WO2019103481A1 - 중공사막 및 이의 제조방법 - Google Patents

중공사막 및 이의 제조방법 Download PDF

Info

Publication number
WO2019103481A1
WO2019103481A1 PCT/KR2018/014428 KR2018014428W WO2019103481A1 WO 2019103481 A1 WO2019103481 A1 WO 2019103481A1 KR 2018014428 W KR2018014428 W KR 2018014428W WO 2019103481 A1 WO2019103481 A1 WO 2019103481A1
Authority
WO
WIPO (PCT)
Prior art keywords
hollow fiber
fiber membrane
less
mpa
weight
Prior art date
Application number
PCT/KR2018/014428
Other languages
English (en)
French (fr)
Inventor
박범진
임동준
서창민
Original Assignee
롯데케미칼 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 롯데케미칼 주식회사 filed Critical 롯데케미칼 주식회사
Priority to CN201880084975.3A priority Critical patent/CN111587146B/zh
Priority to EP18880972.7A priority patent/EP3714966A4/en
Priority to US16/766,656 priority patent/US11406942B2/en
Publication of WO2019103481A1 publication Critical patent/WO2019103481A1/ko

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/02Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor characterised by their properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D63/00Apparatus in general for separation processes using semi-permeable membranes
    • B01D63/02Hollow fibre modules
    • B01D63/021Manufacturing thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0002Organic membrane manufacture
    • B01D67/0009Organic membrane manufacture by phase separation, sol-gel transition, evaporation or solvent quenching
    • B01D67/0011Casting solutions therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0002Organic membrane manufacture
    • B01D67/0009Organic membrane manufacture by phase separation, sol-gel transition, evaporation or solvent quenching
    • B01D67/0011Casting solutions therefor
    • B01D67/00111Polymer pretreatment in the casting solutions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0002Organic membrane manufacture
    • B01D67/0023Organic membrane manufacture by inducing porosity into non porous precursor membranes
    • B01D67/0025Organic membrane manufacture by inducing porosity into non porous precursor membranes by mechanical treatment, e.g. pore-stretching
    • B01D67/0027Organic membrane manufacture by inducing porosity into non porous precursor membranes by mechanical treatment, e.g. pore-stretching by stretching
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0002Organic membrane manufacture
    • B01D67/0023Organic membrane manufacture by inducing porosity into non porous precursor membranes
    • B01D67/003Organic membrane manufacture by inducing porosity into non porous precursor membranes by selective elimination of components, e.g. by leaching
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/08Hollow fibre membranes
    • B01D69/087Details relating to the spinning process
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/30Polyalkenyl halides
    • B01D71/32Polyalkenyl halides containing fluorine atoms
    • B01D71/34Polyvinylidene fluoride
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2323/00Details relating to membrane preparation
    • B01D2323/08Specific temperatures applied
    • B01D2323/081Heating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2323/00Details relating to membrane preparation
    • B01D2323/12Specific ratios of components used
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2323/00Details relating to membrane preparation
    • B01D2323/15Use of additives
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2323/00Details relating to membrane preparation
    • B01D2323/15Use of additives
    • B01D2323/18Pore-control agents or pore formers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2323/00Details relating to membrane preparation
    • B01D2323/15Use of additives
    • B01D2323/20Plasticizers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2323/00Details relating to membrane preparation
    • B01D2323/15Use of additives
    • B01D2323/218Additive materials
    • B01D2323/2182Organic additives
    • B01D2323/21839Polymeric additives
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2323/00Details relating to membrane preparation
    • B01D2323/15Use of additives
    • B01D2323/218Additive materials
    • B01D2323/2182Organic additives
    • B01D2323/21839Polymeric additives
    • B01D2323/2187Polyvinylpyrolidone
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/02Details relating to pores or porosity of the membranes
    • B01D2325/022Asymmetric membranes
    • B01D2325/023Dense layer within the membrane
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/02Details relating to pores or porosity of the membranes
    • B01D2325/022Asymmetric membranes
    • B01D2325/0231Dense layers being placed on the outer side of the cross-section
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/02Details relating to pores or porosity of the membranes
    • B01D2325/0283Pore size
    • B01D2325/028321-10 nm
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/02Details relating to pores or porosity of the membranes
    • B01D2325/0283Pore size
    • B01D2325/02833Pore size more than 10 and up to 100 nm
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/02Details relating to pores or porosity of the membranes
    • B01D2325/0283Pore size
    • B01D2325/02834Pore size more than 0.1 and up to 1 µm
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/08Patterned membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/20Specific permeability or cut-off range
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/24Mechanical properties, e.g. strength
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/36Hydrophilic membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/38Hydrophobic membranes

Definitions

  • the present invention relates to a hollow fiber membrane and a method for producing the hollow fiber membrane. More particularly, the present invention relates to a hollow fiber membrane having excellent water permeability and mechanical strength by controlling the pore size of an inner surface and an outer surface, and a manufacturing method thereof.
  • PVDF polyvinylidene fluoride
  • TIPS thermal induced phase seperation
  • NIPS non-solvent induced phase seperation
  • hollow fiber membrane As a method of increasing the water permeability using an additive, there is a case where a hollow fiber membrane is manufactured by applying an inorganic additive additive.
  • hollow fiber membranes have been developed using phthalate plasticizer and inorganic powder silica in the production of PVDF hollow fiber membranes using thermal induction phase transfer method.
  • the hollow fiber membranes have improved internal mechanical structure and improved water permeability.
  • the hollow fiber membranes thus prepared have excellent physical properties, but complex extraction processes are required for the complete extraction of silica as an inorganic fine powder additive. As a result, the manufacturing process becomes longer and the process cost increases.
  • a related prior art document is Korean Patent Laid-Open No. 10-2003-0001474.
  • An object of the present invention is to provide a hollow fiber membrane excellent in mechanical strength and water permeability and a method for producing the hollow fiber membrane.
  • Another object of the present invention is to provide a hollow fiber membrane which is simple in manufacturing process without using an inorganic fine powder and thus does not require a complicated extraction process, and a method for manufacturing the hollow fiber membrane.
  • One aspect of the present invention relates to a hollow fiber membrane.
  • the hollow fiber membrane is a hollow fiber membrane having an outer surface and an inner surface, the inner surface having a zebra-stripe pattern alternately formed with dense and dent portions along its length, And has a size of about 1 ⁇ or less ( ⁇ about 1 ⁇ ) and a water permeability of ⁇ about 1,300 to about 5,000 LMH / bar.
  • the hollow fiber membrane of claim 1 wherein the average pore diameter is about 0.08 ⁇ to about 0.3 ⁇ and the maximum pore size of the outer surface is about 0.09 to about 0.5 ⁇ .
  • the apparent area ratio of the dense portion and the dense portion may satisfy the following expression (1).
  • B is the apparent surface area of the dendrite and A is the apparent surface area of the dense portion).
  • Another aspect of the present invention relates to a method for producing a hollow fiber membrane.
  • the method includes preparing a spinning solution by mixing a composition comprising a vinylidene fluoride-based polymer resin and a polyester plasticizer having a viscosity of about 100 cps to about 4,000 cps, a positive solvent, and an amorphous polymer additive; Spinning the spinning solution into a wet coagulation bath to form a preliminary hollow fiber membrane; Extracting the plasticizer, the positive solvent and the amorphous polymer additive from the preliminary hollow fiber membrane; Crystallizing the preliminary hollow fiber membrane; And cold-annealing the crystallized preliminary hollow fiber membrane.
  • amorphous polymer additive is a hydrophilic amorphous polymer additive and the solubility parameter difference with the vinylidene fluoride type polymer resin is about 5 MPa 0.5 or less (about 5 MPa 0.5 ) .
  • amorphous polymer additive of claim 9 wherein the amorphous polymer additive is a hydrophobic amorphous polymer additive and the solubility parameter difference with the vinylidene fluoride type polymer resin is about 20 MPa 0.5 or less (about 20 MPa 0.5 ) .
  • the present invention relates to a hollow fiber membrane which is excellent in mechanical strength and water permeability, and which does not use an inorganic fine powder to perform a simple extraction process without a simple extraction process, easily controls the pore size of the outer surface of the hollow fiber membrane,
  • the present invention has the effect of providing the excellent hollow fiber membrane and the manufacturing method thereof.
  • FIG. 1 is a schematic view of a hollow fiber membrane according to an embodiment of the present invention.
  • FIG. 2 is a schematic view of an inner surface according to an embodiment of the present invention.
  • FIG. 3A is a SEM image of the hollow fiber membrane outer surface prepared in Example 1 of the present invention, enlarged 5,000 times, and FIG. 3B is an SEM image of the inner surface of the hollow fiber membrane prepared in Example 1 of the present invention.
  • FIG. 4A is a SEM photograph of the hollow fiber membrane outer surface prepared in Comparative Example 1 of the present invention by 5,000 times magnification
  • FIG. 4B is a SEM image of the inner surface of the hollow fiber membrane produced in Comparative Example 1 of the present invention.
  • 'X to Y' indicating the range means 'X or more and Y or less' or 'X to Y'.
  • the term 'apparent area' means the area of the dense portion and / or the dense portion, and does not take into consideration pores, but refers to the area of the dense portion and / or the dense portion of the hollow fiber membrane.
  • the hollow fiber membrane 100 is cylindrical and has an inner surface 10 formed vertically along the inner circumferential surface and an outer surface 20 formed vertically along the outer circumferential surface.
  • the raw water may be injected from the outer surface 20 to discharge the treated water to the inner surface 10 or conversely the raw water may be injected from the inner surface 10 to discharge the treated water to the outer surface 20.
  • FIG. 2 is a schematic view of the inner surface of a hollow fiber membrane according to an embodiment of the present invention.
  • the inner surface 10 of the present invention has a zebra-stripe pattern in which the dense portion A and the polished portion B are alternately formed along the longitudinal direction.
  • An example of the Zebra stripe pattern is shown in FIG. 2, but the present invention is not limited thereto.
  • the dense portion (A) and / or the multi-layered portion (B) may be formed by alternately forming one band extending along the longitudinal direction, or may include one or more branch band , Between adjacent dense portions (A), or between adjacent ones (B) may be connected by the branch.
  • the hollow fiber membrane contains pores on its surface to remove contaminants and to allow permeated water to permeate.
  • the higher the porosity the greater the water permeability and water permeability can be increased.
  • the strength of the hollow fiber membrane is lowered, and the operation and cleaning of the hollow fiber membrane may damage the hollow fiber membrane and shorten the life of the hollow fiber membrane.
  • the porosity is low, the strength of the hollow fiber membrane is increased and the lifetime is prolonged, but the water permeability may be lowered.
  • the regulation of the porosity and the material of the hollow fiber membrane limits the improvement of the water permeability, the strength and the life of the hollow fiber membrane.
  • the hollow fiber membrane 100 of the present invention has a zebra stripe pattern formed on the inner surface 10 in which the dense portion A and the porous portion B are alternately formed along the longitudinal direction of the hollow fiber membrane,
  • the strength and life of the hollow fiber membrane are excellent.
  • the dense portion A is a dense region in which pores are minimized, so that the mechanical strength of the hollow fiber membrane can be increased.
  • the porous body B many pores are formed, thereby improving the water permeability.
  • the hollow fiber membrane may be a single membrane, but is not limited thereto.
  • the dense portion A has a maximum pore size of less than about 0.08 ⁇ ⁇ ( ⁇ 0.08 ⁇ ⁇ ) (e.g., less than 0.08 ⁇ ⁇ , (E.g., less than 0.06 ⁇ , less than 0.06 ⁇ , less than 0.05 ⁇ , or less than 0.05 ⁇ ), and the polymorph B is at least about 0.1 ⁇ ( ⁇ about 0.1 ⁇ ) Pore having a diameter of more than 0.11 ⁇ , more than 0.11 ⁇ , more than 0.11 ⁇ , more than 0.12 ⁇ , more than 0.12 ⁇ , more than 0.12 ⁇ , more than 0.13 ⁇ , more than 0.13 ⁇ , more than 0.14 ⁇ , more than 0.14 ⁇ , more than 0.15 ⁇ , (E.g., one or more, two or more, three or more, four or more, or five or more). Within the above range, water balance and strength balance are excellent.
  • the dense portion (A) and the porous portion (B) of the hollow fiber membrane may satisfy the following expression (1).
  • B is the apparent surface area of the dendrite and A is the apparent surface area of the dense portion).
  • the apparent area ratio (B / A) is about 0.25 to about 2.5 (e.g., 0.25, 0.3, 0.35, 0.4, 0.45, 0.5, 0.55, 0.6, 0.65, 0.7, 0.75, 0.8, 0.85, 0.9, 0.95, 1, 1.05, 1.1, 1.15, 1.2, 1.25, 1.3, 1.35, 1.4, 1.45, 1.5, 1.55, 1.6, 1.65, 1.7, 1.75, 1.8, 1.85, 1.9, 1.95, 2.15, 2.2, 2.25, 2.3, 2.35, 2.4, 2.45 or 2.5), specifically about 0.4 to about 1.5, more specifically about 0.5 to about 1.
  • the area ratio range not only the water permeability but also the strength and lifetime of the hollow fiber membrane are excellent.
  • the pores are preferably such that the average diameter of the pores is ⁇ about 0.1 ⁇ to about 0.55 ⁇ (e.g., 0.1, 0.15, 0.2, 0.25, 0.3, 0.35, 0.4, 0.45, 0.5 or 0.55 ⁇ ) (E.g., less than 0.05 ⁇ ⁇ , less than 0.05 ⁇ ⁇ , less than 0.04 ⁇ ⁇ , less than 0.04 ⁇ ⁇ , less than 0.03 ⁇ ⁇ )
  • the hollow fiber membrane is excellent in water permeability and water treatment efficiency.
  • the outer surface has a maximum pore size of less than about 1 ⁇ ( ⁇ about 1 ⁇ ) (e.g., less than 1 ⁇ , less than 1 ⁇ , less than 0.9 ⁇ , less than 0.9 ⁇ , less than 0.8 ⁇ , less than 0.8 ⁇ , Less than 0.7 ⁇ ⁇ , less than 0.6 ⁇ ⁇ , less than 0.6 ⁇ ⁇ , less than 0.5 ⁇ ⁇ , less than 0.5 ⁇ ⁇ , less than 0.4 ⁇ ⁇ , less than 0.4 ⁇ ⁇ , less than 0.4 ⁇ ⁇ , less than 0.3 ⁇ ⁇ , less than 0.3 ⁇ ⁇ , less than 0.2 ⁇ ⁇ , or less than 0.2 ⁇ ⁇ , About 0.09 to about 0.5 mu m, and preferably about 0.09 to about 0.3 mu m.
  • the maximum pore size means a diameter when the pore is circular, and a long diameter when the pore is a non-pore type such as an ellipse. In this range, excellent water permeability can be ensured while maintaining mechanical strength, and pore clogging is prevented, and the stain resistance is excellent.
  • the hollow fiber membrane may have a larger pore size from the outer surface to the inner surface. However, the dense portion of the inner surface may have a smaller pore diameter than the outer surface.
  • the hollow fiber membranes are characterized in that the elongation at break ranges from about 70% to about 210% (e.g., 70, 80, 90, 100, 110, 120, 130, 140, 150, 160, 170, 180, 190, %), Such as about 75% to about 90%.
  • the hollow fiber membrane preferably has a water permeability of ⁇ 1,300 to ⁇ 5,000 LMH / bar (eg, 1,300, 1,400, 1,500, 1,600, 1,700, 1,800, 1,900, 2,000, 2,100, 2,200,2,300, 2,400,2,480 , 2,500, 2,600, 2,700, 2,800, 2,900, 3,000, 3,100, 3,200, 3,300, 3,400, 3,500, 3,600, 3,700, 3,800, 3,900, 4,000, 4,100, 4,200, 4,300, 4,400, 4,500, 4,600, 4,700, 4,800, 4,900 Or 5,000 LMH / bar), such as from about 1,500 to about 4,500 LMH / bar, specifically from about 1,540 to about 3,200 LMH / bar.
  • LMH / bar eg, 1,300, 1,400, 1,500, 1,600, 1,700, 1,800, 1,900, 2,000, 2,100, 2,200,2,300, 2,400,2,480 , 2,500, 2,600, 2,700, 2,800, 2,900, 3,000,
  • the hollow fiber membrane may have a network structure.
  • Another aspect of the present invention is a method for producing a hollow fiber membrane, which comprises mixing a composition comprising a vinylidene fluoride polymer resin and a polyester plasticizer having a viscosity of about 100 to about 4,000 cps, a good solvent, and an amorphous polymer additive, Producing a usage solution; Spinning the spinning solution into a wet coagulation bath to form a preliminary hollow fiber membrane; Extracting the plasticizer, the positive solvent and the amorphous polymer additive from the preliminary hollow fiber membrane; Crystallizing the preliminary hollow fiber membrane; And cold-annealing the crystallized preliminary hollow fiber membrane.
  • the hollow fiber membrane production process is a process for producing a hollow fiber membrane comprising a vinylidene fluoride polymer resin and a polyvinylidene fluoride polymer resin having a viscosity of from about 100 to about 4,000 cps (e.g., 100, 200, 300, 400, 500, 600, 700, 800, 900, 1,000, 1,100, 1,200, 1,300, 1,400, 1,500, 1,600, 1,700, 1,800, 1,900, 2,000, 2,100, 2,200,2,300,2,400,2,500,2,600,2,700,2,800,2,900,3,000,3,100,2,3,300,3,400, 3,500, 3,600, 3,700, 3,800, 3,900 or 4,000 cps), a positive solvent, and an amorphous polymer additive to prepare a spinning solution.
  • the composition is prepared by mixing 100 parts by weight of the vinylidene fluoride polymer resin, ⁇ 1.5 to ⁇ 2.0 parts by weight of the polyester plasticizer (for example, 1.5, 1.6, 1.7, 1.8, 1.86, 1.9, 1.93 or 2.0 parts by weight (For example, 0.2, 0.3, 0.36, 0.4, or 0.5 parts by weight) and amorphous polymer additive ⁇ about 0.01 to about 0.2 parts by weight (for example, 0.01 , 0.02, 0.03, 0.04, 0.05, 0.06, 0.07, 0.08, 0.09, 0.1, 0.11, 0.12, 0.13, 0.14, 0.15, 0.16, 0.17, 0.18, 0.19 or 0.2 parts by weight).
  • the composition is suitable for forming a hollow fiber membrane, and the hollow fiber membrane produced therefrom is excellent in water permeability and strength.
  • the vinylidene fluoride-based polymer resin may include at least one of a vinylidene fluoride homopolymer and a vinylidene fluoride copolymer. Specifically, it may include at least one of tetrafluoroethylene, propylene hexafluoride, ethylene trifluoride or a copolymer of ethylene trifluoride and ethylene chloride.
  • the vinylidene fluoride polymer resin has a weight average molecular weight of about 100,000 to about 1,000,000 (e.g., 100,000, 150,000, 200,000, 250,000, 300,000, 450,000, 500,000, 550,000, 600,000, 650,000, 700,000, 750,000, 850,000, 900,000, 950,000 or 1,000,000), specifically ⁇ about 250,000 to ⁇ about 800,000, more specifically ⁇ about 300,000 to about 600,000.
  • the balance of mechanical properties and viscosity is excellent in the above range.
  • the polyester-based plasticizer can dissolve the vinylidene fluoride-based polymer resin at a high temperature.
  • the polyester plasticizer preferably has a viscosity of from about 100 cps to about 4,000 cps, such as from about 300 cps to about 4,000 cps, such as from about 1,000 cps to about 3,700 cps, more specifically from about 2,000 cps to < About 3,500 cps.
  • the hollow fiber membranes prepared in the above viscosity range are excellent in porosity and mechanical strength.
  • the polyester plasticizer may be a polyester containing a dicarboxylic acid and a diol as repeating units.
  • the polyester plasticizer preferably has a weight average molecular weight of ⁇ about 500 to about 4,000 (eg, 500, 600, 700, 800, 900, 1,000, 1,100, 1,200, 1,300, 1,400, 1,500, 1,600, 1,700, 1,800, 3,000, 3,000, 3,100, 3,200, 3,300, 3,400, 3,500, 3,600, 3,700, 3,800, 3,900 or 4,000), specifically about ⁇ 1,500 To about 3,500.
  • the polyester plasticizer has the advantage of improving the porosity and mechanical strength of the hollow fiber membrane.
  • the polyester-based plasticizer may be an adipic acid-based plasticizer, a benzoic acid-based plasticizer, a phthalate-based plasticizer, or a combination thereof.
  • the above-mentioned two solvents can be used without limitation as long as they can dissolve the polyvinylidene fluoride resin.
  • the two solvents may be selected from the group consisting of N-mentyl-2-pyrrolidone, dimethylformamide, N, N'-dimethyl acetamide, Dimethyl sulfoxide, hexamethylphosphoric triamide, and the like.
  • the amorphous polymer additive is a hydrophilic amorphous polymer additive.
  • the hydrophilic amorphous polymer additive preferably has a solubility parameter difference of about 5 MPa 0.5 or less (about 5 MPa 0.5 ) (for example, 5 MPa 0.5 or less, 5 MPa 0.5 Less than 4.5 MPa 0.5, less than 4.5 MPa 0.5, less than 4 MPa 0.5, less than 4 MPa 0.5, less than 3.5 MPa 0.5, less than 3.5 MPa 0.5, less than 3 MPa 0.5, less than 3 MPa 0.5, less than 3 MPa 0.5, less than 2.5 MPa 0.5 , 2.5 MPa 0.5 Or 2 MPa 0.5 or less).
  • the hydrophilic amorphous polymer additive has a good compatibility with PVDF, so the crystallinity of PVDF is lowered, and the crystal size reduction and amorphous region are increased.
  • Poly (vinyl pyrrolidone) (PVP) may be used as the hydrophilic amorphous polymer additive.
  • PVP and PVDF solubility parameter is less the solubility parameter difference with each other to 21.2 MPa 0.5, 19.2 MPa 0.5, respectively, is excellent in compatibility between PVDF and PVP.
  • the amorphous polymer additive may be a hydrophobic amorphous polymer additive.
  • the difference in solubility parameter with the vinylidene fluoride type polymer resin is about 20 MPa 0.5 or less (about 20 MPa 0.5 ) (for example, 20 MPa 0.5 or less, less than 20 MPa or less than 0.5 or 15 MPa or less , 15 MPa 0.5 less than, 10 MPa 0.5 or less, 10 MPa 0.5 less than, 5 MPa 0.5 or less, 5 MPa 0.5 lower than, 3 MPa 0.5 or less, 3 MPa 0.5 less than, 2 MPa 0.5 or less, 2 MPa 0.5 less than, 1 MPa 0.5 or less , 1 MPa 0.5 less, 0.7 MPa 0.5 or less, 0.7 MPa 0.5 less, 0.5 MPa 0.5 or less, 0.5 MPa 0.5 less, 0.5 MPa 0.5 less, 0.4 MPa 0.5 or less, 0.4 MPa 0.5 less, 0.3 MPa 0.5 or less, 0.3 MPa
  • PMMA may be applied as an example of the hydrophobic amorphous polymer additive.
  • PMMA and PVDF solubility parameter is less the solubility parameter difference with each other to 19.0 MPa 0.5, 19.2 MPa 0.5, respectively, is excellent in compatibility between PVDF and PMMA.
  • PMMA can induce densification of the structure through inhibition of crystallinity of vinylidene fluoride type polymer resin, resulting in reduction of the external surface pore size and densification of the internal structure (Interconnected structure).
  • the composition can be converted into a spinning solution which can be used in the production of a hollow fiber membrane. It is possible to maintain a viscosity suitable for spinning at the above-mentioned temperature, and sufficient uniform pores can be formed in the hollow fiber membrane.
  • the spinning solution may be subjected to defoaming process for removing air bubbles for about 5 minutes to about 30 minutes (for example, 5, 10, 15, 20, 25 or 30 minutes). After completion of the defoaming process, nitrogen can be pressurized to stabilize the pressure for a certain period of time.
  • the spinning nozzle may be connected to the spinning liquid transfer line and the nozzle, and may be connected to a metering pump or nitrogen gas for pushing the spinning solution.
  • the spinning nozzle may have a temperature of between about 150 ⁇ and about 220 ⁇ (e.g., 150, 160, 170, 180, 190, 200, 210 or 220 ⁇ ) -30 ° C (for example, -30, -20, -10, 0, +10, +20, +25 or +30 ° C).
  • the spinning solution When the spinning solution is stabilized, it is required to push the solution by a constant flow rate pump of a constant flow rate or to open a valve of nitrogen gas to apply a constant pressure.
  • the discharge rate is determined by a metering pump. (E.g., 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 per second or minute per minute) , 12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36 , 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49 or 50g.
  • the spinning solution is discharged through a spinning nozzle and immersed in a wet coagulation bath.
  • the preliminary hollow fiber membrane before stretching can be formed through the spinning process into the wet coagulation bath.
  • the wet coagulation bath is filled with water and the wet coagulation bath or the water staying therein is heated to a temperature of between about 15 ⁇ and about 40 ⁇ (e.g., 15, 16, 17, 18, 19, 20, 21, 22, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39 or 40 ⁇ ⁇ ).
  • the polymer solution immersed in the coagulation bath rapidly undergoes temperature drop and crystallization in the coagulation bath. It is possible to control the crystal size of the hollow fiber membrane produced according to the temperature of the coagulation bath.
  • the lower the temperature of the coagulation bath the smaller the size of the polymer crystals, and the hollow fiber membrane thus produced has a dense internal structure and an increased mechanical strength.
  • the higher the temperature of the coagulation bath the larger the crystal size, and the coarse structure is formed instead of the dense internal structure, and thus the hollow fiber membrane having increased water permeability can be produced.
  • the thermally induced phase transformation proceeds in a state where the crystal growth is decreased due to the amorphous polymer additive, and the outer surface of the hollow fiber membrane has a small crystal size and amorphous portion.
  • the amorphous polymer additive is located in the vicinity of the microcrystals, and crystallization and amorphous sectioning proceeds.
  • the pores of the separation membrane are formed by cleavage of the amorphous region.
  • the amount of the amorphous polymer additive increases, the crystal size is reduced, and the crystal and amorphous portions are divided into minute sizes.
  • the pore size of the outer surface of the separator is reduced and the interconnected structure is formed.
  • the hollow fiber membrane changes from dense structure to coarse structure from the outer surface to the inner surface. That is, as the outer layer of the spinning solution (hollow fiber membrane) discharged from the spinning nozzle is contacted with water in the air in the coagulation tank or air exposure than the inner layer, the outer surface side has a more dense structure than the inner surface.
  • the main cause of hollow fiber membrane contamination is pore blockage phenomenon. As the outer surface pore size becomes larger, the pore clogging phenomenon becomes more serious. The smaller the outer surface pore size, do.
  • the distance between the spinning nozzle and the surface of the water in the wet coagulation bath is between about 0.5 cm and about 50 cm (e.g., 0.5, 0.7, 1, 1.5, 2, 2.5, 3, 3.5, 4, 4.5, 12, 12, 13, 13.5, 14, 14.5, 15, 16, 17, 18, 19, 20, 25, 30, 35, 40, 45 or 50 cm), preferably between about 1 cm and about 15 cm.
  • the distance between the spinning nozzle and the surface of the water in the wet coagulation bath may be a distance (air gap) at which the spinning solution is exposed to the outside air.
  • the exposure time of the polymer solution in the atmosphere can be controlled by adjusting the length of the airway. As the air-gap increases, the time for exposing the polymer solution discharged through the spinning nozzle to the atmosphere is increased.
  • the hollow fiber membrane that is solidified (crystallized) in this state has a dense structure on the outer surface.
  • the resultant hollow fiber membrane has a dense layer formed on the outer surface layer, which causes an increase in mechanical strength but a decrease in water permeability.
  • the air-gap decreases, the time for exposing the polymer solution discharged through the spinning nozzle to the atmosphere is reduced, and the dense layer formation on the outer surface of the hollow fiber membrane is slowed.
  • the hollow fiber membrane thus produced has a small dense layer portion, which reduces the mechanical strength but increases the water permeability.
  • the preliminary hollow fiber membrane passes through the coagulation bath and is wound using a bobbin.
  • the preliminary hollow fiber membrane wound with the bobbin is immersed in an extraction solvent.
  • the extraction solvent refers to a solvent that dissolves a polyester plasticizer, a good solvent, and an amorphous polymer additive other than PVDF in the hollow fiber membrane.
  • the extraction solvent used in the present invention may be dichloromethane, ethanol or water.
  • the extraction solvent may include at least one of dichloromethane, ethyl alcohol, and isopropyl alcohol.
  • the extracted preliminary hollow fiber membrane is crystallized.
  • the preliminary hollow fiber membrane having been extracted with the plasticizer and the additive is subjected to a drying process in the air.
  • the preliminary hollow fiber membrane exposed to the atmosphere is volatilized by the extraction solvent, and proceeds rapidly, and residual crystallization and contraction are performed in the preliminary hollow fiber membrane.
  • the contracted hollow fiber membrane is once again subjected to a heat treatment process to complete crystallization.
  • the crystallized hollow fiber membrane cleaves the pores in the hollow fiber membrane through the stretching process.
  • cold drawing is performed.
  • Cold rolling is performed to differentiate the crystalline region from the amorphous region and to separate the amorphous region from the hot rolled region.
  • the cold rolling is carried out at a room temperature of about 10 to 30 ° C and in a short interval.
  • the stretching distance is short, because the stretching point can be fixed and uniform stretching can be suppressed and the occurrence of unevenness in stretching can be suppressed.
  • the distance of the stretching section may be in the range of about 50 mm to about 200 mm (e.g., 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150, 160, Or 200 mm).
  • the stretching can be performed at a room temperature of 25 DEG C at a stretching rate of about 2.5 times.
  • the crystal structure orientation is increased and the amorphous portion is cleaved to have a porous structure inside the hollow fiber membrane.
  • the outer surface of the hollow fiber membrane has a small crystal size, the crystalline and amorphous phases are divided into minute sizes. Micropores are formed on the outer surface of the hollow fiber by microcrystalline amorphous pores.
  • the inner surface has larger crystallinity than the outer surface, and large pores are formed by cleavage of the amorphous portion between crystalline (lamellar stack) at the time of stretching.
  • Such a structure is referred to as a zebra-stripe pattern in which dense portions and pores are alternately formed.
  • the mechanical strength and water permeability of the hollow fiber membranes thus prepared are simultaneously improved due to structural densification, microporosity formation and porous structure development.
  • the stretched hollow fiber membrane may be subjected to a heat treatment process once more to suppress shrinkage of the hollow fiber membrane.
  • the present invention can produce a mesoporous hollow fiber membrane by inducing a liquid-liquid phase transition through a plasticizer using a thermally induced phase transfer method.
  • a hydrophilic amorphous polymer when used, the outer surface of the hollow fiber membrane can be densified (crystal size reduction, pore size reduction) and an interconnected structure of internal structure.
  • adipic acid polyester plasticizer 0.36 part by weight of NMP as a positive solvent and 0.1 part by weight of poly (vinyl pyrrolidone) as an amorphous polymer additive were mixed with 100 parts by weight of PVDF, And the mixture was heated and stirred at a high temperature for 3 hours to prepare a homogeneous polymer spinning solution. Thereafter, adipic acid polyester plasticizer was discharged as an internal coagulant to the innermost side of the spinneret using a double spinneret including a double pipe, and the polymer spinning solution was discharged to the outermost side of the spinneret.
  • the spinning solution at 210 ⁇ was ejected through the spinning nozzle at 170 ⁇ into the coagulation bath.
  • the distance between the spinning nozzle and the coagulation bath is 5 cm.
  • the spinning solution discharged through the nozzle is immersed in a coagulation bath at 25 ° C and solidified into a hollow hollow fiber membrane, and the hollow fiber membrane is obtained from the coagulation bath through the coagulation bath.
  • the wound hollow fiber membrane was immersed in dichloromethane to extract an adipic acid polyester plasticizer, a positive solvent NMP and a hydrophilic amorphous polymer PVP. After the extraction process, it was dried at room temperature and then crystallized in the hollow fiber membrane through heat treatment at 120 ° C.
  • FIG. 3A shows an SEM photograph of the hollow fiber membrane prepared by enlarging the outer surface of the hollow fiber membrane 5,000 times
  • FIG. 3B shows an SEM photograph of the 5,000-fold enlarged inner surface.
  • FIG. 4A shows an SEM image of the hollow fiber membrane prepared by enlarging the outer surface of the hollow fiber membrane 5,000 times
  • FIG. 4B shows an SEM image of the inner surface expanded 5,000 times.
  • Breaking strength (kgf / fiber): Using a fiber tensile tester (Instron, manufacturer), the hollow fiber membrane was measured at a temperature of 23 DEG C and a relative humidity of 50% under conditions of a hollow fiber length of 100 mm and a crosshead speed of 50 mm / . The maximum tensile load (Wmax) until the hollow fiber membrane test piece was broken was measured.
  • Average pore diameter ( ⁇ m) The average pore diameter of the hollow fiber membrane was measured by increasing the flow (air, N 2 ) flow rate using a capillary flow porometer and sequentially measuring the wet curve and dry curve. Wet curve was measured by using a wetting fluid porefil (surface tension of 16 dyn / cm).
  • Bubble point (bar) PVDF hollow fiber membrane is inserted into a 200 mm acrylic tube as in the measurement of water permeability, and then potted with epoxy to produce a small module.
  • the manufactured small module was immersed in water to gradually increase air in the module from 0 bar, and the point at which the air bubble was found on the surface of the membrane was measured as a bubble point.
  • Example Comparative Example One 2 3 4 One 2 PVDF 100 100 100 100 100 100 100 100 Plasticizer 186 193 180 186 196 196 Good solvent 36 36 36 36 36 PVP 10 3 16 - - - PMMA - - - 10 - - Coagulation bath temperature (°C) 25 25 25 25 25 5 5 Breaking strength (kgf / fiber) 1.5 1.3 1.3 1.5 1.1 1.4 Elongation at break (%) 80 77 81 82 110 207 Water permeability (LMH / bar) 3200 2480 2100 1540 785 445 Average pore diameter ( ⁇ ⁇ ) 0.09 0.12 0.08 0.09 0.15 0.11 Maximum surface pore size ( ⁇ m) 0.11 0.21 0.09 0.12 1.01 0.32 Bubble point (bar) > 4 > 4 > 4 > 4 > 4 > 4
  • Examples 1 to 4 having the hollow fiber membranes formed by alternately forming the dense portions and the alternately-formed hollow fibers in the longitudinal direction of the hollow fiber membrane on the inner surface of the present invention have both water permeability and mechanical properties And the water permeability of Comparative Example 1-2 is remarkably low.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Dispersion Chemistry (AREA)
  • Artificial Filaments (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

본 발명의 중공사막은 외부 표면과 내부 표면을 갖는 중공사막이며, 외부 표면과 내부 표면을 갖는 중공사막이며, 상기 내부 표면은 길이 방향을 따라서 치밀부 및 다공부가 교대로 형성된 지브라 스트라이프 패턴(zebra-stripe pattern)을 가지며, 상기 외부 표면은 최대기공크기가 약 1㎛ 이하(≤약 1㎛)이고, 수투과도(flux)가 ≥약 1,300 내지 ≤약 5,000 LMH/bar인 것을 특징으로 한다.

Description

중공사막 및 이의 제조방법
본 발명은 중공사막 및 이의 제조방법에 관한 것이다. 보다 구체적으로 본 발명은 내부 표면과 외부 표면의 기공 크기를 제어하여 수투과도와 기계적 강도가 우수한 중공사막 및 이의 제조방법에 관한 것이다.
폴리불화비닐리덴(Polyvinylidene Fluoride, 이하 PVDF라 함)계 중공사막을 제조하는 방법은 크게 열유도상전이법(Thermal Induced Phase Seperation, TIPS)과, 비용매상전이법(Non-solvent Induced Phase Seperation, NIPS)으로 구분될 수 있다. 비용매상전이법을 이용하여 제조된 분리막의 경우, 비대칭구조 형성 및 미세 기공 형성이 가능한 장점이 있으나, 기계적 강도가 떨어진다는 문제점이 있다. 한편, 열유도상전이법에 의해 제조된 분리막의 경우, 급냉을 통해 상전이가 발생하여 높은 강도를 구현할 수 있다는 장점이 있으나, 중공사막의 외부 표면에 치밀(dense)층이 형성되어 수투과도가 떨어진다는 문제점이 있다.
최근, 열유도상전이법에 의해 제조된 중공사막의 수투과도를 높이기 위한 방법으로 중공사막의 방사조건을 조절하거나, 첨가제를 적용하는 다양한 연구들이 이루어지고 있다.
중공사막의 방사조건을 조절하여 수투과도를 향상시키기 위해 방사용액이 응고조에 침지되기 전까지 대기 중에 노출되는 에어 갭(Air Gap)을 줄이는 방법이 있다. 일반적으로 고분자 방사용액이 대기 중에 노출되면 외부 표면에서 용매나 희석제가 휘발되어 응고조에 침지 시에 중공사막의 외부 표면에 고분자 치밀(Dense)층이 형성되어 수투과도가 저하되게 된다. 따라서, 에어 갭 노출 시간을 줄이면 수투과도를 다소 증가시킬 수 있으나, 기계적 강도가 떨어지고, 중공 성형 안정성이 저하된다는 문제점이 있다.
또 다른 방법으로, 응고조에 PVDF와 용해도 지수 차이가 적은 희석제나 양용매를 혼합하여 사용하는 방법이 있다. 이 경우, 응고 시에 외부 표면에 다공성 구조가 형성되기 때문에, PVDF와 용해도 차이가 큰 물과 같은 비용매를 사용하는 경우에 비해 수투과도를 개선할 수 있으나, 기계적 강도가 떨어진다는 문제점이 있다.
첨가제를 활용한 수투과도 증가 방법으로는 무기미분첨가제를 적용하여 중공사막을 제조하는 사례가 있다. 최근 열유도상전이법을 이용하여 PVDF 중공사막 제조시, 프탈레이트계 가소제와 무기미분체 실리카를 사용하여 중공사막을 제조하여, 내부구조가 망상구조이며 기계적 강도와 수투과도가 향상된 중공사막이 개발되었다. 이렇게 제조된 중공사막은 우수한 물성을 가지나, 무기미분첨가제인 실리카의 완전추출을 위하여 복잡한 추출공정 적용이 필요하다. 이로 인하여, 제조공정이 길어지며 공정비용이 증가하는 문제점이 있다.
따라서, 수투과도 및 기계적 강도 향상 효과가 우수하고, 제조공정이 단순한 불화비닐리덴계 중공사막의 제조 방법을 개발할 필요가 있다.
관련 선행문헌으로는 한국공개특허 10-2003-0001474 호가 있다.
본 발명의 목적은 기계적 강도와 수투과도가 우수한 중공사막 및 이의 제조방법을 제공하기 위한 것이다.
본 발명의 다른 목적은 무기미분체를 사용하지 않아 복잡한 추출공정을 하지 않고 제조공정이 단순한 중공사막 및 이의 제조방법을 제공하기 위한 것이다.
본 발명의 또 다른 목적은 중공사막의 외부 표면 기공크기 제어가 용이한 중공사막 및 이의 제조방법을 제공하기 위한 것이다.
본 발명의 또 다른 목적은 기공 막힘(pore blockage) 현상이 없고 내오염성이 우수한 중공사막 및 이의 제조방법을 제공하기 위한 것이다.
본 발명의 상기 및 기타의 목적들은 하기 설명되는 본 발명에 의하여 모두 달성될 수 있다.
1. 본 발명의 하나의 관점은 중공사막에 관한 것이다. 상기 중공사막은 외부 표면과 내부 표면을 갖는 중공사막이며, 상기 내부 표면은 길이 방향을 따라서 치밀부 및 다공부가 교대로 형성된 지브라 스트라이프 패턴(zebra-stripe pattern)을 가지며, 상기 외부 표면은 최대기공크기가 약 1㎛ 이하(≤약 1㎛)이고, 수투과도(flux)가 ≥약 1,300 내지 ≤약 5,000 LMH/bar인 것을 특징으로 한다.
2. 상기 1에서 상기 중공사막은 평균기공직경이 ≥약 0.08㎛ 내지 ≤약 0.3㎛이고, 외부 표면의 최대기공크기가 ≥약 0.09 내지 ≤약 0.5㎛일 수 있다.
3. 상기 1 또는 2에서 상기 내부 표면의 치밀부는 평균기공직경이 ≥약 0.001㎛ 내지 ≤약 0.05㎛이고, 상기 내부 표면의 다공부는 평균기공직경이 ≥약 0.1㎛ 내지 ≤약 0.55㎛일 수 있다.
4. 상기 1 내지 3 중 어느 하나에서, 상기 중공사막의 내부 표면 약 5㎛2 이내에, 상기 치밀부는 최대기공크기가 약 0.08㎛ 미만(<약 0.08㎛)이며, 상기 다공부는 약 0.1㎛ 이상(≥약 0.1㎛)의 직경을 갖는 기공이 약 1개 이상(≥약 1개)일 수 있다.
5. 상기 1 내지 4 중 어느 하나에서, 상기 치밀부와 다공부는 겉보기 면적비가 하기 식 1을 만족할 수 있다.
[식 1]
약 0.25 ≤ 겉보기 면적비(B/A) ≤ 약 2.5
(상기 식 1에서, B는 다공부의 겉보기 면적, A는 치밀부의 겉보기 면적).
6. 상기 1 내지 5 중 하나에서, 상기 중공사막은 외부 표면에서 내부 표면으로 갈수록 기공크기가 커지는 것을 특징으로 할 수 있다.
7. 상기 1 내지 6 중 어느 하나에서, 상기 중공사막은 파단신율이 ≥약 70 % 내지 ≤약 210 %일 수 있다.
8. 상기 1 내지 7 중 어느 하나에서, 상기 중공사막은 망상형 구조를 가질 수 있다.
9. 본 발명의 다른 관점은 중공사막의 제조방법에 관한 것이다. 상기 방법은 불화비닐리덴계 고분자 수지 및 점도가 ≥약 100cps 내지 ≤약 4,000cps인 폴리에스테르계 가소제, 양용매, 비결정성 고분자 첨가제를 포함하는 조성물을 혼합하여 방사용액을 제조하는 단계; 상기 방사용액을 습식 응고조로 방사하여 예비 중공사막을 형성하는 단계; 상기 예비 중공사막으로부터 상기 가소제, 양용매 및 비결정성 고분자 첨가제를 추출하는 단계; 상기 예비 중공사막을 결정화하는 단계; 및 상기 결정화된 예비 중공사막을 냉연신하는 단계;를 포함한다.
10. 상기 9에서, 상기 비결정성 고분자 첨가제는 친수성 비결정성 고분자 첨가제이며, 상기 불화비닐리덴계 고분자 수지와 용해도 파라미터(solubility parameter) 차이가 약 5 MPa0.5 이하(≤약 5 MPa0.5)일 수 있다.
11. 상기 9에서, 상기 비결정성 고분자 첨가제는 소수성 비결정성 고분자 첨가제이며, 상기 불화비닐리덴계 고분자 수지와 용해도 파라미터(solubility parameter) 차이가 약 20 MPa0.5 이하(≤약 20 MPa0.5)일 수 있다.
12. 상기 9 내지 11 중 어느 하나에서, 상기 습식 응고조의 온도는 ≥약 15℃ 내지 ≤약 40℃일 수 있다.
13. 상기 9 내지 12 중 어느 하나에서, 상기 결정화는 ≥약 80℃ 내지 ≤약 150℃에서 ≥약 3분 내지 ≤약 200분 동안 열처리하는 것을 포함할 수 있다.
14. 상기 9 내지 13 중 어느 하나에서, 상기 조성물은 상기 불화비닐리덴계 고분자 수지 100 중량부, 상기 폴리에스테르계 가소제 ≥약 1.5 내지 ≤약 2.0 중량부, 양용매 ≥약 0.2 내지 ≤약 0.5 중량부 및 비결정성 고분자 첨가제 ≥약 0.01 내지 ≤약 0.2 중량부를 포함할 수 있다.
본 발명은 기계적 강도와 수투과도가 우수하고, 무기미분체를 사용하지 않아 복잡한 추출공정을 하지 않고 제조공정이 단순하며, 중공사막의 외부 표면 기공크기 제어가 용이하고, 기공 막힘 현상이 없고 내오염성이 우수한 중공사막 및 이의 제조방법을 제공하는 발명의 효과를 갖는다.
도 1은 본 발명의 구체예에 따른 중공사막의 개략도이다.
도 2는 본 발명의 구체예에 따른 내부 표면의 모식도이다.
도 3a는 본 발명의 실시예 1에서 제조된 중공사막 외부 표면을 5,000배 확대한 SEM 사진이며, 도 3b는 본 발명의 실시예 1에서 제조된 중공사막 내부 표면을 5,000배 확대한 SEM 사진이다.
도 4a는 본 발명의 비교예 1에서 제조된 중공사막 외부 표면을 5,000배 확대한 SEM 사진이며, 도 4b는 본 발명의 비교예 1에서 제조된 중공사막 내부 표면을 5,000배 확대한 SEM 사진이다.
이하, 본 발명에 대해 보다 구체적으로 설명한다.
본 발명을 설명함에 있어서, 관련된 공지 기술에 대한 구체적인 설명이 본 발명의 요지를 불필요하게 흐릴 수 있다고 판단되는 경우 그 상세한 설명은 생략한다.
본 명세서 상에서 언급한 '포함한다', '갖는다', '이루어진다' 등이 사용되는 경우 '~만'이 사용되지 않는 이상 다른 부분이 추가될 수 있다. 구성 요소를 단수로 표현한 경우에 특별히 명시적인 기재 사항이 없는 한 복수를 포함하는 경우를 포함한다.
또한, 구성 요소를 해석함에 있어서, 별도의 명시적 기재가 없더라도 오차 범위를 포함하는 것으로 해석한다.
또한, 본 명세서에 있어서, 범위를 나타내는 'X 내지 Y'는 'X 이상 Y 이하' 또는 '≥X 내지 ≤Y'를 의미한다.
본 명세서에서 '겉보기 면적'은 치밀부 및/또는 다공부의 면적으로써, 기공은 고려하지 않고, 중공사막에서 치밀부가 형성된 영역 및/또는 다공부가 형성된 영역의 면적을 의미한다.
중공사막
도 1을 참고하여 본 발명의 일 구체예에 따른 중공사막을 설명한다. 상기 중공사막(100)은 원통형으로서, 내주면을 따라 수직 형성된 내부 표면(10)과 외주면을 따라 수직 형성된 외부 표면(20)을 갖는다. 상기 외부 표면(20)에서 원수가 투입되어 내부 표면(10)으로 처리수가 배출되거나, 반대로 상기 내부 표면(10)에서 원수가 투입되어 외부 표면(20)으로 처리수가 배출될 수 있다.
도 2는 본 발명의 구체예에 따른 중공사막 내부 표면의 모식도이다.
도 2를 참고하면, 본 발명의 내부 표면(10)은 길이 방향을 따라서 치밀부(A) 및 다공부(B)가 교대로 형성된 지브라 스트라이프 패턴(zebra-stripe pattern)을 가진다. 상기 지브라 스트라이프 패턴의 예를 도 2에 도시하였으나, 이에 제한되는 것은 아니다. 구체적으로, 치밀부(A) 및/또는 다공부(B)는 하나의 띠가 길이 방향을 따라서 연장된 형태가 교대로 형성될 수도 있고, 상기 띠에 가지형 띠를 하나 이상 포함하는 형태일 수도 있으며, 인접한 치밀부(A) 상호간, 또는 인접한 다공부(B) 상호간은 상기 가지에 의해 연결될 수도 있다.
중공사막은 오염물질을 제거하고, 정수된 물은 투과시키기 위하여 표면에 기공을 포함한다. 기공률이 높을수록 물이 많이 투과되어 수투과도는 증가할 수 있으나, 중공사막의 강도는 저하되어, 중공사막의 운용 및 세정에 의해 중공사막이 손상되거나, 중공사막의 수명은 짧아질 수 있다. 반대로, 기공률이 낮으면 중공사막의 강도가 높아져 수명이 연장되는 장점은 있으나, 수투과도는 저하될 수 있다. 기공률 및 중공사막의 재질 등의 조절만으로는 수투과도, 중공사막의 강도 및 수명을 모두 개선시키는데 한계가 있다.
본 발명의 중공사막(100)은 내부 표면(10)에 중공사막의 길이 방향을 따라서 치밀부(A) 및 다공부(B)가 교대로 형성된 지브라 스트라이프 패턴을 형성하고 있어, 수투과도 뿐만 아니라, 중공사막의 강도 및 수명이 모두 우수한 장점이 있다. 구체적으로, 치밀부(A)는 기공을 최소화한 조밀한 영역으로써, 중공사막의 기계적 강도를 높여줄 수 있고, 다공부(B)는 많은 기공이 형성되어 있어 수투과도를 개선시킬 수 있다.
상기 중공사막은 단일막일 수 있으나, 이에 제한되지 않는다.
구체적으로, 상기 중공사막의 내부 표면 약 5㎛2 이내에, 상기 치밀부(A)는 최대기공크기가 약 0.08㎛ 미만(<약 0.08㎛)(예를 들면, 0.08㎛ 미만, 0.07㎛ 이하, 0.07㎛ 미만, 0.06㎛ 이하, 0.06㎛ 미만, 0.05㎛ 이하, 또는 0.05㎛ 미만)이며, 상기 다공부(B)는 약 0.1㎛ 이상(≥약 0.1㎛)(예를 들면, 0.1㎛ 이상, 0.1㎛ 초과, 0.11㎛ 이상, 0.11㎛ 초과, 0.12㎛ 이상, 0.12㎛ 초과, 0.13㎛ 이상, 0.13㎛ 초과, 0.14㎛ 이상, 0.14㎛ 초과, 0.15㎛ 이상, 또는 0.15㎛ 초과)의 직경을 갖는 기공이 약 1개 이상(≥약 1개)(예를 들면, 1개 이상, 2개 이상, 3개 이상, 4개 이상 또는 5개 이상)일 수 있다. 상기의 범위에서, 수투과도 및 강도의 밸런스가 우수하다. 여기서 상기 특정 직경의 기공 개수는 전자주사 현미경을 이용하여 관찰하고 측정하였다.
상기 중공사막의 상기 치밀부(A)와 다공부(B)는 겉보기 면적비가 하기 식 1을 만족할 수 있다.
[식 1]
약 0.25 ≤ 겉보기 면적비(B/A) ≤ 약 2.5
(상기 식 1에서, B는 다공부의 겉보기 면적, A는 치밀부의 겉보기 면적).
구체적으로, 상기 겉보기 면적비(B/A)는 ≥약 0.25 내지 ≤약 2.5(예를 들면, 0.25, 0.3, 0.35, 0.4, 0.45, 0.5, 0.55, 0.6, 0.65, 0.7, 0.75, 0.8, 0.85, 0.9, 0.95, 1, 1.05, 1.1, 1.15, 1.2, 1.25, 1.3, 1.35, 1.4, 1.45, 1.5, 1.55, 1.6, 1.65, 1.7, 1.75, 1.8, 1.85, 1.9, 1.95, 2, 2.05, 2.1, 2.15, 2.2, 2.25, 2.3, 2.35, 2.4, 2.45 또는 2.5), 구체적으로 ≥약 0.4 내지 ≤약 1.5, 더욱 구체적으로 ≥약 0.5 내지 ≤약 1일 수 있다. 상기 면적비 범위에서, 수투과도뿐만 아니라, 중공사막의 강도 및 수명이 모두 우수한 장점이 있다.
상기 다공부는 기공의 평균직경이 ≥약 0.1㎛ 내지 ≤약 0.55㎛(예를 들면, 0.1, 0.15, 0.2, 0.25, 0.3, 0.35, 0.4, 0.45, 0.5 또는 0.55㎛), 구체적으로, ≥약 0.15㎛ 내지 ≤약 0.40㎛이고, 상기 치밀부는 기공의 평균직경이 약 0.05㎛ 이하(≤약 0.05㎛)(예를 들면, 0.05㎛ 이하, 0.05㎛ 미만, 0.04㎛ 이하, 0.04㎛ 미만, 0.03㎛ 이하, 0.03㎛ 미만, 0.02㎛ 이하, 0.02㎛ 미만, 0.01㎛ 이하 또는 0.01㎛ 미만), 예를 들어 ≥약 0.001㎛ 내지 ≤약 0.05㎛, 구체적으로, ≥약 0.001㎛ 내지 ≤약 0.03㎛이다. 상기의 범위에서, 중공사막은 수투과도 및 수처리 효율이 우수하다.
상기 외부 표면은 최대기공크기가 약 1㎛ 이하(≤약 1㎛)(예를 들면, 1㎛ 이하, 1㎛ 미만, 0.9㎛ 이하, 0.9㎛ 미만, 0.8㎛ 이하, 0.8㎛ 미만, 0.7㎛ 이하, 0.7㎛ 미만, 0.6㎛ 이하, 0.6㎛ 미만, 0.5㎛ 이하, 0.5㎛ 미만, 0.4㎛ 이하, 0.4㎛ 미만, 0.3㎛ 이하, 0.3㎛ 미만, 0.2㎛ 이하 또는 0.2㎛ 미만), 예를 들면 ≥약 0.09 내지 ≤약 0.5㎛일 수 있고, 바람직하게는 ≥약 0.09 내지 ≤약 0.3㎛일 수 있다. 여기서 최대기공크기는 기공이 원형일 경우에는 직경을 의미하며, 기공이 타원형과 같이 비원형일 경우에는 장경을 의미한다. 상기 범위에서 기계적 강도를 유지하면서 우수한 수투과도를 확보할 수 있을 뿐만 아니라, 기공막힘 현상을 방지하여 내오염성이 우수하다.
상기 중공사막은 외부 표면에서 내부 표면으로 갈수록 기공크기가 커지는 것을 특징으로 할 수 있다. 다만 내부 표면의 치밀부는 외부 표면에 비해 기공직경이 작을 수 있다.
상기 중공사막은 파단신율이 ≥약 70 % 내지 ≤약 210 %(예를 들면, 70, 80, 90, 100, 110, 120, 130, 140, 150, 160, 170, 180, 190, 200 또는 210 %), 예를 들면 ≥약 75 % 내지 ≤약 90 %일 수 있다.
상기 중공사막은 수투과도(flux)가 ≥약 1,300 내지 ≤약 5,000 LMH/bar(예를 들면, 1,300, 1,400, 1,500, 1,600, 1,700, 1,800, 1,900, 2,000, 2,100, 2,200, 2,300, 2,400, 2,480, 2,500, 2,600, 2,700, 2,800, 2,900, 3,000, 3,100, 3,200, 3,300, 3,400, 3,500, 3,600, 3,700, 3,800, 3,900, 4,000, 4,100, 4,200, 4,300, 4,400, 4,500, 4,600, 4,700, 4,800, 4,900 또는 5,000 LMH/bar), 예를 들면 ≥약 1,500 내지 ≤약 4,500 LMH/bar, 구체적으로 ≥약 1,540 내지 ≤약 3,200 LMH/bar일 수 있다.
상기 중공사막은 망상형 구조를 가질 수 있다.
중공사막의 제조방법
본 발명의 다른 관점인 중공사막의 제조방법은 불화비닐리덴계 고분자 수지 및 점도가 ≥약 100 내지 ≤약 4,000cps인 폴리에스테르계 가소제, 양용매, 비결정성 고분자 첨가제를 포함하는 조성물을 혼합하여 방사용액을 제조하는 단계; 상기 방사용액을 습식 응고조로 방사하여 예비 중공사막을 형성하는 단계; 상기 예비 중공사막으로부터 상기 가소제, 양용매 및 비결정성 고분자 첨가제를 추출하는 단계; 상기 예비 중공사막을 결정화하는 단계; 및 상기 결정화된 예비 중공사막을 냉연신하는 단계;를 포함할 수 있다.
이하, 각 단계에 대해 자세히 설명한다.
구체예에서, 중공사막 제조방법은 불화비닐리덴계 고분자 수지, 및 점도가 ≥약 100 내지 ≤약 4,000cps(예를 들면, 100, 200, 300, 400, 500, 600, 700, 800, 900, 1,000, 1,100, 1,200, 1,300, 1,400, 1,500, 1,600, 1,700, 1,800, 1,900, 2,000, 2,100, 2,200, 2,300, 2,400, 2,500, 2,600, 2,700, 2,800, 2,900, 3,000, 3,100, 3,200, 3,300, 3,400, 3,500, 3,600, 3,700, 3,800, 3,900 또는 4,000cps)인 폴리에스테르계 가소제, 양용매, 비결정성 고분자 첨가제를 포함하는 조성물을 혼합하여 방사용액을 제조하는 단계를 포함할 수 있다.
상기 조성물은 상기 불화비닐리덴계 고분자 수지 100 중량부, 상기 폴리에스테르계 가소제 ≥약 1.5 내지 ≤약 2.0 중량부(예를 들면, 1.5, 1.6, 1.7, 1.8, 1.86, 1.9, 1.93 또는 2.0 중량부), 양용매 ≥약 0.2 내지 ≤약 0.5 중량부(예를 들면, 0.2, 0.3, 0.36, 0.4 또는 0.5 중량부) 및 비결정성 고분자 첨가제 ≥약 0.01 내지 ≤약 0.2 중량부(예를 들면, 0.01, 0.02, 0.03, 0.04, 0.05, 0.06, 0.07, 0.08, 0.09, 0.1, 0.11, 0.12, 0.13, 0.14, 0.15, 0.16, 0.17, 0.18, 0.19 또는 0.2 중량부)를 포함할 수 있다. 상기의 범위에서, 조성물은 중공사막을 형성하기 적합하며, 그로부터 제조된 중공사막은 수투과도 및 강도가 우수하다.
상기 불화비닐리덴계 고분자 수지는 불화비닐리덴 단독중합체 및 불화비닐리덴 공중합체 중 하나 이상을 포함할 수 있다. 구체적으로, 테트라플루오르화 에틸렌, 육불화 프로필렌, 삼불화 에틸렌 또는 삼불화 염화 에틸렌과의 공중합체 중 하나 이상을 포함할 수 있다.
상기 불화비닐리덴계 고분자 수지는 중량평균분자량이 ≥약 100,000 내지 ≤약 1,000,000(예를 들면, 100,000, 150,000, 200,000, 250,000, 300,000, 450,000, 500,000, 550,000, 600,000, 650,000, 700,000, 750,000, 800,000, 850,000, 900,000, 950,000 또는 1,000,000), 구체적으로 ≥약 250,000 내지 ≤약 800,000, 더욱 구체적으로 ≥약 300,000 내지 ≤약 600,000일 수 있다. 상기의 범위에서 기계적 물성 및 점도의 밸런스가 우수하다.
상기 폴리에스테르계 가소제는 고온에서 불화비닐리덴계 고분자 수지를 용해시킬 수 있다. 상기 폴리에스테르계 가소제는 점도가 ≥약 100cps 내지 ≤약 4,000cps, 예를 들면 ≥약 300cps 내지 ≤약 4,000cps, 구체적으로 ≥약 1,000cps 내지 ≤약 3,700cps, 더욱 구체적으로 ≥약 2,000cps 내지 ≤약 3,500cps일 수 있다. 상기 점도 범위에서 제조된 중공사막은 다공도 및 기계적 강도 측면에서 우수하다.
상기 폴리에스테르계 가소제는 디카르복실산 및 디올을 반복단위로 포함하는 폴리에스테르일 수 있다. 상기 폴리에스테르계 가소제는 중량평균 분자량이 ≥약 500 내지 ≤약 4,000(예를 들면, 500, 600, 700, 800, 900, 1,000, 1,100, 1,200, 1,300, 1,400, 1,500, 1,600, 1,700, 1,800, 1,900, 2,000, 2,100, 2,200, 2,300, 2,400, 2,500, 2,600, 2,700, 2,800, 2,900, 3,000, 3,100, 3,200, 3,300, 3,400, 3,500, 3,600, 3,700, 3,800, 3,900 또는 4,000), 구체적으로 ≥약 1,500 내지 ≤약 3,500일 수 있다. 상기 분자량 범위에서, 폴리에스테르계 가소제는 중공사막의 다공도 및 기계적 강도를 개선시키는 장점이 있다.
구체예에서 상기 폴리에스테르계 가소제는 아디프산계 가소제, 벤조산계 가소제, 프탈레이트계 가소제 또는 이들의 조합일 수 있다.
상기 양용매는 폴리불화비닐리덴계 수지를 용해시킬 수 있는 것이면 제한 없이 사용할 수 있다. 예를 들어 상기 양용매는 N-메틸-2-피롤리돈(N-mentyl-2-pyrrolidone), 디메틸포르아마이드(Dimethylformamide), N,N'-디메틸 아세트아마이드(N, N'-dimethyl acetamide), 디메틸설폭사이드(Dimethylsulfoxide), 및 헥사메틸 인산 트리아미드(hexamethylphosphoric triamide) 중 하나 이상을 포함할 수 있다.
한 구체예에서는 상기 비결정성 고분자 첨가제는 친수성 비결정성 고분자 첨가제이다. 이 경우 상기 친수성 비결정성 고분자 첨가제는 상기 불화비닐리덴계 고분자 수지와 용해도 파라미터(solubility parameter) 차이가 약 5 MPa0.5 이하(≤약 5 MPa0.5)(예를 들면, 5 MPa0.5 이하, 5 MPa0.5 미만, 4.5 MPa0.5 이하, 4.5 MPa0.5 미만, 4 MPa0.5 이하, 4 MPa0.5 미만, 3.5 MPa0.5 이하, 3.5 MPa0.5 미만, 3 MPa0.5 이하, 3 MPa0.5 미만, 2.5 MPa0.5 이하, 2.5 MPa0.5 미만 또는 2 MPa0.5 이하)인 것을 특징으로 한다. 이에 따라, 친수성 비결정성 고분자 첨가제는 PVDF와 compatibility가 우수하므로, PVDF의 결정성을 저하시키고, 결정크기 감소와 비결정영역은 증가된다. 상기 친수성 비결정성 고분자 첨가제로는 Poly(vinyl pyrrolidone) (PVP)가 사용될 수 있다. PVP와 PVDF solubility parameter는 각각 21.2 MPa0.5, 19.2 MPa0.5로 서로간의 solubility parameter 차이가 적어, PVDF와 PVP간의 compatibility가 우수하다.
다른 구체예에서, 상기 비결정성 고분자 첨가제는 소수성 비결정성 고분자 첨가제 일 수 있다. 이 경우, 상기 불화비닐리덴계 고분자 수지와 용해도 파라미터(solubility parameter) 차이가 약 20 MPa0.5 이하(≤약 20 MPa0.5)(예를 들면, 20 MPa0.5 이하, 20 MPa0.5 미만, 15 MPa0.5 이하, 15 MPa0.5 미만, 10 MPa0.5 이하, 10 MPa0.5 미만, 5 MPa0.5 이하, 5 MPa0.5 미만, 3 MPa0.5 이하, 3 MPa0.5 미만, 2 MPa0.5 이하, 2 MPa0.5 미만, 1 MPa0.5 이하, 1 MPa0.5 미만, 0.7 MPa0.5 이하, 0.7 MPa0.5 미만, 0.5 MPa0.5 이하, 0.5 MPa0.5 미만, 0.4 MPa0.5 이하, 0.4 MPa0.5 미만, 0.3 MPa0.5 이하, 0.3 MPa0.5 미만 또는 0.2 MPa0.5 이하), 예를 들면 약 0.5 MPa0.5 이하(≤약 0.5 MPa0.5), 구체예에서는 약 0.2 MPa0.5 이하(≤약 0.2 MPa0.5)일 수 있다. 상기 소수성 비결정성 고분자 첨가제의 예로는 PMMA 가 적용될 수 있다. PMMA와 PVDF solubility parameter는 각각 19.0 MPa0.5, 19.2 MPa0.5로 서로간의 solubility parameter 차이가 적어, PVDF와 PMMA간의 compatibility가 우수하다. PMMA는 불화비닐리덴계 고분자 수지의 결정성 억제를 통하여 구조 치밀화 유도하여 외부 표면 기공 축소 및 내부구조 치밀화(Inter connected structure) 효과를 얻을 수 있다.
상기 조성물을 ≥약 150℃ 내지 ≤약 250℃(예를 들면, 150, 160, 170, 180, 190, 200, 210, 220, 230, 240 또는 250℃), 구체적으로 ≥약 200℃ 내지 ≤약 220℃로 가열하는 단계를 통하여 상기 조성물을 중공사막 제조에 사용될 수 있는 방사용액 형태로 전환할 수 있다. 상기의 온도에서 방사에 적합한 점도를 유지할 수 있고, 중공사막에 균일한 기공이 충분하게 형성되게 할 수 있다. 상기 가열하는 단계는 질소대기조건하에서 수행할 수 있고, ≥약 2시간 내지 ≤약 8시간(예를 들면, 2, 3, 4, 5, 6, 7 또는 8시간), 구체적으로 ≥약 2시간 내지 ≤약 6시간 동안 가열 교반하는 방법으로 수행할 수 있다.
상기 방사용액은 기포를 제거하는 ≥약 5분 내지 ≤약 30분(예를 들면 5, 10, 15, 20, 25 또는 30분)의 탈포과정을 거칠 수 있다. 탈포과정 완료 후, 질소를 가압하여 압력안정화를 일정시간 거칠 수 있다.
상기 방사용액을 방사하기 위해서, 상기 방사 노즐에서는 방사용액 이송 라인과 노즐에 연결될 수 있고, 방사용액을 밀어주기 위한 정량펌프나 질소가스와도 연결될 수 있다. 상기 방사 노즐은 온도가 ≥약 150℃ 내지 ≤약 220℃(예를 들면, 150, 160, 170, 180, 190, 200, 210 또는 220℃) 또는 방사용액 온도의 ≥약 -30℃ 내지 ≤약 +30℃(예를 들면, -30, -20, -10, 0, +10, +20, +25 또는 +30℃) 범위일 수 있다.
상기 방사용액이 안정화 되면 일정유속의 정량펌프로 밀어주거나 질소가스의 밸브를 열어 일정 압력을 가해주어야 하는데, 통상적으로 정량펌프에 의해서 토출 속도가 결정되며, 상기 토출 속도는 제조되는 중공사막의 물성이나 특성에 따라 조절될 수 있으며, 예를 들어 초당 또는 분당 ≥약 1g 내지 ≤약 50g(예를 들면, 초당 또는 분당 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49 또는 50g)의 속도로 토출될 수 있다.
상기 방사용액은 방사 노즐을 통하여 토출되어 습식 응고조로 침지된다. 이러한 습식 응고조로의 방사 과정을 통하여 연신 전의 예비 중공사막이 형성될 수 있다.
상기 습식 응고조는 물로 채워져 있으며, 이러한 습식 응고조 또는 이에 체류하는 물은 ≥약 15℃ 내지 ≤약 40℃(예를 들면, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39 또는 40℃)의 온도로 유지될 수 있다. 응고조로 침지되는 고분자용액은 응고조 안에서 급속하게 온도저하 및 결정화가 진행된다. 응고조의 온도에 따라 제조되는 중공사막의 결정크기를 제어 가능하다. 응고조의 온도가 낮을수록, 고분자 결정크기가 작으며, 이렇게 제조된 중공사막은 치밀한 내부구조를 가지게 되며 기계적 강도가 증가된다. 반면 응고조의 온도가 높을수록 결정크기가 증가하여 치밀한 내부구조가 아닌 조대한 구조를 형성하여 수투과도가 증가된 중공사막을 제조가능하다.
이와 같이 응고조 침지하여 냉각시, 비결정 고분자 첨가제로 인하여 결정성장이 저하된 상태에서 열유도상전이가 진행되며 중공사막의 외부 표면은 크기가 작은 결정크기와 비결정 부분이 형성된다. 또한, 미세결정 주변으로 비결정성 고분자 첨가제가 위치하게 되어 결정과 비결정 구간 구분화가 진행된다. 분리막의 기공은 비결정 영역의 개열로 인하여 형성된다. 이처럼, 비결정성 고분자 첨가제 첨가량이 증가할수록 결정크기가 축소되며, 결정과 비결정 부분이 미세한 크기로 구분되어, 분리막 외부 표면 기공크기는 축소와 내부구조 치밀화(Inter connected structure)를 만들었다. 또한, 중공사막은 외부 표면으로부터 내부 표면으로 갈수록 치밀한 구조에서 조대한 구조로 바뀐다. 즉, 방사노즐로부터 토출되는 방사용액(중공사막)의 외부층이 내부층 보다 대기노출이나 응고조내의 물과의 접촉이 먼저 이루어짐에 따라서 내부 표면보다 외부 표면 측이 좀더 치밀한 구조를 가지게 되는 것이다. 정밀여과막(Microfiltration)공정에서 중공사막 오염의 주요 원인은 기공 막힘(Pore blockage) 현상으로 외부 표면 기공이 클수록 기공 막힘현상이 심화되는데, 외부 표면 기공의 크기가 적을수록 중공사막의 내오염성 특성이 증가한다.
상기 방사 노즐과 상기 습식 응고조의 물의 표면 간의 거리는 ≥약 0.5㎝ 내지 ≤약 50㎝(예를 들면, 0.5, 0.7, 1, 1.5, 2, 2.5, 3, 3.5, 4, 4.5, 5, 5.5, 6, 6.5, 7, 7.5, 8, 8.5, 9, 9.5, 10, 10.5, 11, 11.5, 12, 12.5, 13, 13.5, 14, 14.5, 15, 16, 17, 18, 19, 20, 25, 30, 35, 40, 45 또는 50cm), 바람직하게는 ≥약 1㎝ 내지 ≤약 15㎝일 수 있다. 상기 방사 노즐과 상기 습식 응고조의 물의 표면 간의 거리는 상기 방사용액이 외부 공기에 노출되는 거리(에어 갭)일 수 있다. 에어겝의 길이 조절에 따라 대기중에 고분자용액의 노출시간을 제어 가능하다. 에어겝이 증가할수록, 방사노즐을 통하여 토출되는 고분자용액이 대기중에 노출되는 시간이 증가하게 된다. 고분자용액이 대기중에 노출되는 과정에서, 고분자용액 최외각 층에서 용매증발이 진행되게 되고, 이 상태로 응고(결정화)된 중공사막은 외부 표면이 치밀한 구조를 가지게 된다. 이렇게 제조된 중공사막은 외부 표면층에 치밀층이 형성되어 기계적강도가 증가하나 수투과도가 저하되는 현상이 발생하게 된다. 반면 에어겝이 줄어들수록, 방사노즐을 통하여 토출되는 고분자용액이 대기중에 노출되는 시간이 줄어들게 되어, 중공사막의 외부 표면의 치밀층 형성이 더디게 된다. 이렇게 제조된 중공사막은 치밀층 부분이 적어 기계적 강도는 저하되나 수투과도가 증가된다.
예비 중공사막은 응고조를 지나, 보빈을 이용하여 권취된다. 보빈권취된 예비 중공사막은 추출용매에 침지하는 과정을 거친다. 추출용매는 중공사막 내의 PVDF를 제외한 폴리에스테르계 가소제, 양용매, 비결정성 고분자 첨가제를 용해하는 용매를 일컫는다. 본 발명에 사용된 추출용매는 디클로로메탄, 에탄올, 물이 사용될 수 있다. 추출용매에 중공사막 침지과정을 통하여, 중공사막내의 가소제와 첨가제가 빠져 나오게 되며 중공사막 내의 기공을 형성하여 다공성의 예비 중공사막을 얻게 된다.
구체예에서 상기 추출 용매는 디클로로메탄(dichloromethane), 에틸 알코올(ethyl alcohol) 및 이소프로필 알코올(isopropyl alcohol) 중 하나 이상을 포함할 수 있다.
상기 추출된 예비 중공사막은 결정화하는 과정을 거친다. 구체예에서 가소제 및 첨가제 추출이 완료된 예비 중공사막을 대기중에서 건조과정을 거치게 된다. 이때 대기로 노출된 예비 중공사막은 추출용매 휘발이 이루어지며 급격하게 진행되며 예비 중공사막내 잔여결정화와 수축이 이루어진다. 이 과정을 통하여 중공사막 외경 및 길이방향의 10~30% 수축이 발생하게 된다. 수축된 중공사막은 다시 한번 열처리 과정을 통하여 완전결정화를 시켜 준다. 이때 열처리는 ≥약 80℃ 내지 150℃(예를 들면, 80, 90, 100, 110, 120, 130, 140 또는 150℃)에서 ≥약 3분 내지 ≤약 200분(예를 들면 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 17, 20, 25, 30, 40, 50, 60, 70, 100, 150 또는 200분), 구체예에서는 ≥약 100℃ 내지 ≤약 150℃ 온도에서 ≥약 3분 내지 ≤약 10분 수행함이 적당하다.
결정화가 완료된 중공사막은 연신과정을 통하여, 중공사막 내부의 기공을 개열 시켜준다. 이때의 연신은 냉연신을 실시한다. 열연신 보다는 결정영역과 비결정영역의 구분화 및 비결정영역의 개열을 최대화하기 위하여 냉연신을 수행한다. 냉연신은 상온 약 10-30℃에서 수행하며 짧은 구간에서 이루어진다. 냉연신의 경우, 연신거리가 짧은 편이 연신점을 고정시킬 수 있고, 연신 불균일 발생을 억제하여 균일하게 연신할 수 있기 때문에 바람직하다. 본 발명에서는 연신구간의 거리는 ≥약 50 mm 내지 ≤약 200 mm(예를 들면, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150, 160, 170, 180, 190 또는 200mm)이다. 연신은 상온 25℃에서 약 2.5배 연신을 실시할 수 있다.
연신과정을 통하여 결정구조 배향도 증가와 비결정질 부분의 개열을 통하여 중공사막 내부의 다공성 구조를 가지게 된다. 중공사막의 외부 표면은 결정크기가 작으므로 결정질과 비결정질이 미세한 크기로 구분되어 있어, 연신시에 외부 표면에는 미세한 크기의 비결정질의 기공개열로 미세기공이 형성된다. 반면 내부 표면은 외부 표면 보다 결정질과 비결정길의 구분이 조대화하여 연신시에 결정질(라멜라스택)사이의 비결정질 부분의 개열을 통하여 거대기공이 형성된다. 이와 같은 구조는 치밀부와 다공부가 교대로 형성되는 지브라 스트라이프 패턴(zebra-stripe pattern)으로 명명한다. 이렇게 제조된 중공사막은 구조치밀화와 미세기공형성 및 다공성구조 발현으로 기계적강도와 수투과도가 동시에 향상된다.
추후, 연신된 중공사막은 다시 한번 열처리 과정을 거쳐, 중공사막의 수축을 억제시켜 줄 수 있다.
이처럼 본 발명은 열유도상전이법을 이용하여 가소제를 통한 액-액 상전이를 유도하여 망상형 구조의 중공사막을 제조할 수 있다. 특히, 친수성 비결정성 고분자를 사용할 경우 중공사막 외부 표면 치밀화(결정크기 축소, 기공크기 축소)와 내부구조의 Inter connected 구조를 형성할 수 있다.
이하, 본 발명의 바람직한 실시예를 통해 본 발명의 구성 및 작용을 더욱 상세히 설명하기로 한다. 다만, 이는 본 발명의 바람직한 예시로 제시된 것이며 어떠한 의미로도 이에 의해 본 발명이 제한되는 것으로 해석될 수는 없다.
여기에 기재되지 않은 내용은 이 기술 분야에서 숙련된 자이면 충분히 기술적으로 유추할 수 있는 것이므로 그 설명을 생략하기로 한다.
실시예
실시예 1
PVDF 100 중량부에 대하여 아디프산 폴리에스테르계 가소제 1.86 중량부, 양용매로서 NMP 0.36 중량부, 비결정성 고분자 첨가제로서 PVP(Poly(vinyl pyrrolidone)) 0.1 중량부를 혼합하고 210℃ 온도 및 1 bar의 고온가압 조건에서 3시간 동안 가열 교반하여 균일한 고분자 방사용액을 제조하였다. 이후, 2중관을 포함한 2중 방사노즐을 이용하여, 방사노즐의 최내측에는 내부응고제로서 아디프산 폴리에스테르계 가소제를 토출하고, 방사노즐의 최외측에는 고분자 방사용액을 토출하였다. 210℃의 방사용액은 170℃의 방사노즐을 통하여 응고조로 토출되었다. 이때의 방사노즐과 응고조 사이의 거리는 5 cm이다. 노즐을 통하여 토출된 방사용액은 25℃의 응고조에 침지되어 중공형태의 중공사막으로 응고되며, 응고조를 지나 세정조를 거쳐 권취기에서 중공사막을 얻게 된다. 이렇게 권취된 중공사막은 디클로로메탄에 침지되어 아디프산 폴리에스테르계 가소제, 양용매 NMP, 친수성 비결정성 고분자 PVP를 추출하였다. 추출공정을 거친 후, 상온에서 건조한 후 120℃에서 열처리과정을 통하여 중공사막내의 결정화를 유도하였다. 결정화가 진행된 중공사막은 길이 및 외경이 20% 축소되었다. 건조와 열처리 과정을 거친 중공사막을 2.5배 냉연신 후, 다시 한번 100℃에서 열처리 후 권취하여 중공사막을 얻었다. 제조된 중공사막 외부 표면을 5,000배 확대한 SEM 사진을 도 3a에 나타내었으며, 내부 표면을 5,000배 확대한 SEM 사진을 도 3b에 나타내었다.
실시예 2
PVDF 100 중량부에 대하여 아디프산 폴리에스테르계 가소제 1.93 중량부, NMP 0.36 중량부, PVP 0.03 중량부를 사용한 것을 제외하고는 실시예 1과 동일하게 수행하였다.
실시예 3
PVDF 100 중량부에 대하여 아디프산 폴리에스테르계 가소제 1.8 중량부, NMP 0.36 중량부, PVP 0.16 중량부를 사용한 것을 제외하고는 실시예 1과 동일하게 수행하였다.
실시예 4
PVDF 100 중량부에 대하여 아디프산 폴리에스테르계 가소제 1.86 중량부, NMP 0.36 중량부, 비결정성 고분자 첨가제로서 PMMA 0.1 중량부를 사용한 것을 제외하고는 실시예 1과 동일하게 수행하였다.
비교예 1
PVDF 100 중량부에 대하여 아디프산 폴리에스테르계 가소제 1.96 중량부, NMP 0.36 중량부를 사용한 것을 제외하고는 실시예 1과 동일하게 수행하였다. 제조된 중공사막 외부 표면을 5,000배 확대한 SEM 사진을 도 4a에 나타내었으며, 내부 표면을 5,000배 확대한 SEM 사진을 도 4b에 나타내었다.
비교예 2
PVDF 100 중량부에 대하여 아디프산 폴리에스테르계 가소제 1.96 중량부, NMP 0.36 중량부를 사용하고 응고조의 온도를 5℃로 변경한 것을 제외하고는 실시예 1과 동일하게 수행하였다.
물성평가 방법
1) 파단강도(kgf/fiber): 섬유인장시험기(Instron, 제조사)를 이용하여 온도 23℃, 상대 습도 50 %의 분위기에서 중공사막 길이 100 mm, 크로스 헤드 속도 50 mm/분의 조건으로 측정하였다. 중공사막 시험편이 파단할 때까지의 최대인장 하중(Wmax)을 측정하였다.
2)파단신율(%): 중공사막을 그립(Grip)에 물려 50mm/min 속도로 잡아 당기면서 파단이 일어나기 직전까지 늘어난 길이의 비율을 측정하였다.
3) 수투과도(LMH): 200mm의 아크릴 튜브 안에 제조된 중공사막을 넣고서 에폭시를 이용하여 포팅하고, 막면적에 따른 시간당 순수투과유량을 측정하였다. 순수투과도 측정 시, 1 bar의 압력을 인가하여 Dead-end filtration 방식으로 측정하였다.
4) 평균기공직경(㎛): Capillary Flow Porometer 장비를 이용하여 기체(air, N2) flow 압력을 증가시키며 wet curve와 dry curve 측정을 순차적으로 진행하여 중공사막의 평균기공직경을 측정하였다. Wet curve 측정시, wetting fluid를 porefil(surface tension of 16 dyn/cm)를 사용하였다.
5) 외부 표면 최대기공크기(㎛): 중공사막 외부 표면의 5000배의 SEM Image를 이미지프로(Image-pro) 프로그램을 이용하여 중공사막의 최대기공크기를 측정하였다.
6) 버블 포인트(bar): 수투과도 측정 시와 동일하게 200 mm의 아크릴 튜브에 PVDF 중공사막을 넣고 에폭시로 포팅하여 소형 모듈을 제조한다. 제조된 소형모듈을 물에 침지하여 모듈내에 공기를 0 bar 부터 점차 증가시키며 공기방울이 분리막 표면에서 발견되는 시점을 버블 포인트로 측정하였다.
실시예 비교예
1 2 3 4 1 2
PVDF 100 100 100 100 100 100
가소제 186 193 180 186 196 196
양용매 36 36 36 36 36 36
PVP 10 3 16 - - -
PMMA - - - 10 - -
응고조 온도(℃) 25 25 25 25 25 5
파단강도(kgf/fiber) 1.5 1.3 1.3 1.5 1.1 1.4
파단신율(%) 80 77 81 82 110 207
수투과도(LMH/bar) 3200 2480 2100 1540 785 445
평균기공직경(㎛) 0.09 0.12 0.08 0.09 0.15 0.11
외부 표면 최대기공크기 (㎛) 0.11 0.21 0.09 0.12 1.01 0.32
버블 포인트(bar) >4 >4 >4 >4 >4 >4
상기 표 1에 나타난 바와 같이, 본 발명의 내부 표면에 중공사막의 길이 방향을 따라서 줄무늬를 이루는 치밀부 및 다공부가 교대로 형성된 중공사막을 갖는 실시예 1 내지 4는 수투과도 및 기계적 특성이 모두 우수하고 비교예 1-2는 수투과도가 현저히 낮은 것을 확인할 수 있다.
이상 본 발명의 실시예들을 설명하였으나, 본 발명은 상기 실시예들에 한정되는 것이 아니라 서로 다른 다양한 형태로 제조될 수 있으며, 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자는 본 발명의 기술적 사상이나 필수적인 특징을 변경하지 않고서 다른 구체적인 형태로 실시될 수 있다는 것을 이해할 수 있을 것이다. 그러므로 이상에서 기술한 실시예들은 모든 면에서 예시적인 것이며 한정적이 아닌 것으로 이해해야 한다.

Claims (14)

  1. 외부 표면과 내부 표면을 갖는 중공사막이며,
    상기 내부 표면은 길이 방향을 따라서 치밀부 및 다공부가 교대로 형성된 지브라 스트라이프 패턴(zebra-stripe pattern)을 가지며,
    상기 외부 표면은 최대기공크기가 약 1㎛ 이하이고,
    수투과도(flux)가 ≥약 1,300 내지 ≤약 5,000 LMH/bar인 중공사막.
  2. 제1항에 있어서, 상기 중공사막은 평균기공직경이 ≥약 0.08㎛ 내지 ≤약 0.3㎛이고, 외부 표면의 최대 기공크기가 ≥약 0.09㎛ 내지 ≤약 0.5㎛인 중공사막.
  3. 제1항 또는 제2항에 있어서, 상기 내부 표면의 치밀부는 평균기공직경이 ≥약 0.001㎛ 내지 ≤약 0.05㎛이고, 상기 내부 표면의 다공부는 평균기공직경이 ≥약 0.1㎛ 내지 ≤약 0.55㎛인 중공사막.
  4. 제1항 내지 제3항 중 어느 한 항에 있어서, 상기 중공사막의 내부 표면 약 5㎛2 이내에,
    상기 치밀부는 최대기공크기가 약 0.08㎛ 미만이며,
    상기 다공부는 약 0.1㎛ 이상의 직경을 갖는 기공이 약 1개 이상인 중공사막.
  5. 제1항 내지 제4항 중 어느 한 항 에 있어서,
    상기 치밀부와 다공부는 겉보기 면적비가 하기 식 1을 만족하는 중공사막:
    [식 1]
    약 0.25 ≤ 겉보기 면적비(B/A) ≤ 약 2.5
    (상기 식 1에서, B는 다공부의 겉보기 면적, A는 치밀부의 겉보기 면적).
  6. 제1항 내지 제5항 중 어느 한 항 에 있어서,
    상기 중공사막은 외부 표면에서 내부 표면으로 갈수록 기공크기가 커지는 것을 특징으로 하는 중공사막.
  7. 제1항 내지 제6항 중 어느 한 항 에 있어서,
    상기 중공사막은 파단신율이 ≥약 70 내지 ≤약 210 %인 중공사막.
  8. 제1항 내지 제7항 중 어느 한 항 에 있어서,
    상기 중공사막은 망상형 구조를 갖는 중공사막.
  9. 불화비닐리덴계 고분자 수지 및 점도가 ≥약 100 내지 ≤약 4,000cps인 폴리에스테르계 가소제, 양용매, 비결정성 고분자 첨가제를 포함하는 조성물을 혼합하여 방사용액을 제조하는 단계;
    상기 방사용액을 습식 응고조로 방사하여 예비 중공사막을 형성하는 단계;
    상기 예비 중공사막으로부터 상기 가소제, 양용매 및 비결정성 고분자 첨가제를 추출하는 단계;
    상기 예비 중공사막을 결정화하는 단계; 및
    상기 결정화된 예비 중공사막을 냉연신하는 단계;
    를 포함하는
    것을 특징으로 하는 중공사막의 제조방법.
  10. 제9항에 있어서,
    상기 비결정성 고분자 첨가제는 친수성 비결정성 고분자 첨가제이며,
    상기 불화비닐리덴계 고분자 수지와 용해도 파라미터(solubility parameter) 차이가 약 5 MPa0.5 이하인 중공사막의 제조방법.
  11. 제9항에 있어서,
    상기 비결정성 고분자 첨가제는 소수성 비결정성 고분자 첨가제이며,
    상기 불화비닐리덴계 고분자 수지와 용해도 파라미터(solubility parameter) 차이가 약 20 MPa0.5 이하인 중공사막의 제조방법.
  12. 제9항 내지 제11항 중 어느 한 항에 있어서,
    상기 습식 응고조의 온도는 ≥약 15℃ 내지 ≤약 40℃인 중공사막의 제조방법.
  13. 제9항 내지 제12항 중 어느 한 항에 있어서,
    상기 결정화는 ≥약 80℃ 내지 ≤약 150℃에서 ≥약 3분 내지 ≤약 200분 동안 열처리하는 것인 중공사막의 제조방법.
  14. 제9항 내지 제13항 중 어느 한 항에 있어서, 상기 조성물은 상기 불화비닐리덴계 고분자 수지 100 중량부, 상기 폴리에스테르계 가소제 ≥약 1.5 내지 ≤약 2.0 중량부, 양용매 ≥약 0.2 내지 ≤약 0.5 중량부 및 비결정성 고분자 첨가제 ≥약 0.01 내지 ≤약 0.2 중량부를 포함하는 중공사막의 제조방법.
PCT/KR2018/014428 2017-11-24 2018-11-22 중공사막 및 이의 제조방법 WO2019103481A1 (ko)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201880084975.3A CN111587146B (zh) 2017-11-24 2018-11-22 中空纤维膜及其制造方法
EP18880972.7A EP3714966A4 (en) 2017-11-24 2018-11-22 HOLLOW FIBER MEMBRANE AND MANUFACTURING METHOD FOR IT
US16/766,656 US11406942B2 (en) 2017-11-24 2018-11-22 Hollow fiber membrane and manufacturing method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020170158868A KR102015709B1 (ko) 2017-11-24 2017-11-24 중공사막 및 이의 제조방법
KR10-2017-0158868 2017-11-24

Publications (1)

Publication Number Publication Date
WO2019103481A1 true WO2019103481A1 (ko) 2019-05-31

Family

ID=66630655

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2018/014428 WO2019103481A1 (ko) 2017-11-24 2018-11-22 중공사막 및 이의 제조방법

Country Status (5)

Country Link
US (1) US11406942B2 (ko)
EP (1) EP3714966A4 (ko)
KR (1) KR102015709B1 (ko)
CN (1) CN111587146B (ko)
WO (1) WO2019103481A1 (ko)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20030001474A (ko) 2001-03-06 2003-01-06 아사히 가세이 가부시키가이샤 중공사막의 제조 방법
KR20060134157A (ko) * 2004-04-14 2006-12-27 가부시끼가이샤 구레하 불화비닐리덴계 수지 중공사 다공 여수막 및 그의 제조방법
KR20120024965A (ko) * 2009-07-14 2012-03-14 가부시끼가이샤 구레하 불화비닐리덴계 수지 다공막, 그의 제조 방법 및 여과수의 제조 방법
KR20140042261A (ko) * 2012-09-28 2014-04-07 웅진케미칼 주식회사 폴리비닐덴플루오라이드(pvdf) 비대칭 다공성 중공사막의 제조방법
JP5549768B2 (ja) * 2008-05-21 2014-07-16 三菱レイヨン株式会社 中空状多孔質膜
KR20160081612A (ko) * 2014-12-31 2016-07-08 도레이케미칼 주식회사 다공성 pvdf 중공사막 및 이의 제조방법

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1063256A4 (en) * 1998-03-16 2003-03-26 Asahi Chemical Ind MICROPOROUS FILM
WO2006001528A1 (ja) * 2004-06-28 2006-01-05 Kureha Corporation 水処理用多孔質膜及びその製造方法
JP4781691B2 (ja) * 2005-03-01 2011-09-28 株式会社クレハ 多孔質膜およびその製造方法
KR101902631B1 (ko) * 2016-09-27 2018-09-28 롯데케미칼 주식회사 중공사막 및 이의 제조방법

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20030001474A (ko) 2001-03-06 2003-01-06 아사히 가세이 가부시키가이샤 중공사막의 제조 방법
KR20060134157A (ko) * 2004-04-14 2006-12-27 가부시끼가이샤 구레하 불화비닐리덴계 수지 중공사 다공 여수막 및 그의 제조방법
JP5549768B2 (ja) * 2008-05-21 2014-07-16 三菱レイヨン株式会社 中空状多孔質膜
KR20120024965A (ko) * 2009-07-14 2012-03-14 가부시끼가이샤 구레하 불화비닐리덴계 수지 다공막, 그의 제조 방법 및 여과수의 제조 방법
KR20140042261A (ko) * 2012-09-28 2014-04-07 웅진케미칼 주식회사 폴리비닐덴플루오라이드(pvdf) 비대칭 다공성 중공사막의 제조방법
KR20160081612A (ko) * 2014-12-31 2016-07-08 도레이케미칼 주식회사 다공성 pvdf 중공사막 및 이의 제조방법

Also Published As

Publication number Publication date
KR20190060551A (ko) 2019-06-03
CN111587146A (zh) 2020-08-25
CN111587146B (zh) 2022-09-02
KR102015709B1 (ko) 2019-08-28
EP3714966A4 (en) 2021-08-25
EP3714966A1 (en) 2020-09-30
US11406942B2 (en) 2022-08-09
US20200360864A1 (en) 2020-11-19

Similar Documents

Publication Publication Date Title
WO2012128470A2 (ko) 강도 및 수투과도가 우수한 폴리설폰계 중공사막 및 그 제조방법
WO2013073828A1 (ko) 친수성 폴리불화비닐리덴계 중공사 분리막 및 이의 제조방법
WO2011037354A2 (ko) 불소계 중공사막 및 그 제조 방법
WO2010021474A2 (ko) 다공성 막 및 그 제조방법
US20150096934A1 (en) Preparation method of homogeneous-reinforced PVDF hollow fiber membrane
CN111346519B (zh) 一种非对称聚烯烃膜的制备方法
WO2014112689A1 (ko) 압출기를 이용한 연속공정으로 친수화된 중공사막을 제조하는 방법
WO2012074222A2 (ko) 셀룰로오스계 수지를 이용한 수처리용 중공사막의 제조방법
KR20160116466A (ko) 세미 열유도 상분리법을 이용한 기체분리용 비대칭 중공사막의 제조방법 및 그에 의하여 제조된 기체분리용 비대칭 중공사막
WO2014098322A1 (ko) 신규한 구조를 가지는 중공사막 및 그 제조 방법
WO2015102291A1 (ko) 복합 중공사막 및 그 제조방법
WO2012067380A2 (ko) 관형 편물, 이를 이용한 중공사막 및 그의 제조방법
WO2019103481A1 (ko) 중공사막 및 이의 제조방법
WO2009157693A2 (ko) 수처리막의 친수화 방법 및 수처리막
WO2020130674A1 (ko) 여과막 형성용 조성물, 이를 이용한 여과막 제조방법 및 여과막
KR102316308B1 (ko) 친수성 플렉서블 폴리페닐렌설파이드 중공사막 제조용 방사조액, 이를 이용한 친수성 플렉서블 폴리페닐렌설파이드 중공사막 및 이를 이용한 친수성 플렉서블 폴리페닐렌설파이드 중공사막의 제조방법
KR101940379B1 (ko) 중공사막의 제조 방법 및 이로부터 제조된 중공사막
WO2019103482A2 (ko) 중공사막 형성용 조성물, 이를 이용한 중공사막 제조방법 및 중공사막
WO2016072634A1 (ko) 친수성 및 기계적 강도가 향상된 여과막 제조용 고분자 수지 조성물 제조방법
WO2015056853A1 (ko) 폴리비닐리덴플루오라이드 비대칭 다공성 중공사막 및 이의 제조방법
WO2015167071A1 (ko) 불화가스 회수용 탄소분자체 중공사막의 전구체 제조방법, 및 그에 의하여 제조된 불화가스 회수용 탄소분자체 중공사막의 전구체 및 탄소분자체 중공사막
EP2830747A1 (en) Porous membrane and method for manufacturing the same
KR101419835B1 (ko) 강도 및 수투과도가 향상된 pvdf계 중공사막 및 그 제조 방법
KR101556009B1 (ko) 강도 및 내열성이 향상된 다층 중공사막 및 이의 제조 방법
KR101902631B1 (ko) 중공사막 및 이의 제조방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18880972

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018880972

Country of ref document: EP

Effective date: 20200624