WO2015167071A1 - 불화가스 회수용 탄소분자체 중공사막의 전구체 제조방법, 및 그에 의하여 제조된 불화가스 회수용 탄소분자체 중공사막의 전구체 및 탄소분자체 중공사막 - Google Patents

불화가스 회수용 탄소분자체 중공사막의 전구체 제조방법, 및 그에 의하여 제조된 불화가스 회수용 탄소분자체 중공사막의 전구체 및 탄소분자체 중공사막 Download PDF

Info

Publication number
WO2015167071A1
WO2015167071A1 PCT/KR2014/005982 KR2014005982W WO2015167071A1 WO 2015167071 A1 WO2015167071 A1 WO 2015167071A1 KR 2014005982 W KR2014005982 W KR 2014005982W WO 2015167071 A1 WO2015167071 A1 WO 2015167071A1
Authority
WO
WIPO (PCT)
Prior art keywords
hollow fiber
carbon molecular
fiber membrane
molecular sieve
precursor
Prior art date
Application number
PCT/KR2014/005982
Other languages
English (en)
French (fr)
Inventor
고형철
하성용
이충섭
문종철
김세종
Original Assignee
(주)에어레인
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by (주)에어레인 filed Critical (주)에어레인
Publication of WO2015167071A1 publication Critical patent/WO2015167071A1/ko

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/58Other polymers having nitrogen in the main chain, with or without oxygen or carbon only
    • B01D71/62Polycondensates having nitrogen-containing heterocyclic rings in the main chain
    • B01D71/64Polyimides; Polyamide-imides; Polyester-imides; Polyamide acids or similar polyimide precursors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/08Hollow fibre membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/02Inorganic material
    • B01D71/021Carbon

Definitions

  • the present invention relates to a precursor manufacturing method of a carbon molecular hollow fiber membrane for fluorine gas recovery, and a precursor and a carbon molecular hollow fiber membrane of the carbon molecular hollow fiber for fluorine gas recovery produced therefrom, and more specifically to a polyimide hollow fiber membrane
  • the present invention relates to a gas separation membrane of a hollow fiber type, which is manufactured by using a precursor of an internal hollow fiber membrane and heat-treated to produce a carbon molecular hollow fiber membrane, and which can be applied to separation recovery of fluorinated gas.
  • Air Liquide of France installed a pilot scale recovery and reuse system for sulfur hexafluoride using a separator at a power IC manufacturing plant.
  • the gas generated in the process is 60% sulfur hexafluoride and 40% air.
  • incineration As a technique for removing sulfur hexafluoride, incineration has mainly been used. Incineration is the simplest and most proven technique, but because of the stability of sulfur hexafluoride, it needs to be heated above 1,200 °C before the oxidation reaction, and there is a possibility of causing secondary air environment problem by combustion. Another problem is that the semiconductor process is usually done in a vacuum, so it is diluted with a large amount of nitrogen or air before going to the incinerator. This drastically lowers the combustion efficiency during incineration. Because of these problems, research on the reduction and recovery of the amount of use, as well as new decomposition technologies, is ongoing.
  • Patent Documents 1 and 2 Gas separation membranes having high permeation selectivity under such harsh conditions include carbon molecular sieve membranes (Carbon Molecular Sieve Membrane) and polyimide membranes, and efforts have been made to develop them.
  • the organic polymer-derived carbon molecular film has rarely been commercialized, and only the degree of using polysulfone and polyimide has been commercialized and applied (Patent Documents 3 and 4).
  • a hollow fiber membrane prepared by using polyimide having excellent thermal and chemical properties as a material, and a carbon molecular hollow fiber membrane prepared by heat treatment using the precursor as a precursor separates a fluoride gas / nitrogen mixture and is fluorinated.
  • the present invention has been completed with the focus on being able to concentrate or recover the gas.
  • Patent Documents 1. Korean Laid-Open Patent No. 2002-0010487
  • Patent Document 2 Japanese Patent No. 4089230
  • Patent Document 3 International Publication WO 2000/71232
  • Patent Document 4 Korean Patent Publication No. 2013-0011393
  • the present invention has been made in view of the above problems, and an object of the present invention is to provide a precursor of a carbon molecular weight hollow fiber membrane for recovering fluorinated gas having high nitrogen permeability and high thermal selectivity for fluorine gas.
  • the present invention provides a precursor and a carbon molecular weight hollow fiber membrane of a carbon molecular weight hollow fiber membrane for fluorine gas recovery.
  • the present invention for achieving the object as described above, in the precursor manufacturing method of the carbon molecular sieve hollow fiber membrane for fluorine gas recovery, i) mixing a polyimide, a solvent, a co-solvent and a non-solvent to obtain a dope solution; ii) supplying and discharging the dope solution together with a bore solution into a spinning nozzle; iii) contacting the discharged dope solution with a coagulation solution to form hollow fibers; And iv) winding, washing, and drying the hollow fiber formed in step iii), to provide a precursor manufacturing method of a carbon molecular sieve hollow fiber membrane for fluorine gas recovery.
  • the polyimide of step i) is characterized in that the 6FDA-MDA-based polyimide.
  • the solvent of step i) is characterized in that any one selected from the group consisting of N-methylpyrrolidone (NMP), dimethylacetamide (DMAc) dimethylformamide (DMF), and dimethyl sulfoxide (DMSO).
  • NMP N-methylpyrrolidone
  • DMAc dimethylacetamide
  • DMF dimethylformamide
  • DMSO dimethyl sulfoxide
  • the co-solvent of step i) is from the group consisting of tetrahydrofuran (THF), 1,4-dioxane, trichloroethane, 2-methyl-1-butanol, 2-methyl-2-butanol, and 2-pentanol It is characterized by any one selected.
  • the non-solvent of step i) is characterized in that any one selected from the group consisting of water, methanol, ethanol, isopropanol, and acetone.
  • the polyimide content in the dope solution of step i) is characterized in that 20 to 25% by weight.
  • Discharge rate of the dope solution and the bore solution of step ii) is characterized in that 1.8cc ⁇ 3.0cc / min and 0.8cc ⁇ 2.0cc / min, respectively.
  • the coagulating solution of step iii) is characterized in that any one selected from the group consisting of water, methanol, ethanol, isopropanol, pentane, hexane, and mixtures thereof.
  • the present invention provides a precursor of a carbon molecular weight hollow fiber membrane for fluorine gas recovery prepared by the above production method.
  • the present invention also provides a carbon molecular sieve hollow fiber membrane for fluorine gas recovery obtained by heat-treating the precursor of the carbon molecular sieve hollow fiber membrane for fluorine gas recovery.
  • the heat treatment is a) heating to 200 °C at a temperature increase rate of 6 ⁇ 10 °C / min; b) increasing the temperature to 300 ° C. at a heating rate of 1 to 5 ° C./min, and maintaining the isothermal process for 0.5 to 2 hours; And c) cooling to room temperature at a rate of falling of 1-5 ° C./min.
  • the heat treatment is a) heating to 250 °C at a temperature increase rate of 6 ⁇ 10 °C / min; b) heating to 300 ° C. at a rate of temperature rise of 4-5 ° C./min; c) increasing the temperature to 400 ° C. at a temperature rising rate of 1 to 3 ° C./min, and maintaining the isothermal process for 0.5 to 2 hours; And c) cooling to room temperature at a rate of falling of 1-5 ° C./min.
  • the heat treatment is a) heating to 300 °C at a temperature increase rate of 6 ⁇ 10 °C / min; b) heating to 400 ° C. at an elevated rate of 4-5 ° C./min; c) increasing the temperature to 450 ° C. at a temperature rising rate of 1 to 3 ° C./min, and maintaining the isothermal process for 0.5 to 2 hours; And c) cooling to room temperature at a rate of falling of 1-5 ° C./min.
  • the heat treatment is a) heating to 400 °C at a temperature increase rate of 6 ⁇ 10 °C / min; b) increasing the temperature to 450 ° C. at a temperature rising rate of 1 to 5 ° C./min, and maintaining the isothermal process for 0.5 to 2 hours; And c) cooling to room temperature at a rate of falling of 1-5 ° C./min.
  • the heat treatment is a) heating to 300 °C at a temperature increase rate of 6 ⁇ 10 °C / min; b) increasing the temperature to 350 ° C. at a temperature rising rate of 1 to 5 ° C./min, and maintaining the isothermal process for 0.5 to 2 hours; And c) cooling to room temperature at a rate of falling of 1-5 ° C./min.
  • the heat treatment is a) after raising the temperature to 350 °C at a temperature increase rate of 1 ⁇ 5 °C / min, maintaining the isothermal process for 0.5 to 2 hours; And b) cooling to room temperature at a rate of falling of 1-5 ° C./min.
  • the present invention also provides a membrane module including the carbon molecular sieve hollow fiber membrane for fluorine gas recovery.
  • the present invention it is possible to obtain a precursor of a carbon molecular weight hollow fiber membrane for recovering fluorinated gas, which has high nitrogen permeability and high nitrogen selectivity to fluorinated gas and excellent thermal and chemical properties, and a carbon molecular weight hollow fiber membrane prepared by heat treatment.
  • the fluorine gas can be recovered with high efficiency from the fluorine gas / nitrogen mixed gas.
  • FIG. 1 is a precursor manufacturing apparatus of a carbon molecular hollow fiber membrane according to Preparation Examples 1 to 3 of the present invention.
  • Figure 2 is a precursor of the carbon-molecular hollow fiber membrane prepared according to Preparation Examples 1 to 3, the cross section of the hollow fiber membrane prepared according to the comparative example was measured using a scanning electron microscope (SEM) [(a) Preparation Example 1, (b) Preparation Example 2, (c) Preparation Example 3, and (d) Comparative Example].
  • SEM scanning electron microscope
  • 3 is a gas permeability test module of the hollow fiber membrane prepared according to Comparative Example, precursors of the carbon molecule hollow fiber membrane prepared according to Preparation Examples 1 to 3.
  • Figure 4 is a precursor of the carbon-molecular sieve hollow fiber membranes prepared in Preparation Examples 1 to 3, gas permeability measuring apparatus of the hollow fiber membrane prepared according to the comparative example.
  • bubble flow meter bubble flow meter
  • Example 6 is a photograph of a cross section of a carbon molecular weight hollow fiber membrane obtained by performing a heat treatment process according to Examples 1 to 6 using the precursor of the carbon molecular weight hollow fiber membrane prepared in Preparation Example 2 [SEM] (a) Example 1, (b) Example 2, (c) Example 3, (d) Example 4, (e) Example 5, (f) Example 6].
  • Figure 7 is a carbon molecular sieve hollow fiber membrane module of 1 Nm 3 / hr treatment class.
  • the fluoride gas may be defined as a gas containing a fluorine atom, and particularly, sulfur hexafluoride (SF 6 ) used and discharged in a semiconductor process.
  • SF 6 sulfur hexafluoride
  • the present invention provides a method for preparing a precursor of a carbon-molecular hollow fiber membrane for fluorine gas recovery, comprising: i) mixing a polyimide, a solvent, a cosolvent, and a nonsolvent to obtain a dope solution; ii) supplying and discharging the dope solution together with a bore solution into a spinning nozzle; iii) contacting the discharged dope solution with a coagulation solution to form hollow fibers; And iv) winding, washing, and drying the hollow fiber formed in step iii), to provide a precursor manufacturing method of a carbon molecular sieve hollow fiber membrane for fluorine gas recovery.
  • a dope solution is obtained by mixing polyimide, a solvent, a cosolvent, and a nonsolvent, and in general, a separation performance of the hollow fiber membrane Is closely related to the composition of the dope solution.
  • the separation performance of hollow fiber membranes is influenced by morphology, where morphology is related to phase separation controlled by thermodynamic interaction between spinning dope and winding bath, where solvent / non-solvent exchange is thermodynamic and kinetic.
  • composition of the dope solution is an important factor influencing the morphology of the hollow fiber membrane, and generally adopts a three-component system of a polymer, a solvent, a cosolvent, or a polymer, a solvent, and a nonsolvent, but in the present invention, A four component system was adopted.
  • a polyimide having excellent thermal and chemical properties was used as the polymer according to the present invention.
  • Any polyimide obtained by the imidation reaction of an aromatic acid dianhydride and an aromatic diamine can be used without limitation.
  • the polyimide resin can be easily dissolved while having the minimum industrially required toxicity.
  • the dope solution must be discharged from the spinning nozzle to be easily evaporated while passing through the air gap. It is desirable to be able to quickly exit the solution when in contact with the containing coagulating solution.
  • NMP N-methylpyrrolidone
  • DMAc dimethylacetamide
  • DMF dimethylformamide
  • DMSO dimethyl sulfoxide
  • the cosolvent is selected from the group consisting of tetrahydrofuran (THF), 1,4-dioxane, trichloroethane, 2-methyl-1-butanol, 2-methyl-2-butanol, and 2-pentanol Any one may be used, and tetrahydrofuran (THF) is more preferably used to play a role of suppressing the occurrence of defects on the surface of the hollow fiber membrane.
  • THF tetrahydrofuran
  • 1,4-dioxane 1,4-dioxane
  • trichloroethane 2-methyl-1-butanol
  • 2-methyl-2-butanol 2-pentanol
  • non-solvent any one selected from the group consisting of water, methanol, ethanol, isopropanol, and acetone is used, and the morphology is affected by being involved in phase separation by solvent / non-solvent exchange.
  • the polyimide content in the dope solution of step i) is 20 to 25% by weight. If the content of the polyimide in the dope solution is less than 20% by weight, the pore size of the hollow fiber membrane prepared due to the low viscosity of the dope solution Has a disadvantage in that the selectivity decreases, and if it exceeds 25% by weight, it is difficult to obtain a uniform phase dope solution, and even if the hollow fiber membrane is manufactured, the mechanical strength can be increased, but the permeability is significantly reduced. Since the polyimide content in the dope solution may be adjusted to 20 to 25% by weight. Accordingly, the content of the solvent in the dope solution is 60 to 65% by weight, the content of the co-solvent and the non-solvent in the dope solution can be adjusted in the range of 5 to 15% by weight to design the composition of the dope solution.
  • the dope solution obtained in step i) is supplied and discharged together with the bore solution into the spinning nozzle.
  • the dope solution is transferred to a storage tank and left in a 50 ° C. oven for 12 hours to remove bubbles, and then, using a filter. After removing the foreign matter, it is supplied to the spinning nozzle through the gear pump.
  • the spinning speed of the dope solution and the spinning speed of the bore solution are controlled using a gear pump and a liquid transfer pump (HPLC pump) so that the secondary stretching does not occur during spinning.
  • the dope solution is 1.8cc to 3.0cc / min.
  • Bore solution is preferably adjusted to 0.8cc ⁇ 2.0cc / min range respectively.
  • the discharged dope solution is brought into contact with the coagulation solution to form hollow fiber.
  • the coagulation solution may be used without limitation as long as it contains a non-solvent, but water, methanol, ethanol, isopropanol, pentane, hexane, and mixtures thereof. It is preferable to use any one selected from the group consisting of.
  • the hollow fiber membrane precursor for fluorinated gas recovery is prepared by winding, washing and drying the hollow fiber formed in step iii).
  • the winding machine used in the winding process is wound with a separate cleaning tank.
  • the solvent is washed, and at this time, the traverse is mounted to prevent the hollow yarn from being rolled up during winding, and this is also controlled by installing a separate controller to change the winding conditions during spinning.
  • the traverse speed is maintained at 14m ⁇ 18m / min
  • the winding speed is maintained at 13m ⁇ 20m / min
  • the hollow fiber is manufactured by changing the speed according to the conditions of dope solution during spinning.
  • the washing time of the hollow fiber is changed by the amount of loose winding which is the amount of the hollow fiber wound on the bobbin, but in the present invention, the hollow fiber bobbin is cleaned for up to 72 hours, the solvent is moved to the solvent replacement and drying process. Drying of the hollow fiber is first immersed in 100 °C boiling water for 3 hours or more, and then immediately taken out, the solvent is first replaced by ethanol, and secondly using normal hexane for each 3 hours. This is to prevent the phenomenon that the performance of the hollow fiber is degraded due to the water remaining inside the hollow fiber membrane precursor. Then, it is allowed to dry naturally at 25 ° C. for about 36 hours. In the drying process, it was confirmed that the drying speed in the case of winding so that the gap between the yarn is kept constant by adjusting the speed of the traverse during winding was very short.
  • fluoride gas is separated from a fluorine gas / nitrogen mixed gas by modularizing the precursor of the fluorine gas recovery carbon molecular weight hollow fiber membrane manufactured by the method for producing the precursor of the carbon molecular weight hollow fiber membrane for fluorine gas recovery. And it can be used to recover, in the present invention, in order to increase the treatment capacity of the fluorine gas and recover the fluorine gas with a high efficiency of 80% or more, the precursor of the carbon-molecular sieve hollow fiber membrane for fluorine gas recovery according to the production method of the present invention
  • the heat treatment provides a carbon molecular hollow fiber membrane for fluorine gas recovery.
  • the heat treatment can be divided into three steps, firstly, can be divided into low temperature annealing step, intermediate step, carbon forming step.
  • the annealing step is also referred to as a pretreatment step, and crosslinks the polymer film through oxidation to maintain shape and structure during pyrolysis.
  • the performance changes depending on the oxidation temperature, time, and oxygen supply. The higher the oxidation temperature, the longer the permeability increases, but when the heating temperature and time exceeds a certain level, the hollow fiber membrane as a precursor undergoes carbonization. This is very degraded and reaches an extremely free state. Pyrolysis at high temperatures shows low permeability but conversely high selectivity.
  • the pores of the hollow fiber membranes as precursors appear in the annealing step and are maximized in the intermediate step. At this time, when heated to a high temperature, the pores shrink or disappear. If the isothermal process takes longer time, the selectivity increases while the transmittance decreases.
  • the temperature increase rate determines the volatilization rate of the volatile material in the polymer membrane during pyrolysis, and thus affects the properties of the pores formed in the carbon-molecular hollow fiber membrane. Slower temperature rises form small pores, increase selectivity, and increase the crystallinity of carbon. On the other hand, if the temperature rises rapidly, pinholes are formed in the extreme case, fine cracks may occur, and the carbon-molecular hollow fiber membrane may be deformed.
  • a process of heat-treating the precursor of the carbon-molecular hollow fiber membrane may be performed as follows. Optionally, the case may be performed.
  • the heat treatment includes the steps of a) heating to 200 ° C. at a temperature increase rate of 6 to 10 ° C./min; b) increasing the temperature to 300 ° C. at a heating rate of 1 to 5 ° C./min, and maintaining the isothermal process for 0.5 to 2 hours; And c) cooling to room temperature at a rate of falling of 1-5 ° C./min.
  • the heat treatment is a) heating to 250 °C at a temperature increase rate of 6 ⁇ 10 °C / min; b) heating to 300 ° C. at a rate of temperature rise of 4-5 ° C./min; c) increasing the temperature to 400 ° C. at a temperature rising rate of 1 to 3 ° C./min, and maintaining the isothermal process for 0.5 to 2 hours; And c) cooling to room temperature at a rate of falling of 1-5 ° C./min.
  • the heat treatment is a) heating to 300 °C at a temperature increase rate of 6 ⁇ 10 °C / min; b) heating to 400 ° C. at an elevated rate of 4-5 ° C./min; c) increasing the temperature to 450 ° C. at a temperature rising rate of 1 to 3 ° C./min, and maintaining the isothermal process for 0.5 to 2 hours; And c) cooling to room temperature at a rate of falling of 1-5 ° C./min.
  • the heat treatment may include a) heating to 400 ° C. at a temperature increase rate of 6 ⁇ 10 ° C./min; b) increasing the temperature to 450 ° C. at a temperature rising rate of 1 to 5 ° C./min, and maintaining the isothermal process for 0.5 to 2 hours; And c) cooling to room temperature at a rate of falling of 1-5 ° C./min.
  • the heat treatment is a) heating to 300 °C at a temperature increase rate of 6 ⁇ 10 °C / min; b) increasing the temperature to 350 ° C. at a temperature rising rate of 1 to 5 ° C./min, and maintaining the isothermal process for 0.5 to 2 hours; And c) cooling to room temperature at a rate of falling of 1-5 ° C./min.
  • the heat treatment may include a) increasing the temperature to 350 ° C. at a temperature increase rate of 1 to 5 ° C./min, and maintaining the isothermal process for 0.5 to 2 hours; And b) cooling to room temperature at a rate of falling of 1-5 ° C./min.
  • the present invention by providing a membrane module including the carbon-molecular hollow fiber membrane obtained through the heat treatment process, it is possible to increase the treatment capacity of fluorinated gas and recover fluorine gas from the fluorine gas / nitrogen mixed gas with high efficiency. It is expected.
  • the dope solution was supplied and discharged to the spinning nozzles having an outer diameter and an inner diameter of 0.4 mm and 0.2 mm through a gear pump, respectively, so that secondary stretching did not occur during spinning.
  • the discharge speed of the dope solution was 2.4cc / min
  • the discharge speed of the bore solution was 1.3cc / min
  • the gear The temperature of the pump, the dope line and the spinning nozzle was spun at 50 ° C.
  • the air gap was 10 cm
  • the hollow fiber was formed by contacting the discharged spinning solution with the coagulated liquid filled with water to finish the phase transition.
  • the formed hollow fiber was wound at 18 m / min and the hollow fiber wound on the bobbin was washed for 72 hours.
  • the washed hollow fiber was immersed in 100 ° C. boiling water for 3 hours or more, immediately taken out, and then solvent-substituted for 3 hours using ethanol and secondary normal hexane, respectively, and finally by natural drying at 25 ° C. for 36 hours.
  • a precursor of a carbon molecular hollow fiber membrane was prepared.
  • a precursor of a carbon-molecular hollow fiber membrane was prepared in the same manner as in Preparation Example 1, except that the dope solution was obtained with the composition of 23 g of 6FDA-MDA-based polyimide, 62 g of NMP, 12 g of THF, and 3 g of ethanol.
  • a precursor of a carbon-molecular hollow fiber membrane was prepared in the same manner as in Preparation Example 1, except that the dope solution was obtained with a composition of 25 g of 6FDA-MDA polyimide, 60 g of NMP, 12 g of THF, and 3 g of ethanol.
  • a hollow fiber membrane was prepared in the same manner as in Preparation Example 1, except that a commercially available polysulfone (Udel P-3500) resin was used instead of the 6FDA-MDA-based polyimide.
  • FIG. 2 shows a cross-sectional photograph measured using a scanning electron microscope (SEM) for morphology observation of the precursor of the carbon-molecular hollow fiber membranes prepared according to Preparation Examples 1 to 3 and the hollow fiber membranes prepared according to the Comparative Example [( a) Production Example 1, (b) Production Example 2, (c) Production Example 3, and (d) Comparative Example].
  • SEM scanning electron microscope
  • the precursors of the carbon-molecular hollow fiber membranes prepared according to Preparation Examples 1 to 3 had a finger-lke structure, and thus had a low permeation resistance to the permeate, whereas the hollow fiber membranes prepared from the comparative examples had a sponge-like structure. This increases the permeation resistance to the permeate.
  • test module as shown in FIG. 3 was manufactured.
  • the test module bundles 950 strands of each hollow fiber membrane in the housing, potted both ends with epoxy resin, and an effective membrane area of the hollow fiber membrane was 0.18 m 2 .
  • Gas permeability was measured by configuring the device as shown in FIG. 4, and the permeation rate of nitrogen and sulfur hexafluoride was measured using nitrogen and sulfur hexafluoride (SF 6 ) of high purity (99.999%) as a mixed gas.
  • SF 6 nitrogen and sulfur hexafluoride
  • the manufactured test module was controlled at 25 ° C., 2 to 9 kgf / cm 2 for at least 1 hour, and then the flow rate of the gas passing through the hollow fiber membrane was bubble flow meter as shown in FIG. 5.
  • the permeability unit was measured using a GPU (Gas Permeation Unit, 10 -6 x cm 3 / cm 2 ⁇ sec ⁇ cmHg), and the results are shown in Table 1.
  • the hollow fiber membranes prepared according to Preparation Examples 1 to 3 of the present invention had higher values of both nitrogen permeability and nitrogen selectivity for fluorinated gases as compared to the hollow fiber membranes using the commercialized polysulfone of the comparative example.
  • the precursor of the fluorinated gas-recovered carbon molecular weight hollow fiber membrane prepared in the present invention can be applied to a process of concentrating or recovering fluorinated gas from a mixture of fluorine gas / nitrogen.
  • Example 1 To 200 ° C (10 ° C / min) primary heating 200 to 300 ° C (5 ° C / min) secondary heating 30 minutes hold at 300 °C 300 ° C to room temperature (5 ° C / min)
  • Example 2 To 250 ° C (10 ° C / min) Primary Heating 250 to 300 ° C (5 ° C / min) Secondary Heating 300 to 400 ° C (2.5 ° C / min) Hold 30 minutes at 400 °C 400 ° C to room temperature (5 ° C / min)
  • Example 3 To 300 ° C (10 ° C / min) Primary Heating 300 to 400 ° C (5 ° C / min) Secondary Heating 400 to 450 ° C (2.5 ° C / min) 30 minutes hold at 450 °C 450 ° C to room temperature (5 ° C / min)
  • Example 4 To 400 ° C (10 ° C / min) Primary Heating 400 to 450 ° C (2 ° C / min) Secondary Heating 30 minutes hold at 450
  • Example 6 is a cross-sectional view of the carbon molecular weight hollow fiber membrane obtained by performing the heat treatment process according to Examples 1 to 6 described in Table 2 using the precursor of the carbon molecular weight hollow fiber membrane prepared in Preparation Example 2 of the present invention.
  • the photograph measured by the microscope (SEM) was shown [(a) Example 1, (b) Example 2, (c) Example 3, (d) Example 4, (e) Example 5, (f) Example 6].
  • the outer diameter and the inner diameter of the film are not substantially reduced even at a high temperature, and the shape is maintained as it is.
  • the glass transition temperature and the pyrolysis temperature are very high, so that the thermal stability is high. It is excellent and therefore can be considered to have little deformation.
  • the carbon molecular sieve hollow fiber membrane obtained by performing the heat treatment process according to Examples 1 to 6 described in Table 2 using the precursor of the carbon molecular sieve hollow fiber membrane prepared in Preparation Examples 1, 3 of the present invention in addition to those shown in FIG. Similar characteristics could be confirmed in the SEM image, and the film thickness was reduced from 390 ⁇ m to 380 ⁇ m, and the inside diameter remained unchanged. It is interpreted that the chain of the polymer constituting the outer skin layer is broken, and the empty space generated by the volatilization of the volatile material collapses, resulting in a thinner and dense structure.
  • the test module for measuring the gas permeability of the carbon fiber hollow fiber membrane was bundled with 5 carbon fiber hollow fiber membranes in the housing, and both ends were potted with epoxy resin, and the effective membrane area of the hollow fiber membrane was 10.93 cm 2 . .
  • Gas permeability was measured in the same manner as the gas permeability measurement method of the above-described precursor hollow fiber membrane, Table 3 shows the high gas permeability and selectivity of the precursor hollow fiber membrane using the precursor hollow fiber membrane prepared according to Preparation Example 2 of the present invention The gas permeation performance evaluation results of the carbon molecular weight hollow fiber membranes obtained by performing the heat treatment process according to Examples 1 to 6 are shown.
  • the gas permeation performance of the carbon-molecular hollow fiber membrane obtained as a result of the heat treatment according to Example 5 is described in Table 1 as N 2 permeability 17.1 GPU, N 2 / SF 6 selectivity 27.6. It can be seen that the precursor hollow fiber membrane has a value within the error range compared to the N 2 permeability 16.1, but the N 2 / SF 6 selectivity is much higher. This result can be seen from the decrease of the outer thickness of the hollow fiber membrane.
  • the skin layer of the outer surface is densified by about 10 ⁇ m, so that the permeability of nitrogen is maintained and the selectivity with SF 6 is maintained as the defect of the outer surface is reduced. Is interpreted as a result of rising.
  • the present invention can be applied to a process of concentrating or recovering fluorine gas from a mixture of nitrogen / fluoride gas by modularizing the precursor of the carbon molecular weight hollow fiber membrane for fluorine gas recovery and the carbon molecular weight hollow fiber membrane prepared in the present invention.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

본 발명은 불화가스 회수용 탄소분자체 중공사막의 전구체 제조방법에 있어서, i) 폴리이미드, 용매, 조용매 및 비용매를 혼합하여 도프용액을 얻는 단계; ii) 상기 도프용액을 보어용액과 함께 방사노즐로 공급 및 토출하는 단계; iii) 상기 토출된 도프용액을 응고액에 접촉시켜 중공사를 형성하는 단계; 및 iv) 상기 iii)단계에서 형성된 중공사를 권취, 세정 및 건조시키는 단계;를 포함하는 불화가스 회수용 탄소분자체 중공사막의 전구체 제조방법을 제공한다. 본 발명에 따르면, 질소투과도와 불화가스에 대한 질소의 선택도가 모두 높고, 열적·화학적 특성이 우수한 불화가스 회수용 탄소분자체 중공사막의 전구체 및 이를 열처리함으로써 제조되는 탄소분자체 중공사막을 얻을 수 있고, 이를 모듈화하면 불화가스/질소의 혼합기체로부터 불화가스를 고효율로 회수할 수 있을 것으로 기대된다.

Description

불화가스 회수용 탄소분자체 중공사막의 전구체 제조방법, 및 그에 의하여 제조된 불화가스 회수용 탄소분자체 중공사막의 전구체 및 탄소분자체 중공사막
본 발명은 불화가스 회수용 탄소분자체 중공사막의 전구체 제조방법, 및 그에 의하여 제조된 불화가스 회수용 탄소분자체 중공사막의 전구체 및 탄소분자체 중공사막에 관한 것으로, 보다 상세하게는 폴리이미드 중공사막을 탄소분자체 중공사막의 전구체로 제조하고, 이를 열처리함으로써 탄소분자체 중공사막을 제조하여 불화가스의 분리회수에 응용할 수 있는 중공사 형태의 기체분리막에 관한 것이다.
현재 미국은 교토의정서에서 탈퇴하였지만 지구 온난화 방지를 위한 연구 및 기술 개발을 위하여 2002년 2월에 에너지부(Department of Energy)의 주도로 여러 정부기관이 참여하는 미국기후변화 기술프로그램(U.S. Climate Change Technology Program)을 수립하여 불소화가스의 배출저감 및 재사용에 관한 연구와 투자를 이끌어 왔다. 또한 미국 환경보호국은 산업계와 협조하여 육불화황(SF6)을 포함한 지구온난화 가스감축을 위한 자발적인 프로그램을 성공적으로 진행시켜 오고 있다. 최근 미국기후변화 기술프로그램은 극저온 포집(Cryogenic Capture)과 막분리(Membrane Separation) 기술이 육불화황의 회수와 재사용에 있어 전통적인 가압스윙흡착(Pressure Swing Adsorption) 기술에 비하여 효과적이라고 결론을 내린바 있다.
프랑스의 에어 리퀴드사는 2003년에 파워(power) IC 제조공장에 분리막을 이용한 육불화황의 회수 및 재사용 시스템을 파일롯 스케일로 설치하였는데, 공정에서 발생되는 가스는 60%의 육불화황과 40%의 공기로 구성된 가스로 압축한 후, 두 개의 분리막 시스템에 투입하여 처리한 결과 89%의 육불화황 회수율과 99% 이상의 순도를 나타냈다.
육불화황을 제거하기 위한 기술로는 현재까지 주로 소각법을 사용하였다. 소각을 이용한 방법은 가장 간단한 방법이고 입증된 기술이라 할 수 있으나 육불화황의 안정성 문제 때문에 산화반응 전에 1,200℃ 이상으로 가열이 필요하며 연소에 따른 2차적인 대기환경문제가 유발될 가능성이 있다. 또 다른 문제로, 반도체 공정은 주로 진공에서 이루어지기 때문에 소각기까지 가기 전에 대량의 질소나 공기로 희석되게 된다. 이는 소각시의 연소효율을 급격히 저하시키게 된다. 이러한 문제점 때문에 사용량 절감 및 분리회수, 또한 새로운 분해 기술에 대한 연구가 지속적으로 진행되고 있다.
특히, 위에서 언급한 막분리 기술을 적용하는 경우에는 반도체 공정상에서 동시에 배출되는 각종 분진 및 비산재에 노출될 경우 분리막이 막혀 제역할을 못한다는 문제점과 각종 산성 가스로 인해 분리막 자체가 부식 또는 손상되는 것에 대한 문제점을 해결하기에는 기술적 어려움을 많이 가지고 있지만 가장 효과적이고 재사용이 가능하다는 점에서 각종 연구가 활발히 진행되고 있다(특허문헌 1, 2). 이런 가혹한 조건에서 높은 투과선택성을 가지는 기체분리막으로서는 탄소분자체 막(Carbon Molecular Sieve Membrane)과 폴리이미드 막 등이 있으며 이들의 개발을 위한 노력이 진행되고 있다. 하지만 아직까지 유기고분자 유래 탄소분자체 막은 상업화된 사례가 거의 없으며 폴리술폰과 폴리이미드를 사용한 정도만이 상업화되어 적용되고 있다(특허문헌 3, 4).
따라서 본 발명에서는 열적, 화학적 특성이 우수한 폴리이미드를 소재로 사용하여 중공사막을 제조하고, 더불어 이를 전구체로 사용하여 열처리함으로써 제조되는 탄소분자체 중공사막을 이용하면 불화가스/질소의 혼합물을 분리하여 불화가스를 농축하거나 회수할 수 있음에 착안하여 본 발명을 완성하였다.
(선행기술문헌)
특허문헌 1. 한국공개특허 제2002-0010487호
특허문헌 2. 일본등록특허 제4089230호
특허문헌 3. 국제공개특허 WO 2000/71232호
특허문헌 4. 한국공개특허 제2013-0011393호
본 발명은 상기와 같은 문제점을 감안하여 안출된 것으로, 본 발명의 목적은 질소투과도와 불화가스에 대한 질소의 선택도가 모두 높고, 열적·화학적 특성이 우수한 불화가스 회수용 탄소분자체 중공사막의 전구체 제조방법과 그에 의하여 제조되는 불화가스 회수용 탄소분자체 중공사막의 전구체 및 탄소분자체 중공사막을 제공하고자 하는 것이다.
상기한 바와 같은 목적을 달성하기 위한 본 발명은, 불화가스 회수용 탄소분자체 중공사막의 전구체 제조방법에 있어서, i) 폴리이미드, 용매, 조용매 및 비용매를 혼합하여 도프용액을 얻는 단계; ii) 상기 도프용액을 보어용액과 함께 방사노즐로 공급 및 토출하는 단계; iii) 상기 토출된 도프용액을 응고액에 접촉시켜 중공사를 형성하는 단계; 및 iv) 상기 iii)단계에서 형성된 중공사를 권취, 세정 및 건조시키는 단계;를 포함하는 불화가스 회수용 탄소분자체 중공사막의 전구체 제조방법을 제공한다.
상기 i) 단계의 폴리이미드는 6FDA-MDA계 폴리이미드인 것을 특징으로 한다.
상기 i) 단계의 용매는 N-메틸피롤리돈(NMP), 디메틸아세트아미드(DMAc) 디메틸포름아미드(DMF), 및 디메틸술폭시드(DMSO)로 이루어진 군으로부터 선택된 어느 하나의 것을 특징으로 한다.
상기 i) 단계의 조용매는 테트라히드로퓨란(THF), 1,4-디옥산, 트리클로로에탄, 2-메틸-1-부탄올, 2-메틸-2-부탄올, 및 2-펜탄올로 이루어진 군으로부터 선택된 어느 하나의 것을 특징으로 한다.
상기 i) 단계의 비용매는 물, 메탄올, 에탄올, 이소프로판올, 및 아세톤으로 이루어진 군으로부터 선택된 어느 하나의 것을 특징으로 한다.
상기 i) 단계의 도프용액 중의 폴리이미드 함량은 20~25 중량%인 것을 특징으로 한다.
상기 ii) 단계의 도프용액과 보어용액의 토출속도는 각각 1.8cc~3.0cc/min 및 0.8cc~2.0cc/min인 것을 특징으로 한다.
상기 iii) 단계의 응고액은 물, 메탄올, 에탄올, 이소프로판올, 펜탄, 헥산, 및 이들의 혼합물로 이루어진 군으로부터 선택된 어느 하나의 것을 특징으로 한다.
또한, 본 발명은 상기 제조방법에 의하여 제조된 불화가스 회수용 탄소분자체 중공사막의 전구체를 제공한다.
또한, 본 발명은 상기 불화가스 회수용 탄소분자체 중공사막의 전구체를 열처리함으로써 얻어지는 불화가스 회수용 탄소분자체 중공사막을 제공한다.
상기 열처리는 a) 6~10℃/min의 승온 속도로 200℃까지 가열하는 단계; b) 1~5℃/min의 승온 속도로 300℃까지 승온한 후, 0.5~2시간 등온과정을 유지하는 단계; 및 c) 1~5℃/min의 하강 속도로 상온까지 냉각하는 단계;를 포함하는 것을 특징으로 한다.
상기 열처리는 a) 6~10℃/min의 승온 속도로 250℃까지 가열하는 단계; b) 4~5℃/min의 승온 속도로 300℃까지 가열하는 단계; c) 1~3℃/min의 승온 속도로 400℃까지 승온한 후, 0.5~2시간 등온과정을 유지하는 단계; 및 c) 1~5℃/min의 하강 속도로 상온까지 냉각하는 단계;를 포함하는 것을 특징으로 한다.
상기 열처리는 a) 6~10℃/min의 승온 속도로 300℃까지 가열하는 단계; b) 4~5℃/min의 승온 속도로 400℃까지 가열하는 단계; c) 1~3℃/min의 승온 속도로 450℃까지 승온한 후, 0.5~2시간 등온과정을 유지하는 단계; 및 c) 1~5℃/min의 하강 속도로 상온까지 냉각하는 단계;를 포함하는 것을 특징으로 한다.
상기 열처리는 a) 6~10℃/min의 승온 속도로 400℃까지 가열하는 단계; b) 1~5℃/min의 승온 속도로 450℃까지 승온한 후, 0.5~2시간 등온과정을 유지하는 단계; 및 c) 1~5℃/min의 하강 속도로 상온까지 냉각하는 단계;를 포함하는 것을 특징으로 한다.
상기 열처리는 a) 6~10℃/min의 승온 속도로 300℃까지 가열하는 단계; b) 1~5℃/min의 승온 속도로 350℃까지 승온한 후, 0.5~2시간 등온과정을 유지하는 단계; 및 c) 1~5℃/min의 하강 속도로 상온까지 냉각하는 단계;를 포함하는 것을 특징으로 한다.
상기 열처리는 a) 1~5℃/min의 승온 속도로 350℃까지 승온한 후, 0.5~2시간 등온과정을 유지하는 단계; 및 b) 1~5℃/min의 하강 속도로 상온까지 냉각하는 단계;를 포함하는 것을 특징으로 한다.
또한, 본 발명은 상기 불화가스 회수용 탄소분자체 중공사막을 포함하는 막 모듈을 제공한다.
본 발명에 따르면, 질소투과도와 불화가스에 대한 질소의 선택도가 모두 높고, 열적·화학적 특성이 우수한 불화가스 회수용 탄소분자체 중공사막의 전구체 및 이를 열처리함으로써 제조되는 탄소분자체 중공사막을 얻을 수 있고, 이를 모듈화하면 불화가스/질소의 혼합기체로부터 불화가스를 고효율로 회수할 수 있을 것으로 기대된다.
도 1은 본 발명의 제조예 1 내지 3에 따른 탄소분자체 중공사막의 전구체 제조장치.
도 2는 제조예 1 내지 3에 따라 제조된 탄소분자체 중공사막의 전구체, 비교예에 따라 제조된 중공사막의 단면을 주사전자현미경(SEM)을 이용하여 측정한 사진[(a) 제조예 1, (b) 제조예 2, (c) 제조예 3, (d) 비교예].
도 3은 제조예 1 내지 3에 따라 제조된 탄소분자체 중공사막의 전구체, 비교예에 따라 제조된 중공사막의 기체투과도 테스트 모듈.
도 4는 제조예 1 내지 3에 따라 제조된 탄소분자체 중공사막의 전구체, 비교예에 따라 제조된 중공사막의 기체투과도 측정 장치.
도 5는 기체투과도 측정에 사용된 거품유량계(bubble flow meter).
도 6은 제조예 2에 의하여 제조된 탄소분자체 중공사막의 전구체를 이용하여 실시예 1 내지 6에 따른 열처리 공정을 수행함으로써 얻어진 탄소분자체 중공사막의 단면을 주사전자현미경(SEM)으로 측정한 사진[(a) 실시예 1, (b) 실시예 2, (c) 실시예 3, (d) 실시예 4, (e) 실시예 5, (f) 실시예 6].
도 7은 1Nm3/hr 처리급의 탄소분자체 중공사막 모듈.
이하에서는 불화가스 회수용 탄소분자체 중공사막의 전구체 제조방법, 및 그에 의하여 제조된 불화가스 회수용 탄소분자체 중공사막의 전구체와 탄소분자체 중공사막에 관하여 상세히 설명하기로 한다. 본 발명에서 불화가스라고 하는 것은 불소 원자를 포함하는 기체로 정의할 수 있으며, 특히 반도체 공정에 사용되고 배출되는 육불화황(SF6)을 그 예로 들 수 있다.
본 발명은 불화가스 회수용 탄소분자체 중공사막의 전구체 제조방법에 있어서, i) 폴리이미드, 용매, 조용매 및 비용매를 혼합하여 도프용액을 얻는 단계; ii) 상기 도프용액을 보어용액과 함께 방사노즐로 공급 및 토출하는 단계; iii) 상기 토출된 도프용액을 응고액에 접촉시켜 중공사를 형성하는 단계; 및 iv) 상기 iii)단계에서 형성된 중공사를 권취, 세정 및 건조시키는 단계;를 포함하는 불화가스 회수용 탄소분자체 중공사막의 전구체 제조방법을 제공한다.
먼저, 본 발명의 불화가스 회수용 탄소분자체 중공사막의 전구체를 제조하기 위한 첫 번째 단계로서 폴리이미드, 용매, 조용매 및 비용매를 혼합하여 도프용액을 얻게 되는바, 일반적으로 중공사막의 분리성능은 도프용액의 조성과 밀접한 관련이 있다. 또한, 중공사막의 분리성능은 모폴로지에 의해 영향을 받으며, 이 때 모폴로지는 방사 도프와 권취조 사이의 열역학적인 상호작용에 의해 조절되는 상분리와 관련이 있는데, 용매/비용매 교환이 열역학, 동역학적으로 중요하다. 이러한 도프용액의 조성은 중공사막의 모폴로지를 좌우하는 중요한 요소로서 통상 고분자, 용매, 조용매 또는 고분자, 용매, 비용매의 3 성분계를 채택하지만, 본 발명에서는 고분자, 용매, 조용매 및 비용매의 4 성분계를 채택하였다.
본 발명에 따른 고분자로서는 열적·화학적 특성이 우수한 폴리이미드를 사용하였는바, 방향족 산이무수물과 방향족 디아민의 이미드화 반응에 의하여 얻어지는 폴리이미드라면 어느 것이든 제한 없이 사용할 수 있으나, 특히, 중축합반응의 단량체로서 방향족 산이무수물인 6FDA[4,4-(hexafluoroisopropylidene)diphthalic anhydride]와 방향족 디아민인 MDA[4,4'-methylene dianiline]를 반응시켜 합성한 6FDA-MDA계 폴리이미드 수지가 고온 및 고압에서도 열적·기계적 물성이 우수하여 더욱 바람직하다.
그리고 용매로서는 산업적으로 요구되는 최소한의 독성을 가지면서 폴리이미드 수지를 쉽게 용해시킬 수 있는 것으로서, 도프용액이 방사노즐로부터 토출되어 에어 갭을 거치는 동안 쉽게 증발될 수 있어야 하며, 도프용액이 비용매를 포함하는 응고액과 접촉할 때 상기 용액으로부터 빨리 유출될 수 있는 것이 바람직하다. 게다가 상대적으로 비점이 높은(150℃ 이상) 용매를 사용하는 것이 더욱 바람직한데, 비점이 너무 낮으면 방사과정에서 용매의 급격한 증발로 인하여 중공사의 선택층에 결함이 발생할 수 있고, 비점이 너무 높으면 방사용액이 공기를 통과하는 동안 용매의 증발이 일어나지 않아 원활한 선택층을 얻을 수 없게 된다. 따라서 상기 용매로서는 N-메틸피롤리돈(NMP), 디메틸아세트아미드(DMAc), 디메틸포름아미드(DMF), 및 디메틸술폭시드(DMSO)로 이루어진 군으로부터 선택된 어느 하나의 것을 사용할 수 있으며, 그 중에서 N-메틸피롤리돈(NMP)이 더욱 바람직하다.
또한, 상기 조용매로서는 테트라히드로퓨란(THF), 1,4-디옥산, 트리클로로에탄, 2-메틸-1-부탄올, 2-메틸-2-부탄올, 및 2-펜탄올로 이루어진 군으로부터 선택된 어느 하나의 것을 사용할 수 있으며, 중공사막 표면의 결함 발생을 억제하는 역할을 수행하는 것으로 테트라히드로퓨란(THF)을 더욱 바람직하게 사용한다.
아울러 상기 비용매로서는 물, 메탄올, 에탄올, 이소프로판올, 및 아세톤으로 이루어진 군으로부터 선택된 어느 하나의 것을 사용하는바, 용매/비용매의 교환에 의하여 상분리에 관여함으로써 모폴로지에 영향을 미친다.
한편, 상기 i) 단계의 도프용액 중의 폴리이미드 함량은 20~25 중량%인 것이 바람직한데, 도프용액 중의 폴리이미드의 함량이 20 중량% 미만이면 도프용액의 점도가 낮아 제조된 중공사막의 기공 크기가 증가되어 선택도가 떨어지는 단점이 있고, 25 중량%를 초과하면 균일한 상의 도프용액을 얻기가 어려울 뿐만 아니라, 설령 중공사막이 제조되더라도 기계적 강도는 증가할 수 있으나, 투과성이 현저하게 감소하는 문제가 발생할 수 있으므로 도프용액 중의 폴리이미드 함량은 20~25 중량%로 조절하는 것이 바람직하다. 이에 따라, 도프용액 중의 용매의 함량은 60~65 중량%로, 도프용액 중의 조용매와 비용매의 함량을 합하여 5~15 중량% 범위에서 조절하여 도프용액의 조성을 설계할 수 있다.
다음으로, 상기 i) 단계에서 얻어진 도프용액을 보어용액과 함께 방사노즐로 공급 및 토출하게 되는데, 먼저 도프용액을 저장조로 옮기고 50℃ 오븐에서 12시간 동안 정치시켜 기포를 제거한 다음, 필터를 사용하여 이물질을 제거한 후, 기어펌프를 통하여 방사노즐로 공급한다. 이 때, 방사시 2차 연신이 일어나지 않도록 도프용액의 방사속도와 보어용액의 방사속도를 기어펌프와 액체이송펌프(HPLC 펌프)를 이용하여 조절하는데, 도프용액은 1.8cc~3.0cc/min로, 보어용액은 0.8cc~2.0cc/min 범위로 각각 조절하는 것이 바람직하다.
이어서 상기 토출된 도프용액을 응고액에 접촉시켜 중공사를 형성하게 되는데, 응고액으로서는 비용매를 포함하는 것이면 제한 없이 사용할 수 있으나, 물, 메탄올, 에탄올, 이소프로판올, 펜탄, 헥산, 및 이들의 혼합물로 이루어진 군으로부터 선택된 어느 하나의 것을 사용하는 것이 바람직하다.
마지막으로 상기 iii) 단계에서 형성된 중공사를 권취, 세정 및 건조시키는 단계를 포함하여 불화가스 회수용 탄소분자체 중공사막 전구체를 제조하게 되는데, 권취 과정에 사용되는 권취기는 별도의 세정조를 두어 권취하면서 동시에 용매의 세정이 이루어지도록 하고, 이 때 트래버스를 장착하여 권취시 중공사가 겹쳐서 권취되는 것을 방지하며, 이 또한 방사시 권취되는 조건의 변화를 줄 수 있도록 별도의 컨트롤러를 장착하여 조절한다. 트래버스의 속도는 14m~18m/min을 유지하고, 권취속도는 13m~20m/min을 유지하며, 방사시 도프용액의 조건에 따라 속도를 변화시켜 가며 중공사를 제조한다.
또한, 중공사의 세정시간은 보빈에 감겨있는 중공사의 양인 완권 양에 의해 변하지만, 본 발명에서는 최대 72시간 동안 세정하며, 세정이 완료된 중공사 보빈은 용매치환 및 건조공정으로 이동한다. 중공사의 건조는 우선 100℃ 끓는 물에 3시간 이상 침적시킨 후, 바로 꺼내어 1차로 에탄올, 2차로 노르말 헥산을 이용하여 각 3시간씩 용매치환 시킨다. 이는 중공사막 전구체 내부에 남아있는 물로 인해 중공사의 성능이 저하되는 현상을 방지하기 위한 것이다. 그 후, 25℃에서 약 36시간 자연건조 시킨다. 건조공정에서도 권취시 트래버스의 속도 조절에 의해 실과 실 사이의 틈이 일정하게 유지되도록 권취한 경우의 건조 속도가 매우 단축되는 것을 확인할 수 있었다.
한편, 본 발명에 따르면, 상기 불화가스 회수용 탄소분자체 중공사막의 전구체 제조방법에 의하여 제조되는 불화가스 회수용 탄소분자체 중공사막의 전구체를 그대로 모듈화함으로써 불화가스/질소의 혼합기체로부터 불화가스를 분리 및 회수하는데 사용할 수 있으나, 본 발명에서는 불화가스의 처리용량을 증가시키고 80% 이상의 고효율로 불화가스를 회수하기 위하여, 본 발명의 상기 제조방법에 따라 얻어진 불화가스 회수용 탄소분자체 중공사막의 전구체를 열처리함으로써 불화가스 회수용 탄소분자체 중공사막을 제공한다.
상기 열처리는 3 단계의 공정으로 구분할 수 있는데, 먼저 낮은 온도의 어닐링 단계, 중간 단계, 탄소형성 단계로 나눌 수 있다. 어닐링 단계는 전처리 단계라고도 하며, 산화를 통하여 고분자 막을 가교시켜 열분해 시 형태와 구조를 유지시킬 수 있다. 산화 온도와 시간, 산소의 공급량에 따라서 성능이 변하게 되는데, 산화 온도가 높을수록, 시간이 길수록 투과도가 증가하게 되지만, 어느 수준 이상의 가열온도와 시간을 넘어서게 되면 전구체로서의 중공사막은 탄소화가 진행되어 물성이 매우 저하되고, 극단적으로는 잔여물질이 없는 상태에 도달하게 된다. 높은 온도에서의 열분해는 낮은 투과도를 보이지만 반대로 높은 선택도를 가지게 된다. 이는 고분자의 결정화도와 밀도의 증가를 가져오게 되고, 탄소분자체 결정면 사이의 공간을 줄이게 되기 때문이다. 일반적으로 전구체로서의 중공사막의 기공은 어닐링 단계에서 나타나고, 중간 단계에서 최대가 된다. 이 때 높은 온도로 가열하게 되면 기공은 수축하거나 사라진다. 등온과정의 시간을 길게 가져갈 경우, 선택도는 증가하는 반면 투과도는 감소하게 된다.
또한, 승온 속도는 열분해 동안 고분자막에서 휘발물질의 휘발 속도를 결정하고, 그 결과 탄소분자체 중공사막에서 형성되는 기공의 특성에 영향을 미친다. 승온 속도가 느리면 작은 기공을 형성하고, 선택도가 높아지며, 탄소의 결정화도를 증가시킨다. 반면, 승온 속도가 빠르면 극단적인 경우에는 핀홀이 형성되고, 미세 균열이 발생하며 탄소분자체 중공사막이 변형될 수 있으므로, 본 발명에 따르면, 탄소분자체 중공사막의 전구체를 열처리 하는 공정은 아래와 같은 몇 가지 경우 중에서 선택적으로 수행할 수 있다.
즉, 본 발명에서 상기 열처리는 a) 6~10℃/min의 승온 속도로 200℃까지 가열하는 단계; b) 1~5℃/min의 승온 속도로 300℃까지 승온한 후, 0.5~2시간 등온과정을 유지하는 단계; 및 c) 1~5℃/min의 하강 속도로 상온까지 냉각하는 단계;를 포함하는 것을 특징으로 한다.
또는, 상기 열처리는 a) 6~10℃/min의 승온 속도로 250℃까지 가열하는 단계; b) 4~5℃/min의 승온 속도로 300℃까지 가열하는 단계; c) 1~3℃/min의 승온 속도로 400℃까지 승온한 후, 0.5~2시간 등온과정을 유지하는 단계; 및 c) 1~5℃/min의 하강 속도로 상온까지 냉각하는 단계;를 포함하는 것을 특징으로 한다.
또는, 상기 열처리는 a) 6~10℃/min의 승온 속도로 300℃까지 가열하는 단계; b) 4~5℃/min의 승온 속도로 400℃까지 가열하는 단계; c) 1~3℃/min의 승온 속도로 450℃까지 승온한 후, 0.5~2시간 등온과정을 유지하는 단계; 및 c) 1~5℃/min의 하강 속도로 상온까지 냉각하는 단계;를 포함하는 것을 특징으로 한다.
또는, 상기 열처리는 a) 6~10℃/min의 승온 속도로 400℃까지 가열하는 단계; b) 1~5℃/min의 승온 속도로 450℃까지 승온한 후, 0.5~2시간 등온과정을 유지하는 단계; 및 c) 1~5℃/min의 하강 속도로 상온까지 냉각하는 단계;를 포함하는 것을 특징으로 한다.
또는, 상기 열처리는 a) 6~10℃/min의 승온 속도로 300℃까지 가열하는 단계; b) 1~5℃/min의 승온 속도로 350℃까지 승온한 후, 0.5~2시간 등온과정을 유지하는 단계; 및 c) 1~5℃/min의 하강 속도로 상온까지 냉각하는 단계;를 포함하는 것을 특징으로 한다.
또는, 상기 열처리는 a) 1~5℃/min의 승온 속도로 350℃까지 승온한 후, 0.5~2시간 등온과정을 유지하는 단계; 및 b) 1~5℃/min의 하강 속도로 상온까지 냉각하는 단계;를 포함하는 것을 특징으로 한다.
또한, 본 발명에서는 상기 열처리 공정을 거쳐 얻어지는 탄소분자체 중공사막을 포함하는 막 모듈을 제공함으로써 불화가스의 처리용량을 증가시키고, 불화가스/질소의 혼합기체로부터 불화가스를 고효율로 회수할 수 있을 것으로 기대된다.
이하 본 발명에 따른 탄소분자체 중공사막의 전구체 제조예 및 탄소분자체 중공사막을 얻기 위한 열처리 공정의 구체적인 실시예를 도면과 함께 상세히 설명한다.
(제조예 1) 탄소분자체 중공사막의 전구체 제조
교반기가 부착된 1L 둥근 바닥 플라스크에 공지의 방법으로 합성한 6FDA-MDA계 폴리이미드 21g을 N-메틸피롤리돈(NMP) 64g에 서서히 주입하고, 테트라히드로퓨란(THF) 12g과 에탄올 3g을 서서히 첨가하여 50℃에서 12시간 동안 충분히 교반시켜 도프용액을 얻었다. 도프용액을 저장조로 옮기고 50℃ 오븐에서 12시간 동안 정치시켜 기포를 제거하였다. 도 1에 나타낸 중공사막 제조장치를 이용하였는바, 상기 도프용액을 기어펌프를 통하여 외경과 내경이 각각 0.4mm, 0.2mm인 방사노즐로 공급 및 토출하여 방사하였는데, 방사시 2차 연신이 일어나지 않도록 도프용액 및 보어용액(=물)의 방사속도를 기어펌프와 HPLC 펌프를 이용하여 조절하였으며, 이 때, 도프용액의 토출속도는 2.4cc/min, 보어용액의 토출속도는 1.3cc/min, 기어펌프, 도프라인 및 방사노즐의 온도는 50℃, 에어 갭은 10cm 조건으로 방사하였고, 토출된 방사용액을 물이 채워진 응고액에 접촉시켜 상전이를 마무리함으로써 중공사를 형성하였다. 상기 형성된 중공사를 18m/min 속도로 권취 및 보빈에 감긴 중공사를 72시간 동안 세정하였다. 상기 세정한 중공사를 100℃ 끓는 물에 3시간 이상 침적시킨 후, 바로 꺼내어 1차로 에탄올, 2차로 노르말 헥산을 이용하여 각 3시간씩 용매치환 시켰으며, 마지막으로 25℃에서 36시간 자연건조시킴으로써 탄소분자체 중공사막의 전구체를 제조하였다.
(제조예 2) 탄소분자체 중공사막의 전구체 제조
6FDA-MDA계 폴리이미드 23g, NMP 62g, THF 12g 및 에탄올 3g의 조성으로 도프용액을 얻은 것을 제외하고는 제조예 1과 동일한 방법으로 탄소분자체 중공사막의 전구체를 제조하였다.
(제조예 3) 탄소분자체 중공사막의 전구체 제조
6FDA-MDA계 폴리이미드 25g, NMP 60g, THF 12g 및 에탄올 3g의 조성으로 도프용액을 얻은 것을 제외하고는 제조예 1과 동일한 방법으로 탄소분자체 중공사막의 전구체를 제조하였다.
(비교예)
6FDA-MDA계 폴리이미드 대신에 상업화된 폴리술폰(Udel P-3500) 수지를 사용한 것을 제외하고는 제조예 1과 동일한 방법으로 중공사막을 제조하였다.
도 2에는 제조예 1 내지 3에 따라 제조된 탄소분자체 중공사막의 전구체, 비교예에 따라 제조된 중공사막의 모폴로지 관찰을 위하여 주사전자현미경(SEM)을 이용하여 측정한 단면 사진을 나타내었다[(a) 제조예 1, (b) 제조예 2, (c) 제조예 3, (d) 비교예]. 도 2에서 확인할 수 있는 바와 같이, 중공사막의 단면에서 거대 기공(macrovoid)이 내부 표면뿐만 아니라 외부 표면 쪽에서도 나타나 있는 것을 알 수 있다. 또한, 도프용액 중의 폴리이미드의 함량이 높을수록 거대 기공이 줄어드는 것을 알 수 있는데, 이는 같은 단위면적당 고분자(폴리이미드)가 차지하는 비율이 높아져 비용매가 탄소분자체 중공사막의 전구체 내부로 침투할 수 있는 비율이 줄어들기 때문이라고 해석된다. 아울러 제조예 1 내지 3에 따라 제조된 탄소분자체 중공사막의 전구체는 finger-lke 구조를 가짐으로 인하여 투과물에 대한 투과 저항이 적은데 비하여, 비교예로부터 제조된 중공사막은 sponge-like 구조를 가짐으로 인하여 투과물에 대한 투과 저항이 커진다.
(전구체 중공사막의 기체투과성능 평가)
상기 제조예 1 내지 3 및 비교예에서 제조한 중공사막의 기체투과도를 측정하기 위하여 도 3에 도시한 바와 같은 테스트 모듈을 제작하였다. 상기 테스트 모듈은 각각의 중공사막을 950가닥씩 번들링하여 하우징에 장착하고, 양끝을 에폭시 수지로 포팅하였으며, 중공사막의 유효 막면적은 0.18m2였다. 기체투과도는 도 4와 같은 장치를 구성하여 측정하였고, 혼합기체로는 고순도(99.999%)의 질소와 육불화황(SF6)을 사용하여 질소와 육불화황의 투과속도를 측정하였다. 상기 제작한 테스트 모듈은 25℃, 2~9kgf/cm2에서 각각의 기체로 1시간 이상 콘트롤링한 후, 중공사막을 투과하는 기체의 유량을 도 5에 나타낸 바와 같은 거품유량계(bubble flow meter)를 이용하여 측정하였고, 기체투과도의 단위는 GPU(Gas Permeation Unit, 10-6 x cm3/cm2·sec·cmHg)를 사용하였으며, 표 1에 그 결과를 나타내었다.
표 1
구분 투과도 N2(GPU) 선택도(N2/SF6)
제조예 1 18.7 9.3
제조예 2 16.1 17.1
제조예 3 10.3 19.2
비교예 3.1 2.1
상기 표 1에서 알 수 있는 바와 같이, 본 발명의 제조예 1 내지 3으로부터 제조된 중공사막의 기체투과성능을 살펴보면, 폴리이미드의 함량이 적을수록 투과도는 높지만 선택도는 낮아지게 되는 반면, 폴리이미드의 함량이 많을수록 투과도는 낮지만 선택도는 높아지게 된다. 이러한 결과는 앞서 도 2의 주사전자현미경(SEM) 사진에서와 같이 폴리이미드의 함량이 적을수록 거대 기공(macrovoid)이 커지게 되어 외부 스킨층의 두께가 얇아짐으로써 투과도는 증가하는 반면 선택도는 감소하게 되는데 비하여, 폴리이미드의 함량이 많을수록 거대 기공이 작아지게 되어 외부 스킨층의 두께가 두꺼워짐으로써 투과도는 감소하게 되는 사실로부터도 유추할 수 있다.
또한, 본 발명의 제조예 1 내지 3에 따라 제조된 중공사막은 비교예의 상업화된 폴리술폰을 소재로 사용한 중공사막에 비하여 질소투과도와 불화가스에 대한 질소의 선택도가 모두 높은 값을 나타냄을 확인할 수 있으므로, 본 발명에서 제조된 불화가스 회수용 탄소분자체 중공사막의 전구체는 불화가스/질소의 혼합물로부터 불화가스를 농축하거나 회수하는 공정에 적용이 가능함을 알 수 있다.
한편, 본 발명의 제조예 1 내지 3에 따라 제조된 탄소분자체 중공사막의 전구체를 열처리하여 탄소분자체 중공사막을 제조하기 전, 상기 전구체의 열적 특성을 평가한 결과, 유리전이온도는 308℃, 열분해온도는 550℃ 정도로 측정되어 폴리이미드에 기인하는 우수한 열적 특성을 확인할 수 있었으며, 아래 표 2에는 본 발명의 실시예 1 내지 6에 따른 탄소분자체 중공사막 전구체의 다양한 열처리 공정을 표시하였다.
표 2
구분 가열과정 등온과정 냉각과정
실시예 1 ∼200℃(10℃/min) 1차 가열200∼300℃(5℃/min) 2차 가열 300℃에서 30분 유지 300℃∼상온(5℃/min)
실시예 2 ∼250℃(10℃/min) 1차 가열250∼300℃(5℃/min) 2차 가열300∼400℃(2.5℃/min) 3차 가열 400℃에서 30분 유지 400℃∼상온(5℃/min)
실시예 3 ∼300℃(10℃/min) 1차 가열300∼400℃(5℃/min) 2차 가열400∼450℃(2.5℃/min) 3차 가열 450℃에서 30분 유지 450℃∼상온(5℃/min)
실시예 4 ∼400℃(10℃/min) 1차 가열400∼450℃(2℃/min) 2차 가열 450℃에서 30분 유지 450℃∼상온(5℃/min)
실시예 5 ∼300℃(10℃/min) 1차 가열300∼350℃(5℃/min) 2차 가열 350℃에서 30분 유지 350℃∼상온(5℃/min)
실시예 6 ∼350℃(5℃/min) 1차 가열 350℃에서 30분 유지 350℃∼상온(5℃/min)
그리고 도 6에는 본 발명의 제조예 2에 의하여 제조된 탄소분자체 중공사막의 전구체를 이용하여 상기 표 2에 기재된 실시예 1 내지 6에 따른 열처리 공정을 수행함으로써 얻어진 탄소분자체 중공사막의 단면을 주사전자현미경(SEM)으로 측정한 사진을 나타내었다[(a) 실시예 1, (b) 실시예 2, (c) 실시예 3, (d) 실시예 4, (e) 실시예 5, (f) 실시예 6].
도 6에서 보는 바와 같이, 고온에서도 막의 외경, 내경이 거의 줄어들지 않고 그 형태가 그대로 유지됨을 알 수 있는바, 이는 소재의 열적 특성에서 나타난 바와 같이 유리전이온도 및 열분해온도가 매우 높기 때문에 열적 안정성이 뛰어나고, 따라서 변형이 거의 없는 것으로 생각할 수 있다. 도 6에 나타낸 것 이외에 본 발명의 제조예 1, 3에 의하여 제조된 탄소분자체 중공사막의 전구체를 이용하여 상기 표 2에 기재된 실시예 1 내지 6에 따른 열처리 공정을 수행함으로써 얻어진 탄소분자체 중공사막의 SEM 사진에서도 유사한 특성을 확인할 수 있었으며, 막 두께는 외경이 390 ㎛에서 380 ㎛로 줄어들었고, 내경은 변화 없이 유지되었다. 이는 외부의 스킨층을 구성하고 있는 고분자의 체인이 끊어지고, 휘발물질의 휘발로 인하여 발생된 빈 공간이 무너져 내려서 두께가 얇아지고 조밀한(dense) 구조를 가지게 되는 것으로 해석된다.
(탄소분자체 중공사막의 기체투과성능 평가)
탄소분자체 중공사막의 기체투과도를 측정하기 위한 테스트 모듈은 각각의 탄소분자체 중공사막을 5가닥씩 번들링하여 하우징에 장착하고, 양끝을 에폭시 수지로 포팅하였으며, 중공사막의 유효 막면적은 10.93cm2였다. 기체투과도는 상술한 전구체 중공사막의 기체투과도 측정방법과 동일하게 측정하였으며, 표 3에는 전구체 중공사막의 기체투과도 및 선택도가 모두 높은 것으로서 본 발명의 제조예 2에 의하여 제조된 전구체 중공사막을 이용하여 실시예 1 내지 6에 따라 열처리 공정을 수행함으로써 얻어진 탄소분자체 중공사막의 기체투과성능 평가 결과를 나타내었다.
표 3
구분 투과도 N2(GPU) 선택도(N2/SF6)
실시예 1 16.8 15.4
실시예 2 5.2 20.5
실시예 3 2.3 30.3
실시예 4 3.5 29.4
실시예 5 17.1 27.6
실시예 6 13.3 20.4
상기 표 3에서 보는 바와 같이, 특히 실시예 5에 따라 열처리를 수행한 결과로 얻어지는 탄소분자체 중공사막의 기체투과성능은 N2 투과도 17.1 GPU, N2/SF6 선택도 27.6으로서 앞서 표 1에 기재한 전구체 중공사막의 N2 투과도 16.1과 비교하여 오차범위 내의 값을 갖지만, N2/SF6 선택도는 훨씬 높아진 것을 확인할 수 있다. 이러한 결과는 중공사막의 외부 두께의 감소에서 알 수 있는데, 열처리 동안 외부 표면의 스킨층이 10 ㎛ 가량 조밀해져 외부 표면의 결함(defect)이 감소함에 따라 질소의 투과도는 유지되면서 SF6와의 선택도는 높아지는 결과가 나타난 것이라 해석된다. 또한, 열처리시 최종 가열온도에 따라서도 일정한 경향이 나타나는바, 온도가 350℃ 이상일 경우 N2/SF6의 선택도는 높아지는 반면, 질소의 투과도가 아주 낮아지는 것을 알 수 있다. 이는 외부 표면의 고분자 사슬의 휘발물질들이 휘발되고 나서 그 공간을 메우면서 아주 조밀한 층을 갖게 되기 때문이다.
그러므로 본 발명의 제조예 2에 의하여 제조된 전구체로서의 중공사막을 이용하여 실시예 5에 따라 열처리하여 탄소분자체 중공사막을 얻고, 이를 도 7에 나타낸 바와 같이 대형 모듈화하면 불화가스의 처리용량을 증가시키면서 질소/불화가스의 혼합기체로부터 불화가스를 고효율로 회수할 수 있을 것이다.
따라서 본 발명에서 제조된 불화가스 회수용 탄소분자체 중공사막의 전구체 또는 탄소분자체 중공사막을 모듈화함으로써 질소/불화가스의 혼합물로부터 불화가스를 농축하거나 회수하는 공정에 적용이 가능하다.

Claims (17)

  1. 불화가스 회수용 탄소분자체 중공사막의 전구체 제조방법에 있어서,
    i) 폴리이미드, 용매, 조용매 및 비용매를 혼합하여 도프용액을 얻는 단계;
    ii) 상기 도프용액을 보어용액과 함께 방사노즐로 공급 및 토출하는 단계;
    iii) 상기 토출된 도프용액을 응고액에 접촉시켜 중공사를 형성하는 단계; 및
    iv) 상기 iii)단계에서 형성된 중공사를 권취, 세정 및 건조시키는 단계;를 포함하는 불화가스 회수용 탄소분자체 중공사막의 전구체 제조방법.
  2. 제1항에 있어서, 상기 i) 단계의 폴리이미드는 6FDA-MDA계 폴리이미드인 것을 특징으로 하는 불화가스 회수용 탄소분자체 중공사막의 전구체 제조방법.
  3. 제1항에 있어서, 상기 i) 단계의 용매는 N-메틸피롤리돈(NMP), 디메틸아세트아미드(DMAc) 디메틸포름아미드(DMF), 및 디메틸술폭시드(DMSO)로 이루어진 군으로부터 선택된 어느 하나의 것을 특징으로 하는 불화가스 회수용 탄소분자체 중공사막의 전구체 제조방법.
  4. 제1항에 있어서, 상기 i) 단계의 조용매는 테트라히드로퓨란(THF), 1,4-디옥산, 트리클로로에탄, 2-메틸-1-부탄올, 2-메틸-2-부탄올, 및 2-펜탄올로 이루어진 군으로부터 선택된 어느 하나의 것을 특징으로 하는 불화가스 회수용 탄소분자체 중공사막의 전구체 제조방법.
  5. 제1항에 있어서, 상기 i) 단계의 비용매는 물, 메탄올, 에탄올, 이소프로판올, 및 아세톤으로 이루어진 군으로부터 선택된 어느 하나의 것을 특징으로 하는 불화가스 회수용 탄소분자체 중공사막의 전구체 제조방법.
  6. 제1항에 있어서, 상기 i) 단계의 도프용액 중의 폴리이미드 함량은 20~25 중량%인 것을 특징으로 하는 불화가스 회수용 탄소분자체 중공사막의 전구체 제조방법.
  7. 제1항에 있어서, 상기 ii) 단계의 도프용액과 보어용액의 토출속도는 각각 1.8cc~3.0cc/min 및 0.8cc~2.0cc/min인 것을 특징으로 하는 불화가스 회수용 탄소분자체 중공사막의 전구체 제조방법.
  8. 제1항에 있어서, 상기 iii) 단계의 응고액은 물, 메탄올, 에탄올, 이소프로판올, 펜탄, 헥산, 및 이들의 혼합물로 이루어진 군으로부터 선택된 어느 하나의 것을 특징으로 하는 불화가스 회수용 탄소분자체 중공사막의 전구체 제조방법.
  9. 제1항 내지 제8항 중 어느 한 항의 제조방법에 의하여 제조된 불화가스 회수용 탄소분자체 중공사막의 전구체.
  10. 제9항에 따른 불화가스 회수용 탄소분자체 중공사막의 전구체를 열처리함으로써 얻어지는 불화가스 회수용 탄소분자체 중공사막.
  11. 제10항에 있어서, 상기 열처리는 a) 6~10℃/min의 승온 속도로 200℃까지 가열하는 단계; b) 1~5℃/min의 승온 속도로 300℃까지 승온한 후, 0.5~2시간 등온과정을 유지하는 단계; 및 c) 1~5℃/min의 하강 속도로 상온까지 냉각하는 단계;를 포함하는 것을 특징으로 하는 불화가스 회수용 탄소분자체 중공사막.
  12. 제10항에 있어서, 상기 열처리는 a) 6~10℃/min의 승온 속도로 250℃까지 가열하는 단계; b) 4~5℃/min의 승온 속도로 300℃까지 가열하는 단계; c) 1~3℃/min의 승온 속도로 400℃까지 승온한 후, 0.5~2시간 등온과정을 유지하는 단계; 및 c) 1~5℃/min의 하강 속도로 상온까지 냉각하는 단계;를 포함하는 것을 특징으로 하는 불화가스 회수용 탄소분자체 중공사막.
  13. 제10항에 있어서, 상기 열처리는 a) 6~10℃/min의 승온 속도로 300℃까지 가열하는 단계; b) 4~5℃/min의 승온 속도로 400℃까지 가열하는 단계; c) 1~3℃/min의 승온 속도로 450℃까지 승온한 후, 0.5~2시간 등온과정을 유지하는 단계; 및 c) 1~5℃/min의 하강 속도로 상온까지 냉각하는 단계;를 포함하는 것을 특징으로 하는 불화가스 회수용 탄소분자체 중공사막.
  14. 제10항에 있어서, 상기 열처리는 a) 6~10℃/min의 승온 속도로 400℃까지 가열하는 단계; b) 1~5℃/min의 승온 속도로 450℃까지 승온한 후, 0.5~2시간 등온과정을 유지하는 단계; 및 c) 1~5℃/min의 하강 속도로 상온까지 냉각하는 단계;를 포함하는 것을 특징으로 하는 불화가스 회수용 탄소분자체 중공사막.
  15. 제10항에 있어서, 상기 열처리는 a) 6~10℃/min의 승온 속도로 300℃까지 가열하는 단계; b) 1~5℃/min의 승온 속도로 350℃까지 승온한 후, 0.5~2시간 등온과정을 유지하는 단계; 및 c) 1~5℃/min의 하강 속도로 상온까지 냉각하는 단계;를 포함하는 것을 특징으로 하는 불화가스 회수용 탄소분자체 중공사막.
  16. 제10항에 있어서, 상기 열처리는 a) 1~5℃/min의 승온 속도로 350℃까지 승온한 후, 0.5~2시간 등온과정을 유지하는 단계; 및 b) 1~5℃/min의 하강 속도로 상온까지 냉각하는 단계;를 포함하는 것을 특징으로 하는 불화가스 회수용 탄소분자체 중공사막.
  17. 제10항에 따른 불화가스 회수용 탄소분자체 중공사막을 포함하는 막 모듈.
PCT/KR2014/005982 2014-04-29 2014-07-04 불화가스 회수용 탄소분자체 중공사막의 전구체 제조방법, 및 그에 의하여 제조된 불화가스 회수용 탄소분자체 중공사막의 전구체 및 탄소분자체 중공사막 WO2015167071A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2014-0051484 2014-04-29
KR1020140051484A KR101562307B1 (ko) 2014-04-29 2014-04-29 불화가스 회수용 탄소분자체 중공사막의 전구체 제조방법, 및 그에 의하여 제조된 불화가스 회수용 탄소분자체 중공사막의 전구체 및 탄소분자체 중공사막

Publications (1)

Publication Number Publication Date
WO2015167071A1 true WO2015167071A1 (ko) 2015-11-05

Family

ID=54358782

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2014/005982 WO2015167071A1 (ko) 2014-04-29 2014-07-04 불화가스 회수용 탄소분자체 중공사막의 전구체 제조방법, 및 그에 의하여 제조된 불화가스 회수용 탄소분자체 중공사막의 전구체 및 탄소분자체 중공사막

Country Status (2)

Country Link
KR (1) KR101562307B1 (ko)
WO (1) WO2015167071A1 (ko)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108348845A (zh) * 2015-11-13 2018-07-31 埃克森美孚研究工程公司 碳氢化合物逆向渗透膜和分离
CN114395127A (zh) * 2021-12-29 2022-04-26 山东华夏神舟新材料有限公司 用于含氟气体分离的聚酰亚胺树脂及其制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0970523A (ja) * 1995-09-06 1997-03-18 Dainippon Ink & Chem Inc ポリイミド分離膜、およびポリイミド中空糸複合膜の製造方法
JP2000342944A (ja) * 1999-03-05 2000-12-12 Ube Ind Ltd 部分炭素化された非対称性中空糸分離膜とその製法およびガス分離方法
KR20020052551A (ko) * 2000-12-26 2002-07-04 김충섭 기체 분리용 불소계 폴리이미드 복합막 제조방법
KR20120071458A (ko) * 2010-12-23 2012-07-03 한국에너지기술연구원 육불화황 정제 및 회수용 기체분리모듈 및 그 제조방법
JP2012210607A (ja) * 2011-03-31 2012-11-01 Ibiden Co Ltd ポリイミド系非対称中空糸膜

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0970523A (ja) * 1995-09-06 1997-03-18 Dainippon Ink & Chem Inc ポリイミド分離膜、およびポリイミド中空糸複合膜の製造方法
JP2000342944A (ja) * 1999-03-05 2000-12-12 Ube Ind Ltd 部分炭素化された非対称性中空糸分離膜とその製法およびガス分離方法
KR20020052551A (ko) * 2000-12-26 2002-07-04 김충섭 기체 분리용 불소계 폴리이미드 복합막 제조방법
KR20120071458A (ko) * 2010-12-23 2012-07-03 한국에너지기술연구원 육불화황 정제 및 회수용 기체분리모듈 및 그 제조방법
JP2012210607A (ja) * 2011-03-31 2012-11-01 Ibiden Co Ltd ポリイミド系非対称中空糸膜

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108348845A (zh) * 2015-11-13 2018-07-31 埃克森美孚研究工程公司 碳氢化合物逆向渗透膜和分离
CN114395127A (zh) * 2021-12-29 2022-04-26 山东华夏神舟新材料有限公司 用于含氟气体分离的聚酰亚胺树脂及其制备方法
CN114395127B (zh) * 2021-12-29 2023-08-22 山东华夏神舟新材料有限公司 用于含氟气体分离的聚酰亚胺树脂及其制备方法

Also Published As

Publication number Publication date
KR101562307B1 (ko) 2015-10-22

Similar Documents

Publication Publication Date Title
WO2010021474A2 (ko) 다공성 막 및 그 제조방법
WO2011037354A2 (ko) 불소계 중공사막 및 그 제조 방법
WO2012128470A9 (ko) 강도 및 수투과도가 우수한 폴리설폰계 중공사막 및 그 제조방법
WO2013073828A1 (ko) 친수성 폴리불화비닐리덴계 중공사 분리막 및 이의 제조방법
WO2013176524A1 (ko) 역삼투 분리막
US6395066B1 (en) Partially carbonized asymmetric hollow fiber separation membrane, process for its production, and gas separation method
JP2013071073A (ja) 中空糸炭素膜、分離膜モジュールおよび中空糸炭素膜の製造方法
KR20160116466A (ko) 세미 열유도 상분리법을 이용한 기체분리용 비대칭 중공사막의 제조방법 및 그에 의하여 제조된 기체분리용 비대칭 중공사막
WO2019132470A1 (ko) 미반응 단량체를 포함하는 혼합용액으로부터 미반응 단량체의 분리방법
WO2015167071A1 (ko) 불화가스 회수용 탄소분자체 중공사막의 전구체 제조방법, 및 그에 의하여 제조된 불화가스 회수용 탄소분자체 중공사막의 전구체 및 탄소분자체 중공사막
CN113797776A (zh) 交联的中空纤维膜及制造该中空纤维膜的新方法
JP4081956B2 (ja) 部分炭素化された非対称性中空糸分離膜とその製法およびガス分離方法
WO2012074222A9 (ko) 셀룰로오스계 수지를 이용한 수처리용 중공사막의 제조방법
CN107106991B (zh) 使用包含含硫化合物的热解气氛制造碳分子筛膜
WO2016072554A1 (ko) 다공성 중공사막 및 그 제조방법
KR101200366B1 (ko) 고선택 투과성 기체분리용 비대칭 구조의 중공사막의 대량 생산방법
JP2626837B2 (ja) 非対称性中空糸炭素膜の製法
WO2014098322A1 (ko) 신규한 구조를 가지는 중공사막 및 그 제조 방법
WO2020050617A1 (ko) 폴리에틸렌 테레프탈레이트 한외여과막 및 이의 제조 방법
KR101688063B1 (ko) 기체분리용 이중층 중공사막 및 그 제조방법
WO2022145781A1 (ko) 중공사막 및 그 제조방법
WO2016002990A1 (ko) 불화가스 분리용 비대칭 중공사막의 제조방법 및 그에 의하여 제조된 불화가스 분리용 비대칭 중공사막
KR101474547B1 (ko) 혼성 상분리법을 이용한 기체분리용 비대칭 중공사막의 제조방법 및 그에 의하여 제조된 기체분리용 비대칭 중공사막
KR101474545B1 (ko) 불화가스 분리용 비대칭 중공사막의 제조방법 및 그에 의하여 제조된 불화가스 분리용 비대칭 중공사막
WO2013147525A1 (en) Porous membrane and method for manufacturing the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14890713

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14890713

Country of ref document: EP

Kind code of ref document: A1