WO2019104473A1 - 三元前驱体材料及其制备方法 - Google Patents

三元前驱体材料及其制备方法 Download PDF

Info

Publication number
WO2019104473A1
WO2019104473A1 PCT/CN2017/113324 CN2017113324W WO2019104473A1 WO 2019104473 A1 WO2019104473 A1 WO 2019104473A1 CN 2017113324 W CN2017113324 W CN 2017113324W WO 2019104473 A1 WO2019104473 A1 WO 2019104473A1
Authority
WO
WIPO (PCT)
Prior art keywords
precursor material
ternary precursor
reactor
mixed solution
ternary
Prior art date
Application number
PCT/CN2017/113324
Other languages
English (en)
French (fr)
Inventor
马跃飞
郑隽
Original Assignee
厦门厦钨新能源材料有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 厦门厦钨新能源材料有限公司 filed Critical 厦门厦钨新能源材料有限公司
Priority to CN201780035059.6A priority Critical patent/CN109311698B/zh
Priority to EP17928103.5A priority patent/EP3719885A4/en
Priority to JP2019532969A priority patent/JP7050071B2/ja
Priority to PCT/CN2017/113324 priority patent/WO2019104473A1/zh
Priority to KR1020197020133A priority patent/KR102283095B1/ko
Publication of WO2019104473A1 publication Critical patent/WO2019104473A1/zh
Priority to US16/504,537 priority patent/US11440811B2/en
Priority to US17/882,000 priority patent/US20220371913A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • C01G53/006Compounds containing, besides nickel, two or more other elements, with the exception of oxygen or hydrogen
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • C01G53/04Oxides; Hydroxides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • C01G53/40Nickelates
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • C01G53/40Nickelates
    • C01G53/42Nickelates containing alkali metals, e.g. LiNiO2
    • C01G53/44Nickelates containing alkali metals, e.g. LiNiO2 containing manganese
    • C01G53/50Nickelates containing alkali metals, e.g. LiNiO2 containing manganese of the type [MnO2]n-, e.g. Li(NixMn1-x)O2, Li(MyNixMn1-x-y)O2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/50Solid solutions
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/30Particle morphology extending in three dimensions
    • C01P2004/32Spheres
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/51Particles with a specific particle size distribution
    • C01P2004/52Particles with a specific particle size distribution highly monodisperse size distribution
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/61Micrometer sized, i.e. from 1-100 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/80Particles consisting of a mixture of two or more inorganic phases
    • C01P2004/82Particles consisting of a mixture of two or more inorganic phases two phases having the same anion, e.g. both oxidic phases
    • C01P2004/84Particles consisting of a mixture of two or more inorganic phases two phases having the same anion, e.g. both oxidic phases one phase coated with the other
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/11Powder tap density
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/028Positive electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1391Processes of manufacture of electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the invention relates to a ternary precursor material for a lithium ion battery and a preparation method thereof.
  • the ternary material is a layered nickel-cobalt-manganese composite cathode material, wherein the main metal elements are nickel, manganese and cobalt metals. Compared with lithium cobaltate, lithium nickelate and lithium manganate, it has the advantages of low cost, large discharge capacity, good cycle performance, good thermal stability and stable structure. Through the synergistic effect of Ni-Co-MN, the ternary material combines the good cycle performance of lithium cobaltate, the high specific capacity of lithium nickelate and the high safety and low cost of lithium manganate. The comprehensive performance is better than any single. The combination of compounds has become the most promising cathode material for lithium ion batteries.
  • the ternary precursor material is the key raw material for the preparation of ternary materials.
  • the physicochemical properties of the ternary precursor materials directly affect the electrochemical performance of the ternary materials, directly restricting the application of high-performance ternary materials, including ternary precursor morphology, particle size distribution, Crystal structure, etc.
  • the current production process of ternary precursor materials is difficult to control its internal structure.
  • the ternary materials prepared by conventional ternary precursor materials cannot meet the requirements of vehicle battery specifications.
  • an object of the present invention is to provide a ternary precursor material that satisfies the requirements of a vehicle battery and has a structure controllable, a preparation method thereof, and a ternary material.
  • a method for preparing a ternary precursor material includes the following steps:
  • S1 weighing a nickel source, a cobalt source, and a manganese source in a predetermined ratio and dissolving in deionized water to form a first mixed solution, and causing nickel ions in the first mixed solution, a molar ratio of cobalt ions to manganese ions is a predetermined ratio;
  • S2 a first mixed solution and a first strong alkali solution are added to the first reactor, and then a first complexing agent is added thereto, the first mixed solution and The hydroxide ions in the first reactor react to form a seed crystal;
  • S3 the seed crystal obtained by the reaction in S2 is added to the second reactor, and then the second complexing agent, the nickel source, and the cobalt source are further
  • a second mixed solution formed by dissolving the manganese source in deionized water and a second strong alkali solution are added to the second reactor to fully react and form a slurry having a precipitate, and controlling the solid content of the slurry is controlled Within the
  • first reactor and the second reactor are large circulation flux reactors.
  • step S1 the first complexing agent is continuously added to the first reactor at a predetermined speed, and the time for continuously adding the first complexing agent is between 1 and 24 hours.
  • step S2 the pH in the first reactor is between 10.5-12.8, and the reaction temperature in the first reactor is between 40-80 °C.
  • the seed crystal has a particle diameter of between 1 and 9 ⁇ m.
  • step S3 the solid content in the slurry is between 700 and 1600 g/L.
  • step S3 the pH in the second reactor is between 10.5-12.8.
  • step S5 the drying temperature is between 270-350 ° C, and the drying time is between 1-4 hours.
  • a ternary precursor material having a molecular formula of Ni x Co y Mn z (OH) 2 , wherein x+y+z 1, x, y, z ranges from 0 to 1, and x, y, z are not equal to 0 and 1,
  • the ternary material precursor has a spherical structure, the spherical structure includes a shell, a core and a transition layer, the shell is a dense structure, and the core is loose a porous structure, the transition layer is disposed between the outer casing and the inner core, the ternary precursor material is a mixture of nickel hydroxide, cobalt hydroxide and manganese hydroxide mixed at an atomic level, and the outer shell is crystallized The degree is higher than the crystallinity of the core, and the transition layer has a crystallinity between the outer shell and the inner core.
  • the D50 of the ternary precursor material is between 2-18 ⁇ m, and (D5+D95): D50 ⁇ 2.2.
  • the outer casing has a thickness of between 0.5 and 10 ⁇ m
  • the transition layer has a thickness of between 0 and 2 ⁇ m
  • the inner core has a diameter of not more than 10 ⁇ m
  • the outer casing has a tap density greater than The tap density of the core, wherein the shell has a tap density of not less than 2.5 g/cm 3 and the core has a tap density of not more than 3.0 g/cm 3 .
  • the ratio of the diameter of the ternary precursor shell to the diameter of the inner core is between 1:1 and 9:1.
  • the density of the core of the ternary precursor gradually increases from the inside to the outside.
  • the pore diameter of the core of the ternary precursor is controlled to be between 0.1 and 2 ⁇ m.
  • the porosity of the ternary material precursor material is controlled to be between 20 and 70%.
  • FIG. 1 is a flow chart of a method for preparing a ternary precursor material provided by the present invention.
  • FIG. 2 is a particle size distribution diagram of an embodiment of a ternary material precursor provided by the present invention.
  • FIG. 3 is a microscopic appearance of an embodiment of a ternary material precursor provided by the present invention Figure.
  • FIG. 4 is a cutaway view of the ternary precursor material of FIG. 3.
  • FIG. 1 is a flow chart of a method for preparing a ternary precursor material provided by the present invention.
  • the preparation method of the ternary precursor material comprises the following steps:
  • the nickel source, the cobalt source, and the manganese source are all water-soluble salts.
  • the nickel source may be a mixture of one or more of nickel sulfate, nickel nitrate, and nickel chloride
  • the cobalt source may be one or more of cobalt sulfate, cobalt nitrate, and cobalt chloride.
  • the mixture may be a mixture of one or more of manganese sulfate, manganese nitrate, and manganese chloride.
  • the molar ratio of the nickel ion, the cobalt ion and the manganese ion in the first mixed solution can be adjusted accordingly according to actual needs, which is not limited in the present application.
  • the first reactor is a reaction vessel.
  • the first reactor is a large circulation flux reactor, and the circulation flux of the large circulation flux reactor is between 10-40 m 3 /h.
  • the reaction vessel is an induced draft tube structure.
  • the seed crystal reactor has an appropriate amount of a liquid inside thereof before the addition of the mixed solution.
  • the bottom liquid is a blank bottom liquid, for example, the bottom liquid may be deionized water.
  • the liquid level of the seed liquid in the seed reactor is 10 to 100 cm higher than the height of the feed port. In other words, the feed port of the seed reactor is located below the level of the bottom liquid in the seed reactor, thereby enabling rapid dispersion of the added solution in the seed reactor.
  • the first mixed solution is added to the first reactor, and then the first complexing agent is continuously added to the first reactor at a predetermined rate.
  • the first complexing agent is ammonia water, and the concentration of the ammonia water is gradually increased from 0 g/L to 45 g/L, and the time of continuously adding the ammonia water can be controlled between 1-24 hours.
  • the first complexing agent may also be at least one of ammonium sulfate, EDTA (ethylenediaminetetraacetic acid), sodium hydrogencarbonate, and oxalic acid.
  • the first mixed solution reacts with the first strong alkali solution and the ammonia water to form a precipitate, and the pH of the solid-liquid mixture in the first reactor is controlled to be between 10.5-12.8.
  • the reaction temperature in the first reactor is controlled to be between 40 and 80 °C.
  • the ratio of the number of moles of hydroxide ions in the first strong alkali solution to the number of moles of metal cations in the first mixed solution is between 0.5 and 2.8.
  • the first strong alkali solution is one or two of sodium hydroxide or potassium hydroxide solutions.
  • the nickel ions, cobalt ions, and manganese ions are combined with the first strong alkali solution and the hydroxide ions of the ammonia water to form a mixture of nickel hydroxide, cobalt hydroxide, and manganese hydroxide.
  • the seed crystal is a particle formed from the mixture, the seed crystal having a particle size of between 1 and 9 ⁇ .
  • the second reactor is also a large cycle flux reactor and is also an induced draft tube structure.
  • a second complexing agent is added thereto and the concentration of the second complexing agent in the second reactor is controlled, and then The second mixed solution and the second strong alkaline solution are sequentially added to the second reactor to carry out a reaction, at which time a slurry having a precipitate is formed.
  • the precipitation is formed by the seed crystal formed in step S2 and continues to grow in the second reactor.
  • the second mixed solution is also formed by weighing the nickel source, the cobalt source, and the manganese source in a predetermined amount and dissolving in water.
  • the type of the nickel source, the cobalt source, and the manganese source may be the same as or different from the types of the nickel source, the cobalt source, and the manganese source in the first mixed liquid, which is not limited by the present invention;
  • the molar concentration of nickel ions, cobalt ions, and manganese ions in the second mixed solution may be exactly the same as the molar concentration of nickel ions, cobalt ions, and manganese ions in the first mixed solution, or may be different. The invention is not limited thereto.
  • the second complexing agent may be at least one of ammonia water, ammonium sulfate, EDTA, sodium hydrogencarbonate, and oxalic acid. It can be understood that the second complexing agent may be the same as or different from the first complexing agent.
  • the second complexing agent is aqueous ammonia. The ammonia water concentration is between 1.0 and 20.0%. The aqueous ammonia is continuously fed to the second reactor at a predetermined rate by a metering pump.
  • the second complexing agent may also be other kinds of complexing agents, which are not limited in the present invention.
  • the molar concentration of the cation in the second mixed solution is between 0.5 and 2.8 mol/L, the number of moles of the metal cation in the second mixed solution and the gold in the first mixed solution
  • the ratio of moles of cations is between 0.4 and 1.5.
  • the pH of the reaction environment is controlled to be between 10.5-12.8 in step S3.
  • the nickel source, the cobalt source, and the manganese source in the second mixed solution may be the same as the nickel source, the cobalt source, and the manganese source in the first mixed solution, and may of course be different. There is no limit to this.
  • the molar ratio of the nickel ion, the cobalt ion and the manganese ion in the second mixed solution can be adjusted accordingly according to actual needs, which is not limited in the present invention.
  • the solid content in the slurry is controlled by means of filtration return.
  • the solid content in the slurry is controlled to be between 700 and 1600 g/L by means of filtration return, and the time for filtration return is controlled between 1 and 12 h. That is, the precipitate therein is filtered by filtration and returned to the second reactor, and then the filtered liquid is drained.
  • the reaction product obtained in the previous step to the aging tank, and adjusting the pH in the aging tank to be between 10-13 by adding a third lye solution, while unreacting in the solution by stirring
  • the complete nickel ion, cobalt ion or manganese ion reacts sufficiently with the hydroxide ion in the reaction environment to form a precipitate.
  • the solid precipitate in the aging tank is separated, that is, solid-liquid separation is performed. Further, the continuation of the reaction in the aging tank enables surface modification of the precipitate, thereby improving the performance of the finally obtained product.
  • the solid precipitation is carried out by transferring the precipitate and liquid in the aging tank to a plate and frame filter press to separate the solid precipitate therein. The separated precipitate was then washed with deionized water to a pH of less than 8.
  • the third lye solution is also one or both of sodium hydroxide or potassium hydroxide solution.
  • the precipitate is an atomic-scale mixed mixture of the nickel hydroxide, cobalt hydroxide, and manganese hydroxide.
  • the precipitate is dried in a rotary kiln in an oxygen-rich atmosphere, wherein the drying temperature is between 270 and 350 ° C and the drying time is between 1 and 4 hours.
  • the porosity of the ternary precursor material is controlled between 20 and 70%, and the porosity of the ternary precursor material can be adjusted accordingly by adjusting the thickness ratio of the outer shell to the inner core.
  • the pore size of the inner core of the ternary precursor material can be controlled between 0.1 and 2 ⁇ m.
  • the ternary precursor material is a spheroidal structure comprising a shell, a transition layer, and an inner core surrounded by the outer shell.
  • the outer casing is of a dense structure
  • the inner core is a loose porous structure
  • the transition layer is located between the outer casing and the inner core.
  • the tap density of the outer casing, the transition layer and the inner core are different, the tap density of the outer shell is greater than the tap density of the inner core, and the tap density of the transition layer is smaller than that of the outer shell.
  • the tap density is greater than the tap density of the core.
  • the crystallinity of the outer shell is higher than the crystallinity of the transition layer, and the crystallinity of the transition layer is greater than the crystallinity of the inner core.
  • the outer casing has a thickness of between 0.5 and 10 ⁇ m, and the outer casing has a density of not less than 2.5 g/cm 3 .
  • the diameter and the tap density of the outer casing can be adjusted according to actual needs, and the present invention does not limit this.
  • the ternary precursor material has a core diameter of not more than 10 ⁇ m and a density of not more than 3.0 g/cm 3 .
  • the transition layer has a thickness between 0 and 2 ⁇ m.
  • the ratio of the diameter of the outer shell of the ternary precursor material to the diameter of the inner core is between 1:1 and 1:9.
  • the density of the inner core of the ternary precursor material gradually increases from the inside to the outside.
  • the density of the inner core is a layered dense gradient distribution, and the layered dense gradient of the inner core is between 2.0 and 4.2 g/cm 3 .
  • the ternary precursor material has a particle size of between 1 and 40 ⁇ m. Further, the D50 of the ternary precursor material is between 2-18 ⁇ m, and (D5+D95): D50 ⁇ 2.2.
  • the D50 refers to the diameter value of the abscissa corresponding to the cumulative distribution of the ordinates of 50%.
  • the D5 refers to the diameter value of the abscissa corresponding to the cumulative distribution of the ordinates of 5%
  • the D95 refers to the diameter value of the abscissa corresponding to the cumulative distribution of the ordinates of 95%.
  • the present application also provides a ternary material prepared by mixing the ternary precursor material and a lithium source and sintering at 700-1200 ° C under a pure oxygen or air atmosphere.
  • the lithium source is one or more of lithium hydroxide, lithium nitrate, lithium sulfate, lithium chloride, lithium fluoride, lithium carbonate, and lithium oxalate.
  • the ternary material may be doped with at least one metal cation of Al, Ca, Na, Ti, Mg, Zr, and W, or doped with at least one of S, Cl, and F.
  • the capacity retention rate after charging and discharging at 20 C rate for 2000 weeks is not less than 88%, and has good rate performance.
  • the preparation method of the ternary precursor material disclosed in the present application can control the morphology and particle diameter of the prepared ternary precursor material, and the method is simple and controllable, and is suitable for industrial production.
  • the outer shell and the inner core of the ternary precursor material in the present application have different crystal strengths, and the ternary material prepared by using the ternary precursor material has better rate performance and good cycle stability performance, and is suitable as a vehicle power battery. use.
  • the nickel source, the cobalt source, and the manganese source are weighed in a predetermined ratio and dissolved in deionized water to form a first mixed solution. And a molar ratio of the nickel ions, cobalt ions, and manganese ions in the first mixed solution is 5/2/3.
  • the first mixed solution was fed to a first reactor which was a reaction vessel and had a circulation flux of 25 m 3 /h. Then, ammonia water and a first strong alkali solution are gradually added thereto at a constant rate, the concentration of the ammonia water is gradually increased from 0 g/L to 30 g/L, and the duration of the addition of the ammonia water is 12 hours; the first strong alkali solution
  • the ratio of the number of moles of the hydroxide ion to the number of moles of the cation in the first mixed solution is 0.5, and the first strong alkali solution is a sodium hydroxide solution.
  • the reaction temperature for controlling the reaction environment in the first reactor was 60 °C.
  • the first mixed solution reacts with the hydroxide in the reaction environment to form a precipitate, and the precipitate is a seed crystal.
  • the seed crystal has a particle size of between 1 and 7 ⁇ m.
  • the second reactor was also a large recycle flux reactor with a recycle flux of 25 m 3 /h.
  • the second complexing agent is ammonia water;
  • the second strong alkali solution is a sodium hydroxide solution, and the number of moles of cations in the second mixed solution and the molar amount of hydroxide ions in the second strong alkali solution The ratio of the number is 1.
  • the second mixed solution is also obtained by dissolving nickel nitrate, cobalt nitrate and manganese nitrate in deionized water, and the ratio of the molar concentration of the nickel ions, the cobalt ions and the manganese ions is 5/2/3.
  • the second container has a PH value of between 10.5-12.8 during the reaction, and the solid content of the slurry is controlled to be 1000 g/L by means of filtration return;
  • the precipitate obtained in the previous step was dried at 300 ° C for 3 hours in an oxygen-rich atmosphere to obtain a ternary precursor material.
  • the precursor of the obtained ternary material had a D50 of 16 ⁇ m.
  • the nickel source, the cobalt source, and the manganese source are weighed in a predetermined ratio and dissolved in deionized water to form a first mixed solution. And a molar ratio of the nickel ions, cobalt ions, and manganese ions in the first mixed solution is 3/3/3.
  • the first mixed solution was fed to a first reactor which was a reaction vessel and had a circulation flux of 15 m 3 /h. Then, ammonia water and a first strong alkali solution are gradually added thereto at a constant rate, the concentration of the ammonia water is gradually increased from 0 g/L to 15 g/L, and the duration of the addition of the ammonia water is 24 hours; the first strong alkali solution
  • the ratio of the number of moles of the hydroxide ion to the number of moles of the cation in the first mixed solution is 1, and the first strong alkali solution is a sodium hydroxide solution.
  • the reaction temperature for controlling the reaction environment in the reaction vessel was 40 °C.
  • the first mixed solution reacts with the hydroxide in the reaction environment to form a precipitate, and the precipitate is a seed crystal.
  • the seed crystal has a particle size of between 3 and 9 ⁇ m.
  • the second reactor was also a large recycle flux reactor with a recycle flux of 15 m 3 /h.
  • the second complexing agent is ammonia water;
  • the second strong alkali solution is a sodium hydroxide solution, and the number of moles of cations in the second mixed solution and the molar amount of hydroxide ions in the second strong alkali solution The ratio is 1.5.
  • the second mixed solution is also obtained by dissolving nickel sulfate, cobalt sulfate and manganese manganese sulfate in deionized water, and the molar ratio of the nickel ions, the cobalt ions and the manganese ions is 3/3/3. .
  • the second container has a pH value between 11-12 during the reaction, and the solid content of the slurry is controlled to be 700 g/L by means of filtration return;
  • the precipitate obtained in the previous step was dried at 330 ° C for 3 hours in an oxygen-rich atmosphere to obtain a ternary precursor material.
  • the precursor of the obtained ternary material had a D50 of 2 ⁇ m.
  • the nickel source, the cobalt source, and the manganese source are weighed in a predetermined ratio and dissolved in deionized water to form a first mixed solution. And a ratio of molar concentrations of the nickel ions, cobalt ions, and manganese ions in the first mixed solution is 8/1/1.
  • the first mixed solution was fed to a first reactor which was a reaction vessel and had a circulation flux of 40 m 3 /h. Then, ammonia water and a first strong alkali solution are gradually added thereto at a constant rate, the concentration of the ammonia water is gradually increased from 0 g/L to 45 g/L, and the duration of the addition of the ammonia water is 1 hour; the first strong alkali solution
  • the ratio of the number of moles of the hydroxide ion to the number of moles of the cation in the first mixed solution is 1.5, and the first strong alkali solution is a sodium hydroxide solution.
  • the reaction temperature for controlling the reaction environment in the first reactor was 80 °C.
  • the first mixed solution reacts with the hydroxide in the reaction environment to form a precipitate, and the precipitate is a seed crystal.
  • the seed crystal has a particle size of between 1 and 9 ⁇ m.
  • the second reactor was also a large recycle flux reactor with a recycle flux of 40 m 3 /h.
  • the second complexing agent is ammonia water;
  • the second strong alkali solution is a sodium hydroxide solution, and the number of moles of cations in the second mixed solution and the molar amount of hydroxide ions in the second strong alkali solution The ratio of the number is 1.
  • the second mixed solution is also obtained by dissolving nickel chloride, cobalt chloride and manganese chloride in deionized water, and the molar ratio of the nickel ions, the cobalt ions and the manganese ions is 8/1. /1.
  • the pH of the second container during the reaction is between 10.5-11.5
  • the solid content of the slurry is controlled to be 1600 g / L by means of filtration return;
  • the precipitate obtained in the previous step was dried at 350 ° C for 3 hours in an oxygen-rich atmosphere to obtain a ternary precursor material.
  • the precursor of the obtained ternary material had a D50 of 18 ⁇ m.
  • the nickel source, the cobalt source, and the manganese source are weighed in a predetermined ratio and dissolved in deionized water to form a first mixed solution. And a ratio of molar concentrations of the nickel ions, cobalt ions, and manganese ions in the first mixed solution is 8/1/1.
  • the first mixed solution was fed to a first reactor which was a reaction vessel and had a circulation flux of 30 m 3 /h. Then, ammonia water and a first strong alkali solution are gradually added thereto at a constant rate, the concentration of the ammonia water is gradually increased from 0 g/L to 40 g/L, and the duration of the addition of the ammonia water is 5 hours; the first strong alkali solution
  • the ratio of the number of moles of the hydroxide ion to the number of moles of the cation in the first mixed solution is 0.5, and the first strong alkali solution is a sodium hydroxide solution.
  • the pH of the reaction environment in the first reactor was controlled to be 12 while the reaction temperature in the reaction environment in the first reactor was controlled to be 70 °C.
  • the first mixed solution reacts with the hydroxide in the reaction environment to form a precipitate, and the precipitate is a seed crystal.
  • the seed crystal has a particle size of between 5 and 9 ⁇ m.
  • the second reactor was also a large recycle flux reactor with a recycle flux of 30 m 3 /h.
  • the second complexing agent is ammonia water;
  • the second strong alkali solution is a sodium hydroxide solution, and the number of moles of cations in the second mixed solution and the molar amount of hydroxide ions in the second strong alkali solution The ratio is 0.8.
  • the second mixed solution is also obtained by dissolving nickel sulfate, cobalt sulfate and manganese manganese sulfate in deionized water, and the molar concentration of the nickel ions, the cobalt ions and the manganese ions is only 8/1/1. .
  • the second container has a pH value of between 11.5-12.8 during the reaction, and the solid content of the slurry is controlled to be 1200 g/L by means of filtration return;
  • the precipitate obtained in the previous step was dried at 300 ° C for 3 hours in an oxygen-rich atmosphere to obtain a ternary precursor material.
  • the precursor of the obtained ternary material had a D50 of 15 ⁇ m.
  • the nickel source, the cobalt source, and the manganese source are weighed in a predetermined ratio and dissolved in deionized water to form a first mixed solution. And a ratio of molar concentrations of the nickel ions, cobalt ions, and manganese ions in the first mixed solution is 6/2/2.
  • the first mixed solution was added to the reaction vessel, the first reactor was a reaction vessel and the circulation flux was 25 m 3 /h. Then, ammonia water and a first strong alkali solution are gradually added thereto at a constant rate, the concentration of the ammonia water is gradually increased from 0 g/L to 20 g/L, and the duration of the addition of the ammonia water is 20 hours; the first strong alkali solution
  • the ratio of the number of moles of the hydroxide ion to the number of moles of the cation in the first mixed solution is 0.5, and the first strong alkali solution is a sodium hydroxide solution.
  • the reaction temperature for controlling the reaction environment in the first reactor was 70 °C.
  • the first mixed solution reacts with the hydroxide in the reaction environment to form a precipitate, and the precipitate is a seed crystal.
  • the seed crystal has a particle size of between 1 and 9 ⁇ m.
  • the second reactor was also a large recycle flux reactor with a recycle flux of 30 m 3 /h.
  • the second complexing agent is ammonia water;
  • the second strong alkali solution is a sodium hydroxide solution, and the number of moles of cations in the second mixed solution and the molar amount of hydroxide ions in the second strong alkali solution The ratio is 1.5.
  • the second mixed solution is also obtained by dissolving nickel sulfate, cobalt sulfate and manganese manganese sulfate in deionized water, and the ratio of the molar concentration of the nickel ions, the cobalt ions and the manganese ions is 6/2/2 .
  • the second container has a pH value of between 12 and 12.8 during the reaction, and the solid content of the slurry is controlled to be 900 g/L by means of filtration return;
  • the precipitate obtained in the previous step was dried at 270 ° C for 3 hours in an oxygen-rich atmosphere to obtain a ternary precursor material.
  • the precursor of the obtained ternary material had a D50 of 8 ⁇ m.
  • the nickel source, the cobalt source, and the manganese source are weighed in a predetermined ratio and dissolved in deionized water to form a first mixed solution. And a ratio of molar concentrations of the nickel ions, cobalt ions, and manganese ions in the first mixed solution is 4/4/2.
  • the first mixed solution was added to the reaction vessel, the first reactor was a reaction vessel and the circulation flux was 25 m 3 /h. Then, ammonia water and a first strong alkali solution are gradually added thereto at a constant rate, the concentration of the ammonia water is gradually increased from 0 g/L to 20 g/L, and the duration of the addition of the ammonia water is 20 hours; the first strong alkali solution
  • the ratio of the number of moles of the hydroxide ion to the number of moles of the cation in the first mixed solution is 0.5, and the first strong alkali solution is a sodium hydroxide solution.
  • the reaction temperature for controlling the reaction environment in the first reactor was 70 °C.
  • the first mixed solution reacts with the hydroxide in the reaction environment to form a precipitate, and the precipitate is a seed crystal.
  • the seed crystal has a particle size of between 1 and 9 ⁇ m.
  • the second reactor was also a large recycle flux reactor with a recycle flux of 30 m 3 /h.
  • the second complexing agent is ammonia water;
  • the second strong alkali solution is a sodium hydroxide solution, and the number of moles of cations in the second mixed solution and the molar amount of hydroxide ions in the second strong alkali solution The ratio is 1.5.
  • the second mixed solution is also obtained by dissolving nickel sulfate, cobalt sulfate and manganese manganese sulfate in deionized water, and the ratio of the molar concentration of the nickel ions, the cobalt ions and the manganese ions is 6/2/2 .
  • the second container has a pH value of between 12 and 12.8 during the reaction, and the solid content of the slurry is controlled to be 900 g/L by means of filtration return;
  • the precipitate obtained in the previous step was dried at 270 ° C for 3 hours in an oxygen-rich atmosphere to obtain a ternary precursor material.
  • the precursor of the obtained ternary material had a D50 of 8 ⁇ m.

Abstract

本发明提供了一种三元前驱体材料的制备方法,包括如下步骤:S1,将镍源、钴源和锰源按照预定的比例称量并溶解于去离子水中形成第一混合溶液;S2,第一混合溶液、第一强碱溶液及络合剂加入到第一反应器中;S3,将在S2中反应得到的所述晶种加入所述第二反应器内,然后再将第二络合剂、第二混合溶液及第二强碱液溶液加入至所述第二反应器内进行充分反应;S4,将S3中充分反应得到的反应产物转移至陈化槽中继续反应,然后其中的沉淀物转移至所述压滤机内进行固液分离,并用去离子水清洗所述沉淀物;S5,将在S4中得到的沉淀物在富氧气氛中烘干得到三元前驱体材料。同时本发明还提供一种三元前驱体材料。

Description

三元前驱体材料及其制备方法 技术领域
本发明涉及一种锂离子电池用三元前驱体材料及其制备方法。
背景技术
三元材料为层状镍钴锰复合正极材料,其中主要金属元素为镍、锰、钴金属。与钴酸锂、镍酸锂、锰酸锂相比,具有成本低、放电容量大、循环性能好、热稳定性好、结构稳定等优点。三元材料通过Ni-Co-MN的协同效应,综合钴酸锂良好的循环性能、镍酸锂的高比容量和锰酸锂的高安全性及低成本等特点,综合性能优于任一单组合化合物,已成为最具有发展前景的锂离子电池正极材料。
三元前驱体材料为制备三元材料关键原料,三元前驱体材料的物化性能直接影响三元材料电化学性能,直接制约高性能三元材料应用,包括三元前驱体形貌、粒度分布、晶体结构等。目前的三元前驱体材料的生产工艺难以控制其内部结构。目前常规三元前驱体材料制备的三元材料无法满足车载电池指标要求。
发明内容
针对现有技术中的问题,本发明的目的是提供一种满足车载电池指标要求、结构可控的三元前驱体材料及其制备方法,以及一种三元材料。
一种三元前驱体材料的制备方法,包括如下步骤:
S1,将镍源、钴源和锰源按照预定的比例进行称量并溶解于去离子水中形成第一混合溶液,并且使所述第一混合溶液中的镍离子、 钴离子和锰离子的摩尔比为预定的比例;S2,第一混合溶液及第一强碱溶液加入到第一反应器中,然后向其中加入第一络合剂,所述第一混合溶液与第一反应器中的氢氧根离子反应生成晶种;S3,将在S2中反应得到的所述晶种加入第二反应器内,然后再将第二络合剂、由镍源、钴源和锰源溶解于去离子水中形成的第二混合溶液以及第二强碱溶液加入至所述第二反应器内进行充分反应并生成具有沉淀的料浆,控制所述料浆的固含量控制在预定范围之内;S4,将S3中充分反应得到的所述料浆转移至陈化槽中继续反应然后进行固液分离,并用去离子水清洗分离出的沉淀;S5,将在S4中得到的沉淀物在富氧气氛中烘干得到三元前驱体材料。
进一步地,所述第一反应器和所述第二反应器为大循环通量反应釜。
进一步地,在步骤S1中,所述第一络合剂以预定的速度连续加入至第一反应器内,并且连续加入所述第一络合剂的时间介于1-24小时之间。
进一步地,在步骤S2中,所述第一反应器内的的PH值介于10.5-12.8之间,并且所述第一反应器内的反应温度介于40-80℃之间。
进一步地,在步骤S2中,所述晶种的粒径介于1-9μm之间。
进一步地,在步骤S3中,所述料浆中的固含量介于700-1600g/L之间。
进一步地,在步骤S3中,所述第二反应器内的的PH值介于10.5-12.8之间。
进一步地,在步骤S5中,所述烘干温度介于270-350℃之间,烘干时间介于1-4小时之间。
一种三元前驱体材料,所述三元前驱体材料的分子式为 NixCoyMnz(OH)2,其中x+y+z=1,x,y,z的取值范围为0~1,且x、y、z均不等于0和1,所述三元材料前驱体呈球形结构,所述球形结构包括外壳、内核和过渡层,所述外壳为致密结构,所述内核为疏松多孔结构,所述过渡层设置于所述外壳和内核之间,所述三元前驱体材料由氢氧化镍、氢氧化钴和氢氧化锰于原子级别混合形成的混合物,并且所述外壳的结晶度高于所述内核的结晶度,所述过渡层的结晶度介于所述外壳和所述内核之间。
进一步地,所述三元前驱体材料的D50介于2-18μm之间,并且(D5+D95):D50≤2.2。
进一步地,所述外壳的厚度介于0.5-10μm之间,所述过渡层的厚度介于0-2μm之间,所述内核的直径不大于10μm;并且所述外壳的振实密度大于所述内核的振实密度,其中所述外壳的振实密度不小于2.5g/cm3,所述内核的振实密度不大于3.0g/cm3
进一步地,所述三元前驱体外壳的直径与所述内核的直径的比值介于1:1-9:1之间。
进一步地,所述三元前驱体的内核的密度自内部向外部逐步增大。
进一步地,所述三元前驱体的内核的孔径控制在0.1-2μm之间。
进一步地,所述三元材料前驱体材料的孔隙率控制在20-70%之间。
附图说明
图1为本发明提供的三元前驱体材料的制备方法流程图。
图2为本发明提供的三元材料前驱体一种实施方式的粒度分布图。
图3为本发明提供的三元材料前驱体一种实施方式的微观形貌 图。
图4为图3中的三元前驱体材料的切面图。
主要元件符号说明
如下具体实施方式将结合上述附图进一步说明本发明。
具体实施方式
下面结合具体实施例对本发明进行详细说明。以下实施例将有助于本领域的技术人员进一步理解本发明,但不以任何形式限制本发明。应当指出的是,对本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进。这些都属于本发明的保护范围。
请参阅图1,是本发明提供的三元前驱体材料的制备方法流程图。所述三元前驱体材料的制备方法包括如下步骤:
S1,将镍源、钴源和锰源按照预定的比例进行称量并溶解于去离子水中形成第一混合溶液,并且所述第一混合溶液中的镍离子、钴离子和锰离子的摩尔浓度为预定的比例;
所述镍源、钴源和锰源均为可溶于水的盐。具体地,所述镍源可以为硫酸镍、硝酸镍和氯化镍中的一种或几种的混合物,所述钴源可以为硫酸钴、硝酸钴和氯化钴中的一种或几种的混合物,所述锰源可以为硫酸锰、硝酸锰和氯化锰中的一种或几种的混合物。所述第一混合溶液中所述镍离子、钴离子和锰离子的摩尔比可以根据实际需要进行相应的调整,本申请对此不做限定。
S2,将所述第一混合溶液及第一强碱溶液加入到第一反应器中,然后向其中加入第一络合剂,所述第一混合溶液与第一反应器中的 氢氧根离子反应生成晶种;
在本实施方式中,所述第一反应器为反应釜。具体地,所述第一反应器为大循环通量反应釜,所述大循环通量的反应釜的循环通量介于10-40m3/h之间。进一步地,在本实施方式中,所述反应釜为诱导式导流筒结构。所述晶种反应器在加入混合溶液前其内部具有适量的底液。所述底液为空白底液,比如所述底液可以为去离子水。所述晶种反应器内底液的液面高度比所述进料口的高度高10-100cm。换句话说,所述晶种反应器的进料口位于所述晶种反应器内底液的液面以下,从而能够使所述晶种反应器内的加入的溶液能够快速分散。
具体地,将所述第一混合溶液加入到所述第一反应器中,然后以预定的速度向所述第一反应器中连续加入第一络合剂。在本实施方式中,所述第一络合剂为氨水,并且所述氨水的浓度自0g/L逐步升高至45g/L,连续加入所述氨水的时间可以控制在1-24小时之间。在其它的实施方式中,所述第一络合剂还可以为硫酸铵、EDTA(乙二胺四乙酸)、碳酸氢钠和草酸中的至少一种。
所述第一混合溶液与所述第一强碱溶液及所述氨水反应会生成沉淀,控制第一反应器内的固液混合物的PH值介于10.5-12.8之间。同时控制所述第一反应器内的反应温度介于40-80℃之间。
在本实施方式中,所述第一强碱溶液中氢氧根离子的摩尔数与所述第一混合溶液中的金属阳离子的摩尔数之比介于0.5-2.8之间。所述第一强碱溶液为氢氧化钠或者氢氧化钾溶液中的一种或两种。
在混合溶液中,所述镍离子、钴离子和锰离子与所述第一强碱溶液及所述氨水的氢氧根离子结合生成氢氧化镍、氢氧化钴和氢氧化锰的混合物。所述晶种即为由所述混合物形成的颗粒,所述晶种的的粒径介于1-9μ-之间。
S3,将在S2中反应得到的所述晶种加入所述第二反应器内,然后再将第二络合剂、第二混合溶液及第二强碱液溶液加入至所述第二反应器内进行充分反应并生成具有固体沉淀的料浆,控制所述料浆的固含量在预定范围之内;
在本实施方式中,所述第二反应器同样为大循环通量的反应釜,并且同样为诱导式导流筒结构。在具体的反应过程中,向所述第二反应器内加入所述晶种后,再向其中加入第二络合剂并控制所述第二反应器内的第二络合剂浓度,然后再依次将所述第二混合溶液和第二强碱液溶液加入所述第二反应器内进行反应,此时生成具有沉淀的料浆。所述沉淀是由在步骤S2中形成的晶种为核心,并在所述第二反应器内继续长大形成。
在本实施方式中,所述第二混合溶液同样由所述镍源、钴源和锰源按照预定称量并溶解于水中形成。所述镍源、钴源和锰源的种类可以与所述第一混合液中的所述镍源、钴源和锰源的种类相同,也可以不相同,本发明对此不做限定;此外,所述第二混合溶液中的镍离子、钴离子和锰离子的摩尔浓度可以与所述第一混合溶液中的镍离子、钴离子和锰离子的摩尔浓度完全相同,当然也可以不相同,本发明对此不做限定。
所述第二络合剂可以为氨水、硫酸铵、EDTA、碳酸氢钠和草酸中的至少一种。可以理解,所述第二络合剂可以与所述第一络合剂相同,也可以不相同。在本申请中,所述第二络合剂为氨水。所述氨水浓度介于1.0-20.0%之间。所述氨水通过计量泵以预定的速率连续加入到所述第二反应器内。当然,所述第二络合剂还可以为其它种类的络合剂,本发明对此不做限定。
所述第二混合溶液中的阳离子摩尔浓度介于0.5-2.8mol/L之间,第二混合溶液中的金属阳离子的摩尔数与所述第一混合溶液中的金 属阳离子的摩尔数之比介于0.4-1.5之间。
在步骤S3中控制反应环境的PH值介于10.5-12.8之间。所述第二混合溶液中的所述镍源、钴源和锰源可以与所述第一混合溶液中的所述镍源、钴源和锰源的种类相同,当然也可以不相同,本申请对此不做限制。所述第二混合溶液中的所述镍离子、钴离子和锰离子的摩尔比可以根据实际需要进行相应的调整,本发明对此不做限定。
在本实施方式中采用过滤返回的方式控制所述料浆中的固含量。具体地,通过过滤返回的方式控制所述料浆中的固含量介于700-1600g/L之间,并且过滤返回的时间控制在1-12h之间。即通过过滤将其中的沉淀过滤出来并返回所述第二反应器内,然后将滤出的液体排掉。
S4,将S3中充分反应得到的反应产物转移至陈化槽中继续反应然后进行固液分离,并用去离子水清洗分离出的沉淀物;
将在上一步骤得到的反应产物转移至陈化槽中,并通过加入第三碱液溶液调节所述陈化槽中的PH值介于10-13之间,同时通过搅拌使溶液中未反应完全的镍离子、钴离子或锰离子充分与反应环境中的氢氧根离子反应生成沉淀。将所述陈化槽内的固体沉淀分离出来,即进行固液分离。此外,在所述陈化槽中进行继续反应能够对所述沉淀进行表面修饰,从而能够提高最终所得到产品的性能。具体地,在本申请中,采用将陈化槽内的沉淀和液体转移至板框压滤机内进行固液分离,从而分离出其中的固体沉淀。然后将分离出的沉淀用去离子水洗涤至PH值小于8。
所述第三碱液溶液同样为氢氧化钠或者氢氧化钾溶液中的一种或两种。
S5,将在S4中得到的沉淀物在富氧气氛中烘干得到三元前驱 体材料。
在本申请中,所述沉淀物为所述氢氧化镍、氢氧化钴、氢氧化锰形成原子级别混合的混合物。将所述沉淀物为在富氧气氛的回转窑中进行烘干,其中烘干温度介于270-350℃之间,烘干时间介于1-4小时之间。所述三元前驱体材料的孔隙率控制在20-70%之间,并且所述三元前驱体材料的孔隙率可以通过调整外壳和内核的厚度比值进行相应的调整。所述三元前驱体材料的内核的孔径可控制在0.1-2μm之间。
请结合参阅图2-图4,所述三元前驱体材料的分子式为NixCoyMnz(OH)2,其中x+y+z=1,x,y,z的取值范围为0~1,且x、y、z均不等于0和1。所述三元前驱体材料为类球体结构,其包括外壳、过渡层和由所述外壳包围的内核。所述外壳为致密结构,所述内核为疏松多孔结构,所述过渡层位于所述外壳和所述内核之间。可以理解,所述外壳、所述过渡层和所述内核的振实密度不同,所述外壳的振实密度大于所述内核的振实密度,所述过渡层的振实密度小于所述外壳的振实密度且大于所述内核的振实密度。可以理解,所述外壳的结晶度高于所述过渡层的结晶度,并且所述过渡层的结晶度大于所述内核的结晶度。所述外壳的厚度介于0.5-10μm之间,并且所述外壳的密度不小于2.5g/cm3。当然,所述外壳的直径和振实密度可以根据实际需要进行调整,本实用新型对此不做限定。另外,所述三元前驱体材料的内核直径不大于10μm,并且密度不大于3.0g/cm3。所述过渡层的厚度介于0-2μm之间。
此外,所述三元前驱体材料外壳的直径与所述内核的直径的比值介于1:1-1:9之间。所述三元前驱体材料的内核的密度自内部向外部逐步增大。具体地,所述内核的密度呈层状致密梯度分布,并且所述内核的层状致密梯度介于2.0-4.2g/cm3之间。
所述三元前驱体材料的粒径介于1-40μm之间。进一步地,所述三元前驱体材料的D50介于2-18μm之间,并且(D5+D95):D50≤2.2。其中所述D50是指纵坐标累计分布50%所对应的横坐标的直径值。同样的,所述D5是指纵坐标累计分布5%所对应的横坐标的直径值,所述D95是指纵坐标累计分布95%所对应的横坐标的直径值。
本申请还提供一种三元材料,所述三元材料由所述三元前驱体材料以及锂源混合并在在纯氧或空气气氛下与700-1200℃下烧结制备而成。所述锂源为氢氧化锂、硝酸锂、硫酸锂、氯化锂、氟化锂、碳酸锂以及草酸锂中的一种或者几种。所述三元材料可以掺杂Al、Ca、Na、Ti、Mg、Zr和W中的至少一种金属阳离子,或者掺杂S、Cl和F中的至少一种阴离子。
所述三元材料组装为电池后,在20C倍率下进行充放电2000周后容量保持率不小于88%,具有良好的倍率性能。
本申请所揭示的三元前驱体材料的制备方法可控制所述制备的三元前驱体材料的形貌及粒径,并且该方法简单可控,适合工业化生产。另外,本申请中的三元前驱体材料的外壳以及内核的结晶强度不同,采用该三元前驱体材料制备的三元材料具有较好的倍率性能以及良好的循环稳定性能,适合作为车载动力电池使用。
实施例一
将镍源、钴源和锰源按照预定的比例称量并溶解于去离子水中形成第一混合溶液。并且所述第一混合溶液中所述镍离子、钴离子和锰离子的摩尔浓度之比为5/2/3。
第一混合溶液加入到第一反应器中,所述第一反应器为反应釜且循环通量为25m3/h。然后向其中以恒定速率加入氨水以及第一强碱溶液,所述氨水的浓度自0g/L逐步升高至30g/L,加入所述氨水 的持续时间为12小时;所述第一强碱溶液中氢氧根离子的摩尔数与所述第一混合溶液中的阳离子的摩尔数之比为0.5,所述第一强碱溶液为氢氧化钠溶液。
控制第一反应器内的反应环境的反应温度为60℃。此时所述第一混合溶液与反应环境中的氢氧根反应会生成沉淀,所述沉淀即为晶种。所述晶种的粒径介于1-7μm之间。
将在上一步反应中得到的所述晶种加入第二反应器内,然后再将第二络合剂、第二混合溶液及第二强碱溶液加入至所述第二反应器内进行充分反应并生成具有固体沉淀的料浆。所述第二反应器同样为大循环通量反应釜,并且循环通量为25m3/h。所述第二络合剂为氨水;所述第二强碱溶液为氢氧化钠溶液,并且所述第二混合溶液中阳离子的摩尔数与所述第二强碱溶液中氢氧根离子的摩尔数之比为1。
所述第二混合溶液同样由硝酸镍、硝酸钴和硝酸锰溶解于去离子水中得到,并且所述镍离子、所述钴离子和所述锰离子的摩尔浓度之比为5/2/3。所述第二容器在反应过程中的PH值为介于10.5-12.8之间,并采用过滤返回的方式控制所述料浆的固含量为1000g/L;
将上一步中充分反应得到的反应产物转移至陈化槽中继续反应并控制陈化槽中的PH值为10,然后将陈化槽内的沉淀和液体移至所述压滤机内进行固液分离,并用去离子水将所述沉淀物洗涤至PH值小于8。
将在上一步中得到的沉淀物在富氧气氛中以300℃烘干处理3小时得到三元前驱体材料。得到的三元材料的前驱体的D50为16μm。
实施例二
将镍源、钴源和锰源按照预定的比例称量并溶解于去离子水中形成第一混合溶液。并且所述第一混合溶液中所述镍离子、钴离子和锰离子的摩尔浓度之比为3/3/3。
第一混合溶液加入到第一反应器中,所述第一反应器为反应釜且循环通量为15m3/h。然后向其中以恒定速率加入氨水以及第一强碱溶液,所述氨水的浓度自0g/L逐步升高至15g/L,加入所述氨水的持续时间为24小时;所述第一强碱溶液中氢氧根离子的摩尔数与所述第一混合溶液中的阳离子的摩尔数之比为1,所述第一强碱溶液为氢氧化钠溶液。
控制反应釜内的反应环境的反应温度为40℃。此时所述第一混合溶液与反应环境中的氢氧根反应会生成沉淀,所述沉淀即为晶种。所述晶种的粒径介于3-9μm之间。
将在上一步反应中得到的所述晶种加入第二反应器内,然后再将氨水、第二混合溶液及氢氧化钠溶液加入至所述第二反应器内进行充分反应并生成具有固体沉淀的料浆。所述第二反应器同样为大循环通量反应釜,并且循环通量为15m3/h。所述第二络合剂为氨水;所述第二强碱溶液为氢氧化钠溶液,并且所述第二混合溶液中阳离子的摩尔数与所述第二强碱溶液中氢氧根离子的摩尔数之比为1.5。
所述第二混合溶液同样由硫酸镍、硫酸钴和锰硫酸锰溶解于去离子水中得到,并且所述镍离子、所述钴离子和所述锰离子的摩尔浓度之比为3/3/3。所述第二容器在反应过程中的PH值介于11-12之间,并采用过滤返回的方式控制所述料浆的固含量为700g/L;
将上一步中充分反应得到的反应产物转移至陈化槽中继续反应并控制陈化槽中的PH值为11,然后将陈化槽内的沉淀和液体移至所述压滤机内进行固液分离,并用去离子水将所述沉淀物洗涤至PH值小于8。
将在上一步中得到的沉淀物在富氧气氛中以330℃烘干处理3小时得到三元前驱体材料。得到的三元材料的前驱体的D50为2μm。
实施例三
将镍源、钴源和锰源按照预定的比例称量并溶解于去离子水中形成第一混合溶液。并且所述第一混合溶液中所述镍离子、钴离子和锰离子的摩尔浓度之比为8/1/1。
第一混合溶液加入到第一反应器中,所述第一反应器为反应釜且循环通量为40m3/h。然后向其中以恒定速率加入氨水以及第一强碱溶液,所述氨水的浓度自0g/L逐步升高至45g/L,加入所述氨水的持续时间为1小时;所述第一强碱溶液中氢氧根离子的摩尔数与所述第一混合溶液中的阳离子的摩尔数之比为1.5,所述第一强碱溶液为氢氧化钠溶液。
控制所述第一反应器内的反应环境的反应温度为80℃。此时所述第一混合溶液与反应环境中的氢氧根反应会生成沉淀,所述沉淀即为晶种。所述晶种的粒径介于1-9μm之间。
将在上一步反应中得到的所述晶种加入第二反应器内,然后再将第二络合剂、第二混合溶液及第二强碱溶液加入至所述第二反应器内进行充分反应并生成具有固体沉淀的料浆。所述第二反应器同样为大循环通量反应釜,并且循环通量为40m3/h。所述第二络合剂为氨水;所述第二强碱溶液为氢氧化钠溶液,并且所述第二混合溶液中阳离子的摩尔数与所述第二强碱溶液中氢氧根离子的摩尔数之比为1。
所述第二混合溶液同样由氯化镍、氯化钴和氯化锰溶解于去离子水中得到,并且所述镍离子、所述钴离子和所述锰离子的摩尔浓度之比为8/1/1。所述第二容器在反应过程中的PH值介于10.5-11.5 之间,并采用过滤返回的方式控制所述料浆的固含量为1600g/L;
将上一步中充分反应得到的反应产物转移至陈化槽中继续反应并控制陈化槽中的PH值为13,然后将陈化槽内的沉淀和液体移至所述压滤机内进行固液分离,并用去离子水将所述沉淀物洗涤至PH值小于8。
将在上一步中得到的沉淀物在富氧气氛中以350℃烘干处理3小时得到三元前驱体材料。得到的三元材料的前驱体的D50为18μm的。
实施例四
将镍源、钴源和锰源按照预定的比例称量并溶解于去离子水中形成第一混合溶液。并且所述第一混合溶液中所述镍离子、钴离子和锰离子的摩尔浓度之比为8/1/1。
第一混合溶液加入到第一反应器中,所述第一反应器为反应釜且循环通量为30m3/h。然后向其中以恒定速率加入氨水以及第一强碱溶液,所述氨水的浓度自0g/L逐步升高至40g/L,加入所述氨水的持续时间为5小时;所述第一强碱溶液中氢氧根离子的摩尔数与所述第一混合溶液中的阳离子的摩尔数之比为0.5,所述第一强碱溶液为氢氧化钠溶液。
控制所述第一反应器内的反应环境的PH值为12,同时控制所述第一反应器内的反应环境的反应温度为70℃。此时所述第一混合溶液与反应环境中的氢氧根反应会生成沉淀,所述沉淀即为晶种。所述晶种的粒径介于5-9μm之间。
将在上一步反应中得到的所述晶种加入第二反应器内,然后再将第二络合剂、第二混合溶液及第二强碱溶液加入至所述第二反应器内进行充分反应并生成具有固体沉淀的料浆。所述第二反应器同 样为大循环通量反应釜,并且循环通量为30m3/h。所述第二络合剂为氨水;所述第二强碱溶液为氢氧化钠溶液,并且所述第二混合溶液中阳离子的摩尔数与所述第二强碱溶液中氢氧根离子的摩尔数之比为0.8。
所述第二混合溶液同样由硫酸镍、硫酸钴和锰硫酸锰溶解于去离子水中得到,并且所述镍离子、所述钴离子和所述锰离子的摩尔浓度只比为8/1/1。所述第二容器在反应过程中的PH值介于11.5-12.8之间,并采用过滤返回的方式控制所述料浆的固含量为1200g/L;
将上一步中充分反应得到的反应产物转移至陈化槽中继续反应并控制陈化槽中的PH值为12,然后将陈化槽内的沉淀和液体移至所述压滤机内进行固液分离,并用去离子水将所述沉淀物洗涤至PH值小于8。
将在上一步中得到的沉淀物在富氧气氛中以300℃烘干处理3小时得到三元前驱体材料。得到的三元材料的前驱体的D50为15μm。
实施例五
将镍源、钴源和锰源按照预定的比例称量并溶解于去离子水中形成第一混合溶液。并且所述第一混合溶液中所述镍离子、钴离子和锰离子的摩尔浓度之比为6/2/2。
第一混合溶液加入到所述反应釜中,所述第一反应器为反应釜且循环通量为25m3/h。然后向其中以恒定速率加入氨水以及第一强碱溶液,所述氨水的浓度自0g/L逐步升高至20g/L,加入所述氨水的持续时间为20小时;所述第一强碱溶液中氢氧根离子的摩尔数与所述第一混合溶液中的阳离子的摩尔数之比为0.5,所述第一强碱溶液为氢氧化钠溶液。
控制所述第一反应器内的反应环境的反应温度为70℃。此时所述第一混合溶液与反应环境中的氢氧根反应会生成沉淀,所述沉淀即为晶种。所述晶种的粒径介于1-9μm之间。
将在上一步反应中得到的所述晶种加入第二反应器内,然后再将第二络合剂、第二混合溶液及第二强碱溶液加入至所述第二反应器内进行充分反应并生成具有固体沉淀的料浆。所述第二反应器同样为大循环通量反应釜,并且循环通量为30m3/h。所述第二络合剂为氨水;所述第二强碱溶液为氢氧化钠溶液,并且所述第二混合溶液中阳离子的摩尔数与所述第二强碱溶液中氢氧根离子的摩尔数之比为1.5。
所述第二混合溶液同样由硫酸镍、硫酸钴和锰硫酸锰溶解于去离子水中得到,并且所述镍离子、所述钴离子和所述锰离子的摩尔浓度之比为6/2/2。所述第二容器在反应过程中的PH值介于12-12.8之间,并采用过滤返回的方式控制所述料浆的固含量为900g/L;
将上一步中充分反应得到的反应产物转移至陈化槽中继续反应并控制陈化槽中的PH值为12.5,然后将陈化槽内的沉淀和液体移至所述压滤机内进行固液分离,并用去离子水将所述沉淀物洗涤至PH值小于8。
将在上一步中得到的沉淀物在富氧气氛中以270℃烘干处理3小时得到三元前驱体材料。得到的三元材料的前驱体的D50为8μm。
实施例六
将镍源、钴源和锰源按照预定的比例称量并溶解于去离子水中形成第一混合溶液。并且所述第一混合溶液中所述镍离子、钴离子和锰离子的摩尔浓度之比为4/4/2。
第一混合溶液加入到所述反应釜中,所述第一反应器为反应釜 且循环通量为25m3/h。然后向其中以恒定速率加入氨水以及第一强碱溶液,所述氨水的浓度自0g/L逐步升高至20g/L,加入所述氨水的持续时间为20小时;所述第一强碱溶液中氢氧根离子的摩尔数与所述第一混合溶液中的阳离子的摩尔数之比为0.5,所述第一强碱溶液为氢氧化钠溶液。
控制所述第一反应器内的反应环境的反应温度为70℃。此时所述第一混合溶液与反应环境中的氢氧根反应会生成沉淀,所述沉淀即为晶种。所述晶种的粒径介于1-9μm之间。
将在上一步反应中得到的所述晶种加入第二反应器内,然后再将第二络合剂、第二混合溶液及第二强碱溶液加入至所述第二反应器内进行充分反应并生成具有固体沉淀的料浆。所述第二反应器同样为大循环通量反应釜,并且循环通量为30m3/h。所述第二络合剂为氨水;所述第二强碱溶液为氢氧化钠溶液,并且所述第二混合溶液中阳离子的摩尔数与所述第二强碱溶液中氢氧根离子的摩尔数之比为1.5。
所述第二混合溶液同样由硫酸镍、硫酸钴和锰硫酸锰溶解于去离子水中得到,并且所述镍离子、所述钴离子和所述锰离子的摩尔浓度之比为6/2/2。所述第二容器在反应过程中的PH值介于12-12.8之间,并采用过滤返回的方式控制所述料浆的固含量为900g/L;
将上一步中充分反应得到的反应产物转移至陈化槽中继续反应并控制陈化槽中的PH值为12.5,然后将陈化槽内的沉淀和液体移至所述压滤机内进行固液分离,并用去离子水将所述沉淀物洗涤至PH值小于8。
将在上一步中得到的沉淀物在富氧气氛中以270℃烘干处理3小时得到三元前驱体材料。得到的三元材料的前驱体的D50为8μm。

Claims (15)

  1. 一种三元前驱体材料的制备方法,包括如下步骤:
    S1,将镍源、钴源和锰源按照预定的比例进行称量并溶解于去离子水中形成第一混合溶液,并且使所述第一混合溶液中的镍离子、钴离子和锰离子的摩尔比为预定的比例;
    S2,第一混合溶液及第一强碱溶液加入到第一反应器中,然后向其中加入第一络合剂,所述第一混合溶液与第一反应器中的氢氧根离子反应生成晶种;
    S3,将在S2中反应得到的所述晶种加入第二反应器内,然后再将第二络合剂、由镍源、钴源和锰源溶解于去离子水中形成的第二混合溶液以及第二强碱溶液加入至所述第二反应器内进行充分反应并生成具有沉淀的料浆,控制所述料浆的固含量控制在预定范围之内;
    S4,将S3中充分反应得到的所述料浆转移至陈化槽中继续反应然后进行固液分离,并用去离子水清洗分离出的沉淀;
    S5,将在S4中得到的沉淀物在富氧气氛中烘干得到三元前驱体材料。
  2. 根据权利要求1所述的三元前驱体材料的制备方法,其特征在于,所述第一反应器和所述第二反应器为大循环通量反应釜。
  3. 根据权利要求2所述的三元前驱体材料的制备方法,其特征在于,在步骤S1中,所述第一络合剂以预定的速度连续加入至第一反应器内,并且连续加入所述第一络合剂的时间介于1-24小时之间。
  4. 根据权利要求1所述的三元前驱体材料的制备方法,其特征在于,在步骤S2中,所述第一反应器内的的PH值介于10.5-12.8之间,并且所述第一反应器内的反应温度介于40-80℃之间。
  5. 根据权利要求1所述的三元前驱体材料的制备方法,其特征在于,在步骤S2中,所述晶种的粒径介于1-9μm之间。
  6. 根据权利要求1所述的三元前驱体材料的制备方法,其特征在于,在步骤S3中,所述料浆中的固含量介于700-1600g/L之间。
  7. 根据权利要求1所述的三元前驱体材料的制备方法,其特征在于,在步骤S3中,所述第二反应器内的的PH值介于10.5-12.8之间。
  8. 根据权利要求1所述的三元前驱体材料的制备方法,其特征在于,在步骤S5中,所述烘干温度介于270-350℃之间,烘干时间介于1-4小时之间。
  9. 一种三元前驱体材料,其特征在于,所述三元前驱体材料的分子式为NixCoyMnz(OH)2,其中x+y+z=1,x,y,z的取值范围为0~1,且x、y、z均不等于0和1,所述三元材料前驱体呈球形结构,所述球形结构包括外壳、内核和过渡层,所述外壳为致密结构,所述内核为疏松多孔结构,所述过渡层设置于所述外壳和内核之间,所述三元前驱体材料由氢氧化镍、氢氧化钴和氢氧化锰于原子级别混合形成的混合物,并且所述外壳的结晶度高于所述内核的结晶度,所述过渡层的结晶度介于所述外壳和所述内核之间。
  10. 根据权利要求9所述的三元前驱体材料,其特征在于,所述三元前驱体材料的D50介于2-18μm之间,并且(D5+D95):D50≤2.2。
  11. 根据权利要求9所述的三元前驱体材料,其特征在于,所述外壳的厚度介于0.5-10μm之间,所述过渡层的厚度介于0-2μm之间,所述内核的直径不大于10μm;并且所述外壳的振实密度大于所述内核的振实密度,其中所述外壳的振实密度不小于2.5g/cm3,所述内核的振实密度不大于3.0g/cm3
  12. 根据权利要求9所述的三元前驱体材料,其特征在于,所 述三元前驱体外壳的直径与所述内核的直径的比值介于1:1-9:1之间。
  13. 根据权利要求9所述的三元前驱体材料,其特征在于,所述三元前驱体的内核的密度自内部向外部逐步增大。
  14. 根据权利要求9所述的三元前驱体材料,其特征在于,所述三元前驱体的内核的孔径控制在0.1-2μm之间。
  15. 根据权利要求9所述的三元前驱体材料,其特征在于,所述三元材料前驱体材料的孔隙率控制在20-70%之间。
PCT/CN2017/113324 2017-11-28 2017-11-28 三元前驱体材料及其制备方法 WO2019104473A1 (zh)

Priority Applications (7)

Application Number Priority Date Filing Date Title
CN201780035059.6A CN109311698B (zh) 2017-11-28 2017-11-28 三元前驱体材料及其制备方法
EP17928103.5A EP3719885A4 (en) 2017-11-28 2017-11-28 TERNARY PRECURSOR MATERIAL AND ASSOCIATED PREPARATION PROCESS
JP2019532969A JP7050071B2 (ja) 2017-11-28 2017-11-28 三元前駆体材料及びその製造方法
PCT/CN2017/113324 WO2019104473A1 (zh) 2017-11-28 2017-11-28 三元前驱体材料及其制备方法
KR1020197020133A KR102283095B1 (ko) 2017-11-28 2017-11-28 3원계 전구체 입자 및 그의 제조방법
US16/504,537 US11440811B2 (en) 2017-11-28 2019-07-08 Ternary precursor particles and method for manufacturing the same
US17/882,000 US20220371913A1 (en) 2017-11-28 2022-08-05 Ternary precursor particles

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2017/113324 WO2019104473A1 (zh) 2017-11-28 2017-11-28 三元前驱体材料及其制备方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/504,537 Continuation-In-Part US11440811B2 (en) 2017-11-28 2019-07-08 Ternary precursor particles and method for manufacturing the same

Publications (1)

Publication Number Publication Date
WO2019104473A1 true WO2019104473A1 (zh) 2019-06-06

Family

ID=65225738

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/113324 WO2019104473A1 (zh) 2017-11-28 2017-11-28 三元前驱体材料及其制备方法

Country Status (6)

Country Link
US (2) US11440811B2 (zh)
EP (1) EP3719885A4 (zh)
JP (1) JP7050071B2 (zh)
KR (1) KR102283095B1 (zh)
CN (1) CN109311698B (zh)
WO (1) WO2019104473A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112169732A (zh) * 2020-08-27 2021-01-05 荆门市格林美新材料有限公司 一种掺杂型三元前驱体材料的制备设备及方法
CN113582255A (zh) * 2021-08-11 2021-11-02 荆门市格林美新材料有限公司 一种镍钴铝三元正极材料前驱体的制备方法
CN114149033A (zh) * 2022-02-09 2022-03-08 浙江长城搅拌设备股份有限公司 一种锂离子电池三元前驱体及其制备方法、制备装置
WO2023216453A1 (zh) * 2022-05-09 2023-11-16 荆门市格林美新材料有限公司 一种核壳梯度三元前驱体及其制备方法和应用

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3719886A4 (en) * 2017-11-29 2021-08-04 XTC New Energy Materials(xiamen) Ltd. CATHODE MATERIAL FOR LITHIUM-ION BATTERY, MANUFACTURING METHOD FOR IT AND LITHIUM-ION BATTERY
CN112054168B (zh) * 2019-06-06 2021-12-07 惠州比亚迪实业有限公司 再生三元前驱体和三元前驱体废料制备再生三元前驱体的方法
CN110364714B (zh) * 2019-07-17 2021-08-20 中国恩菲工程技术有限公司 制备镍钴锰三元材料前驱体的方法
CN110550667A (zh) * 2019-07-23 2019-12-10 河南科隆新能源股份有限公司 一种锂离子正极材料前驱体的制备方法
KR102650925B1 (ko) * 2019-12-30 2024-03-26 징멘 젬 컴퍼니 리미티드 종자 결정의 첨가량을 조절 및 제어하여 결정면의 우선적인 성장을 가지는 고니켈 삼원계 전구체의 제조방법
CN111908521A (zh) * 2020-08-10 2020-11-10 浙江帕瓦新能源股份有限公司 窄分布三元正极材料前驱体的制备方法
CN112624208A (zh) * 2020-12-17 2021-04-09 厦门厦钨新能源材料股份有限公司 一种含镍前驱体和含镍复合材料及其制备方法和应用
KR102515884B1 (ko) * 2021-02-05 2023-03-29 중앙대학교 산학협력단 마이크로미터 크기를 갖는 무기 분말, 이의 제조 방법, 및 이를 활용한 항균성 및 항바이러스성 물품 제조 방법
CN113120974B (zh) * 2021-04-01 2022-12-13 广东邦普循环科技有限公司 高镍三元前驱体的制备方法及其应用
CN113697867B (zh) * 2021-06-30 2024-01-12 南通金通储能动力新材料有限公司 一种动力型高镍三元前驱体的制备方法
CN113651373A (zh) * 2021-10-19 2021-11-16 河南科隆新能源股份有限公司 一种均匀多孔结构的正极材料及其制备方法
CN114084914A (zh) * 2021-11-05 2022-02-25 广东佳纳能源科技有限公司 一种三元前驱体及其制备方法与应用
CN114405917A (zh) * 2021-12-20 2022-04-29 宜宾光原锂电材料有限公司 一种浸洗三元前驱体的方法及设备
CN114613986A (zh) * 2022-03-18 2022-06-10 北京卫蓝新能源科技有限公司 一种异质层状结构前驱体及其制备方法和应用

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102092798A (zh) * 2010-12-01 2011-06-15 兰州金川新材料科技股份有限公司 一种锂离子电池正极材料前驱体的连续合成方法
CN104347866A (zh) * 2013-07-26 2015-02-11 比亚迪股份有限公司 一种锂电池正极材料及其制备方法
CN105399154A (zh) * 2015-11-25 2016-03-16 兰州金川新材料科技股份有限公司 一种镍钴锰三元氢氧化物的生产方法
CN107069023A (zh) * 2017-03-30 2017-08-18 合肥工业大学 一种空心结构锂离子电池电极材料的制备方法

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3842348B2 (ja) * 1996-09-02 2006-11-08 日本化学工業株式会社 Ni−Mn系複合水酸化物の製造方法
US20020053663A1 (en) * 2000-11-06 2002-05-09 Tanaka Chemical Corporation High density cobalt-manganese coprecipitated nickel hydroxide and process for its production
JP4726423B2 (ja) * 2004-03-17 2011-07-20 三洋電機株式会社 非水電解質二次電池用正極材料及び非水電解質二次電池
JP5730676B2 (ja) 2011-06-06 2015-06-10 住友金属鉱山株式会社 非水系電解質二次電池用正極活物質とその製造方法、ならびに、ニッケルコバルトマンガン複合水酸化物とその製造方法
KR101429531B1 (ko) * 2012-01-05 2014-08-14 한국교통대학교산학협력단 코어-쉘 이중층 구조를 갖는 리튬이차전지 양극활물질 및 제조방법 그리고, 그 양극활물질을 포함한 리튬이차전지
KR101564009B1 (ko) * 2014-02-13 2015-10-28 주식회사 이엔드디 쿠에트 테일러 반응기를 이용한 니켈―코발트―망간 복합 전구체의 연속식 제조 방법
JP6603058B2 (ja) * 2014-08-20 2019-11-06 住友化学株式会社 リチウム含有複合酸化物の製造方法およびリチウム含有複合酸化物
CN104852038B (zh) 2015-04-08 2017-02-01 中国科学院长春应用化学研究所 高容量、可快速充放电锂离子电池三元正极材料的制备方法
JP6834986B2 (ja) 2016-01-06 2021-02-24 住友金属鉱山株式会社 非水系電解質二次電池用正極活物質前駆体、非水系電解質二次電池用正極活物質、非水系電解質二次電池用正極活物質前駆体の製造方法、非水系電解質二次電池用正極活物質の製造方法
JP2017168198A (ja) * 2016-03-14 2017-09-21 トヨタ自動車株式会社 正極活物質の製造方法
CN107240712A (zh) * 2016-03-28 2017-10-10 赵孝连 锂离子电池用氧化接枝前驱体、正极材料及其制法和应用

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102092798A (zh) * 2010-12-01 2011-06-15 兰州金川新材料科技股份有限公司 一种锂离子电池正极材料前驱体的连续合成方法
CN104347866A (zh) * 2013-07-26 2015-02-11 比亚迪股份有限公司 一种锂电池正极材料及其制备方法
CN105399154A (zh) * 2015-11-25 2016-03-16 兰州金川新材料科技股份有限公司 一种镍钴锰三元氢氧化物的生产方法
CN107069023A (zh) * 2017-03-30 2017-08-18 合肥工业大学 一种空心结构锂离子电池电极材料的制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3719885A4 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112169732A (zh) * 2020-08-27 2021-01-05 荆门市格林美新材料有限公司 一种掺杂型三元前驱体材料的制备设备及方法
CN113582255A (zh) * 2021-08-11 2021-11-02 荆门市格林美新材料有限公司 一种镍钴铝三元正极材料前驱体的制备方法
CN114149033A (zh) * 2022-02-09 2022-03-08 浙江长城搅拌设备股份有限公司 一种锂离子电池三元前驱体及其制备方法、制备装置
WO2023216453A1 (zh) * 2022-05-09 2023-11-16 荆门市格林美新材料有限公司 一种核壳梯度三元前驱体及其制备方法和应用

Also Published As

Publication number Publication date
EP3719885A1 (en) 2020-10-07
KR102283095B1 (ko) 2021-07-29
US20190359497A1 (en) 2019-11-28
JP2020503229A (ja) 2020-01-30
JP7050071B2 (ja) 2022-04-07
EP3719885A4 (en) 2021-08-18
CN109311698A (zh) 2019-02-05
US11440811B2 (en) 2022-09-13
US20220371913A1 (en) 2022-11-24
KR20190092536A (ko) 2019-08-07
CN109311698B (zh) 2020-09-04

Similar Documents

Publication Publication Date Title
WO2019104473A1 (zh) 三元前驱体材料及其制备方法
CN109686938B (zh) 镁离子掺杂梯度镍钴锰酸锂正极材料及其制备方法
KR102654565B1 (ko) Ncma 하이 니켈 4차 전구체의 습식 합성 방법
CN107275633B (zh) 一种具有低晶格应力的梯度氟掺杂三元正极材料及其制备方法
CN106745331A (zh) 一种低硫小粒径镍钴锰氢氧化物的制备方法
WO2023169591A1 (zh) 含钠氧化物正极材料及其制备方法与应用、正极片及其应用
CN107293744A (zh) 一种高电压类单晶三元正极材料及其制备方法
WO2015039490A1 (zh) 富锂正极材料及其制备方法
CN115000399B (zh) 一种类球状钠离子电池正极材料及其制备方法和钠离子电池
WO2023207281A1 (zh) 镁钛共掺杂碳酸钴的制备方法及其应用
WO2010139142A1 (zh) 二次锂电池正极材料及其制备方法
CN113651374B (zh) 锆铁掺杂的镍钴锰三元前驱体的制备方法
CN108264096B (zh) 一种高密度小颗粒镍钴锰氢氧化物的制备方法
JP2024507080A (ja) ナトリウムイオン電池正極活物質及びその製造方法と使用
CN111029561A (zh) 三元锂电正极材料前驱体及其制备方法、三元锂电正极材料及制备方法和用途
CN108862406A (zh) 一种碳酸盐前驱体及其制备方法和应用
CN112652763A (zh) 一种高容量、高倍率与高振实密度钠离子电池正极材料及其制备方法
CN103303982B (zh) 高压实钴酸锂前驱体的制备方法
CN110282665B (zh) 一种具有介观结构的锂电池正极材料前驱体及其制备方法
CN105304864A (zh) 一种低硫的锰钴镍氢氧化物的制备处理方法
CN113571694A (zh) 一种多离子修饰三元材料前驱体及正极材料制备方法
CN113488620A (zh) 三元正极前驱体及其制备方法、三元正极材料及其制备方法、锂离子电池
CN106159220B (zh) 两步法制备锂离子电池正极材料LiNi0.80Co0.15Al0.05O2的方法
CN116856058A (zh) 一种单晶富锂材料及其制备方法和储能装置
CN110504445A (zh) 一种镍钴铝三元前驱体及其制备方法与应用

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2019532969

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20197020133

Country of ref document: KR

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17928103

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017928103

Country of ref document: EP

Effective date: 20200629