC 1-C 10卤代烷基、-SC 1-C 10烷基、-SC 1-C 10烷基苯基、-C 1-C 10烷基-SH、-SC 1-C 10卤代烷基、卤素取代基、-OH、-SH、-NH 2、-C 1-C 10烷基-NH 2、-N(C 1-C 10烷基)(C 1-C 10烷基)、-NH(C 1-C 10烷基)、氰基、硝基、-CO 2H、-C(O)O(C 1-C 10烷基)、-CON(C 1-C 10烷基)(C 1-C 10烷基)、-CONH(C 1-C 10烷基)、-CONH 2,-NHC(O)(C 1-C 10烷基)、-NHC(O)(苯基)、-N(C 1-C 10烷基)C(O)(C 1-C 10烷基)、-N(C 1-C 10烷基)C(O)(苯基)、-C(O)C 1-C 10烷基、-C(O)C 1-C 10烷基苯基、-C(O)C 1-C 10卤烷基、-OC(O)C 1-C 10烷基、-SO 2(C 1-C 10烷基)、-SO 2(苯基)、-SO 2(C 1-C 10卤代烷基)、-SO 2NH 2、-SO 2NH(C 1-C 10烷基)、-SO 2NH(苯基)、-NHSO 2(C 1-C 10烷基)、-NHSO 2(苯基)和-NHSO 2(C 1-C 10卤代烷基)。M 1表示靶向基团。
在一些实施方式中,L 1可选自于由A1-A26基团或其任意组合所组成的组,其中A1-A26的结构和定义如下所示:
Figure PCTCN2018118212-appb-000032
Figure PCTCN2018118212-appb-000033
其中,j1为1-20的整数;j2为1-20的整数;
R’为C 1-C 10的烷基;
Ra选自式A27-A45基团中的一种:
Figure PCTCN2018118212-appb-000034
Figure PCTCN2018118212-appb-000035
Rb为C 1-C 10的烷基;并且
Figure PCTCN2018118212-appb-000036
表示基团连接至分子其余部分的位点。
技术人员会理解的是,尽管为了方便起见,L 1被定义为线性烷基,但是它可能不是线性基团或者名称不同,例如由于上述替换和/或置换而产生的胺或烯基。为了本公开内容的目的,L 1的长度是连接两个附着点的链中的原子数。为此目的,将替换所述直链亚烷基的碳原子而得到的环(如亚杂环基或亚杂芳基)计为一个原子。
在一些实施方式中,所述药学上可接受的靶向基团指可以是双链寡核苷酸给药领域常规使用的配体,例如WO2009082607A2中描述的各种配体,以引用的方式将其全部公开内容并入本文。
在一些实施方式中,所述的每个配体独立地选自一个能够与细胞表面受体结合的配体。在一些实施方式中,至少一个配体是能够与肝细胞表面受体结合的配体。在一些实施方式中,至少一个配体是能够与哺乳动物肝细胞表面受体结合的配体。在一些实施方式中,至少一个配体是能够与人肝细胞表面受体结合的配体。在一些实施方式中,至少一个配体是能够与肝表面去唾液酸糖蛋白受体(ASGPR)结合的配体。这些配体的种类为本领域技术人员所公知,其作用一般是与靶细胞表面的特异性受体相结合,介导与配体连接的双链寡核苷酸递送至靶细胞。
在一些实施方式中,所述药学上可接受的靶向基团可以是与哺乳动物肝细胞表面上的去唾液酸糖蛋白受体(ASGPR)结合的任意一种配体。在一种实施方式中,每个配体独立地为去唾液酸糖蛋白,例如去唾液酸血清类粘蛋白(asialoorosomucoid,ASOR)或去唾液酸胎球蛋白(asialofetuin,ASF)。
在一些实施方式中,所述药学上可接受的靶向基团可以选自以下靶向分子或其衍生物形成的配体中的一种或多种:亲脂分子,例如胆固醇、胆汁酸、维生素(例如维生素E)、不同链长的脂质分子;聚合物,例如聚乙二醇;多肽,例如透膜肽;适配体;抗体;量子点;糖类,例如乳糖、聚乳糖、甘露糖、半乳糖、N-乙酰半乳糖胺(GalNAc);叶酸(folate);肝实质细胞表达的受体配体,例如去唾液酸糖蛋白、去唾液酸糖残基、脂蛋白(如高密度脂蛋白、低密度脂蛋白等)、胰高血糖素、神经递质(如肾上腺素)、生长因子、转铁蛋白等。
在一种实施方式所述配体为糖或糖的衍生物。
在一些实施方式中,至少一个配体是糖。在一些实施方式中,每个配体均是糖。在一些实施方式中,至少一个配体是单糖、多糖、修饰的单糖、修饰的多糖或糖衍生物。在一些实施方式中,至少一个所述配体可以是单糖,双糖或三糖。在一些实施方式中,至少有一个配体是修饰的糖。在一些实施方式中,每一个配体均为修饰的糖。在一些实施方式中,每个配体均独立地选自多糖、修饰的多糖、单糖、修饰的单糖、多糖衍生物或单糖衍生物。在一些实施方式中,每一个或至少一个配体选自由葡萄糖及其衍生物组、甘露聚糖及其衍生物、半乳糖及其衍生物、木糖及其衍生物、核糖及其衍生物、岩藻糖及其衍生物、乳糖及其衍生物、麦芽糖及其衍生物,阿拉伯糖及其衍生物、果糖及其衍生物和唾液酸组成的组。
在一些实施方式中,每个所述配体可独立地选自D-吡喃甘露糖、L-吡喃甘露糖、D-阿拉伯糖、D-呋喃木糖、L-呋喃木糖、D-葡萄糖、L-葡萄糖、D-半乳糖、L-半乳糖、α-D-呋喃甘露糖、β-D-呋喃甘露糖、α-D-吡喃甘露糖、β-D-吡喃甘露糖、α-D-吡喃葡萄糖、β-D-吡喃葡萄糖、α-D-呋喃葡萄糖、β-D-呋喃葡萄糖、α-D-呋喃果糖、α-D-吡喃果糖、α-D-吡喃半乳糖、β-D-吡喃半乳糖、α-D-呋喃半乳糖、β-D-呋喃半乳糖、葡糖胺、唾液酸、半乳糖胺、N-乙酰基半乳糖胺、N-三氟乙酰基半乳糖胺、N-丙酰基半乳糖胺、N-正丁酰基半乳糖胺、N-异丁酰基半乳糖胺、2-氨基-3-O-[(R)-1-羧乙基]-2-脱氧-β-D-吡喃葡萄糖、2-脱氧-2-甲基氨基-L-吡喃葡萄糖、4,6-二脱氧-4-甲酰胺基-2,3-二-O-甲基-D-吡喃甘露糖、2-脱氧-2-磺氨基-D-吡喃葡萄糖、N-乙醇酰基-α-神经氨酸、5-硫代-β-D-吡喃葡萄糖、2,3,4-三-O-乙酰基-1-硫代-6-O-三苯甲基-α-D-吡喃葡萄糖苷甲酯、4-硫代-β-D-吡喃半乳糖、3,4,6,7-四-O-乙酰基-2-脱氧-1,5-二硫代-α-D-吡喃葡庚糖苷乙酯、2,5-脱水-D-阿洛糖腈、核糖、D-核糖、D-4-硫代核糖、L-核糖或L-4-硫代核糖。所述配体的其它选择可参见例如CN105378082A的记载,以引用的方式将其全部公开内容并入本文。
在一些实施方式中,所述寡核苷酸缀合物中药学上可接受的靶向基团可以是半乳糖或N-乙酰半乳糖胺,其中,半乳糖或N-乙酰半乳糖胺分子可以是一价、二价、三价、四价。应当理解的是,这里所述的一价、二价、三价、四价分别指双链寡核苷酸分子与含有作为靶向基团的半乳糖或N-乙酰半乳糖胺分子的缀合基团形成寡核苷酸缀合物后,该寡核苷酸缀合物中双链寡核苷酸分子与半乳糖或N-乙酰半乳糖胺分子的摩尔比为1∶1、1∶2、1∶3或1∶4。在一些实施方式中,所述药学上可接受的靶向基团是N-乙酰半乳糖胺。在一些实施方式中,当本公开所述的双链寡核苷酸与含有N-乙酰半乳糖胺的缀合基团缀合时,N-乙酰半乳糖胺分子是三价或四价。在一些实施方式中,当本公开所述的双链寡核苷酸与含有N-乙酰半乳糖胺的缀合基团缀合时,N-乙酰半乳糖胺分子是三价。
M 1表示靶向基团,其定义和可选择的范围与上述相同。在一些实施方式中,每个M 1独立地选自对哺乳动物肝脏细胞表面上的去唾液酸糖蛋白受体具有亲合力的配体中的一种。
当M 1为对哺乳动物肝脏细胞表面上的去唾液酸糖蛋白受体具有亲合力的配体时,在一些实施方式中,n1可以是1-3的整数,n3可以是0-4的整数,保证所述缀合物中M 1配体的个数至少为2;在一些实施方式中,n1+n3≥2,这样可以使得M 1配体的个数至少为3,使得M 1配体与肝表面去唾液酸糖蛋白受体更容易结合,进而促进所述缀合物通过内吞作用进入细胞。实验表明,当M 1配体的个数大于3个时,M 1配体与肝表面去唾液酸糖蛋白受体结合的容易程度增加并不明显,因此,从合成容易程度、结构/工艺成本和递送效率等多 方面综合考虑,在一些实施方式中,n1为1-2的整数,n3为0-1的整数,且n1+n3=2-3。
在一些实施方式中,m1、m2和m3独立地选自2-10的整数时,可以使多个M 1配体之间的空间位置适合M 1配体与肝表面去唾液酸糖蛋白受体的结合,为了使本公开提供的缀合物更为简单,更容易合成和/或降低成本,在一些实施方式中,m1、m2和m3各自独立地为2-5的整数,在一些实施方式中,m1=m2=m3。
本领域技术人员可以理解,当R 10、R 11、R 12、R 13、R 14和R 15各自独立地选自H、C 1-C 10烷基、C 1-C 10卤代烷基、以及C 1-C 10烷氧基中的一种时,不会改变本文公开的缀合物的性质,均可以实现本公开的目的。在一些实施方式中,R 10、R 11、R 12、R 13、R 14和R 15各自独立地选自H、甲基和乙基。在一些实施方式中,R 10、R 11、R 12、R 13、R 14和R 15均为H。
根据本公开提供的寡核苷酸缀合物,R 3为式A59所示结构的基团,其中,E 1为OH、SH或BH 2,基于制备原料易获取性的考虑,在一些实施方式中,E 1为OH或SH。
在一些实施方式中,R 2的选择是为了实现与含氮骨架上的N与A59的连接。在本公开的上下文中,“含氮骨架”是指连接有R 10、R 11、R 12、R 13、R 14和R 15的碳原子与N互相连接的链状结构。因此,R 2可以是任何能够以适当方式将A59基团连接至含氮骨架上的N的连接基团。在一些实施方式中,在通过固相合成的工艺制备本公开的寡核苷酸缀合物的情况下,R 2基团中需要同时含有与含氮骨架上的N连接的连接位点和与R 3中的P相连接的连接位点。在一些实施方式中,R 2中所述与含氮骨架上的N连接的位点与N形成酰胺键,所述与R 3上的P连接的位点与P形成磷酸酯键。在一些实施方式中,R 2是B5、B6、B5’或B6’:
Figure PCTCN2018118212-appb-000037
其中,
Figure PCTCN2018118212-appb-000038
表示基团共价键连接的位点。
q 2的取值范围可以是1-10的整数,在一些实施方式中,q 2为1-5的整数。
L 1的作用是将M 1配体与含氮骨架上的N连接,为本公开的寡核苷酸缀合物提供靶向功能。在一些实施方式中,L 1选自式A1-A26基团中的一种或多种的连接组合。在一些实施方式中,L 1选自A1、A4、A5、A6、A8、A10、A11 和A13中的一种或多种的连接组合;在一些实施方式中,L 1选自A1、A4、A8、A10和A11中至少2个的连接组合;在一些实施方式中,L 1选自A1、A8、A10中至少2个的连接组合。
在一些实施方式中,L 1的长度可以为3-25个原子,3-20个原子、4-15个原子或5-12个原子。在一些实施方式中是,L 1的长度为3个、4个、5个、6个、7个、8个、9个、10个、11个、12个、13个、14个、15个、16个、17个、18个、19个、20个、21个、22个、23个、24个、25个、30个、35个、40个、45个、50个、55个、60个原子。
在一些实施方式中,j1为2-10的整数,在一些实施方式中,j1为3-5的整数。在一些实施方式中,j2为2-10的整数,在一些实施方式中,j2为3-5的整数。R’为C1-C4的烷基,在一些实施方式中,R’为甲基、乙基和异丙基中的一种。Ra为A27、A28、A29、A30和A31中的一种,在一些实施方式中,Ra为A27或A28。Rb为C1-C5的烷基,在一些实施方式中,Rb为甲基、乙基、异丙基和丁基中的一种。在一些实施方式中,在式A1-A26中各自对j1、j2、R’、Ra、Rb进行选择,以实现M 1配体与含氮骨架上的N连接,并使M 1配体之间的空间位置更适合M 1配体与肝表面去唾液酸糖蛋白受体结合。
在一些实施方式中,本公开的寡核苷酸缀合物具有式(403)、(404)、(405)、(406)、(407)、(408)、(409)、(410)、(411)、(412)、(413)、(414)、(415)、(416)、(417)、(418)、(419)、(420)、(421)或(422)所示的结构:
Figure PCTCN2018118212-appb-000039
Figure PCTCN2018118212-appb-000040
Figure PCTCN2018118212-appb-000041
Figure PCTCN2018118212-appb-000042
Figure PCTCN2018118212-appb-000043
Figure PCTCN2018118212-appb-000044
在一些实施方式中,式A59中的P可以连接到双链寡核苷酸序列中任何可能的位置,例如,式A59中的P可以连接到双链寡核苷酸正义链或反义链的任何一个核苷酸上;在一些实施方式中,式A59中的P连接到双链寡核苷酸正义链的任何一个核苷酸上。在一些实施方式中,式A59中的P连接到双链寡核苷酸正义链或反义链的端部;在一些实施方式中,式A59中的P连接到双链寡核苷酸正义链的端部。所述端部指所述正义链或所述反义链中从其一端起算的前4个核苷酸。在一些实施方式中,式A59中的P连接到双链寡核苷酸正义链或反义链的末端;在一些实施方式中,式A59中的P连接到双链寡核苷酸正义链的3′末端。在连接至双链寡核苷酸的正义链的上述位置的情况下,本公开提供的缀合物进入细胞后,在解旋时,可以释放出单独的双链寡核苷酸反义链,以调节靶基因表达。
式A59中的P可以连接到双链寡核苷酸中的核苷酸上任何可能的位置,例如,核苷酸的5′位、核苷酸的2′位、核苷酸的3′位或核苷酸的碱基上。在一些实施方式中,式A59中的P可通过形成磷酸二酯键连接至所述双链寡核苷酸中的核苷酸的2′位、3′位或5′位。在一些实施方式中,式A59中的P连接在双链寡核苷酸正义链3′末端核苷酸的3′羟基脱氢后形成的氧原子上,或者式A59中的P通过取代双链寡核苷酸正义链中的一个核苷酸的2′-羟基中的氢与核苷酸连接,或者式A59中的P通过取代双链寡核苷酸正义链5′末端核苷酸的5′羟基中的氢与核苷酸连接。
本公开所述双链寡核苷酸或寡核苷酸缀合物中,每个相邻核苷酸之间由磷酸二酯键或硫代磷酸二酯键连接,磷酸二酯键或硫代磷酸二酯键中的非桥接氧原子或硫原子带有负电荷,它可以以羟基或巯基的形式存在,羟基或巯基中的氢离子也可以部分或全部被阳离子取代。所述阳离子可以是任意的阳离子,如金属阳离子,铵离子NH 4 +,有机铵阳离子中的一种。出于提高溶解性考虑,在一种实施方式中,所述阳离子选自碱金属离子、三级胺形成的铵阳离子和季铵阳离子中的一种或多种。碱金属离子可以是K +和/或Na +,三级胺形成的阳离子可以是三乙胺形成的铵离子和/或N,N-二异丙基乙胺形成的铵离子。因此,本公开所述双链寡核苷酸或寡核苷酸缀合物可以至少部分以盐的形式存在。在一种方式中,磷酸二酯键或硫代磷酸二酯键中的非桥接氧原子或硫原子至少部分与钠离子结合,本公开所述双链寡核苷酸或寡核苷酸缀合物以钠盐或部分钠盐的形式存在。
本领域技术人员清楚知晓的是,可以通过使用具有相应修饰的核苷单体来将修饰的核苷酸基团引入本公开所述的双链寡核苷酸中。制备具有相应修饰的核苷单体的方法及将修饰的核苷酸基团引入双链寡核苷酸的方法也是本领域技术人员所熟知的。所有修饰的核苷单体均可以商购得到或者采用已知方法制备得到。
式(308)的寡核苷酸缀合物的制备
可以采用任意合理的合成路线制备本公开的寡核苷酸缀合物。
在一些实施方式中,式(308)的寡核苷酸缀合物可以采用如下方法制备,该方法包括在亚磷酰胺固相合成的条件下,分别按照双链寡核苷酸正义链和反义链的核苷酸种类和顺序,按照3′到5′的方向将核苷单体依次连接,每个核苷单体的连接包括脱保护、偶联、盖帽、氧化或硫化四步反应;分离出双链寡核苷酸的正义链和反义链,退火,其中,所述双链寡核苷酸为上述本公开的双链寡核苷酸;
并且,该方法还包括在偶联反应条件和偶联试剂存在下,将式(321)所示的化合物与核苷单体或连接在固相载体上的核苷酸序列接触,使式(321)所示的化合物经偶联反应连接至核苷酸序列。下文中,式(321)所示的化合物也称作缀合分子。
Figure PCTCN2018118212-appb-000045
其中:
R 4为能够结合至本公开的双链寡核苷酸的部分。在一些实施方式中,R 4为能够通过共价键结合至本公开的双链寡核苷酸的部分。在一些实施方式中,R 4为能够经反应而通过磷酸二酯键缀合至双链寡核苷酸的任意官能团的部分;
每个S 1独立地是M 1中全部活性羟基被YCOO-基团取代而形成的基团,其中,每个Y独立地选自甲基、三氟甲基、二氟甲基、一氟甲基、三氯甲基、二氯甲基、一氯甲基、乙基、正丙基、异丙基、苯基、卤代苯基以及烷基苯基中的一种;
n1、n3、m1、m2、m3、R 10、R 11、R 12、R 13、R 14、R 15、L 1、M 1各自的 定义和可选择的范围如前所述。
R 4的选择是为了实现与含氮骨架上的N的连接,并且为合成式(308)的寡核苷酸缀合物提供合适的反应位点。在一些实施方式中,R 4中包括R 2连接基团或经保护的R 2连接基团,以及可通过反应与双链寡核苷酸形成A59所示结构的官能团。
在一些实施方式中,R 4包含可与双链寡核苷酸或核苷单体上的基团形成亚磷酸酯的第1官能团以及可与羟基或氨基反应形成共价键的第2官能团或者含有由所述共价键连接的固相载体。在一些实施方式中,所述第1官能团为亚磷酰胺、羟基或被保护的羟基。在一些实施方式中,所述第2官能团为亚磷酰胺、羧酸或羧酸盐。在一些实施方式中,所述第2官能团为经由共价键连接至分子其他部分的固相载体,所述共价键由羟基或氨基形成。在一些实施方式中,所述固相载体经由磷酸酯键、羧酸酯键或酰胺键连接。在一些实施方式中,所述固相载体为树脂。
在一些实施方式中,所述第1官能团含有羟基、-OR k或式(C3)所示的基团;所述第2官能团含有式(C1)、(C2)、(C3)、(C1’)或(C3’)所示的结构:
Figure PCTCN2018118212-appb-000046
式中,q 1为1-4的整数,X为O或NH,M +为阳离子,R k为羟基保护基团,SPS表示固相载体,
Figure PCTCN2018118212-appb-000047
表示基团共价连接至分子其余部分的位点。
在一些实施方式中,所述第1官能团含有亚磷酰胺基团,如式(C3)所示,该亚磷酰胺基团可以与核苷酸上的任意位置的羟基,如2′位羟基或3′位羟基发生偶联反应形成亚磷酸酯,并经氧化或硫化形成式A59所示的磷酸二酯键或硫代磷酸酯键,将缀合分子缀合至双链寡核苷酸。此时,即使所述第2官能团并不存在,式(321)化合物也能够缀合至核苷酸,不影响式(308)所示寡核苷酸缀合物的获得。在此情况下,在经由亚磷酰胺固相合成等方法获得双链寡核苷酸的正义链或反义链后,使式(321)化合物与核苷酸序列中末端核苷酸上的羟基反应,并在后续的氧化或硫化过程中形成磷酸二酯键连接或硫代磷酸酯连接,将式(321)化合物缀合至双链寡核苷酸。
在一些实施方式中,所述第1官能团含有被保护的羟基。在一些实施方式中,所述第2官能团包含可与固相载体反应的基团,所述反应提供包含固相载体的缀合分子。在一些实施方式中,所述第2官能团含有羧基、羧酸盐或亚磷酰胺,如式(C1)、(C2)或(C3)所示,当所述第2官能团包含羧基或羧酸盐时,式(321)化合物与固相载体,例如树脂上的羟基或氨基进行酯化反 应或酰胺化反应,形成经羧酸酯键连接或经酰胺键连接的包含固相载体的缀合分子。当所述第2官能团包含亚磷酰胺官能团时,式(321)化合物与通用固相载体,例如树脂上的羟基发生偶联反应,并经氧化形成经磷酸二酯键连接的包含固相载体的缀合分子。随后,以上述连接固相载体后的产物作为起始,按照亚磷酰胺固相合成方法依次连接核苷单体,获得连接有缀合基团的双链寡核苷酸的正义链或反义链。在亚磷酰胺固相合成过程中,所述第1官能团发生脱保护,随后在偶联反应条件下与核苷单体上的亚磷酰胺基团发生偶联。
在一些实施方式中,所述第1官能团含有羟基或被保护的羟基;所述第2官能团含有经羧酸酯键连接的固相载体或经酰胺键连接的固相载体、或者经磷酸酯键连接的固相载体,如式(C1’)或(C3’)所示。此时,由式(321)化合物代替固相载体作为起始,按照亚磷酰胺固相合成方法依次连接核苷单体,获得连接有缀合基团的双链寡核苷酸的正义链或反义链。
在一些实施方式中,羧酸盐可以表示为-COO -M +,其中,M +是阳离子,例如选自金属阳离子,铵阳离子NH 4 +,有机铵阳离子中的一种。在一种实施方式中,所述金属离子选自碱金属离子中的一种,如K +或Na +。出于提高溶解性、使反应顺利进行的考虑,在一些实施方式中,有机铵离子为三级胺形成的铵阳离子或季铵阳离子,如,三乙胺形成的铵离子或N,N-二异丙基乙胺形成的铵离子。在一些实施方式中,羧酸盐是三乙胺羧酸盐或N,N-二异丙基乙胺羧酸盐。
在一些实施方式中,R 4含有式(B9)、(B10)、(B9’)、(B10’)、(B11)、(B12)、(B11’)或(B12’)所示的结构:
Figure PCTCN2018118212-appb-000048
Figure PCTCN2018118212-appb-000049
其中,q 1为1-4的整数,q 2为1-10的整数,X为O或NH,M +为阳离子,R k为羟基保护基团,SPS表示固相载体,
Figure PCTCN2018118212-appb-000050
表示基团共价连接至分子其余部分的位点。在一些实施方式中,q 1为1或2。在一些实施方式中,q 2为1-5的整数。在一些实施方式中,R 4含有式(B9)或(B10)所示的结构。在一些实施方式中,R 4含有式(B11)或(B12)所示的结构。
在一些实施方式中,R k是Tr(三苯甲基)、MMTr(4-甲氧基三苯甲基)、DMTr(4,4’-双甲氧基三苯甲基)、TMTr(4,4’,4’-三甲氧基苯甲基)中的一种或多种。在一些实施方式中,R k可以是DMTr,即4,4’-双甲氧基三苯甲基(4,4’-dimethoxytrityl)。
L 1是指长度为1-70个碳原子的直链亚烷基,其中一个或多个碳原子任选地被由C(O)、NH、O、S、CH=N、S(O) 2、C 2-C 10亚烯基、C 2-C 10亚炔基、C 6-C 10亚芳基、C 3-C 18亚杂环基和C 5-C 10亚杂芳基,并且其中,L 1可任选地具有由以下基团所组成的组中的任何一个或多个的取代基:C 1-C 10烷基、C 6-C 10芳基、C 5-C 10杂芳基、C 1-C 10卤代烷基、-OC 1-C 10烷基、-OC 1-C 10烷基苯基、-C 1-C 10烷基-OH、-OC 1-C 10卤代烷基、-SC 1-C 10烷基、-SC 1-C 10烷基苯基、-C 1-C 10烷基-SH、-SC 1-C 10卤代烷基、卤素取代基、-OH、-SH、-NH 2、-C 1-C 10烷基-NH 2、-N(C 1-C 10烷基)(C 1-C 10烷基)、-NH(C 1-C 10烷基)、氰基、硝基、-CO2H、-C(O)OC 1-C 10烷基、-CON(C 1-C 10烷基)(C 1-C 10烷基)、-CONH(C 1-C 10烷基)、-CONH2,-NHC(O)(C 1-C 10烷基)、-NHC(O)(苯基)、-N(C 1-C 10烷基)C(O)(C 1-C 10烷基)、-N(C 1-C 10烷基)C(O)(苯基)、-C(O)C 1-C 10烷基、-C(O)C 1-C 10烷基苯基、-C(O)C 1-C 10卤烷基、-OC(O)C 1-C 10烷基、-SO 2(C 1-C 10烷基)、-SO 2(苯基)、-SO 2(C 1-C 10卤代烷基)、-SO 2NH 2、-SO 2NH(C 1-C 10烷基)、-SO 2NH(苯基)、-NHSO 2(C 1-C 10烷基)、-NHSO 2(苯基)和-NHSO 2(C 1-C 10卤代烷基)。
在一些实施方式中,L 1被用于将M 1配体连接至含氮骨架上的N原子,从而为寡核苷酸缀合物提供肝靶向功能。在一些实施方式中,L 1包含A1-A26中的任一个或其组合。
根据上述描述,本领域技术人员容易理解的是,相较于本领域公知的亚磷酰胺固相合成方法而言,可通过上述第1官能团以及任选的第2官能团,获得将缀合分子连接至核苷酸序列的任意可能的位置的寡核苷酸缀合物,例如,缀合分子连接至核苷酸序列的端部,缀合分子连接至核苷酸序列的末端。相应地,除非另有说明,以下涉及缀合制备的描述中,当提及“脱保护”、“偶联”、“盖帽”、“氧化”、“硫化”等反应时,应当理解为本领域公知的亚磷酰胺核酸固相合成方法中所涉及的反应条件和试剂也同样适用于这些反应。示例性的反应条件和试剂将在后文详细描述。
在一些实施方式中,每个S 1独立地是M 1。在一些实施方式中,每个S 1独立地是M 1中至少一个活性羟基被羟基保护基团保护而形成的基团。在一些实施方式中,每个S 1独立地是M 1中任何存在的活性羟基全部被羟基保护基团保护而形成的基团。在一些实施方式中,任何本领域技术人员已知的羟基保护 基团均可被用于保护M 1中的活性羟基。在一些实施方式中,被保护的羟基可以式YCOO-表示,其中,每个Y独立地选自于由C 1-C 10烷基和C 6-C 10芳基所组成的组,所述C 1-C 10烷基和C 6-C 10芳基任选地被一个或多个取代基取代,所述取代基选自于由卤素和C 1-C6烷基所组成的组。在一些实施方式中,每个Y独立地选自于由以下基团所组成的组:甲基、三氟甲基、二氟甲基、单氟甲基、三氯甲基、二氯甲基、一氯甲基、乙基、正丙基、异丙基、苯基、卤苯基,以及C 1-C 6烷基苯基。
在一些实施方式中,每个S 1各自独立地选自于由式A46-A54所组成的组:
Figure PCTCN2018118212-appb-000051
在一些实施方式中,S 1为式A49或A50。
在一些实施方式中,每个Y独立地选自甲基、三氟甲基、二氟甲基、一氟甲基、三氯甲基、二氯甲基、一氯甲基、乙基、正丙基、异丙基、苯基、卤代苯基以及烷基苯基中的一种;在一些实施方式中,Y为甲基。
如前所述,本公开的寡核苷酸缀合物的制备方法还包括以下步骤:合成双链寡核苷酸的另一链(例如,当上述步骤合成了连接有缀合基团的双链寡核苷酸正义链时,还包括按照固相合成方法合成双链寡核苷酸的反义链,反之亦然),分离正义链和反义链,以及退火。具体地,在分离步骤中,连接至核苷酸序列和/或缀合基团的固相载体被切割下来,同时必要的保护基团被脱除(此时,式(321)化合物中的各S 1基团转化为对应的M 1配体),获得连接有缀合基团的双链寡核苷酸正义链(或反义链)以及对应的反义链(或正义链),正义链与反义链退火形成双链RNA结构,获得式(308)所示的寡核苷酸缀合物。
在一些实施方式中,所述寡核苷酸缀合物的制备方法包含以下步骤:在偶联反应条件和偶联试剂存在下,将式(321)所示的化合物与正义链或反义 链的3′端的第一个核苷单体接触,使式(321)所示的化合物连接上序列中第一个核苷酸,在亚磷酰胺固相合成的条件下,按照期望的正义链或反义链核苷酸种类和顺序,按照3′到5′的方向将核苷单体依次连接,合成双链寡核苷酸的正义链或反义链;其中,(321)化合物为R 4中含有第1官能团和第2官能团,第1官能团含有被保护的羟基,第2官能团具有如式(C1’)或(C3’)所示结构的式(321)所示的化合物,与第一个核苷单体连接前,式(321)化合物经过脱保护;每个核苷单体的连接包括脱保护、偶联、盖帽、氧化或硫化四步反应;得到连接有缀合基团的核酸的正义链或反义链;在亚磷酰胺固相合成的条件下,按照反义链或正义链核苷酸种类和顺序,按照3′到5′的方向将核苷单体依次连接,合成核酸的反义链或正义链;每个核苷单体的连接包括脱保护、偶联、盖帽、氧化或硫化四步反应;脱除保护基并与固相载体切割,分离纯化获得核酸的正义链和反义链,退火。
在一些实施方式中,所述寡核苷酸缀合物的制备方法包含以下步骤:按照该双链寡核苷酸中正义链或反义链的核苷酸种类和顺序,按照3′到5′的方向将核苷单体依次连接,合成正义链和反义链,每个核苷单体的连接包括脱保护、偶联、盖帽、氧化或硫化四步反应,得到连接在固相载体上的正义链和连接在固相载体上的反义链;在偶联反应条件和偶联试剂存在下,将式(321)所示的化合物与连接在固相载体上的正义链或连接在固相载体上的反义链接触,将式(321)化合物连接至正义链或反义链,其中,式(321)化合物是R 4中含有第1官能团,第1官能团为亚磷酰胺基团的式(321)化合物;脱除保护基并与固相载体切割,分别分离纯化,获得双链寡核苷酸的正义链或反义链,退火,其中,所述双链寡核苷酸的正义链或反义链上连接有缀合基团。
在一些实施方式中,式A59中的P连接至双链寡核苷酸中的正义链的3′末端,本公开的寡核苷酸缀合物的制备方法包括:
(1)脱除式(321)化合物(其中,式(321)化合物为R 4中含有第1官能团和第2官能团的化合物,其中,第1官能团含有被保护的羟基OR k,第2官能团具有如式(C1’)或(C3’)所示结构的化合物)中的羟基保护基团R k;在偶联反应条件和偶联试剂存在下,将脱保护得到的产物与核苷单体接触,得到通过缀合基团连接至固相载体的核苷单体;
(2)以该通过缀合分子连接至固相载体的核苷单体起始,按照3′-5′的方向通过亚磷酰胺固相合成方法合成双链寡核苷酸的正义链;
(3)通过亚磷酰胺固相合成方法,合成双链寡核苷酸的反义链;
(4)分离出双链寡核苷酸的正义链和反义链并退火,获得本公开的寡核苷酸缀合物。
其中,在步骤(1)中,脱除式(321)化合物中的保护基团R k的方法包括在脱保护条件下,将式(321)化合物与脱保护试剂接触。脱保护条件包括温度为0-50℃,在一些实施方式中为15-35℃,反应时间为30-300秒,在一些实施方式中为50-150秒,脱保护试剂可以选自三氟乙酸、三氯乙酸、二氯乙酸、一氯乙酸中的一种或多种,在一些实施方式中为二氯乙酸。脱保护试剂与式(321)化合物的摩尔比为10∶1-1000∶1,在一些实施方式中为50∶1-500∶1。
所述偶联反应条件和偶联试剂可使用任何适合于上述偶联反应的条件和试剂。在一些实施方式中,可使用与所采用的固相合成方法中的偶联反应相同的条件与试剂。
在一些实施方式中,所述偶联反应的条件包括反应温度为0-50℃,在一些实施方式中可以为15-35℃。式(321)化合物与核苷单体的摩尔比为1∶1-1∶50,在一些实施方式中为1∶2-1∶5;式(321)化合物和偶联试剂的摩尔比可以为 1∶1-1∶50,在一些实施方式中为1∶3-1∶10,反应时间为200-3000秒,在一些实施方式中为500-1500秒。偶联试剂可选自1H-四氮唑、5-乙硫基1H-四氮唑、5-苄硫基1H-四氮唑中的一种或多种,在一些实施方式中为5-乙硫基1H-四氮唑。所述偶联反应可在有机溶剂中进行,所述有机溶剂可选自无水乙腈、无水DMF、无水二氯甲烷中的一种或多种,在一些实施方式中为无水乙腈。相对于式(321)化合物,所述有机溶剂的用量为3-50L/mol,在一些实施方式中为5-20L/mol。
在步骤(2)中,通过亚磷酰胺核酸固相合成的方法,利用上述步骤制备的通过缀合分子连接至固相载体的核苷单体起始,按照3′-5′的方向合成寡核苷酸缀合物的正义链S。此时,缀合基团连接至所得到的正义链的3′末端。
步骤(2)和(3)中所述固相合成的其它条件,包括核苷单体脱保护条件,脱保护试剂种类和用量,偶联反应条件,偶联试剂的种类和用量,盖帽反应的条件,盖帽试剂的种类和用量,氧化反应条件,氧化试剂种类和用量,硫化反应条件,硫化试剂和用量采用本领域中常规使用的各种试剂、用量和条件。
例如,在一些实施方式中,步骤(2)和(3)中所述固相合成可使用如下条件:
核苷单体脱保护条件包括温度为0-50℃,在一些实施方式中为15-35℃,反应时间为30-300秒,在一些实施方式中为50-150秒,脱保护试剂可以选自三氟乙酸、三氯乙酸、二氯乙酸、一氯乙酸、中的一种或多种,在一些实施方式中为二氯乙酸。脱保护试剂与固相载体上4,4′-二甲氧基三苯甲基保护基的的摩尔比可以为2∶1-100∶1,在一些实施方式中为3∶1-50∶1。
偶联反应条件包括温度为0-50℃,在一些实施方式中为15-35℃,固相载体上连接的核酸序列与核苷单体的摩尔比可以为1∶1-1∶50,在一些实施方式中为1∶5-1∶15;固相载体上连接的核酸序列和偶联试剂的摩尔比可以为1∶1-1∶100,在一些实施方式中为1∶50-1∶80,反应时间和偶联试剂的选择与前述相同。
盖帽反应条件包括温度为0-50℃,在一些实施方式中为15-35℃,反应时间为5-500秒,在一些实施方式中为10-100秒,盖帽试剂的选择与前述相同。盖帽试剂的总量与固相载体上连接的核酸序列的摩尔比为1∶100-100∶1,在一些实施方式中为1∶10-10∶1。在盖帽试剂使用等摩尔量的乙酸酐与N-甲基咪唑的情况下,乙酸酐、N-甲基咪唑以及固相载体上连接的核酸序列的摩尔比为1∶1∶10-10∶10∶1,在一些实施方式中为1∶1∶2-2∶2∶1。
氧化反应条件包括温度为0-50℃,在一些实施方式中为15-35℃,反应时间为1-100秒,在一些实施方式中为5-50秒,氧化试剂在一些实施方式中为碘(在一些实施方式中,以碘水的形式提供)。氧化试剂与偶联步骤中固相载体上连接的核酸序列的摩尔比可以为1∶1-100∶1,在一些实施方式中为5∶1-50∶1。在一些实施方式中,所述氧化反应在四氢呋喃∶水∶吡啶=3∶1∶1-1∶1∶3的混合溶剂中进行。硫化反应条件包括温度为0-50℃,在一些实施方式中为15-35℃,反应时间为50-2000秒,在一些实施方式中为100-1000秒,硫化试剂在一些实施方式中为氢化黄原素。硫化试剂与偶联步骤中固相载体上连接的核酸序列的摩尔比可以为10∶1-1000∶1,在一些实施方式中为10∶1-500∶1。在一些实施方式中,所述硫化反应在乙腈∶吡啶=1∶3-3∶1的混合溶剂中进行。
在将所有核苷单体连接之后,退火之前,该方法还包括分离出双链寡核苷酸的正义链和反义链。分离的方法为本领域技术人员所公知,一般包括将合成得到的核苷酸序列从固相载体上切割下来,脱除碱基上、磷酸基上和配体上的保护基团,纯化和脱盐。
将合成得到的核苷酸序列从固相载体上切割下来,并脱除碱基上、磷酸 基上和配体上的保护基团可按照双链寡核苷酸合成中常规的切割和脱保护方法进行。例如,将得到的连接有固相载体的核苷酸序列与浓氨水接触;在脱保护的过程中,A46-A54基团的保护基团YCOO-转化为羟基,S1基团转化为相应的M1基团,生成式(308)所示的缀合物。其中,所述浓氨水可以是25-30重量%的氨水,浓氨水的用量与目标双链寡核苷酸序列相比可以为0.2ml/μmol-0.8ml/μmol。
在所合成的核苷酸序列上存在至少一个2′-TBDMS保护时,所述方法还包括将脱除了固相载体的核苷酸序列与三乙胺三氢氟酸盐接触,以脱除该2′-TBDMS保护。此时,所得到的目标双链寡核苷酸序列中具有游离的2′-羟基的相应核苷。三乙胺三氢氟酸盐纯品的用量与目标双链寡核苷酸序列相比可以为0.4ml/μmol-1.0ml/μmol。这样即可得到式(308)的寡核苷酸缀合物。
纯化和脱盐的方法是本领域技术人员熟知的。例如,可利用制备型离子色谱纯化柱,通过NaBr或NaCl的梯度洗脱,完成核酸的纯化;产品收集合并后,可采用反相色谱纯化柱进行脱盐。
这样得到的寡核苷酸缀合物中,核苷酸之间的磷酸二酯键或硫代磷酸二酯键中的非桥接氧原子或硫原子基本与钠离子结合,寡核苷酸缀合物基本以钠盐形式存在。可以采用熟知的离子交换方法,用氢离子和/或其他阳离子取代所述钠离子,得到其他形式的寡核苷酸缀合物。所述阳离子如前所述。
在合成过程中,可随时对核酸序列的纯度和分子量进行检测,更好地把控合成质量,此类检测方法为本领域技术人员所公知。例如,可通过离子交换色谱检测核酸纯度,并通过液质联用色谱测定分子量。
退火的方法也是本领域技术人员熟知的。例如,可简单地将所合成的正义链(S链)与反义链(AS链)以等摩尔比混合在注射用水中加热至70-95℃,随后室温冷却,使其通过氢键形成双链结构。这样即可得到本公开的寡核苷酸缀合物。
在获得本公开的缀合物后,在一些实施方式中,还可利用例如液质联用色谱等方法,通过分子量检测等方式对所合成的寡核苷酸缀合物进行表征,确定所合成的寡核苷酸缀合物为目标设计的寡核苷酸缀合物,且所合成的双链寡核苷酸的序列为期望的双链寡核苷酸的序列,例如为表1中所列的序列之一。
式(321)所示化合物可以通过以下制备方法得到:该方法包括在有机溶剂中,在酯化反应条件下,以及在碱和成酯催化剂存在下,将式(313)所示化合物与环状酸酐接触,离子交换,分离得到式(321)所示化合物:
Figure PCTCN2018118212-appb-000052
其中,n1、n3、m1、m2、m3、R 10、R 11、R 12、R 13、R 14、R 15、L 1、S 1各自的定义和可选择的范围如前所述;
R 6为提供式(321)中R 4的基团。在一些实施方式中,R 6具有式(A61)所示的结构:
Figure PCTCN2018118212-appb-000053
其中,R i为能够实现与含氮骨架上的N连接、与R kO连接并且连接有一个游离羟基的任意基团,R k为羟基保护基团。此时,所获得的是R 4中含有作为羟基保护基团的第1官能团和第2官能团,所述第2官能团含有如式(C1)或(C2)所示结构的式(321)化合物。
所述酯化反应条件包括反应温度为0-100℃,反应时间为8-48小时,在一些实施方式中,所述酯化反应条件为反应温度为10-40℃,反应时间为20-30小时。
在一些实施方式中,所述有机溶剂包含环氧类溶剂、醚类溶剂、卤代烷类溶剂、二甲基亚砜、N,N-二甲基甲酰胺和N,N-二异丙基乙胺中的一种或多种。在一些实施方式中,所述环氧类溶剂为二氧六环和/或四氢呋喃,所述醚类溶剂为乙醚和/或甲基叔丁基醚,所述卤代烷类溶剂为二氯甲烷、三氯甲烷和1,2-二氯乙烷中的一种或多种。在一些实施方式中,所述有机溶剂为二氯甲烷。相对于所述式(313)所示化合物,所述有机溶剂的用量为3-50L/mol,在一些实施方式中为5-20L/mol。
在一些实施方式中,所述环状酸酐为丁二酸酐、戊二酸酐、己二酸酐或庚二酸酐中的一种,在一些实施方式中为丁二酸酐。所述环状酸酐与所述式(313)所示化合物的摩尔比为1∶1-10∶1,在一些实施方式中为2∶1-5∶1。
所述成酯催化剂可以是任何对该酯化反应起到催化作用的催化剂,例如该催化剂可以是4-二甲氨基吡啶。所述催化剂与式(313)所示化合物的摩尔比为1∶1-10∶1,在一些实施方式中为2∶1-5∶1。
在一些实施方式中,所述碱可以是任意的无机碱,有机碱或者它们的结合。考虑溶解性和产物稳定性,所述碱可以是例如三级胺类有机碱。在一些实施方式中,所述三级胺类有机碱为三乙胺或N,N-二异丙基乙胺。所述三级胺类有机碱与式(313)所示化合物的摩尔比为1∶1-20∶1,在一些实施方式中为3∶1-10∶1。
所述离子交换作用是将式(321)化合物转化为期望的羧酸或羧酸盐的形式,离子交换的方法为本领域技术人员所公知,可以使用合适的离子交换溶液和交换条件,得到前述阳离子为M +的缀合分子,在此不做详述。在一些实施方式中,所述离子交换反应使用三乙胺磷酸盐溶液进行,所述三乙胺磷酸盐溶液的浓度为0.2-0.8M,在一些实施方式中,所述三乙胺磷酸盐溶液的浓度为0.4-0.6M,相对于式(313)化合物,所述三乙胺磷酸盐溶液的用量为3-6L/mol,在进一步的实施方式中为4-5L/mol。
可使用任何合适的分离方法从反应混合物中分离式(321)化合物。在一些实施方式中,可通过蒸发除去溶剂、随后通过色谱方法分离式(321)化合物,例如,可使用如下色谱条件进行分离:(1)正相纯化硅胶:200-300目硅胶填料,使用含1wt‰三乙胺的二氯甲烷∶甲醇=100∶18-100∶20梯度洗脱;或者(2)反相纯化:C18、C8反相填料,使用甲醇∶乙腈=0.1∶1-1∶0.1梯度洗脱。在一些实施方式中,可以直接除去溶剂得到式(321)化合物粗产品,该粗产品可以直接用于后续反应。
在一些实施方式中,式(321)化合物的制备方法还进一步包括在缩合反应条件下,在有机溶剂中,在缩合剂和三级胺类有机碱的存在下,将上述离子交换反应得到的产物进一步与含有氨基或羟基的固相载体进行接触。此时,所获得的是R 4中含有第1官能团和第2官能团,第1官能团含有羟基保护基团,第2官能团含有如式(C1’)所示结构的式(321)化合物。
所述固相载体为固相合成双链寡核苷酸中所用的载体中的一种,其中的一些为本领域技术人员所公知。例如,所述固相载体可以选自含有活性羟基或氨基官能团的固相载体。在一些实施方式中,所述固相载体为氨基树脂或羟基树脂。在一些实施方式中,所述氨基或羟基树脂具有如下参数:粒径100-400目(mesh),表面氨基或羟基载量为0.2-0.5mmol/g。所述式(321)所示化合物与固相载体的用量比为10-400μmol化合物/每克固相载体(μmol/g)。在一些实施方式中,所述式(321)所示化合物与固相载体的用量比为50-200μmol/g。
所述有机溶剂可以是本领域技术人员已知的任何合适的溶剂或混合溶剂。在一些实施方式中,所述有机溶剂为乙腈、环氧类溶剂、醚类溶剂、卤代烷类溶剂、二甲基亚砜、N,N-二甲基甲酰胺和N,N-二异丙基乙胺中的一种或多种。在一些实施方式中,所述环氧类溶剂为二氧六环和/或四氢呋喃,所述醚类溶剂为乙醚和/或甲基叔丁基醚,所述卤代烷类溶剂为二氯甲烷、三氯甲烷和1,2-二氯乙烷中的一种或多种。在一些实施方式中,所述有机溶剂为乙腈。相对于式(321)化合物,所述有机溶剂的用量为20-200L/mol,在一些实施方式中为50-100L/mol。
在一些实施方式中,所述缩合剂可以是六氟磷酸苯并三唑-1-基-氧基三吡咯烷基磷、3-二乙氧基磷酰基-1,2,3-苯唑4(3H)-酮和/或O-苯并三氮唑-四甲基脲六氟磷酸酯,在一些实施方式中,所述缩合剂为O-苯并三氮唑-四甲基脲六氟磷酸酯。所述缩合剂与式(321)所示化合物的摩尔比为1∶1-20∶1,在进一步的实施方式中为1∶1-5∶1。
在一些实施方式中,所述三级胺类有机碱为三乙胺和/或N,N-二异丙基乙胺,在一些实施方式中为N,N-二异丙基乙胺;所述三级胺类有机碱与式(321)所示化合物的摩尔比为1∶1-20∶1,在一些实施方式中为1∶1-5∶1。
在一些实施方式中,式(321)化合物的制备方法还可以包括将得到的缩合产物在盖帽反应条件下,在有机溶剂中,与盖帽试剂和酰化催化剂接触,分离得到式(321)所示化合物。所述盖帽反应的作用在于除去任何尚未反应完全的活性反应官能团,以避免在后续反应中产生不必要的副产物。所述盖帽反应的条件包括反应温度为0-50℃,在一些实施方式中为15-35℃,反应的时间为1-10h,在一些实施方式中为3-6h。盖帽试剂可以使用核酸固相合成中所使用的盖帽试剂,核酸固相合成中所使用的盖帽试剂为本领域技术人员所公知。
在一些实施方式中,所述盖帽试剂由盖帽试剂A(capA)和盖帽试剂B(capB)组成,其中,盖帽试剂A为N-基甲基咪唑,在一些实施方式中以N-甲基咪唑的吡啶/乙腈混合溶液形式提供,其中,吡啶与乙腈的体积比为1∶10-1∶1,在一些实施方式中为1∶3-1∶1,吡啶与乙腈的总体积与N-甲基咪唑的体积为1∶1-10∶1,在一些实施方式中为3∶1-7∶1。在一些实施方式中,所述盖帽试剂B为乙酸酐。在一些实施方式中,所述盖帽试剂B以乙酸酐的乙腈溶液形式提供,其中,乙酸酐和乙腈的体积为1∶1-1∶10,在进一步的实施方式中为1∶2-1∶6。
在一些实施方式中,所述N-甲基咪唑的吡啶/乙腈混合溶液的体积与式(321)化合物的质量之比为5ml/g-50ml/g,在一些实施方式中为15ml/g-30ml/g。所述乙酸酐的乙腈溶液的体积与式(321)化合物的质量之比为0.5ml/g-10ml/g, 在一些实施方式中为1ml/g-5ml/g。
在一些实施方式中,盖帽试剂使用等摩尔量的乙酸酐与N-甲基咪唑。在一些实施方式中,所述有机溶剂为乙腈、环氧类溶剂、醚类溶剂、卤代烷类溶剂、二甲基亚砜、N,N-二甲基甲酰胺和N,N-二异丙基乙胺中的一种或多种。在一些实施方式中,所述有机溶剂为乙腈。在一些实施方式中,相对于式(321)化合物,所述有机溶剂的用量为10-50L/mol,在一些实施方式中为5-30L/mol。
在一些实施方式中,所述酰化催化剂可以选自任何可用于成酯缩合或成酰胺缩合的催化剂,例如碱性杂环化合物。在一些实施方式中,所述酰化催化剂为4-二甲氨基吡啶。所述催化剂与式(321)所示化合物的质量之比为0.001∶1-1∶1,在一些实施方式中为0.01∶1-0.1∶1。
在一些实施方式中,可使用任何合适的分离方法从反应混合物中分离式(321)化合物。在一些实施方式中,可通过以有机溶剂充分洗涤,并过滤,去除未反应的反应物、过量的盖帽试剂及其它杂质,得到式(321)化合物,所述有机溶剂选自乙腈、二氯甲烷、甲醇,在一些实施方式中为乙腈。
在一些实施方式中,式(321)所示缀合分子的制备方法包括在有机溶剂中,在偶联反应条件下,以及在偶联试剂存在下,将式(313)所示化合物与亚磷酰二胺接触,分离得到式(321)所示化合物。此时,所获得的是R 4中含有第1官能团和第2官能团,第1官能团含有羟基保护基团,第2官能团含有如式(C3)所示结构的式(321)化合物。
在一些实施方式中,偶联反应条件包括温度为0-50℃,例如为15-35℃,式(313)化合物与亚磷酰二胺的摩尔比可以为1∶1-1∶50,例如为1∶5-1∶15;式(313)化合物和偶联试剂的摩尔比可以为1∶1-1∶100,例如为1∶50-1∶80;反应时间可以为200-3000秒,例如为500-1500秒。所述亚磷酰二胺例如可使用双(二异丙基氨基)(2-氰基乙氧基)膦,其可商购获得或按照本领域中公知的方法合成获得。偶联试剂选自1H-四氮唑、5-乙硫基1H-四氮唑、5-苄硫基1H-四氮唑中的一种或多种,例如为5-乙硫基1H-四氮唑。所述偶联反应可在有机溶剂中进行,所述有机溶剂选自无水乙腈、无水DMF、无水二氯甲烷中的一种或多种,例如为无水乙腈。在一些实施方式中,相对于式(313)化合物,所述有机溶剂的用量为3-50L/mol,例如可以为5-20L/mol。通过进行该偶联反应,式(313)化合物中的羟基与亚磷酰二胺反应形成亚磷酰胺基团。在一些实施方式中,可以直接除去溶剂得到式(321)化合物粗产品,该粗产品可以直接用于后续反应。
在一些实施方式中,式(321)化合物的制备方法还进一步包括以下步骤:在偶联反应条件下,在有机溶剂中,以及在偶联试剂存在下,将分离得到的产物进一步与含有羟基的固相载体进行接触。随后,经盖帽反应、氧化反应,分离得到式(321)化合物。此时,所获得的是R 4中含有第1官能团和第2官能团,第1官能团含有羟基保护基团,第2官能团具有如式(C3’)所示结构的式(321)化合物。
在一些实施方式中,所述固相载体为本领域中公知的可用于核酸固相合成的固相载体,例如,可以是经脱保护反应后的市售的通用固相载体(
Figure PCTCN2018118212-appb-000054
HL UnyLinker TM300 Oligonucleotide Synthesis Support,Kinovate Life Sciences公司,结构如式B80所示):
Figure PCTCN2018118212-appb-000055
脱保护反应为本领域技术人员所公知。在一些实施方式中,脱保护条件包括温度为0-50℃,例如为15-35℃;反应时间为30-300秒,例如为50-150秒。脱保护试剂可以选自三氟乙酸、三氯乙酸、二氯乙酸、一氯乙酸中的一种或多种,在一些实施方式中,脱保护试剂为二氯乙酸。脱保护试剂与固定相上的-DMTr(4,4′-二甲氧基三苯甲基)保护基的摩尔比为2∶1-100∶1,例如为3∶1-50∶1。通过进行所述脱保护,在所述固相载体表面上获得具有反应活性的游离羟基,便于进行下一步的偶联反应。
偶联反应条件以及偶联试剂的选择可如上所述。通过进行该偶联反应,脱保护反应中形成的游离羟基与亚磷酰胺基团反应形成亚磷酸酯连接。
在一些实施方式中,盖帽反应条件包括温度为0-50℃,例如为15-35℃,反应时间为5-500秒,例如为10-100秒,所述盖帽反应在盖帽试剂存在下进行。盖帽试剂的选择和用量可如上所述。
氧化反应条件可包括温度为0-50℃,例如可以为15-35℃,反应时间为1-100秒,例如可以为5-50秒,氧化试剂例如可以为碘(在一些实施方式中,以碘水的形式提供)。在一些实施方式中,氧化试剂与亚磷酸酯基团的摩尔比为1∶1-100∶1,例如可以为5∶1-50∶1。在一些实施方式中,所述氧化反应在四氢呋喃∶水∶吡啶=3∶1∶1-1∶1∶3的混合溶剂中进行。
在一些实施方式中,R 6为式B7或B8基团中的一种,
Figure PCTCN2018118212-appb-000056
其中q 2的定义如前所述,
此时,式(313)所示化合物可以通过以下制备方法得到:在有机溶剂中,在成酰胺反应条件下,以及在成酰胺反应缩合剂和三级胺类有机碱存在下,将式(314)所示化合物与式(A-1)所示化合物或式(A-2)化合物接触,随后进行分离:
Figure PCTCN2018118212-appb-000057
Figure PCTCN2018118212-appb-000058
其中,n1、n3、m1、m2、m3、R 10、R 11、R 12、R 13、R 14、R 15、L 1、S 1、q 2和R k各自的定义和可选择的范围如前所述。
所述成酰胺反应条件可包括反应温度为0-100℃,反应时间为1-48小时,在一些实施方式中,所述成酰胺反应条件为反应温度为10-40℃,反应时间为2-16小时。
在一些实施方式中,所述有机溶剂为醇类溶剂、环氧类溶剂、醚类溶剂、卤代烷类溶剂、二甲基亚砜、N,N-二甲基甲酰胺和N,N-二异丙基乙胺中的一种或多种。所述醇类溶剂在一些实施方式中为甲醇、乙醇、丙醇中的一种或多种,在一些实施方式中为乙醇。所述环氧类溶剂在一些实施方式中为为二氧六环和/或四氢呋喃。所述醚类溶剂在一些实施方式中为为乙醚和/或甲基叔丁基醚。所述卤代烷类溶剂在一些实施方式中为为二氯甲烷、三氯甲烷和1,2-二氯乙烷中的一种或多种。在一些实施方式中,所述有机溶剂为二氯甲烷。相对于式(314)化合物,有机溶剂用量为3-50L/mol,在进一步的实施方式中为3-20L/mol。
在一些实施方式中,所述成酰胺反应缩合剂为六氟磷酸苯并三唑-1-基-氧基三吡咯烷基磷、3-二乙氧基磷酰基-1,2,3-苯唑4(3H)-酮、4-(4,6-二甲氧基三嗪-2-基)-4-甲基吗啉盐酸盐、2-乙氧基-1-乙氧碳酰基-1,2-二氢喹啉(EEDQ)或O-苯并三氮唑-四甲基脲六氟磷酸酯,在进一步的实施方式中为3-二乙氧基磷酰基-1,2,3-苯唑4(3H)-酮。所述成酰胺反应缩合剂与式(314)所示化合物的摩尔比可以为1∶1-10∶1,在一些实施方式中为2.5∶1-5∶1。
在一些实施方式中,所述三级胺类有机碱为三乙胺或N,N-二异丙基乙胺,在进一步的实施方式中为N,N-二异丙基乙胺。所述三级胺类有机碱与式(314)所示化合物的摩尔比为3∶1-20∶1,在一些实施方式中为5∶1-10∶1。
在一些实施方式中,式(A-1)和式(A-2)化合物可通过任何适当的方式制备。例如,当R k为DMTr基团时,可通过甘油酸钙与DMTrCl反应制备式(A-1)化合物;类似地,可先将3-氨基-1,2-丙二醇与环状酸酐接触,随后再与DMTrCl反应制备式(A-2)化合物,所述环状酸酐可以是碳原子数为4-13、在一些实施方式中为4-8的环状酸酐。本领域技术人员容易理解的是,所述环状酸酐的选择对应于(A-2)化合物中q 2的不同值,例如,当所述环状酸酐为丁二酸酐时,q 2=1,当所述环状酸酐为戊二酸酐时,q 2=2,以此类推。
在一些变型中,也可通过使式(314)所示化合物依次与所述环状酸酐、3-氨基-1,2-丙二醇和DMTrCl反应,制备式(313)化合物。本领域技术人员容易理解的是,这些变型不会影响式(313)化合物的结构与功能,并且这些变型是本领域技术人员在上述方法的基础上容易实现的。
与上述类似地,可使用任何合适的分离方法从反应混合物中分离式(313)化合物。在一些实施方式中,可通过蒸发除去溶剂、随后通过色谱方法分离式(313)化合物,例如,可使用如下两种色谱条件进行分离:(1)正相纯化硅胶:200-300目硅胶填料,使用石油醚∶乙酸乙酯∶二氯甲烷∶N,N-二甲基甲酰胺=1∶1∶1∶0.5-1∶1∶1∶0.6梯度洗脱;以及(2)反相纯化:C18、C8反相填料,使用甲醇∶乙腈=0.1∶1-1∶0.1梯度洗脱。在一些实施方式中,可以直接除去溶剂得到式(313)化合物粗产品,该粗产品可以直接用于后续反应。
在一些实施方式中,式(314)所示化合物可以通过以下制备方法得到:该方法包括在有机溶剂中,在脱保护反应条件下,将式(315)所示化合物与卤代乙酸接触,随后进行分离:
Figure PCTCN2018118212-appb-000059
其中,R 7选自式(330)、(331)、(332)或(333)所示的基团,在一些实施方式中,R 7的结构如式(330)所示:
Figure PCTCN2018118212-appb-000060
n1、n3、m1、m2、m3、R 10、R 11、R 12、R 13、R 14、R 15、L 1、S 1各自的定义和可选择的范围如前所述。
所述卤代乙酸可选自二氯乙酸、三氯乙酸、一氯乙酸和三氟乙酸中的一种或多种,在一些实施方式中为二氯乙酸。
所述脱保护反应条件可包括反应温度为0-100℃,反应时间为0.1-24小时,在一些实施方式中为反应温度为10-40℃,反应时间为0.5-16小时。
在一些实施方式中,所述有机溶剂为环氧类溶剂、醚类溶剂、卤代烷类溶剂、二甲基亚砜、N,N-二甲基甲酰胺和N,N-二异丙基乙胺中的一种或多种。所述环氧类溶剂在一些实施方式中为二氧六环和/或四氢呋喃,所述醚类溶剂在一些实施方式中为乙醚和/或甲基叔丁基醚,所述卤代烷类溶剂在一些实施方式中为二氯甲烷、三氯甲烷和1,2-二氯乙烷中的一种或多种,在一些实施方式中,所述有机溶剂为二氯甲烷。相对于式(315)化合物,有机溶剂用量为3-50L/mol,在进一步的实施方式中为5-20L/mol。
所述卤代乙酸与所述式(315)所示化合物的摩尔比可以为5∶1-100∶1,在一些实施方式中为10∶1-50∶1。
与上述类似地,可使用任何合适的分离方法从反应混合物中分离式(314)化合物。在一些实施方式中,可通过蒸发除去溶剂、随后通过色谱方法分离式(314)化合物,例如,可使用如下两种色谱条件进行分离:(1)正相纯化硅胶:200-300目硅胶填料,使用二氯甲烷∶甲醇=100∶30-100∶40梯度洗脱;以及(2)反相纯化:C18、C8反相填料,使用甲醇∶乙腈=0.1∶1-1∶0.1梯度洗脱。在一些实施方式中,可以直接除去溶剂得到式(314)化合物粗产品,该粗产品可以直接用于后续反应。
式(315)所示化合物可以通过以下制备方法得到:该方法包括在有机溶剂中,在成酰胺反应缩合剂和三级胺类有机碱存在下,在缩合反应条件下,将式(317)所示化合物与式(316)所示化合物接触,随后进行分离:
S 1-L 1-OH
式(316)
Figure PCTCN2018118212-appb-000061
其中,n1、n3、m1、m2、m3、R 7、R 10、R 11、R 12、R 13、R 14、R 15、L 1、S 1各自的定义和可选择的范围如前所述。
式(316)化合物可使用例如J.Am.Chem.Soc.2014,136,16958-16961中所公开的化合物,或者,式(316)化合物可由本领域技术人员通过各种方法制备,例如,可参照美国专利US 8,106,022 B2实施例1中所公开的方法制备某些式(316)化合物,以引用的方式将以上文献的全部内容整体并入本文。
在一些实施方式中,所述缩合反应条件包括反应温度为0-100℃,反应时间为0.1-24小时,在一些实施方式中为反应温度为10-40℃,反应时间为0.5-16小时。
所述式(316)所示化合物与所述式(317)所示化合物的摩尔比可以为2∶1-10∶1,在一些实施方式中为2.5∶1-5∶1。
在一些实施方式中,所述有机溶剂为乙腈、环氧类溶剂、醚类溶剂、卤代烷类溶剂、二甲基亚砜、N,N-二甲基甲酰胺和N,N-二异丙基乙胺中的一种或多种,所述环氧类溶剂在一些实施方式中为二氧六环和/或四氢呋喃,所述醚类溶剂在一些实施方式中为乙醚和/或甲基叔丁基醚,所述卤代烷类溶剂在一些实施方式中为二氯甲烷、三氯甲烷和1,2-二氯乙烷中的一种或多种,在一些实施方式中,所述有机溶剂为乙腈。相对于式(317)化合物,所述有机溶剂的用量为3-50L/mol,在一些实施方式中为5-20L/mol。
在一些实施方式中,所述成酰胺反应缩合剂为六氟磷酸苯并三唑-1-基-氧基三吡咯烷基磷、3-二乙氧基磷酰基-1,2,3-苯唑4(3H)-酮(DEPBT)、O-苯并三氮唑-四甲基脲六氟磷酸酯或4-(4,6-二甲氧基三嗪-2-基)-4-甲基吗啉盐酸盐,在进一步的实施方式中可以为4-(4,6-二甲氧基三嗪-2-基)-4-甲基吗啉盐酸盐。所述成酰胺反应缩合剂与式(317)所示化合物的摩尔比可以为2∶1-10∶1,在一些实施方式中为2.5∶1-5∶1。
所述三级胺类有机碱可以为N-甲基吗啉、三乙胺或N,N-二异丙基乙胺,在一些实施方式中为N-甲基吗啉;所述三级胺类有机碱与式(317)所示化合物的摩尔比可以为3∶1-20∶1,在一些实施方式中为5∶1-10∶1。
与上述类似地,可使用任合适的分离方法从反应混合物中分离式(315)化合物。在一些实施方式中,通过蒸发除去溶剂、随后通过色谱方法分离式(315)化合物例如,可使用如下两种色谱条件进行分离:(1)正相纯化硅胶:200-300目硅胶填料,使用二氯甲烷∶甲醇=100∶5-100∶7梯度洗脱;以及(2)反相纯化:C18、C8反相填料,使用甲醇∶乙腈=0.1∶1-1∶0.1梯度洗脱。在一些实施方式中,可以直接除去溶剂得到式(315)化合物粗产品,该粗产品可以直接用于后续反应。
在一些实施方式中,式(317)化合物与足量的一种式(316)化合物一次反应即生成期望的式(315)化合物,此时,各个S 1-L 1部分彼此相同。在一些实施方式中,可根据需要,通过使式(317)化合物分批与不同的式(316)化合物,即L 1和/或S 1不同的式(316)化合物发生反应,使得生成的式(315)化合物中含有两种以上的S 1和/或L 1。例如,对于1eq的式(317)化合物,可先使其与2eq的第一式(316)化合物接触,在式(317)化合物中的两个末端伯胺基团上连接第一S 1-L 1部分,随后,使其继续与(n3+n1-1)eq的第二式(316)化合物接触(n3和n1的定义和取值范围如前所述),在式(317)化合物中的(n3+n1-1)个仲胺基团上连接第二S 1-L 1部分。
在一些实施方式中,式(317)所示化合物可以通过以下制备方法得到:该方法包括在有机溶剂存在下,在脱保护反应条件下,将式(318)所示化合物与甲胺水溶液接触,随后进行分离:
Figure PCTCN2018118212-appb-000062
其中,n1、n3、m1、m2、m3、R 7、R 10、R 11、R 12、R 13、R 14、R 15各自的定义和可选择的范围如前所述。
所述脱保护反应条件可包括反应温度为0-150℃,反应时间为5-72小时,在一些实施方式中为反应温度为20-80℃,反应时间为10-30小时。
所述有机溶剂可选自醇,在一些实施方式中为甲醇、乙醇和异丙醇中的一种,在一些实施方式中为甲醇;相对于式(318)化合物,所述有机溶剂的用量为1-20L/mol,在一些实施方式中为1.5-10L/mol。
所述甲胺水溶液的浓度可以为30-40质量%,甲胺与式(318)所示化合物的摩尔比可以为10∶1-500∶1,在一些实施方式中为50∶1-200∶1。
与上述类似地,可使用任何合适的分离方法从反应混合物中分离式(317)化合物。在一些实施方式中,可通过蒸发除去溶剂、随后通过色谱方法分离式(317)化合物例如,可使用如下两种色谱条件进行分离:(1)正相纯化硅胶:200-300目硅胶填料,使用二氯甲烷∶甲醇∶氨水(25wt%)=1∶1∶0.05-1∶1∶0.25梯度洗脱;以及(2)反相纯化:C18、C8反相填料,使用甲醇∶乙腈=0.1∶1-1∶0.1梯度洗脱。在一些实施方式中,可以直接除去溶剂得到式(317)化合物粗产品,该粗产品可以直接用于后续反应。
在一些实施方式中,式(318)所示化合物可以通过以下制备方法得到:该方法包括在有机溶剂存在下,在取代反应条件下,将式(319)所示化合物与三苯基氯甲烷(TrCl)、二苯基乙苯基氯甲烷、苯基二乙苯基氯甲烷或三乙苯基氯甲烷、在一些实施方式中为三苯基氯甲烷(TrCl)接触,随后进行分离:
Figure PCTCN2018118212-appb-000063
其中,n1、n3、m1、m2、m3、R 10、R 11、R 12、R 13、R 14、R 15各自的定义和可选择的范围如前所述。
所述取代反应条件可包含反应温度为0-100℃,反应时间为5-72小时,在一些实施方式中,反应条件包含反应温度为10-40℃,反应时间为10-30小时。
三苯基氯甲烷(TrCl)、二苯基乙苯基氯甲烷、苯基二乙苯基氯甲烷或三乙苯基氯甲烷可商购得到,三苯基氯甲烷(TrCl)、二苯基乙苯基氯甲烷、苯基二乙苯基氯甲烷或三乙苯基氯甲烷与式(319)所示化合物的摩尔比可以为1∶1-10∶1,在一些实施方式中为1∶1-3∶1。
所述有机溶剂可以为环氧类溶剂、醚类溶剂、卤代烷类溶剂、二甲基亚砜、N,N-二甲基甲酰胺和N,N-二异丙基乙胺中的一种或多种。所述环氧类溶剂在一些实施方式中可以为二氧六环和/或四氢呋喃,所述醚类溶剂在一些实施方式中可以为乙醚和/或甲基叔丁基醚,所述卤代烷类溶剂在一些实施方式中可以为二氯甲烷、三氯甲烷和1,2-二氯乙烷中的一种或多种;在一些实施方式中,所述有机溶剂为二氯甲烷。相对于式(319)化合物,所述有机溶剂的用量可以为3-50L/mol,在一些实施方式中为5-20L/mol。
与上述类似地,可使用任何合适的分离方法从反应混合物中分离式(318)化合物。在一些实施方式中,可通过蒸发除去溶剂、随后通过色谱方法分离式(318)化合物例如,可使用如下两种色谱条件进行分离:(1)正相纯化硅胶:200-300目硅胶填料,使用甲醇∶二氯甲烷=0.01∶1-0.5∶1梯度洗脱;或者使用甲醇∶二氯甲烷∶乙酸乙酯∶石油醚=0.1∶1∶1∶1-1∶1∶1∶1梯度洗脱。以及(2)反相纯化:C18、C8反相填料,使用甲醇∶乙腈=0.1∶1-1∶0.1梯度洗脱。在一些实施方式中,可以直接除去溶剂得到式(318)化合物粗产品,该粗产品可以直接用于后续反应。
在一些实施方式中,式(319)所示化合物可以通过以下制备方法得到:该方法包括在有机溶剂中,在取代反应条件下,将式(320)所示化合物与三氟乙酸乙酯接触,随后进行分离:
Figure PCTCN2018118212-appb-000064
其中,n1、n3、m1、m2、m3、R10、R11、R12、R13、R14、R15各自的定义和可选择的范围如前所述。
在一些实施方式中,所述有机溶剂为乙腈、环氧类溶剂、醚类溶剂、卤代烷类溶剂、二甲基亚砜、N,N-二甲基甲酰胺和N,N-二异丙基乙胺中的一种或多种。在一些实施方式中,所述环氧类溶剂为二氧六环和/或四氢呋喃,在一些实施方式中,所述醚类溶剂为乙醚和/或甲基叔丁基醚,在一些实施方式 中,所述卤代烷类溶剂为二氯甲烷、三氯甲烷和1,2-二氯乙烷中的一种或多种,在一些实施方式中,所述有机溶剂为乙腈。相对于式(320)化合物,所述有机溶剂的用量可以为1-50L/mol,在一些实施方式中为1-20L/mol。
所述取代反应条件可包括反应温度为0-100℃,反应时间为5-72小时,在一些实施方式中,所述取代反应条件包括为反应温度为10-40℃,反应时间为10-30小时。
式(320)化合物可商购获得,或者由本领域技术人员使用已知的方法获得。例如,当m1=m2=m3=3,n1=1,n3=2,且R 10、R 11、R 12、R 13、R 14、R 15均为H时,式(320)化合物可自阿法埃莎公司商购获得。
所述三氟乙酸乙酯与式(320)所示化合物的摩尔比为2∶1-10∶1,在一些实施方式中为3∶1-5∶1。
与上述类似地,可使用任何合适的分离方法从反应混合物中分离式(319)化合物。在一些实施方式中,可通过蒸发除去溶剂、随后通过色谱方法分离式(319)化合物例如,可使用如下两种色谱条件进行分离:(1)正相纯化硅胶:200-300目硅胶填料,使用甲醇∶二氯甲烷=0.01∶1-0.5∶1梯度洗脱;或者使用甲醇∶二氯甲烷∶乙酸乙酯∶石油醚=0.1∶1∶1∶1-1∶1∶1∶1梯度洗脱,以及(2)反相纯化:C18、C8反相填料,使用甲醇∶乙腈=0.1∶1-1∶0.1梯度洗脱。在一些实施方式中,可以直接除去溶剂得到式(319)化合物粗产品,该粗产品可以直接用于后续反应。
本公开的寡核苷酸缀合物也可以与药学上可接受的其它辅料联用,该辅料可以为本领域常规采用的各种制剂或化合物的一种或多种,详情可参见上文关于本公开的药物组合物的描述。
本公开的双链寡核苷酸、药物组合物及寡核苷酸缀合物的应用
在一些实施方式中,本公开提供了本公开提供的双链寡核苷酸、药物组合物和/或寡核苷酸缀合物在制备用于治疗和/或预防由细胞中特定基因的表达引起的病理状况或疾病的药物中的用途。在一些实施方式中,所述特定基因是肝细胞中异常表达的基因。在一些实施方式中,所述特定基因是肝脏中表达的内源性基因。在一些实施方式中,所述特定基因是在肝脏中繁殖的病原体基因。在一些实施方式中,所述特定基因选自ApoB、ApoC、ANGPTL3、PCSK9、SCD1、TIMP-1、Col1A1、FVII、STAT3、p53、HBV、HCV等基因。在一些实施方式中,所述特定基因选自乙型肝炎病毒基因、血管生成素样蛋白3基因或者载脂蛋白C3基因。相应地,所述疾病选自慢性肝病、肝炎、肝纤维化疾病、肝增生性疾病和血脂异常。在一些实施方式中,所述血脂异常为高胆固醇血症、高甘油三酯血症或动脉粥样硬化。
在一些实施方式中,本公开提供了一种治疗由特定基因的异常表达而引起的病理状况或疾病的方法,该方法包括向有需要的受试者给予有效量的本公开提供的双链寡核苷酸、药物组合物和/或寡核苷酸缀合物。在一些实施方式中,所述特定基因选自ApoB、ApoC、ANGPTL3、PCSK9、SCD1、TIMP-1、Col1A1、FVII、STAT3、p53、HBV、HCV等基因。在一些实施方式中,所述特定基因选自乙型肝炎病毒基因、血管生成素样蛋白3基因或者载脂蛋白C3基因。相应地,所述疾病选自慢性肝病、肝炎、肝纤维化疾病、肝增生性疾病和血脂异常。在一些实施方式中,所述血脂异常为高胆固醇血症、高甘油三酯血症或动脉粥样硬化。在一些实施方式中,本公开提供的缀合物也可以用于治疗其他肝脏疾病,包括以不需要的细胞增殖为特征的疾病、血液疾病、代谢疾病和以炎 症为特征的疾病。肝脏的增殖疾病可以是良性或恶性疾病,例如癌症、肝细胞癌(HCC)、肝转移或肝母细胞瘤。肝脏血液学或炎症疾病可以是涉及凝血因子、补体介导的炎症或纤维化的疾病。肝脏的代谢疾病包括血脂异常和葡萄糖调节的不规则性。在一个实施方案中,通过施用一种或多种具有与参与疾病的基因序列高度同源的双链寡核苷酸来治疗所述疾病。
在一些实施方式中,本公开提供了一种抑制细胞中特定基因表达的方法,该方法包括将有效量的本公开提供的双链寡核苷酸、药物组合物和/或寡核苷酸缀合物与所述细胞进行接触。
通过将本公开的双链寡核苷酸、药物组合物和/或寡核苷酸缀合物给予有需要的受试者,可以通过对基因表达进行调控的机制达到预防和/或治疗由细胞中特定基因的表达而引起的病理状况或疾病的目的。因此,本公开的双链寡核苷酸、药物组合物和/或寡核苷酸缀合物可用于预防和/或治疗所述病理状况或疾病、或用于制备用于预防和/或治疗本文所述病理状况或疾病的药物。
本文所使用的术语“给药/给予”是指通过使得至少部分地将双链寡核苷酸、药物组合物和/或寡核苷酸缀合物定位于期望的位点以产生期望效果的方法或途径,将双链寡核苷酸、药物组合物和/或寡核苷酸缀合物放置入受试者体内。适于本公开方法的给药途径包括局部给药和全身给药。一般而言,局部给药导致与受试者整个身体相比将更多双链寡核苷酸、药物组合物和/或寡核苷酸缀合物递送至特定位点;而全身给药导致将所述双链寡核苷酸、药物组合物和/或寡核苷酸缀合物递送至受试者的基本整个身体。考虑到本公开旨在提供预防和/或治疗由肝细胞中特定基因的表达而引起的病理状况或疾病的手段,在一些实施方式中为能够将药物递送至肝脏的给药方式。
可通过本领域已知的任何合适途径向受试者给药,所述途径包括但不仅限于:口服或胃肠外途径,如静脉内给药、肌肉内给药、皮下给药、经皮给药、气道给药(气雾剂)、肺部给药、鼻部给药、直肠给药和局部给药(包括口腔含化给药和舌下给药)。给药频率可以是每天、每周、每两周、每三周、每个月或每年1次或多次。
本公开所述的双链寡核苷酸、药物组合物和/或寡核苷酸缀合物的使用剂量可为本领域常规的剂量,所述剂量可以根据各种参数、尤其是受试者的年龄、体重和性别来确定。可在细胞培养或实验动物中通过标准药学程序测定毒性和疗效,例如测定LD50(使50%的群体致死的剂量)和ED50(在量反应中指能引起50%最大反应强度的剂量,在质反应中,指引起50%实验对象出现阳性反应时的剂量)。可基于由细胞培养分析和动物研究得到的数据得出人用剂量的范围。
在给予本公开所述的双链寡核苷酸、药物组合物和/或寡核苷酸缀合物时,例如,对于雄性或雌性、6-12周龄、体重18-25g的C57BL/6J或C3H/HeNCrlVr小鼠,以所述双链寡核苷酸、药物组合物和/或寡核苷酸缀合物中的双链寡核苷酸的量计:对于双链寡核苷酸与药学上可接受的缀合分子形成的寡核苷酸缀合物,其双链寡核苷酸用量可以为0.001-100mg/kg体重,在一些实施方式中为0.01-50mg/kg体重,在进一步的实施方式中为0.05-20mg/kg体重,在更进一步的实施方式中为0.1-15mg/kg体重,在又进一步的实施方式中为0.1-10mg/kg体重。在给予本公开所述的双链寡核苷酸、药物组合物和/或寡核苷酸缀合物时,可优选上述用量。
另外,通过将本公开的双链寡核苷酸、药物组合物和/或寡核苷酸缀合物导入特定基因异常表达的肝细胞,还可以通过基因表达调控的机制达到抑制肝细胞中该特定基因的表达这一目的。在一个一些实施方式中,所述肝细胞为肝炎细胞,在一些实施方式中为HepG2.2.15细胞。在一些实施方式中,所述肝细胞可以选自 Hep3B、HepG2、Huh7等肝癌细胞系或分离的肝原代细胞,在一些实施方式中为Huh7肝癌细胞。
采用本公开提供的方法抑制特定基因在肝细胞中表达,所提供的双链寡核苷酸、药物组合物和/或寡核苷酸缀合物中的双链寡核苷酸的用量是本领域技术人员根据期望获得的效果容易确定的。例如,在一些实施方式中,所述双链寡核苷酸、药物组合物和/或寡核苷酸缀合物是siRNA缀合物,所提供的siRNA缀合物中的siRNA用量是这样的量:其足以减少靶基因的表达,并导致在靶细胞表面处1pM至1μM、或0.01nM至100nM、或0.05nM至50nM或至约5nM的细胞外浓度。达到该局部浓度所需的量将随各种因素而变化,所述因素包括递送方法、递送部位、在递送部位和靶细胞或组织之间的细胞层的数目、递送是局部还是全身等。在递送部位处的浓度可以显著高于在靶细胞或组织的表面处的浓度。
试剂盒
本公开提供了一种试剂盒,所述试剂盒包含如上所述的双链寡核苷酸、如上所述的药物组合物和/或如上所述的寡核苷酸缀合物。
在一些实施方式中,本文所述的试剂盒可在一个容器中提供双链寡核苷酸。在一些实施方式中,本文所述的试剂盒可包含一个提供药学上可接受的赋形剂的容器。在一些实施方式中,所述试剂盒中还可包含其它成分,如稳定剂或防腐剂等。在一些实施方式中,本文所述的试剂盒可在不同于提供本文所述双链寡核苷酸的容器以外的其它容器中包含至少一种其它治疗剂。在一些实施方式中,所述试剂盒可包含用于将双链寡核苷酸与药学上可接受的载体和/或辅料或其它成分(若有的话)进行混合的说明书。
在本公开的试剂盒中,所述双链寡核苷酸和药学上可接受的载体和/或辅料以及所述双链寡核苷酸组合物和/或缀合物,和/或药学上可接受的辅料可以任何形式提供,例如液体形式、干燥形式或冻干形式。在一些实施方式中,所述双链寡核苷酸和药学上可接受的载体和/或辅料以及所述双链寡核苷酸组合物和/或缀合物和任选的药学上可接受的辅料基本上纯净和/或无菌。在一些实施方式中,可在本公开的试剂盒中提供无菌水。
下面通过实施例来进一步说明本公开,但是本公开并不因此而受到任何限制。
不希望受到限制地,在下面的实施方式和关于本公开的组合物和/或寡核苷酸缀合物中的双链寡核苷酸是小干扰RNA(siRNA)的示例性实施方式的实施例中进一步详细描述了本发明。在这种情况下,本公开的双链寡核苷酸、组合物以及寡核苷酸缀合物分别是siRNA、包含siRNA的组合物以及siRNA缀合物。在本公开的上下文中,为了便于描述,这些实施方式中的siRNA、包含siRNA的组合物以及siRNA缀合物也被称为本公开的siRNA、本公开的siRNA组合物以及本公开的siRNA缀合物。这并不意味着本公开的双链寡核苷酸只能是siRNA,相反,双链寡核苷酸可以是本文所公开的或本领域技术人员已知的其它变体,如小激活RNA(saRNA)等。可以设想,基于对siRNA、包含siRNA的组合物以及siRNA缀合物的详细说明,其它功能性双链寡核苷酸将在单独使用、或形成本公开所述的组合物和/或缀合物时类似地起到作用。
有益效果
在一些实施方式中,本公开提供的双链寡核苷酸、组合物或寡核苷酸缀合物可在体内具有更高的稳定性、更低的毒性和/或更高的活性。在一些实施方式中,本公开提供的双链寡核苷酸是saRNA。在一些实施方式中,本公开提供 的saRNA、saRNA组合物或saRNA缀合物在体内显示出至少20%,30%,40%,50%,60%,70%,80%,90%或95%的靶基因表达提高率。在一些实施方式中,本公开提供的双链寡核苷酸是siRNA。在一些实施方式中,本公开提供的siRNA、siRNA组合物或siRNA缀合物在体内显示出至少20%,30%,40%,50%,60%,70%,80%,90%或95%的靶基因表达抑制率。在一些实施方式中,本公开提供的siRNA、siRNA组合物或siRNA缀合物在体内显示出至少20%,30%,40%,50%,60%,70%,80%,90%或95%的HBV基因表达抑制率。在一些实施方式中,本公开提供的siRNA、siRNA组合物或siRNA缀合物在体内显示出至少20%,30%,40%,50%,60%,70%,80%,90%或95%的肝内HBV基因表达抑制率。在一些实施方式中,本公开提供的siRNA、siRNA组合物或siRNA缀合物在体内显示出至少20%,30%,40%,50%,60%,70%,80%,90%或95%的动物模型中肝内HBV基因表达抑制率。在一些实施方式中,本公开提供的siRNA、siRNA组合物或siRNA缀合物在体内显示出至少20%,30%,40%,50%,60%,70%,80%,90%或95%的HBV表面抗原表达抑制率。在一些实施方式中,本公开提供的siRNA、siRNA组合物或siRNA缀合物在体内显示出至少20%,30%,40%,50%,60%,70%,80%,90%或95%的ANGPTL3基因表达抑制率。在一些实施方式中,本公开提供的siRNA、siRNA组合物或siRNA缀合物在体内显示出至少20%,30%,40%,50%,60%,70%,80%,90%或95%的肝内ANGPTL3基因表达抑制率。在一些实施方式中,本公开提供的siRNA、siRNA组合物或siRNA缀合物在体内显示出至少20%,30%,40%,50%,60%,70%,80%,90%或95%的动物模型中肝内ANGPTL3基因表达抑制率。在一些实施方式中,本公开提供的siRNA、siRNA组合物或siRNA缀合物在体内显示出至少20%,30%,40%,50%,60%,70%,80%,90%或95%的人类受试者中肝内ANGPTL3基因表达抑制率。在一些实施方式中,本公开提供的siRNA、siRNA组合物或siRNA缀合物在体内显示出至少20%,30%,40%,50%,60%,70%,80%,90%或95%的APOC3基因表达抑制率。在一些实施方式中,本公开提供的siRNA、siRNA组合物或siRNA缀合物在体内显示出至少20%,30%,40%,50%,60%,70%,80%,90%或95%的肝内APOC3基因表达抑制率。在一些实施方式中,本公开提供的siRNA、siRNA组合物或siRNA缀合物在体内显示出至少20%,30%,40%,50%,60%,70%,80%,90%或95%的动物模型中肝内APOC3基因表达抑制率。在一些实施方式中,本公开提供的siRNA、siRNA组合物或siRNA缀合物在体内显示出至少20%,30%,40%,50%,60%,70%,80%,90%或95%的人类受试者中肝内APOC3基因表达抑制率。在一些实施方式中,本公开提供的双链寡核苷酸、组合物或寡核苷酸缀合物未显示出明显脱靶效应。脱靶效应可以是例如抑制非靶基因的基因正常表达。据认为,如果脱靶基因表达的结合/抑制与在靶基因效果相比低于50%、40%、30%、20%或10%时,该脱靶效应就是不显著的。
根据本公开的一些实施方式,本公开的siRNA、siRNA组合物和siRNA缀合物显示出优异的抑制效果。例如,根据本公开的一个实施方式,本公开提供的siRNA缀合物表现出优异的抑制HBV基因表达的特性:在具有低脱靶效应的同时,能够在1mg/kg的剂量下抑制乙肝模型小鼠肝脏中66.9%-90.9%的HBV基因表达。同时,本公开的siRNA缀合物还能够有效地降低乙肝模型小鼠中的HBV表面抗原表达和HBV DNA。特别地,与现有技术提供的相比,通过本公开提供的特定修饰的siRNA和特定缀合分子形成的特定siRNA缀合物,能够在低给药剂量的同时,在高达140天的实验时间内持续显示出优异 的HBV表达抑制作用。
根据本公开的一个实施方式,本公开提供的siRNA缀合物表现出优异的抑制HBV基因表达的特性:在具有低脱靶效应的同时,能够在1mg/kg的剂量下抑制乙肝模型小鼠肝脏中81.7-89.2%的HBV基因表达。同时,本公开的siRNA缀合物还能够有效地降低乙肝模型小鼠中的HBV表面抗原表达和HBV DNA。特别地,与现有技术提供的缀合分子形成的缀合物相比,通过本公开提供的特定修饰的siRNA和特定缀合分子形成的特定siRNA缀合物,能够在低给药剂量的同时,在高达84天的实验时间内持续显示出优异的HBV表达抑制作用。
根据本公开的一个实施方式,本公开提供的siRNA缀合物表现出优异的抑制HBV基因表达的特性:在具有低脱靶效应的同时,能够在1mg/kg的剂量下抑制乙肝模型小鼠肝脏中高达93.8%的HBV基因表达。同时,本公开的siRNA缀合物还能够有效地降低乙肝模型小鼠中的HBV表面抗原表达,甚至在3mg/kg的剂量下可以达到90%以上的HBV表面抗原表达抑制率,并有效抑制HBV DNA。特别地,与参比缀合物相比,通过本公开提供的特定修饰的siRNA和特定缀合分子形成的特定siRNA缀合物,能够在低给药剂量的同时,在21天的实验时间内持续显示出较高的HBV表达抑制作用。
根据本公开的一个实施方式,本公开提供的siRNA缀合物表现出优异的抑制HBV基因表达的特性:在具有低脱靶效应的同时,能够在1mg/kg的剂量下抑制乙肝模型小鼠肝脏中最高可达93.63%的HBV X基因区基因表达。同时,本公开的siRNA缀合物还能够有效地降低乙肝模型小鼠中的HBV表面抗原表达,甚至在3mg/kg的剂量下可以达到95%以上的HBV表面抗原表达抑制率,并能有效抑制HBV DNA。特别地,与现有技术提供的缀合分子形成的缀合物相比,通过本公开提供的特定修饰的siRNA和特定缀合分子形成的特定siRNA缀合物,能够在低给药剂量的同时,在长达56天的实验时间内持续显示出优异的HBV表达抑制效果,HBV X mRNA抑制率在90%以上。
在一些实施方式中,本公开提供的siRNA缀合物表现出优异的ANGPTL3 mRNA抑制效率,并显著下调血脂水平。例如,在一些实施方式中,皮下单次给药后第14天,小鼠的ANGPTL3 mRNA抑制率高达95%以上;在一些实施方式中,皮下单次给药,甘油三酯(TG)最大抑制率为93%,总胆固醇(CHO)最大抑制率为83%,给药后154天,对TG的抑制率能够维持在55%以上,对CHO的抑制率维持在40%以上。特别地,与现有技术提供的缀合分子形成的缀合物相比,本公开提供的siRNA缀合物显示出更加优异的基因抑制率,更强的降低血脂能力;并且,本公开提供的siRNA缀合物能够在低给药剂量、低给药频率的情况下,在长达189天的实验时间内持续表现出优异的血脂抑制作用。
在一些实施方式中,本公开提供的siRNA缀合物表现出优异的抑制APOC3基因表达的特性:在1mg/kg的剂量下抑制高脂模型小鼠肝脏中至少88%的APOC3基因表达。特别地,与现有技术提供的缀合分子形成的缀合物相比,本公开提供的修饰的siRNA和siRNA缀合物显示出优异的基因抑制率,及低的脱靶效应;并且,本公开提供的siRNA缀合物能够在低给药剂量、低给药频率的情况下,在长达189天的实验时间内持续显示出优异的血脂抑制作用。
在某些实施方式中,本公开所述的siRNA缀合物还表现出低的动物水平毒性和良好的安全性,例如,在一些实施方式中,对于本公开的缀合物,即 使在C57BL/6J小鼠中给予高达起效浓度的100倍(按起效浓度3mg/kg计),也未观察到明显的毒性反应。
上述情况表明,本文提供的siRNA、siRNA组合物和siRNA缀合物能够有效降低靶细胞基因表达,并且显示出优异的递送潜力。
实施例
以下将通过实施例对本公开进行详细描述。除非特别说明,以下实施例中所用到的试剂、培养基均为市售商品,所用到的核酸电泳、real-time PCR等操作均参照Molecular Cloning(Cold Spring Harbor LBboratory Press(1989))所记载的方法进行。
HEK293A细胞由北京大学分子医学研究所核酸技术实验室提供,用含有20%的胎牛血清(FBS,Hyclone公司)及0.2体积%的青链霉素双抗(Penicillin-Streptomycin,Gibco,Invitrogen公司)的DMEM完全培养基(Hyclone公司)培养细胞,于37℃在含5%CO2/95%空气的培养箱中培养。
HepG2.2.15细胞购自ATCC,用含有10%的胎牛血清(FBS,Gibco)、2mM L-谷氨酰胺(Gibco)和380μg/ml G418的DMEM完全培养基(Gibco)培养细胞,于37℃在含5%CO 2/95%空气的培养箱中培养。
Huh7细胞购自ATCC,用含有10%的胎牛血清(FBS,Gibco)、2mM L-谷氨酰胺(Gibco)和380μg/ml G418的DMEM完全培养基(Gibco)培养细胞,于37℃在含5%CO2/95%空气的培养箱中培养。
除非另有说明,用以下合成的各种siRNA或siRNA缀合物转染细胞时,使用LipofectamineTM2000(Invitrogen)作为转染试剂,具体操作参照制造商提供的说明书。
若无其它说明,以下提供的试剂比例均按体积比(v/v)计算。
所使用的动物模型如下:
C57BL/6N小鼠:6-8周龄,购自北京维通利华实验动物技术有限公司,以下简称为C57小鼠;
SD大鼠:由北京维通利华实验动物技术有限公司提供;
HBV转基因小鼠C57BL/6-HBV:品系名:B6-Tg HBV/Vst(1.28copy,genotype A),购自北京维通达生物技术有限公司。于实验前选择COI>10 4的小鼠,以下也简称为1.28copy小鼠;
HBV转基因小鼠C57BL/6J-Tg(Alb1HBV)44Bri/J:购自北京大学医学部实验动物科学部;
HBV转基因小鼠:命名为M-TgHBV,购自上海市公共卫生中心动物部,转基因小鼠的制备方法如Ren J.等,J.Medical Virology.2006,78:551-560所述;
AAV-HBV转基因小鼠:按照文献方法(董小岩等,Chin J Biotech 2010,May 25;26(5):679-686)制备AAV-HBV模型,rAAV8-1.3HBV,D型(ayw),购于北京五加和分子医学研究所有限公司,1×10 12viral genome(v.g.)/mL,批号2016123011。实验前用无菌PBS稀释至5×10 11v.g./mL。每只小鼠注射200μL,即每只小鼠注射1×10 11v.g.。病毒注射后第28天,所有小鼠通过眼眶采血(约100μL)用于收集血清检测HBsAg和HBV DNA;
低浓度AAV-HBV转基因小鼠:采用与上述基本相同的造模方法,区别之处在于,病毒在实验前用无菌PBS稀释至1×10 11v.g./mL,每只小鼠注射100μL病毒,即每只小鼠注射1×10 10v.g.;
BALB/c小鼠:6-8周龄,购于北京维通利华实验动物技术有限公司;
ob/ob小鼠:6-8周龄,购于常州卡文斯实验动物有限公司;
人APOC3转基因小鼠:B6;CBA-Tg(APOC3)3707Bres/J,购于美国Jackson实验室;
代谢综合症猴:由北京大学分子医学研究所非人灵长类研究中心提供。
若无特别说明,以下体内/体外效果实验数据均以
Figure PCTCN2018118212-appb-000065
表示,数据分析采用Graphpad prism5.0统计分析软件。首先对数据进行正态分布及方差齐性检验。符合正态分布(p>0.20)及方差齐(p>0.10):多组间比较采用单因素方差分析的LSD法进行多重比较,p<0.05认为有统计学意义;不符合正态分布或方差不齐:多组间比较采用非参数检验的Kruskal-Wallis H方法,如果Kruskal-wallis H检验结果显著(p<0.05),再将数据进行秩转换后,进行多组间两两比较,p<0.05认为有统计学意义。
制备例1本公开的siRNA的制备
本制备例中,按照以下方法,合成了表2的siRNA。
表2合成的siRNA
Figure PCTCN2018118212-appb-000066
*S:正义链;AS:反义链
注:大写字母C、G、U、A表示核苷酸的碱基组成;dT表示脱氧胸腺嘧啶核苷酸;小写字母m表示该字母m左侧相邻的一个核苷酸为2′-甲氧基修饰的核苷酸;小写字母f表示该字母f左侧相邻的一个核苷酸为2′-氟修饰的核苷酸;小写字母s表示与该字母s左右相邻的两个核苷酸之间的连接为硫代磷酸酯基连接;VP表示该字母VP右侧的一个核苷酸为乙烯基磷酸酯修饰的核苷酸;P表示该字母P右侧的一个核苷酸为磷酸酯修饰的核苷酸;Ps表示该字母Ps右侧的一个核苷酸为硫代磷酸酯修饰的核苷酸。
(1-1)合成siRNA的正义链
利用通用固相载体(UnyLinker TMloaded
Figure PCTCN2018118212-appb-000067
HL Solid Supports,Kinovate Life Sciences公司)起始循环,按照上述序列顺序按照3′-5′的方向逐一连接核苷单体。每连接一个核苷单体都包括脱保护、偶联、盖帽、氧化四步反应。合成条件给定如下:
核苷单体以0.1M浓度的乙腈溶液提供,每一步的脱保护反应的条件相同,即温度为25℃,反应时间为70秒,脱保护试剂为二氯乙酸的二氯甲烷溶液(3%v/v),二氯乙酸与固相载体上4,4′-二甲氧基三苯甲基保护基的摩尔比为5∶1。
每一步偶联反应条件均相同,包括温度为25℃,固相载体上连接的核酸序列与核苷单体的摩尔比为1∶10,固相载体上连接的核酸序列和偶联试剂的摩尔比为1∶65,反应时间为600秒,偶联试剂为5-乙硫基-1H-四氮唑的0.5M乙腈溶液。
每一步盖帽条件均相同,包括温度为25℃,反应时间为15秒。盖帽试剂溶液为摩尔比为1∶1的Cap1和Cap2的混合溶液,盖帽试剂与固相载体上连接的核酸序列的摩尔比为乙酸酐∶N-甲基咪唑∶固相载体上连接的核酸序列=1∶1∶1。
每一步氧化反应条件相同,包括温度为25℃,反应时间为15秒,氧化试剂为浓度为0.05M的碘水。碘与偶联步骤中固相载体上连接的核酸序列的摩尔比为30∶1。反应在四氢呋喃∶水∶吡啶=3∶1∶1的混合溶剂中进行。
当目标序列中两个核苷酸之间为硫代磷酸酯连接时,用以下硫化反应步骤代替该两个核苷酸中后一个核苷酸的连接中的氧化反应步骤:每一步硫化反应的条件相同,包括温度为25℃,反应时间为300秒,硫化试剂为氢化黄原素。硫化试剂与偶联步骤中固相载体上连接的核酸序列的摩尔比为120∶1。反应在乙腈∶吡啶=1∶1的混合溶剂中进行。
切割和脱保护条件如下:将合成的连接有载体的核苷酸序列加入浓度为25wt%的氨水中,氨水用量为0.5ml/μmol,在55℃反应16h,除去液体,真空浓缩至干。在氨水处理后,相对于单链核酸的量,用0.4ml/μmol N-甲基吡咯烷酮溶解产品,随后加入0.3ml/μmol三乙胺和0.6ml/μmol三乙胺三氢氟酸盐,脱除核糖上的2′-TBDMS保护。当目标序列中的全部核苷酸的2′-位均为修饰的羟基基团时,切割与脱保护条件中,不包括脱除核糖上的2′-TBDMS保护的步骤。
纯化与脱盐:利用制备型离子色谱纯化柱(Source 15Q),通过NaCl的梯度洗脱,完成核酸的纯化。具体而言为:洗脱剂A:20mM磷酸钠(pH 8.1),溶剂为水/乙腈=9∶1(体积比);洗脱剂B:1.5M氯化钠,20mM磷酸钠(pH 8.1),溶剂为水/乙腈=9∶1(体积比);洗脱梯度:洗脱剂A∶洗脱剂B=100∶0-50∶50梯度洗脱。收集产品洗脱液后合并,采用反相色谱纯化柱进行脱盐,具体条件 包括采用葡聚糖凝胶柱进行脱盐,填料为葡聚糖凝胶G25,以去离子水洗脱。
检测:使用离子交换色谱(IEX-HPLC)检测纯度;采用液质联用(LC-MS)分析分子量,并与理论值进行比较。
从而,该步骤中合成了siRNA的正义链S。
(1-2)合成反义链
本步骤中,利用通用固相载体(UnyLinker TMloaded
Figure PCTCN2018118212-appb-000068
HL Solid Supports,Kinovate Life Sciences公司),合成了siRNA的反义链AS。固相合成方法中的脱保护、偶联、盖帽、氧化和/或硫化反应条件,脱保护和切割,分离条件与合成正义链相同。
其中,乙烯基磷酸酯修饰的2′-甲氧基修饰尿嘧啶核苷单体(VP-Um)按照以下方法合成:
Figure PCTCN2018118212-appb-000069
(1-2-1)VP-U-2的合成
按照以下方法,合成了VP-U-2分子:
Figure PCTCN2018118212-appb-000070
将2′-甲氧基修饰的尿嘧啶核苷酸(2′-OMe-U,51.30g,91.6mmol),叔丁基二苯基氯硅烷(TBDPSCl,50.35g,183.2mmol),咪唑(12.47g,183.2mmol)混合溶于450ml N,N-二甲基甲酰胺(DMF),室温下搅拌反应20h。蒸除DMF,用600ml二氯甲烷溶解后加300ml饱和碳酸氢钠洗涤,水相再用二氯甲烷(DCM)萃取3次,每次300ml,合并有机相,用5%草酸洗涤至水相pH<5,蒸发溶剂至干后获得VP-U-1粗品直接用于随后VP-U-2的合成。
将VP-U-1粗品用100ml二氯甲烷溶解后,外加冰浴搅拌10分钟,再加入预先在4℃冰箱冷藏好的450ml 2%对甲苯磺酸溶液(溶剂为体积比3∶7的甲醇-二氯甲烷混合溶剂),反应10分钟。再加入200ml饱和碳酸氢钠淬灭反应,有机相加入饱和碳酸氢钠水溶液洗涤至pH=8。合并水相,用二氯甲烷萃取2 次,每次200ml,合并有机相,再用200ml饱和食盐水洗涤一次,蒸发溶剂至干。200-300目正相硅胶柱纯化,石油醚装柱,以石油醚∶乙酸乙酯∶二氯甲烷∶甲醇=1∶1∶1∶0.05-1∶1∶1∶0.25梯度洗脱,收集产物洗脱液,减压蒸干溶剂,真空油泵发泡干燥得到纯品VP-U-2共40.00g。1H NMR(400MHz,DMSO-d6)δ7.96(d,J=7.8Hz,1H),7.64(dtd,J=5.1,4.0,2.2Hz,4H),7.41-7.30(m,6H),6.79(d,J=4.7Hz,1H),5.73(d,J=7.6Hz,1H),4.94(t,J=7.0Hz,1H),4.12(td,J=4.6,3.9Hz,1H),4.05(dd,J=4.8,4.0Hz,1H),3.96(t,J=4.7Hz,1H),3.68(ddd,J=11.8,7.0,4.6Hz,1H),3.57-3.46(m,1H),3.39(s,3H),1.05(s,8H).MS m/z:C26H33N2O6Si,[M+H]+,理论:497.21,实测:497.45。
(1-2-2)VP-U-4的合成:
Figure PCTCN2018118212-appb-000071
将VP-U-2(19.84g,40.0mmol),二环己基碳二亚胺(DCC,16.48g,80.0mmol),吡啶(4.20g,53.2mmol),三氟乙酸(6.61g,53.2mmol)混合溶于200ml二甲基亚砜(DMSO),室温下搅拌反应20h。另取亚甲基二磷酸四乙酯(21.44g,74.4mmol)溶于120ml THF,冰浴降温,在冰浴温度下加入t-BuOK(11.36g,101.2mmol),先在冰浴温度下反应10min,再升至室温反应0.5h,然后加入至前述反应液中,约1h加完,冰浴温度下反应1h,再升至室温反应18h。加水淬灭反应,水相以二氯甲烷提取3次,每次200ml。合并有机相,用200ml饱和食盐水水洗一次后蒸发溶剂至干。用200-300目正相硅胶柱纯化,石油醚装柱,以石油醚∶乙酸乙酯=1∶1-1∶4梯度洗脱,收集产物洗脱液,减压蒸干溶剂,真空油泵发泡干燥得到纯品VP-U-4共14.00g。1H NMR(400MHz,DMSO-d6)δ7.96(d,J=7.8Hz,1H),7.64(dtd,J=5.1,4.0,2.2Hz,4H),7.41-7.30(m,6H),6.82-6.71(m,2H),5.90(ddd,J=25.9,15.0,1.0Hz,1H),5.73(d,J=7.6Hz,1H),4.36-4.21(m,3H),4.18(t,J=4.9Hz,1H),4.05(ddq,J=9.7,8.5,6.9Hz,2H),3.87(t,J=4.8Hz,1H),3.39(s,3H),1.32(td,J=6.9,0.7Hz,6H),1.05(s,8H).MS m/z:C31H42N2O8PSi,[M+H]+,理论:629.24,实测:629.51。
(1-2-3)VP-U-5的合成:
将VP-U-4(14.00g,22.29mmol)溶于100ml四氢呋喃,加入三乙胺三氢氟酸(17.96g,111.45mmol),室温搅拌20h反应完全。直接蒸发溶剂至干,再用二氯甲烷溶解随后蒸干2次,每次使用50ml二氯甲烷,得到粗品。用200-300目正相硅胶柱纯化,石油醚装柱,以石油醚∶乙酸乙酯∶二氯甲烷∶甲醇=1∶1∶1∶0.05-1∶1∶1∶0.25梯度洗脱,收集产物洗脱液,减压蒸干溶剂,真空油泵 发泡干燥得到纯品VP-U-5共6.70g。1H NMR(400MHz,DMSO-d6)δ7.96(d,J=7.8Hz,1H),6.77(dd,J=15.0,6.2Hz,1H),5.99-5.82(m,2H),5.73(d,J=7.6Hz,1H),5.27(d,J=5.1Hz,1H),5.10(dd,J=5.3,4.7Hz,1H),4.29(ddq,J=9.8,8.6,7.0Hz,2H),4.17(ddd,J=6.2,5.2,1.0Hz,1H),4.12-3.98(m,3H),3.39(s,2H),1.32(td,J=6.9,0.6Hz,6H).MS m/z:C15H24N2O8P,[M+H]+,理论:391.13,实测:391.38。
(1-2-4)VP-U-6的合成:
Figure PCTCN2018118212-appb-000073
在氩气保护条件下向10ml无水二氯甲烷中加入VP-U-5(391mg,1.0mmol)、三氟乙酸吡啶盐(0.232g,1.2mmol)、N-甲基咪唑(0.099g,1.2mmol),双(二异丙基氨基)(2-氰基乙氧基)膦(0.452g,1.5mmol),室温搅拌反应5小时。蒸除溶剂至干,柱层析纯化(200-300目正相硅胶,二氯甲烷∶乙腈(含0.5wt%三乙胺)=3∶1-1∶3梯度洗脱),收集产物洗脱液,浓缩除去溶剂,得到目标产物VP-U-6共508mg。31P NMR(161MHz,DMSO-d6)δ150.34,150.29,17.07,15.50.MS m/z:C24H41N4O9P2,[M+H]+,理论:591.23,实测:591.55。表明VP-U-6是目标产物VP-Um,作为核苷单体参与RNA链合成。
使用如下方法将5′-磷酸酯修饰连接至反义链5′端:
原料为具有如下式CPR-I结构的磷酸化结构单体,由苏州吉玛提供,货号Cat#13-2601-XX:
Figure PCTCN2018118212-appb-000074
在反义链全部核苷单体连接完毕后,按照亚磷酰胺核酸固相合成的方法,经脱保护、偶联、盖帽、氧化四步反应将CPR-I单体连接至反义链5′末端。随后按照如下条件进行切割与脱保护,获得反义链:
将合成的连接有载体的核苷酸序列加入浓度为25wt%的氨水中,氨水用量为0.5ml/μmol,在55℃反应16h,除去液体,真空浓缩至干。在氨水处理后,相对于单链核酸的量,用0.4ml/μmol N-甲基吡咯烷酮溶解产品,随后加入0.3ml/μmol三乙胺和0.6ml/μmol三乙胺三氢氟酸盐,脱除核糖上的2′-TBDMS保护。纯化与脱盐:利用制备型离子色谱纯化柱(Source 15Q),通过NaCl的梯度洗脱,完成核酸的纯化。具体而言为:洗脱剂A:20mM磷酸钠(pH 8.1),溶剂为水/乙腈=9∶1(体积比);洗脱剂B:1.5M氯化钠,20mM磷酸钠(pH 8.1),溶剂为水/乙腈=9∶1(体积比);洗脱梯度:洗脱剂A∶洗脱剂B=100∶0-50∶50梯度洗脱。收集产品洗脱液后合并,采用反相色谱纯化柱进行脱盐,具体条件包括采用葡聚糖凝胶柱进行脱盐,填料为葡聚糖凝胶G25,以去离子水洗脱。
对于目标产物具有5′-硫代磷酸酯修饰的情况,使用与上述同样的步骤, 区别在于在连接时,以硫化反应条件代替上述氧化反应条件,进行硫化反应。
对siRNA反义链同样地进行分析检测,所用仪器与方法与正义链相同,最终确认获得了相应的siRNA反义链。
(1-3)合成siRNA
将S链与AS链以等摩尔比混合,溶于注射用水中并加热至95℃,室温冷却后,使它们通过氢键形成双链结构。
对于上述合成的正义链和反义链,使用离子交换色谱(IEX-HPLC)检测纯度,并以液质联用色谱(LC-MS)分析分子量,确认所合成的核酸序列是对应于表2中的各个siRNA。
制备例2缀合物1的制备
本制备例中,按照以下方法,合成了表4A中编号为缀合物A1的siRNA缀合物。
(2-1)L-10化合物的制备
按照以下方法,合成了L-10化合物:
Figure PCTCN2018118212-appb-000075
(2-1-1)缀合末端段GAL-5的合成
Figure PCTCN2018118212-appb-000076
(2-1-1a)GAL-2的合成
将100.0g GAL-1(N-乙酰-D-半乳糖胺盐酸盐,CAS号:1772-03-8,购自宁波弘翔生化公司,463.8mmol)溶于1000ml无水吡啶,冰水浴下加入540ml乙酸酐(购自Enox公司,5565.6mmol),室温搅拌反应1.5小时。将反应液倒入10L冰水中,减压抽滤,滤饼用2L冰水洗涤后,加乙腈/甲苯混合溶剂(体积比乙腈∶甲苯=1∶1)至完全溶解,蒸干溶剂,得到白色固体产品GAL-2 130.0g。
(2-1-1b)GAL-3的合成
将步骤(1-1a)中获得的GAL-2(35.1g,90.0mmol)溶解于213ml无水1,2-二氯乙烷中,在冰水浴且氮气保护条件下,加入24.0g TMSOTf(CAS号:27607-77-8,购自麦克林公司,108.0mmol),室温反应过夜。
在反应液中加入400ml二氯甲烷稀释,硅藻土过滤,再加入1L饱和碳酸氢钠水溶液,洗涤,分出有机相,水相用二氯乙烷萃取两次,每次300ml,合并有机相,分别用300ml饱和碳酸氢钠水溶液和300ml饱和食盐水洗涤,分出有机相,无水硫酸钠干燥,减压蒸干溶剂,得到浅黄色粘稠糖稀状产品GAL-3 26.9g。
(2-1-1c)GAL-4的合成
将步骤(1-1b)中获得的GAL-3(26.9g,81.7mmol)溶于136ml无水1,2-二氯乙烷中,加入干燥的
Figure PCTCN2018118212-appb-000077
分子筛粉末30g,再加入9.0g 5-己烯-1-醇(CAS号:821-41-0,购自Adamas-beta公司,89.9mmol),室温下搅拌30分钟,冰浴和氮气保护下加入9.08g TMSOTf(40.9mmol),室温下搅拌反应过夜。过滤除去
Figure PCTCN2018118212-appb-000078
分子筛粉末,滤液中加入300ml二氯甲烷稀释,硅藻土过滤,再加入500ml饱和碳酸氢钠水溶液搅拌10分钟洗涤,分出有机相,水相用300ml二氯乙烷萃取一次,合并有机相并分别用300ml饱和碳酸氢钠水溶液和300ml饱和食盐水洗涤,分出有机相,无水硫酸钠干燥,减压蒸干溶剂,得到黄色糖稀状产品GAL-4 41.3g,不进行纯化直接进行下一步氧化反应。
(2-1-1d)GAL-5的合成
将按照步骤(1-1c)中描述的方法得到的GAL-4(14.9g,34.7mmol)溶于77ml二氯甲烷和77ml乙腈的混合溶剂中,分别加入103ml去离子水和29.7g高碘酸钠(CAS号:7790-28-5,购自阿拉丁公司,138.8mmol),冰水浴下搅拌10分钟,加入三氯化钌(CAS号:14898-67-0,购自安耐吉公司,238mg,1.145mmol),控制体系温度不超过30℃,室温反应过夜。反应液加入300ml水稀释搅拌,加饱和碳酸氢钠调pH约为7.5,分出并弃去有机相,水相用二氯甲烷萃取三次,每次200ml,弃去有机相。水相用柠檬酸固体调节pH约为3,用二氯甲烷萃取三次,每次200ml,合并有机相,无水硫酸钠干燥,减压蒸干溶剂,得到白色泡沫状固体产品GAL-5 6.5g。 1H NMR(400MHz,DMSO)δ12.01(br,1H),7.83(d,J=9.2Hz,1H),5.21(d,J=3.2Hz,1H),4.96(dd,J=11.2,3.2Hz,1H),4.49(d,J=8.4Hz,1H),4.07-3.95(m,3H),3.92-3.85(m,1H),3.74-3.67(m,1H),3.48-3.39(m,1H),2.20(t,J=6.8Hz,2H),2.11(s,3H),2.00(s,3H),1.90(s,3H),1.77(s,3H),1.55-1.45(m,4H).
(2-1-2)M-11-T3的合成:
Figure PCTCN2018118212-appb-000079
将J-0(1.883g,10mmol,商购自阿法埃莎公司)溶于25ml乙腈中,加入三乙胺(4.048g,40mmol)冰水浴冷却至0℃,加入三氟乙酸乙酯(5.683g,40mmol),室温下反应22h,减压蒸干溶剂,真空油泵发泡干燥18h,得到5.342g粗品固体M-11-T3,不经进一步纯化地直接用于后续反应。MS m/z:C15H22F9N4O3,[M+H]+,理论:477.35,实测:477.65。
(2-1-3)M-11-T3-Tr的合成:
Figure PCTCN2018118212-appb-000080
将M-11-T3粗品(5.342g,10mmol)溶于50ml二氯甲烷,向反应液中加入TrCl(3.345g,12mmol)和三乙胺(1.518g,15mmol),室温下搅拌反应20h,用饱和碳酸氢钠洗涤反应液2次,每次20ml,20ml饱和食盐水洗涤1次,有机相用无水硫酸钠干燥,过滤后减压蒸干有机溶剂,真空油泵发泡干燥过夜,得到粗品固体M-11-T3-Tr 7.763g。MS m/z:C34H36F9N4O3,[M+Na]+,理论:741.25,实测:741.53。粗品固体M-11-T3-Tr不经纯化地继续用于下一步M-18-Tr的合成。
(2-1-4)M-18-Tr的合成:
Figure PCTCN2018118212-appb-000081
将步骤(2-1-3)中获得的M-11-T3-Tr粗品(7.763g,10mmol)溶于100ml甲醇,再加入100ml甲胺水溶液(40质量%),在50℃搅拌反应23h,过滤除去不溶颗粒物,减压蒸干溶剂,加入200ml体积比为1∶1的DCM:甲醇混合溶剂,用50ml饱和碳酸氢钠洗涤,水相再用二氯甲烷萃取3次,每次50ml,合并有机相,用无水硫酸钠干燥,过滤后减压蒸干溶剂,真空油泵发泡干燥过夜,用200-300目正相硅胶柱纯化,石油醚装柱,以1wt%三乙胺中和硅胶酸性,以二氯甲烷∶甲醇∶氨水(25wt%)=1∶1∶0.05-1∶1∶0.25梯度洗脱,收集产物洗脱液,减压蒸干溶剂,真空油泵发泡干燥得到纯品M-18-Tr 2.887g。 1H NMR(400MHz,DMSO)δ7.47-7.39(m,6H),7.32-7.24(m,6H),7.19-7.12(m,3H),2.60-2.47(m,4H),2.46-2.19(m,13H),1.70-1.55(m,4H),1.40(p,J=6.8Hz,2H).MS m/z:C28H39N4,[M+H]+,理论:431.65,实测:432.61。
(2-1-5)L-5-Tr的合成:
Figure PCTCN2018118212-appb-000082
将步骤(2-1-4)中获得的M-18-Tr(2.02g,4.69mmol)与步骤(2-1-1)中获得的GAL-5(6.93g,15.48mmol)混合溶于47ml乙腈,加入N-甲基吗啉(3.13g,30.96mmol)和4-(4,6-二甲氧基三嗪-2-基)-4-甲基吗啉盐酸盐(DMTMM,4.28g,15.48mmol),室温搅拌反应2h。以200ml二氯甲烷稀释反应液,100ml饱和碳酸氢钠溶液洗涤有机相,100ml饱和食盐水洗涤有机相,有机相用无水硫酸钠干燥,过滤后减压蒸干溶剂得粗品。200-300目正相硅胶柱纯化,石油醚装柱,以1wt%三乙胺中和硅胶酸性,以二氯甲烷∶甲醇=100∶5-100∶7梯度洗脱,收集产物洗脱液,减压蒸干得到纯品L-5-Tr 7.49g。 1H NMR(400MHz,DMSO)δ7.83-7.10(m,4H),7.67-7.60(m,1H),7.44-7.34(m,6H),7.33-7.24(m,6H),7.20-7.15(m,3H),5.22(s,3H),4.97(d,J=11.3Hz,3H),4.49(d,J=8.4Hz,3H),4.06-3.07(m,9H),3.95-3.83(m,3H),3.77-3.64(m,3H),3.45-3.35(m,3H),3.12-2.87(m,8H),2.30-2.15(m,3H),2.11-1.98(m,22H),1.95-1.84(m,11H),1.81-1.61(m,14H),1.54-1.36(m,14H).MS m/z:C85H119N7O30,[M+H]+,理论:1718.81,实测:1718.03。
(2-1-6)L-8的合成:
Figure PCTCN2018118212-appb-000083
将步骤(2-1-5)中得到的L-5-Tr(5.94g,3.456mmol)溶于69ml二氯甲烷,再加入二氯乙酸(13.367g,103.67mmol),室温下反应2h,加入100ml二氯甲烷稀释反应液,再加饱和碳酸氢钠溶液洗涤调节pH=7-8之间,水相以二氯甲烷萃取6次,每次30ml,合并有机相,用无水硫酸钠干燥,过滤后减压蒸干溶剂得粗品。纯化使用200-300目正相硅胶,以10wt%三乙胺中和硅胶酸性,1wt‰三乙胺平衡柱子,以二氯甲烷∶甲醇=100∶30-100∶40梯度洗脱,收集产物洗脱液,减压蒸干溶剂得到纯品L-8 4.26g。 1H NMR(400MHz,DMSO)δ7.84(d,J=9.0Hz,3H),7.27-7.23(m,1H),7.13-7.18(m,1H),5.22(d,J=3.1Hz,3H),4.97(dd,J=11.3,3.1Hz,3H),4.48(d,J=8.4Hz,3H),4.09-3.98(m,9H),3.88(dd,J=19.3,9.3Hz,3H),3.75-3.66(m,3H),3.44-3.38(m,3H),3.17-3.30(m,4H),3.10-2.97(m,4H),2.35-2.20(m,6H),2.15-2.08(m,9H),2.07-1.98(m,13H),1.94-1.87(m,9H),1.81-1.74(m,9H),1.65-1.42(m,18H).MS m/z:C85H119N7O30,[M+H]+,理论:1477.59,实测:1477.23。
(2-1-7a)A-1的合成
Figure PCTCN2018118212-appb-000084
将DMTrCl(4,4′-双甲氧基三苯甲基氯,38.12g,112.5mmol)溶于450ml无水吡啶中,加入DL-甘油酸钙水合物(12.88g,45.0mmol),在45℃反应22h,将反应液过滤,滤饼用200mlDCM淋洗,滤液减压浓缩至干,剩余物用500ml二氯甲烷重新溶解,0.5M三乙胺磷酸盐(pH=7-8)洗涤2次,每次200ml,水相以二氯甲烷萃取2次,每次200ml,合并有机相,用无水硫酸钠干燥,过滤,减压蒸干溶剂,200-300目正相硅胶柱纯化,以石油醚∶乙酸乙酯∶二氯甲烷∶甲醇=1∶1∶1∶0.35-1∶1∶1∶0.55梯度洗脱,收集产物洗脱液,减压蒸干溶剂,500ml二氯甲烷重新溶解,以200ml 0.5M三乙胺磷酸盐洗涤1次,水相用二氯甲烷萃取2次,每次200ml,合并有机相,无水硫酸钠干燥,过滤,减压蒸干溶剂,真空油泵减压下过夜,得到白色固体产品A-120.7g。 1H NMR(400MHz,DMSO-d6)δ7.46(ddd,J=6.5,2.3,1.1Hz,1H),7.40-7.28(m,7H),6.89- 6.81(m,4H),4.84(d,J=5.0Hz,1H),4.36-4.24(m,1H),4.29(s,6H),3.92(dd,J=12.4,7.0Hz,1H),3.67(dd,J=12.3,7.0Hz,1H),2.52(q,J=6.3Hz,6H),1.03(t,J=6.3Hz,9H).MS m/z:C24H23O6,[M-H]-,理论:407.15,实测:406.92。
(2-1-7b)L-7的合成:
Figure PCTCN2018118212-appb-000085
将步骤(2-1-6)中获得的L-8(2.262g,1.532mmol)和步骤(2-1-7a)中获得的A-1(2.342g,4.596mmol)混合,溶于16ml二氯甲烷,加入3-二乙氧基磷酰基-1,2,3-苯唑4(3H)-酮(DEPBT)(1.375g,4.596mmol),再加入二异丙基乙胺(1.188g,9.191mmol),25℃下搅拌反应2h,用10ml饱和碳酸氢钠洗涤有机相,水相以二氯甲烷萃取3次,每次10ml,以10ml饱和食盐水洗涤有机相,水相以二氯甲烷萃取2次,每次10ml,合并有机相并以无水硫酸钠干燥,过滤后减压蒸干溶剂,真空油泵发泡干燥过夜,得到粗品4.900g。柱纯化使用120g 200-300目正相硅胶,以20ml三乙胺中和硅胶酸性,以含1wt%三乙胺的石油醚平衡柱子,以石油醚∶乙酸乙酯∶二氯甲烷∶N,N-二甲基甲酰胺=1∶1∶1∶0.5-1∶1∶1∶0.6梯度洗脱,收集产物洗脱液,减压蒸干溶剂得到纯品L-72.336g。 1H NMR(400MHz,DMSO)δ7.90-7.78(m,4H),7.75-7.64(m,1H),7.38-7.18(m,9H),6.91-6.83(m,4H),5.25-5.10(m,4H),4.97(dd,J=11.2,3.2Hz,3H),4.48-4.30(m,4H),4.02(s,9H),3.93-3.84(m,3H),3.76-3.66(m,9H),3.45-3.35(m,3H),3.24-2.98(m,10H),2.30-2.20(m,2H),2.11-1.88(m,31H),1.80-1.40(m,28H).MS m/z:C90H128N7O35,[M-DMTr]+,理论:1564.65,实测:1564.88。
(2-1-8)L-9的合成:
Figure PCTCN2018118212-appb-000086
将步骤(2-1-7b)中获得的L-7(2.300g,1.26mmol)、丁二酸酐(0.378g,3.78mmol)和4-二甲氨基吡啶(DMAP,0.462g,3.78mmol)混合溶于13ml二氯甲烷,再加入DIPEA(0.814g,6.30mmol),25℃下搅拌24h,5ml 0.5M三乙胺磷酸盐洗涤反应液,水相以二氯甲烷萃取3次,每次5ml,合并有机相减压蒸干得到2.774g粗品。柱纯化使用60g 200-300目正相硅胶,以1wt%三乙胺中和硅胶酸性,以二氯甲烷平衡柱子,以含1wt‰三乙胺的二氯甲烷∶甲醇=100∶18-100∶∶20梯度洗脱,收集产物洗脱液,减压蒸干溶剂得到纯品L-9缀合分子(缀合分子1化合物)1.874g。 1H NMR(400MHz,DMSO)δ8.58(d,J=4.2Hz,1H),7.94-7.82(m,3H),7.41-7.29(m,5H),7.22(d,J=8.1Hz,5H),6.89(d,J=8.3Hz,4H),5.49-5.37(m,1H),5.21(d,J=3.0Hz,3H),4.97(d,J=11.1Hz,3H),4.49(d,J=8.2Hz,3H),4.02(s,9H),3.88(dd,J=19.4,9.4Hz,3H),3.77-3.65(m,9H),3.50-3.39(m,6H),3.11-2.90(m,5H),2.61-2.54(m,4H),2.47-2.41(m,2H),2.26-2.17(m,2H),2.15-1.95(m,22H),1.92-1.84(m,9H),1.80-1.70(m,10H),1.65-1.35(m,17H),1.31-1.19(m,4H),0.96(t,J=7.1Hz,9H).MS m/z:C94H132N7O38,[M-DMTr]+,理论:1664.72,实测:1665.03。
(2-1-9)L-10化合物的合成:
Figure PCTCN2018118212-appb-000087
此步骤中,通过将L-9缀合分子连接至固相载体,制备了L-10化合物。
将步骤(1-1-8)中获得的L-9缀合分子(0.233g,0.1126mmol)、O-苯并三氮唑-四甲基脲六氟磷酸酯(HBTU,0.064g,0.1689mmol)和二异丙基乙胺(DIEA,0.029g,0.2252mmol)混合,溶于19ml乙腈,室温搅拌5分钟,向反应液中加入氨甲基树脂(H 2NResin,0.901g,100-200目,氨基载量400μmol/g,购自南开和成公司),25℃下进行摇床反应,转速220转/分钟,反应15h后过滤,滤饼以DCM淋洗2次,每次30ml,乙腈淋洗3次,每次30ml,30ml乙醚淋洗1次,真空油泵干燥2h,随后再按照表3中示出的投料配比加入原料(CapA、CapB、4-二甲氨基吡啶(DMAP)和乙腈)进行盖帽反应。25℃下置于摇床上,转速200转/分钟,反应5h,反应液过滤,滤饼用乙腈淋洗3次,每次30ml,抽滤至干,真空油泵减压下干燥过夜,得到L-10化合物(即,连接固相载体的L-9缀合分子)1.100g,载量90.8μmol/g。
表3盖帽反应投料配比
原料 用量 规格 批号 生产厂家
CapA 20ml —— —— ——
CapB 2.3ml —— —— ——
DMAP 0.01g 分析纯 I1422139 Aladdin
乙腈 2.3ml 光谱纯 O15161001 上海星可
其中,CapA和CapB为盖帽试剂溶液,CapA为20体积%N-甲基咪唑的吡啶/乙腈混合溶液,吡啶与乙腈的体积比为3∶5;CapB为20体积%乙酸酐的乙腈溶液。
以下合成中,正义链和反义链的序列分别对应于表4中缀合物1的S序列与AS序列。
(2-2)合成正义链
通过固相亚磷酰胺法,利用上述步骤制备的L-10化合物起始循环,按照正义链核苷酸排布顺序自3′-5′方向逐一连接核苷单体。每连接一个核苷单体都包括脱保护、偶联、盖帽、氧化或硫化四步反应。其中,两个核苷酸之间采用磷酸酯连接时,连接后一个核苷单体时,包括脱保护、偶联、盖帽、氧化四步反应。两个核苷酸之间采用硫代磷酸酯连接时,连接后一个核苷单体时,包括保护、偶联、盖帽、硫化四步反应。上述反应的条件与前述制备例1合成正义链时使用的条件相同。
(2-3)合成反义链
通过固相亚磷酰胺法,利用通用固相载体(UnyLinker TMloaded
Figure PCTCN2018118212-appb-000088
HL Solid Supports,Kinovate Life Sciences公司)起始循环,合成缀合物1的反义链AS。固相合成方法中的脱保护、偶联、盖帽、氧化或硫化反应条件,切割和脱保护,纯化与脱盐条件与前述制备例1中合成反义链时使用的条件相同。
合成完成后,对于上述正义链和反义链,分别采用离子交换色谱(IEX-HPLC)检测纯度,并采用液质联用(LC-MS)分析分子量,并将测得的分子量与理论值进行比较,对所合成的正义链以及反义链进行确认。
(2-4)合成缀合物A1
将S链与AS链分别溶于注射用水中,得到40mg/mL的溶液,以等摩尔比混合,50℃加热15min,室温冷却后,使它们通过氢键形成双链结构。使用超纯水(Milli-Q超纯水仪自制,电阻率18.2MΩ*cm(25℃))将缀合物稀释至浓度为0.2mg/mL后,利用液质联用仪(LC-MS,Liquid Chromatography-Mass Spectrometry,购于Waters公司,型号:LCT Premier)进行分子量检测。其结果,理论值S:7516.37,AS:7061.57,实测值S:7516.6,AS:7060.49;分子量实测值与理论值一致,表明获得了目标缀合物A1,其结构如式(403)所示。
制备例3本公开缀合物以及对比缀合物的制备
采用与制备例2相同的方法,合成了表4A-4G中的缀合物A2-A7、B1-B2、C2、C12-C13、D2、D12-D13、E1-E4、F1-F3、G1-G3及对比缀合物A2、C1、D1、E1、F1、G1,并预期能够制得表4A-4G中列出的缀合物A8-A11、B3-B7、C1、C3、D1、D3、E5-E9、F4-F11、G4-G9,不同的是,所述缀合物的siRNA序列分别为表4A-4G中所示的相应序列。在合成完成后,使用与制备例2相同的检测方法对所得缀合物进行了确认。其中:
缀合物A2的理论值S:7516.37,AS:7065.58,实测值S:7516.6,AS:7064.5;
缀合物A3的理论值S:7504.34,AS:7139.68,实测值S:7515.6,AS:7138.9;
缀合物A4的理论值S:7516.37,AS:7081.64,实测值S:7515.6,AS:7080.9;
缀合物A5的理论值S:8218.83,AS:7703.05,实测值S:8218,AS:7702.5;
缀合物A6的理论值S:7516.37,AS:6985.58,实测值S:7516.5,AS:6984.9;
缀合物B1的理论值S:7407.22,AS:7208.77,实测值S:7406.4,AS:7208.1;
缀合物B2的理论值S:7407.22,AS:7170.72,实测值S:7406.5,AS:7170.1,
缀合物C2的理论值S:7485.3,AS:7161.7,实测值S:7484.4,AS:7160.9;
缀合物D2的理论值S:7423.22,AS:7207.78,实测值S:7422.6,AS:7207.2;
缀合物F2的理论值S:7649.55,AS:6995.47,实测值S:7648.8,AS:6994.8;
缀合物F3的理论值S:7649.55,AS:7011.53,实测值S:7648.8,AS:7010.9;
缀合物E1的理论值S:7584.5,AS:7007.46,实测值S:7584,AS:7006.2;
缀合物E2的理论值S:7584.5,AS:7011.47,实测值S:7584,AS:7011.3;
缀合物E4的理论值S:7572.47,AS:6907.41,实测值S:7571.8,AS:6906.9;
分子量实测值与理论值一致,表明获得了目标缀合物。这些缀合物均具有如式(403)所示的结构。
表4 siRNA缀合物
表4A
Figure PCTCN2018118212-appb-000089
Figure PCTCN2018118212-appb-000090
Figure PCTCN2018118212-appb-000091
表4B
Figure PCTCN2018118212-appb-000092
Figure PCTCN2018118212-appb-000093
Figure PCTCN2018118212-appb-000094
表4C
Figure PCTCN2018118212-appb-000095
Figure PCTCN2018118212-appb-000096
表4D
Figure PCTCN2018118212-appb-000097
Figure PCTCN2018118212-appb-000098
Figure PCTCN2018118212-appb-000099
表4E
Figure PCTCN2018118212-appb-000100
Figure PCTCN2018118212-appb-000101
Figure PCTCN2018118212-appb-000102
表4F
Figure PCTCN2018118212-appb-000103
Figure PCTCN2018118212-appb-000104
Figure PCTCN2018118212-appb-000105
表4G
Figure PCTCN2018118212-appb-000106
Figure PCTCN2018118212-appb-000107
*S:正义链;AS:反义链
注:大写字母C、G、U、A表示核苷酸的碱基组成;小写字母m表示该字母m左侧相邻的一个核苷酸为2′-甲氧基修饰的核苷酸;小写字母f表示该字母f左侧相邻的一个核苷酸为2′-氟修饰的核苷酸;小写字母s表示与该字母s左右相邻的两个核苷酸之间的连接为硫代磷酸酯基连接;VP表示该字母VP右侧的一个核苷酸为乙烯基磷酸酯修饰的核苷酸;P表示该字母P右侧的一个核苷酸为磷酸酯修饰的核苷酸;Ps表示该字母Ps右侧的一个核苷酸为硫代磷酸酯修饰的核苷酸。
以下制备例4-12中,合成了各种缀合分子,并且分别使用这些缀合分子代替 制备例2中的L-10化合物,以及按照表4A-4G中所列出的对应序列,预期能够获得表4A-4G中的缀合物A12-A19、B8-B15、C4-C11、D4-D11、E10-E17、F12-F19以及G10-G17。
制备例4P10缀合物的制备
本制备例中,按照以下方法,预期能够合成缀合物A12、B8、C4、D4、E10、F12以及G10(以下,也称为P-10缀合物):
(4-1)P-10化合物的合成
按照以下方法,合成了P-10化合物:
Figure PCTCN2018118212-appb-000108
(4-1-1)GAL5-C4-1的合成
向40ml N,N-二甲基甲酰胺中加入按照上述步骤(2-1-1)中描述的方法得到的GAL-5(13.43g,30.0mmol)、4-氨基酸叔丁酯盐酸盐(5.87g,30.0mmol)、O-苯并三氮唑-四甲基脲六氟磷酸酯(13.65g,36.0mmol)和二异丙基乙胺(11.63g,90.0mmol),溶解均一后室温搅拌反应5小时。向反应液中加入300ml饱和碳酸氢钠水溶液,用乙酸乙酯萃取3次,每次200ml,合并有机相, 用200ml饱和食盐水洗涤一次,分出有机相,再用无水硫酸钠干燥,减压蒸除溶剂至干得到30.3g油状物粗品GAL5-C4-1,直接进行下一步反应。
(4-1-2)GAL5-C4-2的合成
将步骤(4-1-1)中获得的GAL5-C4-1粗品(30.3g,30mmol)溶于180ml甲酸中,室温搅拌反应16小时。蒸发溶剂至干,柱层析纯化(200-300目正相硅胶,二氯甲烷∶甲醇=100∶18-100∶20梯度洗脱),收集反应洗脱液,浓缩除去溶剂,得到目标产物GAL5-C4-2共14.84g。
(4-1-3)P-6的合成:
将按照步骤(2-1-4)中描述的方法得到的M-18-Tr(2.02g,4.69mmol)与将步骤(4-1-2)中获得的GAL5-C4-2(8.24g,15.48mmol,由两批产物合并获得)混合溶于47ml乙腈,再加入N-甲基吗啉(3.13g,30.96mmol),最后加入4-(4,6-二甲氧基三嗪-2-基)-4-甲基吗啉盐酸盐(DMTMM,4.28g,15.48mmol),室温搅拌反应2h。以20ml二氯甲烷稀释反应液,10ml饱和碳酸氢钠溶液洗涤有机相,10ml饱和食盐水洗涤有机相,合并有机相并以无水硫酸钠干燥,过滤后减压蒸干溶剂得粗品,200-300目正相硅胶柱纯化,石油醚装柱,以1wt%三乙胺中和硅胶酸性,以二氯甲烷∶甲醇=100∶5-100∶7梯度洗脱,收集产物洗脱液,减压蒸干得到纯品P-6共8.27g。
(4-1-4)P-7的合成:
将按照上述(4-1-3)中得到的P-6(6.82g,3.456mmol)溶于69ml二氯甲烷,再加入二氯乙酸(13.367g,103.67mmol),室温下反应2h。加入100ml二氯甲烷稀释反应液,再加入饱和碳酸氢钠溶液洗涤调节pH=7-8之间,水相以二氯甲烷萃取6次,每次30ml,合并有机相,无水硫酸钠干燥,过滤后减压蒸干溶剂得粗品。用200-300目正相硅胶纯化,以10wt%三乙胺中和硅胶酸性,以1wt‰三乙胺平衡柱子,二氯甲烷∶甲醇=100∶30-100∶40梯度洗脱,收集产物洗脱液,减压蒸干溶剂得到P-7共4.82g。MS m/z:C78H127N10O33,[M+H]+,理论:1732.91,实测:1735.73。
(4-1-5)P-8的合成:
Figure PCTCN2018118212-appb-000109
将P-7(2.653g,1.532mmol)和A-1(2.342g,4.596mmol)混合溶于16ml二氯甲烷,加入3-二乙氧基磷酰基-1,2,3-苯唑4(3H)-酮(DEPBT)(1.375g,4.596mmol),再加入二异丙基乙胺(1.188g,9.191mmol),25℃下搅拌反应2h。用10ml饱和碳酸氢钠洗涤有机相,水相以二氯甲烷萃取3次,每次10ml,10ml饱和食盐水洗涤有机相,水相以二氯甲烷萃取2次,每次10ml,合并有机相,用无水硫酸钠干燥,过滤后减压蒸干溶剂,真空油泵发泡干燥过夜得到粗品。柱纯化使用120g 200-300目正相硅胶,以20ml三乙胺中和硅胶酸性,以含1wt%三乙胺的石油醚平衡柱子,以石油醚∶乙酸乙酯∶二氯甲烷∶N,N-二甲基甲酰胺=1∶1∶1∶0.5-1∶1∶1∶0.6梯度洗脱,收集产物洗脱液,减压蒸干溶剂得到纯品P-8共2.793g。
(4-1-6)P-9的合成:
将P-8(490mg,0.231mmol)、丁二酸酐(69mg,0.693mmol)和4-二甲氨基吡啶(DMAP,68mg,0.554mmol)混合溶于2.3ml二氯甲烷,再加入二异丙基乙胺(DIEA,149mg,1.155mmol),25℃下搅拌反应21h。50ml二氯甲烷稀释反应液,再加入100ml 0.5M三乙胺磷酸盐洗涤反应液,水相以二氯 甲烷萃取3次,每次10ml,合并有机相,减压蒸干得到粗品。柱纯化使用80g200-300目正相硅胶,以1wt%三乙胺中和硅胶酸性,以二氯甲烷平衡柱子,以含1wt‰三乙胺的二氯甲烷∶甲醇=100∶18-100∶20梯度洗脱,收集产物洗脱液,减压蒸干溶剂得到纯品P-9缀合分子共200mg。MS m/z:C106H153N10O41,[M-DMTr]+,理论:1921.05,实测:1920.97。
(4-1-7)P-10的合成:
通过与制备例2中步骤(2-1-9)相同的方法,制备P-10。不同的是以P-9缀合分子代替L-9缀合分子,得到连接固相载体的P-9缀合分子。
(4-2)合成P10缀合物
通过与制备例2中步骤(2-2)、(2-3A)、(2-4)相同的方法,制备缀合物,不同的是以P-10化合物代替L-10化合物起始正义链合成。预期可以得到缀合物A12、B8、C4、D4、E10、F12以及G10,其结构如式(404)所示。
制备例5R5缀合物的制备
本制备例中,按照以下方法,预期能够合成缀合物A13、B9、C5、D5、E11、F13以及G11(以下,也称为R5缀合物):
(5-1)R-5化合物的合成
按照以下方法,合成了R-5化合物:
Figure PCTCN2018118212-appb-000110
(5-1-1)GAL-C7-1的合成
将按照步骤(2-1-1b)中描述的方法得到的GAL-3(26.4g,80.2mmol)溶于134ml无水1,2-二氯乙烷中,加入
Figure PCTCN2018118212-appb-000111
分子筛粉末60g,再加入7-辛烯-1-醇 (11.3g,88.2mmol),室温下搅拌反应10分钟,冰浴和氮气保护下加入三氟甲基磺酸三甲基硅酯(8.9g,40.1mmol),室温搅拌反应24小时。过滤除去
Figure PCTCN2018118212-appb-000112
分子筛粉末,滤液中加入500ml饱和碳酸氢钠水溶液洗涤,分出有机相,水相用100ml二氯甲烷萃取一次,合并有机相并用250ml饱和食盐水洗涤一次,分出有机相,用无水硫酸钠干燥,减压蒸除溶剂至干得到黄色糖稀状产品GAL-C7-1 33.3g,不进行纯化直接进行下一步氧化反应。
(5-1-2)GAL-C7-2的合成
将按照步骤(5-1-1)中得到的GAL-C7-1(33.3g,72.8mmol)溶于160ml二氯甲烷和160ml乙腈的混合溶剂中,分别加入216ml水和高碘酸钠固体(62.3g,291.2mmol),冰水浴下搅拌10分钟,加入催化剂三氯化钌(498mg,2.4mmol)自然升至室温搅拌反应23小时。反应液加入200ml水稀释搅拌,加饱和碳酸氢钠调节pH值为7.5,分掉有机相,水相再用二氯甲烷萃取三次,弃去有机相,水相用柠檬酸固体调节pH约为3,用二氯甲烷萃取三次,每次200ml,合并有机相,无水硫酸钠干燥,减压蒸除溶剂后柱层析(200-300目正相硅胶,二氯甲烷∶甲醇=100∶18-100∶20梯度洗脱)纯化得到白色泡沫状固体产品GAL-C7-2 22.4g。MS m/z:C21H32NO11,[M+H]+,理论:476.50,实测:475.94。
(5-1-3)R-1的合成:
将按照步骤(2-1-4)中描述的方法得到的M-18-Tr(2.02g,4.69mmol)与GAL-C7-2(7.36g,15.48mmol)混合溶于47ml乙腈,再加入N-甲基吗啉(3.13g,30.96mmol),最后加入4-(4,6-二甲氧基三嗪-2-基)-4-甲基吗啉盐酸盐(DMTMM,4.28g,15.48mmol),室温搅拌反应2h。以200ml二氯甲烷稀释反应液,100ml饱和碳酸氢钠溶液洗涤有机相,100ml饱和食盐水洗涤有机相,合并有机相并以无水硫酸钠干燥,过滤后减压蒸干溶剂得粗品,200-300目正相硅胶柱纯化,石油醚装柱,以1wt%三乙胺中和硅胶酸性,二氯甲烷∶甲醇=100∶5-100∶7梯度洗脱,收集产物洗脱液,减压蒸干得到纯品R-1 7.82g。
(5-1-4)R-2的合成:
将R-1(6.23g,3.456mmol)溶于69ml二氯甲烷,再加入二氯乙酸(13.367g,103.67mmol),室温下反应2h。加入100ml二氯甲烷稀释反应液,再加饱和碳酸氢钠溶液洗涤调节pH=7-8之间,水相以二氯甲烷萃取6次,每次30ml,合并有机相并以无水硫酸钠干燥,过滤后减压蒸干溶剂得粗品。200-300目正相硅胶,以10wt%三乙胺中和硅胶酸性,以1wt‰三乙胺平衡柱子,二氯甲烷∶甲醇=100∶30-100∶40梯度洗脱,减压蒸干溶剂得到纯品R-2 4.49g。
(5-1-5)R-3的合成:
将R-2(2.391g,1.532mmol)和A-1(2.342g,4.596mmol)混合溶于16ml二氯甲烷,加入3-二乙氧基磷酰基-1,2,3-苯唑4(3H)-酮(DEPBT)(1.375g,4.596mmol),再加入二异丙基乙胺(1.188g,9.191mmol),25℃下搅拌反应2h。用10ml饱和碳酸氢钠洗涤有机相,水相以二氯甲烷萃取3次,每次10ml,以10ml饱和食盐水洗涤有机相,水相以二氯甲烷萃取2次,每次10ml,合并有机相并以无水硫酸钠干燥,过滤后减压蒸干溶剂,真空油泵发泡干燥过夜得到粗品。柱纯化使用120g 200-300目正相硅胶,以20ml三乙胺中和硅胶酸性,以含1wt%三乙胺的石油醚平衡柱子,石油醚∶乙酸乙酯∶二氯甲烷∶N,N-二甲基甲酰胺=1∶1∶1∶0.5-1∶1∶1∶0.6梯度洗脱,减压蒸干溶剂得到纯品R-32.642g。
(5-1-6)R-4的合成:
将R-3(795mg,0.4074mmol)、丁二酸酐(82mg,0.8l48mmol)和4- 二甲氨基吡啶(DMAP,100mg,0.8148mmol)混合溶于4ml二氯甲烷,再加入二异丙基乙胺(DIEA,100mg,0.8148mmol),25℃下搅拌反应18h。5ml 0.5M三乙胺磷酸盐洗涤反应液,水相以二氯甲烷萃取3次,每次5ml,合并有机相减压蒸干得到粗品。柱纯化使用30g 200-300目正相硅胶,以1wt%三乙胺中和硅胶酸性,以二氯甲烷平衡柱子,含1wt‰三乙胺的二氯甲烷∶甲醇=100∶18-100∶20梯度洗脱,收集产物洗脱液,减压蒸干溶剂得到纯品R-4缀合分子505mg。
(5-1-7)R-5缀合分子的合成:
通过与制备例2中步骤(2-1-9)相同的方法,制备R-5。不同的是以R-4缀合分子代替L-9缀合分子,得到连接固相载体的R-4缀合分子。
(5-2)合成R5缀合物
通过与制备例2中步骤(2-2)、(2-3A)、(2-4)相同的方法,制备R5缀合物,不同的是以R-5化合物代替L-10化合物起始正义链合成。预期可以得到缀合物A13、B9、C5、D5、E11、F13以及G11,其结构如式(407)所示。
制备例6LA5缀合物的制备
本制备例中,按照以下方法,预期能够合成缀合物A14、B10、C6、D6、E12、F14以及G12(以下,也称为LA5缀合物):
按照以下工艺路线,预期能够合成LA-5化合物:
Figure PCTCN2018118212-appb-000113
通过与制备例2中步骤(2-2)、(2-3A)、(2-4)相同的方法,制备LA缀合物,不同的是以LA-5化合物代替L-10化合物起始正义链合成。预期可以得到缀合物A14、B10、C6、D6、E12、F14以及G12,其结构如式(412)所示。
制备例7LB5缀合物的制备
本制备例中,按照以下方法,预期能够合成缀合物A15、B11、C7、D7、E13、F15以及G13(以下,也称为LB5缀合物):
(7-1)LB-5化合物的合成
按照以下方法,合成了LB-5化合物:
Figure PCTCN2018118212-appb-000114
(7-1-1)LB-1的合成:
将按照步骤(2-1-6)中描述的方法得到的L-8(5.0g,3.386mmol)、己二酸酐(870mg,6.772mmol)和4-二甲氨基吡啶(DMAP,827mg,6.772mmol)混合溶于130ml二氯甲烷,再加入二异丙基乙胺(DIEA,2.2g,16.931mmol),25℃下搅拌反应4h。加入70ml二氯甲烷稀释反应液,以0.5M三乙胺磷酸盐洗涤反应液,水相以二氯甲烷萃取4次,每次10ml,合并有机相减压蒸干得到粗品。柱纯化使用120g 200-300目正相硅胶,以1wt%三乙胺中和硅胶酸性,以二氯甲烷平衡柱子,石油醚∶乙酸乙酯∶二氯甲烷∶甲醇=1∶1∶1∶0.2-1∶1∶1∶1梯度洗脱,减压蒸干溶剂得到纯品LB-1 4.267g。
(7-1-2)LB-2的合成:
将按照步骤(7-1-1)中描述的方法得到的LB-1(4.697g,2.753mmol,由两批次产物合并而得)、3-氨基-1,2-丙二醇(313mg,3.442mmol)、4-(4,6-二甲氧基三嗪-2-基)-4-甲基吗啉盐酸盐(DMTMM,953mg,3.442mmol)和N-甲基吗啉(700mg,6.884mmol)先后加入30ml乙腈和3ml甲醇的混合液中,室温搅拌反应过夜。蒸发溶剂至干,柱层析(200-300目正相硅胶,二氯甲烷∶ 甲醇=1∶0.07-1∶0.5梯度洗脱)纯化,收集产物洗脱液,浓缩除去溶剂,得到目标产物LB-2 3.27g。
(7-1-3)LB-3的合成:
将LB-2(2.27g,1.353mmol)用14ml无水吡啶溶解。再加入4,4′-双甲氧基三苯甲基氯(688mg,2.03mmol)室温下搅拌反应过夜。加150ml甲醇淬灭,蒸发溶剂至干。柱层析(200-300目正相硅胶,二氯甲烷∶甲醇=1∶0.05-1∶0.2梯度洗脱)纯化,收集产物洗脱液,浓缩除去溶剂,得到目标产物LB-31.647g。
(7-1-4)LB-4的合成:
将LB-3(822mg,0.415mmol)、丁二酸酐(83g,0.83mmol)和4-二甲氨基吡啶(DMAP,102mg,0.83mmol)混合溶于4ml二氯甲烷,再加入DIEA(270mg,2.075mmol),25℃下搅拌反应过夜。0.5M三乙胺磷酸盐洗涤反应液3次,水相以二氯甲烷萃取3次,每次2ml,合并有机相减压蒸干得到粗品。柱纯化使用200-300目正相硅胶,以5wt%三乙胺中和硅胶酸性,以石油醚平衡柱子,用含1wt‰三乙胺的二氯甲烷∶甲醇=100∶5-100∶20梯度洗脱,减压蒸干溶剂得到纯品LB-4缀合分子787mg。
(7-1-5)LB-5的合成:
通过与制备例2中步骤(2-1-9)相同的方法,制备LB-5。不同的是以LB-4缀合分子代替L-9缀合分子,得到连接固相载体的LB-4缀合分子。
(7-2)合成LB5缀合物
通过与制备例2中步骤(2-2)、(2-3A)、(2-4)相同的方法,制备LB5缀合物,不同的是以LB-5化合物代替L-10化合物起始正义链合成。预期可以得到缀合物A15、B11、C7、D7、E13、F15以及G13,其结构如式(413)所示。
制备例8 V8缀合物的合成
本制备例中,按照以下方法,预期能够合成缀合物A16、B12、C8、D8、E14、F16以及G14(以下,也称为V8缀合物):
按照以下工艺路线,预期能够合成V-8化合物:
Figure PCTCN2018118212-appb-000115
通过与制备例2中步骤(2-2)、(2-3A)、(2-4)相同的方法,制备V8缀合物,不同的是以V-8化合物代替L-10化合物起始正义链合成。预期可以得到缀合物A15、B12、C8、D8、E14、F16以及G14(以下,也称为V8缀合物),其结构如式(414)所示。
制备例9 W8缀合物的制备
本制备例中,按照以下方法,预期能够合成缀合物A17、B13、C9、D9、E15、F17以及G15(以下,也称为W8缀合物):
(9-1)W-8化合物的合成
按照以下方法,合成了W-8化合物:
Figure PCTCN2018118212-appb-000116
(9-1-1)W-1的合成:
将W-0(2.024g,10mmol)溶于25ml乙腈中,再加三乙胺(4.048g,40mmol),冰水浴冷却至0℃左右,加入三氟乙酸乙酯(5.683g,40mmol), 室温下反应22h。减压蒸干溶剂,真空油泵发泡干燥18h,得到5.835g粗品固体W-1。
(9-1-2)W-2的合成:
将W-1粗品(5.835g,10mmol)溶于50ml二氯甲烷,向反应液中加入TrCl(3.345g,12mmol)和三乙胺(1.518g,15mmol),室温下搅拌反应20h。用20ml饱和碳酸氢钠洗涤反应液2次,用20ml饱和食盐水洗涤1次,合并有机相并以无水硫酸钠干燥,过滤后减压蒸干有机溶剂,真空油泵发泡干燥过夜,得到粗品固体W-2 8.012g。不经处理,进行下一步脱保护反应。
(9-l-3)W-3的合成:
将W-2粗品(8.012g,10mmol)溶于100ml甲醇,再加入100ml甲胺水溶液(40wt%),在50℃下搅拌反应23h。过滤除去不溶颗粒物,减压蒸干溶剂,加入200ml体积比为1∶1的DCM-甲醇混合溶剂,以50ml饱和碳酸氢钠洗涤有机相,水相再用二氯甲烷萃取3次,每次50ml,合并有机相并以无水硫酸钠干燥,过滤后减压蒸干溶剂,真空油泵发泡干燥过夜,200-300目正相硅胶柱纯化,石油醚装柱,以1wt%三乙胺中和硅胶酸性,以二氯甲烷∶甲醇∶氨水(25wt%)=1∶1∶0.05-1∶1∶0.25梯度洗脱,收集产物洗脱液,减压蒸干溶剂,真空油泵发泡干燥得到纯品W-3 3.062g。
(9-1-4)W-4的合成:
将W-3(0.675g,1.517mmol)与GAL-C7-2(2.60g,5.46mmol)混合溶于47ml乙腈,再加二异丙基乙胺(1.57g,12.14mmol),最后加入3-二乙氧基磷酰基-1,2,3-苯唑4(3H)-酮(DEPBT,1.816g,6.04mmol),室温搅拌反应2.5h。以100ml二氯甲烷稀释反应液,80ml饱和碳酸氢钠溶液洗涤有机相,80ml饱和食盐水洗涤有机相,合并有机相并以无水硫酸钠干燥,过滤后减压蒸干溶剂得粗品,200-300目正相硅胶柱纯化,石油醚装柱,以1wt%三乙胺中和硅胶酸性,以二氯甲烷∶甲醇=100∶5-100∶7梯度洗脱,收集产物洗脱液,减压蒸干得到纯品W-4 1.610g。
(9-1-5)W-5的合成:
将W-4(1.61g,0.886mmol)溶于125ml二氯甲烷,再加入二氯乙酸(3.5ml,42.43mmol),室温下反应1h。加入150ml吡啶中和反应液,减压蒸干溶剂得粗品。200-300目正相硅胶,10wt%三乙胺中和硅胶酸性,1wt‰三乙胺平衡柱子,二氯甲烷∶甲醇=100∶30-100∶40梯度洗脱,收集产物洗脱液,减压蒸干溶剂得到纯品W-5 1.26g。
(9-1-6)W-6的合成:
将W-5(1.25g,0.793mmol)和按照步骤(2-1-7a)中描述的方法得到的A-1(1.21g,2.38mmol)混合溶于12ml二氯甲烷,加入3-二乙氧基磷酰基-1,2,3-苯唑4(3H)-酮(DEPBT,0.712g,2.38mmol),再加入二异丙基乙胺(0.615g,4.76mmol),25℃下搅拌反应3h。用80ml饱和碳酸氢钠洗涤有机相,水相以二氯甲烷萃取3次,每次10ml,合并有机相并以10ml饱和食盐水洗涤,合并有机相并以无水硫酸钠干燥,过滤后减压蒸干溶剂,真空油泵发泡干燥过夜得到粗品。柱纯化使用185g 200-300目正相硅胶,20ml三乙胺中和硅胶酸性,以含1wt%三乙胺的石油醚平衡柱子,以石油醚∶乙酸乙酯∶二氯甲烷∶N,N-二甲基甲酰胺=1∶1∶1∶0.1-1∶1∶0.7梯度洗脱,收集产物洗脱液,减压蒸干溶剂得到纯品W-6 1.57g。
(9-1-7)W-7的合成:
将W-6(1.238g,0.63mmol)、丁二酸酐(0.189g,1.89mmol)和4-二甲氨基吡啶(DMAP,0.231g,1.89mmol)混合溶于7ml二氯甲烷,再加入DIEA (0.407g,3.15mmol),25℃下搅拌反应24h。以5ml 0.5M三乙胺磷酸盐洗涤反应液,水相以二氯甲烷萃取3次,每次5ml,合并有机相减压蒸干得到粗品。柱纯化使用30g 200-300目正相硅胶,以1wt%三乙胺中和硅胶酸性,二氯甲烷平衡柱子,以含1wt‰三乙胺的二氯甲烷∶甲醇=100∶18-100∶20梯度洗脱,收集产物洗脱液,减压蒸干溶剂得到纯品W-7缀合分子1.033g。MS m/z:C101H146N7O38,[M-DMTr]+,理论:1763.92,实测:1763.21。
(9-1-8)W-8的合成:
通过与制备例2中步骤(2-1-9)相同的方法,制备W-8。不同的是以W-7缀合分子代替L-9缀合分子,得到连接固相载体的W-7缀合分子。
(9-2)合成W8缀合物
通过与制备例2中步骤(2-2)、(2-3A)、(2-4)相同的方法,制备W8缀合物,不同的是以W-8化合物代替L-10化合物起始正义链合成。预期可以得到缀合物A17、B13、C9、D9、E15、F17以及G15,其结构如式(415)所示。
制备例10 X8缀合物的制备
本制备例中,按照以下方法,预期能够合成缀合物A18、B14、C10、D10、E16、F18以及G16(以下,也称为X8缀合物):
按照以下工艺路线,预期能够合成X-8化合物:
Figure PCTCN2018118212-appb-000117
通过与制备例2中步骤(2-2)、(2-3A)、(2-4)相同的方法,制备X8缀合物,不同的是以X-8化合物代替L-10化合物起始正义链合成。预期可以合成缀合物本制备例中,按照以下方法,预期能够合成缀合物A18、B14、C10、D10、E16、F18以及G16,其结构如式(421)所示。
制备例11Z5缀合物的制备
本制备例中,按照以下方法,预期能够合成缀合物A19、B15、C11、D11、E12、F14以及G12(以下,也称为Z5缀合物):
(11-1)Z-5化合物的合成
按照以下方法,合成了Z-5化合物:
Figure PCTCN2018118212-appb-000118
(11-1-1)Z-1的合成:
将按照步骤(9-1-3)中描述的方法得到的W-3(1.50g,3.37mmol)与按照步骤(4-1-2)中描述的方法得到的GAL5-C4-2(7.18g,13.48mmol)混合溶于34ml二氯甲烷,再加入二异丙基乙胺(3.48g,26.96mmol),最后加入3-二乙氧基磷酰基-1,2,3-苯唑4(3H)-酮(DEPBT,4.04g,13.48mmol),室温搅拌反应4.5h。以100ml二氯甲烷稀释反应液,80ml饱和碳酸氢钠溶液洗涤有机相,80ml饱和食盐水洗涤有机相,合并有机相并以无水硫酸钠干燥,过滤后减压蒸干溶剂得粗品,200-300目正相硅胶柱纯化,石油醚装柱,以1wt% 三乙胺中和硅胶酸性,以二氯甲烷∶甲醇=30∶1-15∶1梯度洗脱,收集产物洗脱液,减压蒸干得到纯品Z-1 3.97g。MS m/z:C98H143N10O33,[M+H]+,理论:1987.98,实测:1987.90。
(11-1-2)Z-2的合成:
将Z-1(3.97g,2.00mmol)溶于250ml二氯甲烷,再加入二氯乙酸(10.941g,84.85mmol),室温下反应1h。加入吡啶中和反应液至中性,减压蒸干溶剂得粗品。220g 200-300目正相硅胶装柱,10%吡啶中和硅胶酸性,1‰吡啶平衡柱子,二氯甲烷∶甲醇=10∶1-2∶1梯度洗脱,收集产物洗脱液,减压蒸干溶剂得到纯品Z-23.49g。MS m/z:C79H129N10O33,[M+H]+,理论:1746.94,实测:1746.90。
(11-1-3)Z-3的合成:
将Z-2(3.49g,2.0mmol)和按照步骤(2-1-7a)中描述的方法得到的A-1(3.06g,6.0mmol)混合溶于30ml二氯甲烷,加入3-二乙氧基磷酰基-1,2,3-苯唑4(3H)-酮(DEPBT,1.80g,6.0mmol),再加入二异丙基乙胺(1.55g,12.0mmol),25℃下搅拌反应3h。100ml二氯甲烷稀释反应液,用饱和碳酸氢钠洗涤有机相2次,每次30ml,水相以10二氯甲烷萃取,合并有机相并以50ml饱和食盐水洗涤,合并有机相无水硫酸钠干燥,过滤后减压蒸干溶剂,真空油泵发泡干燥过夜得到粗品。柱纯化使用200g 200-300目正相硅胶,20ml三乙胺中和硅胶酸性,以含1wt%三乙胺的石油醚平衡柱子,二氯甲烷∶甲醇=25∶1-15∶1梯度洗脱,收集产物洗脱液,减压蒸干溶剂得到纯品Z-3 2.2g。MS m/z:C103H151N10O38,[M+H]+,理论:2136.02,实测:2136.20。
(11-1-4)Z-4的合成:
将Z-3(2.10g,0.983mmol)溶解在含有DIEA(0.635g,4.915mmol)的14.8ml二氯甲烷中,加入4-二甲氨基吡啶(DMAP,240mg,1.966mmol)搅拌澄清后,加入丁二酸酐(197mg,1.966mmol),25℃下搅拌反应18h。加入50ml二氯甲烷稀释反应液,以80ml 0.5M三乙胺磷酸盐洗涤有机相,水相以二氯甲烷萃取2次,每次50ml,合并有机相减压蒸干得到粗品。柱纯化使用188g 200-300目正相硅胶,以1wt%三乙胺中和硅胶酸性,二氯甲烷平衡柱子,以含1wt‰三乙胺的二氯甲烷∶甲醇=10∶1-3∶1梯度洗脱,收集产物洗脱液,减压蒸干溶剂得到纯品Z-4缀合分子1.95g。MS m/z:C107H155N10O41,[M+H]+,理论:1935.07,实测:1935.29。
(11-1-5)Z-5的合成
通过与制备例2中步骤(2-1-9)相同的方法,制备Z-5。不同的是以Z-4缀合分子代替L-9缀合分子,得到连接固相载体的Z-4缀合分子。
(11-2)合成Z5缀合物
通过与制备例2中步骤(2-2)、(2-3A)、(2-4)相同的方法,制备Z5缀合物,不同的是以Z-5化合物代替L-10化合物起始正义链合成。预期可以得到缀合物A19、B15、C11、D11、E17、F19以及G17,其结构如式(422)所示。
制备例12 FIN缀合物的制备
本制备例中,合成了表4A-4G中所列的缀合物A20-A23、B16-B17、C14、D14、E18-E20、F20以及对比缀合物A1、B1(以下,也称为FIN缀合物)。这些缀合物中所缀合的siRNA的序列参见表4A-4G中的相应序列。
(12-1)FIN-2缀合分子的合成
参照Rajeev等人,ChemBioChem 2015,16,903-908中描述的制备方法,按 照以下工艺路线,合成了FIN-2缀合分子:
(12-1-1)PRO-10的合成
Figure PCTCN2018118212-appb-000119
(12-1-1a)PRO-7的合成
将2.93g PRO-6(L-羟基脯氨酸,CAS号:51-35-4,购自安耐吉公司,22.4mmol)溶于22.5ml 1,4-dioxane(1,4-二氧六环,CAS号:123-91-1)中,加入34ml 10%(w/w)Na 2CO 3的水溶液,呈悬浊液状态,将6.95g Fmoc-Cl(氯甲酸-9-芴基甲酯,CAS号:28920-43-6,购自安耐吉公司,26.8mmol)溶于34ml 1,4-dioxane,冰浴下加入到上述悬浊液中,自然升至室温反应过夜。将反应液倒入150ml冰水中,用甲基叔丁基醚萃取三次,每次100ml,弃去有机相,水相用浓HCl调节至pH≤5,用100ml乙酸乙酯萃取两次,合并有机相,无水硫酸钠干燥,减压蒸干溶剂得到白色泡沫状固体产品PRO-7 7.83g。 1H NMR(400MHz,DMSO-d 6)δ7.91(t,J=7.2Hz,2H),7.67(d,J=7.5Hz,2H),7.48-7.39(m,2H),7.38-7.27(m,2H),5.17(s,1H),4.27(s,2H),4.23-4.11(m,2H),3.55-3.41(m,3H),2.31-2.10(m,1H),2.08-1.88(m,1H).HRMS(ESI)m/z calcd for C 20H 19NO 5[M-H] -352.1190,实测352.1033.
(12-1-1b)PRO-8的合成
将7.83g PRO-7(22.2mmol)溶于80ml THF(CAS号:109-99-9)中,油浴加热到65℃,回流状态下加入36.6ml 2mol/L的BH 3-Me 2S的THF溶液(CAS号13292-87-0,购自百灵威公司,73.2mmol),继续回流反应3小时。倒出反应液,用甲醇溶解剩余固体,搅拌下加入甲醇至反应液无气体放出并继续搅拌30分钟,减压蒸除溶剂后用石油醚提纯三次后得白色固体产物PRO-8 7.1g。 1H NMR(400MHz,DMSO-d 6)δ7.91(t,J=6.7Hz,2H),7.67(d,J=7.2Hz,2H),7.49-7.39(m,2H),7.38-7.26(m,2H),5.18(dd,J=6.1,3.8Hz,1H),4.28(s,2H),4.23-4.13(m,2H),3.55-3.38(m,2H),2.32-2.11(m,1H),2.08-1.89(m,1H).HRMS(ESI)m/z calcd for C 20H 21NO 4[M+Na] +362.1368,实测362.1012.
(12-1-1c)PRO-9的合成
将7.1g PRO-8(21mmol)溶于100ml吡啶中,加入14.2g DMTr-Cl(4,4′-双甲氧基三苯甲基氯,42mmol),室温下搅拌反应5小时。减压蒸除溶剂,粗品用乙酸乙酯溶解后过滤除去盐类杂质,减压蒸除溶剂后硅胶柱纯化,硅 胶柱预先用吡啶碱化后DCM溶解粗品上样,先用含1%(v/v)吡啶的DCM洗脱DMTr-Cl,随后用乙酸乙酯洗脱产物,收集产物洗脱液,减压蒸干溶剂,得白色固体产物PRO-9 8.2g;HRMS(ESI)m/z calcd for C 41H 39NO 6[M+Na] +664.2675,实测664.2348;C18 RP-HPLC(批号JJS160324-1)纯度94.20%。
(12-1-1d)PRO-10的合成
将8.2g PRO-9(12.8mmol)溶于64ml DMF(N,N-二甲基甲酰胺)中,加入40ml哌啶(384mmol),室温下搅拌反应30分钟。反应液倒入300ml冰水中,乙酸乙酯萃取三次,每次150ml,合并有机相,用200ml饱和食盐水洗涤后,有机相以无水硫酸钠干燥,减压蒸除溶剂后硅胶柱纯化,硅胶柱预先用吡啶碱化后DCM溶解粗品上样,先用含1%(v/v)吡啶的DCM洗脱Fmoc,随后用乙酸乙酯洗脱产物,收集产物洗脱液,减压蒸干溶剂,得白色固体产物PRO-10 4.65g。 1H NMR(400MHz,DMSO-d 6)δ7.40(d,J=7.2Hz,2H),7.35-7.18(m,7H),6.93-6.84(m,4H),4.56(d,J=3.9Hz,1H),4.12(s,1H),3.74(s,6H),3.46-3.37(m,1H),2.88(ddd,J=18.5,10.0,5.5Hz,2H),2.75(dd,J=8.7,5.8Hz,1H),2.62(dd,J=11.0,2.7Hz,1H),1.74-1.65(m,1H),1.40(ddd,J=12.9,8.5,5.9Hz,1H);HRMS(ESI)m/z calcd for C 26H 29NO 4[M+Na] +442.1994,实测442.1999;C18 RP-HPLC(批号JJS160329-1)纯度97.07%。
(12-1-2)FIN-1的合成
Figure PCTCN2018118212-appb-000120
将按照(2-1-1)中描述的方法得到的GAL-5(4.5g,10mmol)溶于40ml DMF中,依次加入3.9g DIEA(N,N-二异丙基乙胺,CAS号:7087-68-5,购自阿拉丁公司,30mmol)和3.8g HBTU(苯并三氮唑-N,N,N′,N′-四甲基脲六氟磷酸盐,CAS号:94790-37-2,商购自阿拉丁公司,11mmol),室温下搅拌10分钟,将步骤(11-1-1d)中获得的PRO-10(4.2g,10mmol)溶于40mlDMF中,随后加入到上述反应液中,反应液中加入无水硫酸钠干燥,室温搅拌2小时。将反应液倒入120ml冰水中,用乙酸乙酯萃取三次,每次60ml,合并有机相,分别用20ml水、20ml饱和食盐水洗涤,分出有机相并以无水硫酸钠干燥,减压蒸除溶剂,硅胶柱纯化,硅胶柱预先用吡啶碱化后上样,用含1体积%三乙胺和1体积%甲醇的二氯甲烷(DCM)溶液洗脱,收集产物洗脱液,减压蒸干溶剂,得到浅黄色泡沫状固体产品FIN-16.5g。 1H NMR(400MHz,DMSO-d 6)δ7.83(d,J=9.2Hz,1H),7.32(t,J=6.6Hz,4H),7.20(td,J=8.9,3.5Hz,5H),6.93-6.84(m,4H),5.21(d,J=3.2Hz,1H),5.04-4.90(m,2H),4.49(s,1H),4.40(d,J=4.4Hz,0.8H),4.31(d,J=5.0Hz,0.2H),4.15(s,1H),4.03(s,3H),3.93(s,1H),3.74(s,7H),3.59(dt,J=12.0,6.0Hz,1H),3.50-3.40(m,1H),3.39-3.25(m,3H),3.13(dd,J=8.9,5.2Hz,1H),3.00(dq,J=9.3,5.3,4.3Hz,1H),2.22(s,2H),2.07(s,3H),1.99(s,3H),1.90(s,4H),1.74(s,3H),1.50(s,3H),1.36(s,1H)。C18 RP-HPLC(批号LJ160422)纯度95.45%。
(12-1-3)FIN-2的合成
Figure PCTCN2018118212-appb-000121
将步骤(12-1-2)中获得的FIN-1(3.0g,3.53mmol)与乙腈共沸除水,减压抽干,溶于10ml DMF(分子筛浸泡除水),氮气保护下加入2.13g PA(双(二异丙基氨基)(2-氰基乙氧基)膦,购自Adamas公司,商品编号11356B,7.06mmol)、346mg四唑(CAS号:288-94-8,购自阿拉丁公司,4.94mmol),室温下搅拌反应,补加10ml DMF,继续搅拌反应1小时。减压蒸除溶剂后以硅胶柱色谱纯化,硅胶柱预先用吡啶碱化后DCM溶解粗品上样,乙酸乙酯洗脱,收集产物洗脱液,减压蒸除溶剂,得无色糖浆状粗品4.5g。粗品用50体积%乙腈水溶液溶解至完全溶解,用C-18,330g,
Figure PCTCN2018118212-appb-000122
中压纯化柱纯化样品,柱子先用1体积%吡啶的乙腈溶液碱化,梯度洗脱收集产品峰,减压蒸除溶剂得白色粉末产品FIN-2缀合分子2.2g。 31P NMR(162MHz,CDCl 3)δ148.04,147.94,147.62,147.19,磷谱纯度92%;C18 RP-HPLC纯度90.54%。
(12-2)FIN-2缀合分子连接到固相载体
采用核酸固相合成方法,将步骤(12-1-3)中得到的FIN-2缀合分子,通过三次循环,连接到通用固相载体(UnyLinker TM loaded
Figure PCTCN2018118212-appb-000123
HL Solid Supports)上,从而实现缀合基团(FIN_FIN_FIN)连接在RNA正义链的3′末端。
参照Rajeev等人,ChemBioChem 2015,16,903-908中描述的制备方法进行上述连接,具体而言,首先,由上述通用固相载体开始,脱除固相载体上的羟基保护基团,在偶联反应条件和偶联试剂存在下与FIN-2缀合分子接触发生偶联,经盖帽反应和氧化反应后,获得连接至固相载体的FIN缀合分子;脱除该连接至固相载体的FIN缀合分子上的羟基保护基团DMTr,与FIN-2缀合分子接触发生偶联,进行盖帽反应和氧化反应,并再重复一次上述脱保护-偶联-盖帽-氧化步骤,连接第三个FIN-2缀合分子,获得连接在固相载体上的的缀合基团(FIN_FIN_FIN)。
上述反应中,所述的脱保护、偶联、盖帽、氧化的反应条件、溶剂和试剂用量与前述制备例l中所述的核酸固相合成方法相同。
(12-3)缀合物F1-F5的合成
通过与制备例2中步骤(2-2)、(2-3A)、(2-4)相同的方法,制备题述缀合物,不同的是:1)以步骤(12-2)得到的化合物起始正义链合成;2)缀合的siRNA具有表4A-4G中所示的对应于缀合物A20-A23、B16-B17、C14、D14、E18-E20、F20以及对比缀合物A1、B1的序列。
利用液质联用仪(LC-MS,Liquid Chromatography-Mass Spectrometry,购于Waters公司,型号:LCT Premier)进行分子量检测。其结果,实测值与理论值相符,从而确定所合成的缀合物是目标设计的化合物,其结构如式(307)所示。
制备例13对比缀合物A3、E2、F2的制备
本制备例中,合成了对比缀合物A3、E2、F2,这些缀合物中所缀合的siRNA的序列参见表4A、4E和4F。
(13-1)(GalNAc) 3缀合分子的合成
按照WO2014025805A1所述的制备方法合成化合物30,即,含有如上文所述的接头-(L A) 3三羟甲基氨基甲烷-L B-以及作为靶向基团的N-乙酰半乳糖胺分子(其中,每个LA可连接一个N-乙酰半乳糖胺分子,因而一个接头可连接三个N-乙酰半乳糖胺分子)的缀合分子,也称(GalNAc) 3缀合分子,所述化合物30的结构如下式所示:
Figure PCTCN2018118212-appb-000124
(13-2)(GalNAc) 3缀合分子连接到固相载体
通过与制备例2中步骤(2-1-9)相同的方法,将(GalNAc) 3缀合分子连接到固相载体,得到连接固相载体的(GalNAc) 3缀合分子。
(13-3)对比缀合物A3、E2、F2的合成
通过与制备例2中步骤(2-2)、(2-3A)、(2-4)相同的方法,制备对比缀合物A3、E2、F2,不同的是:1)以步骤(13-2)得到的化合物起始正义链合成;2)缀合的siRNA具有表4A、4E、4F中编号为A3、E2、F2所示的序列。
利用液质联用仪(LC-MS,Liquid Chromatography-Mass Spectrometry,购于Waters公司,型号:LCT Premier)进行分子量检测。其结果,实测值与理论值相符,从而确定所合成的缀合物是目标设计的化合物,其结构如式(305)所示。
在上述本公开的缀合物制备完成后,使用标准手段冻干为固体粉末保存备用。在使用时,可使用例如注射用水将其重新溶解为所需浓度的溶液使用。
以下,通过实验例对上述制备的本公开的siRNA以及siRNA缀合物的特性进行研究。
以下对表4A的siRNA缀合物的效果实验进行说明。
实验例A1本实验说明本公开的siRNA缀合物的毒性。
在C57BL/6J小鼠上,分别向每只小鼠皮下单次给予100mg/kg或200mg/kg(以siRNA计)的缀合物A1(0.9%氯化钠水溶液,浓度分别为10mg/mL和20mg/mL,给药体积10mL/kg,每一浓度分别向雌雄各3只小鼠给药),期间进行临床观察,未出现动物死亡,也未观察到与药物不良反应相关的临床症状;给药24h后,采集血样进行临床病理学检验,并对动物进行剖检。其结果,临床病理学检验和大体解剖也均未发现异常。上述结果表明,本公开的缀合物具有较低的动物水平毒性。
实验例A2本实验说明本公开的siRNA缀合物的稳定性
(实验例2-1)siRNA缀合物在体外溶酶体裂解液中的稳定性
经溶酶体裂解液处理的测试样品制备:将对比缀合物A1和缀合物A21(分别以siRNA浓度为20μM的0.9%氯化钠水溶液形式提供,每组6μl)分别与27.2μL柠檬酸钠水溶液(pH5.0)、4.08μL去离子水和2.72μL Tritosomes(商购自Xenotech公司,货号R0610LT,批号1610069)混匀。37℃恒温孵育。分别在0h、1h、2h、4h、6h、8h、24h、48h取出5μl样本,分别加入到15μL 9M的尿素中变性,随后加入4μl 6×上样缓冲液(索莱宝公司,货号20160830),立即冷冻于-80℃冰箱终止反应。0小时表示,将待测样品与溶酶体裂解液混匀后,立即取出的时刻。
未经溶酶体裂解液处理的参比样品制备:取等摩尔量的上述缀合物(20μM)各1.5μl分别与7.5μL柠檬酸钠水溶液(pH5.0)、1μL去离子水混匀,加入30μL 9M的尿素溶液变性,随后加入8μL 6×上样缓冲液混匀,立即冷冻于-80℃冰箱终止反应。各缀合物参比样品在电泳图中标记为Con。
配制16重量%的非变性聚丙烯酰胺凝胶,上述测试样品及参比样品各取20μl上样至凝胶,在20mA恒流条件下电泳10min后,继续在40mA恒流条件下电泳30min。电泳结束后,将凝胶置于摇床上,用Gelred染料(BioTium公司,货号13G1203)染色10min。凝胶成像观察并拍照,结果如图1所示。
图1显示了所测试siRNA缀合物在体外Tritosome中的稳定性半定量检测结果。结果显示,本公开的缀合物在Tritosome中可维持长时间不降解,显示出很好的稳定性。
(实验例A2-2)siRNA缀合物在体外溶酶体裂解液中的稳定性
采用与实验例2-1相同的方法,区别在于,待测样品为缀合物A1、A6和对比siRNA1,与Tritosomes孵育时间分别为0h、5min、15min、30min、1h、2h、4h、8h。
非变性聚丙烯酰胺凝胶电泳的结果如图2所示。
图2显示了所测试siRNA缀合物在体外Tritosome中的稳定性半定量检测结果。结果显示,本公开的缀合物在Tritosome中可维持长时间不降解,显示出很好的稳定性。
由以上图1和图2结果显示,本公开的具有特定修饰的siRNA在溶酶体裂解液中显示出令人满意的稳定性。
(实验例A2-3)在人血浆中的稳定性
将缀合物A1、A6和对比siRNA2(分别以siRNA浓度为20μM的0.9%氯 化钠水溶液形式提供,每组12μl)分别与108μL 90%人血浆(Human plasma,PBS稀释)混匀。37℃恒温孵育。分别在0、2、4、6、8、24、48、72小时取出10μL样本,立即进行液氮速冻于-80℃冰箱中冻存。待各时间点取样完毕后,将上述冻存样品分别以1×PBS(pH7.4)稀释5倍后每一样品取10μL备用。同时,取等摩尔量的待测样品(2μM,2μl)与8μl 1×PBS(pH7.4)混匀,制备成10μL未经人血浆处理的样品,记为Con。配制20重量%的非变性聚丙烯酰胺凝胶,将上述备用样品中每一组的全部样品与4μL上样缓冲液(20mM EDTA,36重量%甘油,0.06重量%溴酚蓝的水溶液)混合,然后上样至前述凝胶,在80mA恒流条件下电泳60分钟。电泳结束后,用1×Sybr Gold染料(Invitrogen,Cat.11494)染色15分钟后成相,结果如图3所示。
图3显示了所测试缀合物在体外人血浆中的稳定性半定量检测结果。
由图3的结果可以看出,结果显示,本公开的缀合物在人血浆中直至72h时仍未降解,显示出优异的在人血浆中的稳定性。
(实验例A2-4)缀合物在猴血浆中的稳定性
将缀合物A1、A6和对比siRNA2(分别以siRNA浓度为20μM的0.9%氯化钠水溶液形式提供,每组12μl)分别与108μL 90%食蟹猴血浆(Monkey plasma,购自鸿泉生物,HQ70082,PBS稀释)混匀。37℃恒温孵育。分别在0、2、4、6、8、24、48、72小时取出10μL样本,立即进行液氮速冻于-80℃冰箱中冻存。待各时间点取样完毕后,将上述冻存样品分别以1×PBS(pH7.4)稀释5倍后每一样品取10μL备用。同时,取等摩尔量的待测样品(2μM,2μl)与8μl 1×PBS(pH7.4)混匀,制备成10μL未经猴血浆处理的样品,记为Con。配制20重量%的非变性聚丙烯酰胺凝胶,将上述备用样品中每一组的全部样品与4μL上样缓冲液(20mM EDTA,36重量%甘油,0.06重量%溴酚蓝的水溶液)混合,然后上样至前述凝胶,在80mA恒流条件下电泳60分钟。电泳结束后,用1×Sybr Gold染料(Invitrogen,Cat.11494)染色15分钟后成相,结果如图4所示。
图4显示了所测试siRNA在体外猴血浆中的稳定性半定量检测结果。
由图4的结果可以看出,结果显示,本公开的siRNA缀合物在食蟹猴血浆中直至72h仍未降解,显示出优异的在猴血浆中的稳定性。
(A2-5)本实验说明本公开的siRNA缀合物在体外溶酶体裂解液中的稳定性
1)鼠源溶酶体裂解液中稳定性检测
经溶酶体裂解液处理的测试样品制备:将缀合物A2以及对比siRNA2(20μM)各6μl分别与27.2μL柠檬酸钠水溶液(pH5.0)、4.08μL去离子水和2.72μL鼠源溶酶体裂解液(Rat Liver Tritosomes,Xenotech公司,货号R0610.LT,批号1610069)混匀,酸性磷酸酶终浓度为0.2mU/μL。37℃恒温孵育。分别在0、1、2、4、6、24小时各取出5μl混合液,加入到15μL 9M的尿素溶液中变性,随后加入4μl 6×上样缓冲液(索莱宝公司,货号20160830),立即冷冻于-80℃冰箱终止反应。0小时表示,将待测样品与溶酶体裂解液混匀后,立即取出的时刻。
未经溶酶体裂解液处理的参比样品制备:取等摩尔量的缀合物A2以及对比siRNA2(20μM)各1.5μl分别与7.5μL柠檬酸钠水溶液(pH5.0)、1μL去离子水混匀,加入30μL 9M的尿素溶液变性,随后加入8μL 6×上样缓冲液混匀,立即冷冻于-80℃冰箱终止反应。各样品的参比样品标记为M,用于与 该样品的电泳结果进行对比。
配制16重量%的非变性聚丙烯酰胺凝胶,上述测试样品及参比样品各取20μl上样至凝胶,在20mA恒流条件下电泳10min后,继续在40mA恒流条件下电泳30min。电泳结束后,将凝胶置于摇床上,用Gelred染料(BioTium公司,货号13G1203)染色10min。凝胶成像观察并拍照,结果如图5所示。
2)人源溶酶体裂解液中稳定性检测
采用与1)相同的方法检测对比siRNA2及缀合物A2在人源溶酶体裂解液中的稳定性,只是将鼠源溶酶体裂解液换成人源溶酶体裂解液(Human Liver Lysosomes,Xenotech公司,货号H0610.L,批号1610316),结果如图6所示。
结果表明,本公开的siRNA缀合物无论在人源溶酶体裂解液还是在鼠源溶酶体裂解液中,都表现出令人满意的稳定性,至少能够维持24小时不降解。
实验例A3本实验说明缀合物A1在大鼠体内的药代动力学研究结果
在本实验例中,分别向各实验组的大鼠(每组10只大鼠,雌雄各半)单次皮下注射给予缀合物A1,剂量按照10mg/kg和50mg/kg实施。随后检测各时间点的大鼠血浆药物浓度和肝肾组织药物药物浓度。
本实验例中所使用的SD大鼠由北京维通利华实验动物技术有限公司提供。
首先,将SD大鼠采用PRISTIMA 7.2.0版数据系统根据大鼠体重分性别随机分组,随后按照设计的剂量分别给予各组缀合物。所有动物根据体重计算药量,单次给药(采用皮下给药),给药剂量为10和50mg/kg,分别给予1mg/ml和5mg/ml的缀合物的0.9%氯化钠水溶液,体积为10ml/kg。给药前及给药后5分钟(±30秒)、30分钟(±1分钟)、1小时(±2分钟)、2小时(±2分钟)、6小时(±5分钟)、24小时(±10分钟)、48小时(±20分钟)、72小时(±20分钟)、120小时(±30分钟)、168小时(±30分钟)分别从颈静脉采集大鼠全血,后于2~8℃在离心力1800×g下离心10分钟分离血浆,血浆样品在一管中放置约70μL,剩余样品放置于另一管中,-70~-86℃冻存待检。分别在给药后约24、48、72、120、168小时采集大鼠肝肾组织,采集方法为相应大鼠根据体重以戊巴比妥钠麻醉(腹腔注射60mg/kg),腹主动脉采血安乐死,对其进行大体解剖。对各大鼠肝脏、肾脏取样,并保存在1mL冻存管中,-68℃以下保存至检测分析。
采用HPLC-FLD(高效液相荧光色谱法)定量检测大鼠血浆及肝肾组织中的缀合物A1的浓度,具体依据以下步骤:
(1)研磨组织至组织块不大于80mg,随后加入组织和细胞裂解液(Tissue and Cell Lysis Solution,供应商:epicentre,货号:MTC096H)配制成66.7mg/mL的组织匀浆;
(2)对组织匀浆进行超声(150W,30s)以破碎细胞;
(3)对于组织样品,取75μL组织样品加至96孔PCR板,加入5μL蛋白酶K(供应商:Invitrogen,货号:25530-015)和10μL的10wt%乙腈和0.01wt%吐温20混合水溶液;对于血浆样品,取20μL血浆加至96孔PCR板,加入45μL组织和细胞裂解液,5μL蛋白酶K和20μL的10wt%乙腈和0.01wt%吐温20混合水溶液;
(4)封板,置于PCR仪(供应商:Applied Biosystems,型号:
Figure PCTCN2018118212-appb-000125
PCR system 9700)中,在65℃下孵育45分钟;
(5)孵育结束后,加入10μL 3M KCl水溶液(供应商:Sigma-aldrich,货号:60135-250ML),摇匀,4℃,3200rcf离心15分钟;
(6)对于组织样品,取80μL上清液加入到120μL杂交混合液中(杂交混合液配制:0.5mL 6μM PNA探针(供应商:杭州泰禾生物科技有限公司),1mL 200mM的Trizma/pH=8,5mL 8M尿素水溶液,3.5mL H 2O,2mL乙腈);
对于血浆样品,取40μL上清液加入到160μL杂交混合液中(杂交混合液配制:0.5mL 6μM PNA探针,1mL 200mM的Trizma/pH=8,5mL 8M尿素水溶液,7.5mL H 2O,2mL乙腈);
(7)封板,置于PCR仪中,95℃孵育15分钟;立即置于冰上5分钟;
(8)转移至新的锥形底96孔板,摇匀。3200rcf离心1分钟;
(9)进样检测,使用HPLC-FLD分析定量(液相系统供应商:Thermo Fisher,色谱仪型号:ultimate 3000)。
分析结果参见图7-图10。其中,图7-图10分别示出了给药量为10mg/kg或50mg/kg时,缀合物A1在大鼠血浆中PK/TK血浆浓度的经时代谢曲线以及在大鼠肝脏及肾脏中PK/TK组织浓度的经时代谢曲线。具体而言,
图7是表示给药量为10mg/kg时,缀合物A1在大鼠血浆中PK/TK血浆浓度的经时代谢曲线。
图8是表示给药量为10mg/kg时,缀合物A1在大鼠肝脏及肾脏中PK/TK组织浓度的经时代谢曲线。
图9是表示给药量为50mg/kg时,缀合物A1在大鼠血浆中PK/TK血浆浓度的经时代谢曲线。
图10是表示给药量为50mg/kg时,缀合物A1在大鼠肝脏及肾脏中PK/TK组织浓度的经时代谢曲线。
由图7-图10的结果可以看出,无论是在低剂量(10mg/kg)还是在相对更高剂量(50mg/kg)下,缀合物Al在大鼠血浆中的浓度均迅速在数小时内降低至检测限以下;而在肝脏组织中则均在至少168h内维持了较高稳定水平的组织浓度。这表明,本公开的siRNA缀合物能够特异性地在肝脏中显著富集并保持稳定,具有高度的靶向性。
实验例A4本实验说明本公开的RNA缀合物在体内(in vivo)对HBV mRNA表达量的抑制效率
在本实验例中,对缀合物A5和A7在HBV转基因小鼠C57BL/6J-Tg(Alb1HBV)44Bri/J中对HBV mRNA表达量的抑制效率进行了考察。
使用乙型肝炎病毒表面抗原诊断试剂盒(酶联免疫法)(上海科华生物)检测小鼠血清HBsAg含量,选取S/COV>10的小鼠,随机分组(均为雌性),每组4只小鼠,分别以缀合物A5和缀合物A7进行编号,并增加NS对照组。所有动物根据体重计算药量,单次给药(采用皮下给药),分别以1mg/kg以及0.1ml/kg的不同剂量给药,药物以0.2mg/ml以及0.02mg/ml的0.9%氯化钠水溶液形式提供,给药体积为5ml/kg。给药后第14天将动物处死,收集肝脏,用RNA later(Sigma Aldrich公司)保存;用组织匀浆仪匀浆肝组织,再用Trizol根据总RNA提取的标准操作步骤提取得到总RNA。
采用实时荧光定量PCR检测肝组织中HBV mRNA的表达量,具体地:使用ImProm-II TM反转录试剂盒(Promega公司)按其说明书将提取的总RNA逆转录为cDNA,接着用荧光定量PCR试剂盒(北京康为世纪生物科技有限公司) 检测siRNA对肝组织中的HBV mRNA表达的抑制效率。在该荧光定量PCR法中,以β-肌动蛋白(β-actin)基因作为内参基因,使用针对HBV的引物和针对β-肌动蛋白的引物分别对HBV和β-肌动蛋白进行检测。
检测引物的序列参见表5A。
表5A检测引物的序列
Figure PCTCN2018118212-appb-000126
在该荧光定量PCR法中,HBV mRNA的表达量用HBV X基因表达剩余量表示,按如下等式计算:
HBV X基因表达剩余量=(测试组HBV X基因的拷贝数/测试组β-actin的拷贝数)/(对照组HBV X基因的拷贝数/对照组β-actin的拷贝数)×100%,图中标识为HBV X/β-actin mRNA表达量。
随后根据下式计算缀合物对mRNA抑制率:
缀合物对mRNA的抑制率=(1-HBV X基因表达剩余量)×100%,
其中,对照组为本实验中施以NS的对照组小鼠,各测试组为分别施以不同siRNA缀合物的给药组小鼠。结果示于图11中。
在另外的实验中,按照以下条件分别再进行若干实验:
采用与上述相同的方法,不同之处在于给予的siRNA缀合物更换为缀合物A1和缀合物A6进行试验,在第14天收集检测数据,结果如图12所示;
以及给予的siRNA缀合物更换为缀合物A1、A2、A3和A4进行试验,每组5只动物,在第28天收集检测数据,对于每一缀合物,按照1mg/kg和0.3mg/kg两个剂量给药(给药体积保持不变,相应调整缀合物溶液浓度),结果分别示于图13中。
以及给予的siRNA缀合物更换为缀合物A1和对比缀合物A3进行试验,在第14天收集检测数据,对于每一缀合物,按照1mg/kg和0.1mg/kg两个剂量给药(给药体积保持不变,相应调整缀合物溶液浓度),结果分别示于图14中。
由上述结果可见,在测试时间点不同的多次试验中,上述本公开的缀合物均显示出了高的小鼠体内HBV mRNA抑制活性。
实验例A5本实验说明本公开的siRNA缀合物在HBV转基因小鼠中siRNA对血清HBsAg表达量和HBV DNA的抑制效率的时间相关性测试
使用AAV-HBV小鼠,在动物造模成功后,按血清HBsAg含量随机分组(每组5只),分别给予缀合物A1、对比缀合物A2、对比缀合物A3,以及NS空白对照。所有动物根据体重计算药量,皮下单次给药,给药剂量为3mg/kg和1mg/kg,使用浓度分别为0.3mg/ml和0.1mg/ml的缀合物的0.9%氯化钠水溶液,给药体积为5ml/kg。在给药前(记为D0)与给药后第7、14、21、28、56、84、112、140、154、168、182天对小鼠眼眶静脉丛取血,在各时间点检测血清HBsAg水平;期间,若检测结果中血清HBsAg含量已经接近或超过初始值,则终止该对象的检测。
眼眶取血每次约100μl,离心后血清不少于20μl。利用HBsAg CLIA试剂盒(安图生物,CL0310)检测血清中HBsAg的表达含量;参照QIAamp 96 DNA  Blood Kit说明书提取血清中DNA,进行定量PCR,检测HBV DNA的表达水平。
标准化的HBsAg的表达水平=(给药后HBsAg含量/给药前HBsAg含量)×100%。
HBsAg抑制率=(1-给药后HBsAg含量/给药前HBsAg含量)×100%。
其中,HBsAg含量用每毫升(ml)血清含多少当量(UI)HBsAg表示。
标准化的HBV DNA的表达水平=(给药后HBV DNA含量/给药前HBV DNA含量)×100%。
HBV DNA抑制率=(1-给药后HBV DNA含量/给药前HBV DNA含量)×100%。
其中,HBV DNA含量用每毫升(ml)血清含多少拷贝HBV DNA表示。
结果如图15和图16所示。
由图15的结果可以看出,在给药后不同时间点,NS阴性对照组未显示出任何抑制作用;与之相比,各缀合物在给药后不同时间点对HBsAg均体现出了优异的HBsAg抑制效果。特别是缀合物A1在长达140天的时间内持续显示出高的血清HBsAg抑制率,表明其能够在较长时间内稳定高效地抑制HBV基因的表达。
由图16的结果可以看出,缀合物A1同样显示出高效的HBV DNA表达抑制,并且在长达84天的时间内均保持了较高的抑制率。
相比之下,尽管对比缀合物A2和对比缀合物A3在体内实验中获得了和各缀合物近似的mRNA抑制效果,然而在图15-16中所示出的抑制效果的持续时间上明显弱于同等给药水平的缀合物1和6。
采用与上述相同的方法又进行了两次实验,对血清HBsAg进行检测,区别之处在于:
采用M-Tg模型,使用缀合物A6,给药剂量分别为5、1、0.2mg/kg,以及5mg/kg的对比缀合物A3,测试至第78天,结果参见图17;
采用1.28copy模型,使用缀合物A1,给药剂量为3mg/kg和1mg/kg,测试至第210天,结果参见图18和图19。
对于上述不同给药剂量,均在给药体积相同的情况下,相应调整溶液浓度以按照相应剂量给药。
由图15-19可以看出,本公开的siRNA缀合物在多种动物模型中均显示出持久高效的血清HBsAg抑制效率,并呈现出较规律的剂量依赖性。
实验例A6本实验说明本公开的siRNA缀合物在体外具有较高活性的同时,还具有低脱靶效应。
(A6-1)本实验例中所使用的HEK293A细胞由北京大学分子医学研究所核酸技术实验室提供,用含有20%的胎牛血清(FBS,Hyclone公司)及0.2体积%的青链霉素双抗(Penicillin-Streptomycin,Gibco,Invitrogen公司)的DMEM完全培养基(Hyclone公司)培养细胞,于37℃在含5%CO 2/95%空气的培养箱中培养。
本实验例考察了缀合物A1在体外psiCHECK系统中的在靶活性(on-target activity)及脱靶效应,即测定了缀合物A1靶向完全匹配目标序列(其核苷酸序列与缀合物A1反义链/正义链的全长核苷酸序列完全互补)或靶向种子区域匹配目标序列(其核苷酸序列与缀合物A1的反义链/正义链的1-8位核苷酸序列互补)的活性。
根据Kumico Ui-Tei et.al.,Functional dissection of siRNA sequence by systematic DNA substitution:modified siRNA with a DNA seed arm is a powerful  tool for mammalian gene silencing with significantly reduced off-target effect.Nucleic Acids Research,2008.36(7),2136-2151描述的方法,构建检测质粒,与待评价的siRNA缀合物共转染至HEK293A细胞中,通过双萤光素酶报告基因的表达水平,来反应siRNA缀合物的在靶活性及脱靶效应。具体步骤如下:
[1]构建检测质粒
采用psiCHECK TM-2(Promega TM)质粒构建了4种重组质粒,其中GSCM表示在靶质粒,PSCM、GSSM、PSSM表示脱靶质粒:
(1)GSCM,含有一个目标序列,该目标序列与待测缀合物(在本例中,为缀合物A1)中的反义链的所有21个核苷酸序列完全互补;
(2)PSCM,含有一个目标序列,该目标序列与缀合物A1中的反义链的所有21个核苷酸序列完全一致;
(3)GSSM,含有一个目标序列,该目标序列与缀合物A1中反义链的5’端起1-8位核苷酸序列完全互补,该目标序列的剩余部分与缀合物1中反义链5’端起9-21位的核苷酸序列相对应,其序列完全不互补,即缀合物1中反义链5’端起9-21位中任一位置的核苷酸为G,C,A或U时,目标序列相应位置的核苷酸分别为T,A,C或G。
(4)PSSM,含有一个目标序列,该目标序列与缀合物A1中正义链的5’端起1-8位核苷酸序列完全互补,该目标序列的剩余部分与缀合物A1中正义链5’端起9-19位的核苷酸序列相对应,其序列完全不互补,即缀合物A1中正义链5’端起9-19位中任一位置的核苷酸为G,C,A或U时,目标序列相应位置的核苷酸分别为T,A,C或G。为了与GSSM靶序列等长,目标序列的3’末端加入两个CC。
将目标序列克隆到psiCHECK TM-2质粒的Xho I/Not I位点。
[2]转染
在96孔板中,根据Lipofectamine TM2000(Invitrogen公司)的使用说明,分别共转染siRNA和上述每一种质粒,一种质粒对应若干组特定浓度的缀合物1,其中每孔转染质粒10ng,使用Lipofectamine TM2000 0.2μL。对于GSCM在靶质粒,缀合物A1的终浓度(以siRNA的浓度计算)自100nM起始,4倍稀释11个浓度,至0.0001nM。每组3个复孔。
[3]检测
共转染24小时后,使用双萤光素酶报告基因检测试剂盒(Dual luciferase reporter gene assay kit,Promega公司,cat.E2940),根据使用说明书裂解HEK293A细胞,检测双萤光素酶报告基因的表达水平。每一特定浓度的测试组以无缀合物处理为对照(con)。以海肾萤光素酶蛋白水平(Ren)相对于萤火虫萤光素酶蛋白水平(Fir)进行标准化。
根据采用不同siRNA浓度所测得的活性结果,利用Graphpad 5.0软件log(inhibitor)vs.response-Variable slope功能来拟合剂量-效应曲线,根据剂量-效应曲线计算待测siRNA靶向GSCM的IC 50值,计算方法如下,
Figure PCTCN2018118212-appb-000127
式中:
Y是残留mRNA的表达水平,
X为转染siRNA浓度的对数值,
Bot是稳态期底部的Y值,
Top是稳态期顶部的Y值,
LogIC50是当Y在底部到顶部之间一半时的X值,而HillSlope则是曲线 的斜率。
根据剂量-效应曲线计算缀合物A1靶向GSCM的IC 50值。结果如图20A-20D所示。其结果显示,对应于GSCM,缀合物A1的IC 50为0.0513nM;对应于PSCM、GSSM、PSSM,缀合物A1在各个siRNA浓度下都未见明显的抑制效果,说明本公开的siRNA缀合物在体外具有较高活性的同时,还具有低的脱靶效应。
由上述结果可见,缀合物A1对在靶质粒中靶mRNA的表达显示出优异的抑制效果,具有低的IC 50值;而对于三条脱靶质粒的表达均无抑制作用。可见,缀合物A1在显示出具有优异的靶mRNA抑制效率的同时,还具有低的脱靶效应。
以下对表4B的siRNA缀合物的效果实验进行说明。
实验例B1本实验说明本公开的siRNA缀合物在体外(in vitro)的抑制活性
实验例B1-1体外psiCHECK系统中的在靶活性
本实验例中所使用的HEK293A细胞由北京大学分子医学研究所核酸技术实验室提供,用含有20%的胎牛血清(FBS,Hyclone公司)及0.2体积%的青链霉素双抗(Penicillin-Streptomycin,Gibco,Invitrogen公司)的DMEM完全培养基(Hyclone公司)培养细胞,于37℃在含5%CO 2/95%空气的培养箱中培养。
本实验例考察了缀合物B16和缀合物B17在体外psiCHECK系统中的在靶活性及脱靶效应,即测定了缀合物B16和缀合物B17靶向完全匹配目标序列(其核苷酸序列与所述缀合物反义链/正义链的全长核苷酸序列完全互补)或靶向种子区域匹配目标序列(其核苷酸序列与所述缀合物的反义链/正义链的1-8位核苷酸序列互补)的活性。
根据Kumico Ui-Tei et.al.,Functional dissection of siRNA sequence by systematic DNA substitution:modified siRNA with a DNA seed arm is a powerful tool for mammalian gene silencing with significantly reduced off-target effect.Nucleic Acids Research,2008.36(7),2136-2151描述的方法,构建检测质粒,与待评价的siRNA缀合物共转染至HEK293A细胞中,通过双萤光素酶报告基因的表达水平,来反应siRNA缀合物的在靶活性。具体步骤如下:
[1]构建检测质粒
采用psiCHECK TM-2(Promega TM)质粒构建在靶质粒,该质粒含有一个目标序列,该目标序列与待测缀合物(缀合物B16或缀合物B17)中的反义链的所有21个核苷酸序列完全互补。将目标序列克隆到psiCHECK TM-2质粒的Xho I/Not I位点。
[2]转染
在96孔板中,根据Lipofectamine TM 2000(Invitrogen公司)的使用说明,分别共转染siRNA缀合物和上述质粒,其中每孔转染质粒10ng,使用Lipofectamine TM2000 0.2μL。缀合物的终浓度(以siRNA的浓度计算)依次为0.1nM、0.05nM和0.01nM。各组以无缀合物处理为对照。每组3个复孔。
NC为吉玛公司与目的基因序列无同源性的通用阴性对照B01001。
[3]检测
共转染24小时后,使用双萤光素酶报告基因检测试剂盒(Dual luciferase reporter gene assay kit,Promega公司,cat.E2940),根据使用说明书裂解HEK293A细胞,检测双萤光素酶报告基因的表达水平。以海肾萤光素酶蛋白 水平相对于萤火虫萤光素酶蛋白水平进行标准化。结果如图21所示。
结果表明,缀合物B16和缀合物B17都具有较好的体外抑制活性。
实验例B1-2体外psiCHECK系统中的在靶活性及脱靶效应
本实验例考察了缀合物B2在体外psiCHECK系统中的在靶活性及脱靶效应。
使用实验例A6的方法对缀合物B2进行测试,区别之处在于,使用对应于缀合物B2的序列构建4条目标序列,并且稀释浓度从0.1nM倍比稀释至0.0001nM,每组质粒对应11组siRNA浓度。测试结果如图22所示。
由图22可知,缀合物B2在具有优异靶mRNA抑制效果的同时,还显示出低的脱靶效应。
实验例B2本实验说明本公开的siRNA缀合物的稳定性
(实验例B2-1)siRNA缀合物在体外溶酶体裂解液中的稳定性
经溶酶体裂解液处理的测试样品制备:将缀合物B1和缀合物B2(分别以siRNA浓度为20μM的0.9%氯化钠水溶液形式提供,每组6μl)分别与27.2μL柠檬酸钠水溶液(pH5.0)、4.08μL去离子水和2.72μL Tritosomes(商购自Xenotech公司,货号R0610LT,批号1610069)混匀。37℃恒温孵育。分别在0h、5min、15min、30min、1h、2h、4h、8h取出5μl样本,分别加入到15μL 9M的尿素中变性,随后加入4μl 6×上样缓冲液(索莱宝公司,货号20160830),立即冷冻于-80℃冰箱终止反应。0小时表示,将待测样品与溶酶体裂解液混匀后,立即取出的时刻。
未经溶酶体裂解液处理的参比样品制备:取等摩尔量的相应缀合物(20μM)1.5μl与7.5μL柠檬酸钠水溶液(pH5.0)、1μL去离子水混匀,加入30μL 9M的尿素溶液变性,随后加入8μL 6×上样缓冲液混匀,立即冷冻于-80℃冰箱终止反应。参比样品在电泳图中标记为Con。
配制16重量%的非变性聚丙烯酰胺凝胶,上述测试样品及参比样品各取20μl上样至凝胶,在20mA恒流条件下电泳10min后,继续在40mA恒流条件下电泳30min。电泳结束后,将凝胶置于摇床上,用Gelred染料(BioTium公司,货号13G1203)染色10min。凝胶成像观察并拍照,结果如图23所示。
图23显示了所测试siRNA缀合物在体外Tritosome中的稳定性半定量检测结果。结果显示,本公开的缀合物在Tritosome中可维持长时间不降解,显示出很好的稳定性。
(实验例B2-2)siRNA缀合物在人血浆中的稳定性
将缀合物B1、缀合物B2(分别以siRNA浓度为20μM的0.9%氯化钠水溶液形式提供,每组12μl)分别与108μL 90%人血浆(Human plasma,PBS稀释)混匀。37℃恒温孵育。分别在0、2、4、6、8、24、48、72小时取出10μL样本,立即进行液氮速冻于-80℃冰箱中冻存。待各时间点取样完毕后,将上述冻存样品分别以1×PBS(pH7.4)稀释5倍后每一样品取10μL备用。同时,取等摩尔量的siRNA缀合物(siRNA浓度为2μM,2μl),与8μl 1×PBS(pH7.4)混匀,制备成10μL未经人血浆处理的样品,记为Con。
配制20重量%的非变性聚丙烯酰胺凝胶,将上述备用样品中每一组的全部样品与4μL上样缓冲液(20mM EDTA,36重量%甘油,0.06重量%溴酚蓝的水溶液)混合,然后上样至前述凝胶,在80mA恒流条件下电泳60分钟。电泳结束后,用1×Sybr Gold染料(Invitrogen,Cat.11494)染色15分钟后成 相,结果如图24所示。
图24示出了所测试缀合物在体外人血浆中的稳定性半定量检测结果。
由图24的结果可以看出,本公开的缀合物在人血浆中直至72h时仍未降解,显示出优异的在人血浆中的稳定性。
(实验例B2-3)siRNA缀合物在猴血浆中的稳定性
在另外的实验中,采用与实验例2-2相同的方法检测缀合物B1、B2在猴血浆(Monkey plasma,购自鸿泉生物,HQ70082,PBS稀释)中的稳定性,结果如图25所示。
图25出了所测试siRNA在体外猴血浆中的稳定性半定量检测结果。
由图25的结果可以看出,本公开的siRNA缀合物在食蟹猴血浆中直至72h仍未降解,显示出优异的在猴血浆中的稳定性。
实验例B3本实验例说明本公开的缀合物在小鼠中对HBV mRNA表达的抑制
在本实验例中,对缀合物B1在HBV转基因小鼠C57BL/6J-Tg(Alb1HBV)44Bri/J中对HBV mRNA表达量的抑制效率进行了考察。
首先,将C57BL/6J-Tg(Alb1HBV)44Bri/J小鼠按血清HBsAg含量随机分组(均为雌性),每组4只小鼠,分别进行编号,并增加NS对照组。所有动物根据体重计算药量,单次给药(采用皮下给药),分别以1mg/kg以及0.1ml/kg的不同剂量给予缀合物B1,使用浓度分别为0.2mg/ml以及0.02mg/ml的缀合物的0.9%氯化钠水溶液,给药体积为5ml/kg。给药后第7天将动物处死,收集肝脏,用RNA later(Sigma Aldrich公司)保存;用组织匀浆仪匀浆肝组织,再用Trizol根据总RNA提取的标准操作步骤提取得到总RNA。
采用实时荧光定量PCR检测肝组织中HBV mRNA的表达水平,具体地:使用ImProm-II TM反转录试剂盒(Promega公司)按其说明书将提取的总RNA逆转录为cDNA,接着用荧光定量PCR试剂盒(北京康为世纪生物科技有限公司)检测siRNA对肝组织中的HBV mRNA表达的抑制效率。在该荧光定量PCR法中,以甘油醛-3-磷酸脱氢酶(GAPDH)基因作为内参基因,使用针对HBV的引物和针对GAPDH的引物分别对HBV和GAPDH进行检测。
检测引物的序列参见表5B。
Figure PCTCN2018118212-appb-000128
在该荧光定量PCR法中,siRNA抑制活性用HBV基因表达剩余量表示,按如下等式计算:
HBV基因表达剩余量=(测试组HBV基因的拷贝数/测试组GAPDH的拷贝数)/(对照组HBV基因的拷贝数/对照组GAPDH的拷贝数)×100%,
随后根据下式计算mRNA抑制率:
mRNA抑制率=(1-HBV基因表达剩余量)×100%,
其中,对照组为本实验中施以NS的对照组小鼠,各测试组为分别施以不同siRNA缀合物的给药组小鼠。结果示于图26中。
在另外的实验中,按照以下条件分别再进行两次实验:
采用与上述相同的方法,不同之处在于:
给予的siRNA缀合物更换为缀合物B2进行试验,在第7天收集检测数据,结果示于图27;以及
给予的siRNA缀合物更换为缀合物B1、缀合物B2进行试验,对于缀合物B1,分别以1mg/kg和0.1mg/kg两个剂量给药,缀合物B2以1mg/kg剂量给药,且检测序列更换为表5C所示的序列,结果示于图28:
表5C检测引物的序列
Figure PCTCN2018118212-appb-000129
由图27和图28的结果可见,上述本公开的缀合物对于靶mRNA均显示出良好的抑制效果,并且对于不同HBV mRNA的抑制效果基本一致。
实验例B4本实验说明本公开的siRNA缀合物在HBV转基因小鼠中siRNA对血清HBsAg表达量和HBV DNA的抑制效率的时间相关性测试
对于AAV-HBV低浓度模型小鼠,按血清HBsAg含量随机分组(每组5只),分别给予缀合物B2,以及NS空白对照。所有动物根据体重计算药量,皮下单次给药,给药剂量为3mg/kg以及1mg/kg两个组别,使用浓度分别为0.6mg/ml以及0.2mg/ml的缀合物的0.9%氯化钠水溶液,给药体积为5ml/kg。在给药前与给药后第7、14、21、28、56、84、98、112、126、140天对小鼠眼眶静脉丛取血,在各时间点检测血清HBsAg水平。
眼眶取血每次约100μl,离心后血清不少于20μl。利用HBsAg CLIA试剂盒(安图生物,CL0310)检测血清中HBsAg的含量。参照QIAamp 96 DNA Blood Kit说明书提取血清中DNA,进行定量PCR,检测HBV DNA的表达水平。
HBsAg抑制率按如下等式计算:
HBsAg抑制率=(1-给药后HBsAg含量/给药前HBsAg含量)×100%。其中,HBsAg含量用每毫升(ml)血清含多少当量(UI)HBsAg表示。
HBV DNA抑制率按如下等式计算:
HBV DNA抑制率=(1-给药后HBV DNA含量/给药前HBV DNA含量)×100%。
其中,HBV DNA含量用每毫升(ml)血清含多少拷贝HBV DNA表示。
结果如图29所示。
由图29的结果可以看出,在给药后不同时间点,NS阴性对照组未显示出任何抑制作用;与之相比,缀合物B2在给药后不同时间点对HBsAg均体现出了优异的HBsAg抑制效果,在长达100天左右的时间内持续显示出高的血清HBsAg抑制率,表明其能够在较长时间内稳定高效地抑制HBV基因的表达。
在进一步的实验中,按照上述方法,在1.28copy模型小鼠中,使用缀合物B2,按照3mg/kg和1mg/kg两个剂量组给药,使用浓度分别为0.6mg/ml以及0.2mg/ml的缀合物的0.9%氯化钠水溶液,给药体积为5ml/kg,给药时间持续至85天,并按照上述的方法对HBsAg和HBV DNA的抑制效果进行检测,结果参见图30和31。
由图30和31的结果可知,在1.28copy小鼠中,本公开的缀合物B2在85 天的时间内持续显示出对HBV基因表达以及HBV DNA的高效抑制。
以下对表4C的siRNA缀合物的性质实验进行说明。
实验例C1本实验说明表的siRNA缀合物的稳定性
(实验例C1-1)siRNA缀合物在体外溶酶体裂解液中的稳定性
经溶酶体裂解液处理的测试样品制备:将缀合物C2(以siRNA浓度为20μM的0.9%氯化钠水溶液形式提供,每组6μl)分别与27.2μL柠檬酸钠水溶液(pH5.0)、4.08μL去离子水和2.72μL Tritosomes(商购自Xenotech公司,货号R0610LT,批号1610069)混匀。37℃恒温孵育。分别在0h、5min、15min、30min、1h、2h、4h、8h取出5μl样本,分别加入到15μL 9M的尿素中变性,随后加入4μl 6×上样缓冲液(索莱宝公司,货号20160830),立即冷冻于-80℃冰箱终止反应。0小时表示,将待测样品与溶酶体裂解液混匀后,立即取出的时刻。
未经溶酶体裂解液处理的参比样品制备:取等摩尔量的缀合物C2(20μM)1.5μl与7.5μL柠檬酸钠水溶液(pH5.0)、1μL去离子水混匀,加入30μL 9M的尿素溶液变性,随后加入8μL 6×上样缓冲液混匀,立即冷冻于-80℃冰箱终止反应。参比样品在电泳图中标记为Con。
配制16重量%的非变性聚丙烯酰胺凝胶,上述测试样品及参比样品各取20μl上样至凝胶,在20mA恒流条件下电泳10min后,继续在40mA恒流条件下电泳30min。电泳结束后,将凝胶置于摇床上,用Gelred染料(BioTium公司,货号13G1203)染色10min。凝胶成像观察并拍照,结果如图32所示。
图32显示了所测试siRNA缀合物在体外溶酶体中的稳定性半定量检测结果。结果显示,本公开的缀合物在溶酶体中可维持长时间不降解,显示出很好的稳定性。
(实验例C1-2)siRNA缀合物在人血浆中的稳定性
将缀合物C2(以siRNA浓度为20μM的0.9%氯化钠水溶液形式提供,每组12μl)分别与108μL 90%人血浆(Human plasma,PBS稀释)混匀。37℃恒温孵育。分别在0、2、4、6、8、24、48、72小时取出10μL样本,立即进行液氮速冻于-80℃冰箱中冻存。待各时间点取样完毕后,将上述冻存样品分别以1×PBS(pH7.4)稀释5倍后每一样品取10μL备用。同时,取等摩尔量的siRNA缀合物(siRNA浓度为2μM,2μl),与8μl 1×PBS(pH7.4)混匀,制备成10μL未经人血浆处理的样品,记为Con。
配制20重量%的非变性聚丙烯酰胺凝胶,将上述备用样品中每一组的全部样品与4μL上样缓冲液(20mM EDTA,36重量%甘油,0.06重量%溴酚蓝的水溶液)混合,然后上样至前述凝胶,在80mA恒流条件下电泳60分钟。电泳结束后,用1×Sybr Gold染料(Invitrogen,Cat.11494)染色15分钟后成相,结果如图33所示。
由图33的结果可以看出,本公开的缀合物在人血浆中直至72h时仍未降解,显示出优异的在人血浆中的稳定性。
(实验例C1-3)siRNA缀合物在猴血浆中的稳定性
在另外的实验中,采用与实验例C1-2相同的方法检测缀合物C2在猴血浆(Monkey plasma,购自鸿泉生物,HQ70082,PBS稀释)中的稳定性,结果如图34所示。
图34出了所测试siRNA在体外猴血浆中的稳定性半定量检测结果。
由图34的结果可以看出,本公开的siRNA缀合物在食蟹猴血浆中直至72h仍未降解,显示出优异的在猴血浆中的稳定性。
实验例C2本实验例说明本公开的siRNA缀合物在体外(in vitro)的抑制活性
(实验例C2-1)体外psiCHECK系统中的在靶活性
使用实验例B1-2的方法对缀合物C14进行了检测,不同之处在于以缀合物C14的序列构建目标序列,结果如图35所示。结果表明,缀合物C14具有较好的体外抑制活性。
实验例C2-2体外psiCHECK系统中IC 50的测定
使用实验例A6的方法对缀合物C2进行了检测,区别之处在于,以缀合物C2的序列构建目标序列;测试浓度从0.1nM倍比稀释至0.0001nM,每组序列在11个浓度处进行测定,结果如图36所示。
由图36可知,缀合物C2在具有优异靶mRNA抑制效果的同时,还显示出低的脱靶效应。
实验例C3本实验例说明本公开的缀合物在小鼠中对HBV mRNA表达的抑制
在本实验例中,对缀合物C2在HBV转基因小鼠C57BL/6J-Tg(Alb1HBV)44Bri/J中对HBV mRNA表达量的抑制效率进行了考察。
首先,将C57BL/6J-Tg(Alb1HBV)44Bri/J小鼠随机分组(均为雌性),每组4只小鼠,分别进行编号,并增加生理盐水NS对照组。所有动物根据体重计算药量,单次给药(采用皮下给药),分别以1mg/kg以及0.1ml/kg的不同剂量给予缀合物C2(分别以0.2mg/ml以及0.02mg/ml的缀合物的0.9%氯化钠水溶液形式提供),给药体积为5ml/kg。给药后第7天将动物处死,收集肝脏,用RNA later(Sigma Aldrich公司)保存;用组织匀浆仪匀浆肝组织,再用Trizol根据总RNA提取的标准操作步骤提取得到总RNA。
采用实时荧光定量PCR检测肝组织中HBV mRNA的表达水平,具体地:使用ImProm-IITM反转录试剂盒(Promega公司)按其说明书将提取的总RNA逆转录为cDNA,接着用荧光定量PCR试剂盒(北京康为世纪生物科技有限公司)检测siRNA对肝组织中的HBV mRNA表达的抑制效率。在该荧光定量PCR法中,以β-肌动蛋白(β-actin)基因作为内参基因,使用针对HBV的引物和针对β-肌动蛋白的引物分别对HBV和β-肌动蛋白进行检测。
检测引物的序列参见表5A。
在该荧光定量PCR法中,siRNA抑制活性用HBV基因表达剩余量表示,按如下等式计算:
HBV基因表达剩余量=(测试组HBV基因的拷贝数/测试组β-actin的拷贝数)/(对照组HBV基因的拷贝数/对照组β-actin的拷贝数)×100%,图中标识为HBV X/β-actin mRNA表达量。
随后根据下式计算mRNA抑制率:
mRNA抑制率=(1-HBV X基因表达剩余量)×100%,
其中,对照组为本实验中施以NS的对照组小鼠,各测试组为分别施以不同siRNA缀合物的给药组小鼠。结果示于图37中。
由图37的结果可见,本公开的缀合物对于靶mRNA的抑制率达93.8%,显示出良好的抑制效果。
实验例C4本实验说明本发明的siRNA缀合物在M-Tg模型上单次给药对HBsAg和HBV X mRNA的抑制作用
将HBV转基因(M-TgHBV)小鼠(购自上海市公共卫生中心动物部)按血清HBsAg含量随机分组(每组6只,均为雄性),分别为生理盐水(NS)对照组、缀合物C21mg/kg和3mg/kg组。所有动物根据体重计算药量,给药体积为10ml/kg,皮下单次给药。在给药前(记为D0)与给药后第7、14、21、28、42、56、70、85天对小鼠眼眶静脉丛取血,在各时间点检测血清HBsAg水平。
眼眶取血每次约0.5ml,离心后血清不少于200μl。利用HBsAg CLIA试剂盒(安图生物,CL0310)检测血清中HBsAg的含量。
标准化的血清HBsAg水平=(给药后测试组HBsAg含量/给药前测试组HBsAg含量)×100%。
HBsAg抑制率=(1-给药后HBsAg含量/给药前HBsAg含量)×100%。
其中,HBsAg含量用每毫升(ml)血清含多少当量(UI)HBsAg表示。
以下图38和图39示出了上述测试siRNA缀合物在在M-Tg模型上单次给药对HBsAg和HBV X mRNA表达抑制作用的检测结果。
从图38和图39的结果可以看出:
单次给药3mg/kg的缀合物C2在21天内维持了对HBsAg的较高抑制率,最高可达90%以上。并且,3mg/kg的缀合物C2在第85天对HBV X mRNA仍具有较高的抑制率。
以下对表4D的siRNA缀合物的效果实验进行说明。
实验例D1本实验说明本公开的siRNA缀合物的稳定性
(实验例D1-1)siRNA缀合物在体外溶酶体裂解液中的稳定性
基于实验例C1-1的方法,对缀合物D2在体外溶酶体裂解液的稳定性进行了测试,结果如图40所示。
图40显示了所测试siRNA缀合物在体外溶酶体中的稳定性半定量检测结果。结果显示,本公开的缀合物在溶酶体中可维持长时间不降解,显示出很好的稳定性。
(实验例D1-2)siRNA缀合物在人血浆/猴血浆中的稳定性
基于实验例C1-2、C1-3的方法,对缀合物D2在体外人血浆、体外食蟹猴血浆中的稳定性分别进行了测试,结果如图41、图42所示。
由图41和图42的结果可以看出,本公开的缀合物在人血浆/猴血浆中直至72h时仍未降解,显示出优异的稳定性。
实验例D2本实验例说明本公开的siRNA缀合物在体外(in vitro)的抑制活性
(实验例D2-1)体外psiCHECK系统中的在靶活性
本实验例中所使用的HEK293A细胞由北京大学分子医学研究所核酸技术实验室提供,用含有20%的胎牛血清(FBS,Hyclone公司)及0.2体积%的青链霉素双抗(Penicillin-Streptomycin,Gibco,Invitrogen公司)的DMEM完全培养基(Hyclone公司)培养细胞,于37℃在含5%CO 2/95%空气的培养箱中 培养。
使用实验例A6的方法对缀合物D14进行检测。区别在于,基于缀合物D14的序列构建目标序列;对于每一序列,由0.1nM倍比稀释至0.0001nM,每一序列在11个浓度点处测定,结果如图43所示。结果表明,缀合物D14具有较好的体外抑制活性。
实验例D2-2体外psiCHECK系统中IC 50的测定
本实验例例考察了缀合物D2在体外psiCHECK系统中的IC50。
根据实验例B1-2的方法对缀合物D2进行测定,区别在于,基于缀合物D2的序列构建4条目标序列;对于每一序列,由0.1nM倍比稀释至0.0001nM,每一序列在11个浓度点处测定,结果如图44所示。由图44可知,缀合物D2在具有优异靶mRNA抑制效果的同时,还显示出低的脱靶效应。
实验例D3本实验例说明本公开的缀合物在小鼠中对HBV mRNA表达的抑制
在本实验例中,对缀合物D2在HBV转基因小鼠C57BL/6J-Tg(Alb1HBV)44Bri/J中对HBV mRNA表达量的抑制效率进行了考察。
基于实验例C3所述的方法,对缀合物D2进行了检测。结果示于图45中。
由图45的结果可见,本公开的缀合物对于靶mRNA的抑制率达显示出良好的抑制效果,在1mg/kg的给药量下,对于靶mRNA的抑制率达93.63%;在更低浓度(0.1mg/kg)的给药量下,仍具有77.05%的抑制率,显示出良好的抑制效果。
实验例D4本实验说明本发明的siRNA缀合物在M-Tg模型上单次给药对HBsAg和HBV X mRNA的抑制作用
将HBV转基因(M-TgHBV)小鼠(购自上海市公共卫生中心动物部)按血清HBsAg含量随机分组(每组6只,均为雄性),分别为生理盐水(NS)对照组、缀合物D21mg/kg和3mg/kg组。所有动物根据体重计算药量,给药体积为10ml/kg,皮下单次给药。在给药前与给药后第7、14、21、28、42、56、70、85天对小鼠眼眶静脉丛取血,在各时间点检测血清HBsAg水平。
眼眶取血每次约0.5ml,离心后血清不少于200μl。利用HBsAg CLIA试剂盒(安图生物,CL0310)检测血清中HBsAg的含量。HBsAg表达剩余量按如下等式计算:
HBsAg表达剩余量=(测试组HBsAg含量/NS对照组HBsAg含量)×100%。其中,HBsAg含量用每毫升(ml)血清含多少当量(UI)HBsAg表示。
以下图46和图47示出了上述测试siRNA缀合物在在M-Tg模型上单次给药对HBsAg和HBV X mRNA表达抑制作用的检测结果。
从图46和图47的结果可以看出:
单次给药3mg/kg的缀合物D2在50天内维持了对HBsAg的较高抑制,抑制率在90%以上,最大抑制率在95%以上。并且,3mg/kg的缀合物D2在第85天对HBV X mRNA仍具有62%的抑制率。
以下对表4E的siRNA缀合物的效果实验进行说明。
实验例E1siRNA在体外psiCHECK系统中的抑制活性及脱靶效应检测
本实验例考察了siRNA E1、E4和对比siRNA3在体外psiCHECK系统中 的在靶活性及脱靶效应,即分别测定了3条siRNA靶向完全匹配目标序列或靶向种子区域匹配目标序列的活性。
使用实验例B1-2的方法进行测试,区别之处在于:依据所检测的序列构建4条目标序列;检测浓度自5nM起始,3倍稀释至0.00008nM,共11个浓度。对比siRNA 3对4个重组质粒的表达抑制见图48A-48D。siRNA E1对4个重组质粒的表达抑制见图49A-49D。由图可见,未修饰的对比siRNA 3在5nM时,对GSSM和PSCM的表达有约20%的抑制率,体现了少许反义链种子区的脱靶效应及正义链的脱靶效应。但本公开提供的修饰的siRNA E1未显示任何脱靶效应。siRNAE4与siRNA E1表现一致,也未见任何脱靶效应。
根据采用不同siRNA浓度所测得的活性结果,利用Graphpad 5.0软件log(inhibitor)vs.response-Variable slope功能来拟合剂量-效应曲线,根据剂量-效应曲线计算待测siRNA靶向GSCM的IC 50值,计算方法如下,结果见表5所示。
Figure PCTCN2018118212-appb-000130
式中:
Y是残留mRNA的表达水平,
X为转染siRNA浓度的对数值,
Bot是稳态期底部的Y值,
Top是稳态期顶部的Y值,
LogIC 50是当Y在底部到顶部之间一半时的X值,而HillSlope则是曲线的斜率。
表6E siRNA对GSCM的IC 50
siRNA 编号 对GSCM的IC 50
siRNA E1 siAN1M3SVP 0.017nM
siRNA E4 siAN1M3S 0.024nM
对比siRNA 3 siAN1 0.0028nM
由表6E本公开提供的修饰的siRNA在体外psiCHECK系统中有很高的抑制活性,IC 50在3-30pM之间;同时,即使在5nM下,各待测修饰的siRNA也没有检测到任何脱靶效应。
实验例E2 siRNA以及siRNA缀合物在体外细胞系中的抑制活性检测
实验例E2-1 siRNA在Huh7细胞中对ANGPTL3 mRNA表达量的抑制效率检测。
使用Lipofectamine TM2000将待测siRNA(siRNAE1、E2、E4)转染至人类肝癌细胞株Huh7中,siRNA终浓度分别为5nM、0.25nM和0.05nM。每个浓度2个复孔。未经任何siRNA处理的细胞作为空白对照(Blank)。
通过实时荧光定量PCR(Quantitative Real-Time PCR)分别检测转染了各浓度的siRNA的Huh7细胞中ANGPTL3 mRNA的表达量。具体步骤为:培养转染的细胞24小时后,使用Trizol(Thermo Fisher公司)根据总RNA提取的标准操作步骤提取细胞中的总RNA;分别取1μg总RNA,使用反转录试剂盒(Promega公司,货号A3500)按其说明书的操作方法反转录得到cDNA。使用2×Ultra SYBR Mixture(with ROX)(北京康为世纪生物科技有限公司,货号CW0956)试剂盒,以cDNA为模板按照说明书的步骤进行ANGPTL3 mRNA表达量的检测。其中,用于扩增ANGPTL3和作为内参基因的GAPDH的PCR引物如表5E所示。
表5E引物信息
Figure PCTCN2018118212-appb-000131
ANGPTL3 mRNA表达水平按如下等式计算:ANGPTL3 mRNA表达量=(测试组ANGPTL3 mRNA的表达量/测试组GAPDH mRNA的表达量)/(对照组ANGPTL3 mRNA的表达量/对照组GAPDH mRNA的表达量)×100%。siRNA对ANGPTL3 mRNA表达量的抑制率为(1-ANGPTL3 mRNA表达量)×100%。其中,各测试组为分别经各浓度siRNA处理的Huh7细胞,对照组为未经siRNA处理的Huh7细胞(图50A中标记为“空白”)。结果如图50A所示。
由图50A可见,本公开提供的修饰的siRNA在Huh7细胞系中有较高的抑制活性。
实验例E2-2 siRNA缀合物在Huh7细胞中对ANGPTL3 mRNA表达量的抑制效率检测。
按照与实验例2-1相同的方法进行检测,区别在于,待测样品为缀合物E18、E19,缀合物终浓度(以siRNA的量计)分别为50nM和5nM。各缀合物在体外的抑制活性如图50B所示。
由图50B可见,本公开提供的siRNA缀合物在Huh7细胞系中有较高的抑制活性,5nM的缀合物对ANGPTL3 mRNA表达量的抑制率达60-80%。
实验例E2-3 siRNA缀合物在Huh7细胞中对ANGPTL3 mRNA的IC 50测定。
按照与实验例E2-1相同的方法进行检测,区别在于,待测样品为缀合物E18、E19,缀合物终浓度(以siRNA的量计)自50nM起始,5倍稀释至0.016nM,最低浓度设为0.00001nM,共7个浓度,每组3个复孔。
在另外的实验中,待测样品为缀合物E2,缀合物终浓度(以siRNA的量计)自2nM起始,倍比稀释至0.0078nM,共9个浓度,每组2个复孔。
在另外的实验中,待测样品为缀合物E1、E4,缀合物终浓度(以siRNA的量计)自0.5nM起始,倍比稀释至0.03125nM,最高浓度设为5nM,共6个浓度,每组2个复孔。
根据采用不同浓度siRNA缀合物所测得的对ANGPTL3 mRNA表达水平的抑制率,采用与实验例1相同的方法计算IC 50,可得待测缀合物在体外Huh7细胞中的IC 50值,结果见表7所示。
表7E siRNA缀合物对ANGPTL3 mRNA的IC 50
缀合物 编号 IC 50
缀合物E18 FIN-siAN1M3SVP 0.0851nM
缀合物E19 FIN-siAN2M3SVP 0.1419nM
缀合物E2 L10-siAN1M3SP 0.1271nM
缀合物E1 L10-siAN1M3SVP 0.2137nM
缀合物E4 L10-siAN1M3S 0.3833nM
由表7E可见,本公开提供的siRNA缀合物在体外细胞系中具有很高的抑 制活性,IC 50在0.085-0.383nM之间。
实验例E3 siRNA及siRNA缀合物在血浆及溶酶体中的稳定性检测
实验例E3-1 siRNA在溶酶体中的稳定性检测。
本实验例考察了siRNA E1、E2、E4在鼠源溶酶体裂解液中的稳定性。
经溶酶体裂解液处理的测试样品制备:将各siRNA(20μM)6μl分别与27.2μL柠檬酸钠水溶液(pH5.0)、4.08μL去离子水和2.72μL鼠源溶酶体裂解液(Rat Liver Tritosomes,Xenotech公司,货号R0610.LT,批号1610069)混匀,酸性磷酸酶终浓度为0.2mU/μL。37℃恒温孵育。分别在0、1、2、4、6、24小时各取出5μl混合液,加入到15μL 9M的尿素溶液中变性,随后加入4μl 6×上样缓冲液(索莱宝公司,货号20160830),立即冷冻于-80℃冰箱终止反应。0小时表示,将待测样品与溶酶体裂解液混匀后,立即取出的时刻。
未经溶酶体裂解液处理的参比样品制备:取等摩尔量的siRNA(20μM)各1.5μl分别与7.5μL柠檬酸钠水溶液(pH5.0)、1μL去离子水混匀,加入30μL 9M的尿素溶液变性,随后加入8μL 6×上样缓冲液混匀,立即冷冻于-80℃冰箱终止反应。各siRNA参比样品在电泳图中标记为M。
配制16重量%的非变性聚丙烯酰胺凝胶,上述测试样品及参比样品各取20μl上样至凝胶,在20mA恒流条件下电泳10min后,继续在40mA恒流条件下电泳30min。电泳结束后,将凝胶置于摇床上,用Gelred染料(BioTium公司,货号13G1203)染色10min。凝胶成像观察并拍照,结果如图51A所示。
由图51A可见,本公开提供的修饰的siRNA在鼠源溶酶体中至少能够稳定存在24小时。
实验例E3-2 siRNA缀合物在溶酶体中的稳定性检测。
本实验例考察了缀合物E1和E4在鼠源溶酶体裂解液中的稳定性。
按照与实验例3-1相同的方法进行检测,区别在于,待测样品为缀合物E1和缀合物E4,缀合物的浓度以siRNA的量计,检测的时间点为0小时、5分钟、15分钟、30分钟、1小时、2小时、4小时、6小时。凝胶成像如图51B所示。
由图51B可见,本公开提供的siRNA缀合物在鼠源溶酶体中至少维持1小时不降解,随后电泳主带只是向下稍微偏移,鉴于对应的siRNA在溶酶体裂解液中的高度稳定性,提示条带下移可能是缀合基团上单糖的断裂,本公开的siRNA缀合物显示出令人满意的稳定性。
实验例E3-3 siRNA缀合物在血浆中的稳定性检测。
本实验例考察了缀合物E1和E4在人血浆中的稳定性。
将缀合物E1和E4以及对照siRNA 3(siRNA或siRNA缀合物浓度均为20μM,12μl,缀合物按siRNA的量计)分别与108μL 90%人血浆(Human plasma,PBS稀释)混匀。37℃恒温孵育。分别在0、2、4、6、8、24、48、72小时取出10μL样本,立即进行液氮速冻,于-80℃冰箱中冻存。待各时间点取样完毕后,1×PBS(pH7.4)稀释5倍后每一样品取10μL;同时,取等摩尔量的siRNA(2μM,2μl)或siRNA缀合物(siRNA浓度为2μM,2μl),与8μl 1×PBS(pH7.4)混匀,制备成10μL未经人血浆处理的样品,记为M。
配制20重量%的非变性聚丙烯酰胺凝胶,将上述样品与4μl上样缓冲液(20mM EDTA,36重量%甘油,0.06重量%溴酚蓝)混匀,然后上样至凝胶, 在80mA恒流条件下电泳60分钟左右。电泳结束后,将凝胶置于摇床上,用1×Sybr Gold染料(Invitrogen,Cat.11494)染色15分钟。凝胶成像观察并拍照,结果如图51C所示。
由图51C可见,本公开提供的siRNA缀合物在人血浆中直至72h时仍未降解,显示出优异的在人血浆中的稳定性。
在另外的实验中,采用与上述相同的方法检测缀合物E1和E4在猴血浆中的稳定性,结果如图51D所示。
结果表明,本公开提供的siRNA缀合物在人血浆及猴血浆中都能稳定存在至少72小时,显示出优异的稳定性。
实验例E4 siRNA缀合物在小鼠体内对ANGPTL3 mRNA表达量的抑制效率检测,以及对血脂的抑制效果检测。
实验例E4-1 siRNA缀合物在正常小鼠C57体内对ANGPTL3 mRNA的ED50测定。
本实验例考察缀合物E18和E19在正常小鼠c57体内的抑制活性。
将6-8周龄正常小鼠c57随机分组,每组5只,分别向每组小鼠给予缀合物E18、E19以及PBS。所有动物根据体重计算药量,采用皮下注射方式单次给药,各siRNA缀合物给药剂量(以siRNA的量计)分别为10mg/kg、3mg/kg、1mg/kg、0.3mg/kg、0.1mg/kg,且缀合物E18和E19的最低剂量为0.003mg/kg各测试组给药体积为10mL/kg。各siRNA缀合物分别以PBS水溶液提供,根据给药剂量和给药体积,换算出缀合物应配置的药物浓度。给药后3天处死小鼠,收集肝脏,用RNA later(Sigma Aldrich公司)保存;随后用组织匀浆仪匀浆肝组织,再用Trizol(Thermo Fisher公司)根据总RNA提取的标准操作步骤提取得到肝组织总RNA。
采用实时荧光定量PCR检测肝组织中ANGPTL3 mRNA的表达水平,具体地:使用反转录试剂盒(Promega公司,货号A3500)按其说明书的操作方法反转录得到cDNA。使用2×Ultra SYBR Mixture(with ROX)(北京康为世纪生物科技有限公司,货号CW0956)试剂盒,以cDNA为模板按照说明书的步骤进行ANGPTL3 mRNA表达量的检测。其中,用于扩增ANGPTL3和作为内参基因的GAPDH的PCR引物如表8E所示。
表8E引物序列
Figure PCTCN2018118212-appb-000132
ANGPTL3 mRNA表达量按如下等式计算:ANGPTL3 mRNA表达量=[(测试组ANGPTL3 mRNA的表达量/测试组GAPDH mRNA的表达量)/(对照组ANGPTL3 mRNA的表达量/对照组GAPDH mRNA的表达量)]×100%。
缀合物对ANGPTL3 mRNA表达水平的抑制率按如下等式计算:抑制率=[1-(测试组ANGPTL3 mRNA的表达量/测试组β-Actin mRNA的表达量)/(对照组ANGPTL3 mRNA的表达量/对照组β-Actin mRNA的表达量)]×100%。其中,对照组为本实验中施以PBS的对照组小鼠,各测试组为分别施以不同siRNA缀合物的给药组小鼠。
根据采用不同浓度siRNA缀合物所测得的对ANGPTL3 mRNA表达水平的抑制率,采用与实验例E1相同的方法计算ED50,可得待测缀合物在正常 小鼠体内的ED50值,结果见表9E所示。
表9E siRNA缀合物对正常小鼠c57肝组织ANGPTL3 mRNA的ED50
缀合物 编号 ED50
缀合物E18 FIN-siAN1M3SVP 0.1403nM
缀合物E19 FIN-siAN2M3SVP 0.1595nM
由表9E可见,所测试的缀合物在正常小鼠体内的抑制活性与实验例2-3中对应的缀合物在体外细胞系中的抑制活性高度一致,ED50在0.1403-0.1595nM之间,说明本公开提供的siRNA缀合物在正常小鼠体内具有很高的抑制活性。
实验例E4-2 siRNA缀合物在正常小鼠BALB/c体内对ANGPTL3 mRNA表达量的抑制效率及对血脂的影响
本实验例考察缀合物E18、E20在正常小鼠BALB/c体内对肝脏组织中ANGPTL3 mRNA的抑制率及对血脂的影响。
将6-8周龄正常小鼠BALB/c随机分组,每组10只,分别向每组小鼠给予缀合物E18、E20、对比缀合物E2以及PBS。所有动物根据体重计算药量,采用皮下注射方式单次给药,siRNA缀合物给药剂量(以siRNA的量计)为3mg/kg和0.3mg/kg两个剂量组,给药体积为10mL/kg。各siRNA缀合物分别以PBS水溶液提供,根据给药剂量和给药体积,换算出缀合物应配置的药物浓度。给药前与给药后第7天和第14天对动物进行眼眶静脉采血,在各时间点检测血清血脂水平;给药后第7天和第14天各自处死5只小鼠,收集肝脏,检测肝中ANGPTL3 mRNA的表达水平。
眼眶静脉采血,每次约100μL,离心得到血清,进一步使用PM1P000/3全自动血清生化仪(SABA,意大利)检测血清中总胆固醇(CHO)和甘油三酯(TG)的含量。
标准化的血脂水平=(给药后测试组血脂含量/给药前测试组血脂含量)×100%。
血脂水平的抑制率=(1-给药后测试组血脂含量/给药前测试组血脂含量)×100%。血脂指总胆固醇或甘油三酯。
给药后第7天小鼠的血脂含量如图52A-52B所示,给药后第14天小鼠的血脂含量如图52C-52D所示。
由图52A-52D可以看出,所测试的siRNA缀合物能够显著降低正常小鼠的血脂水平,给药后14天,3mg/kg的本公开的siRNA缀合物降血脂的能力比阳性对照(对比缀合物E2)更强。
采用与实验例E4-1相同的方法,通过实时荧光定量PCR检测siRNA缀合物对肝ANGPTL3 mRNA表达量的抑制效率,结果如表10E所示。
表10E siRNA缀合物对正常小鼠BALB/c肝组织ANGPTL3 mRNA的抑制效率
Figure PCTCN2018118212-appb-000133
在另外的实验中,采用与上述相同的方法对小鼠血脂及ANGPTL3 mRNA表达量进行检测,区别在于:给予的缀合物为缀合物E1、E4以及对比缀合物E2;检测时间为给药后第14天和第28天。各缀合物对ANGPTL3 mRNA的抑制效果见图53A-53D,对血脂的抑制效果见54A-54D。
由图53A-53D可以看出,给药后第14天,高剂量下的本公开提供的siRNA缀合物对ANGPTL3 mRNA的抑制率高达95%以上,其抑制强度明显优于对比缀合物E2。对于低剂量的本公开的siRNA缀合物,以及延长观察时间至给药后第28天,所测试的siRNA缀合物均显示出对正常小鼠肝组织ANGPTL3 mRNA强烈的抑制作用,并且其抑制强度明显高于对比缀合物。
由图54A-54D可以看出,经本公开的siRNA缀合物治疗后的小鼠血清中的CHO和TG的含量明显下降,并且至少在28天时仍显示出一定的血脂降低效果。对于3mg/kg的本公开的siRNA缀合物降血脂的能力比阳性对照(对比缀合物E2)更强。
实验例E4-3 siRNA缀合物在肥胖小鼠体内对ANGPTL3 mRNA表达量的抑制效率及对血脂的影响
本实验例考察缀合物E18在ob/ob小鼠体内对肝脏组织中ANGPTL3 mRNA的抑制率及对血脂的影响。
采用与实验例E4-2相同的方法对ob/ob小鼠血脂及ANGPTL3 mRNA表达量进行检测,区别在于:6-8周龄ob/ob小鼠每组6只,给予的缀合物为缀合物E18,给药剂量为3mg/kg、1mg/kg、0.3mg/kg;采血时间为给药前2天(记为-2天)及给药后第7、14、21、28、34天;第34天处死小鼠。缀合物E18对血脂的抑制效果见图55A-55B,对ANGPTL3 mRNA的抑制效果见55C。
由图可以看出,经本公开的siRNA缀合物治疗后的小鼠血清中的CHO和TG的含量明显下降,并且至少在34天时仍显示出一定的血脂降低效果。同时,在给药后第34天,各siRNA缀合物依然能够有效抑制ANGPTL3 mRNA的表达。
实验例E4-4 siRNA缀合物在高脂模型小鼠体内对血脂的影响
本实验例考察缀合物E1在人APOC3转基因小鼠体内对肝脏组织中ANGPTL3 mRNA的抑制率及对血脂的影响。
将人APOC3转基因小鼠Tg(APOC3)3707Bre按照血清TG含量>2mmol/L进行随机分组,每组6只,分别向每组小鼠给予缀合物E1、对比缀合物E1以及PBS空白对照。所有动物根据体重计算药量,采用皮下注射方式单次给药,siRNA缀合物给药剂量(以siRNA的量计)为3mg/kg和1mg/kg,体积为5ml/kg。各siRNA缀合物分别以PBS水溶液提供,根据给药剂量和给药体积,换算出缀合物应配置的浓度。在给药前(记为-1天)与给药后第7、14、21、28、35、56、70、84、98、112、126、140、154、168天对小鼠眼眶静脉丛取血,采用与实验例4-2相同的方法检测各时间点的血脂水平。结果如图56A和56B所示。
由图56A和56B可以看出,在给药后不同时间点,PBS空白对照组和对比缀合物E1阴性对照组对血脂未显示出任何抑制作用;与之相比,缀合物E1能够明显降低TG和CHO,对于TG,高剂量组最大抑制率出现在给药后第7 天,为92.9%,低剂量组最大抑制率出现在给药后第21天,为79.1%。高剂量组在单次给药后长达154天内,对TG的抑制率始终维持在55%以上;低剂量组在单次给药后长达98天内,对TG的抑制率始终维持在55%以上。对于CHO,高剂量组最大抑制率出现在给药后第14天,为82.9%,低剂量组最大抑制率出现在给药后第14天,为65.9%。高剂量组在单次给药后长达154天内,对CHO的抑制率始终维持在40%以上;低剂量组在单次给药后长达56天内,对CHO的抑制率始终维持在40%以上。图56A和56B表明缀合物E1在单次给药168天内能够持续稳定高效地降低血脂水平。
在另外的实验中,采用与上述相同的实验方法,区别在于:所给予的缀合物为缀合物E2和对比缀合物E2;血脂检测持续到给药后第70天,其结果示于图57A-57D中。
图57A和57B显示,在给药后不同时间点,两个剂量下的缀合物E2对CHO的抑制效果。对于高剂量组,单次给药后21天,CHO最大抑制率达74.3%;给药后长达70天内,CHO的抑制率始终维持在50%以上。对于低剂量组,CHO最大抑制率出现在给药后14天,为59.5%。
图57C和57D显示,在给药后不同时间点,两个剂量下的缀合物2对TG的抑制效果。对于高剂量组,单次给药后14天,TG最大抑制率达96.3%;给药后长达70天内,TG的抑制率始终维持在70%以上。对于低剂量组,TG最大抑制率出现在给药后14天,为75.3%。
由图57A-57D可见,缀合物E2在单次给药70天内能够持续降低血脂水平,且明显优于同等剂量下的对比缀合物E2。
实验例E5 siRNA缀合物在非人灵长类体内对ANGPTL3 mRNA表达量的抑制效率检测,以及对血脂的抑制效果检测。
将代谢综合症猴12只(全部为雄性)随机分组,其中8只给予缀合物E2,4只给予对比缀合物E1。各siRNA缀合物分别用注射用生理盐水溶解,药物浓度(以siRNA的量计)为100mg/ml。所有动物根据体重计算药量,采用皮下注射方式单次给药,给药剂量均为9mg/kg,注射量为0.09ml/kg,每个注射点不超过2ml。
给药前3周,每周静脉取血一次,检测血脂、肝功、血常规等指标。给药后第7、14、21、28、35天分别再次检测上述各项指标。
标准化的血脂水平=(给药后测试组血脂含量/给药前测试组血脂含量)×100%。
血脂水平的抑制率=(1-给药后测试组血脂含量/给药前测试组血脂含量)×100%。血脂指总胆固醇或甘油三酯。
给药前血脂含量为给药前3周的血脂含量均值,记为第0天(D0)的基准数据。血脂抑制效果见图58A-58B。
图58A-58B显示,单次给药后第28天,相对于给药前,缀合物E2对TG的最大抑制率达68%,对CHO的最大抑制率达30%。
给药当天(记为给药前)及给药后第28天进行肝脏穿刺活检,用以检测肝脏组织ANGPTL3 mRNA表达水平。实时荧光定量PCR的检测方法与实验例4-1相同,区别在于检测引物不同,所用引物序列如表11E所示。ANGPTL3 mRNA抑制率见图58C。
表11E引物序列
Figure PCTCN2018118212-appb-000134
Figure PCTCN2018118212-appb-000135
图58C显示,单次给药第28天后,相对于给药前,缀合物E2对ANGPTL3 mRNA的抑制率高达83%。
在给药后各时间点检测其他指标,未发现血小板、谷丙转氨酶、谷草转氨酶的异常变化,说明缀合物E2相对安全,未发现明显的毒副作用。
由图58A-58C可以看出,缀合物E2在非人灵长类中显示出明显的降低血脂以及抑制ANGPTL3基因表达的效果,同时表现出相对的安全性。
上述结果表明,本发明提供的siRNA及缀合物能够有效降低肝脏中ANGPTL3 mRNA的表达,降低血液中总胆固醇、甘油三酯含量,可预防和/或治疗血脂异常,具有良好的临床应用前景。
以下对表4F的siRNA缀合物的效果实验进行说明。
实验例F1 本实验考察本发明的siRNA缀合物在体外(in vitro)的抑制活性
实验例F1-1 体外psiCHECK系统中的在靶活性
本实验例考察了缀合物F20在体外psiCHECK系统中的在靶活性,即测定了缀合物F20靶向完全匹配目标序列(其核苷酸序列与所述缀合物反义链的全长核苷酸序列完全互补)的活性。
使用如实验例A1-6的方法对缀合物F20进行测试,结果如图59所示。结果表明,缀合物F20具有较好的体外抑制活性。
实验例F1-2 体外psiCHECK系统中IC 50的测定
本实验例考察了缀合物F1在体外psiCHECK系统中的IC 50
采用与实验例F1-1相同的方法构建缀合物F1的在靶质粒,缀合物F1的终浓度(以siRNA的浓度计算)自1nM起始,倍比稀释11个浓度,至0.001nM。根据采用不同缀合物浓度所测得的活性结果,利用Graphpad 5.0软件log(inhibitor)vs.response-Variable slope功能来拟合剂量-效应曲线,根据剂量-效应曲线计算缀合物F1的IC 50值。
Figure PCTCN2018118212-appb-000136
式中:
Y是残留mRNA的表达水平,
X为转染siRNA浓度的对数值,
Bot是稳态期底部的Y值,
Top是稳态期顶部的Y值,
LogIC 50是当Y在底部到顶部之间一半时的X值,而HillSlope则是曲线的斜率。
检测可得,缀合物F1在体外psiCHECK系统中的IC 50为0.0174nM,说明本公开的siRNA缀合物在体外具有较高活性。
实验例F1-3 体外细胞系中IC 50的测定
本实验例考察了缀合物F2在体外Huh7细胞中对APOC3 mRNA表达量的 抑制效率。
使用Lipofectamine TM2000将缀合物F2转染至人类肝癌细胞株Huh7中,siRNA缀合物终浓度(以siRNA的量计)自3nM起始,3倍稀释7个浓度,至0.004nM。每个浓度2个复孔。
通过实时荧光定量PCR(Quantitative Real-Time PCR)分别检测转染了各浓度的缀合物F2的Huh7细胞中APOC3 mRNA的表达量。具体步骤为:培养转染的细胞24小时后,使用Trizol(Thermo Fisher公司)根据总RNA提取的标准操作步骤提取细胞中的总RNA;分别取1μg总RNA,使用反转录试剂盒(Promega公司,货号A3500)按其说明书的操作方法反转录得到cDNA。使用2×Ultra SYBR Mixture(with ROX)(北京康为世纪生物科技有限公司,货号CW0956)试剂盒,以cDNA为模板按照说明书的步骤进行APOC3 mRNA表达量的检测。其中,用于扩增APOC3和作为内参基因的β-actin的PCR引物如表5F所示。
表5F检测引物的序列
Figure PCTCN2018118212-appb-000137
APOC3 mRNA表达量按如下等式计算:APOC3 mRNA表达量=[(测试组APOC3 mRNA的表达量/测试组β-Actin mRNA的表达量)/(对照组APOC3 mRNA的表达量/对照组β-Actin mRNA的表达量)]×100%。
缀合物对APOC3 mRNA表达水平的抑制率按如下等式计算:抑制率=[1-(测试组APOC3 mRNA的表达量/测试组β-Actin mRNA的表达量)/(对照组APOC3 mRNA的表达量/对照组β-Actin mRNA的表达量)]×100%。其中,各测试组为分别经各浓度缀合物2处理的Huh7细胞,对照组为未经缀合物F2处理的Huh7细胞。
根据采用不同浓度缀合物F2所测得的对APOC3 mRNA表达水平的抑制率,采用与实验例F1-2相同的方法计算IC 50,可得缀合物F2在体外Huh7细胞中的IC 50为0.0085nM,说明本公开的siRNA缀合物在体外具有较高活性。
实验例F2 本实验考察本发明的siRNA缀合物在体内(in vivo)对APOC3 mRNA表达量的抑制效率
实验例F2-1 本实验例考察缀合物F1在人APOC3转基因小鼠体内对肝脏组织中APOC3 mRNA表达水平的抑制率。
将人APOC3转基因小鼠(B6;CBA-Tg(APOC3)3707Bres/J)按照甘油三酯含量大于2mmol/L随机分组,每组5只,分别向每组小鼠给予缀合物F1、对比缀合物F1以及生理盐水NS。所有动物根据体重计算药量,采用皮下注射方式单次给药,siRNA缀合物给药剂量(以siRNA的量计)为1mg/kg和0.1mg/kg两个剂量组,缀合物分别以0.2mg/ml和0.02mg/ml浓度的0.9%氯化钠水溶液提供,给药体积为5mL/kg。给药后14天处死小鼠,收集肝脏,用RNA later(Sigma Aldrich公司)保存;随后用组织匀浆仪匀浆肝组织,再用Trizol(Thermo Fisher公司)根据总RNA提取的标准操作步骤提取得到肝组织总RNA。
采用与实验例F1-3相同的实时荧光定量PCR方法检测肝组织中APOC3 mRNA的表达水平。在该荧光定量PCR法中,以β-肌动蛋白(β-actin)基因 作为内参基因,使用针对APOC3的引物和针对β-肌动蛋白的引物分别检测APOC3和β-肌动蛋白的表达量。
检测引物的序列参见表6F。
表6F检测引物的序列
Figure PCTCN2018118212-appb-000138
缀合物对APOC3 mRNA表达水平的抑制率按如下等式计算:抑制率=[1-(测试组APOC3 mRNA的表达量/测试组β-Actin mRNA的表达量)/(对照组APOC3 mRNA的表达量/对照组β-Actin mRNA的表达量)]×100%。其中,对照组为本实验中施以生理盐水的对照组小鼠,各测试组为分别施以不同siRNA缀合物的给药组小鼠。结果示于图60中。
结果显示,缀合物F1对转基因鼠中的人APOC3基因具有显著的抑制作用。
实验例F2-2 本实验例考察缀合物F1在食蟹猴体内对肝脏组织中APOC3 mRNA表达水平的抑制率,以及对血脂水平的影响。
该实验例委托苏州华测生物技术有限公司进行。将2-4kg年龄为3-5岁的食蟹猴随机分为2组,每组一雄一雌,分别给予缀合物F1以及对比缀合物F2。所有动物根据体重计算药量,采用皮下注射方式单次给药,siRNA缀合物给药剂量(以siRNA的量计)为3mg/kg,缀合物分别以3mg/ml浓度的氯化钠注射液(山东科伦药业有限公司)的形式提供,给药体积为1mL/kg。首次给药当天定义为试验第1天(D1)、给药前1天为第0天(D0)。
给药前与给药后第7、14、21、28天对动物进行静脉采血,在各时间点检测血清待测物含量,待测物指血脂(总胆固醇CHO、甘油三酯TG)和转氨酶(谷草转氨酶AST、谷丙转氨酶ALT)。待测物进行标准化处理,各待测物的抑制率按如下等式计算:抑制率=(1-给药后测试组待测物含量/给药前测试组待测物含量)×100%。其中,对甘油三酯的抑制率见表7F。
表7F TG含量及其抑制率
Figure PCTCN2018118212-appb-000139
通过检测给药后各检测点转氨酶含量,未发现肝功能异常。
给药后第28天处死动物,摘取肝脏。大体观察,未发现显著异常。采用与实验例F2-1相同的方法提取肝组织RNA,检测肝中APOC3 mRNA的表达水平。检测引物的序列参见表8F。
表8F检测引物的序列
Figure PCTCN2018118212-appb-000140
实时荧光定量PCR检测可得,相对于对比缀合物F2,缀合物F1对雌性动物的APOC3 mRNA的抑制率为55.3%;对雄性动物的APOC3 mRNA的抑制率为78.5%。
该实验显示,缀合物F1对非人灵长类中的APOC3基因同样具有显著的抑制作用,并对血清TG也有显著的抑制作用,同时并未检测到肝功异常。
实验例F3 本实验考察本发明的siRNA缀合物在体内(in vivo)对血脂含量的影响
实验例F3-1 本实验例考察缀合物F1在人APOC3转基因小鼠体内对血清中总胆固醇(CHO)和甘油三酯(TG)含量的影响。
将人APOC3转基因小鼠(B6;CBA-Tg(APOC3)3707Bres/J)按照TG含量>2mmol/L进行随机分组,每组7只,分组如下:(1)生理盐水对照组;(2)缀合物F1 3mg/kg组;(3)缀合物F1 1mg/kg组。所有动物根据体重计算药量,采用皮下注射方式单次给药,siRNA缀合物分别以0.6mg/ml和0.2mg/ml浓度的0.9%氯化钠水溶液提供,给药体积为5mL/kg。
分别于给药前(记为第0天),及给药后第7、14、21、28、35、42、49、63、77、91、112、133、147、154、161、175、189天对小鼠眼眶静脉丛取血,在各时间点检测血清CHO和TG水平。
眼眶取血每次约100μL,离心后血清不少于20μL,进一步使用PM1P000/3全自动血清生化仪(SABA,意大利)检测血清中总胆固醇(CHO)和甘油三酯(TG)的含量。
标准化的血脂水平=(给药后测试组血脂含量/给药前测试组血脂含量)×100%。
血脂水平的抑制率=(1-给药后测试组血脂含量/给药前测试组血脂含量)×100%。血脂指总胆固醇或甘油三酯。
检测结果示于图61A和61B中。
由图61A和61B可以看出,在给药后不同时间点,缀合物F1显示出明显的降低小鼠血清中TG和CHO的效果,效果能长达189天;表明其能够在长时间内稳定高效地抑制APOC3基因的表达。
实验例F3-2 本实验例考察了缀合物F2在人APOC3转基因小鼠体内对血清中总胆固醇(CHO)和甘油三酯(TG)含量的影响。
按照与实验例F3-1相同的方法进行检测,区别在于,每组小鼠8只,所给予的缀合物为缀合物F2;以0.1、0.3、1、3、9mg/kg五个剂量组分别给药,给药体积不变,相应调整缀合物溶液浓度;测试持续至给药后第112天。结果示于图62A和62B中。
由图62A和62B的结果可知,缀合物F2能够在长达112天的时间内显著降低转基因小鼠中的TG和CHO水平,并且该降低效果存在明显的剂量依赖效应。
实验例F3-3 本实验例比较了缀合物1-3在人APOC3转基因小鼠体内对血清中总胆固醇(CHO)和甘油三酯(TG)含量的影响。
采用与实验例3-1相同的方法对小鼠血清总胆固醇(CHO)和总血脂(TG)进行测量,区别在于:每组小鼠6只,分别给予缀合物F1、F2和F3以及对比缀合物F2,每一种缀合物按1mg/kg和3mg/kg两个剂量组给药,给药体积不变,相应调整缀合物溶液浓度;测试时间直至给药后第112天。结果参见图 63A-图63D。
由图63A-图63D的结果可知,在长达112天的时间内,本公开的缀合物F1-F3在不同剂量下均显示出对转基因小鼠中血脂的持续降低作用,该降低的持续效果总体上优于对比缀合物F2。
上述结果表明,本发明提供的缀合物能够有效降低肝脏中APOC3 mRNA的表达,降低血液中总胆固醇、甘油三酯含量,可预防和/或治疗血脂异常,具有良好的临床应用前景。
以下对表4G的siRNA缀合物的效果实验进行说明。
实验例G1 本实验说明本公开的siRNA缀合物在体外具有较高活性的同时,还具有低脱靶效应。
本实验例中所使用的HEK293A细胞由北京大学分子医学研究所核酸技术实验室提供,用含有20%的胎牛血清(FBS,Hyclone公司)及0.2体积%的青链霉素双抗(Penicillin-Streptomycin,Gibco,Invitrogen公司)的DMEM完全培养基(Hyclone公司)培养细胞,于37℃在含5%CO 2/95%空气的培养箱中培养。
本实验例考察了缀合物G2在体外psiCHECK系统中的在靶活性及脱靶效应,即测定了缀合物G2靶向完全匹配目标序列(其核苷酸序列与缀合物G2反义链/正义链的全长核苷酸序列完全互补)或靶向种子区域匹配目标序列(其核苷酸序列与缀合物G2的反义链/正义链的1-8位核苷酸序列互补)的活性。
参照实验例A1-6的方法对缀合物G2进行检测,区别之处在于,根据缀合物G2的序列构建4组目标序列;对于GSCM在靶质粒,缀合物G2的终浓度(以siRNA的浓度计算)自1nM起始,倍比稀释11个浓度,至0.000977nM;对于另外3个脱靶质粒,缀合物G2的终浓度自10nM起始,4倍稀释10个浓度,至0.000038nM。
对于GSCM,缀合物G2的IC 50为0.0513nM(R 2=0.9911);对于PSCM、GSSM、PSSM,缀合物G2在各个siRNA浓度下都未见明显的抑制效果,说明本公开的siRNA缀合物在体外具有较高活性的同时,还具有低的脱靶效应。
实验例G2 本实验说明本公开的siRNA缀合物在体外溶酶体裂解液中的稳定性
1)鼠源溶酶体裂解液中稳定性检测
经溶酶体裂解液处理的测试样品制备:将缀合物G2以及对比siRNA1(20μM)各6μl分别与27.2μL柠檬酸钠水溶液(pH5.0)、4.08μL去离子水和2.72μL鼠源溶酶体裂解液(Rat Liver Tritosomes,Xenotech公司,货号R0610.LT,批号1610069)混匀,酸性磷酸酶终浓度为0.2mU/μL。37℃恒温孵育。分别在0、1、2、4、6、24小时各取出5μl混合液,加入到15μL 9M的尿素溶液中变性,随后加入4μl 6×上样缓冲液(索莱宝公司,货号20160830),立即冷冻于-80℃冰箱终止反应。0小时表示,将待测样品与溶酶体裂解液混匀后,立即取出的时刻。
未经溶酶体裂解液处理的参比样品制备:取等摩尔量的缀合物G2以及对比siRNA1(20μM)各1.5μl分别与7.5μL柠檬酸钠水溶液(pH5.0)、1μL去离子水混匀,加入30μL 9M的尿素溶液变性,随后加入8μL 6×上样缓冲液混匀,立即冷冻于-80℃冰箱终止反应。对于每一样品,将其参比样品标记为M,用于与该样品的电泳结果形成对照。
配制16重量%的非变性聚丙烯酰胺凝胶,上述测试样品及参比样品各取20μl上样至凝胶,在20mA恒流条件下电泳10min后,继续在40mA恒流条件下电泳30min。电泳结束后,将凝胶置于摇床上,用Gelred染料(BioTium公司,货号13G1203)染色10min。凝胶成像观察并拍照,结果如图64所示。
2)人源溶酶体裂解液中稳定性检测
采用与1)相同的方法检测对比siRNA1及缀合物G2在人源溶酶体裂解液中的稳定性,只是将鼠源溶酶体裂解液换成人源溶酶体裂解液(Human Liver Lysosomes,Xenotech公司,货号H0610.L,批号1610316),结果如图65所示。
图64和65的结果表明,本公开的siRNA缀合物无论在人源溶酶体裂解液还是在鼠源溶酶体裂解液中,都表现出令人满意的稳定性,至少能够维持24小时不降解。
实验例G3 本实验说明本公开的siRNA缀合物在HBV模型小鼠中对HBV mRNA表达量的抑制效率
1)本实验例考察了缀合物G1和缀合物G2在HBV模型小鼠C57BL/6J-Tg(Alb1HBV)44Bri/J中对HBV mRNA表达量的抑制效率。
本实验例中所使用的C57BL/6J-Tg(Alb1HBV)44Bri/J小鼠购自北京大学医学部实验动物科学部。用0.9%氯化钠水溶液将缀合物G2配制成浓度为0.2mg/ml(以siRNA的浓度计算)的溶液。用0.9%氯化钠水溶液将缀合物1配制成浓度为0.2mg/ml和0.06mg/ml(以siRNA的浓度计算)的溶液
使用乙型肝炎病毒表面抗原诊断试剂盒(酶联免疫法)(上海科华生物)检测小鼠血清HBsAg含量,选取S/COV>10的小鼠,随机分成2组(均为雌性),每组6只,分别记为对照组和测试组。各组动物于第1天皮下注射各种药物,给药体积为5mL/kg。按照体重计算给药体积。其中,对照组,注射生理盐水;测试组动物注射缀合物G2,给药剂量为1mg/kg。给药后第28天将所有动物处死,对动物进行大体解剖,观察体内脏器是否有病变,对肉眼观察有病变的组织用10%福尔马林保存进一步进行病理观察,收集肝脏,用RNA later(Sigma Aldrich公司)保存;用组织匀浆仪匀浆肝组织,再用Trizol根据总RNA提取的标准操作步骤提取得到总RNA。
采用实时荧光定量PCR检测肝组织中HBV mRNA的表达水平,具体地:使用ImProm-II TM反转录试剂盒(Promega公司)按其说明书将提取的总RNA逆转录为cDNA,接着用荧光定量PCR试剂盒(北京康为世纪生物科技有限公司)检测siRNA对肝组织中的HBV mRNA表达的抑制效率。在该荧光定量PCR法中,以β-肌动蛋白(β-actin)基因作为内参基因,使用针对HBV的引物和针对β-肌动蛋白的引物分别对HBV和β-肌动蛋白进行检测。
检测引物的序列参见表5A。
在该荧光定量PCR法中,siRNA抑制活性用HBV mRNA抑制率表示,按如下等式计算:HBV mRNA抑制率=(1-HBV基因表达剩余量)×100%,
HBV基因表达剩余量=(测试组HBV基因的拷贝数/测试组β-actin的拷贝数)/(对照组HBV基因的拷贝数/对照组β-actin的拷贝数)×100%,结果示于以下表6G中。
采用相同的方法,检测不同剂量的缀合物1在体内(n=5)对HBV mRNA表达量的抑制效率,结果示于以下表6G中。
表6G siRNA缀合物在小鼠肝脏中对HBV mRNA表达的抑制
Figure PCTCN2018118212-appb-000141
Figure PCTCN2018118212-appb-000142
由上述结果可见,本公开各个实施例的缀合物均显示出了高的小鼠体内HBV mRNA抑制活性。这也说明本公开的siRNA缀合物具有良好的体内递送效率。
2)采用与1)相同的方法,检测缀合物G3-缀合物G20在体内对HBV mRNA的抑制效率,可以预期缀合物G3-缀合物20也有较高的mRNA抑制活性。
实验例G4 本实验说明本公开的siRNA缀合物在HBV模型小鼠中对血清HBsAg、HBeAg和HBV DNA表达量的抑制效率的时间相关性测试
本实验例中所使用的HBV模型小鼠C57B/6N-Tg(1.28HBV)/Vst(基因型A型)购自北京维通达生物技术有限公司。用0.9%氯化钠水溶液将缀合物1配制成浓度为0.6mg/ml和0.2mg/ml(以siRNA的浓度计算)的溶液。
选取血清HBsAg含量大于10 4COI的小鼠(雌雄各半),随机分成3组,每组6只,分别记为对照组,高剂量组和低剂量组。各组动物于第1天皮下注射各种药物,给药体积为5mL/kg。按照体重计算给药体积。所有动物均在上午给药,如需采血,给药在采血后进行。其中,对照组,注射生理盐水;测试组动物注射不同剂量的缀合物G1,高剂量组3mg/kg,低剂量组1mg/kg。在给药前与给药后第7、13、21、28、42、56、70、84、98、112天、126天、140天、154天对小鼠眼眶静脉丛取血,在各时间点检测血清HBsAg、HBeAg和HBV DNA水平。
眼眶取血每次约100μl,离心后血清不少于20μl,用PBS重悬到500μl,送北京迪安医学检验中心检测血清中HBsAg、HBeAg和HBV DNA含量,分别用COI、COI、IU/ml表示。
待测指标(HBsAg、HBeAg和HBV DNA)的归一化水平按如下等式计算:
待测指标的归一化水平=(给药后待测指标的残留含量/给药前待测指标含量)×100%
待测指标的抑制率=(1-待测指标的归一化水平)×100%。
实验数据均以
Figure PCTCN2018118212-appb-000143
表示,数据分析采用Graphpad prism5.0统计分析软件。首先对数据进行正态分布及方差齐性检验。符合正态分布(p>0.20)及方差齐(p>0.10):多组间比较采用单因素方差分析的LSD法进行多重比较,p<0.05认为有统计学意义;不符合正态分布或方差不齐:多组间比较采用非参数检验的Kruskal-Wallis H方法,如果Kruskal-wallis H检验结果显著(p<0.05),再将数据进行秩转换后,进行多组间两两比较,p<0.05认为有统计学意义。
结果如图66-68所示。
由图66可以看出,在给药后不同时间点,施以生理盐水的阴性对照组对血清表面抗原未显示出任何抑制作用;与之相比,两个剂量下的缀合物1在给药后不同时间点对HBsAg均体现出优异的抑制效果。对于高剂量组,单次给药后13天,HBsAg最大抑制率达99.8%;给药后长达84天内,HBsAg的抑制率仍然维持在90%以上;截止到观察结束,HBsAg的抑制效率仍然高达 80.1%。对于低剂量组,给药后13天,HBsAg最大抑制率达99.0%;截止到154天观察结束,HBsAg的抑制效率仍然达到60.8%的水平。
由图67可以看出,缀合物G1同样可以抑制HBeAg的表达,其中高剂量组在给药后70天,对血清HBeAg的表达抑制在50%左右;截止到154天观察结束,HBeAg的抑制效率才反弹至给药前的水平。
由图68可以看出,缀合物G1还可以高效抑制HBV DNA的表达,在长达154天的观察时间内均保持了较高的抑制率。对于高剂量组,单次给药后13天,HBV DNA最大抑制率达99.2%;给药后长达84天内,HBV DNA的抑制率仍然维持在90%以上;截止到观察结束,HBV DNA的抑制效率仍然高达77.0%。对于低剂量组,给药后13天,HBV DNA最大抑制率达95.4%;截止到154天观察结束,HBsAg的抑制效率仍然达到79.4%的水平。
上述结果表明本公开的缀合物能够在较长时间内稳定高效地抑制HBV基因的表达,尤其对表面抗原的长效持久的抑制,显示出优异的效果。
以上详细描述了本公开的具体实施方式,但是,本公开并不限于上述实施方式中的具体细节,在本公开的技术构思范围内,可以对本公开的技术方案进行多种简单变型,这些简单变型均属于本公开的保护范围。
另外需要说明的是,在上述具体实施方式中所描述的各个具体技术特征,在不矛盾的情况下,可以通过任何合适的方式进行组合,为了避免不必要的重复,本公开对各种可能的组合方式不再另行说明。
此外,本公开的各种不同的实施方式之间也可以进行任意组合,只要其不违背本公开的思想,其同样应当视为本公开所公开的内容。

Claims (70)

  1. 一种双链寡核苷酸,所述双链寡核苷酸含有正义链和反义链,所述正义链和反义链的每一个核苷酸均为修饰的核苷酸,其中,所述正义链包含核苷酸序列1,所述反义链包含核苷酸序列2,所述核苷酸序列1和所述核苷酸序列2的长度均为19个核苷酸,所述核苷酸序列1和所述核苷酸序列2至少部分地反向互补形成双链区,所述核苷酸序列2至少部分地与第一段核苷酸序列反向互补,所述第一段核苷酸序列为靶mRNA中的一段核苷酸序列;按照5′末端到3′末端的方向,所述核苷酸序列1的第7、8、9位的核苷酸为氟代修饰的核苷酸,所述核苷酸序列1其他位置的每个核苷酸独立地为非氟代修饰的核苷酸中的一种;所述核苷酸序列2的5′末端的第一个核苷酸是反义链5′末端的第一个核苷酸,所述核苷酸序列2的第2、6、14、16位的核苷酸为氟代修饰的核苷酸,所述核苷酸序列2其他位置的每个核苷酸独立地为非氟代修饰的核苷酸中的一种。
  2. 如权利要求1所述的双链寡核苷酸,其中,核苷酸序列2与第一段核苷酸序列基本上反向互补、基本上完全反向互补或完全反向互补。
  3. 如权利要求2所述的双链寡核苷酸,其中,按照5′末端到3′末端的方向,所述核苷酸序列2的至少第2-19位的核苷酸与第一段核苷酸序列互补。
  4. 如权利要求1-3中任意一项所述的双链寡核苷酸,其中,按照5′末端到3′末端的方向,所述核苷酸序列2的第1位的核苷酸为A或U。
  5. 如权利要求1-4中任意一项所述的双链寡核苷酸,其中,所述核苷酸序列1和所述核苷酸序列2基本上反向互补、基本上完全反向互补或完全反向互补。
  6. 如权利要求1-5中任意一项所述的双链寡核苷酸,其中,所述正义链还含有核苷酸序列3,所述反义链还含有核苷酸序列4,核苷酸序列3和核苷酸序列4的每个核苷酸独立地为非氟代修饰的核苷酸中的一种,所述核苷酸序列3和所述核苷酸序列4的长度各自为1-4个核苷酸,所述核苷酸序列3和所述核苷酸序列4长度相等并且基本上完全反向互补或完全反向互补,所述核苷酸序列3连接在所述核苷酸序列1的5′末端,并且所述核苷酸序列4连接在所述核苷酸序列2的3′末端,所述核苷酸序列4与第二段核苷酸序列基本上完全反向互补或完全反向互补,该第二段核苷酸序列是指和靶mRNA中与第一段核苷酸序列相邻、且长度与所述核苷酸序列4相同的核苷酸序列;所述基本上完全反向互补是指两个核苷酸序列之间存在不多于1个的碱基错配;完全反向互补是指两个核苷酸序列之间没有错配。
  7. 如权利要求1-6中任意一项所述的双链寡核苷酸,其中,所述双链寡核苷酸还含有核苷酸序列5,所述核苷酸序列5的每个核苷酸独立地为非氟代修饰的核苷酸中的一种,所述核苷酸序列5的长度为1至3个核苷酸,连接在所述反义链的3′末端,从而构成所述反义链的3′突出端。
  8. 如权利要求1-7中任意一项所述的双链寡核苷酸,其中,所述核苷酸 序列5的长度为2个核苷酸,并且按照5′末端到3′末端的方向,所述核苷酸序列5为连续的2个胸腺嘧啶脱氧核糖核苷酸、连续的2个尿嘧啶核糖核苷酸、或者与第三段核苷酸序列完全反向互补,所述第三段序列是指靶mRNA中与第一段核苷酸序列或第二段核苷酸序列相邻、并且长度与所述核苷酸序列5相等的核苷酸序列。
  9. 如权利要求1-8中任意一项所述的双链寡核苷酸,其中,每一个非氟代修饰的核苷酸独立地选自核苷酸的核糖基2′位的羟基被非氟基团取代形成的核苷酸或核苷酸类似物中的一种。
  10. 如权利要求1-9中任意一项所述的双链寡核苷酸,其中,核苷酸的核糖基2′位的羟基被非氟基团取代形成的核苷酸选自2′-烷氧基修饰的核苷酸、2′-经取代的烷氧基修饰的核苷酸、2′-烷基修饰的核苷酸、2′-经取代的烷基修饰的核苷酸、2′-氨基修饰的核苷酸、2′-经取代的氨基修饰的核苷酸、2′-脱氧核苷酸中的一种;核苷酸类似物选自异核苷酸、LNA、ENA、cET、UNA和GNA中的一种。
  11. 如权利要求1-10中任意一项所述的双链寡核苷酸,其中,每一个非氟代修饰的核苷酸均为甲氧基修饰的核苷酸,所述甲氧基修饰的核苷酸指核糖基的2′-羟基被甲氧基取代而形成的核苷酸。
  12. 如权利要求1-11中任意一项所述的双链寡核苷酸,其中,所述正义链和所述反义链中至少一条单链的磷酸-糖骨架中的磷酸酯基中的至少1个为具有修饰基团的磷酸酯基。
  13. 如权利要求12所述的双链寡核苷酸,其中,所述具有修饰基团的磷酸酯基为磷酸酯基中的磷酸二酯键中的至少一个氧原子被硫原子取代而形成的硫代磷酸酯基。
  14. 如权利要求12或13所述的双链寡核苷酸,其中,所述具有修饰基团的磷酸酯基为具有如式(121)所示结构的硫代磷酸酯基:
    Figure PCTCN2018118212-appb-100001
  15. 如权利要求13或14所述的双链寡核苷酸,其中,所述双链寡核苷酸中,硫代磷酸酯连接存在于由以下位置所组成的组中的至少一处:
    所述正义链的5′末端端部第1个核苷酸和第2个核苷酸之间;
    所述正义链的5′末端端部第2个核苷酸和第3个核苷酸之间;
    所述正义链的3′末端端部第1个核苷酸和第2个核苷酸之间;
    所述正义链的3′末端端部第2个核苷酸和第3个核苷酸之间;
    所述反义链的5′末端端部第1个核苷酸和第2个核苷酸之间;
    所述反义链的5′末端端部第2个核苷酸和第3个核苷酸之间;
    所述反义链的3′末端端部第1个核苷酸和第2个核苷酸之间;以及
    所述反义链的3′末端端部第2个核苷酸和第3个核苷酸之间。
  16. 如权利要求1-15中任意一项所述的双链寡核苷酸,其中,所述反义链的5′末端核苷酸为5′-磷酸核苷酸或5′-磷酸类似物修饰的核苷酸。
  17. 如权利要求16所述的双链寡核苷酸,其中,所述5′-磷酸核苷酸或5′-磷酸类似物修饰的核苷酸为由式(122)-式(126)中的一个表示的核苷酸:
    Figure PCTCN2018118212-appb-100002
    其中,R表示选自于由H、OH、F和甲氧基所组成的组的基团;Base表示选自A、U、C、G或T的碱基。
  18. 如权利要求1-17中任意一项所述的双链寡核苷酸,其中,所述双链寡核苷酸是saRNA。
  19. 如权利要求1-17中任意一项所述的双链寡核苷酸,其中,所述双链寡核苷酸是siRNA。
  20. 如权利要求19所述的双链寡核苷酸,其中,所述靶mRNA选自以下基因对应的mRNA中的一种:ApoB、ApoC、ANGPTL3、PCSK9、SCD1、TIMP-1、Col1A1、FVII、STAT3、p53、HBV、HCV。
  21. 如权利要求19所述的双链寡核苷酸,其中,所述靶mRNA选自乙型肝炎病毒的mRNA、血管生成素样蛋白3基因表达的mRNA或者载脂蛋白C3基因表达的mRNA。
  22. 如权利要求21所述的双链寡核苷酸,其中,
    所述核苷酸序列1为SEQ ID NO:1所示的序列,所述核苷酸序列2为SEQ ID NO:2所示的序列;或者
    所述核苷酸序列1为SEQ ID NO:3所示的序列,所述核苷酸序列2为SEQ ID NO:4所示的序列;或者
    所述核苷酸序列1为SEQ ID NO:5所示的序列,所述核苷酸序列2为SEQ ID NO:6所示的序列;或者
    所述核苷酸序列1为SEQ ID NO:7所示的序列,所述核苷酸序列2为SEQ ID NO:8所示的序列;或者
    所述核苷酸序列1为SEQ ID NO:9所示的序列,所述核苷酸序列2为SEQ ID NO:10所示的序列;或者
    所述核苷酸序列1为SEQ ID NO:11所示的序列,所述核苷酸序列2为SEQ ID NO:12所示的序列;或者
    所述核苷酸序列1为SEQ ID NO:13所示的序列,所述核苷酸序列2为SEQ ID NO:14所示的序列:
    5′-CmCmUmUmGmAmGfGfCfAmUmAmCmUmUmCmAmAmAm-3′(SEQ ID NO:1)
    5′-UmUfUmGmAmAfGmUmAmUmGmCmCmUfCmAfAmGmGm-3′(SEQ ID NO:2)
    5′-UmGmCmUmAmUmGfCfCfUmCmAmUmCmUmUmCmUmAm-3′(SEQ ID NO:3)
    5′-UmAfGmAmAmGfAmUmGmAmGmGmCmAfUmAfGmCmAm-3′(SEQ ID NO:4)
    5′-UmCmUmGmUmGmCfCfUfUmCmUmCmAmUmCmUmGmAm-3′(SEQ ID NO:5)
    5′-UmCfAmGmAmUfGmAmGmAmAmGmGmCfAmCfAmGmAm-3′(SEQ ID NO:6)
    5′-CmGmUmGmUmGmCfAfCfUmUmCmGmCmUmUmCmAmAm-3′(SEQ ID NO:7)
    5′-UmUfGmAmAmGfCmGmAmAmGmUmGmCfAmCfAmCmGm-3′(SEQ ID NO:8)
    5′-GmAmAmAmGmUmAfUfGfUmCmAmAmCmGmAmAmUmAm-3′(SEQ ID NO:9)
    5′-UmAfUmUmCmGfUmUmGmAmCmAmUmAfCmUfUmUmCm-3′(SEQ ID NO:10)
    5′-CmCmAmAmGmAmGfCfAfCmCmAmAmGmAmAmCmUmAm-3′(SEQ ID No:11)
    5′-UmAfGmUmUmCfUmUmGmGmUmGmCmUfCmUfUmGmGm-3′(SEQ ID No:12)
    5′-CmAmAmUmAmAmAfGfCfUmGmGmAmCmAmAmGmAmAm-3′(SEQ ID No:13)
    5′-UmUfCmUmUmGfUmCmCmAmGmCmUmUfUmAfUmUmGm-3′(SEQ ID No:14)
    其中,大写字母C、G、U、A表示核苷酸的碱基组成;小写字母m表示该字母m左侧相邻的一个核苷酸为2′-甲氧基修饰的核苷酸;小写字母f表示该字母f左侧相邻的一个核苷酸为2′-氟修饰的核苷酸。
  23. 一种药物组合物,其特征在于,该药物组合物含有权利要求1-22中任意一项所述的双链寡核苷酸和药学上可接受的载体。
  24. 如权利要求23所述的药物组合物,其中,所述双链寡核苷酸与所述药学上可接受的载体的重量比为1∶(1-500)。
  25. 如权利要求23或24所述的药物组合物,其中,所述双链寡核苷酸与所述药学上可接受的载体的重量比为1∶(1-50)。
  26. 如权利要求23-25中任意一项所述的药物组合物,其中,所述药学上可接受的载体包含有机胺、辅助脂质和聚乙二醇化脂质;其中,所述有机胺为如式(201)所示的化合物和/或其药学上可接受的盐:
    Figure PCTCN2018118212-appb-100003
    其中:
    X 101和X 102各自独立地是O、S、N-A或C-A,其中A是氢或C1-C20烃链;
    Y和Z各自独立地是C=O、C=S、S=O、CH-OH或SO 2
    R 101、R 102、R 103、R 104、R 105、R 106和R 107各自独立地是氢,环状或无环 的、被取代的或未被取代的、支链或直链脂族基团,环状或无环的、被取代的或未被取代的、支链或直链杂脂族基团,被取代的或未被取代的、支链或直链酰基,被取代的或未被取代的、支链或直链芳基,被取代的或未被取代的、支链或直链杂芳基;
    x是1-10的整数;
    n是1-3的整数,m是0-20的整数,p是0或1;并且其中,当m和p均为0时,R 102是氢;
    并且,如果n或m中的至少一个是2,那么R 103和在式(201)中的氮形成如式(202)或式(203)所示的结构:
    Figure PCTCN2018118212-appb-100004
    其中,g、e和f各自独立地是1-6的整数,“HCC”表示烃链,且每个*N代表式(201)中示出的氮原子。
  27. 如权利要求26所述的药物组合物,其中,所述有机胺为如式(214)所示的有机胺和/或如式(215)所示的有机胺:
    Figure PCTCN2018118212-appb-100005
    Figure PCTCN2018118212-appb-100006
    所述辅助脂质为胆固醇、胆固醇的类似物和/或胆固醇的衍生物;并且
    所述聚乙二醇化脂质为1,2-二棕榈酰胺-sn-甘油-3-磷脂酰乙醇胺-N-[甲氧基(聚乙二醇)]-2000。
  28. 如权利要求26或27所述的药物组合物,其中,所述有机胺、所述辅助脂质和所述聚乙二醇化脂质三者之间的摩尔比为(19.7-80)∶(19.7-80)∶(0.3-50)。
  29. 如权利要求26-28中任意一项所述的药物组合物,其中,所述有机胺、所述辅助脂质和所述聚乙二醇化脂质三者之间的摩尔比为(50-70)∶(20-40)∶(3-20)。
  30. 一种寡核苷酸缀合物,所述缀合物包含权利要求1-23中任意一项所述的双链寡核苷酸以及缀合连接至该双链寡核苷酸的缀合基团。
  31. 如权利要求30所述的寡核苷酸缀合物,其中,所述缀合基团包含药学上可接受的靶向基团和接头,并且所述双链寡核苷酸、所述接头和所述靶向基团依次共价或非共价连接。
  32. 如权利要求31所述的寡核苷酸缀合物,其中,所述双链寡核苷酸、所述接头和所述靶向基团依次共价连接。
  33. 如权利要求31或32所述的寡核苷酸缀合物,其中,所述接头具有如式(301)所示的结构:
    Figure PCTCN2018118212-appb-100007
    其中,k为1-3的整数;
    L A为具有如式(302)所示结构的包含酰胺键的链状部分,每个所述L A在其两端分别与一个所述靶向基团和所述L C部分通过醚键相连接:
    Figure PCTCN2018118212-appb-100008
    L B为具有如式(303)所示结构的包含N-酰基吡咯烷的链状部分,所述链状部分在其一端具有羰基并与所述L C部分通过酰胺键相连接,在另一端具有氧原子并与所述双链寡核苷酸通过磷酸酯键相连接:
    Figure PCTCN2018118212-appb-100009
    L C为基于羟甲基氨基甲烷、二羟甲基氨基甲烷或三羟甲基氨基甲烷的2-4价连接基团,所述L C经由氧原子与各个所述L A部分通过醚键相连接,并且经由氮原子与所述L B部分通过酰胺键相连接。
  34. 如权利要求31-33中任意一项所述的寡核苷酸缀合物,其中,所述接头连接至所述双链寡核苷酸的正义链5′或3′末端。
  35. 如权利要求30-34中任意一项所述的寡核苷酸缀合物,其中,所述寡核苷酸缀合物具有如式(305)所示的结构:
    Figure PCTCN2018118212-appb-100010
    其中,双螺旋结构表示所述双链寡核苷酸;并且
    所述接头连接至所述双链寡核苷酸的正义链5′或3′末端。
  36. 如权利要求31或32所述的寡核苷酸缀合物,其中,所述接头具有式(306)所示的结构:
    Figure PCTCN2018118212-appb-100011
    其中,1为0-5的整数,优选1-3的整数;
    *表示所述接头上通过醚键与所述靶向基团连接的位点;
    #表示所述接头上通过磷酸酯键与所述双链寡核苷酸连接的位点。
  37. 如权利要求36所述的寡核苷酸缀合物,其中,所述接头连接至所述双链寡核苷酸的正义链3′末端。
  38. 如权利要求31-32和36-37中任意一项所述的寡核苷酸缀合物,其中,所述寡核苷酸缀合物具有如式(307)所示的结构:
    Figure PCTCN2018118212-appb-100012
    其中,双螺旋结构表示所述双链寡核苷酸;并且
    所述接头连接至所述双链寡核苷酸的正义链3′末端。
  39. 如权利要求31所述的寡核苷酸缀合物,其中,所述缀合物具有式(308)所示的结构:
    Figure PCTCN2018118212-appb-100013
    其中,n1为选自1-3的整数,n3为选自0-4的整数;
    m1、m2和m3独立地为选自2-10的整数;
    R 10、R 11、R 12、R 13、R 14和R 15各自独立地为H,或选自于由以下基团所组成的组:C 1-C 10烷基、C 1-C 10卤代烷基以及C 1-C 10烷氧基;
    R 3为式A59所示结构的基团:
    Figure PCTCN2018118212-appb-100014
    其中,E 1为OH、SH或BH 2,Nu为双链寡核苷酸;
    R 2是长度为1-20个碳原子的直链亚烷基,其中一个或多个碳原子任选地被选自于以下基团所组成的组中的一个或多个所替换:C(O)、NH、O、S、CH=N、S(O) 2、C 2-C 10亚烯基、C 2-C 10亚炔基、C 6-C 10亚芳基、C 3-C 18亚杂环基和C 5-C 10亚杂芳基,并且其中,R 2可任选地具有由以下基团所组成的组中的任何一个或多个的取代基:C 1-C 10烷基、C 6-C 10芳基、C 5-C 10杂芳基、C 1-C 10卤代烷基、-OC 1-C 10烷基、-OC 1-C 10烷基苯基、-C 1-C 10烷基-OH、-OC 1-C 10卤代烷基、-SC 1-C 10烷基、-SC 1-C 10烷基苯基、-C 1-C 10烷基-SH、-SC 1-C 10卤代烷基、卤素取代基、-OH、-SH、-NH 2、-C 1-C 10烷基-NH 2、-N(C 1-C 10烷基)(C 1-C 10烷基)、-NH(C 1-C 10烷基)、氰基、硝基、-CO 2H、-C(O)O(C 1-C 10烷基)、-CON(C 1-C 10烷基)(C 1-C 10烷基)、-CONH(C 1-C 10烷基)、-CONH 2,-NHC(O)(C 1-C 10烷基)、-NHC(O)(苯基)、-N(C 1-C 10烷基)C(O)(C 1-C 10烷基)、-N(C 1-C 10烷基)C(O)(苯基)、-C(O)C 1-C 10烷基、-C(O)C 1-C 10烷基苯基、-C(O)C 1-C 10卤烷基、-OC(O)C 1-C 10烷基、-SO 2(C 1-C 10烷基)、-SO 2(苯基)、-SO 2(C 1-C 10卤代烷基)、-SO 2NH 2、-SO 2NH(C 1-C 10烷基)、-SO 2NH(苯基)、-NHSO 2(C 1-C 10烷基)、-NHSO 2(苯基)和-NHSO 2(C 1-C 10卤代烷基);
    每个L 1是长度为1-70个碳原子的直链亚烷基,其中一个或多个碳原子任选地被选自于以下基团所组成的组中的一个或多个所替换:C(O)、NH、O、S、CH=N、S(O) 2、C 2-C 10亚烯基、C 2-C 10亚炔基、C 6-C 10亚芳基、C 3-C 18亚杂环基和C 5-C 10亚杂芳基,并且其中,L 1可任选地具有由以下基团所组成的组中的任何一个或多个的取代基:C 1-C 10烷基、C 6-C 10芳基、C 5-C 10杂芳基、C 1-C 10卤代烷基、-OC 1-C 10烷基、-OC 1-C 10烷基苯基、-C 1-C 10烷基-OH、-OC 1-C 10卤代烷基、-SC 1-C 10烷基、-SC 1-C 10烷基苯基、-C 1-C 10烷基-SH、-SC 1-C 10卤代烷基、卤素取代基、-OH、-SH、-NH 2、-C 1-C 10烷基-NH 2、-N(C 1-C 10烷基)(C 1-C 10烷基)、-NH(C 1-C 10烷基)、氰基、硝基、-CO 2H、-C(O)O(C 1-C 10烷基)、-CON(C 1-C 10烷基)(C 1-C 10烷基)、-CONH(C 1-C 10烷基)、-CONH 2,-NHC(O)(C 1-C 10烷基)、-NHC(O)(苯基)、-N(C 1-C 10烷基)C(O)(C 1-C 10烷基)、-N(C 1-C 10烷基)C(O)(苯基)、-C(O)C 1-C 10烷基、-C(O)C 1-C 10烷基苯基、-C(O)C 1-C 10卤烷基、-OC(O)C 1-C 10烷基、-SO 2(C 1-C 10烷基)、-SO 2(苯基)、-SO 2(C 1-C 10卤代烷基)、-SO 2NH 2、-SO 2NH(C 1-C 10烷基)、-SO 2NH(苯基)、-NHSO 2(C 1-C 10烷基)、-NHSO 2(苯基)和-NHSO 2(C 1-C 10卤代烷基);
    Figure PCTCN2018118212-appb-100015
    表示基团连接至分子其余部分的位点;M 1表示靶向基团。
  40. 如权利要求39所述的寡核苷酸缀合物,其中,每个L 1独立地选自式A1-A26基团中的一种或多种的连接组合:
    Figure PCTCN2018118212-appb-100016
    Figure PCTCN2018118212-appb-100017
    其中,j1为1-20的整数;j2为1-20的整数;
    R’为C 1-C 10的烷基;
    Ra选自由式A27-A45基团或其任意组合所组成的组:
    Figure PCTCN2018118212-appb-100018
    Rb为C 1-C 10的烷基。
  41. 如权利要求40所述的寡核苷酸缀合物,其中,L 1选自A1、A4、A5、A6、A8、A10、A11、A13中的一种或多种的连接组合。
  42. 如权利要求41所述的寡核苷酸缀合物,其中,L 1选自A1、A4、A8、A10和A11中至少2个的连接组合。
  43. 如权利要求42所述的寡核苷酸缀合物,其中,L 1选自A1、A8、A10中至少2个的连接组合。
  44. 如权利要求39-43中任意一项所述的寡核苷酸缀合物,其中,L 1的长度为3-25个原子。
  45. 如权利要求44所述的寡核苷酸缀合物,其中,L 1的长度为4-15个原子。
  46. 如权利要求40-45中任意一项所述的寡核苷酸缀合物,其中,j1为2-10的整数,j2为2-10的整数,R’为C1-C4的烷基,Ra为A27、A28、A29、A30和A31中的一种,Rb为C1-C5的烷基。
  47. 如权利要求46所述的寡核苷酸缀合物,其中,j1为3-5的整数,j2为3-5的整数,R’为甲基、乙基和异丙基中的一种,Ra为A27或A28,Rb为甲基、乙基、异丙基和丁基中的一种。
  48. 如权利要求39-47中任意一项所述的寡核苷酸缀合物,其中,n 1和n 2各自独立地为1或2。
  49. 如权利要求39-48中任意一项所述的寡核苷酸缀合物,其中,n1+n3=2-3。
  50. 如权利要求39-51中任意一项所述的寡核苷酸缀合物,其中,每个m 1、每个m 2和每个m 3各自独立地为选自2-5的整数。
  51. 如权利要求45-55中任意一项所述的寡核苷酸缀合物,其中,m1=m2=m3。
  52. 如权利要求31-34、36-37和39-51中任一项所述的siRNA缀合物,其中,每个所述靶向基团选自能够和细胞表面受体结合的配体。
  53. 如权利要求52所述的siRNA缀合物,其中,每个所述靶向基团选自与哺乳动物肝细胞表面的去唾液酸糖蛋白受体亲和的配体。
  54. 如权利要求53所述的siRNA缀合物,其中,每个所述靶向基团独立地为去唾液酸糖蛋白或糖。
  55. 如权利要求58所述的siRNA缀合物,其中,每个所述靶向基团独立地选自D-吡喃甘露糖、L-吡喃甘露糖、D-阿拉伯糖、D-呋喃木糖、L-呋喃木糖、D-葡萄糖、L-葡萄糖、D-半乳糖、L-半乳糖、α-D-呋喃甘露糖、β-D-呋喃甘露糖、α-D-吡喃甘露糖、β-D-吡喃甘露糖、α-D-吡喃葡萄糖、β-D-吡喃葡萄糖、α-D-呋喃葡萄糖、β-D-呋喃葡萄糖、α-D-呋喃果糖、α-D-吡喃果糖、α-D-吡喃半乳糖、β-D-吡喃半乳糖、α-D-呋喃半乳糖、β-D-呋喃半乳糖、葡糖胺、唾液酸、半乳糖胺、N-乙酰基半乳糖胺、N-三氟乙酰基半乳糖胺、N-丙酰基半乳糖胺、N-正丁酰基半乳糖胺、N-异丁酰基半乳糖胺、2-氨基-3-O-[(R)-1-羧乙基]-2-脱氧-β-D-吡喃葡萄糖、2-脱氧-2-甲基氨基-L-吡喃葡萄糖、4,6-二脱氧-4-甲酰胺基-2,3-二-O-甲基-D-吡喃甘露糖、2-脱氧-2-磺氨基-D-吡喃葡萄糖、N-乙醇酰基-α-神经氨酸、5-硫代-β-D-吡喃葡萄糖、2,3,4-三-O-乙酰基-1-硫代-6-O-三苯甲基-α-D-吡喃葡萄糖苷甲酯、4-硫代-β-D-吡喃半乳糖、3,4,6,7-四-O-乙酰基-2-脱氧-1,5-二硫代-α-D-吡喃葡庚糖苷乙酯、2,5-脱水-D-阿洛糖腈、核糖、D-核糖、D-4-硫代核糖、L-核糖、L-4-硫代核糖中的一种。
  56. 如权利要求55所述的寡核苷酸缀合物,其中,至少一个或每个所述靶向基团为半乳糖或N-乙酰半乳糖胺GalNAc。
  57. 如权利要求39-56中任意一项所述的寡核苷酸缀合物,其中,每个R 10、R 11、R 12、R 13、R 14和R 15独立地为H、甲基或乙基。
  58. 如权利要求39-57中任意一项所述的寡核苷酸缀合物,其中,R 2与所述含氮骨架上的N形成酰胺键;。
  59. 如权利要求58所述的寡核苷酸缀合物,其中,R 2选自B5、B6、B5’或B6’:
    Figure PCTCN2018118212-appb-100019
    其中,
    Figure PCTCN2018118212-appb-100020
    表示基团连接至分子其余部分的位点,q 2为1-10的整数。
  60. 如权利要求39-59中任意一项所述的寡核苷酸缀合物,所述缀合物具有式(403)、(404)、(405)、(406)、(407)、(408)、(409)、 (410)、(411)、(412)、(413)、(414)、(415)、(416)、(417)、(418)、(419)、(420)、(421)或(422)所示的结构:
    Figure PCTCN2018118212-appb-100021
    Figure PCTCN2018118212-appb-100022
    Figure PCTCN2018118212-appb-100023
    Figure PCTCN2018118212-appb-100024
    Figure PCTCN2018118212-appb-100025
  61. 权利要求1-22中任意一项所述的双链寡核苷酸、权利要求23-29中任意一项所述的药物组合物和/或权利要求30-60中任意一项所述的寡核苷酸缀合物在制备用于治疗和/或预防由基因异常表达引起的病理状况或疾病的药物中的用途。
  62. 如权利要求61所述的用途,其中,所述基因选自乙型肝炎病毒基因、血管生成素样蛋白3基因或者载脂蛋白C3基因。
  63. 如权利要求61或62所述的用途,其中,所述疾病选自慢性疾病、炎症、纤维化疾病、增生性疾病或血脂异常。
  64. 如权利要求63所述的用途,其中,所述血脂异常为高胆固醇血症、高甘油三酯血症或动脉粥样硬化。
  65. 一种治疗由基因异常表达引起的病理状况或疾病的方法,所述方法包括向有需要的受试者给予有效量的权利要求1-22中任意一项所述的双链寡核苷酸、权利要求23-29中任意一项所述的药物组合物和/或权利要求30-60中任意一项所述的寡核苷酸缀合物。
  66. 如权利要求65所述的方法,其中,所述基因选自乙型肝炎病毒基因、血管生成素样蛋白3基因或者载脂蛋白C3基因。
  67. 如权利要求65或66所述的方法,其中,所述疾病选自慢性疾病、炎症、纤维化疾病、增生性疾病或血脂异常。
  68. 如权利要求67所述的方法,其中,所述血脂异常为高胆固醇血症、高甘油三酯血症或动脉粥样硬化。
  69. 一种抑制基因表达的方法,其中,所述方法包括将有效量的权利要求1-22中任意一项所述的双链寡核苷酸、权利要求23-29中任意一项所述的药物组合物和/或权利要求30-60中任意一项所述的寡核苷酸缀合物与所述表达该基因的细胞进行接触。
  70. 一种试剂盒,所述试剂盒包含权利要求1-22中任意一项所述的双链寡核苷酸、权利要求23-29中任意一项所述的药物组合物和/或权利要求30-60中任意一项所述的寡核苷酸缀合物。
PCT/CN2018/118212 2017-12-01 2018-11-29 双链寡核苷酸、含双链寡核苷酸的组合物与缀合物及制备方法和用途 WO2019105418A1 (zh)

Priority Applications (9)

Application Number Priority Date Filing Date Title
AU2018374219A AU2018374219C1 (en) 2017-12-01 2018-11-29 Double-stranded oligonucleotide, composition and conjugate comprising double-stranded oligonucleotide, preparation method therefor and use thereof
EP18884492.2A EP3719128A4 (en) 2017-12-01 2018-11-29 DOUBLE STRANDED OLIGONUCLEOTIDE, COMPOSITION AND CONJUGATE WITH DOUBLE STRANDED OLIGONUCLEOTIDE, METHOD OF MANUFACTURING THEREOF AND USE THEREOF
KR1020207015744A KR20200091414A (ko) 2017-12-01 2018-11-29 이중-가닥 올리고뉴클레오티드, 조성물 및 이중-가닥 올리고뉴클레오티드를 포함하는 접합체, 그의 제조 방법 및 그의 용도
JP2020529483A JP2021504415A (ja) 2017-12-01 2018-11-29 二本鎖オリゴヌクレオチド、二本鎖オリゴヌクレオチドを含む組成物および複合体ならびに調製方法と使用
US16/758,720 US11492620B2 (en) 2017-12-01 2018-11-29 Double-stranded oligonucleotide, composition and conjugate comprising double-stranded oligonucleotide, preparation method thereof and use thereof
CN201880049586.7A CN110997919B (zh) 2017-12-01 2018-11-29 双链寡核苷酸、含双链寡核苷酸的组合物与缀合物及制备方法和用途
CA3083968A CA3083968C (en) 2017-12-01 2018-11-29 Double-stranded oligonucleotide, composition and conjugate comprising double-stranded oligonucleotide, preparation method thereof and use thereof
US17/937,639 US20230132756A1 (en) 2017-12-01 2022-10-03 Double-stranded oligonucleotide, composition and conjugate comprising double-stranded oligonucleotide, preparation method thereof and use thereof
JP2023114124A JP2023134615A (ja) 2017-12-01 2023-07-12 二本鎖オリゴヌクレオチド、二本鎖オリゴヌクレオチドを含む組成物および複合体ならびに調製方法と使用

Applications Claiming Priority (12)

Application Number Priority Date Filing Date Title
CN201711249356.9 2017-12-01
CN201711249345.0 2017-12-01
CN201711249333.8 2017-12-01
CN201711249333 2017-12-01
CN201711249356 2017-12-01
CN201711249345 2017-12-01
CN201711479058.9 2017-12-29
CN201711479058 2017-12-29
CN201810951752.4 2018-08-21
CN201810951752 2018-08-21
CN201811165363 2018-09-30
CN201811165363.5 2018-09-30

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US16/758,720 A-371-Of-International US11492620B2 (en) 2017-12-01 2018-11-29 Double-stranded oligonucleotide, composition and conjugate comprising double-stranded oligonucleotide, preparation method thereof and use thereof
US17/937,639 Continuation US20230132756A1 (en) 2017-12-01 2022-10-03 Double-stranded oligonucleotide, composition and conjugate comprising double-stranded oligonucleotide, preparation method thereof and use thereof

Publications (1)

Publication Number Publication Date
WO2019105418A1 true WO2019105418A1 (zh) 2019-06-06

Family

ID=66663811

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/118212 WO2019105418A1 (zh) 2017-12-01 2018-11-29 双链寡核苷酸、含双链寡核苷酸的组合物与缀合物及制备方法和用途

Country Status (9)

Country Link
US (2) US11492620B2 (zh)
EP (1) EP3719128A4 (zh)
JP (2) JP2021504415A (zh)
KR (1) KR20200091414A (zh)
CN (1) CN110997919B (zh)
AU (1) AU2018374219C1 (zh)
CA (1) CA3083968C (zh)
TW (1) TWI791696B (zh)
WO (1) WO2019105418A1 (zh)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023274395A1 (zh) * 2021-07-02 2023-01-05 上海拓界生物医药科技有限公司 一种核酸配体及其缀合物、其制备方法和用途
WO2023284763A1 (zh) 2021-07-16 2023-01-19 苏州瑞博生物技术股份有限公司 双链寡核苷酸、含双链寡核苷酸的组合物与缀合物及制备方法和用途
WO2023284559A1 (zh) 2021-07-16 2023-01-19 苏州瑞博生物技术股份有限公司 一种核酸、含有该核酸的组合物与缀合物及制备方法和用途
US11633482B2 (en) 2017-12-29 2023-04-25 Suzhou Ribo Life Science Co., Ltd. Conjugates and preparation and use thereof
WO2023198202A1 (zh) * 2022-04-14 2023-10-19 苏州瑞博生物技术股份有限公司 缀合物与组合物及制备方法和用途
US11896674B2 (en) 2018-09-30 2024-02-13 Suzhou Ribo Life Science Co., Ltd. SiRNA conjugate, preparation method therefor and use thereof
US11918600B2 (en) 2018-08-21 2024-03-05 Suzhou Ribo Life Science Co., Ltd. Nucleic acid, pharmaceutical composition and conjugate containing nucleic acid, and use thereof

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200091414A (ko) 2017-12-01 2020-07-30 쑤저우 리보 라이프 사이언스 컴퍼니, 리미티드 이중-가닥 올리고뉴클레오티드, 조성물 및 이중-가닥 올리고뉴클레오티드를 포함하는 접합체, 그의 제조 방법 및 그의 용도
JP7365052B2 (ja) 2017-12-01 2023-10-19 スーチョウ リボ ライフ サイエンス カンパニー、リミテッド 核酸、当該核酸を含む組成物及び複合体ならびに調製方法と使用
US20220062427A1 (en) * 2018-12-28 2022-03-03 Suzhou Ribo Life Science Co., Ltd. Nucleic acid, composition and conjugate containing nucleic acid, preparation method therefor and use thereof
JP2022534702A (ja) * 2019-05-24 2022-08-03 スーチョウ リボ ライフ サイエンス カンパニー、リミテッド 核酸、薬物組成物及び複合体ならびに調製方法と使用
CN115485384A (zh) 2020-03-06 2022-12-16 阿利戈斯治疗公司 经修饰的短干扰核酸(siNA)分子和其用途
CN114632089A (zh) * 2020-12-16 2022-06-17 北京瑞博开拓医药科技有限公司 含酰基糖胺基团化合物在制备治疗新型冠状病毒肺炎药物中的应用及疾病的治疗方法
WO2023116764A1 (zh) * 2021-12-23 2023-06-29 苏州瑞博生物技术股份有限公司 一种核酸、含有该核酸的组合物与缀合物及其用途
WO2023198201A1 (zh) * 2022-04-14 2023-10-19 苏州瑞博生物技术股份有限公司 适配体、缀合物与组合物及制备方法和用途
WO2024002093A1 (zh) * 2022-06-27 2024-01-04 大睿生物医药科技(上海)有限公司 抑制载脂蛋白C3表达的siRNA

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009082607A2 (en) 2007-12-04 2009-07-02 Alnylam Pharmaceuticals, Inc. Targeting lipids
CN102016036A (zh) * 2008-02-11 2011-04-13 阿克赛医药公司 经修饰的RNAi多核苷酸及其用途
CN102140458A (zh) 2010-01-29 2011-08-03 苏州瑞博生物技术有限公司 小干扰核酸和药物组合物及其制药应用
CN102140459A (zh) * 2010-01-29 2011-08-03 苏州瑞博生物技术有限公司 一种小干扰核酸和药物组合物及其制药应用
CN102140460A (zh) * 2010-01-29 2011-08-03 苏州瑞博生物技术有限公司 小干扰核酸和药物组合物及其制药应用
CN102140461A (zh) * 2010-01-29 2011-08-03 苏州瑞博生物技术有限公司 小干扰核酸和药物组合物及其制药应用
CN102719434A (zh) * 2011-03-31 2012-10-10 百奥迈科生物技术有限公司 抑制rna干扰脱靶效应的特异性修饰
CN103380113A (zh) 2010-11-15 2013-10-30 生命科技公司 含胺的转染试剂及其制备和使用方法
WO2014025805A1 (en) 2012-08-06 2014-02-13 Alnylam Pharmaceuticals, Inc. Carbohydrate conjugated rna agents and process for their preparation
WO2015006740A2 (en) 2013-07-11 2015-01-15 Alnylam Pharmaceuticals, Inc. Oligonucleotide-ligand conjugates and process for their preparation
CN105378082A (zh) 2013-05-01 2016-03-02 Isis制药公司 组合物和方法
WO2018185241A1 (en) 2017-04-05 2018-10-11 Silence Therapeutics Gmbh Products and compositions

Family Cites Families (119)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030206887A1 (en) 1992-05-14 2003-11-06 David Morrissey RNA interference mediated inhibition of hepatitis B virus (HBV) using short interfering nucleic acid (siNA)
ES2296419T3 (es) 1998-11-12 2008-04-16 Invitrogen Corporation Reactivos de transfeccion.
EP1560931B1 (en) 2002-11-14 2011-07-27 Dharmacon, Inc. Functional and hyperfunctional sirna
WO2006006948A2 (en) 2002-11-14 2006-01-19 Dharmacon, Inc. METHODS AND COMPOSITIONS FOR SELECTING siRNA OF IMPROVED FUNCTIONALITY
CN1257284C (zh) 2003-03-05 2006-05-24 北京博奥生物芯片有限责任公司 一种体外阻断乙肝病毒表达的方法
EP2660322A3 (en) 2003-04-17 2013-11-13 Alnylam Pharmaceuticals Inc. Modified iRNA agents
AU2005248147A1 (en) 2004-05-11 2005-12-08 Alphagen Co., Ltd. Polynucleotides for causing RNA interference and method for inhibiting gene expression using the same
US8394947B2 (en) * 2004-06-03 2013-03-12 Isis Pharmaceuticals, Inc. Positionally modified siRNA constructs
AU2005272816B2 (en) 2004-08-10 2011-08-11 Alnylam Pharmaceuticals, Inc. Chemically modified oligonucleotides
KR101012595B1 (ko) 2005-03-09 2011-02-07 재단법인 목암생명공학연구소 작은 간섭 rna 및 이를 포함하는 b형 간염 바이러스 치료용 약학 조성물
ES2392478T3 (es) 2006-05-11 2012-12-11 Alnylam Pharmaceuticals Inc. Composiciones y métodos para inhibir la expresión del gen PCSK9
JP2010503382A (ja) 2006-07-17 2010-02-04 サーナ・セラピューティクス・インコーポレイテッド 低分子干渉核酸(siNA)を用いたプロタンパク質転換酵素サブチリシンケクシン9(PCSK9)遺伝子発現のRNA干渉媒介性阻害
WO2008109369A2 (en) 2007-03-02 2008-09-12 Mdrna, Inc. Nucleic acid compounds for inhibiting tnf gene expression and uses thereof
AU2014208251B2 (en) 2007-12-04 2016-07-14 Alnylam Pharmaceuticals, Inc. Carbohydrate conjugates as delivery agents for oligonucleotides
MX2010008394A (es) * 2008-01-31 2010-11-12 Alnylam Pharmaceuticals Inc Metodos optimizados para administracion de arndc focalizando el gen pcsk9.
CN101603042B (zh) 2008-06-13 2013-05-01 厦门大学 可用于乙型肝炎病毒感染治疗的rna干扰靶点
CN102083983B (zh) 2008-08-01 2014-04-16 苏州瑞博生物技术有限公司 乙型肝炎病毒基因的小核酸干扰靶位点序列和小干扰核酸及组合物和应用
HUE035888T2 (en) 2008-10-15 2018-05-28 Ionis Pharmaceuticals Inc Modulation of Factor 11 Expression
CA2747120A1 (en) 2008-12-17 2010-06-24 Australian Poultry Crc Pty Ltd Methods of modulating the sex of avians
WO2010083615A1 (en) 2009-01-26 2010-07-29 Protiva Biotherapeutics, Inc. Compositions and methods for silencing apolipoprotein c-iii expression
US8975389B2 (en) 2009-03-02 2015-03-10 Alnylam Pharmaceuticals, Inc. Nucleic acid chemical modifications
US20120083522A1 (en) 2009-04-15 2012-04-05 Isis Pharmaceuitcals, Inc. Modulation of inflammatory responses by factor xi
KR101224828B1 (ko) 2009-05-14 2013-01-22 (주)바이오니아 siRNA 접합체 및 그 제조방법
WO2010147992A1 (en) 2009-06-15 2010-12-23 Alnylam Pharmaceuticals, Inc. Methods for increasing efficacy of lipid formulated sirna
WO2010148013A2 (en) 2009-06-15 2010-12-23 Alnylam Pharmaceuticals, Inc. Lipid formulated dsrna targeting the pcsk9 gene
JP2014501097A (ja) 2009-07-06 2014-01-20 アルナイラム ファーマシューティカルズ, インコーポレイテッド 生物由来物質の産生を高めるための組成物及び方法
WO2011038031A1 (en) 2009-09-22 2011-03-31 Alnylam Pharmaceuticals, Inc. Dual targeting sirna agents
WO2011085271A2 (en) 2010-01-08 2011-07-14 Isis Pharmaceuticals, Inc. Modulation of angiopoietin-like 3 expression
CA2788600C (en) 2010-02-24 2019-12-03 Arrowhead Research Corporation Compositions for targeted delivery of sirna
MX2012011515A (es) 2010-04-09 2012-11-06 Merck Sharp & Dohme Entidades quimicas simples novedosas y metodos de suministro de oligonucleotidos.
EP3173419A1 (en) 2010-04-28 2017-05-31 Ionis Pharmaceuticals, Inc. Modified nucleosides, analogs thereof and oligomeric compounds prepared therefrom
WO2011154331A1 (en) 2010-06-10 2011-12-15 F. Hoffmann-La Roche Ag Polymers for delivery of nucleic acids
CN102344477B (zh) 2010-07-27 2015-04-08 苏州瑞博生物技术有限公司 一种核苷酸和/或寡核苷酸及其制备方法
CA2807307C (en) 2010-08-17 2021-02-09 Merck Sharp & Dohme Corp. Rna interference mediated inhibition of hepatitis b virus (hbv) gene expression using short interfering nucleic acid (sina)
AU2011302152B2 (en) 2010-09-15 2015-06-11 Alnylam Pharmaceuticals, Inc. Modified iRNA agents
JP2013545736A (ja) 2010-10-29 2013-12-26 アルナイラム ファーマシューティカルズ, インコーポレイテッド Pcsk9遺伝子の阻害のための組成物および方法
US8501930B2 (en) 2010-12-17 2013-08-06 Arrowhead Madison Inc. Peptide-based in vivo siRNA delivery system
ES2605990T3 (es) 2010-12-29 2017-03-17 F. Hoffmann-La Roche Ag Conjugados de molécula pequeña para la administración intracelular de ácidos nucleicos
KR102169651B1 (ko) 2011-01-06 2020-10-23 다이액스 코포레이션 혈장 칼리크레인 결합 단백질
CA2831284C (en) 2011-03-29 2023-12-12 Alnylam Pharmaceuticals, Inc. Compositions and methods for inhibiting expression of tmprss6 gene
CN102727907B (zh) 2011-04-13 2015-03-11 苏州瑞博生物技术有限公司 一种小干扰rna药物的给药系统和制剂
MY162715A (en) 2011-04-27 2017-07-14 Ionis Pharmaceuticals Inc Modulation of apolipoprotein ciii (apociii) expression
EP4092120A1 (en) 2011-06-21 2022-11-23 Alnylam Pharmaceuticals, Inc. Angiopoietin-like 3 (anglptl3) irna compositions and methods of use thereof
US8809293B2 (en) 2011-06-30 2014-08-19 Arrowhead Madison Inc. Compositions and methods for inhibiting gene expression of hepatitis B virus
CN103073726B (zh) 2011-10-26 2015-09-23 苏州瑞博生物技术有限公司 嵌段共聚物与液体组合物和核酸制剂及其制备方法和应用
PE20181541A1 (es) 2011-10-27 2018-09-26 Massachusetts Inst Technology Derivados de aminoacidos funcionalizados en la terminal n capaces de formar microesferas encapsuladoras de farmaco
AU2012327227A1 (en) 2011-11-07 2013-05-23 Isis Pharmaceuticals, Inc. Administration of Factor XI antisense oligonucleotides
AR090905A1 (es) 2012-05-02 2014-12-17 Merck Sharp & Dohme Conjugados que contienen tetragalnac y peptidos y procedimientos para la administracion de oligonucleotidos, composicion farmaceutica
MX363068B (es) 2012-11-15 2019-03-07 Roche Innovation Ct Copenhagen As Conjugados de oligonucleotido.
FR2998748B1 (fr) 2012-11-23 2015-04-10 Commissariat Energie Atomique Dispositif et procede de retransmission de donnees dans un commutateur reseau
PT2929031T (pt) 2012-12-05 2018-01-19 Alnylam Pharmaceuticals Inc Composições de irna de pcsk9 e métodos de seu uso
CA2893801A1 (en) 2013-01-30 2014-08-07 F. Hoffmann-La Roche Ag Lna oligonucleotide carbohydrate conjugates
ES2649490T3 (es) 2013-03-14 2018-01-12 Alnylam Pharmaceuticals, Inc. Composiciones de ARNi contra el componente C5 del complemento y métodos para su uso
EP2994167B1 (en) 2013-05-06 2020-05-06 Alnylam Pharmaceuticals, Inc. Dosages and methods for delivering lipid formulated nucleic acid molecules
CN104107437B (zh) 2013-06-09 2015-08-26 厦门成坤生物技术有限公司 一种用于治疗乙型病毒性肝炎的rna干扰组合物及其制备方法
EP3019595A4 (en) 2013-07-09 2016-11-30 THERAPEUTIC USES OF A GENERIC CHANGE WITH CRISPR / CAS SYSTEMS
CN105452465B (zh) 2013-07-31 2019-06-21 奇比艾企业有限公司 鞘脂-聚烷基胺-寡核苷酸化合物
NZ716816A (en) 2013-08-28 2022-05-27 Ionis Pharmaceuticals Inc Modulation of prekallikrein (pkk) expression
AU2014346788B8 (en) 2013-11-06 2021-01-28 Arizona Board Of Regents On Behalf Of The Unviersity Of Arizona Method for subtyping lymphoma types by means of expression profiling
EP3087183B1 (en) 2013-12-24 2020-08-26 Ionis Pharmaceuticals, Inc. Modulation of angiopoietin-like 3 expression
PL3096798T3 (pl) 2014-01-21 2021-07-26 Takeda Pharmaceutical Company Limited Białka wiążące kalikreinę osocza i ich zastosowanie w leczeniu obrzęku naczynioruchowego
CA2935426C (en) 2014-01-30 2023-07-25 F. Hoffmann-La Roche Ag Polyoligomer compound with biocleavable conjugates for reducing or inhibiting expression of a nucleic acid target
WO2015148580A2 (en) 2014-03-25 2015-10-01 Arcturus Therapeutics, Inc. Una oligomers having reduced off-target effects in gene silencing
DK3137605T3 (da) 2014-05-01 2020-12-14 Ionis Pharmaceuticals Inc Sammensætninger og fremgangsmåder til modulering af angiopoietin-lignende-3-ekspression
MX2016014140A (es) 2014-05-01 2017-09-15 Ionis Pharmaceuticals Inc Composiciones y metodos para modular la expresion de pkk.
JP2017522046A (ja) 2014-06-06 2017-08-10 ソルスティス バイオロジクス,リミティッド 生物可逆的および生物不可逆的基を有するポリヌクレオチド構築物
WO2016011123A1 (en) 2014-07-16 2016-01-21 Arrowhead Research Corporation Organic compositions to treat apoc3-related diseases
KR20240010762A (ko) 2014-08-20 2024-01-24 알닐람 파마슈티칼스 인코포레이티드 변형 이중-가닥 rna 제제
CN104232644B (zh) 2014-09-03 2016-10-12 浙江大学 一种特异抑制XOR基因表达的siRNA及其应用
JOP20200092A1 (ar) * 2014-11-10 2017-06-16 Alnylam Pharmaceuticals Inc تركيبات iRNA لفيروس الكبد B (HBV) وطرق لاستخدامها
WO2016081444A1 (en) 2014-11-17 2016-05-26 Alnylam Pharmaceuticals, Inc. Apolipoprotein c3 (apoc3) irna compositions and methods of use thereof
US10683319B2 (en) 2014-12-15 2020-06-16 Emory University Phosphoramidates for the treatment of hepatitis B virus
US10036017B2 (en) 2015-02-17 2018-07-31 Dicerna Pharmaceuticals, Inc. Methods and compositions for the specific inhibition of complement component 5(C5) by double-stranded RNA
CN113493789A (zh) 2015-03-17 2021-10-12 箭头药业股份有限公司 用于抑制因子xii的基因表达的组合物和方法
CA2979998A1 (en) 2015-03-20 2016-09-29 Protiva Biotherapeutics, Inc. Compositions and methods for treating hypertriglyceridemia
EP3283631A1 (en) 2015-04-13 2018-02-21 Alnylam Pharmaceuticals, Inc. Angiopoietin-like 3 (angptl3) irna compositions and methods of use thereof
CA2984636A1 (en) 2015-05-06 2016-11-10 Alnylam Pharmaceuticals, Inc. Factor xii (hageman factor) (f12), kallikrein b, plasma (fletcher factor) 1 (klkb1), and kininogen 1 (kng1) irna compositions and methods of use thereof
CN104922141B (zh) 2015-05-28 2016-05-25 厦门成坤生物技术有限公司 一种用于治疗乙型病毒性肝炎的siRNA组合物
JP6715325B2 (ja) 2015-06-26 2020-07-01 スーチョウ リボ ライフ サイエンス カンパニー、リミテッドSuzhou Ribo Life Science Co., Ltd. siRNA、siRNAを含む医薬組成物及び結合体、並びにそれらの応用
EP3325097B1 (en) 2015-07-17 2021-09-01 Arcturus Therapeutics, Inc. Compositions and agents against hepatitis b virus and uses thereof
TW201718620A (zh) 2015-07-27 2017-06-01 阿尼拉製藥公司 黃嘌呤脫氫酶(XDH)iRNA組成物及其使用方法
US20180208932A1 (en) 2015-07-29 2018-07-26 Arbutus Biopharma Corporation Compositions and methods for silencing hepatitis b virus gene expression
HUE051998T2 (hu) * 2015-07-31 2021-04-28 Alnylam Pharmaceuticals Inc Transztiretin (TTR) iRNS készítmények és eljárások azok alkalmazása TTR-asszociált betegségek kezelésére vagy megelõzésére
CN115957337A (zh) 2015-08-07 2023-04-14 箭头药业股份有限公司 乙型肝炎病毒感染的RNAi疗法
CN114469984A (zh) * 2015-08-25 2022-05-13 阿尔尼拉姆医药品有限公司 用于治疗前蛋白转化酶枯草杆菌蛋白酶kexin(pcsk9)基因相关障碍的方法和组合物
WO2017055627A1 (en) 2015-10-02 2017-04-06 INSERM (Institut National de la Santé et de la Recherche Médicale) Apoc3 mutations for the diagnosis and therapy of hereditary renal amyloidosis disease
WO2017100542A1 (en) * 2015-12-10 2017-06-15 Alnylam Pharmaceuticals, Inc. Sterol regulatory element binding protein (srebp) chaperone (scap) irna compositions and methods of use thereof
EP3400301A4 (en) 2016-01-08 2019-11-27 Alnylam Pharmaceuticals, Inc. POLYNUCLEOTIDE AGENTS TARGETING FACTOR XII (HAGEMAN FACTOR) (F12) AND THEIR METHODS OF USE
MA45295A (fr) * 2016-04-19 2019-02-27 Alnylam Pharmaceuticals Inc Composition d'arni de protéine de liaison de lipoprotéines haute densité (hdlbp/vigiline) et procédés pour les utiliser
MX2018012741A (es) 2016-04-28 2019-05-16 Regeneron Pharma Metodos para el tratamiento de pacientes con hipercolesterolemia familiar.
JOP20170161A1 (ar) 2016-08-04 2019-01-30 Arrowhead Pharmaceuticals Inc عوامل RNAi للعدوى بفيروس التهاب الكبد ب
CN116942841A (zh) 2016-09-02 2023-10-27 箭头药业股份有限公司 靶向配体
MX2019004573A (es) 2016-10-18 2019-10-07 The Medicines Co Metodos para evitar eventos cardiovasculares mediante la reduccion de la proproteinas convertasa subtilisina kexina 9 (pcsk9).
CN113652431A (zh) 2016-12-21 2021-11-16 苏州瑞博生物技术股份有限公司 一种小干扰核酸和药物组合物及其用途
CN108239644B (zh) 2016-12-23 2021-05-28 苏州瑞博生物技术股份有限公司 一种小干扰核酸和药物组合物及其用途
CN108265052B (zh) 2016-12-30 2021-05-28 苏州瑞博生物技术股份有限公司 一种小干扰核酸和药物组合物及其用途
AU2018213379A1 (en) 2017-01-30 2019-07-18 Arrowhead Pharmaceuticals Inc. Compositions and methods for inhibition of factor XII gene expression
MX2019012280A (es) 2017-04-11 2020-01-23 Arbutus Biopharma Corp Composiciones dirigidas.
CN108929870B (zh) 2017-05-19 2020-01-24 百奥迈科生物技术有限公司 抑制HBV的siRNA分子及其应用
TW201908483A (zh) 2017-06-02 2019-03-01 新加坡商波濤生命科學有限公司 寡核苷酸組合物及其使用方法
JP7365052B2 (ja) 2017-12-01 2023-10-19 スーチョウ リボ ライフ サイエンス カンパニー、リミテッド 核酸、当該核酸を含む組成物及び複合体ならびに調製方法と使用
JP7273417B2 (ja) 2017-12-01 2023-05-15 スーチョウ リボ ライフ サイエンス カンパニー、リミテッド 核酸、当該核酸を含む組成物および複合体ならびに調製方法と使用
CN111050807A (zh) 2017-12-01 2020-04-21 苏州瑞博生物技术有限公司 一种核酸、含有该核酸的组合物与缀合物及制备方法和用途
EP3719126A4 (en) 2017-12-01 2021-10-20 Suzhou Ribo Life Science Co., Ltd. NUCLEIC ACID, COMPOSITION AND CONJUGATE CONTAINING NUCLEIC ACID, ASSOCIATED PREPARATION PROCESS AND USE
WO2019105403A1 (zh) 2017-12-01 2019-06-06 苏州瑞博生物技术有限公司 一种核酸、含有该核酸的组合物与缀合物及制备方法和用途
KR20200091414A (ko) 2017-12-01 2020-07-30 쑤저우 리보 라이프 사이언스 컴퍼니, 리미티드 이중-가닥 올리고뉴클레오티드, 조성물 및 이중-가닥 올리고뉴클레오티드를 포함하는 접합체, 그의 제조 방법 및 그의 용도
JP7360716B2 (ja) 2017-12-01 2023-10-13 スーチョウ リボ ライフ サイエンス カンパニー、リミテッド 核酸、当該核酸を含む組成物および複合体ならびに調製方法と使用
KR102617947B1 (ko) 2017-12-29 2023-12-27 쑤저우 리보 라이프 사이언스 컴퍼니, 리미티드 접합체와 제조 및 그 용도
JP2021533800A (ja) 2018-08-21 2021-12-09 スーチョウ リボ ライフ サイエンス カンパニー、リミテッドSuzhou Ribo Life Science Co., Ltd. 核酸、当該核酸を含む薬物組成物及び複合体ならびにその使用
EP3862024A4 (en) 2018-09-30 2022-08-17 Suzhou Ribo Life Science Co., Ltd. SHORT INTERFERENT RNA CONJUGATE, METHOD FOR PREPARATION AND USE THEREOF
AU2019370561A1 (en) 2018-11-02 2021-06-17 Arbutus Biopharma Corporation Bivalent targeted conjugates
US20220062427A1 (en) 2018-12-28 2022-03-03 Suzhou Ribo Life Science Co., Ltd. Nucleic acid, composition and conjugate containing nucleic acid, preparation method therefor and use thereof
CN112423795A (zh) 2018-12-28 2021-02-26 苏州瑞博生物技术股份有限公司 一种核酸、含有该核酸的组合物与缀合物及制备方法和用途
WO2020147847A1 (zh) 2019-01-18 2020-07-23 苏州瑞博生物技术有限公司 一种核酸、含有该核酸的组合物与缀合物及制备方法和用途
CN111979237A (zh) 2019-05-22 2020-11-24 苏州瑞博生物技术股份有限公司 核酸、含有该核酸的药物组合物与siRNA缀合物及制备方法和用途
CN111973619B (zh) 2019-05-23 2024-01-30 苏州瑞博生物技术股份有限公司 核酸、含有该核酸的药物组合物与siRNA缀合物及制备方法和用途
CN111973618B (zh) 2019-05-23 2024-02-02 苏州瑞博生物技术股份有限公司 核酸、药物组合物与siRNA缀合物及制备方法和用途
CN111973617A (zh) 2019-05-23 2020-11-24 苏州瑞博生物技术股份有限公司 核酸、药物组合物与缀合物及制备方法和用途
EP3978029A4 (en) 2019-05-24 2023-07-19 Suzhou Ribo Life Science Co., Ltd. NUCLEIC ACID, PHARMACEUTICAL COMPOSITION AND CONJUGATE, METHOD OF MANUFACTURE AND USE

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009082607A2 (en) 2007-12-04 2009-07-02 Alnylam Pharmaceuticals, Inc. Targeting lipids
US8106022B2 (en) 2007-12-04 2012-01-31 Alnylam Pharmaceuticals, Inc. Carbohydrate conjugates as delivery agents for oligonucleotides
CN102016036A (zh) * 2008-02-11 2011-04-13 阿克赛医药公司 经修饰的RNAi多核苷酸及其用途
CN102140459A (zh) * 2010-01-29 2011-08-03 苏州瑞博生物技术有限公司 一种小干扰核酸和药物组合物及其制药应用
CN102140460A (zh) * 2010-01-29 2011-08-03 苏州瑞博生物技术有限公司 小干扰核酸和药物组合物及其制药应用
CN102140461A (zh) * 2010-01-29 2011-08-03 苏州瑞博生物技术有限公司 小干扰核酸和药物组合物及其制药应用
CN102140458A (zh) 2010-01-29 2011-08-03 苏州瑞博生物技术有限公司 小干扰核酸和药物组合物及其制药应用
CN103380113A (zh) 2010-11-15 2013-10-30 生命科技公司 含胺的转染试剂及其制备和使用方法
CN102719434A (zh) * 2011-03-31 2012-10-10 百奥迈科生物技术有限公司 抑制rna干扰脱靶效应的特异性修饰
WO2014025805A1 (en) 2012-08-06 2014-02-13 Alnylam Pharmaceuticals, Inc. Carbohydrate conjugated rna agents and process for their preparation
CN105378082A (zh) 2013-05-01 2016-03-02 Isis制药公司 组合物和方法
WO2015006740A2 (en) 2013-07-11 2015-01-15 Alnylam Pharmaceuticals, Inc. Oligonucleotide-ligand conjugates and process for their preparation
WO2018185241A1 (en) 2017-04-05 2018-10-11 Silence Therapeutics Gmbh Products and compositions

Non-Patent Citations (13)

* Cited by examiner, † Cited by third party
Title
"Molecular Cloning", 1989, COLD SPRING HARBOR LABORATORY PRESS
ANASTASIA KHVOROVAJONATHAN K. WATTS: "The chemical evolution of oligonucleotide therapies of clinical utility", NATURE BIOTECHNOLOGY, vol. 35, no. 3, 2017, pages 238 - 48, XP055410409, DOI: 10.1038/nbt.3765
BEAUCAGE ET AL.: "Tetrahedron", vol. 48, 1992, pages: 2223 - 2311
CHEMICAL ABSTRACTS, Columbus, Ohio, US; abstract no. 94790-37-2
GREENEWUTS: "Protective Groups in Organic Synthesis", 1991, JOHN WILEY & SONS
J. AM. CHEM. SOC., vol. 136, 2014, pages 16958 - 16961
KUMICO UI-TEI: "Functional dissection of siRNA sequence by systematic DNA substitution: modified siRNA with a DNA seed arm is a powerful tool for mammalian gene silencing with significantly reduced off-target effect", NUCLEIC ACIDS RESEARCH, vol. 36, no. 7, 2008, pages 2136 - 2151
MUTHIAH MANOHARAN: "siRNA conjugates carrying sequentially assembled trivalent N-acetylgalactosamine linked through nucleosides elicit robust gene silencing in vivo in hepatocytes", ACS CHEMICAL BIOLOGY, vol. 10, no. 5, 2015, pages 1181 - 7, XP055448305, DOI: 10.1021/cb501028c
RAJEEV ET AL., CHEM BIO CHEM, vol. 16, 2015, pages 903 - 908
RAJEEV ET AL., CHEMBIOCHEM, vol. 16, 2015, pages 903 - 908
REN J. ET AL., J. MEDICAL VIROLOGY., vol. 78, 2006, pages 551 - 560
WATTS, J.K.G. F. DELEAVEYM. J.DAMHA: "Chemically Modified siRNA: tools and applications", DRUG DISCOV TODAY, vol. 13, no. 19-20, 2008, pages 842 - 55, XP025434699, DOI: 10.1016/j.drudis.2008.05.007
XIAOYAN DONG ET AL., CHIN J BIOTECH, vol. 26, no. 5, 25 May 2010 (2010-05-25), pages 679 - 686

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11633482B2 (en) 2017-12-29 2023-04-25 Suzhou Ribo Life Science Co., Ltd. Conjugates and preparation and use thereof
US11918600B2 (en) 2018-08-21 2024-03-05 Suzhou Ribo Life Science Co., Ltd. Nucleic acid, pharmaceutical composition and conjugate containing nucleic acid, and use thereof
US11896674B2 (en) 2018-09-30 2024-02-13 Suzhou Ribo Life Science Co., Ltd. SiRNA conjugate, preparation method therefor and use thereof
WO2023274395A1 (zh) * 2021-07-02 2023-01-05 上海拓界生物医药科技有限公司 一种核酸配体及其缀合物、其制备方法和用途
WO2023284763A1 (zh) 2021-07-16 2023-01-19 苏州瑞博生物技术股份有限公司 双链寡核苷酸、含双链寡核苷酸的组合物与缀合物及制备方法和用途
WO2023284559A1 (zh) 2021-07-16 2023-01-19 苏州瑞博生物技术股份有限公司 一种核酸、含有该核酸的组合物与缀合物及制备方法和用途
WO2023198202A1 (zh) * 2022-04-14 2023-10-19 苏州瑞博生物技术股份有限公司 缀合物与组合物及制备方法和用途

Also Published As

Publication number Publication date
CN110997919B (zh) 2024-04-02
JP2021504415A (ja) 2021-02-15
AU2018374219C1 (en) 2023-05-11
US20220049249A1 (en) 2022-02-17
TWI791696B (zh) 2023-02-11
US11492620B2 (en) 2022-11-08
AU2018374219B2 (en) 2022-12-15
AU2018374219A1 (en) 2020-05-21
JP2023134615A (ja) 2023-09-27
US20230132756A1 (en) 2023-05-04
CA3083968C (en) 2024-04-23
EP3719128A4 (en) 2021-10-27
CA3083968A1 (en) 2019-06-06
EP3719128A1 (en) 2020-10-07
KR20200091414A (ko) 2020-07-30
CN110997919A (zh) 2020-04-10
TW201925469A (zh) 2019-07-01

Similar Documents

Publication Publication Date Title
WO2019105418A1 (zh) 双链寡核苷酸、含双链寡核苷酸的组合物与缀合物及制备方法和用途
JP7365052B2 (ja) 核酸、当該核酸を含む組成物及び複合体ならびに調製方法と使用
TWI810226B (zh) 核酸、含有該核酸的藥物組合物、綴合物及其用途
TWI823879B (zh) 核酸、含有該核酸的藥物組合物與綴合物以及製備方法、用途與試劑盒
WO2019105435A1 (zh) 一种核酸、含有该核酸的组合物与缀合物及制备方法和用途
WO2019105403A1 (zh) 一种核酸、含有该核酸的组合物与缀合物及制备方法和用途
WO2020135581A1 (zh) 一种核酸、含有该核酸的组合物与缀合物及制备方法和用途
WO2019105404A1 (zh) 一种核酸、含有该核酸的组合物与缀合物及制备方法和用途
WO2020238766A1 (zh) 核酸、药物组合物与缀合物及制备方法和用途
WO2020238758A1 (zh) 核酸、药物组合物与缀合物及制备方法和用途
WO2020238763A1 (zh) 核酸、药物组合物与缀合物及制备方法和用途
TW202111119A (zh) 核酸、藥物組合物與綴合物及製備方法和用途
TW202409279A (zh) 核酸、含有該核酸的藥物組合物與綴合物以及製備方法、用途與試劑盒

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18884492

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018374219

Country of ref document: AU

Date of ref document: 20181129

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 3083968

Country of ref document: CA

Ref document number: 2020529483

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20207015744

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018884492

Country of ref document: EP

Effective date: 20200701