WO2023216453A1 - 一种核壳梯度三元前驱体及其制备方法和应用 - Google Patents

一种核壳梯度三元前驱体及其制备方法和应用 Download PDF

Info

Publication number
WO2023216453A1
WO2023216453A1 PCT/CN2022/113253 CN2022113253W WO2023216453A1 WO 2023216453 A1 WO2023216453 A1 WO 2023216453A1 CN 2022113253 W CN2022113253 W CN 2022113253W WO 2023216453 A1 WO2023216453 A1 WO 2023216453A1
Authority
WO
WIPO (PCT)
Prior art keywords
solution
optionally
core
nickel
reaction
Prior art date
Application number
PCT/CN2022/113253
Other languages
English (en)
French (fr)
Inventor
许开华
岳先锦
张坤
华文超
李聪
杨幸
吕豪
袁文芳
贾冬鸣
薛晓斐
李雪倩
范亮姣
向兴
朱小帅
石佳敏
贡正杰
尹道道
Original Assignee
荆门市格林美新材料有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 荆门市格林美新材料有限公司 filed Critical 荆门市格林美新材料有限公司
Priority to EP22932482.7A priority Critical patent/EP4299650A1/en
Priority to KR1020237033346A priority patent/KR20230159451A/ko
Publication of WO2023216453A1 publication Critical patent/WO2023216453A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G83/00Macromolecular compounds not provided for in groups C08G2/00 - C08G81/00
    • C08G83/001Macromolecular compounds containing organic and inorganic sequences, e.g. organic polymers grafted onto silica
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G83/00Macromolecular compounds not provided for in groups C08G2/00 - C08G81/00
    • C08G83/008Supramolecular polymers
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • C01G53/006Compounds containing, besides nickel, two or more other elements, with the exception of oxygen or hydrogen
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • C01G53/40Nickelates
    • C01G53/42Nickelates containing alkali metals, e.g. LiNiO2
    • C01G53/44Nickelates containing alkali metals, e.g. LiNiO2 containing manganese
    • C01G53/50Nickelates containing alkali metals, e.g. LiNiO2 containing manganese of the type [MnO2]n-, e.g. Li(NixMn1-x)O2, Li(MyNixMn1-x-y)O2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/028Positive electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • This application belongs to the technical field of lithium-ion batteries and relates to a core-shell gradient ternary precursor and its preparation method and application.
  • Ni 1-xy Mn x Co y O 2 (x+y ⁇ 0.4) (NCM) and LiNi 0.8 Co 0.15 Al 0.05 O 2 are considered to be the most promising Cathode candidate materials. 200mAh/g capacity and 3.8V (vsLi+/Li) high voltage.
  • problems such as Li + /Ni 2+ cation mixing, Li residue, poor thermal stability, and pulverization limit the cycle and rate performance of the battery.
  • scientists have attempted to improve structural stability by using a variety of strategies, including elemental doping, surface coatings, and the formation of concentration gradients.
  • CN112701271A discloses an element doping method based on a ternary precursor cathode material. The steps include: weighing soluble nickel salt, soluble cobalt salt and soluble manganese salt and dissolving them in deionized water to obtain a ternary metal salt solution; preparing an alkali. After mixing and reacting the alkaline complexing agent with the ternary metal salt solution, the mixture is collected, filtered, washed and dried in order to obtain the ternary precursor powder.
  • CN111422926A discloses a core-shell structure Al/La co-doped high-nickel ternary precursor and its preparation method, as well as a cathode material prepared from the above precursor.
  • the preparation method is mainly divided into three steps.
  • the first step is to synthesize an Al-doped high-nickel ternary precursor whose primary particles are rod-shaped at low pH.
  • the second step is to increase the pH on the basis of the above and use Al-doped high-nickel ternary precursor.
  • the precursor is used as the core to grow a La-doped high-nickel ternary precursor shell with primary particles in the shape of needles, and an Al/La co-doped high-nickel ternary precursor with a core-shell structure is synthesized.
  • Element doping can significantly improve the cycle stability of cathode materials, but it also causes the problem of capacity decline.
  • applying a protective layer on secondary particles can isolate the active material from the electrolyte, it cannot prevent intergranular cracking inside the primary particles caused by frequent volume changes during electrochemical cycling. As a result, the accumulated strain within each primary particle causes the secondary particles to shatter. Concentration gradient is a better method, but the preparation process is cumbersome, which seriously limits its large-scale production.
  • the purpose of this application is to provide a core-shell gradient ternary precursor and its preparation method and application.
  • This application prepares Ni-MOF in advance, uses Ni-MOF as the core to perform a coprecipitation reaction, and prepares a core-shell gradient ternary precursor.
  • Precursor in the process of preparing the cathode material of the core-shell gradient ternary precursor, the carbon in the core will react with oxygen, thereby lowering the oxidation state of nickel on the particle surface and reducing the occurrence of cracks.
  • this application provides a method for preparing a core-shell gradient ternary precursor.
  • the preparation method includes the following steps:
  • step (2) Add the nickel-cobalt-manganese ternary mixed salt solution, liquid alkali solution and ammonia solution to the bottom solution obtained in step (1) at the same time to perform a co-precipitation reaction, and obtain the core-shell gradient ternary precursor after aging treatment .
  • Ni-MOF in advance (the structure of the Ni-MOF is shown in Formula I), uses Ni-MOF as the core to perform a co-precipitation reaction, and prepares a core-shell precursor with a gradient.
  • the precursor is in During the process of preparing the cathode material, a protective layer containing rock salt phase is formed on the surface, which resists internal strain, inhibits further phase transformation, reduces the occurrence of cracks, and improves the cycle stability of the cathode material.
  • the preparation method simplifies the production process and is suitable for large-scale production.
  • the molar concentration of the terephthalic acid solution in step (1) is 1 to 3 mol/L, for example: 1 mol/L, 1.5 mol/L, 2 mol/L, 2.5 mol/L or 3 mol/L, etc.
  • the alkali solution includes potassium hydroxide solution.
  • the molar concentration of the alkali solution is 2 to 6 mol/L, for example: 2 mol/L, 3 mol/L, 4 mol/L, 5 mol/L or 6 mol/L, etc.
  • the pH of the terephthalate solution is 6 to 7, such as: 6, 6.2, 6.5, 6.8 or 7, etc.
  • the nickel source solution includes nickel nitrate solution.
  • the molar concentration of the nickel nitrate solution is 1 to 3 mol/L, for example: 1 mol/L, 1.5 mol/L, 2 mol/L, 2.5 mol/L or 3 mol/L, etc.
  • the molar ratio of the terephthalic acid and the nickel element in the nickel source is 1:(0.8 ⁇ 1.2), for example: 1:0.8, 1:0.9, 1:1, 1:1.1 or 1:1.2 wait.
  • the stirring time is 24 to 48 hours, for example: 24 hours, 30 hours, 36 hours, 40 hours or 48 hours, etc.
  • reaction is followed by filtration, washing and drying.
  • the detergent for washing includes absolute ethanol.
  • the drying temperature is 40-60°C, for example: 40°C, 45°C, 50°C, 55°C or 60°C, etc.
  • the mass concentration of ammonia water in the bottom liquid in step (1) is 4-8g/L, for example: 4g/L, 5g/L, 6g/L, 7g/L or 8g/L, etc.
  • the mass concentration of Ni-MOF in the bottom solution is 50-150g/L, for example: 50g/L, 80g/L, 100g/L, 120g/L or 150g/L, etc.
  • the pH of the bottom liquid is 11 to 12, for example: 11, 11.2, 11.5, 11.8 or 12, etc.
  • the mass concentration of the solute in the nickel-cobalt-manganese ternary mixed salt solution in step (2) is 80-120g/L, for example: 80g/L, 90g/L, 100g/L, 110g/L or 120g/L. L et al.
  • the addition rate of the nickel-cobalt-manganese ternary mixed salt solution is 6 to 10L/h, for example: 6L/h, 7L/h, 8L/h, 9L/h or 10L/h, etc.
  • the mass concentration of the liquid alkali solution is 28-32%, for example: 28%, 29%, 30%, 31% or 32%, etc.
  • the addition rate of the liquid alkali solution is 2-3L/h, for example: 2L/h, 2.2L/h, 2.5L/h, 2.8L/h or 3L/h, etc.
  • the mass concentration of the ammonia solution is 10% to 20%, for example: 10%, 12%, 15%, 18% or 20%, etc.
  • the addition rate of the ammonia solution is 0.1 to 0.6L/h, for example: 0.1L/h, 0.2L/h, 0.3L/h, 0.4L/h, 0.5L/h or 0.6L/h wait.
  • the stirring speed of the co-precipitation reaction in step (2) is 200-400 rpm, for example: 200 rpm, 250 rpm, 300 rpm, 350 rpm or 400 rpm, etc.
  • the pH of the co-precipitation reaction is 10 to 12, for example: 10, 10.5, 11, 11.5 or 12, etc.
  • the temperature of the co-precipitation reaction is 40-60°C, for example: 40°C, 45°C, 50°C, 55°C or 60°C, etc.
  • the particle size is continuously monitored during the co-precipitation reaction.
  • the reaction process will use a high-efficiency thickener to collect all the particles and return them to the reactor to continue the reaction and grow.
  • the particle size is D50
  • 3 ⁇ 4 ⁇ m for example: 3 ⁇ m, 3.2 ⁇ m, 3.5 ⁇ m, 3.8 ⁇ m or 4 ⁇ m, etc.
  • the present application provides a core-shell gradient ternary precursor, which is prepared by the method described in the first aspect.
  • the carbon in the core will react with oxygen, thereby lowering the oxidation state of nickel on the surface of the particles and reducing the occurrence of cracks.
  • the present application provides a core-shell gradient ternary cathode material, which is made from the core-shell gradient ternary precursor described in the second aspect.
  • the present application provides a positive electrode sheet, which contains the core-shell gradient ternary positive electrode material as described in the third aspect.
  • the present application provides a lithium-ion battery, which includes the positive electrode sheet as described in the fourth aspect.
  • This application prepares Ni-MOF in advance, uses Ni-MOF as the core to perform a co-precipitation reaction, and prepares a core-shell precursor with a gradient.
  • the core-shell gradient ternary precursor is The carbon will react with oxygen, thereby lowering the oxidation state of nickel on the particle surface and reducing the occurrence of cracks.
  • Figure 1 is a process flow diagram of the preparation method described in Example 1 of the present application.
  • This embodiment provides a core-shell gradient ternary precursor.
  • the preparation method of the core-shell gradient ternary precursor is as follows:
  • the pH of the reaction system was controlled to be 11.3, the ammonia concentration was 6.5g/L, the temperature was 58°C, and high-purity nitrogen was continuously introduced.
  • the particle size is monitored during the process. Before the particle size does not meet the requirements, a high-efficiency thickener will be used in the reaction process to collect all particles and return them to the reactor at any time to continue the reaction and grow. When the particle size D 50 reaches 4 ⁇ m, the feed will be stopped. Continue the reaction until the material reacts completely. Then centrifuge, wash, and dry to obtain a core-shell gradient ternary precursor with Ni-MOF as the core.
  • This embodiment provides a core-shell gradient ternary precursor.
  • the preparation method of the core-shell gradient ternary precursor is as follows:
  • the pH of the reaction system was controlled to be 11.3, the ammonia concentration was 6.5g/L, the temperature was 58°C, and high-purity nitrogen was continuously introduced.
  • the particle size is monitored during the process. Before the particle size does not meet the requirements, a high-efficiency thickener will be used during the reaction to collect all particles and return them to the reactor at any time to continue the reaction and grow. When the particle size D 50 reaches 3.5 ⁇ m, the feed will be stopped. , continue the reaction until the material reacts completely. Then centrifuge, wash, and dry to obtain a core-shell gradient ternary precursor with Ni-MOF as the core.
  • Example 1 The only difference between this embodiment and Example 1 is that the concentration of nickel nitrate is 0.6 mol/L, and other conditions and parameters are exactly the same as in Example 1.
  • Example 1 The only difference between this embodiment and Example 1 is that the concentration of nickel nitrate is 1.5 mol/L, and other conditions and parameters are exactly the same as in Example 1.
  • Example 1 The only difference between this embodiment and Example 1 is that the pH during the reaction is controlled to be 9, and other conditions and parameters are exactly the same as in Example 1.
  • Example 1 The only difference between this embodiment and Example 1 is that the pH during the reaction is controlled to be 12, and other conditions and parameters are exactly the same as in Example 1.
  • Example 1 The only difference between this embodiment and Example 1 is that the particle size of the precursor is 2.5 ⁇ m, and other conditions and parameters are exactly the same as those in Example 1.
  • Example 1 The only difference between this embodiment and Example 1 is that the particle size of the precursor is 4.5 ⁇ m, and other conditions and parameters are exactly the same as those in Example 1.
  • Example 1 The only difference between this comparative example and Example 1 is that the Ni-MOF is replaced by carbon microspheres, and other conditions and parameters are exactly the same as Example 1.
  • the resulting sample was calcined at 800°C for 16 hours under the protection of pure oxygen.
  • Ni-MOF-74 carbonizes and reacts with the precursor to form the final NMC811.
  • the negative electrode uses a metal lithium foil with a diameter of 18mm and a thickness of 1mm.
  • the separator uses a Celgard polyethylene porous membrane.
  • the electrolyte uses LiPF 6 (lithium iron phosphate) with a concentration of 1mol/L as the electrolyte ethylene carbonate (EC) and dicarbonate.
  • EC electrolyte ethylene carbonate
  • DEC ethyl ester
  • the initial discharge specific capacity at 0.1C can reach more than 190.2mAh/g, and the initial discharge specific capacity at 1C can reach more than 170mAh/g.
  • the discharge specific capacity in the 100th cycle of 1C can reach more than 164.7mAh/g, and the capacity retention rate in 100th cycle of 1C can reach more than 96.8%.
  • Example 1 it can be seen from the comparison between Example 1 and Example 3-4 that during the preparation process of Ni-MOF, the molar ratio of nickel and terephthalic acid will affect the quality of the Ni-MOF produced, and thus affect the performance of the precursor. , controlling the molar ratio of nickel and terephthalic acid at 0.8-1.2:1, the Ni-MOF produced has better quality and is more suitable as the core for preparing core-shell gradient ternary precursors.
  • Example 1 From the comparison between Example 1 and Examples 5-6, it can be seen that the pH of the bottom liquid will affect the quality of the core-shell gradient ternary precursor.
  • the pH is controlled between 10.5 and 11.5, and the core-shell gradient ternary precursor can be prepared.
  • the quality of the precursor is good. If the pH is too high during the reaction, the prepared ternary precursor will have too many small particles, which are all nuclei and will not grow into spheres. If the pH is too low during the reaction, the primary particles of the prepared ternary precursor will be particularly coarse and regular spheres will not be formed.
  • the particle size of the core-shell gradient ternary precursor will affect the performance of the core-shell gradient ternary material.
  • the particle size of the core-shell gradient ternary precursor should be controlled within 3 ⁇ 4 ⁇ m, the core-shell gradient ternary material has better performance. If the particle size of the core-shell gradient ternary precursor is too large, cracks will occur. Secondly, the electrochemical specific surface area will be very small, thus affecting the performance of the cathode material. . If the particle size of the core-shell gradient ternary precursor is too small, the cathode material prepared from the precursor cannot form a stable Li diffusion channel, which will reduce the initial charge and discharge capacity of the cathode material.
  • Example 1 uses Ni-MOF as the core to perform a co-precipitation reaction to prepare a core-shell precursor with a gradient.
  • the surface of the precursor is A protective layer containing rock salt phase will be generated, which resists internal strain, inhibits further phase transformation, reduces the occurrence of cracks, and improves the cycle stability of the cathode material.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Composite Materials (AREA)
  • Manufacturing & Machinery (AREA)
  • Health & Medical Sciences (AREA)
  • Polymers & Plastics (AREA)
  • Medicinal Chemistry (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

本申请提供了一种核壳梯度三元前驱体及其制备方法和应用,所述制备方法包括以下步骤:(1)将对苯二甲酸溶液和碱液混合得到对苯二甲酸盐溶液,加入镍源溶液反应得到Ni-MOF溶液,将Ni-MOF溶液和氨水混合,调节pH得到底液;(2)将镍钴锰三元混合盐溶液、液碱溶液和氨水溶液同时加入步骤(1)得到的底液中进行共沉淀反应,经陈化处理后得到所述核壳梯度三元前驱体,本申请预先制备Ni-MOF,以Ni-MOF作为核进行共沉淀反应,制备得到核壳状,具有梯度的前驱体,所述核壳梯度三元前驱体在制备正极材料的过程中,核中的碳会和氧反应,从而使颗粒表面的镍氧化态变低,减轻裂纹的产生。

Description

一种核壳梯度三元前驱体及其制备方法和应用 技术领域
本申请属于锂离子电池技术领域,涉及一种核壳梯度三元前驱体及其制备方法和应用。
背景技术
为了满足电动汽车的高能量需求,富镍层状材料LiNi 1-x-yMn xCo yO 2(x+y≤0.4)(NCM)和LiNi 0.8Co 0.15Al 0.05O 2被认为是最有前途的正极候选材料。200mAh/g的容量和3.8V(vsLi+/Li)的高电压。但是,Li +/Ni 2+阳离子混合、Li残留、热稳定性差和粉化等问题使电池的循环和倍率性能受到限制。迄今为止,科学家们已经尝试通过使用多种策略来提高结构稳定性,包括元素掺杂、表面涂层和形成浓度梯度等。
CN112701271A公开了一种基于三元前驱体正极材料的元素掺杂方法,其步骤包括:称取可溶性镍盐、可溶性钴盐和可溶性锰盐溶于去离子水中,得到三元金属盐溶液;配制碱性络合剂,将碱性络合剂与三元金属盐溶液混合反应后,依次进行收集、过滤、水洗以及干燥,得到三元前驱体粉末。
CN111422926A公开了一种核壳结构Al/La共掺杂高镍三元前驱体及其制备方法,以及由上述前驱体制备的正极材料。所述制备方法主要分三步,第一步在低pH下合成一次颗粒为棒状的Al掺杂高镍三元前躯体;第二步在上述基础上调高pH,以Al掺杂高镍三元前驱体为内核生长出一次颗粒为针状的La掺杂高镍三元前躯体外壳,合成出具有核壳结构的Al/La共掺杂高镍三元前驱体。
元素掺杂能显著提高正极材料的循环稳定性,但同时也会带来容量下降的问题。虽然在二次粒子上涂保护层可以将活性材料与电解质隔离,但它不能防 止电化学循环过程中频繁的体积变化引起的一次粒子内部的晶间开裂。结果,每个初级粒子内的累积应变使次级粒子粉碎。浓度梯度倒是一种比较好的方法,但是制备过程比较麻烦,严重限制了它的大规模生产。
发明内容
以下是对本文详细描述的主题的概述。本概述并非是为了限制权利要求的保护范围。
本申请的目的在于提供一种核壳梯度三元前驱体及其制备方法和应用,本申请预先制备Ni-MOF,以Ni-MOF作为核进行共沉淀反应,制备得到核壳状,具有梯度的前驱体,所述核壳梯度三元前驱体在制备正极材料的过程中,核中的碳会和氧反应,从而使颗粒表面的镍氧化态变低,减轻裂纹的产生。
为达到此申请目的,本申请采用以下技术方案:
第一方面,本申请提供了一种核壳梯度三元前驱体的制备方法,所述制备方法包括以下步骤:
(1)将对苯二甲酸溶液和碱液混合得到对苯二甲酸盐溶液,加入镍源溶液反应得到Ni-MOF溶液,将Ni-MOF溶液和氨水混合,调节pH得到底液;
(2)将镍钴锰三元混合盐溶液、液碱溶液和氨水溶液同时加入步骤(1)得到的底液中进行共沉淀反应,经陈化处理后得到所述核壳梯度三元前驱体。
本申请预先制备Ni-MOF(所述Ni-MOF的结构如式I所示),以Ni-MOF作为核进行共沉淀反应,制备得到核壳状,具有梯度的前驱体,所述前驱体在制备正极材料的过程中,表面会生成一层含有岩盐相的保护层,从而抵抗了内部应变,并抑制了进一步的相变,减轻了裂纹的产生,提高了正极材料的循环稳定性,所述制备方法简化了生产工艺,适合大规模生产。
Figure PCTCN2022113253-appb-000001
可选地,步骤(1)所述对苯二甲酸溶液的摩尔浓度为1~3mol/L,例如:1mol/L、1.5mol/L、2mol/L、2.5mol/L或3mol/L等。
可选地,所述碱液包括氢氧化钾溶液。
可选地,所述碱液的摩尔浓度为2~6mol/L,例如:2mol/L、3mol/L、4mol/L、5mol/L或6mol/L等。
可选地,所述对苯二甲酸盐溶液的pH为6~7,例如:6、6.2、6.5、6.8或7等。
可选地,所述镍源溶液包括硝酸镍溶液。
可选地,所述硝酸镍溶液的摩尔浓度为1~3mol/L,例如:1mol/L、1.5mol/L、2mol/L、2.5mol/L或3mol/L等。
可选地,所述对苯二甲酸和镍源中的镍元素的摩尔比为1:(0.8~1.2),例如:1:0.8、1:0.9、1:1、1:1.1或1:1.2等。
可选地,步骤(1)所述反应的过程中进行搅拌。
可选地,所述搅拌的时间为24~48h,例如:24h、30h、36h、40h或48h等。
可选地,所述反应后进行过滤、洗涤和干燥。
可选地,所述洗涤的洗涤剂包括无水乙醇。
可选地,所述干燥的温度为40~60℃,例如:40℃、45℃、50℃、55℃或 60℃等。
可选地,步骤(1)所述底液中氨水的质量浓度为4~8g/L,例如:4g/L、5g/L、6g/L、7g/L或8g/L等。
可选地,所述底液中Ni-MOF的质量浓度为50~150g/L,例如:50g/L、80g/L、100g/L、120g/L或150g/L等。
可选地,所述底液的pH为11~12,例如:11、11.2、11.5、11.8或12等。
可选地,步骤(2)所述镍钴锰三元混合盐溶液中溶质的质量浓度为80~120g/L,例如:80g/L、90g/L、100g/L、110g/L或120g/L等。
可选地,所述镍钴锰三元混合盐溶液的加入速度为6~10L/h,例如:6L/h、7L/h、8L/h、9L/h或10L/h等。
可选地,所述液碱溶液的质量浓度为28~32%,例如:28%、29%、30%、31%或32%等。
可选地,所述液碱溶液的加入速度为2~3L/h,例如:2L/h、2.2L/h、2.5L/h、2.8L/h或3L/h等。
可选地,所述氨水溶液的质量浓度为10~20%,例如:10%、12%、15%、18%或20%等。
可选地,所述氨水溶液的加入速度为0.1~0.6L/h,例如:0.1L/h、0.2L/h、0.3L/h、0.4L/h、0.5L/h或0.6L/h等。
可选地,步骤(2)所述共沉淀反应的搅拌速度为200~400rpm,例如:200rpm、250rpm、300rpm、350rpm或400rpm等。
可选地,所述共沉淀反应的pH为10~12,例如:10、10.5、11、11.5或12等。
可选地,所述共沉淀反应的温度为40~60℃,例如:40℃、45℃、50℃、55℃ 或60℃等。
可选地,所述共沉淀反应的过程中持续监测粒径,在粒径未达到要求前,反应过程会使用高效浓密器,收集所有的颗粒物回到反应釜持续反应长大,当粒径D50达到3~4μm(例如:3μm、3.2μm、3.5μm、3.8μm或4μm等)时,停止进料,继续反应直至物料反应完全。
第二方面,本申请提供了一种核壳梯度三元前驱体,所述核壳梯度三元前驱体通过如第一方面所述方法制得。
本申请所述核壳梯度三元前驱体制备正极材料的过程中,核中的碳会和氧反应,从而使颗粒表面的镍氧化态变低,减轻裂纹的产生。
第三方面,本申请提供了一种核壳梯度三元正极材料,所述核壳梯度三元正极材料由第二方面所述核壳梯度三元前驱体制得。
第四方面,本申请提供了一种正极极片,所述正极极片包含如第三方面所述的核壳梯度三元正极材料。
第五方面,本申请提供了一种锂离子电池,所述锂离子电池包含如第四方面所述的正极极片。
相对于现有技术,本申请具有以下有益效果:
本申请预先制备Ni-MOF,以Ni-MOF作为核进行共沉淀反应,制备得到核壳状,具有梯度的前驱体,所述核壳梯度三元前驱体在制备正极材料的过程中,核中的碳会和氧反应,从而使颗粒表面的镍氧化态变低,减轻裂纹的产生。
在阅读并理解了详细描述和附图后,可以明白其他方面。
附图说明
图1是本申请实施例1所述制备方法的工艺流程图。
具体实施方式
下面通过具体实施方式来进一步说明本申请的技术方案。本领域技术人员应该明了,所述实施例仅仅是帮助理解本申请,不应视为对本申请的具体限制。
实施例1
本实施例提供了一种核壳梯度三元前驱体,所述核壳梯度三元前驱体的制备方法如下:
(1)在200L的反应釜中加入50L 1mol/L的对苯二甲酸,打开机械搅拌,加入50L 2mol/L的氢氧化钾溶液,将对苯二甲酸变为对苯二甲酸钾(pH:6-7)。接着将50L 1mol/L的硝酸镍溶液以2L/h的流速滴加到对苯二甲酸钾溶液中,立即有大量绿色沉淀产生,搅拌36h,过滤、乙醇洗涤三次,纯水洗涤五次,50℃干燥,得到Ni-MOF;
(2)将浓度为100g/L的镍钴锰三元混合盐溶液、质量浓度为30%的液碱溶液以及质量浓度为15%的氨水溶液分别以8L/h、2.65L/h、0.8L/h的进料速度同时并流加入至含有温度为58℃、氨水浓度为8g/L、Ni-MOF含量为100g/L,以及pH为11.8的底液的反应釜中,且在380rpm的搅拌速率下进行共沉淀反应,反应的过程中控制反应体系的pH为11.3,氨浓度为6.5g/L,温度为58℃,持续通入高纯氮气。在过程中监测粒径,在粒径未达到要求前,反应过程会使用高效浓密器,收集所有的颗粒物随时回到反应釜持续反应长大,当粒径D 50达到4μm时,停止进料,继续反应直至物料反应完全。然后进行离心、洗涤、烘干,就获得了Ni-MOF为核的核壳梯度三元前驱体。
所述制备方法的工艺流程图如图1所示。
实施例2
本实施例提供了一种核壳梯度三元前驱体,所述核壳梯度三元前驱体的制 备方法如下:
(1)在200L的反应釜中加入50L 1.2mol/L的对苯二甲酸,打开机械搅拌,加入50L 2.4mol/L的氢氧化钾溶液,将对苯二甲酸变为对苯二甲酸钾(pH:6-7)。接着将50L 1.3mol/L的硝酸镍溶液以2L/h的流速滴加到对苯二甲酸钾溶液中,立即有大量绿色沉淀产生,搅拌38h,过滤、乙醇洗涤三次,纯水洗涤五次,50℃干燥,得到Ni-MOF;
(2)将浓度为100g/L的镍钴锰三元混合盐溶液、质量浓度为32%的液碱溶液以及质量浓度为16%的氨水溶液分别以8L/h、2.65L/h、0.8L/h的进料速度同时并流加入至含有温度为58℃、氨水浓度为8g/L、Ni-MOF含量为100g/L,以及PH为11.8的底液的反应釜中,且在380rpm的搅拌速率下进行共沉淀反应,反应的过程中控制反应体系的pH为11.3,氨浓度为6.5g/L,温度为58℃,持续通入高纯氮气。在过程中监测粒径,在粒径未达到要求前,反应过程会使用高效浓密器,收集所有的颗粒物随时回到反应釜持续反应长大,当粒径D 50达到3.5μm时,停止进料,继续反应直至物料反应完全。然后进行离心、洗涤、烘干,就获得了Ni-MOF为核的核壳梯度三元前驱体。
实施例3
本实施例与实施例1区别仅在于,硝酸镍的浓度为0.6mol/L,其他条件与参数与实施例1完全相同。
实施例4
本实施例与实施例1区别仅在于,硝酸镍的浓度为1.5mol/L,其他条件与参数与实施例1完全相同。
实施例5
本实施例与实施例1区别仅在于,控制反应过程中pH为9,其他条件与参数与实施例1完全相同。
实施例6
本实施例与实施例1区别仅在于,控制反应过程中pH为12,其他条件与参数与实施例1完全相同。
实施例7
本实施例与实施例1区别仅在于,前驱体粒径为2.5μm,其他条件与参数与实施例1完全相同。
实施例8
本实施例与实施例1区别仅在于,前驱体粒径为4.5μm,其他条件与参数与实施例1完全相同。
对比例1
本对比例与实施例1区别仅在于,将Ni-MOF换为碳微球,其他条件与参数与实施例1完全相同。
性能测试:
将实施例1-8和对比例1得到的前驱体与锂源LiOH混合后,将所得样品在纯氧保护下在800℃下煅烧16小时。在高温煅烧过程中,Ni-MOF-74碳化并与前驱体反应,形成最终的NMC811。正极材料与导电剂Super P(导电炭黑)、粘结剂PVDF(聚偏氟乙烯)按照90:5:5的比例制备浆料,均匀涂覆于铝箔集流体上面,于80℃烘箱中烘烤12h后取出,裁成直径为12mm的正极极片。负极采用直径为18mm,厚度为1mm的金属锂箔,隔膜采用Celgard聚乙烯多孔膜,电解液使用浓度为1mol/L的LiPF 6(磷酸铁锂)为电解质的碳酸乙烯酯(EC)和碳酸二 乙酯(DEC)的等量混合液。将正极、负极、隔膜、电解液在水含量和氧含量低于0.1ppm的手套箱内组装成2032型纽扣式电池,电池放置12h后,进行性能测试。测试结果如表1所示:
表1
Figure PCTCN2022113253-appb-000002
由表1可以看出,由实施例1-8可得,本申请所述前驱体制成电池后0.1C初始放电比容量可达190.2mAh/g以上,1C初始放电比容量可达170mAh/g以上,1C第100周放电比容量可达164.7mAh/g以上,1C循环100周容量保持率可达96.8%以上。
由实施例1和实施例3-4对比可得,在Ni-MOF的制备过程中,镍和对苯二甲酸的摩尔比会影响制得Ni-MOF的品质,进而影响制得前驱体的性能,将镍 和对苯二甲酸的摩尔比控制在0.8~1.2:1,制得Ni-MOF的品质较好,更适合作为制备核壳梯度三元前驱体的内核。
由实施例1和实施例5-6对比可得,底液的pH会影响制得核壳梯度三元前驱体的品质,控制反应过程中pH控制在10.5~11.5,制得核壳梯度三元前驱体的品质较好,若反应过程中pH过高,会造成制备的三元前驱体小颗粒太多,都是核,并没有长大的球体。若反应过程中pH过低,会使制备的三元前驱体一次颗粒特别粗大,形成不了规则的球体。
由实施例1和实施例7-8对比可得,核壳梯度三元前驱体的粒径会影响制得核壳梯度三元材料的性能,将核壳梯度三元前驱体的粒径控制在3~4μm,制得核壳梯度三元材料的性能较好,若核壳梯度三元前驱体的粒径过大,会产生裂纹,其次电化学比表面积会很小,从而影响正极材料的性能。若核壳梯度三元前驱体的粒径过小,前驱体制备的正极材料不能形成稳定的Li扩散通道,会降低正极材料的初始充放电容量。
由实施例1和对比例1对比可得,本申请以Ni-MOF作为核进行共沉淀反应,制备得到核壳状,具有梯度的前驱体,所述前驱体在制备正极材料的过程中,表面会生成一层含有岩盐相的保护层,从而抵抗了内部应变,并抑制了进一步的相变,减轻了裂纹的产生,提高了正极材料的循环稳定性。
申请人声明,以上所述仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,所属技术领域的技术人员应该明了,任何属于本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到的变化或替换,均落在本申请的保护范围和公开范围之内。

Claims (10)

  1. 一种核壳梯度三元前驱体的制备方法,其中,所述制备方法包括以下步骤:
    (1)将对苯二甲酸溶液和碱液混合得到对苯二甲酸盐溶液,加入镍源溶液反应得到Ni-MOF溶液,将Ni-MOF溶液和氨水混合,调节pH得到底液;
    (2)将镍钴锰三元混合盐溶液、液碱溶液和氨水溶液同时加入步骤(1)得到的底液中进行共沉淀反应,经陈化处理后得到所述核壳梯度三元前驱体。
  2. 如权利要求1所述的制备方法,其中,步骤(1)所述对苯二甲酸溶液的摩尔浓度为1~3mol/L;
    可选地,所述碱液包括氢氧化钾溶液;
    可选地,所述碱液的摩尔浓度为2~6mol/L;
    可选地,所述对苯二甲酸盐溶液的pH为6~7;
    可选地,所述镍源溶液包括硝酸镍溶液;
    可选地,所述硝酸镍溶液的摩尔浓度为1~3mol/L;
    可选地,所述对苯二甲酸和镍源中的镍元素的摩尔比为1:(0.8~1.2)。
  3. 如权利要求1或2所述的制备方法,其中,步骤(1)所述反应的过程中进行搅拌;
    可选地,所述搅拌的时间为24~48h;
    可选地,所述反应后进行过滤、洗涤和干燥;
    可选地,所述洗涤的洗涤剂包括无水乙醇;
    可选地,所述干燥的温度为40~60℃。
  4. 如权利要求1-3任一项所述的制备方法,其中,步骤(1)所述底液中氨水的质量浓度为4~8g/L;
    可选地,所述底液中Ni-MOF的质量浓度为50~150g/L;
    可选地,所述底液的pH为11~12。
  5. 如权利要求1-4任一项所述的制备方法,其中,步骤(2)所述镍钴锰三元混合盐溶液中溶质的质量浓度为80~120g/L;
    可选地,所述镍钴锰三元混合盐溶液的加入速度为6~10L/h;
    可选地,所述液碱溶液的质量浓度为28~32%;
    可选地,所述液碱溶液的加入速度为2~3L/h;
    可选地,所述氨水溶液的质量浓度为10~20%;
    可选地,所述氨水溶液的加入速度为0.1~0.6L/h。
  6. 如权利要求1-5任一项所述的制备方法,其中,步骤(2)所述共沉淀反应的搅拌速度为200~400rpm;
    可选地,所述共沉淀反应的pH为10~12;
    可选地,所述共沉淀反应的温度为40~60℃;
    可选地,所述共沉淀反应的过程中持续监测粒径,在粒径未达到要求前,反应过程会使用高效浓密器,收集所有的颗粒物回到反应釜持续反应长大,当粒径D50达到3~4μm时,停止进料,继续反应直至物料反应完全。
  7. 一种核壳梯度三元前驱体,其中,所述核壳梯度三元前驱体通过如权利要求1-6任一项所述方法制得。
  8. 一种核壳梯度三元正极材料,其中,所述核壳梯度三元正极材料由权利要求7所述核壳梯度三元前驱体制得。
  9. 一种正极极片,其中,所述正极极片包含如权利要求8所述的核壳梯度三元正极材料。
  10. 一种锂离子电池,其中,所述锂离子电池包含如权利要求9所述的正极极片。
PCT/CN2022/113253 2022-05-09 2022-08-18 一种核壳梯度三元前驱体及其制备方法和应用 WO2023216453A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP22932482.7A EP4299650A1 (en) 2022-05-09 2022-08-18 Core-shell gradient ternary precursor, and preparation method therefor and use thereof
KR1020237033346A KR20230159451A (ko) 2022-05-09 2022-08-18 코어 쉘 구배 삼원 전구체, 그 제조 방법 및 응용

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210501591.5 2022-05-09
CN202210501591.5A CN114773617B (zh) 2022-05-09 2022-05-09 一种核壳梯度三元前驱体及其制备方法和应用

Publications (1)

Publication Number Publication Date
WO2023216453A1 true WO2023216453A1 (zh) 2023-11-16

Family

ID=82437423

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/113253 WO2023216453A1 (zh) 2022-05-09 2022-08-18 一种核壳梯度三元前驱体及其制备方法和应用

Country Status (4)

Country Link
EP (1) EP4299650A1 (zh)
KR (1) KR20230159451A (zh)
CN (1) CN114773617B (zh)
WO (1) WO2023216453A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114773617B (zh) * 2022-05-09 2023-09-01 荆门市格林美新材料有限公司 一种核壳梯度三元前驱体及其制备方法和应用

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107968202A (zh) * 2017-11-21 2018-04-27 宁波纳微新能源科技有限公司 一种含铝的镍钴锰核壳结构的正极材料及其制备方法
WO2019104473A1 (zh) * 2017-11-28 2019-06-06 厦门厦钨新能源材料有限公司 三元前驱体材料及其制备方法
CN109962233A (zh) * 2017-12-25 2019-07-02 格林美(无锡)能源材料有限公司 一种梯度型的类单晶正极材料及其制备方法
CN111129463A (zh) * 2019-12-26 2020-05-08 格林美股份有限公司 一种mof包覆的单晶三元正极材料及其前驱体的制备方法
CN111422926A (zh) 2020-04-10 2020-07-17 浙江帕瓦新能源股份有限公司 一种核壳结构Al/La共掺杂高镍三元前驱体及其制备方法、以及一种正极材料
CN111525113A (zh) * 2020-05-07 2020-08-11 浙江帕瓦新能源股份有限公司 一种核壳结构高镍三元前驱体及其制备方法、以及一种中空掺杂高镍三元正极材料
CN112701271A (zh) 2020-12-28 2021-04-23 格林美(无锡)能源材料有限公司 一种基于三元前驱体正极材料的元素掺杂方法
CN112993229A (zh) * 2021-05-13 2021-06-18 浙江帕瓦新能源股份有限公司 一种多金属mof梯度包覆改性三元前驱体的制备方法
CN114773617A (zh) * 2022-05-09 2022-07-22 荆门市格林美新材料有限公司 一种核壳梯度三元前驱体及其制备方法和应用

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109267093B (zh) * 2018-10-09 2020-04-10 苏州大学 超薄Ni-Fe-MOF纳米片及其制备方法和应用
CN112169732A (zh) * 2020-08-27 2021-01-05 荆门市格林美新材料有限公司 一种掺杂型三元前驱体材料的制备设备及方法
CN112608488B (zh) * 2020-12-15 2023-06-02 荆门市格林美新材料有限公司 一种无钴锂电池用MOFs基前驱体、正极材料及其制备方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107968202A (zh) * 2017-11-21 2018-04-27 宁波纳微新能源科技有限公司 一种含铝的镍钴锰核壳结构的正极材料及其制备方法
WO2019104473A1 (zh) * 2017-11-28 2019-06-06 厦门厦钨新能源材料有限公司 三元前驱体材料及其制备方法
CN109962233A (zh) * 2017-12-25 2019-07-02 格林美(无锡)能源材料有限公司 一种梯度型的类单晶正极材料及其制备方法
CN111129463A (zh) * 2019-12-26 2020-05-08 格林美股份有限公司 一种mof包覆的单晶三元正极材料及其前驱体的制备方法
CN111422926A (zh) 2020-04-10 2020-07-17 浙江帕瓦新能源股份有限公司 一种核壳结构Al/La共掺杂高镍三元前驱体及其制备方法、以及一种正极材料
CN111525113A (zh) * 2020-05-07 2020-08-11 浙江帕瓦新能源股份有限公司 一种核壳结构高镍三元前驱体及其制备方法、以及一种中空掺杂高镍三元正极材料
CN112701271A (zh) 2020-12-28 2021-04-23 格林美(无锡)能源材料有限公司 一种基于三元前驱体正极材料的元素掺杂方法
CN112993229A (zh) * 2021-05-13 2021-06-18 浙江帕瓦新能源股份有限公司 一种多金属mof梯度包覆改性三元前驱体的制备方法
CN114773617A (zh) * 2022-05-09 2022-07-22 荆门市格林美新材料有限公司 一种核壳梯度三元前驱体及其制备方法和应用

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
"Doctoral Dissertations ", 1 December 2017, BEIJING INSTITUTE OF TECHNOLOGY, China, article HAN, YUZHEN: "Metal Organic Frameworks as Electrode Materials for Lithium Ion Batteries", pages: 1 - 150, XP009550430, DOI: 10.26948/d.cnki.gbjlu.2017.000848 *

Also Published As

Publication number Publication date
KR20230159451A (ko) 2023-11-21
CN114773617B (zh) 2023-09-01
CN114773617A (zh) 2022-07-22
EP4299650A1 (en) 2024-01-03

Similar Documents

Publication Publication Date Title
WO2021136243A1 (zh) 改性镍钴铝酸锂正极材料及其制备方法与应用
WO2020134048A1 (zh) 一种无钴富锂三元正极材料nma及其制备方法
CN110380024B (zh) P3结构的钠过渡金属氧化物及其制备方法和钠离子电池
WO2020043135A1 (zh) 三元正极材料及其制备方法、锂离子电池
CN104393285B (zh) 镍钴铝三元正极材料及其制备方法
CN110451585A (zh) 一种高镍、长循环单晶锂离子电池正极材料制备方法
CN102891309B (zh) 一种浓度渐变的球形富锂正极材料的制备方法
CN109216688A (zh) 一种三元锂电材料、其制备方法与锂离子电池
CN111509214B (zh) 一种高镍层状复合材料及其制备的锂离子电池正极材料
CN108483516B (zh) 一种具有超晶格有序结构的锂离子电池正极材料及其合成方法
CN111689528B (zh) 一种三元材料前驱体及其制备方法和用途
CN109461928A (zh) 一种高能量密度多元正极材料及其制备方法
CN110429268A (zh) 一种改性硼掺杂富锂锰基正极材料及其制备方法与应用
WO2015039490A1 (zh) 富锂正极材料及其制备方法
CN113363492A (zh) 一种复合包覆改性的高镍nca正极材料及其制备方法
WO2007000075A1 (fr) Procédé de préparation d’hydroxyde nickeleux sphérique qui est dopé et d’oxydes métalliques multiples, et pile secondaire au lithium
CN111554897A (zh) 一种高性能锂离子电池复合正极材料及其制备方法
CN102034967A (zh) 一种高电压锂电池正极材料氧化镍锰锂的共沉淀制法
WO2014190662A1 (zh) 一种双掺杂富锂固溶体正极复合材料及其制备方法、锂离子电池正极片和锂离子电池
CN116504954B (zh) 一种正极材料及其制备方法和钠离子电池
CN115939370A (zh) 钠离子正极材料及其制备方法、二次电池
WO2023216453A1 (zh) 一种核壳梯度三元前驱体及其制备方法和应用
CN103855372A (zh) 一种高锰复合正极材料及其制备方法
CN114436345A (zh) 一种锂离子电池三元正极材料及其制备方法
CN112952056B (zh) 一种富锂锰基复合正极材料及其制备方法和应用

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 20237033346

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2023562476

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2022932482

Country of ref document: EP

Effective date: 20230925