WO2024002093A1 - 抑制载脂蛋白C3表达的siRNA - Google Patents

抑制载脂蛋白C3表达的siRNA Download PDF

Info

Publication number
WO2024002093A1
WO2024002093A1 PCT/CN2023/102861 CN2023102861W WO2024002093A1 WO 2024002093 A1 WO2024002093 A1 WO 2024002093A1 CN 2023102861 W CN2023102861 W CN 2023102861W WO 2024002093 A1 WO2024002093 A1 WO 2024002093A1
Authority
WO
WIPO (PCT)
Prior art keywords
seq
sirna
antisense strand
nhc
strand includes
Prior art date
Application number
PCT/CN2023/102861
Other languages
English (en)
French (fr)
Inventor
黄金宇
郭洪利
蔡国庆
邹昊
Original Assignee
大睿生物医药科技(上海)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 大睿生物医药科技(上海)有限公司 filed Critical 大睿生物医药科技(上海)有限公司
Publication of WO2024002093A1 publication Critical patent/WO2024002093A1/zh

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P3/00Drugs for disorders of the metabolism
    • A61P3/06Antihyperlipidemics
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/113Non-coding nucleic acids modulating the expression of genes, e.g. antisense oligonucleotides; Antisense DNA or RNA; Triplex- forming oligonucleotides; Catalytic nucleic acids, e.g. ribozymes; Nucleic acids used in co-suppression or gene silencing

Definitions

  • the present invention relates to the field of RNA interference, and also relates to the field of treatment of hypercholesterolemia and related diseases.
  • Lipoproteins are spherical, micelle-like particles composed of a nonpolar core of acylglycerols and cholesterol esters surrounded by a coating of amphipathic proteins, phospholipids, and cholesterol. Lipoproteins have been classified into 5 types based on their functions and physical properties: chylomicrons, very low density lipoproteins (VLDL), intermediate density lipoproteins (IDL), low density lipoproteins (LDL) and high density lipoproteins (HDL). Chylomicrons transport dietary lipids from the intestine to tissues. VLDL, IDL, and LDL all transport triacylglycerols and cholesterol from the liver to tissues. HDL transports endogenous cholesterol from tissues to the liver.
  • VLDL very low density lipoproteins
  • IDL intermediate density lipoproteins
  • LDL low density lipoproteins
  • HDL high density lipoproteins
  • Apolipoprotein C-III (ApoCIII) is an important regulator of lipoprotein metabolism.
  • APOC3 is expressed in the liver and, to a lesser extent, the intestine.
  • APOC3 is first expressed as a protein consisting of 99 amino acids, and then after removal of the 20-amino-acid signal peptide in the endoplasmic reticulum, the 79-amino-acid mature ApoC3 protein is formed.
  • LPL endothelium-bound lipoprotein lipase
  • APOC3 also inhibits hepatic lipase (HL).
  • Hepatic lipase is a lipolytic enzyme synthesized in the liver with triglyceride lipase and phospholipase A1 activities. Inhibition of HL by APOC3 further reduces lipolysis and uptake of TRL residues in the liver.
  • ApoC3 has been shown to inhibit lipolysis both by inhibition of lipoprotein lipase and by interfering with binding of lipoproteins to the cell surface glycosaminoglycan matrix.
  • Increased APOC3 levels cause the development of hypertriglyceridemia, or high blood concentrations of triglycerides. Elevated triglyceride levels are associated with a variety of conditions, including cardiovascular disease, atherosclerosis, non-alcoholic fatty liver disease, non-alcoholic steatohepatitis, polycystic ovary syndrome, kidney disease, obesity, 2 Type 2 diabetes (insulin resistance), hypertension and skin lesions (xanthoma). Very high triglyceride levels also increase the risk of acute pancreatitis.
  • siRNA has great potential for development as a new treatment method.
  • siRNA acts on intracellular mRNA. Compared with traditional small molecule drugs, it can directly silence target genes, so it can fundamentally prevent the occurrence and development of diseases more efficiently. develop.
  • due to the poor stability of siRNA it is easily degraded by nucleases in the body, is not easily absorbed by tissues, is difficult to be taken up by cells, and is prone to off-target effects, which limits its clinical application. There is an urgent need for an siRNA that can effectively inhibit APOC3 gene expression in cells.
  • the present invention relates to small interfering RNA (siRNA) for inhibiting the expression of apolipoprotein C3 (APOC3) in cells and methods of using the siRNA to treat diseases.
  • siRNA small interfering RNA
  • the present invention provides a small interfering ribonucleic acid (siRNA) for inhibiting the expression of apolipoprotein C3 (APOC3) in cells, the siRNA comprising a sense strand and an antisense strand forming a double-stranded region, wherein the length of the sense strand and the antisense strand is each independently 15-30 nucleotides, and the antisense strand comprises the nucleotide sequence shown in any one of SEQ ID NO: 414-826 of at least 15 consecutive nucleotides.
  • the sense strand comprises at least 15 contiguous nucleotides of the nucleotide sequence set forth in any one of SEQ ID NOs: 1-413.
  • the length of the sense strand and the antisense strand is each independently 17-27 nucleotides, preferably 19-25 nucleotides, more preferably 21-23 nucleotides.
  • the double-stranded region is 15-25 nucleotide pairs in length, preferably 17-21 nucleotide pairs, more preferably 19 nucleotide pairs.
  • one or both of the sense strand and the antisense strand comprise a 3' overhang and/or a 5' overhang having at least 1 nucleotide, e.g., the sense strand and the One or both antisense strands contain a 3' overhang and/or a 5' overhang of at least 2 nucleotides.
  • the overhang is selected from the group consisting of U, UU, UUU, and AA.
  • the antisense strand comprises at least 16 contiguous nucleotides, at least 17 contiguous nucleotides, at least 18 contiguous nucleotides of the nucleotide sequence set forth in any one of SEQ ID NOs: 414-826 Consecutive nucleotides, at least 19 contiguous nucleotides, or at least 20 contiguous nucleotides, preferably the antisense strand comprises the nucleotide sequence shown in any one of SEQ ID NO: 414-826.
  • the sense strand comprises at least 16 contiguous nucleotides, at least 17 contiguous nucleotides, at least 18 contiguous nucleotides of the nucleotide sequence set forth in any one of SEQ ID NOs: 1-413. Nucleotides, at least 19 consecutive nucleotides, or at least 20 consecutive nucleotides, preferably the antisense strand comprises the nucleotide sequence shown in any one of SEQ ID NO: 1-413.
  • the siRNA comprises paired sense and antisense strand sequences as shown in Table 3.
  • the antisense strand comprises a nucleoside shown in any one of SEQ ID NOs: 473, 612, 690, 757, 761, 816, 817, 818, 819, 820, 814 and 815 At least 15 contiguous nucleotides, at least 16 contiguous nucleotides, at least 17 contiguous nucleotides, at least 18 contiguous nucleotides, at least 19 contiguous nucleotides, or at least 20 contiguous nucleosides of the acid sequence acid, preferably the antisense strand comprises the nucleotide sequence shown in any one of SEQ ID NO: 473, 612, 690, 757, 761, 816, 817, 818, 819, 820, 814 and 815.
  • the sense strand comprises a nucleoside shown in any one of SEQ ID NO: 60, 199, 277, 344, 348, 403, 404, 405, 406, 407, 401, and 402 At least 15 contiguous nucleotides, at least 16 contiguous nucleotides, at least 17 contiguous nucleotides, at least 18 contiguous nucleotides, at least 19 contiguous nucleotides, or at least 20 contiguous nucleosides of the acid sequence acid, preferably the antisense strand comprises the nucleotide sequence shown in any one of SEQ ID NO: 60, 199, 277, 344, 348, 403, 404, 405, 406, 407, 401 and 402.
  • siRNA of the invention in the siRNA of the invention:
  • the sense strand includes the nucleotide sequence shown in SEQ ID NO: 60, and the antisense strand includes the nucleotide sequence shown in SEQ ID NO: 473;
  • the sense strand includes the nucleotide sequence shown in SEQ ID NO: 199, and the antisense strand includes the nucleotide sequence shown in SEQ ID NO: 612;
  • the sense strand includes the nucleotide sequence shown in SEQ ID NO:277, and the antisense strand includes the nucleotide sequence shown in SEQ ID NO:690;
  • the sense strand includes the nucleotide sequence shown in SEQ ID NO: 344, and the antisense strand includes the nucleotide sequence shown in SEQ ID NO: 757;
  • the sense strand includes the nucleotide sequence shown in SEQ ID NO:348, and the antisense strand includes the nucleotide sequence shown in SEQ ID NO:761;
  • the sense strand includes the nucleotide sequence shown in SEQ ID NO:403, and the antisense strand includes the nucleotide sequence shown in SEQ ID NO:816;
  • the sense strand includes the nucleotide sequence shown in SEQ ID NO:404, and the antisense strand includes the nucleotide sequence shown in SEQ ID NO:817;
  • the sense strand includes the nucleotide sequence shown in SEQ ID NO:405, and the antisense strand includes the nucleotide sequence shown in SEQ ID NO:818;
  • the sense strand includes the nucleotide sequence shown in SEQ ID NO:406, and the antisense strand includes the nucleotide sequence shown in SEQ ID NO:819;
  • the sense strand includes the nucleotide sequence shown in SEQ ID NO:407, and the antisense strand includes the nucleotide sequence shown in SEQ ID NO:820;
  • the sense strand includes the nucleotide sequence shown in SEQ ID NO:401, and the antisense strand includes the nucleotide sequence shown in SEQ ID NO:814; or
  • the sense strand includes the nucleotide sequence shown in SEQ ID NO:402, and the antisense strand includes the nucleotide sequence shown in SEQ ID NO:815.
  • substantially all of the nucleotides of the sense strand and substantially all of the nucleotides of the antisense strand are modified nucleotides. In some preferred embodiments, all nucleotides of the sense strand and all nucleotides of the antisense strand are modified nucleotides.
  • the sense strand and the antisense strand each independently comprise one or more nucleotide modifications selected from the group consisting of: 2'-O-methyl modified nucleotides, 2'-fluoro-modified nucleotides, 2'-deoxy-modified nucleotides, inosine ribonucleotides, abasic nucleotides, reverse abasic deoxyribonucleotides, phosphorothioates Ester internucleotide linkage modification, vinylphosphonate modified nucleotides, locked nucleotides, 2'-amino-modified nucleotides, 2'-alkyl-modified nucleotides, morpholine nucleotides, phosphoramidates, nucleotides containing unnatural bases, and terminal nucleotides linked to cholesteryl derivatives or dodecyl dodecylamide groups, and deoxyribonucleotides.
  • nucleotide modifications
  • the sense strand and the antisense strand each independently comprise one or more nucleotide modifications selected from the group consisting of: 2'-O-methyl modified nucleotides, 2'-fluoro-modified nucleotides, 2'-deoxy-modified nucleotides, inosine ribonucleotides, abasic nucleotides, reverse abasic deoxyribonucleotides, phosphorothioates Modification of ester inter-nucleotide linkages.
  • the sense strand and/or the antisense strand comprises at least 2 2'-fluoro modified nucleotides.
  • the sense strand and/or the antisense strand comprises at least 8 2'-O-methyl modified nucleotides.
  • the 5' terminus of the sense strand and/or the antisense strand contains 1-5 phosphorothioate groups.
  • the antisense strand comprises a modified nucleotide sequence set forth in any one of Table 5, and/or the sense strand comprises a modified nucleic acid sequence set forth in any one of Table 4 nucleotide sequence.
  • the siRNA comprises a paired modified sense strand sequence and a modified antisense strand sequence shown in any one of Table 6.
  • the sense strand includes AmsAmAmAmGmGmGmAmCfAfGfUmAmUmUmCmUmCmAmGmAms-STM1 (SEQ ID NO: 1655), and the antisense strand includes (CP1a-U)sCfsUmGfAmGfAmAfUmAfCmUfGmUfCmCfCmUfUmsUfsUm (SEQ ID NO: 16 51);
  • the sense strand includes STM1s-AmsAmUmUmAmAmAmGfGfGfAmCmAmGmUmAmUmUmCmAms-STM1 (SEQ ID NO: 1656), and the antisense strand includes (CP1a-U)sGfsAmAfUmAfCmUfGmUfCmCfCmUfUmUfUmAfAmsUfsUm;
  • antisense strand includes
  • the justice chain includes
  • antisense strand includes
  • the justice chain includes
  • antisense strand includes
  • the justice chain includes
  • antisense strand includes
  • the justice chain includes
  • antisense strand includes
  • the justice chain includes
  • antisense strand includes
  • antisense strand includes
  • the sense strand includes CmsGmsAmGmGmAmUfGfCfCmUmCmCmCmUmUmCmUmUmUm, and the antisense strand includes AmsAfsGmAfAmGfGmGfAmGfGmCfAmUfCmCfUmCfGmsUfsUm;
  • the sense strand includes CmsCmsGmUmUmAmAfGfGfAmCmAmAmGmUmUmCmUmUmUm, and the antisense strand includes AmsAfsGmAfAmCfUmUfGmUfCmCfUmUfAmAfCmGfGmsUfsUm;
  • the sense strand includes CmsCmsGmUmUmAmAfGfGfAmCmAmAmGmUmUmCmUmUmUm, and the antisense strand includes AmsAfsGmAfAmCfUmUfGmUfCmCfUmUfAmAfCmGfGmsUfsUm;
  • the sense strand includes CmsCmsAmAmGmUmCfCfAfCmCmUmGmCmUmAmUmUm
  • the antisense strand includes AmsAfsUmAfGmGfCmAfGmGfUmGfGmAfCmUfUmGfGmsUfsUm;
  • the sense strand includes AmsAmsGmGmGmAmCfAfGfUmAmUmUmCmUmCmAmGmUm
  • the antisense strand includes AmsCfsUmGfAmGfAmAfUmAfCmUfGmUfCmCfCmUfUmsUfsUm;
  • the sense strand includes UmsUmsAmAmAmGfGfGfAmCmAmGmUmAmUmUmCmUm, and the antisense strand includes AmsGfsAmAfUmAfCmUfGmUfCmCfCmUfUmUfUmAfAmsUfsUm;
  • the justice chain includes AmsAmsGmGmGmAmCfAfGfUmAmUmUmCmUmCmAmGmUm, and the antisense strand comprises AmsCfsUmGfAmGfAmAfUmAfCmUfGmUfCmCfCmUfUmsUfsUm;
  • the sense strand includes CmsCmsAmAmGmUmCfCfAfCmCmUmGmCmUmAmUmUm
  • the antisense strand includes AmsAfsUmAfGmGfCmAfGmGfUmGfGmAfCmUfUmGfGmsUfsUm;
  • the sense strand includes CmsCmsGmUmUmAmAfGfGfAmCmAmAmGmUmUmCmUmUm-L96, and the antisense strand includes AmsAfsGmAfAmCfUmUfGmUfCmCfUmUfAmAfCmGfGmsUfsUm;
  • the sense strand includes CmsGmsAmGmGmAmUfGfCfCmUmCmCmCmUmUmCmUmUmUm, and the antisense strand includes AmsAfsGmAfAmGfGmGfAmGfGmCfAmUfCmCfUmCfGmsUfsUm;
  • the sense strand includes AmsAmsGmGmGmAmCfAmGfUfAfUmUmCmUmCmAmGmUmsGmsCm
  • the antisense strand includes GmsCfsAmCmUmGfAmGmAmAmUmAmCmUfGmUfCmCmUmUmsUmsUm.
  • the siRNA is further conjugated to a ligand moiety comprising N-acetylgalactosamine via a phosphate group or a phosphorothioate group, preferably the sense strand of the siRNA is conjugated via a phosphate group or A phosphorothioate group is conjugated to the ligand moiety.
  • the 3' end of the sense strand is conjugated to the ligand moiety through a phosphate group or a phosphorothioate group.
  • the 5' end of the sense strand is conjugated to the ligand moiety via a phosphate group or a phosphorothioate group.
  • the ligand moiety includes a conjugation group represented by formula (X'):
  • L 1 is a chemical bond, -CH 2 -, -CH 2 CH 2 -, -C(O)-, -CH 2 O-, -CH 2 O-CH 2 CH 2 O- or -NHC(O)-( CH 2 NHC(O)) a -;
  • L 2 is a chemical bond or -CH 2 CH 2 C(O)-;
  • L 3 is a chemical bond, -(NHCH 2 CH 2 ) b -, -(NHCH 2 CH 2 CH 2 ) b - or -C(O)CH 2 -;
  • L 4 is -(OCH 2 CH 2 ) c -, -(OCH 2 CH 2 CH 2 ) c -, -(OCH 2 CH 2 CH 2 CH 2 ) c -, -(OCH 2 CH 2 CH 2 CH 2 CH 2 ) c -or-NHC(O)-(CH 2 ) d -;
  • b 1, 2, 3, 4 or 5;
  • c 1, 2, 3, 4 or 5;
  • d 1, 2, 3, 4, 5, 6, 7 or 8;
  • L is a chemical bond, -CH 2 O- or -NHC(O)-;
  • L' is a chemical bond, -C(O)NH-, -NHC(O)- or -O(CH 2 CH 2 O) e -;
  • e 1, 2, 3, 4 or 5;
  • T is a chemical bond, -CH 2 -, -C(O)-, -M-, -CH 2 -M- or -C(O)-M-;
  • R 1 and R 2 together form -CH 2 CH 2 O- or -CH 2 CH(R)-O-, and R 3 is H;
  • R 1 and R 3 together form -C 1-2 alkylene-, and R 2 is H;
  • R is -OR', -CH 2 OR' or -CH 2 CH 2 OR', wherein R' is H, hydroxyl protecting group or solid phase carrier, and the hydroxyl protecting group is preferably -C(O)CH 2 CH 2 C(O)OH or 4,4'-dimethoxytrityl;
  • n 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 or 10;
  • n 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 or 10.
  • the conjugation ligand targets asialoglycoprotein receptor (ASGPR).
  • ASGPR asialoglycoprotein receptor
  • the conjugation group is selected from Table 1.
  • the conjugation group is selected from Table 2.
  • the ligand has the following structure:
  • the ligand has the following structure:
  • the ligand has the following structure:
  • siRNA of the present disclosure wherein:
  • the justice chain includes
  • antisense strand includes
  • antisense strand includes
  • antisense strand includes
  • the justice chain includes
  • antisense strand includes
  • the justice chain includes
  • antisense strand includes
  • the justice chain includes
  • antisense strand includes
  • the justice chain includes
  • antisense strand includes
  • the justice chain includes
  • antisense strand includes
  • antisense strand includes
  • the invention provides a vector comprising a nucleotide sequence encoding the siRNA disclosed in the invention.
  • the invention provides cells comprising a siRNA or vector disclosed in the invention.
  • the present invention provides a pharmaceutical composition
  • a pharmaceutical composition comprising the siRNA disclosed in the present invention, a vector or a cell, and optionally a pharmaceutically acceptable carrier or excipient.
  • the present invention provides a kit comprising the siRNA, vector, cell or pharmaceutical composition disclosed in the present invention.
  • the present invention provides a method of treating an APOC3-related disease in a subject, the method comprising the step of administering to the subject a siRNA, vector, cell, or pharmaceutical composition disclosed in the present invention. .
  • the invention provides a method for reducing the risk of developing an APOC3-related disease in a subject, the method comprising administering to the subject a siRNA, a vector, a cell, or pharmaceutical composition steps.
  • the APOC3-related disease is selected from the group consisting of hyperlipidemia and hypertriglyceridemia.
  • the APOC3-related disease is a disease that can be caused by, associated with, or a consequence of hypertriglyceridemia, such as non-alcoholic fatty liver disease, non-alcoholic steatohepatitis, Polycystic ovary syndrome, kidney disease, obesity, type 2 diabetes, hypertension, atherosclerosis, cardiovascular disease, or pancreatitis.
  • the method includes administering subcutaneously, intravenously, or topically to the subject a siRNA, vector, cell, or pharmaceutical composition disclosed herein.
  • the subject is a human patient.
  • siRNA refers to a class of double-stranded RNA molecules that can mediate silencing of a target RNA that is complementary to it (eg, mRNA, eg, the transcript of a gene encoding a protein).
  • siRNA is usually double-stranded, including an antisense strand that is complementary to the target RNA, and a sense strand that is complementary to the antisense strand.
  • mRNA is also referred to herein as the mRNA to be silenced.
  • Such genes are also called target genes.
  • antisense strand refers to a strand of siRNA that contains a region that is completely or substantially complementary to a target sequence.
  • the term "complementary region” refers to a region on the antisense strand that is completely or substantially complementary to the target mRNA sequence. In cases where the complementary region is not completely complementary to the target sequence, the mismatch can be located in the internal or terminal regions of the molecule. Typically, the most tolerated mismatches are in the terminal regions, for example, within 5, 4, 3, 2 or 1 nucleotide of the 5' and/or 3' end. The portion of the antisense strand that is most sensitive to mismatches is called the "seed region.” For example, in a siRNA containing a 19nt strand, some mismatches can be tolerated at position 19 (from 5' to 3').
  • stringent conditions may include 400mM NaCl, 40mM PIPES pH 6.4, 1mM EDTA at 50°C or 70°C for 12-16 hours.
  • complementary sequences insofar as they meet the above requirements with respect to their ability to hybridize, may also include or be formed entirely from non-Watson-Crick base pairs and/or from non-natural and base pairs formed by modified nucleotides.
  • non-Watson-Crick base pairs include, but are not limited to, G:U wobble base pairing or Hoogstein base pairing.
  • a polynucleotide that is "at least partially complementary” or “substantially complementary” to a messenger RNA (mRNA) refers to a polynucleotide that is substantially complementary to a contiguous portion of the mRNA of interest (e.g., the mRNA encoding APOC3 APOC3) glycosides.
  • mRNA messenger RNA
  • a polynucleotide is complementary to at least a portion of APOC3 APOC3 mRNA if the sequence is substantially complementary to a non-interrupted portion of the APOC3 APOC3 mRNA.
  • sense strand refers to a strand of siRNA that includes a region that is substantially complementary to a region that is the term “antisense strand” as that term is defined herein.
  • Nucleoside is a compound composed of two substances: purine base or pyrimidine base, and ribose or deoxyribose.
  • Nucleotide is a compound composed of three substances: purine base or pyrimidine base, ribose or deoxyribose, and phosphate.
  • Olionucleotide refers to a nucleic acid molecule (RNA or DNA), for example, having less than 100, 200, 300 or 400 nucleotides in length.
  • Base is the basic unit for the synthesis of nucleosides, nucleotides and nucleic acids. Its constituent elements contain nitrogen, also known as “nitrogen-containing bases”.
  • the capital letters A, U, T, G and C represent the base composition of nucleotides, which are adenine, uracil, thymine, guanine and cytosine respectively.
  • nucleotide overhang refers to at least one unpaired nucleotide that protrudes from the duplex structure of the siRNA. Nucleotide overhangs exist, for example, when the 3'-end of one strand of siRNA extends beyond the 5'-end of the other strand, or vice versa.
  • the siRNA can comprise an overhang having at least one nucleotide; alternatively, the overhang can comprise at least two nucleotides, at least three nucleotides, at least four nucleotides, at least five nucleotides, or more. many.
  • Nucleotide overhangs may comprise or consist of nucleotide/nucleoside analogs (including deoxynucleotides/nucleosides). One or more overhangs can be on the sense strand, the antisense strand, or any combination thereof. Additionally, the overhanging nucleotide or nucleotides may be present on the 5'-end, 3'-end, or both ends of the antisense or sense strand of the siRNA.
  • siRNAs of the present invention include siRNAs with nucleotide overhangs at one end (ie, agents with one overhang and one blunt end) or with nucleotide overhangs at both ends.
  • nucleotides of the iRNA of the invention are modified.
  • substantially all of the nucleotides of the sense strand are modified nucleotides
  • substantially all of the nucleotides of the antisense strand are modified nucleic acids.
  • the nucleotides, and/or substantially all nucleotides of both the sense and antisense strands are modified nucleotides.
  • all nucleotides of the iRNA of the invention are modified nucleotides.
  • nucleotides of the sense strand are modified nucleotides
  • all nucleotides of the antisense strand are modified nucleotides
  • all nucleotides of both the sense strand and the antisense strand are all modified nucleotides.
  • substantially all nucleotides are modified means that the siRNA of the present invention is mostly but not entirely modified, and may include no more than 5, 4, 3, 2 or 1 unmodified nucleotides.
  • Modified nucleotides include, but are not limited to, 2'-O-methyl modified nucleotides, 2'-fluoro modified nucleotides, 2'-deoxy-modified nucleotides, inosine Ribonucleotides, abasic nucleotides, reverse abasic deoxyribonucleotides, phosphorothioate internucleotide linkage modifications, vinylphosphonate modified nucleotides, locked nucleotides , 2'-amino-modified nucleotides, 2'-alkyl-modified nucleotides, morpholino nucleotides, phosphoramidates, nucleotides containing unnatural bases, and linked to cholesterol groups Derivatives or terminal nucleotide, deoxyribonucleotide or conventional protecting group protection on the dodecylamide group of dodecanoate, etc.
  • the 2'-fluoro modified nucleotide refers to a nucleotide in which the hydroxyl group at the 2' position of the ribosyl group of the nucleotide is replaced by fluorine.
  • the 2'-deoxy-modified nucleotide refers to a nucleotide formed by replacing the 2'-hydroxyl group of the ribose group with a methoxy group.
  • a "ligand moiety” refers to a chemical moiety that conjugates to an siRNA and is capable of altering the distribution, targeting, or lifetime of the siRNA.
  • ligand is a selected target (e.g. molecule, cell or cell type, compartment (e.g. cell or organ compartment, tissue, organ or area of the body) provides enhanced affinity.
  • inhibitortion is used interchangeably with “reduction,” “silencing,” “downregulation,” and other similar terms and includes any level of inhibition.
  • the phrase "inhibiting the expression of APOC3" is intended to mean inhibiting the expression of any APOC3 gene as well as variants or mutants of the APOC3 gene.
  • the APOC3 gene may be a wild-type APOC3 gene, a mutant APOC3 gene, or in the case of a genetically manipulated cell, cell population, or organism, a transgenic APOC3 gene.
  • “Inhibition of APOC3 gene expression” includes any level of inhibition of the APOC3 gene, such as at least partial inhibition of APOC3 gene expression.
  • APOC3 gene expression can be assessed based on the level or change in level of any variable associated with APOC3 gene expression, such as APOC3 mRNA levels, APOC3 protein levels, or lipid levels. This level can be assessed in individual cells or in a group of cells (including, for example, a sample derived from a subject).
  • Inhibition can be assessed by a reduction in absolute or relative levels of one or more variables associated with APOC3 expression compared to control levels.
  • the control level may be any type of control level utilized in the art, such as a pre-dose baseline level or from a similar untreated or control (e.g., buffer only control or inert control) subject, cell , or the level determined by the sample.
  • “Hydroxy protecting group” refers to a group that can protect the hydroxyl group from chemical reactions and can be removed under specific conditions to restore the hydroxyl group.
  • Mainly include silane-type protective groups, acyl-type protective groups or ether-type protective groups, preferably the following: trimethylsilyl (TMS), triethylsilyl (TES), dimethylisopropylsilyl (DMIPS), Diethylisopropylsilyl (DEIPS), tert-butyldimethylsilyl (TBDMS), tert-butyldiphenylsilyl (TBDPS), triisopropylsilyl (TIPS), acetyl (Ac ), chloroacetyl, dichloroacetyl, trichloroacetyl, trifluoroacetyl (TFA), benzoyl, p-methoxybenzoyl, 9-fluorenylmethoxycarbonyl (Fmoc
  • Halo or "halogen” refers to fluorine (F), chlorine (Cl), bromine (Br) and iodine (I).
  • C 1-6 haloalkyl refers to the above-mentioned “C 1-6 alkyl” which is substituted by one or more halogen groups. In some embodiments, C 1-4 haloalkyl is particularly preferred, with C 1-2 haloalkyl being more preferred. Exemplary haloalkyl groups include, but are not limited to: -CF 3 , -CH 2 F, -CHF 2 , -CHFCH 2 F, -CH 2 CHF 2 , -CF 2 CF 3 , -CCl 3 , -CH 2 Cl , -CHCl 2 , 2,2,2-trifluoro-1,1-dimethyl-ethyl, etc. Haloalkyl groups may be substituted at any available point of attachment, for example, 1 to 5 substituents, 1 to 3 substituents, or 1 substituent.
  • C 1-6 alkylene refers to a divalent group formed by removing another hydrogen of C 1-6 alkyl, and may be substituted or unsubstituted. In some embodiments, C 1-4 alkylene, C 2-4 alkylene, and C 1-2 alkylene are preferred.
  • the unsubstituted alkylene group includes, but is not limited to: methylene (-CH 2 -), ethylene (-CH 2 CH 2 -), propylene (-CH 2 CH 2 CH 2 -), ethylene Base (-CH 2 CH 2 CH 2 CH 2 -), pentylene (-CH 2 CH 2 CH 2 CH 2 CH 2 -), hexylene (-CH 2 CH 2 CH 2 CH 2 CH 2 CH 2 -) ,etc.
  • alkylene groups substituted by one or more alkyl (methyl) include, but are not limited to: substituted methylene (-CH(CH 3 )- , -C(CH 3 ) 2 -), substituted ethylene (-CH(CH 3 )CH 2 -, -CH 2 CH(CH 3 )-, -C(CH 3 ) 2 CH 2 -, -CH 2 C(CH 3 ) 2- ), substituted propylene (-CH(CH 3 )CH 2 CH 2 -, -CH 2 CH(CH 3 )CH 2 -, -CH 2 CH 2 CH(CH 3 ) -, -C(CH 3 ) 2 CH 2 CH 2 -, -CH 2 C(CH 3 ) 2 CH 2 -, -CH 2 CH 2 C(CH 3 ) 2 -), etc.
  • vector refers to a nucleic acid molecule capable of amplifying or expressing another nucleic acid to which it is linked.
  • the present invention provides a small interfering RNA (siRNA) for inhibiting the expression of apolipoprotein C3 (APOC3) in cells.
  • the siRNA includes a sense strand and an antisense strand forming a double-stranded region, wherein the sense strand and The length of the antisense strands is each independently 15-30 nucleotides, and the antisense strands comprise at least 15 consecutive nuclei of the nucleotide sequence shown in any one of SEQ ID NOs: 414-826 glycosides.
  • the double-stranded region formed by the sense strand and antisense strand is completely complementary. In other embodiments, the double-stranded region formed by the sense strand and the antisense strand is substantially complementary and may contain 1, 2, 3, 4, or 5 non-complementary sites.
  • the sense strand comprises at least 15 contiguous nucleotides of the nucleotide sequence set forth in any one of SEQ ID NOs: 1-413.
  • the length of the sense strand and the antisense strand is each independently 17-27 nucleotides, preferably 19-25 nucleotides, more preferably 21-23 nucleotides.
  • the double-stranded region is 15-25 nucleotide pairs in length, preferably 17-21 nucleotide pairs, more preferably 19 nucleotide pairs.
  • the sense strand and the antisense strand comprise a 3' overhang and/or a 5' overhang having at least 1 nucleotide, for example one or both of the sense strand and the antisense strand or Both contain 3' overhangs and/or 5' overhangs with at least 2 nucleotides.
  • the antisense strand has a 3' overhang and/or a 5' overhang of at least 1 nucleotide.
  • the antisense strand includes a 3' overhang and/or a 5' overhang having 1, 2, or 3 nucleotides.
  • the sense strand has a 3' overhang and/or a 5' overhang of at least 1 nucleotide.
  • the sense strand includes a 3' overhang and/or a 5' overhang having 1, 2, or 3 nucleotides.
  • the sense strand and the antisense strand are the same length. In some embodiments, the entire length of the sense strand is complementary to the entire length of the antisense strand to form a double strand, ie, has blunt ends. In other embodiments, the sense strand and the antisense strand are the same length, and a part of the sense strand is complementary to a part of the antisense strand, that is, both the sense strand and the antisense strand have a 5' overhang.
  • the sense strand and the antisense strand are different lengths.
  • the 5' end of the antisense strand has an overhang of at least 1 nucleotide, more preferably 2 or 3 nucleotides.
  • the antisense strand comprises at least 16 contiguous nucleotides, at least 17 contiguous nucleotides, at least 18 contiguous nucleotides of the nucleotide sequence set forth in any one of SEQ ID NOs: 414-826 Continuous nucleotides, at least 19 consecutive nucleotides, at least 20 consecutive nucleotides, preferably the antisense strand includes the nucleotide sequence shown in any one of SEQ ID NO: 414-826.
  • the sense strand comprises at least 16 contiguous nucleotides, at least 17 contiguous nucleotides, at least 18 contiguous nucleotides of the nucleotide sequence set forth in any one of SEQ ID NOs: 1-413. Nucleotides, at least 19 consecutive nucleotides, at least 20 consecutive nucleotides, preferably the antisense strand includes the nucleotide sequence shown in any one of SEQ ID NO: 1-413.
  • the siRNA comprises paired sense and antisense strand sequences as shown in Table 3.
  • the antisense strand comprises the nucleotide sequence set forth in any one of SEQ ID NOs: 473, 612, 690, 757, 761, 816, 817, 818, 819, 820, 814 and 815 At least 15 contiguous nucleotides, at least 16 contiguous nucleotides, at least 17 contiguous nucleotides, at least 18 contiguous nucleotides, at least 19 contiguous nucleotides, at least 20 contiguous nucleotides, preferably The antisense strand includes the nucleotide sequence shown in any one of SEQ ID NOs: 473, 612, 690, 757, 761, 816, 817, 818, 819, 820, 814 and 815.
  • the sense strand comprises a nucleotide sequence set forth in any one of SEQ ID NOs: 60, 199, 277, 344, 348, 403, 404, 405, 406, 407, 401 and 402 At least 15 consecutive nucleotides, at least 16 consecutive nucleotides, at least 17 consecutive nucleotides, at least 18 consecutive nucleotides, at least 19 consecutive nucleotides, at least 20 consecutive nucleotides, preferably all
  • the antisense strand includes the nucleotide sequence shown in any one of SEQ ID NO: 60, 199, 277, 344, 348, 403, 404, 405, 406, 407, 401 and 402.
  • the sense strand includes the nucleotide sequence shown in SEQ ID NO:60, and the antisense strand includes the nucleotide sequence shown in SEQ ID NO:473;
  • the sense strand includes the nucleotide sequence shown in SEQ ID NO: 199, and the antisense strand includes the nucleotide sequence shown in SEQ ID NO: 612;
  • the sense strand includes the nucleotide sequence shown in SEQ ID NO:277, and the antisense strand includes the nucleotide sequence shown in SEQ ID NO:690;
  • the sense strand includes the nucleotide sequence shown in SEQ ID NO: 344, and the antisense strand includes the nucleotide sequence shown in SEQ ID NO: 757;
  • the sense strand includes the nucleotide sequence shown in SEQ ID NO:348, and the antisense strand includes the nucleotide sequence shown in SEQ ID NO:761;
  • the sense strand includes the nucleotide sequence shown in SEQ ID NO:403, and the antisense strand includes the nucleotide sequence shown in SEQ ID NO:816;
  • the sense strand includes the nucleotide sequence shown in SEQ ID NO:404, and the antisense strand includes the nucleotide sequence shown in SEQ ID NO:817;
  • the sense strand includes the nucleotide sequence shown in SEQ ID NO:405, and the antisense strand includes the nucleotide sequence shown in SEQ ID NO:818;
  • the sense strand includes the nucleotide sequence shown in SEQ ID NO:406, and the antisense strand includes the nucleotide sequence shown in SEQ ID NO:819;
  • the sense strand includes the nucleotide sequence shown in SEQ ID NO:407, and the antisense strand includes the nucleotide sequence shown in SEQ ID NO:820;
  • the sense strand includes the nucleotide sequence shown in SEQ ID NO:401, and the antisense strand includes the nucleotide sequence shown in SEQ ID NO:814; or
  • the sense strand includes the nucleotide sequence shown in SEQ ID NO:402, and the antisense strand includes the nucleotide sequence shown in SEQ ID NO:815.
  • substantially all of the nucleotides of the sense strand and substantially all of the nucleotides of the antisense strand are modified nucleotides. In some embodiments, at least 80% of the nucleotides of the sense strand are modified nucleotides, and/or at least 80% of the nucleotides of the antisense strand are modified nucleotides.
  • all nucleotides of the sense strand and/or all nucleotides of the antisense strand are modified nucleotides.
  • the modification of the nucleotide described in the present invention may be a modification on the phosphate group, ribose group and/or base group of the nucleotide.
  • the sense strand and the antisense strand each independently comprise one or more nucleotide modifications selected from the group consisting of: 2'-O-methyl modified nucleotides, 2'-fluoro-modified nucleotides, 2'-deoxy-modified nucleotides, inosine ribonucleotides, abasic nucleotides, reverse abasic deoxyribonucleotides, phosphorothioates Ester internucleotide linkage modification, vinylphosphonate modified nucleotides, locked nucleotides, 2'-amino-modified nucleotides, 2'-alkyl-modified nucleotides, morpholine nucleotides, phosphoramidates, nucleotides containing unnatural bases, and terminal nucleotides linked to cholesterol-based derivatives or dodecyl dodecylamide groups, and deoxyribonucleotides.
  • nucleotide modifications selected
  • the sense strand and the antisense strand each independently comprise one or more nucleotide modifications selected from the group consisting of: 2'-O-methyl modified nucleotides, 2'-fluoro-modified nucleotides, 2'-deoxy-modified nucleotides, inosine ribonucleotides, abasic nucleotides, reverse abasic deoxyribonucleotides, phosphorothioates Modification of ester inter-nucleotide linkages.
  • the sense strand and/or the antisense strand comprises at least 2 2'-fluoro modified nucleotides.
  • the sense strand and/or the antisense strand comprises at least 8 2'-O-methyl modified nucleotides.
  • the 3' end and/or the 5' end of the sense strand and/or the antisense strand comprise 1-5 phosphorothioate groups, preferably 2-3 phosphorothioate groups ester group. In some more preferred embodiments, the 5' end of the sense strand and/or the antisense strand contains 1-5 phosphorothioate groups.
  • the antisense strand comprises a modified nucleotide sequence shown in any one of Table 5, and/or the sense strand comprises a modified nucleotide sequence shown in any one of Table 4 nucleotide sequence.
  • the siRNA comprises a paired modified sense strand sequence and a modified antisense strand sequence shown in any one of Table 6.
  • siRNA of the invention that inhibits APOC3 expression in cells:
  • the sense strand includes AmsAmAmAmGmGmGmAmCfAfGfUmAmUmUmCmUmCmAmGmAms-STM1 (SEQ ID NO: 1655), and the antisense strand includes (CP1a-U)sCfsUmGfAmGfAmAfUmAfCmUfGmUfCmCfCmUfUmsUfsUm (SEQ ID NO: 16 51);
  • the sense strand includes STM1s-AmsAmUmUmAmAmAmGfGfGfAmCmAmGmUmAmUmUmCmAms-STM1 (SEQ ID NO: 1656), and the antisense strand includes (CP1a-U)sGfsAmAfUmAfCmUfGmUfCmCfCmUfUmUfUmAfAmsUfsUm;
  • antisense strand includes
  • the justice chain includes
  • antisense strand includes
  • the justice chain includes
  • antisense strand includes
  • the justice chain includes
  • antisense strand includes
  • the justice chain includes
  • antisense strand includes
  • the justice chain includes
  • antisense strand includes
  • antisense strand includes
  • the sense strand includes CmsGmsAmGmGmAmUfGfCfCmUmCmCmCmUmUmCmUmUmUm, and the antisense strand includes AmsAfsGmAfAmGfGmGfAmGfGmCfAmUfCmCfUmCfGmsUfsUm;
  • the sense strand includes CmsCmsGmUmUmAmAfGfGfAmCmAmAmGmUmUmCmUmUmUm, and the antisense strand includes AmsAfsGmAfAmCfUmUfGmUfCmCfUmUfAmAfCmGfGmsUfsUm;
  • the sense strand includes CmsCmsGmUmUmAmAfGfGfAmCmAmAmGmUmUmCmUmUmUm, and the antisense strand includes AmsAfsGmAfAmCfUmUfGmUfCmCfUmUfAmAfCmGfGmsUfsUm;
  • the sense strand includes CmsCmsAmAmGmUmCfCfAfCmCmUmGmCmUmAmUmUm
  • the antisense strand includes AmsAfsUmAfGmGfCmAfGmGfUmGfGmAfCmUfUmGfGmsUfsUm;
  • the sense strand includes AmsAmsGmGmGmAmCfAfGfUmAmUmUmCmUmCmAmGmUm, and the antisense strand includes AmsCfsUmGfAmGfAmAfUmAfCmUfGmUfCmCfCmUfUmsUfsUm;
  • the sense strand includes UmsUmsAmAmAmGfGfGfAmCmAmGmUmAmUmUmCmUm, and the antisense strand includes AmsGfsAmAfUmAfCmUfGmUfCmCfCmUfUmUfUmAfAmsUfsUm;
  • the sense strand includes AmsAmsGmGmGmAmCfAfGfUmAmUmUmCmUmCmAmGmUm, and the antisense strand includes AmsCfsUmGfAmGfAmAfUmAfCmUfGmUfCmCfCmUfUmsUfsUm;
  • the sense strand includes CmsCmsAmAmGmUmCfCfAfCmCmUmGmCmUmAmUmUm
  • the antisense strand includes AmsAfsUmAfGmGfCmAfGmGfUmGfGmAfCmUfUmGfGmsUfsUm;
  • the sense strand includes CmsCmsGmUmUmAmAfGfGfAmCmAmAmGmUmUmCmUmUmUm, and the antisense strand includes AmsAfsGmAfAmCfUmUfGmUfCmCfUmUfAmAfCmGfGmsUfsUm;
  • the sense strand includes CmsGmsAmGmGmAmUfGfCfCmUmCmCmCmUmUmCmUmUmUm, and the antisense strand includes AmsAfsGmAfAmGfGmGfAmGfGmCfAmUfCmCfUmCfGmsUfsUm;
  • the sense strand includes AmsAmsGmGmGmAmCfAmGfUfAfUmUmCmUmCmAmGmUmsGmsCm
  • the antisense strand includes GmsCfsAmCmUmGfAmGmAmAmUmAmCmUfGmUfCmCmUmUmsUmsUm.
  • the siRNA of the present invention is further conjugated to a ligand moiety containing N-acetylgalactosamine through a phosphate group or a phosphorothioate group.
  • the sense strand of the siRNA is conjugated to the ligand moiety via a phosphate group or a phosphorothioate group.
  • the 3' end of the sense strand is conjugated to the ligand moiety via a phosphate group or a phosphorothioate group.
  • the 5' end of the sense strand is conjugated to the ligand moiety via a phosphate group or a phosphorothioate group.
  • the ligand moiety includes a conjugation group represented by formula (X'):
  • L 1 is a chemical bond, -CH 2 -, -CH 2 CH 2 -, -C(O)-, -CH 2 O-, -CH 2 O-CH 2 CH 2 O- or -NHC(O)-( CH 2 NHC(O)) a -;
  • L 2 is a chemical bond or -CH 2 CH 2 C(O)-;
  • L 3 is a chemical bond, -(NHCH 2 CH 2 ) b -, -(NHCH 2 CH 2 CH 2 ) b - or -C(O)CH 2 -;
  • L 4 is -(OCH 2 CH 2 ) c -, -(OCH 2 CH 2 CH 2 ) c -, -(OCH 2 CH 2 CH 2 CH 2 ) c -, -(OCH 2 CH 2 CH 2 CH 2 CH 2 ) c -or-NHC(O)-(CH 2 ) d -;
  • b 1, 2, 3, 4 or 5;
  • c 1, 2, 3, 4 or 5;
  • d 1, 2, 3, 4, 5, 6, 7 or 8;
  • L is a chemical bond, -CH 2 O- or -NHC(O)-;
  • L' is a chemical bond, -C(O)NH-, -NHC(O)- or -O(CH 2 CH 2 O) e -;
  • e 1, 2, 3, 4 or 5;
  • T is a chemical bond, -CH 2 -, -C(O)-, -M-, -CH 2 -M- or -C(O)-M-;
  • R 1 and R 2 together form -CH 2 CH 2 O- or -CH 2 CH(R)-O-, and R 3 is H;
  • R 1 and R 3 together form -C 1-2 alkylene-, and R 2 is H;
  • R is -OR', -CH 2 OR' or -CH 2 CH 2 OR', wherein R' is H, a hydroxyl protecting group or a solid phase carrier, and the hydroxyl protecting group is preferably -C(O)CH 2 CH 2 C(O)OH or 4,4'-dimethoxytrityl;
  • n 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 or 10;
  • n 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 or 10.
  • the conjugating group is represented by Formula (I'):
  • L 1 is a chemical bond, -CH 2 -, -CH 2 CH 2 -, -C(O)-, -CH 2 O-, -CH 2 O-CH 2 CH 2 O- or -NHC(O)-( CH 2 NHC(O)) a -;
  • L 2 is a chemical bond or -CH 2 CH 2 C(O)-;
  • L 3 is a chemical bond, -(NHCH 2 CH 2 ) b -, -(NHCH 2 CH 2 CH 2 ) b - or -C(O)CH 2 -;
  • L 4 is -(OCH 2 CH 2 ) c -, -(OCH 2 CH 2 CH 2 ) c -, -(OCH 2 CH 2 CH 2 CH 2 ) c -, -(OCH 2 CH 2 CH 2 CH 2 CH 2 ) c -or-NHC(O)-(CH 2 ) d -;
  • b 1, 2, 3, 4 or 5;
  • c 1, 2, 3, 4 or 5;
  • d 1, 2, 3, 4, 5, 6, 7 or 8;
  • L is -CH 2 O- or -NHC(O)-;
  • L’ is a chemical bond, -C(O)NH- or -NHC(O)-;
  • R 1 and R 2 together form -CH 2 CH 2 O- or -CH 2 CH(R)-O-, and R 3 is H;
  • R 1 and R 3 together form -C 1-2 alkylene-, and R 2 is H;
  • R is -OR', -CH 2 OR' or -CH 2 CH 2 OR', wherein R' is H, hydroxyl protecting group or solid phase carrier, and the hydroxyl protecting group is preferably -C(O)CH 2 CH 2 C(O)OH or 4,4'-dimethoxytrityl;
  • n 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 or 10;
  • n 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 or 10.
  • L 1 is -CH 2 O- or -NHC(O)-(CH 2 NHC(O)) a -;
  • L 2 is -CH 2 CH 2 C(O)-
  • L 3 is -(NHCH 2 CH 2 ) b - or -(NHCH 2 CH 2 CH 2 ) b -;
  • L 4 is -(OCH 2 CH 2 ) c - or -NHC(O)-(CH 2 ) d -;
  • b 1, 2, 3, 4 or 5;
  • c 1, 2, 3, 4 or 5;
  • d 1, 2, 3, 4, 5, 6, 7 or 8;
  • L is -CH 2 O-
  • L’ is a chemical bond
  • R 1 and R 2 together form -CH 2 CH 2 O- or -CH 2 CH(R)-O-, and R 3 is H;
  • R 1 and R 3 together form -C 1-2 alkylene-, and R 2 is H;
  • R is -OR', -CH 2 OR' or -CH 2 CH 2 OR', wherein R' is H, hydroxyl protecting group or solid phase carrier, and the hydroxyl protecting group is preferably -C(O)CH 2 CH 2 C(O)OH or 4,4'-dimethoxytrityl;
  • n 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 or 10;
  • n 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 or 10.
  • the conjugation group is represented by Formula (I'-1), Formula (I'-2), or Formula (I'-3):
  • L 1 is -CH 2 O- or -NHC(O)-;
  • L 2 is -CH 2 CH 2 C(O)-
  • L 3 is -(NHCH 2 CH 2 ) b - or -(NHCH 2 CH 2 CH 2 ) b -;
  • L 4 is -(OCH 2 CH 2 ) c - or -NHC(O)-(CH 2 ) d -;
  • c 1, 2, 3, 4 or 5;
  • d 1, 2, 3, 4, 5, 6, 7 or 8;
  • L is -CH 2 O-
  • R' is H, a hydroxyl protecting group or a solid phase carrier, and the hydroxyl protecting group is preferably -C(O)CH 2 CH 2 C(O)OH or 4,4'-dimethoxytrityl;
  • n 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 or 10.
  • L 1 is -CH 2 O-, -CH 2 O-CH 2 CH 2 O- or -NHC(O)-(CH 2 NHC(O)) a -;
  • L 2 is -CH 2 CH 2 C(O)-
  • L 3 is -(NHCH 2 CH 2 ) b -, -(NHCH 2 CH 2 CH 2 ) b - or -C(O)CH 2 -;
  • L 4 is -(OCH 2 CH 2 ) c - or -NHC(O)-(CH 2 ) d -;
  • b 1, 2, 3, 4 or 5;
  • c 1, 2, 3, 4 or 5;
  • d 1, 2, 3, 4, 5, 6, 7 or 8;
  • L is -CH 2 O- or -NHC(O)-;
  • L’ is a chemical bond or -C(O)NH-
  • R 1 and R 2 together form -CH 2 CH 2 O- or -CH 2 CH(R)-O-, and R 3 is H;
  • R 1 and R 3 together form -C 1-2 alkylene-, and R 2 is H;
  • R is -OR', -CH 2 OR' or -CH 2 CH 2 OR', wherein R' is H, a hydroxyl protecting group or a solid phase carrier, and the hydroxyl protecting group is preferably -C(O)CH 2 CH 2 C(O)OH or 4,4'-dimethoxytrityl;
  • n 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 or 10;
  • n 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 or 10.
  • the conjugation group is represented by Formula (II'-1) or Formula (II'-2):
  • L 1 is -CH 2 O- or -CH 2 O-CH 2 CH 2 O-;
  • L 3 is -(NHCH 2 CH 2 ) b -, -(NHCH 2 CH 2 CH 2 ) b - or -C(O)CH 2 -;
  • L 4 is -(OCH 2 CH 2 ) c - or -NHC(O)-(CH 2 ) d -;
  • c 1, 2, 3, 4 or 5;
  • d 1, 2, 3, 4, 5, 6, 7 or 8;
  • L is -NHC(O)-
  • L’ is a chemical bond or -C(O)NH-
  • R' is H, a hydroxyl protecting group or a solid phase carrier, and the hydroxyl protecting group is preferably -C(O)CH 2 CH 2 C(O)OH or 4,4'-dimethoxytrityl;
  • n 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 or 10;
  • n 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 or 10.
  • L 1 is -CH 2 -, -C(O)-, -CH 2 O-, -CH 2 O-CH 2 CH 2 O- or -NHC(O)-(CH 2 NHC(O)) a - ;
  • L 2 is a chemical bond
  • L 3 is -(NHCH 2 CH 2 ) b -, -(NHCH 2 CH 2 CH 2 ) b - or -C(O)CH 2 -;
  • L 4 is -(OCH 2 CH 2 ) c - or -NHC(O)-(CH 2 ) d -;
  • b 1, 2, 3, 4 or 5;
  • c 1, 2, 3, 4 or 5;
  • d 1, 2, 3, 4, 5, 6, 7 or 8;
  • L is -CH 2 O- or -NHC(O)-;
  • L’ is a chemical bond or -C(O)NH-
  • R 1 and R 2 together form -CH 2 CH 2 O- or -CH 2 CH(R)-O-, and R 3 is H;
  • R 1 and R 3 together form -C 1-2 alkylene-, and R 2 is H;
  • R is -OR', -CH 2 OR' or -CH 2 CH 2 OR', wherein R' is H, hydroxyl protecting group or solid phase carrier, and the hydroxyl protecting group is preferably -C(O)CH 2 CH 2 C(O)OH or 4,4'-dimethoxytrityl;
  • n 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 or 10;
  • n 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 or 10.
  • L 1 is -CH 2 - or -C(O)-;
  • L 3 is -(NHCH 2 CH 2 ) b -;
  • L 4 is -(OCH 2 CH 2 ) c -;
  • c 1, 2, 3, 4 or 5;
  • L is -CH 2 O- or -NHC(O)-;
  • R' is H, a hydroxyl protecting group or a solid phase carrier, and the hydroxyl protecting group is preferably -C(O)CH 2 CH 2 C(O)OH or 4,4'-dimethoxytrityl;
  • n 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 or 10.
  • L 1 is a chemical bond, -CH 2 -, -CH 2 CH 2 -, -C(O)-, -CH 2 O-, -CH 2 O-CH 2 CH 2 O- or -NHC(O)-( CH 2 NHC(O)) a -;
  • L 2 is a chemical bond or -CH 2 CH 2 C(O)-;
  • L 3 is a chemical bond, -(NHCH 2 CH 2 ) b -, -(NHCH 2 CH 2 CH 2 ) b - or -C(O)CH 2 -;
  • L 4 is -(OCH 2 CH 2 ) c -, -(OCH 2 CH 2 CH 2 ) c -, -(OCH 2 CH 2 CH 2 CH 2 ) c -, -(OCH 2 CH 2 CH 2 CH 2 CH 2 ) c -or-NHC(O)-(CH 2 ) d -;
  • b 1, 2, 3, 4 or 5;
  • c 1, 2, 3, 4 or 5;
  • d 1, 2, 3, 4, 5, 6, 7 or 8;
  • L is a chemical bond, -CH 2 O- or -NHC(O)-;
  • L' is a chemical bond, -C(O)NH-, -NHC(O)- or -O(CH 2 CH 2 O) e -;
  • e 1, 2, 3, 4 or 5;
  • T is a chemical bond, -CH 2 -, -M-, -CH 2 -M- or -C(O)-M-;
  • R 1 and R 2 together form -CH 2 CH 2 O- or -CH 2 CH(R)-O-, and R 3 is H;
  • R 1 and R 3 together form -C 1-2 alkylene-, and R 2 is H;
  • R is -OR', -CH 2 OR' or -CH 2 CH 2 OR', wherein R' is H, hydroxyl protecting group or solid phase carrier, and the hydroxyl protecting group is preferably -C(O)CH 2 CH 2 C(O)OH or 4,4'-dimethoxytrityl;
  • n 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 or 10;
  • n 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 or 10.
  • T is -M-, -CH 2 -M- or -C(O)-M-, where M is
  • L 1 is -CH 2 O- or -NHC(O)-(CH 2 NHC(O)) a -;
  • L 2 is -CH 2 CH 2 C(O)-
  • L 3 is -(NHCH 2 CH 2 ) b - or -(NHCH 2 CH 2 CH 2 ) b -;
  • L 4 is -(OCH 2 CH 2 ) c - or -NHC(O)-(CH 2 ) d -;
  • b 1, 2, 3, 4 or 5;
  • c 1, 2, 3, 4 or 5;
  • d 1, 2, 3, 4, 5, 6, 7 or 8;
  • L is a chemical bond or -CH 2 O-;
  • L' is a chemical bond or -O(CH 2 CH 2 O) e -;
  • e 1, 2, 3, 4 or 5;
  • R 1 and R 2 together form -CH 2 CH 2 O- or -CH 2 CH(R)-O-, and R 3 is H;
  • R 1 and R 3 together form -C 1-2 alkylene-, and R 2 is H;
  • R is -OR', -CH 2 OR' or -CH 2 CH 2 OR', wherein R' is H, hydroxyl protecting group or solid phase carrier, and the hydroxyl protecting group is preferably -C(O)CH 2 CH 2 C(O)OH or 4,4'-dimethoxytrityl;
  • n 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 or 10;
  • n 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 or 10;
  • T is as defined above.
  • conjugation group is represented by Formula (III'-1), Formula (III'-2) or Formula (III'-3):
  • L 1 is -CH 2 O- or -NHC(O)-;
  • L 2 is -CH 2 CH 2 C(O)-
  • L 3 is -(NHCH 2 CH 2 ) b - or -(NHCH 2 CH 2 CH 2 ) b -;
  • L 4 is -(OCH 2 CH 2 ) c - or -NHC(O)-(CH 2 ) d -;
  • c 1, 2, 3, 4 or 5;
  • d 1, 2, 3, 4, 5, 6, 7 or 8;
  • L is a chemical bond or -CH 2 O-;
  • R' is H, a hydroxyl protecting group or a solid phase carrier, and the hydroxyl protecting group is preferably -C(O)CH 2 CH 2 C(O)OH or 4,4'-dimethoxytrityl;
  • n 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 or 10;
  • T is as defined above.
  • L 1 is -CH 2 -, -CH 2 O- or -C(O)-;
  • L 2 is a chemical bond
  • L 3 is -(NHCH 2 CH 2 ) b -, -(NHCH 2 CH 2 CH 2 ) b - or -C(O)CH 2 -;
  • L 4 is -(OCH 2 CH 2 ) c - or -NHC(O)-(CH 2 ) d -;
  • c 1, 2, 3, 4 or 5;
  • d 1, 2, 3, 4, 5, 6, 7 or 8;
  • L is a chemical bond or -NHC(O)-
  • L’ is a chemical bond
  • R 1 and R 2 together form -CH 2 CH 2 O- or -CH 2 CH(R)-O-, and R 3 is H;
  • R 1 and R 3 together form -C 1-2 alkylene-, and R 2 is H;
  • R is -OR', -CH 2 OR' or -CH 2 CH 2 OR', wherein R' is H, hydroxyl protecting group or solid phase carrier, and the hydroxyl protecting group is preferably -C(O)CH 2 CH 2 C(O)OH or 4,4'-dimethoxytrityl;
  • n 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 or 10;
  • n 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 or 10;
  • T is as defined above.
  • L 1 is -CH 2 -, -CH 2 O- or -C(O)-;
  • L 3 is -(NHCH 2 CH 2 ) b -, -(NHCH 2 CH 2 CH 2 ) b - or -C(O)CH 2 -;
  • L 4 is -(OCH 2 CH 2 ) c - or -NHC(O)-(CH 2 ) d -;
  • c 1, 2, 3, 4 or 5;
  • d 1, 2, 3, 4, 5, 6, 7 or 8;
  • L is a chemical bond or -NHC(O)-
  • L’ is a chemical bond
  • R' is H, a hydroxyl protecting group or a solid phase carrier, and the hydroxyl protecting group is preferably -C(O)CH 2 CH 2 C(O)OH or 4,4'-dimethoxytrityl;
  • n 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 or 10;
  • n 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 or 10;
  • T is as defined above.
  • L 1 is a chemical bond, -CH 2 -, -CH 2 CH 2 -, -C(O)-, -CH 2 O-, -CH 2 O-CH 2 CH 2 O- or -NHC(O)-( CH 2 NHC(O)) a -;
  • L 2 is a chemical bond or -CH 2 CH 2 C(O)-;
  • L 3 is a chemical bond, -(NHCH 2 CH 2 ) b -, -(NHCH 2 CH 2 CH 2 ) b - or -C(O)CH 2 -;
  • L 4 is -(OCH 2 CH 2 ) c -, -(OCH 2 CH 2 CH 2 ) c -, -(OCH 2 CH 2 CH 2 CH 2 ) c -, -(OCH 2 CH 2 CH 2 CH 2 CH 2 ) c -or-NHC(O)-(CH 2 ) d -;
  • b 1, 2, 3, 4 or 5;
  • c 1, 2, 3, 4 or 5;
  • d 1, 2, 3, 4, 5, 6, 7 or 8;
  • L is a chemical bond, -CH 2 O- or -NHC(O)-;
  • L' is -O(CH 2 CH 2 O) e -;
  • e 1, 2, 3, 4 or 5;
  • T is a chemical bond, -CH 2 -, -C(O)-, -M-, -CH 2 -M- or -C(O)-M-;
  • R 1 and R 2 together form -CH 2 CH 2 O- or -CH 2 CH(R)-O-, and R 3 is H;
  • R 1 and R 3 together form -C 1-2 alkylene-, and R 2 is H;
  • R is -OR', -CH 2 OR' or -CH 2 CH 2 OR', wherein R' is H, hydroxyl protecting group or solid phase carrier, and the hydroxyl protecting group is preferably -C(O)CH 2 CH 2 C(O)OH or 4,4'-dimethoxytrityl;
  • n 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 or 10;
  • n 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 or 10.
  • conjugating group is selected from Table 1 and Table 2.
  • the ligand targets asialoglycoprotein receptor (ASGPR).
  • ASGPR asialoglycoprotein receptor
  • said ligand has the following structure:
  • said ligand has the following structure:
  • said ligand has the following structure:
  • siRNA of the present disclosure wherein:
  • the justice chain includes
  • antisense strand includes
  • antisense strand includes
  • antisense strand includes
  • the justice chain includes
  • antisense strand includes
  • the justice chain includes
  • antisense strand includes
  • the justice chain includes
  • antisense strand includes
  • the justice chain includes
  • antisense strand includes
  • the justice chain includes
  • antisense strand includes
  • antisense strand includes
  • the siRNA of the present invention can inhibit APOC3 gene expression by at least about 5%, at least about 10%, at least about 15%, at least about 20%, at least about 25%, at least about 30%, at least about 35%, at least about 40%, At least about 45%, at least about 50%, at least about 55%, at least about 60%, at least about 65%, at least about 70%, at least about 75%, at least about 80%, at least about 85%, at least about 90%, At least about 91%, at least about 92%, at least about 93%, at least about 94%, at least about 95%, at least about 96%, at least about 97%, at least about 98%, or at least about 99%.
  • Inhibition of APOC3 gene expression may be manifested by a decrease in the amount of mRNA expressed by a first cell or population of cells (such cells may be present, for example, in a sample derived from the subject) in which the APOC3 gene is transcribed and the cells or these cells have been treated (e.g., by contacting the cell or cells with an siRNA of the invention, or by administering an siRNA of the invention to a subject in which these cells are present or were previously present, such that contact with the first cell or cells groups are essentially the same but have not yet been APOC3 gene expression is inhibited compared to a second treated cell or group of cells (one or more control cells).
  • a second treated cell or group of cells one or more control cells
  • the inhibition is assessed by expressing the level of mRNA in treated cells as a percentage of the level of mRNA in control cells using the following formula.
  • Inhibition of expression of APOC3 protein may be manifested by a decrease in the level of APOC3 protein expressed by a cell or population of cells (eg, the level of protein expressed in a sample derived from a subject).
  • a cell or population of cells eg, the level of protein expressed in a sample derived from a subject.
  • inhibition of protein expression levels in treated cells or populations of cells can similarly be expressed as a percentage of the levels of the protein in control cells or populations of cells.
  • Control cells or cell populations that can be used to evaluate inhibition of APOC3 gene expression include cells or cell populations that have not been contacted with the siRNA of the invention.
  • the control cells or population of cells may be derived from an individual subject (eg, a human or animal subject) prior to treatment of the subject with siRNA.
  • the invention provides a vector comprising a nucleotide sequence encoding the siRNA of the invention.
  • the vector of the present invention can amplify or express the nucleotide encoding the siRNA of the present invention connected thereto.
  • siRNA targeting the APOC3 gene can be expressed from a transcription unit inserted into a DNA or RNA vector. Expression can be transient (within hours to weeks) or sustained (weeks to months or longer), depending on the specific construct used and the target tissue or cell type.
  • the coding nucleotides for siRNA targeting the APOC3 gene can be introduced into linear constructs, circular plasmids, or viral vectors. Nucleotides encoding siRNA targeting the PCSK gene can be integrated into the cell genome for stable expression, or can be stably inherited and expressed extrachromosomally.
  • siRNA expression vectors are usually DNA plasmids or viral vectors.
  • Viral vector systems containing coding sequences for siRNA targeting the APOC3 gene include, but are not limited to: (a) adenovirus vectors; (b) retroviral vectors; (c) adeno-associated virus vectors; (d) herpes simplex virus vectors ; (e) SV40 vector; (f) polyomavirus vector; (g) papillomavirus vector; (h) picornavirus vector; (i) poxvirus vector; and (j) helper virus-dependent adenovirus or none Enteroadenovirus.
  • the invention provides cells comprising the siRNA or vector of the invention, wherein the siRNA or vector of the invention is capable of being transcribed in the cell.
  • compositions which comprise the siRNA, vectors or cells of the invention, and optional pharmaceutically acceptable carriers or excipients.
  • pharmaceutically acceptable refers to those compounds, materials, compositions and/or dosage forms which, within the scope of sound medical judgment, are suitable for contact with tissues of human subjects and animal subjects without undue Toxicity, irritation, allergic reactions, or other problems or complications, commensurate with a reasonable benefit/risk ratio.
  • a pharmaceutically acceptable carrier refers to a pharmaceutical carrier that facilitates the administration of siRNA or a vector or cell containing its coding sequence to the human body and/or facilitates its absorption or effect.
  • diluents excipients such as water, fillers such as starch, sucrose, etc.
  • binders such as cellulose derivatives, alginates, gelatin and polyvinylpyrrolidone
  • wetting agents such as glycerin
  • disintegrants such as agar, carbonic acid Calcium and sodium bicarbonate
  • absorption accelerators such as quaternary ammonium compounds
  • surfactants such as cetyl alcohol
  • adsorption carriers such as kaolin and bentonite
  • lubricants such as talc, calcium/magnesium stearate, polyethylene glycol, etc.
  • other auxiliary agents such as flavoring agents, sweeteners, etc. can also be added to the composition.
  • a pharmaceutical composition containing the siRNA, vector or cells of the present invention may comprise a pharmaceutically acceptable diluent or sustained-release matrix in which the siRNA or carrier of the present invention is embedded.
  • the present invention provides a kit comprising the siRNA, vector or cell of the present invention.
  • kits for using the siRNA of the invention and/or performing the methods of the invention includes one or more siRNAs, vectors or cells according to the invention, and may further include instructions for use. Instructions for inhibiting the expression of APOC3 in the cells by contacting the cells with the siRNA or vector of the present invention in an amount effective to inhibit APOC3 expression may be recorded in the instructions for use.
  • the kit of the invention may also include means for contacting the cells with the siRNA or vector of the invention (e.g., injection device) or a tool for measuring the inhibitory effect of APOC3 (e.g., a device for measuring inhibition of APOC3 mRNA or protein).
  • a device for measuring inhibition of APOC3 may comprise a device for obtaining a sample (eg, like a plasma sample) from a subject.
  • the kit of the present invention may optionally also include a method for introducing the siRNA, the vector or the cells according to the invention.
  • the invention provides a method capable of inhibiting APOC3 expression in a cell, the method comprising: (a) contacting the cell with the siRNA, vector, cell, or pharmaceutical composition of the invention; and (b) culturing the cell.
  • the present invention provides methods for treating diseases or symptoms associated with APOC3 expression in a subject, the method comprising the step of administering to the subject the siRNA, vector, cell, or pharmaceutical composition of the present invention.
  • the siRNA provided by the invention can inhibit the expression of APOC3, thereby reducing the level of triglycerides, especially the level of serum triglycerides, and is used to treat APOC3-related diseases and conditions.
  • the APOC3-related diseases and conditions are hypertriglyceridemia and diseases that may be caused by, associated with, or a consequence of hypertriglyceridemia.
  • Conditions that can be caused by, associated with, or a consequence of hypertriglyceridemia include, but are not limited to, pancreatitis, metabolic syndrome, type 2 diabetes, familial Chylomicronemia syndrome (FCS), chylomicronemia, multifactorial chylomicronemia, lipodystrophy syndromes (e.g., familial partial lipodystrophy), obesity, dyslipidemia, nonalcoholic fatty liver disease, non- Alcoholic steatohepatitis, hyperlipidemia, hypertriglyceridemia, abnormal lipid and/or cholesterol metabolism, atherosclerosis, cardiovascular disease, coronary artery disease, polycystic ovary syndrome, renal disease and others Dyslipidemia and metabolism-related conditions and diseases.
  • the hypertriglyceridemia includes, but is not limited to, non-familial hypertriglyceridemia, familial hypertriglyceridemia, heterozygous familial hypertriglyceridemia, homozygous familial hypertriglyceridemia Hypertriglyceridemia.
  • methods of the present invention for treating a disease or condition associated with APOC3 expression in a subject administer the siRNA or pharmaceutical composition to the subject subcutaneously, intravenously, or topically.
  • the subject is a human patient.
  • the invention also relates to the siRNA, vector, cell or pharmaceutical composition of the invention for treating a disease or condition associated with APOC3 expression in a subject.
  • the present invention also relates to the use of the siRNA, vector, cell, or pharmaceutical composition of the present invention in the preparation of a medicament for treating diseases or symptoms associated with APOC3 expression in a subject.
  • the medicine of the present invention can be prepared into emulsions, microemulsions, and microparticles.
  • the invention also provides methods for reducing the risk of developing APOC3-related diseases and disorders in a subject, the method comprising the step of administering to the subject a siRNA, vector, cell, or pharmaceutical composition of the invention .
  • the siRNA of the present invention can significantly reduce triglyceride levels and thereby reduce the risk of developing APOC3-related diseases and disorders.
  • the APOC3-related diseases and conditions are hypertriglyceridemia and diseases that may be caused by, associated with, or a consequence of hypertriglyceridemia.
  • Conditions that can be caused by, associated with, or a consequence of hypertriglyceridemia include, but are not limited to, pancreatitis, metabolic syndrome, type II diabetes, familial chylomicronemia syndrome (FCS), chylomicronemia Micronemia, multifactorial chylomicronemia, lipodystrophy syndromes (e.g., familial partial lipodystrophy), obesity, dyslipidemia, nonalcoholic fatty liver disease, nonalcoholic steatohepatitis, hyperlipidemia, hyperlipidemia Triglyceridemia, abnormal lipid and/or cholesterol metabolism, atherosclerosis, cardiovascular disease, coronary artery disease, polycystic ovary syndrome, renal disease and other dyslipidemia and metabolism-related conditions and diseases.
  • the hypertriglyceridemia includes, but is not limited to, non-familial hypertriglyceridemia, familial hypertriglyceridemia, heterozygous familial hypertriglyceridemia, homozygous familial hypertriglyceridemia Hypertriglyceridemia.
  • methods of the present invention for reducing the risk of developing APOC3-related diseases and disorders in a subject administer the siRNA or pharmaceutical composition to the subject subcutaneously, intravenously, or topically.
  • the subject is a human patient.
  • the invention also relates to a siRNA, vector, cell or pharmaceutical composition of the invention for reducing the risk of developing APOC3-related diseases and disorders in a subject.
  • the invention also relates to the use of the siRNA, vector, cell, or pharmaceutical composition of the invention in the preparation of a medicament for reducing the risk of developing APOC3-related diseases and disorders in a subject.
  • the medicine of the present invention can be prepared into emulsions, microemulsions, and microparticles.
  • RNA sequence provided by the invention targets the APOC3 gene (or target gene, target mRNA sequence, target sequence).
  • Table 4 below shows the modified RNA sequences used in the present invention.
  • the A, U, G, and C distributions represent natural adenine ribonucleotides, uracil ribonucleotides, guanine ribonucleotides, and cytosine ribonucleotides.
  • i or I represents inosine ribonucleotide.
  • m indicates that the adjacent nucleotide to its left is a 2'-OCH 3 modified nucleotide.
  • Am, Um, Gm and Cm represent 2'-OCH 3 modified A, U, G and C.
  • f indicates that the adjacent nucleotide to its left is a 2’-F modified nucleotide.
  • Af, Uf, Gf and Cf represent 2'-F modified A, U, G and C respectively.
  • s or "s-" means that two adjacent nucleotides and/or delivery vectors are connected through phosphorothioate.
  • VP indicates that the nucleotide adjacent to the right side is a vinylphosphonate-modified nucleotide, which is well known in the art, see, for example, PCT Publication Nos. WO2011139702, WO2013033230 and WO2019105419.
  • IB stands for reverse abasic deoxyribonucleotide, which can include the following three structures depending on its location/connection method in siRNA (respectively for the 5' end, interstrand and 3' end of the nucleic acid chain):
  • L96 represents a GalNAc delivery vector of the following structure, which is well known in the art, wherein Indicates the position of attachment to siRNA via a phosphate group or a phosphorothioate group, see for example PCT Publication Nos. WO2009073809 and WO2009082607
  • NAG37 represents a GalNAc delivery vector of the structure well known in the art, wherein Indicates the position where siRNA is connected, see for example PCT Publication No. WO2018044350
  • GL6 represents a GalNAc delivery vector of the following structure, where Indicates the position of attachment to siRNA via a phosphate group or phosphorothioate group
  • GL12 represents a GalNAc delivery vector of the following structure, where Indicates the position where the phosphate group or phosphorothioate group is connected to siRNA.
  • STM1 represents a nucleotide substitute of the following structure.
  • the synthesis method of relevant intermediates is shown in Example 15 below.
  • PCN represents a nucleotide substitute of the following structure, in which Base can be any base.
  • Base can be any base.
  • PCN-A represents Base as adenine.
  • CP1a represents a nucleotide substitute of the following structure, in which Base can be any base.
  • Base can be any base.
  • CP1a-U represents Base as uracil.
  • Huh7 cell line was purchased from Nanjing Kebai, product number CBP60202;
  • Hep3B cell line was purchased from Nanjing Kebai, product number CBP60197;
  • PHH cells were purchased from Shanghai Xuanyi, product number QYLF-HPMC;
  • HEK293A cell line was purchased from Nanjing Kebai, product number CBP60436;
  • Balb/c mice were from Zhejiang Vitong Lever, product number Balb/c.
  • the filter cake was ground with water (1.45 L) at 25°C for 30 minutes. The mixture was filtered and the filter cake was washed with water (175 mL x 3), and the filter cake was collected to obtain compound 2A as a white solid (about 580 g).
  • reaction solution was concentrated under reduced pressure, and the crude product obtained was prepared by preparative high-performance liquid chromatography (preparative-HPLC, column: Waters Xbridge BEH C18 100*30mm*10um; mobile phase: water-ACN; B%: 17% -57%, 5min) to obtain white solid compound E7 (53.0mg, yield 17.08%, purity 78.94%).
  • siRNA of the invention is prepared using the solid-phase phosphoramidite method, which is well known in the art. Specific methods can be found, for example, in PCT publication numbers WO2016081444 and WO2019105419, and are briefly described below.
  • a blank CPG solid-phase carrier is used as the starting cycle, and the nucleoside monomers are connected one by one from the 3'-5' direction in the order of the sense strand nucleotide arrangement.
  • Each connection of a nucleoside monomer involves a four-step reaction of deprotection, coupling, capping, oxidation or thiolation.
  • the conditions for the synthesis of oligonucleotides with a synthesis scale of 5 ⁇ mol are as follows:
  • the nucleoside monomer is provided with a 0.05 mol/L acetonitrile solution.
  • the reaction conditions for each step are the same, that is, the temperature is 25°C.
  • the temperature is 25°C.
  • the capping agent used 10% acetic anhydride-acetonitrile and pyridine/N-methylimidazole/acetonitrile (10:14:76, v/v/ v), capping 2 times; oxidation using 0.05mol/L iodine/tetrahydrofuran/pyridine/water (70/20/10, v/v/v), oxidation 2 times; sulfide using 0.2mol/L PADS acetonitrile/ 3-methylpyridine (1/1, v/v), sulfide substituted 2 times.
  • a blank CPG solid-phase carrier is used as the starting cycle, and the nucleoside monomers are connected one by one from the 3'-5' direction in the order of the antisense strand nucleotide arrangement.
  • Each connection of a nucleoside monomer involves a four-step reaction of deprotection, coupling, capping, oxidation or sulfation.
  • the synthesis conditions of 5 ⁇ mol of oligonucleotide of the antisense strand are the same as those of the sense strand.
  • a strong anion packing column can be used, a sodium chloride-sodium hydroxide system can be used for elution and purification, and the products can be collected and tubed.
  • a gel packing purification column can be used for desalting, and the elution system is pure water.
  • the GL6 solid-phase carrier prepared above is used as the starting cycle, and the nucleoside monomers are connected one by one from the 3'-5' direction in the order of the sense strand nucleotide arrangement.
  • Each connection of a nucleoside monomer involves four steps of deprotection, coupling, capping, oxidation or sulfation.
  • the synthesis conditions for an oligonucleotide with a synthesis scale of 5 ⁇ mol are as follows:
  • the nucleoside monomer is provided with a 0.05 mol/L acetonitrile solution.
  • the reaction conditions for each step are the same, that is, the temperature is 25 degrees.
  • the temperature is 25 degrees.
  • the capping agent used 10% acetic anhydride-acetonitrile and pyridine/N-methylimidazole/acetonitrile (10:14:76, v/v/ v), capping 2 times; oxidation using 0.05mol/L iodine/tetrahydrofuran/pyridine/water (70/20/10, v/v/v), oxidation 2 times; sulfide using 0.2mol/L PADS acetonitrile/ 3-methylpyridine (1/1, v/v), sulfide substituted 2 times.
  • a blank CPG solid-phase carrier is used as the starting cycle, and the nucleoside monomers are connected one by one from the 3'-5' direction in the order of the antisense strand nucleotide arrangement.
  • Each connection of a nucleoside monomer involves a four-step reaction of deprotection, coupling, capping, oxidation or sulfation.
  • the synthesis conditions of 5 ⁇ mol of oligonucleotide of the antisense strand are the same as those of the sense strand.
  • a strong anion packing column can be used, a sodium chloride-sodium hydroxide system can be used for elution and purification, the products can be collected and tubed, and a gel packing purification column can be used for desalting.
  • the elution system is pure water.
  • siRNA conjugated with NAG37 or L96 was obtained in a similar manner.
  • the Huh7 cell line (Nanjing Kebai, Cat. No. CBP60202) was digested, resuspended, counted, plated on a 96-well plate, 100 ⁇ L/well, 1 ⁇ 10 4 cells/well, and transfected 18 hours later.
  • siRNA (DR000001 to DR000400) stock solution prepared in Example 2 was diluted with Opti-MEM. Take 198 ⁇ L of Opti-MEM and add 2 ⁇ L of the siRNA stock solution, pipe and mix, and set aside. In each experiment, corresponding dilution operations are performed according to different experimental needs.
  • RNAiMAX Thermo, 13778150
  • RNAiMAX Thermo, 13778150
  • 15 ⁇ L of the prepared RNAi-MAX mixture and 15 ⁇ L of the diluted siRNA compound Let it stand at room temperature for 10 minutes.
  • Cell RNA was extracted using a nucleic acid extractor (Auto-pure96, Hangzhou Aosheng) according to the operating protocol of the high-throughput cell RNA extraction kit (Fanzhi Medical, FG0412).
  • Denaturation reaction mixture To prepare the denaturation reaction mixture, refer to PrimeScript TM II 1st Strand cDNA Synthesis Kit (Takara, 6210B). Each well contains 1 ⁇ L of Oligo dT Primer, 1 ⁇ L of dNTP Mixture, and 12.5 ⁇ L of template RNA. Denaturation reaction was performed by incubating at 65°C for 5 min in a conventional PCR machine. Place the mixture on ice to cool quickly for 2 minutes.
  • PrimeScript TM II 1st Strand cDNA Synthesis Kit (Takara, 6210B). Each well contains 4 ⁇ L of 5 ⁇ Prime Script II Buffer, 0.5 ⁇ L of RNase Inhibitor, and 1 ⁇ L of PrimeScript II RTase.
  • reaction program is: (50°C, 2min) ⁇ 1Cycle; (95°C, 20s) ⁇ 1Cycle; (95°C, 1s; 60°C, 24s) ⁇ 40Cycles.
  • ⁇ Ct [(Ct experimental group target gene-Ct experimental group internal reference)-(Ct control group target gene-Ct control group internal reference)].
  • the final concentration of siRNA was 10 nM for high-throughput screening of cell line activity of siRNA compounds.
  • the experimental screening results are shown in Table 8.
  • Hep3B Najing Kebai, Cat. No. CBP60197 cell line was used for activity screening.
  • the starting concentration of siRNA (DR000001 to DR000400) was 10 nM, and 10-fold gradient dilution was performed to obtain 5 concentration points (10 nM, 1 nM, 0.1 nM, 0.01 nM, 0.001 nM).
  • the Hep3B cell line activity of siRNA was screened. The screening results are shown in Table 9.
  • the steps of this example are similar to Example 4.
  • the starting concentration of siRNA (DR000001 to DR000400) was 10nM, and 3-fold gradient dilution obtained 11 concentration points (10nM, 3.33nM, 1.11nM, 0.37nM, 0.123nM, 0.041nM, 0.0136nM, 0.0045nM, 0.00152nM, 0.000508 nM, 0.000169nM), screen the activity of siRNA in Hep3B cell line.
  • the screening results are shown in Table 10.
  • the steps of this example are similar to Example 3.
  • the Huh7 cell line was selected.
  • the starting concentration of siRNA (DR000001 to DR000400) was 10nM.
  • 3-fold gradient dilution was performed to obtain 11 concentration points (10nM, 3.33nM, 1.11nM, 0.37nM, 0.123nM, 0.041nM, 0.0136nM, 0.0045nM, 0.00152nM, 0.000508nM, 0.000169nM), screen the Huh7 cell line activity of siRNA.
  • the experimental screening results are shown in the table below.
  • the steps of this example are similar to Example 5.
  • Select the Hep3B cell line The starting concentration of siRNA (DR002222 to DR02226, DR001478, DR002252, DR000344, DR000348, DR000277, DR000199, DR000060, DR001482) is 10nM.
  • 11 concentration points (10nM, 3.33nM, 3.33nM, 1.11 nM, 0.37nM, 0.123nM, 0.041nM, 0.0136nM, 0.0045nM, 0.00152nM, 0.000508nM, 0.000169nM) screen the Hep3B cell line activity of siRNA. The screening results are shown in Table 12.
  • the corresponding antisense strand off-target plasmid was designed based on the siRNA sequence, and the psiCHECK2GSSM-5Hits recombinant plasmid was prepared by Sangon Bioengineering (Shanghai) Co., Ltd., and the recombinant plasmid was diluted to 1000ng/ ⁇ L for later use.
  • HEK293A cell (Nanjing Kebai, Cat. No. CBP60436) resuspension was plated, with 8 ⁇ 10 3 cells/well.
  • siRNA preparation Dilute siRNA 3 times starting from a final concentration of 40nM, with a total of 11 concentration points (40nM, 13.3nM, 4.44nM, 1.48nM, 0.493nM, 0.164nM, 0.0548nM, 0.0182nM, 0.00609nM, 0.00203nM, 0.000677 nM).
  • the preparation volume for a single well is 0.01 ⁇ L/well for plasmid and 8.99 ⁇ L/well for Opti-MEM.
  • Lipo mixture Preparation of Lipo mixture: Add 0.2 ⁇ L of Lipo 2000 and 9.8 ⁇ L of Opti-MEM to each well to dilute Lipo 2000 (Lipofectamine TM 2000 transfection reagent, Thermo, 11668019) with Opti-MEM to obtain a Lipo mixture, and let it stand at room temperature for 5 minutes.
  • Lipo 2000 Lipofectamine TM 2000 transfection reagent, Thermo, 11668019
  • the fluorescence activity is measured by a microplate reader, and the collected Renilla signals are normalized by the Firefly signal standard.
  • the inhibitory effect of siRNA is obtained by comparing the unprocessed results (residual inhibitory activity). The calculation process is as follows:
  • Ratio Renilla (Renilla luciferase)/Firefly (firefly luciferase).
  • Residual inhibition rate (RatiosiRNA/Ratiocontrol) * 100%, take the average of two duplicate wells: Ratiocontrol is the Ratio value of the control well (excluding siRNA) (take the average of two duplicate wells).
  • IC50 Half maximal inhibitory concentration
  • rat tail collagen solution (Sigma, C3867)
  • 40.6 mL of DNase RNase-Free Distilled Water mix well, add 40 ⁇ L to each well of a 96-well culture plate, coat at 4°C overnight, and remove the coating the next day liquid.
  • PHH cells (Shanghai Xuanyi, Cat. No. QYLF-HPMC) were revived at 37°C, added to the recovery medium, centrifuged, resuspended and counted. PHH cells were plated in a 96-well plate at 90 ⁇ L/well, 2 ⁇ 10 4 cells/well; complete medium was replaced after 4 hours, and transfection was performed after 18 hours.
  • siRNA (DR002222, DR002223, DR002225, DR002226, DR001478, and DR002252) stock solution was diluted with Opti-MEM. Take 198 ⁇ L Opti-MEM and add 2 ⁇ L siRNA stock solution, pipe and mix, as the first concentration point, follow Actual experiments require corresponding gradient dilutions.
  • RNAiMAX RNAiMAX
  • Opti-MEM dilute 0.9 ⁇ L RNAiMAX
  • 15 ⁇ L of the prepared RNAi-MAX mixture and 15 ⁇ L of the diluted siRNA compound and mix gently by pipetting without bringing in air bubbles. Let it stand at room temperature for 10 minutes. Add 10 ⁇ L/well to a 96-well plate. After culturing for 24 hours in a 37°C, 5% CO2 incubator, RNA was extracted.
  • Cell RNA was extracted using a nucleic acid extractor (Auto-pure96, Hangzhou Aosheng) according to the operating protocol of the high-throughput cell RNA extraction kit (Fanzhi Medical, FG0412).
  • Denaturation reaction mixture To prepare the denaturation reaction mixture, refer to PrimeScript TM II 1st Strand cDNA Synthesis Kit (Takara, 6210B). Each well contains 1 ⁇ L of Oligo dT Primer, 1 ⁇ L of dNTP Mixture, and 12.5 ⁇ L of template RNA. Denaturation reaction was performed by incubating at 65°C for 5 min in a conventional PCR machine. Place the mixture on ice to cool quickly for 2 minutes.
  • PrimeScript TM II 1st Strand cDNA Synthesis Kit (Takara, 6210B). Each well contains 4 ⁇ L of 5 ⁇ Prime Script II Buffer, 0.5 ⁇ L of RNase Inhibitor, and 1 ⁇ L of PrimeScript II RTase.
  • reaction program is: (50°C, 2min) ⁇ 1Cycle; (95°C, 20s) ⁇ 1Cycle; (95°C, 1s; 60°C, 24s) ⁇ 40Cycles.
  • ⁇ Ct [(Ct experimental group target gene-Ct experimental group internal reference)-(Ct control group target gene-Ct control group internal reference)].
  • the starting concentration of siRNA is 10nM, and it is diluted 10 times to obtain 5 concentration points (10nM, 1nM, 0.1nM, 0.01nM, 0.001nM).
  • the activity of siRNA in human liver primary cells is screened. The screening results are shown in Table 15. .
  • mice were transfected with a dual-gene stable transfection system to create in vivo transfection models.
  • a 27-gauge needle was used to inject the protein containing the Piggy-Bac transposon plasmid (purchased from Suzhou Bangye) and Piggy-Bac helper plasmid (purchased from Suzhou Bangye) with different mass ratios of target gene cDNA sequences (mass ratio 1:1, total plasmid amount 50ug) Delivery Solution (total volume is 10% of animal body weight, Mirusbio-MIR 5240) was injected into the mice, and placed back into the cage for observation for 30 min after injection. Taking the day of modeling as day 0, serum was obtained at various time points (Day7-Day35) after modeling for detection of SEAP expression levels.
  • Dual-gene stable transfection system including Piggy-Bac auxiliary plasmid and Piggy-Bac transposon plasmid, in which Piggy-Bac auxiliary plasmid provides Piggy-Bac transposase; Piggy-Bac transposon plasmid uses Piggy-Bac transposon Based on it, it contains a dual gene expression element, which contains the secreted alkaline phosphatase gene (SEAP) and the target gene (APOC3).
  • SEAP secreted alkaline phosphatase gene
  • APOC3 target gene
  • the preventive and/or therapeutic effect of the test sample is evaluated by measuring the SEAP expression level in serum. Select the test sample that can inhibit the expression level of SEAP as a nucleic acid drug.
  • siRNA compound dilution 20 ⁇ M siRNA compound stock solution is diluted with Opti-MEM. Take 198 ⁇ L Opti-MEM and add 2 ⁇ L compound stock solution. Pipe and mix evenly. This is used as the first concentration point. Perform the corresponding dilution operation according to the actual needs of the experiment.
  • RNAiMAX (Thermo, 13778150)
  • RNAiMAX Thermo, 13778150
  • 15 ⁇ L of the prepared RNAi-MAX mixture and 15 ⁇ L of the diluted compound by gently pipetting and mixing without bringing in air bubbles. Let it stand at room temperature for 10 minutes.
  • Cell RNA was extracted using a nucleic acid extractor (Auto-pure96, Hangzhou Aosheng) according to the operating protocol of the high-throughput cell RNA extraction kit (Fanzhi Medical, FG0412).
  • the single-well preparation volume is: 5 ⁇ Prime Script II Buffer 4 ⁇ L, RNase Inhibitor 0.5 ⁇ L, PrimeScript II RTase 1 ⁇ L, reaction solution after denaturation in the previous step.
  • reaction program is: (50°C, 2min) ⁇ 1Cycle; (95°C, 20s) ⁇ 1Cycle; (95°C , 1s; 60°C, 24s) ⁇ 40Cycles.
  • ⁇ Ct [(Ct experimental group target gene-Ct experimental group internal reference)-(Ct control group target gene-Ct control group internal reference)].
  • Example 10 Six to eight-week-old female Balb/c mice were selected for this experiment to construct the HDI model and conduct drug administration testing.
  • the mass ratio of Piggy-Bac helper plasmid and Piggy-Bac transposon recombinant plasmid was selected to be 1:1, and the total amount of plasmid was 50ug for modeling.
  • each mouse was given a single subcutaneous administration: 200 ⁇ l of physiological saline containing 3 mg/kg (mpk) Apoc3 RNAi reagent; or 200 ⁇ l. Normal saline without Apoc3 RNAi reagent was used as a control.
  • the HDI model experimental screening results are shown in Table 20.
  • mice (B6-hAPOC3-Tg, T055510, male, 6 to 8 weeks, GemPharmatech) were used to detect triglycerides (TG), low-density lipoprotein cholesterol (LDL-c), and high-density lipoprotein cholesterol (HDL- c), total cholesterol (TC); mice were randomly divided into 5 groups according to TG levels, with 5 animals in each group. The dosage of each animal was calculated based on body weight, and a single dose was administered by subcutaneous injection.
  • TG triglycerides
  • LDL-c low-density lipoprotein cholesterol
  • HDL- c high-density lipoprotein cholesterol
  • TC total cholesterol
  • the siRNA conjugate was 3mg/mL solution (0.9% sodium chloride aqueous solution as solvent) was administered; before the experiment, the siRNA conjugate was dissolved and diluted to the required solution concentration and volume with 0.9% sodium chloride aqueous solution, physiological saline and siRNA The dosing volume of the conjugate was 5 mL/kg.
  • Blood tests were taken before administration (recorded as day -3), and grouped according to the TG level on Day-3; on days 7, 14, 28, 42, 56 and 70 after administration (recorded as day 0) Blood was collected from the orbital venous plexus of mice (starved for 5 hours before each blood collection), centrifuged to collect serum for testing TG, LDL-c, TC and ELISA method to detect the target protein (Human APOC3 ELISA Kit, Abcam, ab154131 ), the experimental results are shown in Table 21-24.
  • the HEK293A cell line was selected for this experiment, the starting concentration of the siRNA compound was selected to be 40nM, and 3-fold gradient dilution was performed to 11 concentration points (40nM, 13.3nM, 4.44nM, 1.48nM, 0.493nM, 0.164nM, 0.0548nM, 0.0182nM, 0.00609nM, 0.00203nM, 0.000677nM) were used to screen the off-target activity of siRNA compound psiCHECK2GSSM-5Hits. The experimental screening results are shown in Table 25.
  • Dissolve compound 1b (310g, 1.52mol, 1.00eq), imidazole (206g, 3.02mol, 2.00eq), triphenylphosphine (476g, 1.82mol, 1.20eq) in toluene (2.1L), add iodine in batches at room temperature Elemental substance (446g, 1.76mmol, 1.16eq). After the addition, the temperature was raised to 70°C and stirred for 1.5 hours. TLC showed the reaction was complete.
  • Disperse zinc-copper reagent (90.0g, 1.37mol, 5.50eq) into diethyl ether (200mL), add compound 1d (60g, 241mmol, 1.00eq) at 25°C, and add trichloroacetyl chloride (61.5g, 338mmol, 1.00eq) dropwise. 1.40 eq) in diethyl ether (200 mL) and stirred for 1 hour.
  • the crude compound 1q (10.9g, 20.7mmol, 1.00eq) was purified by C 18 reverse-phase column chromatography (ammonium bicarbonate aqueous solution/acetonitrile) to obtain compound 1q-1 (1.50g, 11.5%) and compound 1q-2 (1.50g, 11.5%).
  • Dissolve compound 2 (95.0g, 222mmol) in toluene (1.50L) at 25°C, and add imidazole (30.2g, 443mmol), triphenylphosphine (116g, 443mmol) and iodine element (84.4g, 322mmol) in sequence.
  • the reaction solution was stirred at 100°C for 18 hours.
  • Add 20.0 mL saturated NaHSO 3 solution to the reaction solution, add 500 mL water, the reaction solution is separated into layers, and the organic phase is dissolved in saturated NaCl.
  • the solution (50.0 mL ⁇ 3) was washed, dried over anhydrous Na 2 SO 4 , and spin-dried to obtain the crude product.
  • reaction solution was cooled to 0°C, quenched by adding 50 mL saturated sodium carbonate solution, separated into layers, diluted with 300 mL DCM to the organic phase, washed with water (50 mL x 3) and saturated NaCl aqueous solution (50 mL x 1), and the organic phase was washed with anhydrous Na 2 SO 4 Dry, filter, and spin to obtain crude product.
  • the organic phase was washed with 20 mL of saturated NaHCO 3 aqueous solution and 20 mL of saturated NaCl aqueous solution.
  • the organic phase was dried over anhydrous Na 2 SO 4 , filtered, and spun to dryness to obtain the crude product, which was purified by reverse phase (acetonitrile/water: 20-80%, 30 min, 20 mL/min) to obtain yellow solid E1 (210 mg, 0.165 mmol, 46.57 %).

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Genetics & Genomics (AREA)
  • Organic Chemistry (AREA)
  • Biomedical Technology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Chemical & Material Sciences (AREA)
  • Molecular Biology (AREA)
  • Zoology (AREA)
  • General Health & Medical Sciences (AREA)
  • Biotechnology (AREA)
  • General Engineering & Computer Science (AREA)
  • Wood Science & Technology (AREA)
  • Biochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Plant Pathology (AREA)
  • Biophysics (AREA)
  • Physics & Mathematics (AREA)
  • Diabetes (AREA)
  • Hematology (AREA)
  • Obesity (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Microbiology (AREA)
  • Medicinal Chemistry (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)

Abstract

提供了抑制载脂蛋白C3表达的siRNA。提供了用于抑制细胞中APOC3表达的小干扰RNA(siRNA),以及包含其编码核苷酸的载体和细胞、以及利用所述的siRNA、载体或细胞治疗受试者中与APOC3表达相关的疾病或症状的方法。

Description

抑制载脂蛋白C3表达的siRNA 技术领域
本发明涉及RNA干扰领域,还涉及高胆固醇血症及其相关疾病的治疗领域。
背景技术
脂蛋白是由被两亲性蛋白、磷脂和胆固醇包被所围绕的酰基甘油和胆固醇酯的非极性核心组成的球状的、胶团样的颗粒。基于功能和物理性质已将脂蛋白分类为5种:乳糜微粒、极低密度脂蛋白(VLDL)、中密度脂蛋白(IDL)、低密度脂蛋白(LDL)和高密度脂蛋白(HDL)。乳糜微粒将饮食脂质从肠转运到组织。VLDL、IDL和LDL均将三酰基甘油和胆固醇从肝转运到组织。HDL将内源性胆固醇从组织转运到肝。
载脂蛋白C-III(ApoCIII)是脂蛋白代谢的重要调节剂。在人类中,APOC3在肝脏中表达,并在较小程度上在肠中表达。APOC3首先作为由99个氨基酸组成的蛋白质表达,然后在内质网中除去20个氨基酸的信号肽后,形成79个氨基酸的成熟ApoC3蛋白。
APOC3的主要作用是通过非竞争性抑制内皮结合脂蛋白脂肪酶(LPL)来调节脂类分解。LPL水解富含甘油三酯的脂蛋白(TRL)中的甘油三酯,将脂肪酸释放到血浆中,并将大的富含甘油三酯的颗粒转化为较小的缺乏甘油三酯的残留脂蛋白。缺乏APOC3的个体具有较低的TRL水平,并且具有高效的甘油三酯脂解作用。
APOC3还抑制肝脂酶(HL)。肝脂酶是一种在肝脏中合成的具有甘油三酯脂肪酶和磷脂酶A1活性的脂肪分解酶。APOC3对HL的抑制作用进一步降低了肝脏中TRL残留物的脂类分解和摄取。
ApoC3显示了通过凭借脂蛋白脂肪酶的抑制和通过干扰脂蛋白与细胞表面葡糖胺聚糖基质结合两者来抑制脂解作用。APOC3水平的增加引起高甘油三酯血症或甘油三酯的高血浓度的发展。甘油三酯水平升高与多种疾病有关,这些疾病包括心血管疾病、动脉粥样硬化、非酒精性脂肪肝、非酒精性脂肪性肝炎、多囊卵巢综合征、肾脏疾病、肥胖症、2型糖尿病(胰岛素抵抗)、高血压和皮肤损害(黄色瘤)。非常高的甘油三酯水平也会增加急性胰腺炎的风险。
本领域需要用于治疗载脂蛋白C3相关障碍如高甘油三酯血症的APOC3表达调节剂。
近年来,以APOC3为靶点的抑制剂成为这些疾病的新型治疗药物。siRNA作为一种新的治疗方法具有巨大的发展潜力,siRNA作用于细胞内的mRNA,相对于传统的小分子药物,它能够直接沉默靶基因,因此可以从根本上更高效地阻止疾病的发生和发展。但由于siRNA稳定性较差,在体内容易被核酸酶降解,不易被组织吸收,难以被细胞摄取,易产生脱靶效应等缺陷,使得其在临床应用上受到局限。目前亟需一种能够有效抑制细胞内APOC3基因表达的siRNA。
发明内容
本发明涉及用于抑制细胞中载脂蛋白C3(APOC3)的表达的小干扰RNA(siRNA)以及使用该siRNA治疗疾病的方法。
在第一方面,本发明提供了一种用于抑制细胞中载脂蛋白C3(APOC3)的表达的小干扰核糖核酸(siRNA),所述siRNA包含形成双链区的正义链和反义链,其中所述正义链和所述反义链的长度各自独立地为15-30个核苷酸,并且所述反义链包含SEQ ID NO:414-826中任一项所示的核苷酸序列的至少15个连续核苷酸。在一些实施方案中,所述正义链包含SEQ ID NO:1-413中任一项所示的核苷酸序列的至少15个连续的核苷酸。
在一些实施方案中,所述正义链和所述反义链的长度各自独立地为17-27个核苷酸,优选19-25个核苷酸,更优选21-23个核苷酸。
在一些实施方案中,所述双链区的长度为15-25个核苷酸对,优选17-21个核苷酸对,更优选19个核苷酸对。
在一些实施方案中,所述正义链和所述反义链之一或两者包含具有至少1个核苷酸的3’突出端和/或5’突出端,例如所述正义链和所述反义链之一或两者包含具有至少2个核苷酸的3’突出端和/或5’突出端。在一些具体的实施方案中,所述突出端选自U、UU、UUU和AA。
在一些实施方案中,所述反义链包含SEQ ID NO:414-826中任一项所示的核苷酸序列的至少16个连续核苷酸,至少17个连续核苷酸,至少18个连续核苷酸,至少19个连续核苷酸,或至少20个连续核苷酸,优选所述反义链包含SEQ ID NO:414-826中任一项所示的核苷酸序列。
在一些实施方案中,所述正义链包含SEQ ID NO:1-413中任一项所示的核苷酸序列的至少16个连续核苷酸,至少17个连续核苷酸,至少18个连续核苷酸,至少19个连续核苷酸,或至少20个连续核苷酸,优选所述反义链包含SEQ ID NO:1-413中任一项所示的核苷酸序列。
在一些实施方案中,所述siRNA包含如表3所示的配对的正义链序列和反义链序列。
在一些优选的实施方案中,所述反义链包含SEQ ID NO:473、612、690、757、761、816、817、818、819、820、814和815中任一项所示的核苷酸序列的至少15个连续核苷酸,至少16个连续核苷酸,至少17个连续核苷酸,至少18个连续核苷酸,至少19个连续核苷酸,或至少20个连续核苷酸,优选所述反义链包含SEQ ID NO:473、612、690、757、761、816、817、818、819、820、814、和815中任一项所示的核苷酸序列。
在一些优选的实施方案中,所述正义链包含SEQ ID NO:60、199、277、344、348、403、404、405、406、407、401、和402中任一项所示的核苷酸序列的至少15个连续核苷酸,至少16个连续核苷酸,至少17个连续核苷酸,至少18个连续核苷酸,至少19个连续核苷酸,或至少20个连续核苷酸,优选所述反义链包含SEQ ID NO:60、199、277、344、348、403、404、405、406、407、401、和402中任一项所示的核苷酸序列。
在一些更优选的实施方案中,在本发明的siRNA中:
(a)所述正义链包含SEQ ID NO:60所示的核苷酸序列,且所述反义链包含SEQ ID NO:473所示的核苷酸序列;
(b)所述正义链包含SEQ ID NO:199所示的核苷酸序列,且所述反义链包含SEQ ID NO:612所示的核苷酸序列;
(c)所述正义链包含SEQ ID NO:277所示的核苷酸序列,且所述反义链包含SEQ ID NO:690所示的核苷酸序列;
(d)所述正义链包含SEQ ID NO:344所示的核苷酸序列,且所述反义链包含SEQ ID NO:757所示的核苷酸序列;
(e)所述正义链包含SEQ ID NO:348所示的核苷酸序列,且所述反义链包含SEQ ID NO:761所示的核苷酸序列;
(f)所述正义链包含SEQ ID NO:403所示的核苷酸序列,且所述反义链包含SEQ ID NO:816所示的核苷酸序列;
(g)所述正义链包含SEQ ID NO:404所示的核苷酸序列,且所述反义链包含SEQ ID NO:817所示的核苷酸序列;
(h)所述正义链包含SEQ ID NO:405所示的核苷酸序列,且所述反义链包含SEQ ID NO:818所示的核苷酸序列;
(i)所述正义链包含SEQ ID NO:406所示的核苷酸序列,且所述反义链包含SEQ ID NO:819所示的核苷酸序列;
(j)所述正义链包含SEQ ID NO:407所示的核苷酸序列,且所述反义链包含SEQ ID NO:820所示的核苷酸序列;
(k)所述正义链包含SEQ ID NO:401所示的核苷酸序列,且所述反义链包含SEQ ID NO:814所示的核苷酸序列;或
(l)所述正义链包含SEQ ID NO:402所示的核苷酸序列,且所述反义链包含SEQ ID NO:815所示的核苷酸序列。
在一些实施方案中,所述正义链的基本上所有的核苷酸和所述反义链的基本上所有的核苷酸是修饰的核苷酸。在一些优选的实施方案中,所述正义链的所有的核苷酸和所述反义链的所有核苷酸是修饰的核苷酸。
在一些具体的实施方案中,所述正义链和所述反义链各自独立地包含选自下组的一种或多种核苷酸修饰:2'-O-甲基修饰的核苷酸、2'-氟代修饰的核苷酸、2'-脱氧-修饰的核苷酸、肌苷核糖核苷酸、脱碱基核苷酸、反向无碱基脱氧核糖核苷酸、硫代磷酸酯核苷酸间键联修饰、乙烯基膦酸酯修饰的核苷酸、锁核苷酸、2'-氨基-修饰的核苷酸、2'-烷基-修饰的核苷酸、吗啉代核苷酸、氨基磷酸酯、包含非天然碱基的核苷酸、以及连接到胆固醇基衍生物或十二烷酸二癸酰胺基团上的末端核苷酸、以及脱氧核糖核苷酸。
在一些优选的实施方案中,所述正义链和所述反义链各自独立地包含选自下组的一种或多种核苷酸修饰:2'-O-甲基修饰的核苷酸、2'-氟代修饰的核苷酸、2'-脱氧-修饰的核苷酸、肌苷核糖核苷酸、脱碱基核苷酸、反向无碱基脱氧核糖核苷酸、硫代磷酸酯核苷酸间键联修饰。
在一些具体的实施方案中,所述正义链和/或所述反义链包含至少2个2'-氟代修饰的核苷酸。
在一些具体的实施方案中,所述正义链和/或所述反义链包含至少8个2'-O-甲基修饰的核苷酸。
在一些具体的实施方案中,所述正义链和/或所述反义链的5’末端包含1-5个硫代磷酸酯基团。
在一些实施方案中,所述反义链包含表5中任一项所示的经修饰的核苷酸序列,和/或所述正义链包含表4中任一项所示的经修饰的核苷酸序列。
在一些实施方案中,所述siRNA包含表6中任一项所示的配对的经修饰的正义链序列和经修饰的反义链序列。
在一些优选的实施方案中,其中:
(1)所述正义链包含AmsAmAmAmGmGmGmAmCfAfGfUmAmUmUmCmUmCmAmGmAms-STM1(SEQ ID NO:1655),所述反义链包含(CP1a-U)sCfsUmGfAmGfAmAfUmAfCmUfGmUfCmCfCmUfUmsUfsUm(SEQ ID NO:1651);
(2)所述正义链包含STM1s-AmsAmUmUmAmAmAmAmGfGfGfAmCmAmGmUmAmUmUmCmAms-STM1(SEQ ID NO:1656),所述反义链包含(CP1a-U)sGfsAmAfUmAfCmUfGmUfCmCfCmUfUmUfUmAfAmsUfsUm;
(3)所述正义链包含
STM1s-AmsAmUmUmAmAmAmAmGfGfGfAmCmAmGmUmAmUmUmCmAms-STM1(SEQ ID NO:1657),
且所述反义链包含
(VPUm)sGfsAmAfUmAfCmUfGmUfCmCfCmUfUmUfUmAfAmsUfsUm(SEQ ID NO:1649);
(4)所述正义链包含
IBs-AmsAmUmUmAmAmAmAmGfGfGfAmCmAmGmUmAmUmUmCmAms-IB(SEQ ID NO:1658),
且所述反义链包含
(CP1a-U)sGfsAmAfUmAfCmUfGmUfCmCfCmUfUmUfUmAfAmsUfsUm(SEQ ID NO:1650);
(5)所述正义链包含
UmsUmsAmAmAmAmGfGfGfAmCmAmGmUmAmUmUmCmsAm(SEQ ID NO:1659),
且所述反义链包含
(CP1a-U)sGfsAmAfUmAfCmUfGmUfCmCfCmUfUmUfUmAfAmsUfsUm(SEQ ID NO:1650);
(6)所述正义链包含
IBs-AmsAmAmAmGmGmGmAmCfAfGfUmAmUmUmCmUmCmAmGmAms-IB(SEQ ID NO:1660),
且所述反义链包含
(CP1a-U)sCfsUmGfAmGfAmAfUmAfCmUfGmUfCmCfCmUfUmsUfsUm(SEQ ID NO:1651);
(7)所述正义链包含
AmsAmsGmGmGmAmCfAfGfUmAmUmUmCmUmCmAmGmsAm(SEQ ID NO:1661),
且所述反义链包含
(CP1a-U)sCfsUmGfAmGfAmAfUmAfCmUfGmUfCmCfCmUfUmsUfsUm(SEQ ID NO:1651);
(8)所述正义链包含
IBs-AmsAmAmAmGmGmGmAmCfAfGfUmAmUmUmCmUmCmAmGmAms-IBs-GL6(SEQ ID NO:1662),
且所述反义链包含
(CP1a-U)sCfsUmGfAmGf(PCN-
A)AfUmAfCmUfGmUfCmCfCmUfUmsUfsUm(SEQ ID NO:1652);或
(9)所述正义链包含
AmsAmsGmGmGmAmCfAfGfUmAmUmUmCmUmCmAmGmsAm(SEQ ID NO:1663),
且所述反义链包含
(CP1a-U)sCfsUmGfAmGf(PCN-A)AfUmAfCmUfGmUfCmCfCmUfUmsUfsUm(SEQ ID NO:1652);
(a)所述正义链包含CmsGmsAmGmGmAmUfGfCfCmUmCmCmCmUmUmCmUmUm,且所述反义链包含AmsAfsGmAfAmGfGmGfAmGfGmCfAmUfCmCfUmCfGmsUfsUm;
(b)所述正义链包含CmsCmsGmUmUmAmAfGfGfAmCmAmAmGmUmUmCmUmUm,且所述反义链包含AmsAfsGmAfAmCfUmUfGmUfCmCfUmUfAmAfCmGfGmsUfsUm;
(c)所述正义链包含CmsCmsGmUmUmAmAfGfGfAmCmAmAmGmUmUmCmUmUm,且所述反义链包含AmsAfsGmAfAmCfUmUfGmUfCmCfUmUfAmAfCmGfGmsUfsUm;
(d)所述正义链包含CmsCmsAmAmGmUmCfCfAfCmCmUmGmCmCmUmAmUmUm,且所述反义链包含AmsAfsUmAfGmGfCmAfGmGfUmGfGmAfCmUfUmGfGmsUfsUm;
(e)所述正义链包含AmsAmsGmGmGmAmCfAfGfUmAmUmUmCmUmCmAmGmUm
,且所述反义链包含AmsCfsUmGfAmGfAmAfUmAfCmUfGmUfCmCfCmUfUmsUfsUm;
(f)所述正义链包含UmsUmsAmAmAmAmGfGfGfAmCmAmGmUmAmUmUmCmUm,且所述反义链包含AmsGfsAmAfUmAfCmUfGmUfCmCfCmUfUmUfUmAfAmsUfsUm;
(g)所述正义链包含 AmsAmsGmGmGmAmCfAfGfUmAmUmUmCmUmCmAmGmUm,且所述反义链包含AmsCfsUmGfAmGfAmAfUmAfCmUfGmUfCmCfCmUfUmsUfsUm;
(h)所述正义链包含CmsCmsAmAmGmUmCfCfAfCmCmUmGmCmCmUmAmUmUm,且所述反义链包含AmsAfsUmAfGmGfCmAfGmGfUmGfGmAfCmUfUmGfGmsUfsUm;
(i)所述正义链包含CmsCmsGmUmUmAmAfGfGfAmCmAmAmGmUmUmCmUmUm-L96,且所述反义链包含AmsAfsGmAfAmCfUmUfGmUfCmCfUmUfAmAfCmGfGmsUfsUm;
(j)所述正义链包含CmsGmsAmGmGmAmUfGfCfCmUmCmCmCmUmUmCmUmUm,且所述反义链包含AmsAfsGmAfAmGfGmGfAmGfGmCfAmUfCmCfUmCfGmsUfsUm;
(k)所述正义链包含IBs-AmCmGmGmGmAmCmAmGfUfAfUmUmCmUmCmAmGmUmimAms-IB,且所述反义链包含UmsCfsAmsCfUmGfAmGmAmAmUmAfCmUfGmUfCmCfCmGfsUm;或
(l)所述正义链包含AmsAmsGmGmGmAmCfAmGfUfAfUmUmCmUmCmAmGmUmsGmsCm,且所述反义链包含GmsCfsAmCmUmGfAmGmAmAmUmAmCmUfGmUfCmCmCmUmUmsUmsUm。
在一些实施方案中,所述siRNA进一步通过磷酸酯基团或硫代磷酸酯基团与包含N-乙酰半乳糖胺的配体部分缀合,优选所述siRNA的正义链通过磷酸酯基团或硫代磷酸酯基团与所述配体部分缀合。
在一些具体的实施方案中,所述正义链的3’端通过磷酸酯基团或硫代磷酸酯基团与所述配体部分缀合。在另一些具体的实施方案中,所述正义链的5’端通过磷酸酯基团或硫代磷酸酯基团与所述配体部分缀合。
在一些实施方案中,所述配体部分包含式(X’)所示的缀合基团:
其中,
表示与siRNA连接的位置;
Q独立地为H、
其中L1为化学键、-CH2-、-CH2CH2-、-C(O)-、-CH2O-、-CH2O-CH2CH2O-或-NHC(O)-(CH2NHC(O))a-;
L2为化学键或-CH2CH2C(O)-;
L3为化学键、-(NHCH2CH2)b-、-(NHCH2CH2CH2)b-或-C(O)CH2-;
L4为-(OCH2CH2)c-、-(OCH2CH2CH2)c-、-(OCH2CH2CH2CH2)c-、-(OCH2CH2CH2CH2CH2)c-或-NHC(O)-(CH2)d-;
其中a=0、1、2或3;
b=1、2、3、4或5;
c=1、2、3、4或5;
d=1、2、3、4、5、6、7或8;
L为化学键、-CH2O-或-NHC(O)-;
L’为化学键、-C(O)NH-、-NHC(O)-或-O(CH2CH2O)e-;
其中e为1、2、3、4或5;
T为化学键、-CH2-、-C(O)-、-M-、-CH2-M-或-C(O)-M-;
其中M为
R1和R2一起形成-CH2CH2O-或-CH2CH(R)-O-,并且R3为H;
或者R1和R3一起形成-C1-2亚烷基-,并且R2为H;
其中R为-OR’、-CH2OR’或-CH2CH2OR’,其中R’为H、羟基保护基或固相载体,所述羟基保护基优选-C(O)CH2CH2C(O)OH或4,4'-二甲氧基三苯甲基;
m=0、1、2、3、4、5、6、7、8、9或10;
n=0、1、2、3、4、5、6、7、8、9或10。
在一些实施方案中,所述缀合配体靶向去唾液酸糖蛋白受体(ASGPR)。
在一些优选的实施方案中,所述缀合基团选自表1。
表1.缀合基团的结构




在一些优选的实施方案中,所述缀合基团选自表2。
表2.缀合基团的结构





在一些优选的实施方案中,所述配体具有以下结构:
其中表示通过磷酸酯基团或硫代磷酸酯基团与所述siRNA的正义链连接的位置。
在一些优选的实施方案中,所述配体具有以下结构:
其中表示通过磷酸酯基团或硫代磷酸酯基团与所述siRNA的正义链连接的位置。
在一些优选的实施方案中,所述配体具有以下结构:
其中表示通过磷酸酯基团或硫代磷酸酯基团与所述siRNA的正义链连接的位置。
在一些具体的实施方案中,在本公开的siRNA中,其中:
(1)所述正义链包含
STM1s-AmsAmAmAmGmGmGmAmCfAfGfUmAmUmUmCmUmCmAmGmAms-STM1s-GL6(SEQ ID NO:1238),
且所述反义链包含
(CP1a-U)sCfsUmGfAmGfAmAfUmAfCmUfGmUfCmCfCmUfUmsUfsUm(SEQ ID NO:1651);
(2)所述正义链包含
STM1s-AmsAmUmUmAmAmAmAmGfGfGfAmCmAmGmUmAmUmUmCmAms-STM1s-GL6(SEQ ID NO:1235),
且所述反义链包含
(CP1a-U)sGfsAmAfUmAfCmUfGmUfCmCfCmUfUmUfUmAfAmsUfsUm(SEQ ID NO:1650);
(3)所述正义链包含
STM1s-AmsAmUmUmAmAmAmAmGfGfGfAmCmAmGmUmAmUmUmCmAms-STM1s-GL6(SEQ ID NO:1235),
且所述反义链包含
(VPUm)sGfsAmAfUmAfCmUfGmUfCmCfCmUfUmUfUmAfAmsUfsUm(SEQ ID NO:1649);
(4)所述正义链包含
IBs-AmsAmUmUmAmAmAmAmGfGfGfAmCmAmGmUmAmUmUmCmAms-IBs-GL6(SEQ ID NO:1236),
且所述反义链包含
(CP1a-U)sGfsAmAfUmAfCmUfGmUfCmCfCmUfUmUfUmAfAmsUfsUm(SEQ ID NO:1650);
(5)所述正义链包含
UmsUmsAmAmAmAmGfGfGfAmCmAmGmUmAmUmUmCmsAms-GL6(SEQ ID NO:1237),
且所述反义链包含
(CP1a-U)sGfsAmAfUmAfCmUfGmUfCmCfCmUfUmUfUmAfAmsUfsUm(SEQ ID NO:1650);
(6)所述正义链包含
IBs-AmsAmAmAmGmGmGmAmCfAfGfUmAmUmUmCmUmCmAmGmAms-IBs-GL6(SEQ ID NO:1239),
且所述反义链包含
(CP1a-U)sCfsUmGfAmGfAmAfUmAfCmUfGmUfCmCfCmUfUmsUfsUm(SEQ ID NO:1651);
(7)所述正义链包含
AmsAmsGmGmGmAmCfAfGfUmAmUmUmCmUmCmAmGmsAms-GL6(SEQ ID NO:1240),
且所述反义链包含
(CP1a-U)sCfsUmGfAmGfAmAfUmAfCmUfGmUfCmCfCmUfUmsUfsUm(SEQ ID NO:1651);或
(8)所述正义链包含
IBs-AmsAmAmAmGmGmGmAmCfAfGfUmAmUmUmCmUmCmAmGmAms-IBs-GL6(SEQ ID NO:1239),
且所述反义链包含
(CP1a-U)sCfsUmGfAmGf(PCN-
A)AfUmAfCmUfGmUfCmCfCmUfUmsUfsUm(SEQ ID NO:1652);或
(9)所述正义链包含
AmsAmsGmGmGmAmCfAfGfUmAmUmUmCmUmCmAmGmsAms-GL6(SEQ ID NO:1240),
且所述反义链包含
(CP1a-U)sCfsUmGfAmGf(PCN-A)AfUmAfCmUfGmUfCmCfCmUfUmsUfsUm(SEQ ID NO:1652)。
在第二方面,本发明提供了载体,其包含编码本发明所公开的siRNA的核苷酸序列。
在第三方面,本发明提供了细胞,其包含本发明所公开的siRNA或载体。
在第四方面,本发明提供了药物组合物,其包含本发明所公开的siRNA、载体或细胞,以及任选的药学上可接受的载剂或赋形剂。
在第五方面,本发明提供了试剂盒,其包含本发明所公开的siRNA、载体、细胞或药物组合物。
在第六方面,本发明提供了治疗受试者中与APOC3相关的疾病的方法,所述方法包括向所述受试者施用本发明所公开的siRNA、载体、细胞、或药物组合物的步骤。
在第七方面,本发明提供了用于在受试者中降低发展与APOC3相关的疾病的风险的方法,所述方法包括向所述受试者施用本发明所公开的siRNA、载体、细胞、或药物组合物的步骤。
在第六方面和第七方面的一些实施方案中,所述APOC3相关的疾病选自高血脂症、高甘油三酯血症。在一些具体的实施方案中,所述APOC3相关的疾病是可由高甘油三酯血症引起的、与其关联的、或是其后果的疾病,例如非酒精性脂肪肝、非酒精性脂肪性肝炎、多囊卵巢综合征、肾脏疾病、肥胖症、2型糖尿病、高血压、动脉粥样硬化、心血管疾病或胰腺炎。
在一些实施方案中,所述方法包括向所述受试者皮下施用、静脉内施用或局部施用本发明所公开的siRNA、载体、细胞或药物组合物。
在一些实施方案中,所述受试者是人类患者。
具体实施方式
以下通过特定的具体实例说明本发明的实施方式,本领域技术人员可由本说明书所揭露的内容轻易地了解本发明的其他优点与功效。本发明还可以通过另外不同的具体实施方式实施或应用,本说明书中的各项细节也可以基于不同观点与应用,在没有背离本发明的精神下进行各种修饰或改变。
应理解,本发明的保护范围不局限于下述特定的具体实施方案;还应当理解,本发明实施例中使用的术语是为了描述特定的具体实施方案,而不是为了限制本发明的保护范围。
在本发明说明书和权利要求书中,除非文中另外明确指出,单数形式“一个”、“一”和“这个”包括复数形式。
当实施例给出数值范围时,应理解,除非本发明另有说明,每个数值范围的两个端点以及两个端点之间任何一个数值均可选用。除非另外定义,本发明中使用的所有技术和科学术语与本技术领域技术人员通常理解的意义相同。除实施例中使用的具体方法、设备、材料外,根据本技术领域的技术人员对现有技术的掌握及本发明的记载,还可以使用与本发明实施例中所述的方法、设备、材料相似或等同的现有技术的任何方法、设备和材料来实现本发明,均属于本发明的保护范围。下文更具体详细说明本发明的实施方式。
定义
本文术语“siRNA”是一类双链RNA分子,其可以介导与其互补的靶RNA(例如mRNA,例如,编码蛋白质的基因的转录物)的沉默。siRNA通常是双链的,包括与靶RNA互补的反义链,和与该反义链互补的正义链。为方便起见,这样的mRNA在此也被称为有待被沉默的mRNA。这样的基因也称为靶基因。
如在此使用的,术语“反义链”是指siRNA的这样一条链,所述链包含与靶序列完全或基本互补的区域。
如在此使用的,术语“互补区域”是指反义链上与靶mRNA序列完全或基本互补的区域。在互补区域与靶序列不完全互补的情况下,错配可以位于分子的内部或末端区域中。通常,最耐受的错配位于末端区域中,例如,在5’和/或3’端的5、4、3、2或1个核苷酸内。对错配最敏感的反义链部分被称为“种子区”。 例如,在包含19nt的链的siRNA中,第19个位置(从5’向3’)可以耐受一些错配。
如此处所使用,术语“互补”是指第一多核苷酸在某些条件例如严格条件下与第二多核苷酸杂交的能力。例如,严格条件可包括400mM NaCl、40mM PIPES pH 6.4、1mM EDTA在50℃或70℃下持续12-16小时。
如本文中所使用的,就满足以上相对于它们杂交的能力而言的要求来说,“互补”序列还可以包括或完全形成自非沃森-克里克碱基对和/或从非天然的以及经修饰的核苷酸形成的碱基对。此类非沃森-克里克碱基对包括但不限于G:U摇摆碱基配对或Hoogstein碱基配对。
如在此使用的,与信使RNA(mRNA)的“至少部分互补”或“基本上互补”的多核苷酸是指与感兴趣的mRNA(例如,编码APOC3APOC3的mRNA)的连续部分基本互补的多核苷酸。例如,如果序列与编码APOC3APOC3的mRNA的非中断部分基本上互补,则多核苷酸与APOC3APOC3 mRNA的至少部分互补。
本文中使用的术语“互补”、“完全互补”和“基本上互补”可以相对于siRNA的正义链与反义链之间的碱基配对使用,或可以相对于siRNA的反义链与靶序列之间的碱基配对使用。
如本文中使用的,术语“正义链”是指siRNA的这样一条链,所述链包括与作为在本文中定义的术语“反义链”的区域基本互补的区域。
“核苷”是由嘌呤碱或嘧啶碱、以及核糖或脱氧核糖两种物质组成的化合物。“核苷酸”则是由嘌呤碱或嘧啶碱、核糖或脱氧核糖以及磷酸三种物质组成的化合物。“寡核苷酸”是指例如具有少于100、200、300或400个核苷酸长度的核酸分子(RNA或DNA)。
“碱基”是合成核苷、核苷酸和核酸的基本组成单位,其组成元素中含有氮,也称“含氮碱基”。本文中,如无特别说明,大写字母A、U、T、G和C表示核苷酸的碱基组成,分别为腺嘌呤、尿嘧啶、胸腺嘧啶、鸟嘌呤和胞嘧啶。
如在此使用的,术语“核苷酸突出端”或“突出端”是指至少一个未配对的核苷酸,其从siRNA的双链体结构突出。例如当siRNA的一条链的3'-末端延伸超过另一条链的5'-末端时,或反之亦然,存在核苷酸突出端。siRNA可以包含具有至少一个核苷酸的突出端;替代地,该突出端可以包含至少两个核苷酸、至少三个核苷酸、至少四个核苷酸、至少五个核苷酸或更多。核苷酸突出端可以包含核苷酸/核苷类似物(包括脱氧核苷酸/核苷)或由其组成。一个或多个突出端可以处于正义链、反义链或其任何组合上。另外,突出端的一个或多个核苷酸可以存在于siRNA的反义链或正义链的5'-末端、3'-末端或两个末端上。
“平端”或“平末端”意指在该双链siRNA的该端处不存在不成对的核苷酸,即该端不存在核苷酸突出端。“平端siRNA”是在其整个长度上为双链的siRNA,即,在分子的任一端处没有核苷酸突出端。本发明的siRNA包括在一端处具有核苷酸突出端(即,具有一个突出端和一个平端的试剂)或在两端处都具有核苷酸突出端的siRNA。
本发明的iRNA的基本上所有的核苷酸是修饰的。例如,正义链的基本上所有核苷酸都是修饰的核苷酸,和/或反义链的基本上所有核苷酸都是修饰的核 苷酸,和/或正义链和反义链两者的基本上所有核苷酸都是修饰的核苷酸。在本发明其他实施例中,本发明iRNA的所有核苷酸都为修饰的核苷酸。例如,正义链的所有核苷酸都是修饰的核苷酸,和/或反义链的所有核苷酸都是修饰的核苷酸,和/或正义链和反义链两者的全部核苷酸都是修饰的核苷酸。其中“基本上所有核苷酸是修饰的”表示本发明的siRNA是大部分但不是全部修饰的,并且可以包括不多于5、4、3、2或1个未修饰的核苷酸。
本文中“修饰的核苷酸”包括但不限于2'-O-甲基修饰的核苷酸、2'-氟代修饰的核苷酸、2'-脱氧-修饰的核苷酸、肌苷核糖核苷酸、脱碱基核苷酸、反向无碱基脱氧核糖核苷酸、硫代磷酸酯核苷酸间键联修饰、乙烯基膦酸酯修饰的核苷酸、锁核苷酸、2'-氨基-修饰的核苷酸、2'-烷基-修饰的核苷酸、吗啉代核苷酸、氨基磷酸酯、包含非天然碱基的核苷酸、以及连接到胆固醇基衍生物或十二烷酸二癸酰胺基团上的末端核苷酸、脱氧核糖核苷酸或常规保护基保护等。例如,所述2'-氟代修饰的核苷酸指核苷酸的核糖基2’位的羟基被氟取代形成的核苷酸。所述2'-脱氧-修饰的核苷酸指核糖基的2’-羟基被甲氧基取代而形成的核苷酸。
如本文所使用的,“配体部分”是指与siRNA缀合的化学部分,其能够改变siRNA的分布、靶向或寿命。在优选的实施方案中,与例如不存在这样一个配体的siRNA相比,这种配体为选择的靶标(例如分子、细胞或细胞类型、区室(例如细胞或器官区室、组织、器官或身体的区域)提供增强的亲和力。
如在此使用的,术语“抑制”与“减少”、“沉默”、“下调”、以及其他类似术语可互换使用,并且包括任何水平的抑制。
短语“抑制APOC3的表达”旨在指抑制任何APOC3基因以及APOC3基因的变体或突变体的表达。因此,该APOC3基因可以是野生型APOC3基因、突变APOC3基因、或在遗传操作的细胞、细胞群组或生物体的情形下的转基因APOC3基因。
“抑制APOC3基因表达”包括APOC3基因的任何水平的抑制,例如APOC3基因表达的至少部分阻抑。基于与APOC3基因表达相关的任何变量的水平或水平变化,例如APOC3mRNA水平、APOC3蛋白水平、或脂质水平,可以评估APOC3基因表达。此水平可以在个体细胞中或在一组细胞中(包括例如来源于受试者的样品)进行评估。
可以通过与对照水平相比的一个或多个与APOC3表达相关的变量的绝对或相对水平的降低来评估抑制。对照水平可以是本领域中利用的任何类型的对照水平,例如给药前基线水平或从类似的未经处理或经对照(例如,仅缓冲液对照或惰性剂对照)处理的受试者、细胞、或样品确定的水平。
“羟基保护基”是指能够避免羟基遭受化学反应,又可以在特定条件下脱除以恢复羟基的基团。主要包括硅烷型保护基、酰基型保护基或醚型保护基,优选以下:三甲基硅基(TMS)、三乙基硅基(TES)、二甲基异丙基硅基(DMIPS)、二乙基异丙基硅基(DEIPS)、叔丁基二甲基硅基(TBDMS)、叔丁基二苯基硅基(TBDPS)、三异丙基硅基(TIPS)、乙酰基(Ac)、氯乙酰基、二氯乙酰基、三氯乙酰基、三氟乙酰基(TFA)、苯甲酰基、对甲氧基苯甲酰基、9-芴基甲氧基羰基 (Fmoc)、烯丙氧羰基(Alloc)、2,2,2-三氯乙氧羰基(Troc)、苄氧羰基(Cbz)、叔丁氧羰基(Boc)、苯甲基(Bn)、对甲氧基苄基(PMB)、烯丙基、三苯基甲基(Tr)、双对甲氧基三苯甲基(DMTr)、甲氧基甲基(MOM)、苯氧基甲基(BOM)、2,2,2-三氯乙氧基甲基、2-甲氧基乙氧基甲基(MEM)、甲硫基甲基(MTM)、对甲氧基苄氧基甲基(PMBM)。
“卤代”或“卤素”是指氟(F)、氯(Cl)、溴(Br)和碘(I)。
“C1-6卤代烷基”是指上述“C1-6烷基”,其被一个或多个卤素基团取代。在一些实施方案中,C1-4卤代烷基是特别优选的,更优选C1-2卤代烷基。示例性的所述卤代烷基包括但不限于:-CF3、-CH2F、-CHF2、-CHFCH2F、-CH2CHF2、-CF2CF3、-CCl3、-CH2Cl、-CHCl2、2,2,2-三氟-1,1-二甲基-乙基,等等。卤代烷基基团可以在任何可用的连接点上被取代,例如,1至5个取代基、1至3个取代基或1个取代基。
“C1-6亚烷基”是指除去C1-6烷基的另一个氢而形成的二价基团,并且可以是取代或未取代的。在一些实施方案中,C1-4亚烷基、C2-4亚烷基和C1-2亚烷基是优选的。未取代的所述亚烷基包括但不限于:亚甲基(-CH2-)、亚乙基(-CH2CH2-)、亚丙基(-CH2CH2CH2-)、亚丁基(-CH2CH2CH2CH2-)、亚戊基(-CH2CH2CH2CH2CH2-)、亚己基(-CH2CH2CH2CH2CH2CH2-),等等。示例性的取代的所述亚烷基,例如,被一个或多个烷基(甲基)取代的所述亚烷基,包括但不限于:取代的亚甲基(-CH(CH3)-、-C(CH3)2-)、取代的亚乙基(-CH(CH3)CH2-、-CH2CH(CH3)-、-C(CH3)2CH2-、-CH2C(CH3)2-)、取代的亚丙基(-CH(CH3)CH2CH2-、-CH2CH(CH3)CH2-、-CH2CH2CH(CH3)-、-C(CH3)2CH2CH2-、-CH2C(CH3)2CH2-、-CH2CH2C(CH3)2-),等等。
如此处所使用,术语“载体”指这样的一种核酸分子,其能够扩增或表达与其连接的另一种核酸。
I.siRNA
本发明提供了一种用于抑制细胞中载脂蛋白C3(APOC3)的表达的小干扰RNA(siRNA),所述siRNA包含形成双链区的正义链和反义链,其中所述正义链和所述反义链的长度各自独立地为15-30个核苷酸,并且所述反义链包含SEQ ID NO:414-826中任一项所示的核苷酸序列的至少15个连续核苷酸。
在一些实施方案中,正义链和反义链形成的双链区是完全互补的。在另一些实施方案中,正义链和反义链形成的双链区是基本上互补的,其中可以包含1个、2个、3个、4个或5个非互补位点。
在一些具体的实施方案中,所述正义链包含SEQ ID NO:1-413中任一项所示的核苷酸序列的至少15个连续的核苷酸。
在一些实施方案中,所述正义链和所述反义链的长度各自独立地为17-27个核苷酸,优选19-25个核苷酸,更优选21-23个核苷酸。
在一些实施方案中,所述双链区的长度为15-25个核苷酸对,优选17-21个核苷酸对,更优选19个核苷酸对。
所述正义链和所述反义链之一或两者包含具有至少1个核苷酸的3’突出端和/或5’突出端,例如所述正义链和所述反义链之一或两者包含具有至少2个核苷酸的3’突出端和/或5’突出端。在一些优选的实施方案中,所述反义链具有至少1个核苷酸的3’突出端和/或5’突出端。例如,所述反义链包含具有1个、2个、或3个核苷酸的3’突出端和/或5’突出端。在一些优选的实施方案中,所述正义链具有至少1个核苷酸的3’突出端和/或5’突出端。例如,所述正义链包含具有1个、2个、或3个核苷酸的3’突出端和/或5’突出端。
在一些实施方案中,所述正义链和所述反义链的长度相同。在一些实施方案方案中,所述正义链的全长与所述反义链的全长互补形成双链,即具有平末端。在另一些实施方案中,所述正义链和所述反义链长度相同,正义链的一部分与反义链的一部分互补,即正义链和反义链均具有5’突出端。
在一些实施方案中,所述正义链和所述反义链的长度不同。在优选的实施方案中,反义链的5’端具有至少1个核苷酸的突出端,更优选2个或3个核苷酸的突出端。
在一些实施方案中,所述反义链包含SEQ ID NO:414-826中任一项所示的核苷酸序列的至少16个连续核苷酸,至少17个连续核苷酸,至少18个连续核苷酸,至少19个连续核苷酸,至少20个连续核苷酸,优选所述反义链包含SEQ ID NO:414-826中任一项所示的核苷酸序列。
在一些实施方案中,所述正义链包含SEQ ID NO:1-413中任一项所示的核苷酸序列的至少16个连续核苷酸,至少17个连续核苷酸,至少18个连续核苷酸,至少19个连续核苷酸,至少20个连续核苷酸,优选所述反义链包含SEQ ID NO:1-413中任一项所示的核苷酸序列。
在一些实施方案中,所述siRNA包含如表3所示的配对的正义链序列和反义链序列。
在一些实施方案中,所述反义链包含SEQ ID NO:473、612、690、757、761、816、817、818、819、820、814和815中任一项所示的核苷酸序列的至少15个连续核苷酸,至少16个连续核苷酸,至少17个连续核苷酸,至少18个连续核苷酸,至少19个连续核苷酸,至少20个连续核苷酸,优选所述反义链包含SEQ ID NO:473、612、690、757、761、816、817、818、819、820、814和815中任一项所示的核苷酸序列。
在一些实施方案中,所述正义链包含SEQ ID NO:60、199、277、344、348、403、404、405、406、407、401和402中任一项所示的核苷酸序列的至少15个连续核苷酸,至少16个连续核苷酸,至少17个连续核苷酸,至少18个连续核苷酸,至少19个连续核苷酸,至少20个连续核苷酸,优选所述反义链包含SEQ ID NO:60、199、277、344、348、403、404、405、406、407、401和402中任一项所示的核苷酸序列。
在一些实施方案中,
(a)所述正义链包含SEQ ID NO:60所示的核苷酸序列,且所述反义链包含SEQ ID NO:473所示的核苷酸序列;
(b)所述正义链包含SEQ ID NO:199所示的核苷酸序列,且所述反义链包含SEQ ID NO:612所示的核苷酸序列;
(c)所述正义链包含SEQ ID NO:277所示的核苷酸序列,且所述反义链包含SEQ ID NO:690所示的核苷酸序列;
(d)所述正义链包含SEQ ID NO:344所示的核苷酸序列,且所述反义链包含SEQ ID NO:757所示的核苷酸序列;
(e)所述正义链包含SEQ ID NO:348所示的核苷酸序列,且所述反义链包含SEQ ID NO:761所示的核苷酸序列;
(f)所述正义链包含SEQ ID NO:403所示的核苷酸序列,且所述反义链包含SEQ ID NO:816所示的核苷酸序列;
(g)所述正义链包含SEQ ID NO:404所示的核苷酸序列,且所述反义链包含SEQ ID NO:817所示的核苷酸序列;
(h)所述正义链包含SEQ ID NO:405所示的核苷酸序列,且所述反义链包含SEQ ID NO:818所示的核苷酸序列;
(i)所述正义链包含SEQ ID NO:406所示的核苷酸序列,且所述反义链包含SEQ ID NO:819所示的核苷酸序列;
(j)所述正义链包含SEQ ID NO:407所示的核苷酸序列,且所述反义链包含SEQ ID NO:820所示的核苷酸序列;
(k)所述正义链包含SEQ ID NO:401所示的核苷酸序列,且所述反义链包含SEQ ID NO:814所示的核苷酸序列;或
(l)所述正义链包含SEQ ID NO:402所示的核苷酸序列,且所述反义链包含SEQ ID NO:815所示的核苷酸序列。
II.核苷酸修饰
在一些实施方案中,所述正义链的基本上所有的核苷酸和所述反义链的基本上所有的核苷酸是修饰的核苷酸。在一些实施方案中,所述正义链的至少80%的核苷酸是修饰的核苷酸,和/或所述反义链的至少80%的核苷酸是修饰的核苷酸。
在一些实施方案中,所述正义链的所有的核苷酸和/或所述反义链的所有的核苷酸是修饰的核苷酸。
本发明所述的核苷酸的修饰可以是在核苷酸的磷酸基团、核糖基团和/或碱基基团上的修饰。
在一些具体的实施方案中,所述正义链和所述反义链各自独立地包含选自下组的一种或多种核苷酸修饰:2'-O-甲基修饰的核苷酸、2'-氟代修饰的核苷酸、2'-脱氧-修饰的核苷酸、肌苷核糖核苷酸、脱碱基核苷酸、反向无碱基脱氧核糖核苷酸、硫代磷酸酯核苷酸间键联修饰、乙烯基膦酸酯修饰的核苷酸、锁核苷酸、2'-氨基-修饰的核苷酸、2'-烷基-修饰的核苷酸、吗啉代核苷酸、氨基磷酸酯、包含非天然碱基的核苷酸、以及连接到胆固醇基衍生物或十二烷酸二癸酰胺基团上的末端核苷酸、和脱氧核糖核苷酸。
在一些优选的实施方案中,所述正义链和所述反义链各自独立地包含选自下组的一种或多种核苷酸修饰:2'-O-甲基修饰的核苷酸、2'-氟代修饰的核苷酸、2'-脱氧-修饰的核苷酸、肌苷核糖核苷酸、脱碱基核苷酸、反向无碱基脱氧核糖核苷酸、硫代磷酸酯核苷酸间键联修饰。
在一些优选的实施方案中,所述正义链和/或所述反义链包含至少2个2'-氟代修饰的核苷酸。
在一些优选的实施方案中,所述正义链和/或所述反义链包含至少8个2'-O-甲基修饰的核苷酸。
在一些优选的实施方案中,所述正义链和/或所述反义链的3’末端和/或5’末端包含1-5个硫代磷酸酯基团,优选2-3个硫代磷酸酯基团。在一些更优选的实施方案中,所述正义链和/或所述反义链的5’末端包含1-5个硫代磷酸酯基团。
在一些优选的实施方案中,所述反义链包含表5中任一项所示的经修饰的核苷酸序列,和/或所述正义链包含表4中任一项所示的经修饰的核苷酸序列。在一些优选的实施方案中,所述siRNA包含表6中任一项所示的配对的经修饰的正义链序列和经修饰的反义链序列。
在一些实施方案中,在本发明的抑制细胞中APOC3表达的siRNA中:
(1)所述正义链包含AmsAmAmAmGmGmGmAmCfAfGfUmAmUmUmCmUmCmAmGmAms-STM1(SEQ ID NO:1655),所述反义链包含(CP1a-U)sCfsUmGfAmGfAmAfUmAfCmUfGmUfCmCfCmUfUmsUfsUm(SEQ ID NO:1651);
(2)所述正义链包含STM1s-AmsAmUmUmAmAmAmAmGfGfGfAmCmAmGmUmAmUmUmCmAms-STM1(SEQ ID NO:1656),所述反义链包含(CP1a-U)sGfsAmAfUmAfCmUfGmUfCmCfCmUfUmUfUmAfAmsUfsUm;
(3)所述正义链包含
STM1s-AmsAmUmUmAmAmAmAmGfGfGfAmCmAmGmUmAmUmUmCmAms-STM1(SEQ ID NO:1657),
且所述反义链包含
(VPUm)sGfsAmAfUmAfCmUfGmUfCmCfCmUfUmUfUmAfAmsUfsUm(SEQ ID NO:1649);
(4)所述正义链包含
IBs-AmsAmUmUmAmAmAmAmGfGfGfAmCmAmGmUmAmUmUmCmAms-IB(SEQ ID NO:1658),
且所述反义链包含
(CP1a-U)sGfsAmAfUmAfCmUfGmUfCmCfCmUfUmUfUmAfAmsUfsUm(SEQ ID NO:1650);
(5)所述正义链包含
UmsUmsAmAmAmAmGfGfGfAmCmAmGmUmAmUmUmCmsAm(SEQ ID NO:1659),
且所述反义链包含
(CP1a-U)sGfsAmAfUmAfCmUfGmUfCmCfCmUfUmUfUmAfAmsUfsUm(SEQ ID NO:1650);
(6)所述正义链包含
IBs-AmsAmAmAmGmGmGmAmCfAfGfUmAmUmUmCmUmCmAmGmAms-IB(SEQ ID NO:1660),
且所述反义链包含
(CP1a-U)sCfsUmGfAmGfAmAfUmAfCmUfGmUfCmCfCmUfUmsUfsUm(SEQ ID NO:1651);
(7)所述正义链包含
AmsAmsGmGmGmAmCfAfGfUmAmUmUmCmUmCmAmGmsAm(SEQ ID NO:1661),
且所述反义链包含
(CP1a-U)sCfsUmGfAmGfAmAfUmAfCmUfGmUfCmCfCmUfUmsUfsUm(SEQ ID NO:1651);
(8)所述正义链包含
IBs-AmsAmAmAmGmGmGmAmCfAfGfUmAmUmUmCmUmCmAmGmAms-IBs-GL6(SEQ ID NO:1662),
且所述反义链包含
(CP1a-U)sCfsUmGfAmGf(PCN-A)AfUmAfCmUfGmUfCmCfCmUfUmsUfsUm(SEQ ID NO:1652);或
(9)所述正义链包含
AmsAmsGmGmGmAmCfAfGfUmAmUmUmCmUmCmAmGmsAm(SEQ ID NO:1663),
且所述反义链包含
(CP1a-U)sCfsUmGfAmGf(PCN-A)AfUmAfCmUfGmUfCmCfCmUfUmsUfsUm(SEQ ID NO:1652);
(a)所述正义链包含CmsGmsAmGmGmAmUfGfCfCmUmCmCmCmUmUmCmUmUm,且所述反义链包含AmsAfsGmAfAmGfGmGfAmGfGmCfAmUfCmCfUmCfGmsUfsUm;
(b)所述正义链包含CmsCmsGmUmUmAmAfGfGfAmCmAmAmGmUmUmCmUmUm,且所述反义链包含AmsAfsGmAfAmCfUmUfGmUfCmCfUmUfAmAfCmGfGmsUfsUm;
(c)所述正义链包含CmsCmsGmUmUmAmAfGfGfAmCmAmAmGmUmUmCmUmUm,且所述反义链包含AmsAfsGmAfAmCfUmUfGmUfCmCfUmUfAmAfCmGfGmsUfsUm;
(d)所述正义链包含CmsCmsAmAmGmUmCfCfAfCmCmUmGmCmCmUmAmUmUm,且所述反义链包含AmsAfsUmAfGmGfCmAfGmGfUmGfGmAfCmUfUmGfGmsUfsUm;
(e)所述正义链包含AmsAmsGmGmGmAmCfAfGfUmAmUmUmCmUmCmAmGmUm,且所述反义链包含AmsCfsUmGfAmGfAmAfUmAfCmUfGmUfCmCfCmUfUmsUfsUm;
(f)所述正义链包含UmsUmsAmAmAmAmGfGfGfAmCmAmGmUmAmUmUmCmUm,且所述反义链包含AmsGfsAmAfUmAfCmUfGmUfCmCfCmUfUmUfUmAfAmsUfsUm;
(g)所述正义链包含AmsAmsGmGmGmAmCfAfGfUmAmUmUmCmUmCmAmGmUm,且所述反义链包含AmsCfsUmGfAmGfAmAfUmAfCmUfGmUfCmCfCmUfUmsUfsUm;
(h)所述正义链包含CmsCmsAmAmGmUmCfCfAfCmCmUmGmCmCmUmAmUmUm,且所述反义链包含AmsAfsUmAfGmGfCmAfGmGfUmGfGmAfCmUfUmGfGmsUfsUm;
(i)所述正义链包含CmsCmsGmUmUmAmAfGfGfAmCmAmAmGmUmUmCmUmUm,且所述反义链包含AmsAfsGmAfAmCfUmUfGmUfCmCfUmUfAmAfCmGfGmsUfsUm;
(j)所述正义链包含CmsGmsAmGmGmAmUfGfCfCmUmCmCmCmUmUmCmUmUm,且所述反义链包含AmsAfsGmAfAmGfGmGfAmGfGmCfAmUfCmCfUmCfGmsUfsUm;
(k)所述正义链包含IBs-AmCmGmGmGmAmCmAmGfUfAfUmUmCmUmCmAmGmUmimAms-IB,且所述反义链包含UmsCfsAmsCfUmGfAmGmAmAmUmAfCmUfGmUfCmCfCmGfsUm;或
(l)所述正义链包含AmsAmsGmGmGmAmCfAmGfUfAfUmUmCmUmCmAmGmUmsGmsCm,且所述反义链包含GmsCfsAmCmUmGfAmGmAmAmUmAmCmUfGmUfCmCmCmUmUmsUmsUm。
III.配体
本发明所述的siRNA进一步通过磷酸酯基团或硫代磷酸酯基团与包含N-乙酰半乳糖胺的配体部分缀合。在优选的实施方案中,所述siRNA的正义链通过磷酸酯基团或硫代磷酸酯基团与所述配体部分缀合。在一些优选的实施方案中,所述正义链的3’端通过磷酸酯基团或硫代磷酸酯基团与所述配体部分缀合。在另一些优选的实施方案中,所述正义链的5’端通过磷酸酯基团或硫代磷酸酯基团与所述配体部分缀合。
在一些实施方案中,所述配体部分包含式(X’)所示的缀合基团:
其中,
表示与siRNA连接的位置;
Q独立地为H、
其中L1为化学键、-CH2-、-CH2CH2-、-C(O)-、-CH2O-、-CH2O-CH2CH2O-或-NHC(O)-(CH2NHC(O))a-;
L2为化学键或-CH2CH2C(O)-;
L3为化学键、-(NHCH2CH2)b-、-(NHCH2CH2CH2)b-或-C(O)CH2-;
L4为-(OCH2CH2)c-、-(OCH2CH2CH2)c-、-(OCH2CH2CH2CH2)c-、-(OCH2CH2CH2CH2CH2)c-或-NHC(O)-(CH2)d-;
其中a=0、1、2或3;
b=1、2、3、4或5;
c=1、2、3、4或5;
d=1、2、3、4、5、6、7或8;
L为化学键、-CH2O-或-NHC(O)-;
L’为化学键、-C(O)NH-、-NHC(O)-或-O(CH2CH2O)e-;
其中e为1、2、3、4或5;
T为化学键、-CH2-、-C(O)-、-M-、-CH2-M-或-C(O)-M-;
其中M为
R1和R2一起形成-CH2CH2O-或-CH2CH(R)-O-,并且R3为H;
或者R1和R3一起形成-C1-2亚烷基-,并且R2为H;
其中R为-OR’、-CH2OR’或-CH2CH2OR’,其中R’为H、羟基保护基或固相载体,所述羟基保护基优选-C(O)CH2CH2C(O)OH或4,4'-二甲氧基三苯甲基;
m=0、1、2、3、4、5、6、7、8、9或10;
n=0、1、2、3、4、5、6、7、8、9或10。
在一些实施方案中,所述缀合基团如式(I’)所示:
其中,
表示与siRNA连接的位置;
Q独立地为H、
其中L1为化学键、-CH2-、-CH2CH2-、-C(O)-、-CH2O-、-CH2O-CH2CH2O-或-NHC(O)-(CH2NHC(O))a-;
L2为化学键或-CH2CH2C(O)-;
L3为化学键、-(NHCH2CH2)b-、-(NHCH2CH2CH2)b-或-C(O)CH2-;
L4为-(OCH2CH2)c-、-(OCH2CH2CH2)c-、-(OCH2CH2CH2CH2)c-、-(OCH2CH2CH2CH2CH2)c-或-NHC(O)-(CH2)d-;
其中a=0、1、2或3;
b=1、2、3、4或5;
c=1、2、3、4或5;
d=1、2、3、4、5、6、7或8;
L为-CH2O-或-NHC(O)-;
L’为化学键、-C(O)NH-或-NHC(O)-;
R1和R2一起形成-CH2CH2O-或-CH2CH(R)-O-,并且R3为H;
或者R1和R3一起形成-C1-2亚烷基-,并且R2为H;
其中R为-OR’、-CH2OR’或-CH2CH2OR’,其中R’为H、羟基保护基或固相载体,所述羟基保护基优选-C(O)CH2CH2C(O)OH或4,4'-二甲氧基三苯甲基;
m=0、1、2、3、4、5、6、7、8、9或10;
n=0、1、2、3、4、5、6、7、8、9或10。
在一些具体的实施方案中,其中,
Q独立地为H或
其中L1为-CH2O-或-NHC(O)-(CH2NHC(O))a-;
L2为-CH2CH2C(O)-;
L3为-(NHCH2CH2)b-或-(NHCH2CH2CH2)b-;
L4为-(OCH2CH2)c-或-NHC(O)-(CH2)d-;
其中a=0、1、2或3;
b=1、2、3、4或5;
c=1、2、3、4或5;
d=1、2、3、4、5、6、7或8;
L为-CH2O-;
L’为化学键;
R1和R2一起形成-CH2CH2O-或-CH2CH(R)-O-,并且R3为H;
或者R1和R3一起形成-C1-2亚烷基-,并且R2为H;
其中R为-OR’、-CH2OR’或-CH2CH2OR’,其中R’为H、羟基保护基或固相载体,所述羟基保护基优选-C(O)CH2CH2C(O)OH或4,4'-二甲氧基三苯甲基;
m=0、1、2、3、4、5、6、7、8、9或10;
n=0、1、2、3、4、5、6、7、8、9或10。
在一些实施方案中,所述缀合基团如式(I’-1)、式(I’-2)或式(I’-3)所示:
其中,
表示与siRNA连接的位置;
Q为
其中L1为-CH2O-或-NHC(O)-;
L2为-CH2CH2C(O)-;
L3为-(NHCH2CH2)b-或-(NHCH2CH2CH2)b-;
L4为-(OCH2CH2)c-或-NHC(O)-(CH2)d-;
其中b=1、2、3、4或5;
c=1、2、3、4或5;
d=1、2、3、4、5、6、7或8;
L为-CH2O-;
R’为H、羟基保护基或固相载体,所述羟基保护基优选-C(O)CH2CH2C(O)OH或4,4'-二甲氧基三苯甲基;
n=0、1、2、3、4、5、6、7、8、9或10。
在一些具体的实施方案中,其中,
Q独立地为H、
其中L1为-CH2O-、-CH2O-CH2CH2O-或-NHC(O)-(CH2NHC(O))a-;
L2为-CH2CH2C(O)-;
L3为-(NHCH2CH2)b-、-(NHCH2CH2CH2)b-或-C(O)CH2-;
L4为-(OCH2CH2)c-或-NHC(O)-(CH2)d-;
其中a=0、1、2或3;
b=1、2、3、4或5;
c=1、2、3、4或5;
d=1、2、3、4、5、6、7或8;
L为-CH2O-或-NHC(O)-;
L’为化学键或-C(O)NH-;
R1和R2一起形成-CH2CH2O-或-CH2CH(R)-O-,并且R3为H;
或者R1和R3一起形成-C1-2亚烷基-,并且R2为H;
其中R为-OR’、-CH2OR’或-CH2CH2OR’,其中R’为H、羟基保护基或固相载体,所述羟基保护基优选-C(O)CH2CH2C(O)OH或4,4'-二甲氧基三苯甲基;
m=0、1、2、3、4、5、6、7、8、9或10;
n=0、1、2、3、4、5、6、7、8、9或10。
在一些实施方案中,所述缀合基团如式(II’-1)或式(II’-2)所示:
其中,
表示与siRNA连接的位置;
Q独立地为
其中L1为-CH2O-或-CH2O-CH2CH2O-;
L3为-(NHCH2CH2)b-、-(NHCH2CH2CH2)b-或-C(O)CH2-;
L4为-(OCH2CH2)c-或-NHC(O)-(CH2)d-;
其中b=1、2、3、4或5;
c=1、2、3、4或5;
d=1、2、3、4、5、6、7或8;
L为-NHC(O)-;
L’为化学键或-C(O)NH-;
R’为H、羟基保护基或固相载体,所述羟基保护基优选-C(O)CH2CH2C(O)OH或4,4'-二甲氧基三苯甲基;
m=0、1、2、3、4、5、6、7、8、9或10;
n=0、1、2、3、4、5、6、7、8、9或10。
在一些具体的实施方案中,其中,
Q独立地为H、
其中L1为-CH2-、-C(O)-、-CH2O-、-CH2O-CH2CH2O-或-NHC(O)-(CH2NHC(O))a-;
L2为化学键;
L3为-(NHCH2CH2)b-、-(NHCH2CH2CH2)b-或-C(O)CH2-;
L4为-(OCH2CH2)c-或-NHC(O)-(CH2)d-;
其中a=0、1、2或3;
b=1、2、3、4或5;
c=1、2、3、4或5;
d=1、2、3、4、5、6、7或8;
L为-CH2O-或-NHC(O)-;
L’为化学键或-C(O)NH-;
R1和R2一起形成-CH2CH2O-或-CH2CH(R)-O-,并且R3为H;
或者R1和R3一起形成-C1-2亚烷基-,并且R2为H;
其中R为-OR’、-CH2OR’或-CH2CH2OR’,其中R’为H、羟基保护基或固相载体,所述羟基保护基优选-C(O)CH2CH2C(O)OH或4,4'-二甲氧基三苯甲基;
m=0、1、2、3、4、5、6、7、8、9或10;
n=0、1、2、3、4、5、6、7、8、9或10。
在一些实施方案中,其中所述缀合基团如式(II’-2)所示:
其中,
表示与siRNA连接的位置;
Q独立地为
其中L1为-CH2-或-C(O)-;
L3为-(NHCH2CH2)b-;
L4为-(OCH2CH2)c-;
其中b=1、2、3、4或5;
c=1、2、3、4或5;
L为-CH2O-或-NHC(O)-;
R’为H、羟基保护基或固相载体,所述羟基保护基优选-C(O)CH2CH2C(O)OH或4,4'-二甲氧基三苯甲基;
n=0、1、2、3、4、5、6、7、8、9或10。
在一些具体的实施方案中,其中:
Q独立地为H、
其中L1为化学键、-CH2-、-CH2CH2-、-C(O)-、-CH2O-、-CH2O-CH2CH2O-或-NHC(O)-(CH2NHC(O))a-;
L2为化学键或-CH2CH2C(O)-;
L3为化学键、-(NHCH2CH2)b-、-(NHCH2CH2CH2)b-或-C(O)CH2-;
L4为-(OCH2CH2)c-、-(OCH2CH2CH2)c-、-(OCH2CH2CH2CH2)c-、-(OCH2CH2CH2CH2CH2)c-或-NHC(O)-(CH2)d-;
其中a=0、1、2或3;
b=1、2、3、4或5;
c=1、2、3、4或5;
d=1、2、3、4、5、6、7或8;
L为化学键、-CH2O-或-NHC(O)-;
L’为化学键、-C(O)NH-、-NHC(O)-或-O(CH2CH2O)e-;
其中e为1、2、3、4或5;
T为化学键、-CH2-、-M-、-CH2-M-或-C(O)-M-;
其中M为
R1和R2一起形成-CH2CH2O-或-CH2CH(R)-O-,并且R3为H;
或者R1和R3一起形成-C1-2亚烷基-,并且R2为H;
其中R为-OR’、-CH2OR’或-CH2CH2OR’,其中R’为H、羟基保护基或固相载体,所述羟基保护基优选-C(O)CH2CH2C(O)OH或4,4'-二甲氧基三苯甲基;
m=0、1、2、3、4、5、6、7、8、9或10;
n=0、1、2、3、4、5、6、7、8、9或10。
在一些具体的实施方案中,其中,
T为-M-、-CH2-M-或-C(O)-M-,其中M为
在一些具体的实施方案中,其中,
Q独立地为H或
其中L1为-CH2O-或-NHC(O)-(CH2NHC(O))a-;
L2为-CH2CH2C(O)-;
L3为-(NHCH2CH2)b-或-(NHCH2CH2CH2)b-;
L4为-(OCH2CH2)c-或-NHC(O)-(CH2)d-;
其中a=0、1、2或3;
b=1、2、3、4或5;
c=1、2、3、4或5;
d=1、2、3、4、5、6、7或8;
L为化学键或-CH2O-;
L’为化学键或-O(CH2CH2O)e-;
其中e为1、2、3、4或5;
R1和R2一起形成-CH2CH2O-或-CH2CH(R)-O-,并且R3为H;
或者R1和R3一起形成-C1-2亚烷基-,并且R2为H;
其中R为-OR’、-CH2OR’或-CH2CH2OR’,其中R’为H、羟基保护基或固相载体,所述羟基保护基优选-C(O)CH2CH2C(O)OH或4,4'-二甲氧基三苯甲基;
m=0、1、2、3、4、5、6、7、8、9或10;
n=0、1、2、3、4、5、6、7、8、9或10;
其中T如以上所定义。
在一些实施方案中,其中所述缀合基团如式(III’-1)、式(III’-2)或式(III’-3)所示:
其中,
Q为
其中L1为-CH2O-或-NHC(O)-;
L2为-CH2CH2C(O)-;
L3为-(NHCH2CH2)b-或-(NHCH2CH2CH2)b-;
L4为-(OCH2CH2)c-或-NHC(O)-(CH2)d-;
其中b=1、2、3、4或5;
c=1、2、3、4或5;
d=1、2、3、4、5、6、7或8;
L为化学键或-CH2O-;
其中R’为H、羟基保护基或固相载体,所述羟基保护基优选-C(O)CH2CH2C(O)OH或4,4'-二甲氧基三苯甲基;
n=0、1、2、3、4、5、6、7、8、9或10;
其中T如以上所定义。
在一些具体的实施方案中,其中,
Q独立地为H、
其中L1为-CH2-、-CH2O-或-C(O)-;
L2为化学键;
L3为-(NHCH2CH2)b-、-(NHCH2CH2CH2)b-或-C(O)CH2-;
L4为-(OCH2CH2)c-或-NHC(O)-(CH2)d-;
其中b=1、2、3、4或5;
c=1、2、3、4或5;
d=1、2、3、4、5、6、7或8;
L为化学键或-NHC(O)-;
L’为化学键;
R1和R2一起形成-CH2CH2O-或-CH2CH(R)-O-,并且R3为H;
或者R1和R3一起形成-C1-2亚烷基-,并且R2为H;
其中R为-OR’、-CH2OR’或-CH2CH2OR’,其中R’为H、羟基保护基或固相载体,所述羟基保护基优选-C(O)CH2CH2C(O)OH或4,4'-二甲氧基三苯甲基;
m=0、1、2、3、4、5、6、7、8、9或10;
n=0、1、2、3、4、5、6、7、8、9或10;
其中T如以上所定义。
在一些实施方案中,其中所述缀合基团如式(IV-1)或式(IV-2)所示:
其中,
Q独立地为
其中L1为-CH2-、-CH2O-或-C(O)-;
L3为-(NHCH2CH2)b-、-(NHCH2CH2CH2)b-或-C(O)CH2-;
L4为-(OCH2CH2)c-或-NHC(O)-(CH2)d-;
其中b=1、2、3、4或5;
c=1、2、3、4或5;
d=1、2、3、4、5、6、7或8;
L为化学键或-NHC(O)-;
L’为化学键;
其中R’为H、羟基保护基或固相载体,所述羟基保护基优选-C(O)CH2CH2C(O)OH或4,4'-二甲氧基三苯甲基;
m=0、1、2、3、4、5、6、7、8、9或10;
n=0、1、2、3、4、5、6、7、8、9或10;
其中T如以上所定义。
在一些具体的实施方案中,其中:
Q独立地为H、
其中L1为化学键、-CH2-、-CH2CH2-、-C(O)-、-CH2O-、-CH2O-CH2CH2O-或-NHC(O)-(CH2NHC(O))a-;
L2为化学键或-CH2CH2C(O)-;
L3为化学键、-(NHCH2CH2)b-、-(NHCH2CH2CH2)b-或-C(O)CH2-;
L4为-(OCH2CH2)c-、-(OCH2CH2CH2)c-、-(OCH2CH2CH2CH2)c-、-(OCH2CH2CH2CH2CH2)c-或-NHC(O)-(CH2)d-;
其中a=0、1、2或3;
b=1、2、3、4或5;
c=1、2、3、4或5;
d=1、2、3、4、5、6、7或8;
L为化学键、-CH2O-或-NHC(O)-;
L’为-O(CH2CH2O)e-;
其中e为1、2、3、4或5;
T为化学键、-CH2-、-C(O)-、-M-、-CH2-M-或-C(O)-M-;
其中M为
R1和R2一起形成-CH2CH2O-或-CH2CH(R)-O-,并且R3为H;
或者R1和R3一起形成-C1-2亚烷基-,并且R2为H;
其中R为-OR’、-CH2OR’或-CH2CH2OR’,其中R’为H、羟基保护基或固相载体,所述羟基保护基优选-C(O)CH2CH2C(O)OH或4,4'-二甲氧基三苯甲基;
m=0、1、2、3、4、5、6、7、8、9或10;
n=0、1、2、3、4、5、6、7、8、9或10。
在一些优选的实施方案中,其中所述缀合基团选自表1和表2。
在一些实施方案中,所述配体靶向去唾液酸糖蛋白受体(ASGPR)。
在一个优选的实施方案中,其中所述配体具有以下结构:
其中表示通过磷酸酯基团或硫代磷酸酯基团与所述siRNA的正义链连接的位置。
在一个优选的实施方案中,其中所述配体具有以下结构:
其中表示通过磷酸酯基团或硫代磷酸酯基团与所述siRNA的正义链连接的位置。
在一个优选的实施方案中,其中所述配体具有以下结构:
其中表示通过磷酸酯基团或硫代磷酸酯基团与所述siRNA的正义链连接的位置。
在一些具体的实施方案中,在本公开的siRNA中,其中:
(1)所述正义链包含
STM1s-AmsAmAmAmGmGmGmAmCfAfGfUmAmUmUmCmUmCmAmGmAms-STM1s-GL6(SEQ ID NO:1238),
且所述反义链包含
(CP1a-U)sCfsUmGfAmGfAmAfUmAfCmUfGmUfCmCfCmUfUmsUfsUm(SEQ ID NO:1651);
(2)所述正义链包含
STM1s-AmsAmUmUmAmAmAmAmGfGfGfAmCmAmGmUmAmUmUmCmAms-STM1s-GL6(SEQ ID NO:1235),
且所述反义链包含
(CP1a-U)sGfsAmAfUmAfCmUfGmUfCmCfCmUfUmUfUmAfAmsUfsUm(SEQ ID NO:1650);
(3)所述正义链包含
STM1s-AmsAmUmUmAmAmAmAmGfGfGfAmCmAmGmUmAmUmUmCmAms-STM1s-GL6(SEQ ID NO:1235),
且所述反义链包含
(VPUm)sGfsAmAfUmAfCmUfGmUfCmCfCmUfUmUfUmAfAmsUfsUm(SEQ ID NO:1649);
(4)所述正义链包含
IBs-AmsAmUmUmAmAmAmAmGfGfGfAmCmAmGmUmAmUmUmCmAms-IBs-GL6(SEQ ID NO:1236),
且所述反义链包含
(CP1a-U)sGfsAmAfUmAfCmUfGmUfCmCfCmUfUmUfUmAfAmsUfsUm(SEQ ID NO:1650);
(5)所述正义链包含
UmsUmsAmAmAmAmGfGfGfAmCmAmGmUmAmUmUmCmsAms-GL6(SEQ ID NO:1237),
且所述反义链包含
(CP1a-U)sGfsAmAfUmAfCmUfGmUfCmCfCmUfUmUfUmAfAmsUfsUm(SEQ ID NO:1650);
(6)所述正义链包含
IBs-AmsAmAmAmGmGmGmAmCfAfGfUmAmUmUmCmUmCmAmGmAms-IBs-GL6(SEQ ID NO:1239),
且所述反义链包含
(CP1a-U)sCfsUmGfAmGfAmAfUmAfCmUfGmUfCmCfCmUfUmsUfsUm(SEQ ID NO:1651);
(7)所述正义链包含
AmsAmsGmGmGmAmCfAfGfUmAmUmUmCmUmCmAmGmsAms-GL6(SEQ ID NO:1240),
且所述反义链包含
(CP1a-U)sCfsUmGfAmGfAmAfUmAfCmUfGmUfCmCfCmUfUmsUfsUm(SEQ ID NO:1651);或
(8)所述正义链包含
IBs-AmsAmAmAmGmGmGmAmCfAfGfUmAmUmUmCmUmCmAmGmAms-IBs-GL6(SEQ ID NO:1239),
且所述反义链包含
(CP1a-U)sCfsUmGfAmGf(PCN-
A)AfUmAfCmUfGmUfCmCfCmUfUmsUfsUm(SEQ ID NO:1652);或
(9)所述正义链包含
AmsAmsGmGmGmAmCfAfGfUmAmUmUmCmUmCmAmGmsAms-GL6(SEQ ID NO:1240),
且所述反义链包含
(CP1a-U)sCfsUmGfAmGf(PCN-A)AfUmAfCmUfGmUfCmCfCmUfUmsUfsUm(SEQ ID NO:1652)。
IV.APOC3基因表达抑制
本发明的siRNA能够将APOC3基因表达抑制至少约5%、至少约10%、至少约15%、至少约20%、至少约25%、至少约30%、至少约35%、至少约40%、至少约45%、至少约50%、至少约55%、至少约60%、至少约65%、至少约70%、至少约75%、至少约80%、至少约85%、至少约90%、至少约91%、至少约92%、至少约93%、至少约94%、至少约95%、至少约96%、至少约97%、至少约98%或至少约99%。
APOC3基因表达的抑制可以通过由第一细胞或细胞群组(这样的细胞可以存在于例如来源于受试者的样品中)表达的mRNA的量的降低来显现,其中APOC3基因被转录并且该细胞或这些细胞已经被处理(例如通过使该细胞或这些细胞与本发明的siRNA接触,或通过向现在存在或以前存在这些细胞的受试者给予本发明的siRNA,使得与该第一细胞或细胞群组基本上相同但尚未被如此 处理的第二细胞或细胞群组(一种或多种对照细胞)相比,APOC3基因表达被抑制。
在优选实施例中,通过使用下式将被处理的细胞中的mRNA的水平表示为对照细胞中的mRNA的水平的百分比来评估该抑制。在一些具体的实施方案中,计算2-△△Ct值并换算成百分比以得到剩余抑制率,其中△△Ct=[(Ct实验组目的基因-Ct实验组内参)-(Ct对照组目的基因-Ct对照组内参)]。
APOC3蛋白的表达的抑制可以通过由细胞或细胞群组表达的APOC3蛋白水平(例如来源于受试者的样品中表达的蛋白质水平)的降低来显现。如以上关于mRNA阻抑的评估所解释,被处理的细胞或细胞群组中的蛋白质表达水平的抑制可以类似地表示为对照细胞或细胞群组中的蛋白质的水平的百分比。
可以用来评估APOC3基因表达的抑制的对照细胞或细胞群组包括尚未与本发明的siRNA接触的细胞或细胞群组。例如,该对照细胞或细胞群组可以来源于在用siRNA处理受试者之前的个体受试者(例如人类或动物受试者)。
V.载体
本发明提供了载体,其包含编码本发明所述的siRNA的核苷酸序列。本发明的载体能够扩增或表达与其连接的编码本发明所述的siRNA的核苷酸。
靶向APOC3基因的siRNA可以从插入DNA或RNA载体中的转录单位表达。表达可以是短暂的(数小时至数星期内)或持续的(数星期至数个月或更久),取决于所使用的特定建构体及靶组织或细胞类型。可以将靶向APOC3基因的siRNA的编码核苷酸引入线性建构体、环状质体或病毒载体中。编码靶向PCSK基因的siRNA的核苷酸可以被整合到细胞基因组中稳定表达,或者在染色体外稳定遗传而表达。一般来说,siRNA表达载体通常是DNA质粒或病毒载体。
包含靶向APOC3基因的siRNA的编码序列的病毒载体系统包括但不局限于:(a)腺病毒载体;(b)逆转录病毒载体;(c)腺伴随病毒载体;(d)单纯疱疹病毒载体;(e)SV40载体;(f)多瘤病毒载体;(g)乳头瘤病毒载体;(h)微小核糖核酸病毒载体;(i)痘病毒载体;以及(j)辅助病毒依赖性腺病毒或无肠腺病毒。
VI.细胞
本发明提供了细胞,其包含本发明所述的siRNA或载体,其中本发明所述的siRNA或载体能够在细胞中转录。
VII.药物组合物
本发明提供了药物组合物,其包含本发明所述的siRNA、载体或细胞,以及任选的药学上可接受的载剂或赋形剂。
本文使用的“药学上可接受的”是指那些化合物、材料、组合物和/或剂型,其在正确医学判断范围内,适合于接触人类受试者和动物受试者的组织而没有过度的毒性、刺激性、过敏反应或其他问题或并发症,与合理的效益/风险比相称。
在本文中,药学上可接受的载剂是指有助于将siRNA或包含其编码序列的载体或细胞施用至人体和/或有利于其吸收或发挥作用的药物载剂。例如:稀释剂、赋形剂如水等,填充剂如淀粉、蔗糖等;粘合剂如纤维素衍生物、藻酸盐、明胶和聚乙烯吡咯烷酮;湿润剂如甘油;崩解剂如琼脂、碳酸钙和碳酸氢钠;吸收促进剂如季铵化合物;表面活性剂如十六烷醇;吸附载体如高岭土和皂粘土;润滑剂如滑石粉、硬脂酸钙/镁、聚乙二醇等。另外还可以在组合物中加入其它辅剂如香味剂、甜味剂等。
例如,包含本发明所述的siRNA、载体或细胞的药物组合物可以包含药学上可接受的稀释剂或缓释基质,本发明所述的siRNA或载体被嵌入该缓释基质中。
VIII.试剂盒
本发明提供了试剂盒,其包含本发明所述的siRNA、载体或细胞。
本发明还提供了用于使用本发明所述的siRNA和/或执行本发明的方法的试剂盒。这样的试剂盒包括一种或多种本发明所述的siRNA、载体或细胞,还可以进一步包括使用说明书。该使用说明书中可以记录用于通过使细胞与本发明所述的siRNA或载体接触以有效抑制APOC3表达的量接触来抑制该细胞中的该APOC3表达的说明书。
在本发明所述的siRNA或载体在体外与细胞接触的情况下,任选地,本发明的试剂盒还可以包括用于使细胞与本发明所述的siRNA或载体接触的工具(例如,注射装置)或用于测量APOC3的抑制效果的工具(例如,用于测量APOC3mRNA或蛋白质的抑制的装置)。这样的用于测量APOC3的抑制的装置可以包含用于从受试者获得样品(例如像,血浆样品)的装置。
在将本发明所述的siRNA、载体或已经在体外导入siRNA或载体的细胞施用至体内的情况下,本发明的试剂盒还可以任选地包括用于将本发明所述siRNA、载体或细胞给予至受试者的装置或用于确定治疗有效量或预防有效量的装置。
IX.治疗方法、制药用途
本发明提供了能够抑制细胞中APOC3表达的方法,所述方法包括:(a)将所述细胞与本发明所述的siRNA、载体、细胞、或药物组合物接触;和(b)培养所述细胞。
本发明提供了治疗受试者中与APOC3表达相关的疾病或症状的方法,所述方法包括向所述受试者施用本发明所述的siRNA、载体、细胞、或药物组合物的步骤。
本发明提供的siRNA能够抑制APOC3的表达,从而降低甘油三酯的水平,特别是血清甘油三酯的水平,用于治疗APOC3相关的疾病和病症。所述APOC3相关的疾病和病症是高甘油三酯血症以及可由高甘油三酯血症引起的、与其关联的、或是其后果的疾病。可由高甘油三酯血症引起的、与其关联的、或是其后果的疾病包括,但不限于,胰腺炎、代谢综合征、II型糖尿病、家族 性乳糜微粒血症综合征(FCS)、乳糜微粒血症、多因素乳糜微粒血症、脂肪营养不良综合征(例如家族性部分脂肪营养不良)、肥胖、血脂异常、非酒精性脂肪肝、非酒精性脂肪性肝炎、高脂血症、高甘油三酯血症、异常脂质和/或胆固醇代谢、动脉粥样硬化、心血管疾病、冠状动脉疾病、多囊卵巢综合征、肾脏疾病和其他血脂异常和代谢相关病症和疾病。所述高甘油三酯血症包括,但不限于,非家族性高甘油三酯血症、家族性高甘油三酯血症、杂合型家族性高甘油三酯血症、纯合型家族性高甘油三酯血症。
在一些实施方案中,本发明的治疗受试者中与APOC3表达相关的疾病或症状的方法向所述受试者施用所述siRNA或药物组合物为皮下施用、静脉内施用或局部施用。在一些实施方案中,所述受试者是人类患者。
本发明还涉及用于治疗受试者中与APOC3表达相关的疾病或症状的本发明所述的siRNA、载体、细胞或药物组合物。
本发明还涉及本发明所述的siRNA、载体、细胞、或药物组合物在制备用于治疗受试者中与APOC3表达相关的疾病或症状的药物中的用途。本发明的药物可以制备成乳剂、微乳剂、微颗粒。
本发明还提供了降低受试者中发展APOC3相关的疾病和病症的风险的方法,所述方法包括向所述受试者施用本发明所述的siRNA、载体、细胞、或药物组合物的步骤。
本发明的siRNA可以通过显著降低甘油三酯水平并从而降低发展APOC3相关的疾病和病症的风险。所述APOC3相关的疾病和病症是高甘油三酯血症以及可由高甘油三酯血症引起的、与其关联的、或是其后果的疾病。可由高甘油三酯血症引起的、与其关联的、或是其后果的疾病包括,但不限于,胰腺炎、代谢综合征、II型糖尿病、家族性乳糜微粒血症综合征(FCS)、乳糜微粒血症、多因素乳糜微粒血症、脂肪营养不良综合征(例如家族性部分脂肪营养不良)、肥胖、血脂异常、非酒精性脂肪肝、非酒精性脂肪性肝炎、高脂血症、高甘油三酯血症、异常脂质和/或胆固醇代谢、动脉粥样硬化、心血管疾病、冠状动脉疾病、多囊卵巢综合征、肾脏疾病和其他血脂异常和代谢相关病症和疾病。所述高甘油三酯血症包括,但不限于,非家族性高甘油三酯血症、家族性高甘油三酯血症、杂合型家族性高甘油三酯血症、纯合型家族性高甘油三酯血症。
在一些实施方案中,本发明的降低受试者中发展APOC3相关的疾病和病症的风险的方法向所述受试者施用所述siRNA或药物组合物为皮下施用、静脉内施用或局部施用。在一些实施方案中,所述受试者是人类患者。
本发明还涉及用于降低受试者中发展APOC3相关的疾病和病症的风险的本发明所述的siRNA、载体、细胞或药物组合物。
本发明还涉及本发明所述的siRNA、载体、细胞、或药物组合物在制备用于降低受试者中发展APOC3相关的疾病和病症的风险的药物中的用途。本发明的药物可以制备成乳剂、微乳剂、微颗粒。
序列
本发明提供的RNA序列靶向APOC3基因(或靶基因、靶mRNA序列、靶 序列)。
表3.本发明使用的靶向APOC3基因的正义链和反义链的核苷酸序列










下表4示出了本发明使用的修饰的RNA序列。
本文中,各缩写的意义如下:
A、U、G和C分布表示天然的腺嘌呤核糖核苷酸、尿嘧啶核糖核苷酸、鸟嘌呤核糖核苷酸和胞嘧啶核糖核苷酸。
i或I表示肌苷核糖核苷酸。
m表示其左侧相邻的核苷酸是2’-OCH3修饰的核苷酸。例如,Am、Um、Gm和Cm表示2’-OCH3修饰的A、U、G和C。
f表示其左侧相邻的核苷酸是2’-F修饰的核苷酸。例如,Af、Uf、Gf和Cf分别表示2’-F修饰的A、U、G和C。
“s”或“s-”表示其左右相邻的两个核苷酸和/或递送载体通过硫代磷酸酯连接。
VP表示其右侧相邻的核苷酸是乙烯基膦酸酯修饰的核苷酸,是本领域熟知的,可参见例如PCT公开号WO2011139702、WO2013033230和WO2019105419。
IB表示反向无碱基脱氧核糖核苷酸,根据其在siRNA中所在位置/连接方式的不同可包括以下三种结构(分别用于核酸链的5’端,链间和3’端):
IB是本领域熟知的,参见例如F.Czauderna,Nucleic Acids Res.,2003,31(11),2705-16以及PCT公开号WO2016011123和WO2019051402。
L96表示本领域熟知的以下结构的GalNAc递送载体,其中表示通过磷酸酯基团或硫代磷酸酯基团与siRNA连接的位置,可参见例如PCT公开号WO2009073809和WO2009082607
NAG37表示本领域熟知的以下结构的GalNAc递送载体,其中表示与siRNA连接的位置,可参见例如PCT公开号WO2018044350
GL6表示以下结构的GalNAc递送载体,其中表示通过磷酸酯基团或硫代磷酸酯基团与siRNA连接的位置
GL12表示以下结构的GalNAc递送载体,其中表示磷酸酯基团或硫代磷酸酯基团与siRNA连接的位置,相关中间体合成方法见下文实施例
STM1表示以下结构的核苷酸替代物,相关中间体合成方法见下文实施例15
PCN表示以下结构的核苷酸替代物,其中Base可以是任何碱基,例如PCN-A表示Base为腺嘌呤,相关中间体合成方法见下文实施例17
CP1a表示以下结构的核苷酸替代物,其中Base可以是任何碱基,例如CP1a-U表示Base为尿嘧啶,相关中间体合成方法见下文实施例16,
表4本发明使用的靶向APOC3基因的siRNA的正义链的修饰的RNA序列










表5本发明使用的靶向APOC3基因的siRNA的反义链的修饰的RNA序列











表6本发明使用的靶向APOC3基因的siRNA的成对的修饰的正义链和修饰的反义链










实施例
实施例中使用的材料来源如下:
Huh7细胞系购自南京科佰,货号CBP60202;
Hep3B细胞系购自南京科佰,货号CBP60197;
PHH细胞购自上海轩一,货号QYLF-HPMC;
HEK293A细胞系购自南京科佰,货号CBP60436;
Balb/c小鼠来自浙江维通利华,货号Balb/c。
实施例1.化合物E7的制备
1.中间体3-4的制备
1.1化合物2的制备
在15℃下向化合物1(300g,2.01mol)的DCM(1.80L)中缓慢加入苄基(2,5-二氧代吡咯烷-1-基)碳酸酯(600g,2.40mol)并逐滴加入TEA(203g,2.01mol,280 mL)。加入后,将混合物在25℃下搅拌16小时。TLC(二氯甲烷:甲醇=10:1)显示反应物1(Rf=0.32)被保留且检测到一个重要新点(Rf=0.52)。使用饱和碳酸氢钠溶液洗涤反应混合物(1.00L x 2),使用盐水(1.00L)洗涤有机相,用无水Na2SO4干燥并真空浓缩。不经纯化,化合物2(约385g)为黄色油状。
1.2化合物2A的制备
在0-15℃下向化合物4(350g,1.62mol,HCl)和Ac2O(994g,9.74mol,912mL)的吡啶(1.75L)溶液中一次性加入DMAP(19.8g,162mmol)并逐滴加入TEA(164g,1.62mol,226mL)。将混合物在25℃下搅拌16小时。LCMS(产物:RT=0.687min)显示起始反应物消耗完全。在25℃下向混合物中添加EtOAc(1.40L)并搅拌30分钟,随后过滤混合物并使用EtOAc(300mL)清洗滤饼。在25℃下用水(1.45L)磨碎滤饼30分钟。过滤混合物并使用水(175mL x 3)清洗滤饼,收集滤饼以获得白色固体状的化合物2A(约580g)。
1.3化合物2B的制备
三次反应平行进行。
在10-15℃下经0.5小时向化合物2A(200g,514mmol)的DCM(800mL)溶液中逐滴加入TMSOTf(137g,616mmol,111mL)。随后将混合物在25℃下搅拌3小时。TLC(二氯甲烷:甲醇=20:1)显示化合物2A(Rf=0.54)消耗完全且新点(Rf=0.24)形成。合并三次反应。将混合物冷却至0-15℃,在0-5℃下缓慢倒入NaHCO3的溶液(300g溶解在3.00L水)中,分离有机相并用DCM(1.00L x 3)萃取水相,合并有机层,用Na2SO4,干燥,过滤并真空浓缩。不经纯化,获得黄色油状的化合物2B(约507g)用于下一步骤。
1.4化合物3的制备
在0-10℃下向在DCM(1.00L)中的化合物2B(250g,759mmol)和化合物2(151g,531mmol)的混合物中逐滴加入TMSOTf(84.4g,380mmol,69.0mL)并将混合物在20℃搅拌12小时。TLC(二氯甲烷:甲醇=20:1)显示化合物2(Rf=0.33)消耗完全且形成新点(Rf=0.03)。将合并的反应物冷却至0-5℃,随后将反应物倒入NaHCO3(水溶液,100g溶于1L水)中并在5-10℃下搅拌10分钟,分离相。使用DCM(500mL x 2)萃取水相,合并的有机相用Na2SO4干燥,过滤,真空浓缩滤液。不经纯化,化合物3(约360g)为黄色油状。
1H NMR:(400MHz,DMSO).
δ=7.79-7.37(m,1H),7.35-7.26(m,5H),5.21-5.20(m,1H),5.00-4.95(m,3H),4.55-4.53(m,1H),4.03-3.86(m,3H),3.61-3.59(m,1H),3.59-3.57(m,1H),3.48-3.40(m,6H),3.39-3.31(m,2H),3.14-3.13(m,2H),2.09(s,3H),1.99(s,3H),1.88(s,3H),1.76-1.74(m,3H).
1.5中间体3-4(TFA盐)的制备
三次反应平行进行。
在氩气气氛下向在THF(1.80L)中的Pd/C(18.0g,16.3mmol,10%含量)的混合物中加入化合物3(180g,293mmol)和TFA(33.5g,293mmol,21.8mL)。对混悬液排气并使用氢气通气三次。在H2(50Psi)和30℃下将混合物搅拌2小时。LCMS(产物:RT=0.697min)显示化合物3消耗且检测到产物峰。合并三次反应。通过celite过滤混合物,减压浓缩滤液以除去溶剂。不经纯化,获得黄色固体状的中间体3-4(TFA盐)(393g,660mmol,74.8%产率,99.6%纯度,TFA)。
1H NMR:(400MHz,DMSO-d6)
δ=7.92(d,J=9.1Hz,4H),5.27-5.17(m,1H),5.03-4.91(m,1H),4.60-4.50(m,1H),4.09-3.97(m,4H),3.85(s,2H),3.65-3.46(m,10H),3.04-2.92(m,2H),2.10(s,3H),2.00(s,3H),1.94-1.86(m,3H),1.82-1.71(m,4H).
2.中间体3-5的制备
2.1化合物5的制备
在25℃下向化合物4B(10.0g,35.5mmol,1.00eq)和以上制备的化合物3-4(46.3g,78.2mmol,2.20eq,TFA)的DCM(1.00L)溶液中一次性加入DIEA(30.3g,234mmol,40.8mL,6.60eq)。25℃搅拌半小时。向混合物中加入HBTU(30.3g,234mmol,40.8mL,6.60eq)。25℃搅拌16小时。LCMS(产物:RT=0.681mins)显示反应完成,真空浓缩混合物。在20℃下向混合物中加入0.50N HCl(200mL x 2),并用DCM(3 x 500mL)萃取,合并有机层并用饱和NaHCO3(3 x 800mL)清洗直至pH=8,用盐水(3 x 500mL)清洗,用Na2SO4干燥并真空浓缩纯化。通过柱色谱(SiO2,DCM:MeOH=50:1-15:1)纯化残留物。在40℃下真空浓缩残留物并通过制备型-MPLC(柱:800g Agela C18;流动相:[水-ACN];15-45%25min;45%10min)纯化。真空干燥以获得黄色固体状的化合物5(约180g+75.0g+87.0g+40.0g+38.0g)。
417.0g的化合物3-4通过9批次被转换为化合物5。
2.2中间体3-3的制备
在氩气气氛下向Pd/C(3.00g,10%含量)的THF(300mL)中加入化合物5(73.0g,61.7mmol,1.00eq)和TFA(7.04g,61.7mmol,4.57mL,1.00eq)。对悬浮液脱气并使用氢气通气三次。在H2(20Psi)和20℃下搅拌16小时。TLC(二氯甲烷:甲醇=8:1,Rf=0.0)显示反应完成。通过celite过滤混合物,加压浓缩滤液以除去溶剂以获得白色固体状的化合物3-3(约33.4g+129g+75.0g)。
1H NMR:(400MHz,DMSO)
δ=8.53(t,J=5.2Hz,1H),8.18(d,J=2.4Hz,3H),8.03(t,J=5.2Hz,1H),7.84(dd,J=3.6Hz,2H),5.22(d,J=3.2Hz,2H),4.96(dd,J=3.2Hz,2H),4.55(d,J=8.4Hz,2H),4.02(t,J=8.8Hz,6H),3.77-3.59(m,5H),3.58-3.45(m,21H),3.40-3.20(m,4H),2.18(t,J=7.6Hz,2H),2.17(d,J=8.0Hz,6H),2.10(s,6H),1.99(s,6H),1.90-1.80(m,8H),1.77(s,6H).
3.化合物E7的制备
3.1化合物3的制备
在室温下将化合物1(2.00g,1.87mmol,根据上述中间体3-3的方法制备)溶解到DCM(20.0mL)中,向溶液中依次加入DIEA(0.135mL,0.814mmol),化合物2(0.550g,0.814mmol),置换3次氮气。反应混合物在25℃下搅拌16小时。液质联用检测到产物的MS响应,薄层色谱(二氯甲烷/甲醇=5/1)显示原料消失且有新点生成。反应液在减压下浓缩,所得的粗产品经柱层析纯化(二氯甲烷/甲醇=5/1)得到白色固体化合物3(约780mg)。
1H NMR(400MHz,CD3OD)
δ=7.28-7.42(m,5H),5.30-5.34(m,4H),5.04-5.14(m,6H),4.63-4.67(m,4H),4.36-4.44(m,2H),4.00-4.20(m,23H),3.91-3.95(m,4H),3.69-3.77(m,9H),3.52-3.67(m,32H),3.34-3.43(m,9H),2.29-2.31(m,4H),2.14(s,12H),2.03(s,12H),1.92-1.96(m,24H).LCMS:m/z=1221.6(M/2+H)+.
3.2化合物4的制备
在室温下将化合物3(1.10g,0.451mmol)溶解到MeOH(10.0mL)中,向该溶液中加入质量分数为10%的湿Pd/C(0.050g,0.451mmol),置换3次氢气,反应混合物在氢气氛围下(14.696psi)、25℃下搅拌18小时。液质联用检测到产物的MS响应,薄层色谱(二氯甲烷/甲醇=10/1,磷钼酸显色)显示原料已完全消耗且有新点生成。反应液过滤,滤液在减压下浓缩得到白色固体化合物4(约840mg)。
1H NMR(400MHz,CD3OD)
δ=5.32-5.34(m 4H),5.06-5.10(m,4H),4.63-4.65(m,4H),4.38-4.40(m,2H),3.99-4.20(m,20H),3.90-3.97(m,4H),3.69-3.76(m,6H),3.50-3.68(m,36H),3.35- 3.44(m,11H),2.28-2.38(m,4H),2.15(s,12H),2.03(s,12H),1.90-1.94(m,24H).LCMS:m/z=1154.7(M/2+H)+.
3.3化合物6的制备
在室温下将化合物5(232mg,0.364mmol)溶解到DCM(10.0mL)中,向溶液中依次加入HBTU(207mg,0.546mmol),DIEA(0.181mL,1.09mmol))和化合物4(840mg,0.364mmol),置换3次氮气。反应混合物在25℃下搅拌1小时。液质联用检测到原料消失,薄层色谱(二氯甲烷/甲醇=5/1)显示原料消失且有新点生成。反应液在减压下浓缩,所得的粗产品经柱层析纯化(二氯甲烷/甲醇=8/1~5/1)得到白色固体化合物6(约620mg)。
1H NMR(400MHz,CD3OD)
δ=7.41-7.43(m,2H),7.23-7.34(m,7H),6.83-6.90(m,4H),5.31-5.35(m,4H),5.01-5.12(m,4H),4.63-4.65(m,4H),4.41-4.45(m,2H),4.31-4.33(m,1H),3.99-4.22(m,22H),3.87-3.97(m,6H),3.58-3.81(m,45H),3.34-3.43(m,10H),2.19-2.40(m,10H),2.14(s,12H),2.02(s,12H),1.92-1.96(mz,24H),1.48-1.63(m,4H),1.28-1.38(m,8H).LCMS:m/z=1460.0(M/2+H)+.
4.化合物E7的制备
在室温下将化合物6(300mg,0.103mmol)溶解到DCM(10.0mL)中,向溶液中依次加入DIEA(0.102mL,0.618mmol),化合物7(10.3mg,0.103mmol)和DMAP(12.6mg,0.103mmol),置换3次氮气。反应混合物在25℃下搅拌2小时。液质联用检测到原料消失。反应液在减压下浓缩,所得的粗产品经制备型高效液相色谱制备(制备型-HPLC,柱:Waters Xbridge BEH C18 100*30mm*10um;流动相:水-ACN;B%:17%-57%,5min)分离得到白色固体化合物E7(53.0mg,收率17.08%,纯度78.94%)。
1H NMR(400MHz,CD3OD)
δ=7.41-7.45(m,2H),7.17-7.34(m,7H),6.85-6.89(m,4H),5.32-5.36(m,4H),5.03-5.13(m,4H),4.63-4.67(m,4H),4.38-4.47(m,2H),4.32-4.34(m,1H),4.01-4.26(m,22H),3.88-4.00(m,6H),3.77-3.81(m,7H),3.49-3.76(m,45H),3.33-3.47(m, 10H),2.56-2.62(m,2H),2.45-2.55(m,3H),2.21-2.38(m,7H),2.14(s,12H),2.05-2.11(m,2H),2.02(s,12H),1.92-1.96(m,24H),1.47-1.68(m,4H),1.28-1.34(m,8H)
MS:m/z=3022.36(M+H)+.
实施例2 siRNA的制备
使用本领域熟知的固相亚磷酰胺法制备本发明的siRNA。具体方法可参见例如PCT公开号WO2016081444和WO2019105419,并简述如下。
1.未连接配体的siRNA的制备
1.1正义链(SS链)的合成
通过固相亚磷酰胺合成法,利用空白的CPG固相载体作为起始循环,按照正义链核苷酸排布顺序自3‘-5’方向逐一连接核苷单体。每连接一个核苷单体都包含脱保护、偶联、盖帽、氧化或硫代四步反应。合成规模为5μmol的寡核酸合成条件如下:
核苷单体提供的是0.05mol/L的乙腈溶液,每一步反应的条件相同,即温度为25℃,脱保护使用3%的三氯乙酸-二氯甲烷溶液,脱保护3次;偶联反应使用的活化剂为0.25mol/L的ETT-乙腈溶液,偶联2次;盖帽使用10%醋酐-乙腈和吡啶/N-甲基咪唑/乙腈(10:14:76,v/v/v),盖帽2次;氧化使用0.05mol/L的碘/四氢呋喃/吡啶/水(70/20/10,v/v/v),氧化2次;硫代使用0.2mol/L PADS的乙腈/3-甲基吡啶(1/1,v/v),硫代2次。
1.2反义链(AS链)的合成
通过固相亚磷酰胺合成法,利用空白的CPG固相载体做为起始循环,按照反义链核苷酸排布顺序自3‘-5’方向逐一连接核苷单体。每连接一个核苷单体都包含了脱保护、偶联、盖帽、氧化或硫代四步反应,反义链的5μmol的寡核酸合成条件和正义链的相同。
1.3寡核苷酸的纯化与退火
1.3.1氨解
将合成好的固相载体(正义链或者反义链)加入到5mL的离心管中,加入3%的二乙胺/氨水(v/v),35℃(或者55℃)恒温水浴下反应16小时(或者8小时),过滤,固相载体用乙醇/水洗涤三次,每次1mL,滤液离心浓缩后粗品进行纯化。
1.3.2纯化
纯化和脱盐的方法是本领域人员所熟知的。例如,可采用强阴离子填料装柱,氯化钠-氢氧化钠体系进行洗脱纯化,产品收集并管,可采用凝胶填料纯化柱进行脱盐,洗脱体系是纯水。
1.3.3退火
将正义链(SS链)链与反义链(AS链)以摩尔比(SS链/AS链=1/1.05)混合,水浴锅加热至70-95℃,保持3-5min,自然冷却至室温,将体系冻干得到产品。最终获得双链DR000001至DR000400。
2.正义链与配体连接的siRNA的制备
2.1化合物E7与CPG载体的连接
将化合物E7(53mg,0.018mmol)和HBTU(13.3mg,0.035mmol)混合后加入乙腈(5mL)震荡溶解,随后加入DIEA(9.0mg,0.07mmol)和DMAP(2.1mg,0.018mmol)震荡溶解直至变得清澈。称取空白载体Resin(550mg,CPG孔径)加入到反应液中,控温20℃,摇床反应过夜。取样并监测,进行薄层色谱TLC,结果显示反应完全,其中展开剂为DCM/甲醇=4/1,用磷钼酸显色。使用砂芯漏斗进行过滤,滤饼用无水乙腈洗涤(20mL*5),取滤饼,使用油泵减压抽滤6h,得到类白色固体530mg。
将上述缩合后的产品530mg放于50mL的圆底瓶中,依次加入CapC(DMAP/乙腈),CapB(N-甲基咪唑/吡啶/乙腈),CapA(醋酐/乙腈),室温下摇床中过夜。过滤,并将获得的滤饼用乙腈洗涤,20mL*4),取滤饼,油泵减压抽滤8h后得到类白色固体200mg(GL6固相载体),用于固相合成。
2.2连接配体的正义链(SS链)的合成
通过固相亚磷酰胺合成法,利用上述制备的GL6固相载体做为起始循环,按照正义链核苷酸排布顺序自3‘-5’方向逐一连接核苷单体。每连接一个核苷单体都包含了脱保护、偶联、盖帽、氧化或硫代四步反应,合成规模为5μmol的寡核酸合成条件如下:
核苷单体提供的是0.05mol/L的乙腈溶液,每一步反应的条件相同,即温度为25度,脱保护使用3%的三氯乙酸-二氯甲烷溶液,脱保护3次;偶联反应使用的活化剂为0.25mol/L的ETT-乙腈溶液,偶联2次;盖帽使用10%醋酐-乙腈和吡啶/N-甲基咪唑/乙腈(10:14:76,v/v/v),盖帽2次;氧化使用0.05mol/L的碘/四氢呋喃/吡啶/水(70/20/10,v/v/v),氧化2次;硫代使用0.2mol/L PADS的乙腈/3-甲基吡啶(1/1,v/v),硫代2次。
2.3反义链(AS链)的合成
通过固相亚磷酰胺合成法,利用空白的CPG固相载体做为起始循环,按照反义链核苷酸排布顺序自3‘-5’方向逐一连接核苷单体。每连接一个核苷单体都包含了脱保护、偶联、盖帽、氧化或硫代四步反应,反义链的5μmol的寡核酸合成条件和正义链的相同。
2.4寡核苷酸的纯化与退火
2.4.1氨解
将合成好的固相载体(正义链或者反义链)加入到5mL的离心管中,加入3%的二乙胺/氨水(v/v),35℃(或者55℃)恒温水浴下反应16小时(或者8 小时),过滤,固相载体用乙醇/水洗涤三次,每次1mL,滤液离心浓缩后粗品进行纯化。
2.4.2纯化
纯化和脱盐的方法是本领域人员所熟知的。例如,可采用强阴离子填料装柱,氯化钠-氢氧化钠体系进行洗脱纯化,产品收集并管,采用凝胶填料纯化柱进行脱盐,洗脱体系是纯水。
2.4.3退火
将正义链(SS链)链与反义链(AS链)以摩尔比(SS链/AS链=1/1.05)混合,水浴锅加热至70-95℃,保持3-5min,自然冷却至室温,将体系冻干得到产品。
以相似的方法获得缀合有NAG37或L96的siRNA。
实施例3 Huh7细胞系活性筛选
细胞转染
第一天,消化Huh7细胞系(南京科佰,货号CBP60202)后重悬,计数,96孔板铺板,100μL/孔,1×104个细胞/孔,18h后进行转染操作。
第二天,20μM的实施例2制备的siRNA(DR000001至DR000400)母液用Opti-MEM稀释,取198μL Opti-MEM加入2μLsiRNA母液,吹吸混匀,待用。每次实验时,根据不同实验需求进行相应的稀释操作。
第二天,取14.1μL Opti-MEM稀释0.9μL RNAiMAX(Thermo,13778150),轻轻吹吸混匀,室温下静置5min。然后将配置好的RNAi-MAX混合液取15μL、稀释好的siRNA化合物15μL轻轻吹吸混匀,不要带入气泡,室温静置10min,加入96孔板,10μL/孔。37℃、5%CO2培养箱培养24h后提取RNA。
RNA提取
按照高通量细胞RNA提取试剂盒(凡知医疗,FG0412)的操作protocol使用核酸提取仪(杭州奥盛,Auto-pure96)进行细胞RNA提取。
RNA反转录
变性反应混合液配制,参考PrimeScriptTMII 1st Strand cDNA Synthesis Kit(Takara,6210B)。每孔中含有Oligo dT Primer 1μL,dNTP Mixture 1μL,模板RNA 12.5μL。在常规PCR仪中在65℃下孵育5min进行变性反应。将混合液置于冰上迅速冷却2min。
反转录反应液配制,参考PrimeScriptTMII 1st Strand cDNA Synthesis Kit(Takara,6210B)。每孔中含有5×Prime Script II Buffer 4μL,RNase Inhibitor 0.5μL,PrimeScript II RTase 1μL。
将变性后的反应液14.5μL与反转录反应液缓慢混匀,在常规PCR仪中在42℃孵育45min进行反转录,在95℃孵育5min使酶失活,4℃将反转录产物(cDNA)冷却。
反转录结束后,向每个孔的cDNA样品中加入DNase RNase-Free Distilled Water30μL。
荧光定量PCR
参考TaqManTMFast Advanced Master Mix(ABI,4444965)的操作流程,以20μL体系进行荧光定量PCR反应(ABI,QuantStudio3)。反应程序为:(50℃,2min)×1Cycle;(95℃,20s)×1Cycle;(95℃,1s;60℃,24s)×40Cycles。
表7引物信息
数据统计
计算2-△△Ct值并换算成百分比以得到剩余抑制率。
△△Ct=[(Ct实验组目的基因-Ct实验组内参)-(Ct对照组目的基因-Ct对照组内参)]。
siRNA的终浓度为10nM进行siRNA化合物细胞系活性高通量筛选,实验筛选结果如表8所示。
表8使用10nM的siRNA进行Huh7细胞系活性高通量筛选的结果
实施例4使用10倍梯度稀释的5个浓度的siRNA进行Hep3B细胞系活性筛选
与以上Huh7细胞系活性筛选相似,使用Hep3B(南京科佰,货号CBP60197)细胞系进行活性筛选。
siRNA(DR000001至DR000400)的起始浓度为10nM,10倍梯度稀释获得5个浓度点(10nM,1nM,0.1nM,0.01nM,0.001nM),进行siRNA的Hep3B细胞系活性筛选。筛选结果如表9所示。
表9使用5个浓度的siRNA进行Hep3B细胞系活性筛选的结果

实施例5使用3倍梯度稀释的11个浓度的siRNA进行Hep3B细胞系活性筛选
该实施例的步骤与实施例4相似。siRNA(DR000001至DR000400)的起始浓度为10nM,3倍梯度稀释获得11个浓度点(10nM,3.33nM,1.11nM,0.37nM,0.123nM,0.041nM,0.0136nM,0.0045nM,0.00152nM,0.000508nM,0.000169nM),进行siRNA的Hep3B细胞系活性筛选。筛选结果如表10所示。
表10使用11个浓度的siRNA进行Hep3B细胞系筛选的结果
实施例6使用3倍梯度稀释的11个浓度的siRNA进行Huh7细胞系活性筛选
该实施例的步骤与实施例3相似。选取Huh7细胞系,siRNA(DR000001至DR000400)起始浓度为10nM,3倍梯度稀释获得11个浓度点(10nM,3.33nM,1.11nM,0.37nM,0.123nM,0.041nM,0.0136nM,0.0045nM,0.00152nM,0.000508nM,0.000169nM),进行siRNA的Huh7细胞系活性筛选,实验筛选结果见下表。
表11使用11个浓度的siRNA进行Huh7细胞系筛选的结果

实施例7使用3倍梯度稀释的11个浓度的siRNA进行Hep3B细胞系活性筛选
该实施例的步骤与实施例5相似。选取Hep3B细胞系,siRNA(DR002222至DR02226、DR001478、DR002252、DR000344、DR000348、DR000277、DR000199、DR000060、DR001482)的起始浓度为10nM,3倍梯度稀释获得11个浓度点(10nM,3.33nM,1.11nM,0.37nM,0.123nM,0.041nM,0.0136nM,0.0045nM,0.00152nM,0.000508nM,0.000169nM),进行siRNA的Hep3B细胞系活性筛选。筛选结果如表12所示。
表12-1使用11个浓度的siRNA进行Hep3B细胞系筛选的结果
表12-2使用11个浓度的siRNA进行Hep3B细胞系筛选的结果
实施例8 psiCHECK2GSSM-5Hits脱靶活性筛选
质粒制备
根据siRNA序列设计相应的反义链脱靶质粒,由生工生物工程(上海)股份有限公司制备psiCHECK2GSSM-5Hits重组质粒,并将重组质粒稀释至1000ng/μL备用。
细胞转染
在96孔板的每个孔中,用100μL HEK293A细胞(南京科佰,货号CBP60436)重悬液铺板,8×103个细胞/孔。
第二天,首先将孔中的完全培养基吸弃,换成Opti-MEM培养基80μL/孔,饥饿处理大约1.5h。
siRNA配制:将siRNA从40nM终浓度开始3倍稀释,共11个浓度点(40nM,13.3nM,4.44nM,1.48nM,0.493nM,0.164nM,0.0548nM,0.0182nM,0.00609nM,0.00203nM,0.000677nM)。
质粒混合物的配制:单孔配制量为质粒0.01μL/孔,Opti-MEM 8.99μL/孔。
Lipo混合物的配制:每孔中加入Lipo 2000 0.2μL和Opti-MEM 9.8μL从而用Opti-MEM稀释Lipo 2000(LipofectamineTM2000转染试剂,Thermo,11668019)获得Lipo混合物,室温静置5min。
将已配制好的Lipo混合物22μL、siRNA 2.2μL、质粒混合物19.8μL,分别分装到对应的同一孔中,命名为well A混合物。吹打混匀后,在室温孵育20min后进行共转染。将well A混合物加入每孔细胞中,20μL/孔,加上原有80μL Opti-MEM,每孔终体积为100μL。37℃5%CO2培养箱培养4h后,每孔 补加100μL含20%胎牛血清的DMEM培养基。37℃5%CO2培养箱培养24h后检测。
结果检测
在实验前先将混合好的(Luciferase Assay System,Promega,E2940)进行复融,等平衡到室温后每管按1:1加入DMEM配制成底物I,现配现用。将Stop&Buffer进行复融,等平衡到室温后与Stop&100:1配制成底物II,现配现用。用真空泵吸去96孔培养板中原有的培养基。每孔加入150μL底物I,在摇床上室温孵育10min。取120μL底物I,转移到96孔酶标板上,在酶标仪(Tecan,Infinite 200)上读取Firefly化学发光值。再向每孔加入60μL底物II,在摇床上室温孵育10min,在酶标仪上读取Renilla化学发光值。
数据分析处理
荧光活性由酶标仪测定,收集得到的Renilla信号由Firefly信号标准均一化,siRNA的抑制效果由未经过处理的结果比较得出(剩余抑制活性),其计算过程见下:
均一化Ren/Fir比值:Ratio=Renilla(海肾荧光素酶)/Firefly(萤火虫荧光素酶)。
剩余抑制率=(RatiosiRNA/Ratiocontrol)*100%,取两个复孔的均值:其中Ratiocontrol为对照孔(不含siRNA)Ratio值(取两个复孔的均值)。
作图:利用Graphpad Prism作图
半数抑制浓度(Half maximal inhibitory concentration,IC50):本次实验以Top和Bottom作图,IC50值根据公式Y=Bottom+(Top-Bottom)/(1+10^((LogIC50-X)*HillSlope))求得,其中Y=50,X=log(浓度)。
siRNA的psiCHECK2GSSM-5Hits脱靶活性筛选结果如表13所示。
表13 psiCHECK2GSSM-5Hits脱靶活性筛选结果

实施例9人原代肝细胞(PHH细胞)活性筛选
细胞转染
取鼠尾胶原蛋白溶液(Sigma,C3867)1.4mL,加入40.6mL DNase RNase-Free Distilled Water中,混匀,96孔培养板中每孔加入40μL,4℃包被过夜,第二天去包被液。
第二天,使用前,包被的细胞板用DPBS润洗后吸去DPBS,将PHH细胞(上海轩一,货号QYLF-HPMC)37℃复苏,加入复苏培养基中,离心重悬并计数。将PHH细胞铺板在96孔板中,90μL/孔,2×104个细胞/孔;4h后更换完全培养基,18h后进行转染操作。
第三天,20μM的siRNA(DR002222、DR002223、DR002225、DR002226、DR001478以及DR002252)母液用Opti-MEM进行稀释,取198μL Opti-MEM加入2μLsiRNA母液,吹吸混匀,作为第1个浓度点,按照实际实验需要进行相应梯度稀释。
第三天,取14.1μL Opti-MEM稀释0.9μL RNAiMAX(Thermo,13778150),轻轻吹吸混匀,室温下静置5min。然后将配置好的RNAi-MAX混合液取15μL、稀释好的siRNA化合物15μL轻轻吹吸混匀,不要带入气泡,室温静置10min,加入96孔板,10μL/孔。37℃、5%CO2培养箱培养24h后提取RNA。
RNA提取
按照高通量细胞RNA提取试剂盒(凡知医疗,FG0412)的操作protocol使用核酸提取仪(杭州奥盛,Auto-pure96)进行细胞RNA提取。
RNA反转录
变性反应混合液配制,参考PrimeScriptTMII 1st Strand cDNA Synthesis Kit(Takara,6210B)。每孔中含有Oligo dT Primer 1μL,dNTP Mixture 1μL,模板RNA 12.5μL。在常规PCR仪中在65℃下孵育5min进行变性反应。将混合液置于冰上迅速冷却2min。
反转录反应液配制,参考PrimeScriptTMII 1st Strand cDNA Synthesis Kit(Takara,6210B)。每孔中含有5×Prime Script II Buffer 4μL,RNase Inhibitor 0.5μL,PrimeScript II RTase 1μL。
将变性后的反应液14.5μL与反转录反应液缓慢混匀,在常规PCR仪中在42℃孵育45min进行反转录,在95℃孵育5min使酶失活,4℃将反转录产物(cDNA)冷却。
反转录结束后,向每个孔的cDNA样品中加入DNase RNase-Free Distilled Water 30μL。
荧光定量PCR
参考TaqManTMFast Advanced Master Mix(ABI,4444965)的操作流程,以20μL体系进行荧光定量PCR反应(ABI,QuantStudio3)。反应程序为:(50℃,2min)×1Cycle;(95℃,20s)×1Cycle;(95℃,1s;60℃,24s)×40Cycles。
表14引物信息
数据统计
计算2-△△Ct值并换算成百分比以得到剩余抑制率。
△△Ct=[(Ct实验组目的基因-Ct实验组内参)-(Ct对照组目的基因-Ct对照组内参)]。
siRNA起始浓度为10nM,10倍梯度稀释,获得5个浓度点(10nM,1nM,0.1nM,0.01nM,0.001nM),进行siRNA的人肝原代细胞活性筛选,筛选结果如表15所示。
表15使用5个浓度的siRNA进行人原代肝细胞筛选的结果
实施例10小鼠HDI模型活性筛选
HDI动物造模
使用尾静脉高压注射的方法,将六至八周龄雌性Balb/c小鼠用双基因稳定转染系统进行体内转染造模,经由尾静脉,在5-7秒内通过27规格针头将含有不同质量比例的靶标基因cDNA序列的Piggy-Bac转座子质粒(购自苏州邦业)和Piggy-Bac辅助质粒(购自苏州邦业)(质量比为1:1,质粒总量50ug)的Delivery Solution(总体积为10%动物体重,Mirusbio-MIR 5240)注射至小鼠体内,注射后放回笼中观察30min。以造模日为第0天,在造模之后的各个时间点(Day7-Day35)获得血清用于检测SEAP表达水平。
双基因稳定转染系统,包括Piggy-Bac辅助质粒和Piggy-Bac转座子质粒,其中Piggy-Bac辅助质粒提供Piggy-Bac转座酶;Piggy-Bac转座子质粒以Piggy-Bac转座子为基础,含有双基因表达元件,该双基因表达元件含有分泌型碱性磷酸酶基因(SEAP)、目的基因(APOC3)。
检测SEAP表达
试剂盒(Phospha-LightTMSEAP报告基因检测系统,Invitrogen,T1016)标准品以15mU/mL为初始浓度进行2倍稀释,获得7个浓度点。
将CSPD substrate按1:20比例与Reaction Buffer Diluent混合成反应液。用DNase RNase-Free Distilled Water将5×Dilution Buffer稀释至1×Dilution Buffer。在离心管中将血清与1×Dilution Buffer混合成样本稀释液,将样本稀释液在65℃孵育30min,然后冷却至室温。将50μL样本稀释液加入96孔板中,然后每孔加入50μL Assay Buffer,室温孵育5min。每孔加入50μL反应液,室温孵育20min,在酶标仪(Tecan,Infinite 200)上读取SEAP化学发光值。
通过测量血清中的SEAP表达水平评价待测样品的预防和/或治疗效果。选择能够抑制SEAP表达水平的待测样品,作为核酸药物。
造模后在第15天,根据表16向各小鼠给予单次皮下施用:200μl含有3mg/kg(mpk)APOC3RNAi试剂(DR002222至DR002226、DR001478、DR002252)的生理盐水;或200μl不含APOC3RNAi试剂的生理盐水用作对照。HDI模型筛选结果如表17-1和表17-2所示。
表16小鼠单次皮下施用RNAi试剂剂量
表17-1 HDI稳转质粒小鼠模型的实验结果
表17-2 HDI稳转质粒小鼠模型的实验结果

实施例11猴原代肝细胞(PCH细胞)活性筛选
细胞转染
取96孔细胞培养板每孔加入100μL Coating Medium,37℃包被30min,结束后吸去Coating Medium。
37℃复苏猴原代肝细胞(PCH,来源于妙顺(上海)生物科技有限公司),用Thawing Medium重悬细胞,离心计数,96孔板铺板,90μL/孔,2×104cells/孔。
siRNA化合物稀释:20μM的siRNA化合物母液用Opti-MEM进行稀释,取198μL Opti-MEM加入2μL化合物母液,吹吸混匀,作为第1个浓度点,按照实验实际需求进行相应稀释操作。
转染流程:取14.1μL Opti-MEM稀释0.9μL RNAiMAX(Thermo,13778150),轻轻吹吸混匀,室温下静置5min。然后将配置好的RNAi-MAX混合液取15μL、稀释好的化合物15μL轻轻吹吸混匀,不要带入气泡,室温静置10min,加入96孔板,10μL/孔。37℃、5%CO2培养箱培养4h后换Culture Medium,第二天提取RNA。
RNA提取
按照高通量细胞RNA提取试剂盒(凡知医疗,FG0412)的操作protocol使用核酸提取仪(杭州奥盛,Auto-pure96)进行细胞RNA提取。
RNA反转录
变性反应混合液配制,参考PrimeScriptTMII 1st Strand cDNA Synthesis Kit(Takara,6210B)单孔配制体积:Oligo dT Primer 1μL,dNTP Mixture 1μL,模板RNA 12.5μL,常规PCR仪中65℃,5min后,冰上迅速冷却2min。反转录反应液配制,参考PrimeScriptTMII 1st Strand cDNA Synthesis Kit(Takara,6210B)单孔配制体积:5×Prime Script II Buffer 4μL,RNase Inhibitor 0.5μL,PrimeScript II RTase 1μL,上一步变性后反应液14.5μL,缓慢混匀,常规PCR仪42℃孵育45min进行反转录,95℃孵育5min使酶失活,4℃将反转录产物(cDNA)冷却。
反转结束后,向cDNA样品各孔补DNase RNase-Free Distilled Water 30μL
荧光定量PCR
参考TaqManTMFast Advanced Master Mix(ABI,4444965)20μL体系进行荧光定量PCR反应(ABI,QuantStudio3),反应程序为:(50℃,2min)×1Cycle;(95℃,20s)×1Cycle;(95℃,1s;60℃,24s)×40Cycles。
表18引物信息

数据统计
计算2-△△Ct值并换算成百分比以得到剩余抑制率。
△△Ct=[(Ct实验组目的基因-Ct实验组内参)-(Ct对照组目的基因-Ct对照组内参)]。
选择siRNA化合物起始浓度为10nM,3倍梯度稀释11浓度点(10nM,3.33nM,1.11nM,0.37nM,0.123nM,0.041nM,0.0136nM,0.0045nM,0.00152nM,0.000508nM,0.000169nM)进行siRNA化合物细胞活性筛选,实验筛选结果见表19。
表19 PCH细胞活性11点IC50筛选实验结果

实施例12小鼠HDI模型活性筛选
根据实施例10的实验方法,本次实验选取六至八周龄雌性Balb/c小鼠进行HDI模型构建和给药检测。选择Piggy-Bac辅助质粒和Piggy-Bac转座子重组质粒质量比为1:1,质粒总量50ug造模。造模后在第14天,取血清后盲选分组(N=6)根据表18,向各小鼠给予单次皮下施用:200μl含有3mg/kg(mpk)Apoc3 RNAi试剂的生理盐水;或200μl不含Apoc3 RNAi试剂的生理盐水用作对照。HDI模型实验筛选结果见表20。
表20 RNAi试剂在HDI稳转质粒小鼠模型的实验结果

ND:未检测
实施例13 hAPOC3转基因小鼠模型上的药效验证
将hAPOC3转基因小鼠(B6-hAPOC3-Tg,T055510,雄性,6~8周,GemPharmatech)检测甘油三酯(TG)、低密度脂蛋白胆固醇(LDL-c)、高密度脂蛋白胆固醇(HDL-c)、总胆固醇(TC);根据TG水平随机将小鼠分5组,每组5只动物,每只动物根据体重计算给药剂量,采用皮下注射方式单次给药,siRNA缀合物以3mg/mL的溶液(0.9%氯化钠水溶液作为溶剂)给药;在实验前,用0.9%氯化钠水溶液将siRNA缀合物溶解且定容至所需溶液浓度和体积,生理盐水和siRNA缀合物的给药体积为5mL/kg。
分别于给药前(记为第-3天)取血检测,以Day-3的TG水平进行分组;给药(记为第0天)后第7、14、28、42、56和70天对小鼠眼眶静脉丛取血(每次取血前均进行饥饿处理5小时),离心取血清检测测试TG、LDL-c、TC和用于ELISA方法检测目的蛋白(Human APOC3ELISA Kit,Abcam,ab154131),实验结果见表21-24。
表21 hAPOC3转基因小鼠模型上的药效实验结果-TG抑制率
表22 hAPOC3转基因小鼠模型上的药效实验结果-TC抑制率
表23 hAPOC3转基因小鼠模型上的药效实验结果-LDL-c抑制率
表24 hAPOC3转基因小鼠模型上的药效实验结果-Apoc3蛋白抑制率
实施例14 psiCHECK2GSSM-5Hits脱靶活性筛选
参考实施例8,本次实验选取HEK293A细胞系,选择siRNA化合物起始浓度为40nM,3倍梯度稀释11浓度点(40nM,13.3nM,4.44nM,1.48nM,0.493nM,0.164nM,0.0548nM,0.0182nM,0.00609nM,0.00203nM,0.000677nM)进行siRNA化合物psiCHECK2GSSM-5Hits脱靶活性筛选,实验筛选结果见表25。
表25 psiCHECK2GSSM-5Hits脱靶活性筛选实验结果
实施例15化合物E2的制备
1.化合物2b的制备
室温条件下,将化合物2a(38.0g,231mmol),TsNHBoc(75.4g,278mmol),K2CO3(6.40g,46.3mmol),TEBA(5.27g,23.1mmol)加入到三口瓶中。在95℃下反应2小时,随后降温到25℃,TLC(PE/EA=2/1,UV 254nm)显示反应完成,反应液加水(500mL)稀释,二氯甲烷(200mL x 3)萃取,有机相减压浓缩,粗产品柱分离纯化(PE/EA=10/1-3/1)得到标题化合物2b(40.0g)。
1H NMR(400MHz,CDCl3)δ7.72(d,J=8.4Hz,2H),7.28-7.39(m,7H),4.72-4.86(m,2H),4.42-4.56(m,2H),3.52-3.61m,2H),3.14-3.39(m,2H),2.43(s,3H),1.47(s,9H)
2.化合物2d的制备
将化合物2b(79.0g,181mmol),化合物2c(24.7g,150.8mmol),碳酸钾(4.21g,30.5mmol),TEBA(3.47g,15.2mmol),95℃反应3小时。TLC(PE/EA=2/1,UV 254nm)显示反应完成,反应液加水(500mL)稀释,二氯甲烷(200mL x 3)萃取,有机相减压浓缩,粗产品柱分离纯化(PE/EA=10/1-3/1)得到化合物2d(40.0g,收率43.8%)。
1H NMR(400MHz,CDCl3)δ7.64-7.77(m,2H),7.27-7.38(m,13H),5.05-5.16(m,1H),4.50-4.59(m,4H),4.03-4.11(m,1H),3.62-3.76(m,2H),3.44-3.58(m,3H),3.25-3.33(m,2H),3.15-3.20(m,1H),2.42(s,3H),1.46(s,9H)
3.化合物2e的制备
冰水浴条件下,将化合物2d(77.0g,128mmol),三乙胺(28.6mL,205mmol),依次加入到二氯甲烷(800mL)中,缓慢滴加甲基磺酰氯(24.2g,212mmol)。在25℃下反应2小时,LCMS显示反应完成。反应液加入水(800mL)洗涤,有机相减压浓缩得到粗品化合物2e(90.0g)。
m/z:ES+[M+Na]+700.1
1H NMR(400MHz,CDCl3)δ7.68(d,J=8.4Hz,2H),7.28-7.39(m,12H),5.10-5.20(m,1H),4.93-5.02(m,1H),4.52-4.61(m,4H),3.72-3.88(m,2H),3.52-3.67(m,4H),3.27-3.36(m,1H),3.15-3.22(m,1H),3.04(s,3H),2.43(s,3H),1.43(s,9H).
4.化合物2f的制备
室温条件下,将化合物2e(90.0g,133mmol),碳酸钾(91.8g,664mmol)加入到甲醇(900mL)中。在66℃下反应2小时,TLC(PE/EA=2/1,UV 254nm)显示有新点生成,有机相减压浓缩,反应液加水(200mL)稀释,二氯甲烷(200mL x 3)萃取,有机相减 压浓缩,粗产品柱分离纯化(PE/EA=30/1-2/1)得到化合物2f(64.0g,收率99.9%)。
1H NMR(400MHz,CDCl3)δ7.62(d,J=8.4Hz,2H),7.27-7.39(m,12H),4.48-4.62(m,4H),3.93-4.08(m,2H),3.55-3.69(m,4H),2.84-3.10(m,4H),2.44(s,3H)
5.化合物2g的制备
室温条件下,将化合物2f(69.0g,143mmol),镁屑(54.7g,2.28mol)加入到甲醇(400mL)中,在66℃下反应1小时。TLC(DCM/MeOH=10/1,UV 254nm)显示原料反应完全且有新点生成。反应液加水(3000mL)和饱和氯化铵水溶液(3000mL)稀释,二氯甲烷萃取(1000mL x3),有机相使用饱和碳酸氢钠(300mL X 3)洗涤,有机相减压浓缩得到粗品化合物2g(32.0g)。
1H NMR(400MHz,CDCl3)δ7.27-7.40(m,10H),4.57(s,4H),3.90-4.00(m,2H),3.59-3.69(m,4H),2.77-3.04(m,4H)
6.化合物2h的制备
室温条件下,将化合物2g(3.00g,9.16mmol),化合物1b(1.90mL,18.3mmol),醋酸(1.01mL,18.3mmol)加入到甲醇(30mL)中。在25℃下反应18小时,随后加入氰基硼氢化钠(2.30g,36.7mmol),50℃下反应4小时,TLC(DCM/MeOH=10/1)显示有新点生成。反应液加水(50mL)稀释,二氯甲烷萃取(30mL x3),有机相减压浓缩。粗产品通过柱层析纯化(二氯甲烷/甲醇=99/1-5/1)得到化合物2h(3.00g,收率79.9%)。
1H NMR(400MHz,CDCl3)δ7.28-7.41(m,10H),4.51-4.71(m,4H),4.00-4.35(m,2H),3.49-3.77(m,4H),2.69-2.98(m,2H),1.63-2.12(m,7H),1.16-1.44(m,6H)
7.化合物2i的制备
室温条件下,将化合物2h(3.00g,7.32mmol)加入到浓盐酸(10mL,12M)中,50℃下反应18小时,TLC(DCM/MeOH=10/1)显示有新点生成,反应液减压浓缩得到粗品化合物2i(2.00g)。
1H NMR(400MHz,CD3OD)δ4.27-4.38(m,1H),4.11-4.20(m,1H),3.96-4.04(m,2H),3.60-3.68(m,3H),3.36-3.43(m,1H),3.19-3.29(m,2H),3.11(s,1H),2.02-2.17(m,2H),1.90-2.00(m,2H),1.69-1.78(m,1H),1.57-1.69(m,1H),1.35-1.52(m,3H),1.20-1.31(m,1H)
8.化合物2j的制备
室温下,将化合物2i(2.00g,8.72mmol)溶解到吡啶(40mL)中,再加入DMTrCl(2.96g,8.72mmol),25℃反应18小时,TLC(PE/EA=1/1,UV 254nm)显示反应完成。反应液减压浓缩,加饱和氯化铵水溶液(200mL),DCM(100mLx3)萃取,有机相减压浓缩,粗产品通过柱层析纯化(二氯甲烷/甲醇=99/1-10/1)得到化合物2j(1.40g,收率30.2%)。
9.化合物E2的制备
将化合物2j(660mg,1.24mmol),化合物1h(374mg,1.24mmol),DCI(73.3mg,0.621mmol)加入到DCM(10mL),25℃反应1小时,TLC(PE/EA=5/1,PMA)显示原料反应完全。加入饱和碳酸氢钠(50mL),DCM(30mL x 3)萃取,有机相减压浓缩,粗品柱分离(PE/EA=99/1-30/1)得到化合物E2(350mg,收率19.3%)。
m/z:ES+[M+H]+732.2
1H NMR(400MHz,CDCl3)δ7.40-7.50(m,2H),7.28-7.37(m,6H),7.21(d,J=7.2Hz,1H),6.77-6.89(m,4H),3.67-4.07(m,11H),3.56-3.66(m,2H),3.04-3.33(m,2H),2.30-2.96(m,6H),2.10-2.28(m,1H),1.63-1.88(m,4H),1.47-1.52(m,1H),1.24-1.31(m,3H),1.15-1.23(m,12H),1.11-1.14(m,1H)
实施例16化合物E1-1的制备
1.化合物1b的制备
将化合物1a(200g,1.33mol,1.00eq)悬浮于无水丙酮(1.00L)与无水甲醇(1.00L)的混合溶液中,逐滴加入浓硫酸(20.0mL,0.27eq),在25℃反应24小时。反应液用饱和碳酸氢钠中和,浓缩后,得到的残渣用乙酸乙酯溶解,用饱和食盐水(500mL)洗涤三次。有机相用无水硫酸钠干燥,浓缩,得到化合物1b(242g,88.9%)。
1H NMR:400MHz CDCl3δ4.97(s,1H),4.84(d,J=6.0Hz,1H),4.59(d,J=6.0Hz,1H),4.44-4.43(m,1H),3.72-3.59(m,2H),3.44(s,3H),1.49(s,3H),1.32(s,3H).
2.化合物1c的制备
将化合物1b(310g,1.52mol,1.00eq),咪唑(206g,3.02mol,2.00eq),三苯基膦(476g,1.82mol,1.20eq)溶于甲苯(2.1L),室温分批加入碘单质(446g,1.76mmol,1.16eq)。加完升温到70℃搅拌1.5小时。TLC表明反应完全。向反应液中加入甲醇(60mL)进行淬灭,然后降温,加入饱和硫代硫酸钠水溶液(2.1L),分液收集有机相,用饱和食盐水(1.5L)洗涤两次,用无水硫酸钠干燥,过滤浓缩,得到的残渣用甲基叔丁基醚打浆过滤,滤液浓缩所得粗品用硅胶柱层析纯化(洗脱液:石油醚/乙酸乙酯)得到化合物1c(401g,1.27mol,91.1%)。
1H NMR:400MHz CDCl3δ4.98(s,1H),4.69(d,J=6.0Hz,1H),4.56(d,J=6.0Hz,1H),4.39-4.35(m,1H),3.30(s,3H),3.24-3.20(m,1H),3.09(t,J=10.0Hz,1H),1.41(s,3H),1.26(s,3H).
3.化合物1d的制备
将化合物1c(203g,646mmol,1.00eq)溶于四氢呋喃(2.03L),在0℃分批加入叔丁醇钾(145g,1.29mol,1.29eq)。在25℃搅拌16小时。降温至5℃用冰水
(1.1L)淬灭,甲基叔丁基醚萃取(2.0L),饱和食盐水洗涤(2.0L),无水硫酸钠干燥、过滤、浓缩。粗品硅胶柱层析纯化(洗脱液:石油醚/乙酸乙酯)得到化合物1d(160g,91.3%)。
1H NMR:400MHz CDCl3δ5.11(s,1H),5.02(d,J=5.6Hz,1H),4.06(d,J=1.6Hz,1H),4.50(d,J=5.6Hz,1H),4.39(d,J=1.6Hz,1H),3.41(s,3H),3.24-3.20(m,1H),3.09(t,J=10.0Hz,1H),1.47(s,3H),1.35(s,3H).
4.化合物1e的制备
将锌铜试剂(90.0g,1.37mol,5.50eq)分散到乙醚(200mL)中,在25℃加入化合物1d(60g,241mmol,1.00eq),逐滴加入三氯乙酰氯(61.5g,338mmol,1.40eq)的乙醚(200mL)溶液,并继续搅拌1小时。过滤,用甲基叔丁基醚(500mL)冲洗滤饼,滤液倒入饱和碳酸氢钠水溶液(2.50L)中,过滤,滤液用饱和食盐水(500mL)洗涤三次,无水硫酸钠干燥、过滤、浓缩得到粗品化合物1e(71.8g)。
1H NMR:400MHz CDCl3δ5.12(d,J=5.6Hz,1H),5.09(s,1H),4.70(d,J=6.0Hz,1H),3.70-3.55(m,2H),3.54(s,3H),1.45(s,3H),1.36(s,3H).
5.化合物1f的制备
将化合物1e(71.8g,242mmol,1.00eq)溶于四氢呋喃(1.60L),加入冰醋酸(69.1mL,1.20mol,5.00eq),分批加入锌粉(142g,2.17mol,9.00eq)。25℃搅拌18小时。反应完毕后过滤,滤液浓缩得到粗品,用甲基叔丁基醚溶解后,倒入饱和碳酸氢钠水溶液(2.0L)中,过滤,滤液用饱和食盐水洗涤(500mL)两次,用无水硫酸钠干燥、过滤、浓缩,粗品用硅胶柱层析纯化(洗脱液:石油醚/乙酸乙酯/二氯甲烷)得到化合物1f(31g,两步收率56.3%)。
1H NMR:400MHz CDCl3δ4.97(s,1H),4.70-4.67(m,2H),3.54-3.48(m,2H),3.37-3.31(m,4H),3.16-3.10(m,1H),3.09-3.03(m,1H),1.43(s,3H),1.34(s,3H).
6.化合物1g的制备
将化合物1f(50g,219mmol,1.00eq)和亚磷酸二乙酯(33.2g,240mmol,1.20eq)溶于二氯甲烷(100mL)中,在0℃加入1,8-二氮杂二环十一碳-7-烯(DBU,6.67g,43.8mmol,0.20eq),25℃搅拌18小时。反应液用饱和NH4Cl(100mL)洗涤三次,饱和食盐水(100mL)洗涤一次,无水硫酸钠干燥,浓缩,粗品经硅胶柱层析纯化(洗脱液:石油醚/二氯甲烷)得到化合物1g(70g,87.2%)
1H NMR:400MHz CDCl3δ5.27(s,1H),5.01(brs,1H),4.78(s,1H),4.65(d,J=5.6Hz,1H),4.49(d,J=6.0Hz,1H),4.20-4.05(m,5H),3.31(s,1H),3.29-3.05(m,1H),2.75-2.68(m,1H),2.50-2.40(m,1H),2.35-2.25(m,1H),1.36-1.25(m,12H).
7.化合物1h的制备
将化合物1g(80.2g,219mmol,1.00eq)、DMAP(40.1g,328mmol,1.50eq)溶于乙腈(562mL),在5℃加入草酰氯单甲酯(40.2g,328mmol,1.50eq)。25℃搅拌半小时。将反应液浓缩,粗品用乙酸乙酯溶解,用饱和氯化铵(300mL)洗涤五次,水(200mL)洗涤一次,食盐水(200mL)洗涤一次,用无水硫酸钠干燥、过滤、浓缩得到粗品化合物1h(99g)。
1H NMR:400MHz CDCl3δ4.88-4.80(m,2H),4.67-4.53(m,2H),4.24-4.12(m,4H),3.89(s,3H),3.51-3.43(m,1H),3.35-3.33(m,3H),3.15-3.07(m,1H),2.92-2.80(m,1H),2.69-2.61(m,1H),1.39-1.29(m,12H).
8.化合物1i的制备
将化合物1h(99g,218mmol,1.00eq)溶于无水甲苯(1.00L),加入三正丁基锡氢(76.4g,262mmol,1.20eq)和偶氮二异丁腈(AIBN,1.08g,6.56mmol,0.03eq)。回流2小时。将反应液浓缩,粗品用硅胶柱层析纯化(洗脱液:石油醚/乙酸乙酯)得到粗品化合物1i(146g)。
1H NMR:400MHz CDCl3δ4.75-4.49(m,3H),4.05-3.95(m,4H),3.26-3.24(m,3H),2.76-2.07(m,5H),1.39-1.29(m,12H).
9.化合物1j的制备
将化合物1i(141g,201mmol,1.00eq)溶于甲醇(1.41L)中,加入HCl(704mL,1.40mol,2M,7.00eq)水溶液,反应液于60℃搅拌1小时。反应液用甲基叔丁基醚/石油醚混合液萃取。取水相,用饱和碳酸氢钠调节pH到8,将水相浓缩,向所得残留物中加入四氢呋喃并过滤,滤液浓缩得到粗品化合物1j(62.4g,201mmol)。
10.化合物1k的制备
将化合物1j(62.4g,201mmol,1.00eq)溶于吡啶(300mL),加入乙酸酐(47.4mL,502mmol,2.50eq),25℃搅拌12小时。反应液用饱和碳酸氢钠(1.00L)稀释,用乙酸乙酯(600mL)萃取两次,用无水硫酸钠干燥,过滤、浓缩。粗品用硅胶柱层析纯化(洗脱液:石油醚/乙酸乙酯)得到化合物1k(74g,93.3%)。
1H NMR:400MHz CDCl3δ5.38-5.10(m,3H),4.07-4.03(m,4H),3.36-3.32(m,3H),2.41-2.05(m,5H),2.04-1.98(m,9H),1.27-1.23(m,6H).
11.化合物1l的制备
将化合物1k(79.3g,201mmol,1.00eq)溶于乙酸乙酯(476mL),加入乙酸酐(62.6mL,663mmol,3.30eq)和浓硫酸(5.38mL,100mmol,0.50eq)。25℃搅拌3小时。反应液用饱和碳酸氢钠水溶液中和,用乙酸乙酯萃取(1.00L)两次,合并有机相,用饱和食盐水洗涤(500mL)洗涤两次,用无水硫酸钠干燥、过滤、浓缩。粗品用硅胶柱层析纯化得到化合物1l(43g,50.6%)。
1H NMR:400MHz CDCl3δ6.11(d,J=2.8Hz,1H),5.44-5.39(m,1H),5.33-5.32(m,1H),4.10-4.05(m,5H),2.80-2.35(m,4H),2.12-2.02(m,9H),1.32-1.23(m,6H).
12.化合物1n的制备
将化合物1m(8.55g,76.2mmol,2.30eq)和双(三甲基硅基)乙酰胺(BSA,34.3g,169mmol,5.10eq)悬浮于乙腈(200mL)中,85℃搅拌1小时。降温后加入化合物1l(14.0g,33.1mmol,1.00eq)的乙腈溶液(50.0mL),再加入四氯化锡(37.1g,142mmol,4.30eq。将混合液在25℃搅拌15分钟后85℃油浴搅拌45分钟。降温后,将反应液倒入饱和碳酸氢钠水溶液(1.50L),用二氯甲烷萃取(700mL)三次,合并有机相,用饱和食盐水(500mL)洗涤,用无水硫酸钠干燥、过滤、浓缩。粗品用硅胶柱层析纯化(洗脱液:二氯甲烷/甲醇)得到化合物1n(14.4g,84.3%)。
1H NMR:400MHz CDCl3δ9.70(brs,0.46H),9.60(brs,0.60H),7.17(d,J=8.0Hz,0.60H),7.12(d,J=8.0Hz,0.49H),5.98(d,J=6.4Hz,0.43H),5.93(d,J=5.2Hz,0.55H), 5.78(dt,J1=8.0Hz,J2=2.0Hz,1H),5.50-5.45(m,2H),4.45-4.02(m,5H),2.77-2.42(m,6H),2.18(s,1.22H),2.16(s,1.74H),2.04(s,1.31H),2.02(s,1.67H),1.32-1.28(m,6H).
13.化合物1o的制备
将化合物1n(8.30g,17.4mmol,1.00eq)溶于DMF(40.0mL),加入DBU(2.93g,19.2mmol,1.10eq),降温后加入苄氧甲基氯(BOMCl,3.01g,19.2mmol,1.10eq)。混合液在0~5℃下搅拌2.5小时。反应液用饱和氯化铵(160mL)稀释,用二氯甲烷(80.0mL)萃取两次,合并有机相用饱和食盐水(80mL)洗涤,用无水硫酸钠干燥、过滤、浓缩。粗品用硅胶柱层析纯化(洗脱液:二氯甲烷/甲醇)得到化合物1o(12.0g,92.3%)。
1H NMR:400MHz CDCl3δ7.36-7.24(m,5H),7.15-7.09(m,1H),5.96-5.92(m,1H),5.81-5.79(m,1H),5.52-5.42(m,4H),4.67(s,2H),4.15-4.05(m,4H),2.80-2.45(m,5H),2.19-2.17(m,3H),2.05-2.03(m,3H),1.34-1.30(m,6H).
14.化合物1p的制备
将化合物1o(10.4g,17.4mmol,1.00eq)溶于氨甲醇溶液(29.9mL,7M),21℃搅拌1小时。反应液浓缩得到粗品,经硅胶柱层析纯化(洗脱液二氯甲烷/甲醇)得到化合物1p(8.00g,62.7%)。
1H NMR:400MHz CDCl3δ7.34-7.06(m,5H),5.83(s,0.52H),5.71(d,J=8.4Hz,0.41H),5.661(d,J=8.4Hz,0.53H),5.60(d,J=2.0Hz,0.59H),5.53(d,J=5.2Hz,0.41H),5.42-5.36(m,2H),4.62(s,2H),4.51(d,J=3.6Hz,0.45H),3.72(d,J=2.8Hz,0.36H),3.54(d,J=2.0Hz,0.48H),2.93-2.40(m,5H),2.24-2.13(m,1H),1.27-1.23(m,6H).
15.化合物1q的制备
将化合物1p(1g,1.95mmol,1.00eq)溶于丙酮(19.6mL),加入氧化银(3.63g,15.6mmol,10.0eq)和碘甲烷(1.22mL,19.5mmol,10.0eq),在25℃搅拌24小时。反应液过滤、浓缩得到粗品化合物1q(1.36g)。
1H NMR:400MHz CDCl3δ5.11(s,1H),5.02(d,J=5.6Hz,1H),4.06(d,J=1.6Hz,1H),4.50(d,J=5.6Hz,1H),4.39(d,J=1.6Hz,1H),3.41(s,3H),3.24-3.20(m,1H),3.09(t,J=10.0Hz,1H),1.47(s,3H),1.35(s,3H).
16.化合物1q-1和1q-2的制备
将粗品化合物1q(10.9g,20.7mmol,1.00eq)用C18反相柱层析纯化(碳酸氢铵水溶液/乙腈)纯化,得到化合物1q-1(1.50g,11.5%)和化合物1q-2(1.50g,11.5%)。
化合物1q-1:
m/z:ES+[M+H]+525.2
HPLC:保留时间0.820min(Column:XBridge C18 2.1*50mm,5um;Mobile phase:A:10mM NH4HCO3aqueous solution B:Acetonitrile;Gradient:0-0.01min 5%B,0.01-0.7min 5-95%B,0.7-1.16min 95%B,1.16-1.5min,95%-5%B;Flow rate:1.5mL/min;Column temp.:40℃)
1H NMR:400MHz CDCl3δ7.37-7.08(m,5H),7.09(d,J=8.0Hz,1H),5.76-5.74(m,2H),5.49-5.44(m,2H),4.73-4.67(m,2H),4.15-4.06(m,4H),4.02(d,J=4.8Hz,1H),3.87-3.85(m,1H),3.56(s,3H),2.81-2.64(m,2H),2.50-2.39(m,2H),2.36-2.27(m,1H),1.34-1.30(m,6H).
化合物1q-2:
m/z:ES+[M+H]+525.2
HPLC:保留时间0.836min(Column:XBridge C18 2.1*50mm,5um;Mobile phase:A:10mM NH4HCO3aqueous solution B:Acetonitrile;Gradient:0-0.01min 5%B,0.01-0.7min 5-95%B,0.7-1.16min 95%B,1.16-1.5min,95%-5%B;Flow rate:1.5mL/min;Column temp.:40℃)
1H NMR:400MHz CDCl3δ7.37-7.27(m,5H),7.08(d,J=8.0Hz,1H),5.75-5.73(m,2H),5.50-5.45(m,2H),4.73-4.67(m,2H),4.18-4.08(m,4H),4.06(d,J=4.8Hz,1H),3.88-3.86(m,1H),3.56(s,3H),3.06-2.95(m,1H),2.83-2.41(m,5H),1.34-1.31(m,6H).
17.化合物1r-1的制备
将化合物1q-1(1.00g,1.90mmol,1.00eq)溶于无水二氯甲烷DCM(20.0
mL),降温至-60℃。加入三氯化硼(7.62mL,7.62mmol,1M二氯甲烷溶液,4.00 eq),在-20℃搅拌1小时。将反应液用无水乙醇(10.0mL)淬灭,用浓氨水中和至pH约为7,浓缩。粗品加入二氯甲烷和乙醇的混合溶液并过滤,滤液浓缩,所得残留物经C18反相柱层析纯化(碳酸氢铵水溶液/乙腈)纯化,得到化合物1r-1(400mg,51.9%)。
m/z:ES+[M+H]+405.3
1H NMR:400MHz CDCl3δ8.51-8.43(m,1H),7.15(d,J=8.4Hz,1H),5.78(d,J=3.2Hz,1H),5.76(dd,J1=8.0Hz,J2=2.4Hz,1H),4.16-4.07(m,5H),3.94(dd,J1=4.8Hz,J2=3.2Hz,1H),3.55(s,3H),2.96-2.94(m,1H),2.79-2.66(m,2H),2.52-2.41(m,2H),2.35-2.26(m,1H),1.34-1.31(m,6H).
18.化合物E1-1的制备
将化合物1r-1(500mg,1.23mmol,1.00eq)溶于二氯甲烷(5.00mL),加入化合物1s(0.59mL,1.85mmol,1.50eq),降温至0℃后加入4,5-二氰基咪唑(160mg,1.36mmol,1.10eq),15℃搅拌4小时。将反应液用饱和碳酸氢钠淬灭(10.0mL),用二氯甲烷萃取(10.0mL)两次。浓缩得到粗品,经硅胶柱层析纯化(洗脱液:二氯甲烷/丙酮)得到化合物E1-1(530mg,70.9%)。
1H NMR:400MHz CDCl3δ9.17(brs,1H),7.24(d,J=8.4Hz,1H),5.83-5.79(m,1H),5.64-5.61(m,1H),4.43-4.33(m,1H),4.09-3.62(m,9H),3.43-3.38(m,3H),2.86-2.66(m,3H),2.57-2.21(m,4H),1.28-1.18(m,18H).
实施例17化合物E1的制备
1.化合物2的制备
在25℃下将化合物1(50.0g,263mmol)溶于DCM(800mL),再依次加入咪唑(26.9g,394mmol)和TBDPSCl(75.2mL,289mmol),反应液在25℃下搅拌18小时。薄层色谱(DCM/MeOH=10/1,PE/EA=3/1)显示反应物消耗完全且有新点生成。将反应液旋干得到粗品,粗品进行MPLC(PE/EA=1/0-5/1)纯化得到无色油状液体化合物2(95.0g,收率84.31%)。
1H NMR(400MHz,CDCl3)δ7.70(dd,J=7.6,1.6Hz,4H),7.35-7.46(m,6H),5.86(d,J=3.6Hz,1H),4.61(dd,J=4.8,4.0Hz,1H),4.15(td,J=8.8,5.2Hz,1H),3.93-4.01(m,1H),3.81-3.92(m,2H),1.60(s,3H),1.39(s,3H),1.06(s,9H).
2.化合物3的制备
在25℃下将化合物2(95.0g,222mmol)溶于甲苯(1.50L),依次加入咪唑(30.2g,443mmol)、三苯基膦(116g,443mmol)和碘单质(84.4g,322mmol),反应液在100℃下搅拌18小时。薄层色谱(PE/EA=5/1)显示反应物消耗完全且有新点生成。往反应液中加入20.0mL饱和NaHSO3溶液,加入500mL水,反应液分层,有机相用饱和NaCl溶 液(50.0mL×3)洗涤,无水Na2SO4干燥,旋干得到粗品。粗品进行MPLC(PE/EA=1/0-10/1)纯化得到无色油状液体化合物3(115g,收率96.35%)。
1H NMR(400MHz,CD3OD)δ7.64-7.72(m,4H),7.37-7.49(m,6H),5.95(d,J=3.6Hz,1H),5.06(d,J=3.6Hz,1H),4.42(d,J=3.2Hz,1H),3.87(dd,J=10.4,5.6Hz,1H),3.66(dd,J=10.4,6.4Hz,1H),3.53(td,J=6.0,3.2Hz,1H),1.44(s,3H),1.29(s,3H),1.02-1.07(m,9H).
3.化合物4的制备
在25℃下将化合物3(12.5g,23.2mmol)溶于MeOH(225mL)和EtOAc(25mL)的混合溶剂,加入TEA(6.45mL,46.4mmol)和Pd/C 10%(2.00g,18.8mmol),反应液在氢气(14.696psi)氛围以及25℃条件下搅拌反应14小时。薄层色谱(PE/EA=10/1)显示反应物消耗完全且有新点生成。将反应液过滤,滤液旋干得到粗品,粗品进行MPLC(PE/EA=1/0-10/1)纯化得到无色油状液体化合物4(8.75g,收率83.06%)。
1H NMR(400MHz,CD3OD)δ7.64-7.72(m,4H),7.36-7.47(m,6H),5.80(d,J=3.6Hz,1H),4.77(t,J=4.4Hz,1H),4.25-4.32(m,1H),3.68-3.82(m,2H),2.00(dd,J=13.6,4.8Hz,1H),1.78-1.87(m,1H),1.45(s,3H),1.30(s,3H),1.04(s,9H).
4.化合物5的制备
在25℃下将化合物4(35.0g,84.8mmol)溶于THF(500mL),加入四乙基氟化铵(63.3g,424mmol),反应液在25℃下搅拌18小时。薄层色谱(PE/EA=10/1,DCM/MeOH=10/1)显示反应物消耗完全且有新点生成。反应液真空浓缩得到粗品,粗品进行MPLC(DCM/MeOH=1/0-10/1)纯化得到白色固体化合物5(12g,收率81.21%)。
1H NMR(400MHz,CD3OD)δ5.79(d,J=3.6Hz,1H),4.77(t,J=4.0Hz,1H),4.21-4.28(m,1H),3.70(dd,J=12.0,3.6Hz,1H),3.54(dd,J=12.0,4.8Hz,1H),1.95-2.02(m,1H),1.74(ddd,J=13.2,10.8,4.8Hz,1H),1.46(s,3H),1.30(s,3H).
5.化合物6的制备
在25℃下将化合物5(12.0g,68.9mmol)溶于甲苯(500mL),依次加入咪唑(9.38g,138mmol)、三苯基膦(36.1g,138mmol)和碘单质(26.2g,103mmol),反应液在100℃下搅拌3小时。薄层色谱(PE/EA=5/1)显示反应物消耗完全且有新点生成。往反应液中加入100mL饱和NaHSO3溶液,加入100mL水,反应液分层,有机相用饱和NaCl溶液(100mL×3)洗涤,无水Na2SO4干燥,旋干得到粗品。粗品进行MPLC(PE/EA=1/0-10/1)纯化得到白色固体化合物6(16.6g,收率84.82%)。
1H NMR(400MHz,CDCl3)δ5.88(d,J=3.6Hz,1H),4.77(t,J=4.2Hz,1H),4.13-4.21(m,1H),3.25-3.38(m,2H),2.31(dd,J=13.6,4.4Hz,1H),1.61-1.67(m,1H),1.52(s,3H),1.33(s,3H).
6.化合物7的制备
在25℃下将化合物6(40.0g,141mmol)溶于亚磷酸三甲酯(500mL),反应液在120℃下搅拌11小时。薄层色谱(乙酸乙酯/丙酮=3/1,PE/EA=10/1)显示原料剩余且有新点生成。将反应液旋干得到粗品,粗品进行MPLC(乙酸乙酯/丙酮=1/0-20/1)纯化得到淡黄色油状液体化合物7(8.90g,收率23.74%)以及回收原料白色固体化合物7(30.0g)。
1H NMR(400MHz,CDCl3)δ5.81(d,J=4.0Hz,1H),4.74(t,J=4.4Hz,1H),4.40-4.52(m,1H),3.76(dd,J=10.8,0.8Hz,6H),2.23-2.35(m,2H),1.95-2.07(m,1H),1.63(ddd,J=13.6,10.8,4.8Hz,1H),1.52(s,3H),1.32(s,3H).
7.化合物8的制备
化合物7(13g,48.830mmol)和Ac2O(23.036mL,244.150mmol),H2SO4(2.615mL,48.830mmol)依次加入到AcOH(260mL)中。在25℃反应6小时。TLC(乙酸乙酯:丙酮=3:1)检测到新点。反应液用冰水淬灭,用DCM(500mL x 3)萃取,无水Na2SO4干燥,过滤,减压浓缩得到粗品产物。粗产品通过柱层析TLC(乙酸乙酯:丙酮=50:1-3:1)纯化得到黄色油状化合物8(7.9g,25.464mmol,52.15%)。
1H NMR(400MHz,CDCl3)δ6.10(d,J=1.2Hz,1H),5.18(d,J=5.2Hz,1H),4.58-4.72(m,1H),3.75-3.79(m,3H),3.71-3.74(m,3H)2.16-2.38(m,3H),2.07(s,3H),2.05(s,3H),1.96-2.04(m,1H).
8.化合物9的制备
化合物8(7.9g,25.464mmol)和化合物8A(6.09g,25.464mmol)加入到CH3CN(316mL),在0℃然后缓慢滴加SnCl4(8.781mL,76.392mmol),在25℃反应2小时。TLC(乙酸乙酯:丙酮=10:1,PMA)显示原料化合物8消失,有新点生成。LCMS(RW0006-267-P1A)显示有31.3%的产物生成。反应液降温至0℃,用饱和 NaHCO3水溶液调节pH=8,然后水相用DCM萃取(200mL x 3),有机相用无水Na2SO4干燥,过滤,旋干得到粗品,粗品通过柱层析纯化(乙酸乙酯:丙酮=20:1-3:1)得到黄色油状化合物9(6.1g,12.464mmol,48.95%)。
1H NMR(400MHz,CDCl3)δ8.75-8.84(m,1H),8.17(s,1H),8.01-8.10(m,2H),7.59-7.70(m,1H),7.50-7.57(m,2H),6.07(s,1H),5.66-5.73(m,1H),4.98-5.12(m,1H),4.70-4.81(m,1H),3.71-3.82(m,12H),2.70-2.81(m,1H),2.34-2.52(m,2H),2.21-2.27(m,1H),2.16(s,3H),2.06(d,J=4.4Hz,4H).
9.化合物10的制备
化合物9(6.1g,12.259mmol)溶解到吡啶(30mL)和水(20mL)中,在60℃反应12小时。TLC(DCM:MeOH=10:1)显示原料消失。反应液直接旋干得到粗产品,粗品通过Prep-HPLC纯化(MeCN/H2O=30/1-80/1;流速:30ml/分钟)纯化得到黄色油状化合物10(3.85g,8.098mmol,66.06%)。
10.化合物11的制备
化合物10(3.7g,7.783mmol)和化合物SM2(10.24g,15.566mmol)溶解在吡啶(37mL)中,在0℃时加入2,4,6-三异丙基苯磺酰氯(14.14g,46.698mmol),0℃反应60分钟后N-甲基咪唑(5.11g,62.263mmol)缓慢滴加到反应液中。25℃反应13小时,LCMS(RW0006-284-P1C)发现产物。TLC(DCM:MeOH=10:1,UV)有新点生成。反应液降温至0℃,加入50mL饱和碳酸钠溶液淬灭,分层,有机相加入300毫升DCM稀释,用水(50mL x 3)和饱和NaCl水溶液(50mL x 1)洗涤,有机相用无水Na2SO4 干燥,过滤,旋干得到粗产品。粗产品通过柱层析纯化(DCM:MeOH=2%-4%,TEA)得到棕色油状化合物11(2100mg,1.883mmol,24.20%)。
11.化合物12的制备
化合物11(2.4g,2.152mmol)溶解在MeOH(36mL)中,加入NH3/MeOH(12.299mL,7M),在0℃反应3小时,LCMS(RW0006-290-P1A)显示有产物生成,反应液用150mLDCM稀释,用30mL水洗涤,有机相用无水Na2SO4干燥,过滤旋干得到粗品,粗品通过Prep-HPLC(色谱柱:01-Waters Xbridge BEH C18 19*150mm;流动相:TEAA-ACN;梯度:33%-58.5%/15min;流速:15ml/min;)纯化得到黄色固体化合物12
(380mg,0.354mmol,16.45%)。
12.E1的制备
化合物12(380mg,0.354mmol)用乙腈带3遍,用DCM(6.0mL)溶解后依次加入5A分子筛,DCI(41.82mg,0.354mmol)和化合物13(426.95mg,1.417mmol)。氮气置换三次,在25℃反应1小时,LCMS(RW00006-291-P1A)显示有5.4%原料剩余。反应液滴加到20mL冰的饱和NaHCO3水溶液淬灭,加入30mLDCM稀释,分液,有机相用20mL饱和NaHCO3水溶液和20mL饱和NaCl水溶液洗涤。有机相用无水Na2SO4干燥,过滤,旋干得到粗品,粗品通过反相纯化(乙腈/水:20-80%,30min,20mL/min)得到黄色固体E1(210mg,0.165mmol,46.57%)。
1H NMR(400MHz,CDCl3)δ11.96-12.03(m,1H),10.07-10.20(m,1H),8.99-9.12(m,1H),8.62-8.80(m,1H),8.07-8.16(m,1H),8.01-8.05(m,2H),7.78(d,J=1.2Hz,1H),7.60-7.66(m,1H),7.51-7.58(m,2H),7.21-7.26(m,2H),7.09-7.20(m,7H),6.66-6.75(m,4H),6.37-6.56(m,1H),5.75-6.11(m,3H),5.07-5.19(m,1H),4.60-4.74(m,1 H),4.16-4.29(m,1H),3.81-3.89(m,1H),3.76-3.81(m,3H),3.70(d,J=1.6Hz,7H),3.54-3.69(m,3H),3.05-3.15(m,1H),2.54-2.65(m,2H),2.03-2.53(m,5H),1.43-1.50(m,1H),1.14-1.21(m,11H),1.01-1.13(m,6H).

Claims (44)

  1. 一种用于抑制细胞中载脂蛋白C3(APOC3)的表达的小干扰RNA(siRNA),所述siRNA包含形成双链区的正义链和反义链,其中所述正义链和所述反义链的长度各自独立地为15-30个核苷酸,并且所述反义链包含SEQ ID NO:414-826中任一项所示的核苷酸序列的至少15个连续核苷酸。
  2. 权利要求1的siRNA,其中所述正义链包含SEQ ID NO:1-413中任一项所示的核苷酸序列的至少15个连续的核苷酸。
  3. 权利要求1或2的siRNA,其中所述双链区的长度为15-25个核苷酸对,优选17-21个核苷酸对,更优选19个核苷酸对。
  4. 权利要求1-3中任一项的siRNA,其中所述siRNA包含如表3所示的配对的正义链序列和反义链序列。
  5. 权利要求1-4中任一项的siRNA,其中所述反义链包含SEQ ID NO:473、612、690、757、761、816、817、818、819、820、814和815中任一项所示的核苷酸序列的至少15个连续核苷酸,至少16个连续核苷酸,至少17个连续核苷酸,至少18个连续核苷酸,至少19个连续核苷酸,或至少20个连续核苷酸,优选所述反义链包含SEQ ID NO:473、612、690、757、761、816、817、818、819、820、814和815中任一项所示的核苷酸序列。
  6. 权利要求1-3和5中任一项的siRNA,其中所述正义链包含SEQ ID NO:60、199、277、344、348、403、404、405、406、407、401和402中任一项所示的核苷酸序列的至少15个连续核苷酸,至少16个连续核苷酸,至少17个连续核苷酸,至少18个连续核苷酸,至少19个连续核苷酸,或至少20个连续核苷酸,优选所述正义链包含SEQ ID NO:60、199、277、344、348、403、404、405、406、407、401和402中任一项所示的核苷酸序列。
  7. 权利要求1-6中任一项的siRNA,其中:
    (a)所述正义链包含SEQ ID NO:60所示的核苷酸序列,且所述反义链包含SEQ ID NO:473所示的核苷酸序列;
    (b)所述正义链包含SEQ ID NO:199所示的核苷酸序列,且所述反义链包含SEQ ID NO:612所示的核苷酸序列;
    (c)所述正义链包含SEQ ID NO:277所示的核苷酸序列,且所述反义链包含SEQ ID NO:690所示的核苷酸序列;
    (d)所述正义链包含SEQ ID NO:344所示的核苷酸序列,且所述反义链包含SEQ ID NO:757所示的核苷酸序列;
    (e)所述正义链包含SEQ ID NO:348所示的核苷酸序列,且所述反义链包含SEQ ID NO:761所示的核苷酸序列;
    (f)所述正义链包含SEQ ID NO:403所示的核苷酸序列,且所述反义链包含SEQ ID NO:816所示的核苷酸序列;
    (g)所述正义链包含SEQ ID NO:404所示的核苷酸序列,且所述反义链包含SEQ ID NO:817所示的核苷酸序列;
    (h)所述正义链包含SEQ ID NO:405所示的核苷酸序列,且所述反义链包含SEQ ID NO:818所示的核苷酸序列;
    (i)所述正义链包含SEQ ID NO:406所示的核苷酸序列,且所述反义链包含SEQ ID NO:819所示的核苷酸序列;
    (j)所述正义链包含SEQ ID NO:407所示的核苷酸序列,且所述反义链包含SEQ ID NO:820所示的核苷酸序列;
    (k)所述正义链包含SEQ ID NO:401所示的核苷酸序列,且所述反义链包含SEQ ID NO:814所示的核苷酸序列;或
    (l)所述正义链包含SEQ ID NO:402所示的核苷酸序列,且所述反义链包含SEQ ID NO:815所示的核苷酸序列。
  8. 权利要求1-7中任一项的siRNA,其中所述正义链的基本上所有的核苷酸和所述反义链的基本上所有的核苷酸是修饰的核苷酸,优选所述正义链的所有的核苷酸和所述反义链的所有的核苷酸是修饰的核苷酸。
  9. 权利要求8的siRNA,其中所述正义链和所述反义链各自独立地包含选自下组的一种或多种核苷酸修饰:2'-O-甲基修饰的核苷酸、2'-氟代修饰的核苷酸、2'-脱氧-修饰的核苷酸、肌苷核糖核苷酸、脱碱基核苷酸、反向无碱基脱氧核糖核苷酸、硫代磷酸酯核苷酸间键联修饰、乙烯基膦酸酯修饰的核苷酸、锁核苷酸、2'-氨基-修饰的核苷酸、2'-烷基-修饰的核苷酸、吗啉代核苷酸、氨基磷酸酯、包含非天然碱基的核苷酸、以及连接到胆固醇基衍生物或十二烷酸二癸酰胺基团上的末端核苷酸、和脱氧核糖核苷酸。
  10. 权利要求8的siRNA,其中所述正义链和所述反义链各自独立地包含选自下组的一种或多种核苷酸修饰:2'-O-甲基修饰的核苷酸、2'-氟代修饰的核苷酸、2'-脱氧-修饰的核苷酸、肌苷核糖核苷酸、脱碱基核苷酸、反向无碱基脱氧核糖核苷酸、硫代磷酸酯核苷酸间键联修饰。
  11. 权利要求8所述的siRNA,其中所述反义链包含说明书表5中任一项所示的经修饰的核苷酸序列,和/或所述正义链包含说明书表4中任一项所示的经修饰的核苷酸序列。
  12. 权利要求8所述的siRNA,其中所述siRNA包含说明书表6中任一项所示的配对的经修饰的正义链序列和经修饰的反义链序列。
  13. 权利要求8所述的siRNA,其中:
    (1)所述正义链包含
    STM1s-AmsAmAmAmGmGmGmAmCfAfGfUmAmUmUmCmUmCmAmGmAms-
    STM1(SEQ ID NO:1655),
    所述反义链包含
    (CP1a-U)sCfsUmGfAmGfAmAfUmAfCmUfGmUfCmCfCmUfUmsUfsUm(SEQ ID NO:
    1651);
    (2)所述正义链包含
    STM1s-AmsAmUmUmAmAmAmAmGfGfGfAmCmAmGmUmAmUmUmCmAms-STM1
    (SEQ ID NO:1656),
    所述反义链包含
    (CP1a-U)sGfsAmAfUmAfCmUfGmUfCmCfCmUfUmUfUmAfAmsUfsUm(SEQ ID NO:
    1650);
    (3)所述正义链包含
    STM1s-AmsAmUmUmAmAmAmAmGfGfGfAmCmAmGmUmAmUmUmCmAms-
    STM1(SEQ ID NO:1657),
    且所述反义链包含
    (VPUm)sGfsAmAfUmAfCmUfGmUfCmCfCmUfUmUfUmAfAmsUfsUm(SEQ ID NO:
    1649);
    (4)所述正义链包含
    IBs-AmsAmUmUmAmAmAmAmGfGfGfAmCmAmGmUmAmUmUmCmAms-IB(SEQ ID 
    NO:1658),
    且所述反义链包含
    (CP1a-U)sGfsAmAfUmAfCmUfGmUfCmCfCmUfUmUfUmAfAmsUfsUm(SEQ ID NO:
    1650);
    (5)所述正义链包含
    UmsUmsAmAmAmAmGfGfGfAmCmAmGmUmAmUmUmCmsAm(SEQ ID NO:1659),
    且所述反义链包含
    (CP1a-U)sGfsAmAfUmAfCmUfGmUfCmCfCmUfUmUfUmAfAmsUfsUm(SEQ ID NO:
    1650);
    (6)所述正义链包含
    IBs-AmsAmAmAmGmGmGmAmCfAfGfUmAmUmUmCmUmCmAmGmAms-IB(SEQ ID 
    NO:1660),
    且所述反义链包含
    (CP1a-U)sCfsUmGfAmGfAmAfUmAfCmUfGmUfCmCfCmUfUmsUfsUm(SEQ ID NO:
    1651);
    (7)所述正义链包含
    AmsAmsGmGmGmAmCfAfGfUmAmUmUmCmUmCmAmGmsAm(SEQ ID NO:1661),
    且所述反义链包含
    (CP1a-U)sCfsUmGfAmGfAmAfUmAfCmUfGmUfCmCfCmUfUmsUfsUm(SEQ ID NO:
    1651);
    (8)所述正义链包含
    IBs-AmsAmAmAmGmGmGmAmCfAfGfUmAmUmUmCmUmCmAmGmAms-IBs-
    GL6(SEQ ID NO:1662),
    且所述反义链包含
    (CP1a-U)sCfsUmGfAmGf(PCN-A)AfUmAfCmUfGmUfCmCfCmUfUmsUfsUm(SEQ ID 
    NO:1652);或
    (9)所述正义链包含
    AmsAmsGmGmGmAmCfAfGfUmAmUmUmCmUmCmAmGmsAm(SEQ ID NO:1663),
    且所述反义链包含
    (CP1a-U)sCfsUmGfAmGf(PCN-A)AfUmAfCmUfGmUfCmCfCmUfUmsUfsUm(SEQ ID 
    NO:1652);
    (a)所述正义链包含CmsGmsAmGmGmAmUfGfCfCmUmCmCmCmUmUmCmUmUm,且所述反义链包含AmsAfsGmAfAmGfGmGfAmGfGmCfAmUfCmCfUmCfGmsUfsUm;
    (b)所述正义链包含CmsCmsGmUmUmAmAfGfGfAmCmAmAmGmUmUmCmUmUm,且所述反义链包含AmsAfsGmAfAmCfUmUfGmUfCmCfUmUfAmAfCmGfGmsUfsUm;
    (c)所述正义链包含CmsCmsGmUmUmAmAfGfGfAmCmAmAmGmUmUmCmUmUm,且所述反义链包含AmsAfsGmAfAmCfUmUfGmUfCmCfUmUfAmAfCmGfGmsUfsUm;
    (d)所述正义链包含CmsCmsAmAmGmUmCfCfAfCmCmUmGmCmCmUmAmUmUm,且所述反义链包含AmsAfsUmAfGmGfCmAfGmGfUmGfGmAfCmUfUmGfGmsUfsUm;
    (e)所述正义链包含AmsAmsGmGmGmAmCfAfGfUmAmUmUmCmUmCmAmGmUm,且所述反义链包含AmsCfsUmGfAmGfAmAfUmAfCmUfGmUfCmCfCmUfUmsUfsUm;
    (f)所述正义链包含UmsUmsAmAmAmAmGfGfGfAmCmAmGmUmAmUmUmCmUm,且所述反义链包含AmsGfsAmAfUmAfCmUfGmUfCmCfCmUfUmUfUmAfAmsUfsUm;
    (g)所述正义链包含AmsAmsGmGmGmAmCfAfGfUmAmUmUmCmUmCmAmGmUm,且所述反义链包含AmsCfsUmGfAmGfAmAfUmAfCmUfGmUfCmCfCmUfUmsUfsUm;
    (h)所述正义链包含CmsCmsAmAmGmUmCfCfAfCmCmUmGmCmCmUmAmUmUm,且所述反义链包含AmsAfsUmAfGmGfCmAfGmGfUmGfGmAfCmUfUmGfGmsUfsUm;
    (i)所述正义链包含CmsCmsGmUmUmAmAfGfGfAmCmAmAmGmUmUmCmUmUm,且所述反义链包含AmsAfsGmAfAmCfUmUfGmUfCmCfUmUfAmAfCmGfGmsUfsUm;
    (j)所述正义链包含CmsGmsAmGmGmAmUfGfCfCmUmCmCmCmUmUmCmUmUm,且所述反义链包含AmsAfsGmAfAmGfGmGfAmGfGmCfAmUfCmCfUmCfGmsUfsUm;
    (k)所述正义链包含IBs-AmCmGmGmGmAmCmAmGfUfAfUmUmCmUmCmAmGmUmimAms-IB(SEQ ID NO:1014),且所述反义链包含UmsCfsAmsCfUmGfAmGmAmAmUmAfCmUfGmUfCmCfCmGfsUm(SEQ ID NO:1174);或
    (l)所述正义链包含AmsAmsGmGmGmAmCfAmGfUfAfUmUmCmUmCmAmGmUmsGmsCm,且所述反义链包含GmsCfsAmCmUmGfAmGmAmAmUmAmCmUfGmUfCmCmCmUmUmsUmsUm。
  14. 权利要求1-13中任一项的siRNA,其中所述siRNA进一步通过磷酸酯基团或硫代磷酸酯基团与包含N-乙酰半乳糖胺的配体部分缀合,优选所述siRNA的正义链通过磷酸酯基团或硫代磷酸酯基团与所述配体部分缀合。
  15. 权利要求14的siRNA,其中所述正义链的3’端通过磷酸酯基团或硫代磷酸酯基团与所述配体部分缀合。
  16. 权利要求14或15的siRNA,其中所述配体部分包含式(X’)所示的缀合基团:
    其中,
    表示与siRNA连接的位置;
    Q独立地为H、
    其中L1为化学键、-CH2-、-CH2CH2-、-C(O)-、-CH2O-、-CH2O-CH2CH2O-或-NHC(O)-(CH2NHC(O))a-;
    L2为化学键或-CH2CH2C(O)-;
    L3为化学键、-(NHCH2CH2)b-、-(NHCH2CH2CH2)b-或-C(O)CH2-;
    L4为-(OCH2CH2)c-、-(OCH2CH2CH2)c-、-(OCH2CH2CH2CH2)c-、-(OCH2CH2CH2CH2CH2)c-或-NHC(O)-(CH2)d-;
    其中a=0、1、2或3;
    b=1、2、3、4或5;
    c=1、2、3、4或5;
    d=1、2、3、4、5、6、7或8;
    L为化学键、-CH2O-或-NHC(O)-;
    L’为化学键、-C(O)NH-、-NHC(O)-或-O(CH2CH2O)e-;
    其中e为1、2、3、4或5;
    T为化学键、-CH2-、-C(O)-、-M-、-CH2-M-或-C(O)-M-;
    其中M为
    R1和R2一起形成-CH2CH2O-或-CH2CH(R)-O-,并且R3为H;
    或者R1和R3一起形成-C1-2亚烷基-,并且R2为H;
    其中R为-OR’、-CH2OR’或-CH2CH2OR’,其中R’为H、羟基保护基或固相载体,所述羟基保护基优选-C(O)CH2CH2C(O)OH或4,4'-二甲氧基三苯甲基;
    m=0、1、2、3、4、5、6、7、8、9或10;
    n=0、1、2、3、4、5、6、7、8、9或10。
  17. 权利要求16所述的siRNA,其中所述缀合基团如式(I’)所示:
    其中,
    表示与siRNA连接的位置;
    Q独立地为H、
    其中L1为化学键、-CH2-、-CH2CH2-、-C(O)-、-CH2O-、-CH2O-CH2CH2O-或-NHC(O)-(CH2NHC(O))a-;
    L2为化学键或-CH2CH2C(O)-;
    L3为化学键、-(NHCH2CH2)b-、-(NHCH2CH2CH2)b-或-C(O)CH2-;
    L4为-(OCH2CH2)c-、-(OCH2CH2CH2)c-、-(OCH2CH2CH2CH2)c-、-(OCH2CH2CH2CH2CH2)c-或-NHC(O)-(CH2)d-;
    其中a=0、1、2或3;
    b=1、2、3、4或5;
    c=1、2、3、4或5;
    d=1、2、3、4、5、6、7或8;
    L为-CH2O-或-NHC(O)-;
    L’为化学键、-C(O)NH-或-NHC(O)-;
    R1和R2一起形成-CH2CH2O-或-CH2CH(R)-O-,并且R3为H;
    或者R1和R3一起形成-C1-2亚烷基-,并且R2为H;
    其中R为-OR’、-CH2OR’或-CH2CH2OR’,其中R’为H、羟基保护基或固相载体,所述羟基保护基优选-C(O)CH2CH2C(O)OH或4,4'-二甲氧基三苯甲基;
    m=0、1、2、3、4、5、6、7、8、9或10;
    n=0、1、2、3、4、5、6、7、8、9或10。
  18. 权利要求17所述的siRNA,其中,
    Q独立地为H或
    其中L1为-CH2O-或-NHC(O)-(CH2NHC(O))a-;
    L2为-CH2CH2C(O)-;
    L3为-(NHCH2CH2)b-或-(NHCH2CH2CH2)b-;
    L4为-(OCH2CH2)c-或-NHC(O)-(CH2)d-;
    其中a=0、1、2或3;
    b=1、2、3、4或5;
    c=1、2、3、4或5;
    d=1、2、3、4、5、6、7或8;
    L为-CH2O-;
    L’为化学键;
    R1和R2一起形成-CH2CH2O-或-CH2CH(R)-O-,并且R3为H;
    或者R1和R3一起形成-C1-2亚烷基-,并且R2为H;
    其中R为-OR’、-CH2OR’或-CH2CH2OR’,其中R’为H、羟基保护基或固相载体,所述羟基保护基优选-C(O)CH2CH2C(O)OH或4,4'-二甲氧基三苯甲基;
    m=0、1、2、3、4、5、6、7、8、9或10;
    n=0、1、2、3、4、5、6、7、8、9或10。
  19. 权利要求18的siRNA,其中所述缀合基团如式(I’-1)、式(I’-2)或式(I’-3)所示:
    其中,
    表示与siRNA连接的位置;
    Q为
    其中L1为-CH2O-或-NHC(O)-;
    L2为-CH2CH2C(O)-;
    L3为-(NHCH2CH2)b-或-(NHCH2CH2CH2)b-;
    L4为-(OCH2CH2)c-或-NHC(O)-(CH2)d-;
    其中b=1、2、3、4或5;
    c=1、2、3、4或5;
    d=1、2、3、4、5、6、7或8;
    L为-CH2O-;
    R’为H、羟基保护基或固相载体,所述羟基保护基优选-C(O)CH2CH2C(O)OH或4,4'-二甲氧基三苯甲基;
    n=0、1、2、3、4、5、6、7、8、9或10。
  20. 权利要求17的siRNA,其中,
    Q独立地为H、
    其中L1为-CH2O-、-CH2O-CH2CH2O-或-NHC(O)-(CH2NHC(O))a-;
    L2为-CH2CH2C(O)-;
    L3为-(NHCH2CH2)b-、-(NHCH2CH2CH2)b-或-C(O)CH2-;
    L4为-(OCH2CH2)c-或-NHC(O)-(CH2)d-;
    其中a=0、1、2或3;
    b=1、2、3、4或5;
    c=1、2、3、4或5;
    d=1、2、3、4、5、6、7或8;
    L为-CH2O-或-NHC(O)-;
    L’为化学键或-C(O)NH-;
    R1和R2一起形成-CH2CH2O-或-CH2CH(R)-O-,并且R3为H;
    或者R1和R3一起形成-C1-2亚烷基-,并且R2为H;
    其中R为-OR’、-CH2OR’或-CH2CH2OR’,其中R’为H、羟基保护基或固相载体,所述羟基保护基优选-C(O)CH2CH2C(O)OH或4,4'-二甲氧基三苯甲基;
    m=0、1、2、3、4、5、6、7、8、9或10;
    n=0、1、2、3、4、5、6、7、8、9或10。
  21. 权利要求20的siRNA,其中所述缀合基团如式(II’-1)或式(II’-2)所示:
    其中,
    表示与siRNA连接的位置;
    Q独立地为
    其中L1为-CH2O-或-CH2O-CH2CH2O-;
    L3为-(NHCH2CH2)b-、-(NHCH2CH2CH2)b-或-C(O)CH2-;
    L4为-(OCH2CH2)c-或-NHC(O)-(CH2)d-;
    其中b=1、2、3、4或5;
    c=1、2、3、4或5;
    d=1、2、3、4、5、6、7或8;
    L为-NHC(O)-;
    L’为化学键或-C(O)NH-;
    R’为H、羟基保护基或固相载体,所述羟基保护基优选-C(O)CH2CH2C(O)OH或4,4'-二甲氧基三苯甲基;
    m=0、1、2、3、4、5、6、7、8、9或10;
    n=0、1、2、3、4、5、6、7、8、9或10。
  22. 权利要求17的siRNA,其中,
    Q独立地为H、
    其中L1为-CH2-、-C(O)-、-CH2O-、-CH2O-CH2CH2O-或-NHC(O)-(CH2NHC(O))a-;
    L2为化学键;
    L3为-(NHCH2CH2)b-、-(NHCH2CH2CH2)b-或-C(O)CH2-;
    L4为-(OCH2CH2)c-或-NHC(O)-(CH2)d-;
    其中a=0、1、2或3;
    b=1、2、3、4或5;
    c=1、2、3、4或5;
    d=1、2、3、4、5、6、7或8;
    L为-CH2O-或-NHC(O)-;
    L’为化学键或-C(O)NH-;
    R1和R2一起形成-CH2CH2O-或-CH2CH(R)-O-,并且R3为H;
    或者R1和R3一起形成-C1-2亚烷基-,并且R2为H;
    其中R为-OR’、-CH2OR’或-CH2CH2OR’,其中R’为H、羟基保护基或固相载体,所述羟基保护基优选-C(O)CH2CH2C(O)OH或4,4'-二甲氧基三苯甲基;
    m=0、1、2、3、4、5、6、7、8、9或10;
    n=0、1、2、3、4、5、6、7、8、9或10。
  23. 权利要求22的siRNA,其中所述缀合基团如式(II’-2)所示:
    其中,
    表示与siRNA连接的位置;
    Q独立地为
    其中L1为-CH2-或-C(O)-;
    L3为-(NHCH2CH2)b-;
    L4为-(OCH2CH2)c-;
    其中b=1、2、3、4或5;
    c=1、2、3、4或5;
    L为-CH2O-或-NHC(O)-;
    R’为H、羟基保护基或固相载体,所述羟基保护基优选-C(O)CH2CH2C(O)OH或4,4'-二甲氧基三苯甲基;
    n=0、1、2、3、4、5、6、7、8、9或10。
  24. 权利要求16的siRNA,其中:
    Q独立地为H、
    其中L1为化学键、-CH2-、-CH2CH2-、-C(O)-、-CH2O-、-CH2O-CH2CH2O-或-NHC(O)-(CH2NHC(O))a-;
    L2为化学键或-CH2CH2C(O)-;
    L3为化学键、-(NHCH2CH2)b-、-(NHCH2CH2CH2)b-或-C(O)CH2-;
    L4为-(OCH2CH2)c-、-(OCH2CH2CH2)c-、-(OCH2CH2CH2CH2)c-、-(OCH2CH2CH2CH2CH2)c-或-NHC(O)-(CH2)d-;
    其中a=0、1、2或3;
    b=1、2、3、4或5;
    c=1、2、3、4或5;
    d=1、2、3、4、5、6、7或8;
    L为化学键、-CH2O-或-NHC(O)-;
    L’为化学键、-C(O)NH-、-NHC(O)-或-O(CH2CH2O)e-;
    其中e为1、2、3、4或5;
    T为化学键、-CH2-、-M-、-CH2-M-或-C(O)-M-;
    其中M为
    R1和R2一起形成-CH2CH2O-或-CH2CH(R)-O-,并且R3为H;
    或者R1和R3一起形成-C1-2亚烷基-,并且R2为H;
    其中R为-OR’、-CH2OR’或-CH2CH2OR’,其中R’为H、羟基保护基或固相载体,所述羟基保护基优选-C(O)CH2CH2C(O)OH或4,4'-二甲氧基三苯甲基;
    m=0、1、2、3、4、5、6、7、8、9或10;
    n=0、1、2、3、4、5、6、7、8、9或10。
  25. 权利要求24的siRNA,其中,
    T为-M-、-CH2-M-或-C(O)-M-,其中M为
  26. 权利要求24或25的siRNA,其中,
    Q独立地为H或
    其中L1为-CH2O-或-NHC(O)-(CH2NHC(O))a-;
    L2为-CH2CH2C(O)-;
    L3为-(NHCH2CH2)b-或-(NHCH2CH2CH2)b-;
    L4为-(OCH2CH2)c-或-NHC(O)-(CH2)d-;
    其中a=0、1、2或3;
    b=1、2、3、4或5;
    c=1、2、3、4或5;
    d=1、2、3、4、5、6、7或8;
    L为化学键或-CH2O-;
    L’为化学键或-O(CH2CH2O)e-;
    其中e为1、2、3、4或5;
    R1和R2一起形成-CH2CH2O-或-CH2CH(R)-O-,并且R3为H;
    或者R1和R3一起形成-C1-2亚烷基-,并且R2为H;
    其中R为-OR’、-CH2OR’或-CH2CH2OR’,其中R’为H、羟基保护基或固相载体,所述羟基保护基优选-C(O)CH2CH2C(O)OH或4,4'-二甲氧基三苯甲基;
    m=0、1、2、3、4、5、6、7、8、9或10;
    n=0、1、2、3、4、5、6、7、8、9或10;
    其中T如权利要求24或25中所定义。
  27. 权利要求26的siRNA,其中所述缀合基团如式(III’-1)、式(III’-2)或式(III’-3)所示:
    其中,
    Q为
    其中L1为-CH2O-或-NHC(O)-;
    L2为-CH2CH2C(O)-;
    L3为-(NHCH2CH2)b-或-(NHCH2CH2CH2)b-;
    L4为-(OCH2CH2)c-或-NHC(O)-(CH2)d-;
    其中b=1、2、3、4或5;
    c=1、2、3、4或5;
    d=1、2、3、4、5、6、7或8;
    L为化学键或-CH2O-;
    其中R’为H、羟基保护基或固相载体,所述羟基保护基优选-C(O)CH2CH2C(O)OH或4,4'-二甲氧基三苯甲基;
    n=0、1、2、3、4、5、6、7、8、9或10;
    其中T如权利要求24或25中所定义。
  28. 权利要求24或25的siRNA,其中,
    Q独立地为H、
    其中L1为-CH2-、-CH2O-或-C(O)-;
    L2为化学键;
    L3为-(NHCH2CH2)b-、-(NHCH2CH2CH2)b-或-C(O)CH2-;
    L4为-(OCH2CH2)c-或-NHC(O)-(CH2)d-;
    其中b=1、2、3、4或5;
    c=1、2、3、4或5;
    d=1、2、3、4、5、6、7或8;
    L为化学键或-NHC(O)-;
    L’为化学键;
    R1和R2一起形成-CH2CH2O-或-CH2CH(R)-O-,并且R3为H;
    或者R1和R3一起形成-C1-2亚烷基-,并且R2为H;
    其中R为-OR’、-CH2OR’或-CH2CH2OR’,其中R’为H、羟基保护基或固相载体,所述羟基保护基优选-C(O)CH2CH2C(O)OH或4,4'-二甲氧基三苯甲基;
    m=0、1、2、3、4、5、6、7、8、9或10;
    n=0、1、2、3、4、5、6、7、8、9或10;
    其中T如权利要求24或25中所定义。
  29. 权利要求24或25的siRNA,其中所述缀合基团如式(IV-1)或式(IV-2)所示:
    其中,
    Q独立地为
    其中L1为-CH2-、-CH2O-或-C(O)-;
    L3为-(NHCH2CH2)b-、-(NHCH2CH2CH2)b-或-C(O)CH2-;
    L4为-(OCH2CH2)c-或-NHC(O)-(CH2)d-;
    其中b=1、2、3、4或5;
    c=1、2、3、4或5;
    d=1、2、3、4、5、6、7或8;
    L为化学键或-NHC(O)-;
    L’为化学键;
    其中R’为H、羟基保护基或固相载体,所述羟基保护基优选-C(O)CH2CH2C(O)OH或4,4'-二甲氧基三苯甲基;
    m=0、1、2、3、4、5、6、7、8、9或10;
    n=0、1、2、3、4、5、6、7、8、9或10;
    其中T如权利要求24或25中所定义。
  30. 权利要求16的siRNA,其中:
    Q独立地为H、
    其中L1为化学键、-CH2-、-CH2CH2-、-C(O)-、-CH2O-、-CH2O-CH2CH2O-或-NHC(O)-(CH2NHC(O))a-;
    L2为化学键或-CH2CH2C(O)-;
    L3为化学键、-(NHCH2CH2)b-、-(NHCH2CH2CH2)b-或-C(O)CH2-;
    L4为-(OCH2CH2)c-、-(OCH2CH2CH2)c-、-(OCH2CH2CH2CH2)c-、-(OCH2CH2CH2CH2CH2)c-或-NHC(O)-(CH2)d-;
    其中a=0、1、2或3;
    b=1、2、3、4或5;
    c=1、2、3、4或5;
    d=1、2、3、4、5、6、7或8;
    L为化学键、-CH2O-或-NHC(O)-;
    L’为-O(CH2CH2O)e-;
    其中e为1、2、3、4或5;
    T为化学键、-CH2-、-C(O)-、-M-、-CH2-M-或-C(O)-M-;
    其中M为
    R1和R2一起形成-CH2CH2O-或-CH2CH(R)-O-,并且R3为H;
    或者R1和R3一起形成-C1-2亚烷基-,并且R2为H;
    其中R为-OR’、-CH2OR’或-CH2CH2OR’,其中R’为H、羟基保护基或固相载体,所述羟基保护基优选-C(O)CH2CH2C(O)OH或4,4'-二甲氧基三苯甲基;
    m=0、1、2、3、4、5、6、7、8、9或10;
    n=0、1、2、3、4、5、6、7、8、9或10。
  31. 权利要求16的siRNA,其中所述缀合基团选自以下:




  32. 权利要求16的siRNA,其中所述缀合基团选自以下:





  33. 权利要求1-32中任一项的siRNA,其中所述配体靶向去唾液酸糖蛋白受体(ASGPR)。
  34. 权利要求14或15的siRNA,其中所述配体具有以下结构:
    其中表示通过磷酸酯基团或硫代磷酸酯基团与所述siRNA的正义链连接的位置。
  35. 权利要求14或15中任一项的siRNA,其中所述配体具有以下结构:
    其中表示通过磷酸酯基团或硫代磷酸酯基团与所述siRNA的正义链连接的位置。
  36. 权利要求14或15的siRNA,其中所述配体具有以下结构:
    其中表示通过磷酸酯基团或硫代磷酸酯基团与所述siRNA的正义链连接的位置。
  37. 如权利要求13所述的siRNA,其中:
    (1)所述正义链包含
    STM1s-AmsAmAmAmGmGmGmAmCfAfGfUmAmUmUmCmUmCmAmGmAms-STM1s-
    GL6(SEQ ID NO:1238),
    且所述反义链包含
    (CP1a-U)sCfsUmGfAmGfAmAfUmAfCmUfGmUfCmCfCmUfUmsUfsUm(SEQ ID NO:
    1651);
    (2)所述正义链包含
    STM1s-AmsAmUmUmAmAmAmAmGfGfGfAmCmAmGmUmAmUmUmCmAms-STM1s-
    GL6(SEQ ID NO:1235),
    且所述反义链包含
    (CP1a-U)sGfsAmAfUmAfCmUfGmUfCmCfCmUfUmUfUmAfAmsUfsUm(SEQ ID NO:
    1650);
    (3)所述正义链包含
    STM1s-AmsAmUmUmAmAmAmAmGfGfGfAmCmAmGmUmAmUmUmCmAms-STM1s-
    GL6(SEQ ID NO:1235),
    且所述反义链包含
    (VPUm)sGfsAmAfUmAfCmUfGmUfCmCfCmUfUmUfUmAfAmsUfsUm(SEQ ID NO:
    1649);
    (4)所述正义链包含
    IBs-AmsAmUmUmAmAmAmAmGfGfGfAmCmAmGmUmAmUmUmCmAms-IBs-GL6
    (SEQ ID NO:1236),
    且所述反义链包含
    (CP1a-U)sGfsAmAfUmAfCmUfGmUfCmCfCmUfUmUfUmAfAmsUfsUm(SEQ ID NO:
    1650);
    (5)所述正义链包含
    UmsUmsAmAmAmAmGfGfGfAmCmAmGmUmAmUmUmCmsAms-GL6(SEQ ID NO:
    1237),
    且所述反义链包含
    (CP1a-U)sGfsAmAfUmAfCmUfGmUfCmCfCmUfUmUfUmAfAmsUfsUm(SEQ ID NO:
    1650);
    (6)所述正义链包含
    IBs-AmsAmAmAmGmGmGmAmCfAfGfUmAmUmUmCmUmCmAmGmAms-IBs-GL6
    (SEQ ID NO:1239),
    且所述反义链包含
    (CP1a-U)sCfsUmGfAmGfAmAfUmAfCmUfGmUfCmCfCmUfUmsUfsUm(SEQ ID NO:
    1651);
    (7)所述正义链包含
    AmsAmsGmGmGmAmCfAfGfUmAmUmUmCmUmCmAmGmsAms-GL6(SEQ ID NO:
    1240),
    且所述反义链包含
    (CP1a-U)sCfsUmGfAmGfAmAfUmAfCmUfGmUfCmCfCmUfUmsUfsUm(SEQ ID NO:
    1651);或
    (8)所述正义链包含
    IBs-AmsAmAmAmGmGmGmAmCfAfGfUmAmUmUmCmUmCmAmGmAms-IBs-
    GL6(SEQ ID NO:1239),
    且所述反义链包含
    (CP1a-U)sCfsUmGfAmGf(PCN-A)AfUmAfCmUfGmUfCmCfCmUfUmsUfsUm(SEQ ID 
    NO:1652);或
    (9)所述正义链包含
    AmsAmsGmGmGmAmCfAfGfUmAmUmUmCmUmCmAmGmsAms-GL6(SEQ ID NO:
    1240),
    且所述反义链包含
    (CP1a-U)sCfsUmGfAmGf(PCN-A)AfUmAfCmUfGmUfCmCfCmUfUmsUfsUm(SEQ ID 
    NO:1652)。
  38. 细胞,其包含如权利要求1-37中任一项所述的siRNA。
  39. 药物组合物,其包含如权利要求1-37中任一项所述的siRNA、或如权利要求38所述的细胞,以及任选的药学上可接受的载剂或赋形剂。
  40. 试剂盒,其包含如权利要求1-37中任一项所述的siRNA、如权利要求38所述的细胞、或如权利要求39所述的药物组合物。
  41. 治疗受试者中与APOC3相关的疾病的方法,所述方法包括向所述受试者施用权利要求1-37中任一项的siRNA、如权利要求38所述的细胞、或如权利要求39的药物组合物的步骤。
  42. 用于在受试者中降低发展与APOC3相关的疾病的风险的方法,所述方法包括向所述受试者施用权利要求1-37中任一项的siRNA、如权利要求38所述的细胞、或如权利要求39的药物组合物的步骤。
  43. 如权利要求41或42所述的方法,其中所述APOC3相关的疾病选自高血脂症、高甘油三酯血症。
  44. 如权利要求41或42所述的方法,其中所述APOC3相关的疾病是可由高甘油三酯血症引起的、与其关联的、或是其后果的疾病,例如非酒精性脂肪肝、非酒精性脂肪性肝炎、多囊卵巢综合征、肾脏疾病、肥胖症、2型糖尿病、高血压、动脉粥样硬化、心血管疾病或胰腺炎。
PCT/CN2023/102861 2022-06-27 2023-06-27 抑制载脂蛋白C3表达的siRNA WO2024002093A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN202210744263 2022-06-27
CN202210744263.8 2022-06-27
CN202310504968 2023-05-05
CN202310504968.7 2023-05-05

Publications (1)

Publication Number Publication Date
WO2024002093A1 true WO2024002093A1 (zh) 2024-01-04

Family

ID=89383009

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/102861 WO2024002093A1 (zh) 2022-06-27 2023-06-27 抑制载脂蛋白C3表达的siRNA

Country Status (1)

Country Link
WO (1) WO2024002093A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170260527A1 (en) * 2014-11-17 2017-09-14 Alnylam Pharmaceuticals, Inc. APOLIPOPROTEIN C3 (APOC3) iRNA COMPOSITIONS AND METHODS OF USE THEREOF
CN111107853A (zh) * 2017-09-11 2020-05-05 箭头药业股份有限公司 用于抑制载脂蛋白C-III (APOC3)的表达的RNAi试剂和组合物
US20200338201A1 (en) * 2017-12-29 2020-10-29 Suzhou Ribo Life Science Co., Ltd. Conjugates and preparation and use thereof
US20200360522A1 (en) * 2017-12-01 2020-11-19 Suzhou Ribo Life Science Co., Ltd. Nucleic acid, composition and conjugate containing same, preparation method, and use thereof
US20210292756A1 (en) * 2020-02-18 2021-09-23 Alnylam Pharmaceuticals, Inc. APOLIPOPROTEIN C3 (APOC3) iRNA COMPOSITIONS AND METHODS OF USE THEREOF
US20220049249A1 (en) * 2017-12-01 2022-02-17 Suzhou Ribo Life Science Co., Ltd. Double-stranded oligonucleotide, composition and conjugate comprising double-stranded oligonucleotide, preparation method thereof and use thereof
US20220062427A1 (en) * 2018-12-28 2022-03-03 Suzhou Ribo Life Science Co., Ltd. Nucleic acid, composition and conjugate containing nucleic acid, preparation method therefor and use thereof

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170260527A1 (en) * 2014-11-17 2017-09-14 Alnylam Pharmaceuticals, Inc. APOLIPOPROTEIN C3 (APOC3) iRNA COMPOSITIONS AND METHODS OF USE THEREOF
CN111107853A (zh) * 2017-09-11 2020-05-05 箭头药业股份有限公司 用于抑制载脂蛋白C-III (APOC3)的表达的RNAi试剂和组合物
US20200360522A1 (en) * 2017-12-01 2020-11-19 Suzhou Ribo Life Science Co., Ltd. Nucleic acid, composition and conjugate containing same, preparation method, and use thereof
US20220049249A1 (en) * 2017-12-01 2022-02-17 Suzhou Ribo Life Science Co., Ltd. Double-stranded oligonucleotide, composition and conjugate comprising double-stranded oligonucleotide, preparation method thereof and use thereof
US20200338201A1 (en) * 2017-12-29 2020-10-29 Suzhou Ribo Life Science Co., Ltd. Conjugates and preparation and use thereof
US20220062427A1 (en) * 2018-12-28 2022-03-03 Suzhou Ribo Life Science Co., Ltd. Nucleic acid, composition and conjugate containing nucleic acid, preparation method therefor and use thereof
US20210292756A1 (en) * 2020-02-18 2021-09-23 Alnylam Pharmaceuticals, Inc. APOLIPOPROTEIN C3 (APOC3) iRNA COMPOSITIONS AND METHODS OF USE THEREOF

Similar Documents

Publication Publication Date Title
JP7245254B2 (ja) 細胞におけるlpaの発現を抑制するための核酸
CN108137492B (zh) 寡核苷酸组合物及其方法
ES2858090T3 (es) Complejo de ácidos nucleicos
JP5998326B2 (ja) 新規核酸プロドラッグおよびその使用方法
JP4584986B2 (ja) 2−アリールプロピル部分を含む1本鎖及び2本鎖オリゴヌクレオチド
JP7245328B2 (ja) 細胞におけるlpaの発現を抑制するための核酸
EP3452596A1 (en) Oligonucleotide compositions and methods thereof
JP2008504840A (ja) 非リン酸骨格結合を含むオリゴヌクレオチド
EP3862024A1 (en) Sirna conjugate, preparation method therefor and use thereof
EP2647713B1 (en) Modified single-strand polynucleotide
KR20220035398A (ko) 신규 화합물 및 그 용도
KR20190104392A (ko) 분자의 막투과 전달을 위한 화합물 및 방법
CN114616332B (zh) 用于递送至肝脏的GalNAc-寡核苷酸偶联物及其制备方法
TW202122093A (zh) 化合物、藥物綴合物、試劑盒及其用途
CN111246855A (zh) 用于分子的跨膜递送的化合物和方法
WO2024032608A1 (zh) 调控ANGPTL3基因活性的siRNA分子
WO2023241591A1 (zh) 调控PCSK9基因活性的siRNA分子
CN116917477B (zh) 含有n-乙酰半乳糖胺的靶向配体
EP4397668A1 (en) Mrna cap analogue and use thereof
WO2024002093A1 (zh) 抑制载脂蛋白C3表达的siRNA
WO2024208357A1 (zh) 调控CIDEB mRNA表达的dsRNA分子
WO2024175062A1 (zh) 调控KHK基因活性的dsRNA分子
JP2019024444A (ja) 核酸複合体
WO2024140596A1 (zh) 调控XDH基因活性的siRNA分子
WO2024002007A1 (zh) 含有可降低脱靶毒性的核苷酸类似物的双链rna

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23830270

Country of ref document: EP

Kind code of ref document: A1