WO2019073584A1 - コンプレッサーハウジング及びこのコンプレッサーハウジングを備えるターボチャージャー - Google Patents

コンプレッサーハウジング及びこのコンプレッサーハウジングを備えるターボチャージャー Download PDF

Info

Publication number
WO2019073584A1
WO2019073584A1 PCT/JP2017/037084 JP2017037084W WO2019073584A1 WO 2019073584 A1 WO2019073584 A1 WO 2019073584A1 JP 2017037084 W JP2017037084 W JP 2017037084W WO 2019073584 A1 WO2019073584 A1 WO 2019073584A1
Authority
WO
WIPO (PCT)
Prior art keywords
passage
cooling passage
compressor housing
cross
inner cooling
Prior art date
Application number
PCT/JP2017/037084
Other languages
English (en)
French (fr)
Inventor
貴 新井
健一郎 岩切
怜子 ▲高▼島
Original Assignee
三菱重工エンジン&ターボチャージャ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱重工エンジン&ターボチャージャ株式会社 filed Critical 三菱重工エンジン&ターボチャージャ株式会社
Priority to CN201780090070.2A priority Critical patent/CN110573749B/zh
Priority to PCT/JP2017/037084 priority patent/WO2019073584A1/ja
Priority to US16/607,179 priority patent/US11136996B2/en
Priority to JP2019547869A priority patent/JP6898996B2/ja
Priority to EP17928774.3A priority patent/EP3696426A4/en
Publication of WO2019073584A1 publication Critical patent/WO2019073584A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/58Cooling; Heating; Diminishing heat transfer
    • F04D29/582Cooling; Heating; Diminishing heat transfer specially adapted for elastic fluid pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/40Casings; Connections of working fluid
    • F04D29/42Casings; Connections of working fluid for radial or helico-centrifugal pumps
    • F04D29/4206Casings; Connections of working fluid for radial or helico-centrifugal pumps especially adapted for elastic fluid pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B29/00Engines characterised by provision for charging or scavenging not provided for in groups F02B25/00, F02B27/00 or F02B33/00 - F02B39/00; Details thereof
    • F02B29/04Cooling of air intake supply
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B39/00Component parts, details, or accessories relating to, driven charging or scavenging pumps, not provided for in groups F02B33/00 - F02B37/00
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B39/00Component parts, details, or accessories relating to, driven charging or scavenging pumps, not provided for in groups F02B33/00 - F02B37/00
    • F02B39/005Cooling of pump drives
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/26Rotors specially for elastic fluids
    • F04D29/28Rotors specially for elastic fluids for centrifugal or helico-centrifugal pumps for radial-flow or helico-centrifugal pumps
    • F04D29/284Rotors specially for elastic fluids for centrifugal or helico-centrifugal pumps for radial-flow or helico-centrifugal pumps for compressors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/58Cooling; Heating; Diminishing heat transfer
    • F04D29/582Cooling; Heating; Diminishing heat transfer specially adapted for elastic fluid pumps
    • F04D29/584Cooling; Heating; Diminishing heat transfer specially adapted for elastic fluid pumps cooling or heating the machine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B29/00Engines characterised by provision for charging or scavenging not provided for in groups F02B25/00, F02B27/00 or F02B33/00 - F02B39/00; Details thereof
    • F02B29/04Cooling of air intake supply
    • F02B29/0406Layout of the intake air cooling or coolant circuit
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2220/00Application
    • F05D2220/40Application in turbochargers

Definitions

  • the present disclosure relates to a compressor housing that houses a compressor wheel for compressing charge air supplied to an engine, and a turbocharger including the compressor housing.
  • the turbocharger has a compressor for compressing the charge supplied to the engine. Air is compressed and its temperature rises, but if compressed air is supplied to the engine with high temperature, knocking is likely to occur, leading to a decrease in output and deterioration in fuel efficiency. Therefore, before compressed air is supplied to the engine An intercooler is provided for cooling.
  • the cooling passages of Patent Documents 1 and 2 are formed so as to surround the scroll passage, and therefore extend very long in the direction along the cross-sectional shape of the scroll passage. For this reason, when a coolant such as cooling water circulates through the cooling passage, the stagnation point increases, or by circulating the coolant through the cooling passage having a large flow passage cross-sectional area, the flow velocity decreases, etc. There is a problem that the cooling efficiency is deteriorated.
  • At least one embodiment of the present disclosure aims to provide a compressor housing that can efficiently cool compressed air in a turbocharger, and a turbocharger including the compressor housing.
  • a compressor housing is A compressor housing containing a compressor wheel for compressing charge air supplied to the engine, the compressor housing comprising: Inside the compressor housing: An outer cooling passage extending along a circumferential direction on an outer peripheral side of a spiral scroll passage through which the air compressed by the compressor wheel flows; An inner cooling passage extending along the circumferential direction on the inner peripheral side of the scroll passage, and an inner cooling passage separated from the outer cooling passage is formed by a separation wall extending along the circumferential direction.
  • the outer cooling passage extending along the circumferential direction on the outer peripheral side of the scroll passage and the inner cooling passage extending along the circumferential direction on the inner peripheral side of the scroll passage are separated by the separation wall Since the cooling passage is formed to surround the scroll passage from the inner circumferential side to the outer circumferential side of the scroll passage, the outer cooling passage and the inner cooling passage extend in the direction along the cross sectional shape of the scroll passage. Becomes smaller. For this reason, since generation
  • the outer cooling passage includes a curved passage portion having a cross-sectional shape curved along the cross-sectional shape of the scroll passage in a cross-section along the rotation axis of the compressor wheel.
  • the curved passage portion has a cross-sectional shape curved along the cross-sectional shape of the scroll passage, so that the distance between the curved passage portion and the scroll passage is along the cross-sectional shape of the scroll passage. As it is as short as possible, the compressed air can be cooled efficiently.
  • the outer cooling passage has a flat passage portion having a cross-sectional shape extending in a flat manner from at least one of the end edges of the curved passage portion in a direction along the cross-sectional shape of the scroll passage in a cross-section along the rotational axis of the compressor wheel Further includes
  • the compressor housing is filled with powder in a mold and fired by baking in a shape corresponding to the shape of the compressor housing, but with a configuration in which a further curved portion extends from the edge of the curved passage portion When it breaks, it becomes difficult to break when breaking the mold.
  • the configuration of the above (3) when the flat passage portion having a cross-sectional shape extending flatly from the edge of the curved passage portion is formed, the mold is easily broken and the compressor housing Manufacturability is improved.
  • the inner cooling passage includes a cross-sectional shape which is curved along the cross-sectional shape of the scroll passage in a cross-section along the rotation axis of the compressor wheel.
  • the inner cooling passage has a cross-sectional shape curved along the cross-sectional shape of the scroll passage, so that the distance between the inner cooling passage and the scroll passage is along the cross-sectional shape of the scroll passage. As it is as short as possible, the compressed air can be cooled efficiently.
  • a linear direction which passes through the center of gravity of the cross section of the inner cooling passage and whose length is the largest in the cross section of the inner cooling passage is defined as a reference longitudinal direction
  • the reference longitudinal direction is a direction along the rotation axis of the compressor wheel.
  • the coolant flowing through the inner cooling passage is a scroll passage because the reference longitudinal direction in which the length is the largest in the cross section of the inner cooling passage is the direction along the rotation axis of the compressor wheel. Since the heat transfer from the high temperature compressed air therein to the air sucked into the compressor wheel and the air compressed by the compressor wheel can be reduced, the compressor performance can be improved.
  • a diffuser passage is further formed inside the compressor housing, the diffuser passage communicating with the scroll passage and extending radially inward from the scroll passage.
  • the direction orthogonal to the reference longitudinal direction is the width direction
  • the largest portion in the width direction of the inner cooling passage is on the diffuser passage side with respect to the gravity center position.
  • the portion of the inner cooling passage having the largest cooling area is located near the diffuser passage, thereby enhancing the cooling effect of the compressed air in the diffuser passage and cooling the vicinity of the compressor wheel So, not only the temperature drop of the compressed air but also the compressor performance can be improved.
  • a diffuser passage is further formed inside the compressor housing, the diffuser passage communicating with the scroll passage and extending radially inward from the scroll passage.
  • the largest portion in the width direction of the inner cooling passage is on the opposite side to the diffuser passage than the gravity center position.
  • the largest portion (largest portion) of the cooling area of the inner cooling passage can conform to the cross-sectional shape of the scroll passage and can take the cooling area also for the diffuser passage The cooling effect of the air is enhanced, and the compressed air can be cooled efficiently.
  • the width of the inner cooling passage in the direction orthogonal to the reference longitudinal direction is the same as or larger than the width of the outer cooling passage.
  • the inner cooling passage can be configured to obtain a large heat transfer area on the diffuser passage side, so that the cooling effect of the compressed air in the diffuser passage can be improved.
  • At least two first communication ports communicating the outer cooling passage with the outside of the compressor housing; At least two second communication ports communicating between the inner cooling passage and the outside of the compressor housing.
  • both the outer cooling passage and the inner cooling passage have at least two communication openings, according to the layout in the engine room in which the turbocharger is provided, the outer cooling passage and the inner It is possible to connect the inlet and the outlet of each cooling passage.
  • the first communication port and the second communication port are used to hold the core at the time of casting the compressor housing, but the presence of two or more of the first communication port and the second communication port makes The retention of the child can be improved.
  • the coolant flowing through the outer cooling passage and the inner cooling passage When the coolant flowing through the outer cooling passage and the inner cooling passage is a liquid, the coolant may boil by cooling the compressed air in the scroll passage. When the coolant boils, if the steam of the coolant is not discharged from the outer cooling passage and the inner cooling passage, the flow of the coolant may be clogged and the cooling of the compressed air may be hindered.
  • the coolant when at least one of the first communication port and the second communication port opens upward in the vertical direction, the coolant can be discharged through the communication port that opens upward in the vertical direction. Steam can be exhausted from the outer cooling passage and the inner cooling passage.
  • the opening of the first communication port and the opening of the second communication port form an angle of 90 ° with each other.
  • either one of the first communication port or the second communication port is in the vertical direction
  • the upward opening allows the coolant vapor to be discharged from the outer cooling passage and the inner cooling passage through the vertically upward opening communication port.
  • One of the at least two first communication openings is an inlet of a coolant flowing through the outer cooling passage, and another one of the at least two first communication openings is flowing through the outer cooling passage. It is the exit of the material
  • One of the at least two second communication openings is an inlet of coolant flowing through the inner cooling passage, and another one of the at least two second communication openings is flowing through the inner cooling passage It is the exit of the material.
  • the cooling capacity of the compressed air in the scroll passage becomes high, and the compressed air can be cooled more efficiently. it can.
  • the compressor housing is more than that in the case where the outer cooling passage and the inner cooling passage respectively have an inlet and an outlet.
  • the cost of the core used at the time of casting can be lowered, and the core retention can be further improved.
  • any of a connection pipeline connecting the inlet of the outer cooling passage and the outlet of the inner cooling passage, and a connection pipeline connecting the outlet of the outer cooling passage and the inlet of the inner cooling passage Since the outer cooling passage and the inner cooling passage can be configured as one continuous cooling passage without being used, the turbocharger can be made compact.
  • a turbocharger according to at least one embodiment of the present invention, The compressor housing according to any one of the above (1) to (14) is provided.
  • the compressed air in the scroll passage can be efficiently cooled by the coolant flowing through the outer cooling passage and the inner cooling passage formed in the compressor housing.
  • an outer cooling passage extending along the circumferential direction on the outer circumferential side of the scroll passage and an inner cooling passage extending along the circumferential direction on the inner circumferential side of the scroll passage are separated by separation walls. Since the cooling passages are separated from each other so as to surround the scroll passage from the inner circumferential side to the outer circumferential side of the scroll passage, the outer cooling passage and the inner cooling passage follow the cross sectional shape of the scroll passage. The range that extends to becomes smaller.
  • FIG. 1 is a perspective view of a compressor housing according to Embodiment 1 of the present disclosure.
  • FIG. 2 is a cross-sectional view taken along the line II-II in FIG. It is a figure for demonstrating the detailed shape of the inner side cooling passage formed in the compressor housing which concerns on Embodiment 1 of this indication. It is a graph showing the experimental result about the cooling effect of the compressed air in the turbocharger provided with the compressor housing concerning Embodiment 2 of this indication. It is a graph showing the experimental result about the improvement effect of the compressor performance in the turbocharger provided with the compressor housing which concerns on Embodiment 2 of this indication.
  • FIG. 7 is a cross-sectional view of a compressor housing according to Embodiment 2 of the present disclosure.
  • FIG. 7 is a cross-sectional view of a compressor housing according to Embodiment 3 of the present disclosure. It is sectional drawing of the modification of the compressor housing which concerns on Embodiment 3 of this indication.
  • FIG. 10 is a perspective view of an outer cooling passage and an inner cooling passage formed in a compressor housing according to a fourth embodiment of the present disclosure.
  • FIG. 10 is a perspective view of an outer cooling passage and an inner cooling passage formed in a compressor housing according to a fifth embodiment of the present disclosure.
  • FIG. 14 is a perspective view of an outer cooling passage and an inner cooling passage formed in a compressor housing according to a sixth embodiment of the present disclosure.
  • the compressor housing 1 of the turbocharger has a cylindrical air inlet 2 into which air compressed by a compressor wheel (not shown) flows.
  • the compressor housing 1 is formed with a spiral scroll passage 3 formed around the air inlet 2.
  • the compressed air compressed by the compressor wheel flows through the scroll passage 3 and flows out of the turbocharger and is then supplied to the engine (not shown).
  • the scroll passage 3 has a cross-sectional area in the flow direction of the compressed air That is, the scroll passage 3 is configured to increase from the inlet side to the outlet side.
  • a diffuser passage 4 communicating the air passage 2 a inside the air inlet 2 and the scroll passage 3 is provided radially inward of the compressor wheel (not shown) from the scroll passage 3. It is formed to extend. Further, in the compressor housing 1, an outer cooling passage 11 extending in the circumferential direction on the outer peripheral side of the scroll passage 3 and an inner cooling passage 12 extending in the circumferential direction on the inner peripheral side of the scroll passage 3 are formed. There is. The coolant, which is a coolant, flows through the outer cooling passage 11 and the inner cooling passage 12, whereby the compressed air flowing through the scroll passage 3 is cooled. In the compressor housing 1, the outer cooling passage 11 and the inner cooling passage 12 are separated by a separation wall 13 extending along the circumferential direction.
  • the compressor housing 1 includes four first communication ports 5a, 5b, 5c, 5d for communicating the outer cooling passage 11 (see FIG. 2) with the outside of the compressor housing 1, and an inner cooling passage.
  • Four second communication ports 6a, 6b, 6c, and 6d are provided to communicate 12 (see FIG. 2) with the outside of the compressor housing 1.
  • the openings of the first communication openings 5a, 5b, 5c, 5d and the openings of the second communication openings 6a, 6b, 6c, 6d form an angle of 90 ° with each other.
  • the first communication port 5 a constitutes an inlet for the cooling water to flow into the outer cooling passage 11, and the first communication port 5 b constitutes an outlet for the cooling water to flow out of the outer cooling passage 11.
  • the second communication port 6 a constitutes an inlet for the cooling water to flow into the inner cooling passage 12, and the second communication port 6 b constitutes an outlet for the cooling water to flow out of the inner cooling passage 12.
  • the first communication port 5 b and the second communication port 6 a communicate with each other through the connection conduit 7. That is, the outer cooling passage 11 and the inner cooling passage 12 communicate with each other through the connection conduit 7.
  • the outer cooling passage 11 has a curved passage portion 11 a having a cross-sectional shape curved along the cross-sectional shape of the scroll passage 3 in a cross-section along the rotational axis L 0 of the compressor wheel; And flat passage portions 11b and 11c having a cross-sectional shape extending flatly from both end edges 11a1 and 11a2 of the curved passage portion 11a in the direction along the cross-sectional shape of.
  • the outer cooling passage 11 is configured to have a constant width W 0 along the cross-sectional shape of the scroll passage 3. In the first embodiment, the width of the outer cooling passage 11 is constant at W 0, but in another embodiment, the width of the outer cooling passage 11 may be changed in the direction along the cross sectional shape of the scroll passage 3. Good.
  • the center position G of the cross section of the inner cooling passage 12 is passed and the length is the largest in the cross section of the inner cooling passage 12.
  • the reference longitudinal direction L is a direction along the rotation axis L 0 of the compressor wheel.
  • the direction along the rotation axis L 0 of the compressor wheel means that the angle ⁇ between the rotation axis L 0 of the compressor wheel and the reference longitudinal direction L is less than 45 °.
  • the cross section of the inner cooling passage 12 near the outlet side of the scroll passage 3 is 12a, and the cross section of the inner cooling passage 12 near the inlet side of the scroll passage 3 It is assumed 12b. Passes through the gravity center position G a in the cross section 12a, and defines a linear direction most length increases in cross-section 12a of the inner cooling passage 12 and the reference longitudinal direction L1. Further, it is defined as a reference longitudinal direction L2 which passes the barycentric position Gb in the cross section 12b and has a linear direction in which the length becomes the largest in the cross section 12b of the inner cooling passage 12.
  • Section 12a of the inner cooling passage 12 in each of the 12b the direction perpendicular to the reference longitudinal direction L 1 and L 2 in the width direction.
  • the largest portions 12a1 and 12b1 each length is Wa and Wb
  • the center of gravity G a and G b of the diffuser passage 4 On the side. That is, from the inlet side to the outlet side of the scroll passage 3, the largest part in the width direction of the inner cooling passage 12 is at a position close to the diffuser passage 4.
  • the inner cooling passage 12 is configured such that the width of the inner cooling passage 12 is larger than the width W 0 (see FIG. 2) of the outer cooling passage 11. According to this configuration, the inner cooling passage 12 can be configured to have a large heat transfer area on the diffuser passage 4 side, so that the cooling effect of the compressed air in the diffuser passage 4 can be improved.
  • the cooling water flows into the outer cooling passage 11 (see FIG. 2) via the first communication port 5 a which is an inlet of the cooling water.
  • the cooling water flows out of the outer cooling passage 11 through the first communication port 5b which is an outlet of the cooling water.
  • the cooling water having flowed out of the outer cooling passage 11 passes through the connection pipeline 7 and flows into the inner cooling passage 12 (see FIG. 2) through the second communication port 6a which is the cooling water inlet.
  • the cooling water flows out of the inner cooling passage 12 through the second communication port 6b which is an outlet of the cooling water.
  • the air flowing through the air passage 2 a is compressed by a compressor wheel (not shown) into compressed air, and flows into the scroll passage 3 through the diffuser passage 4.
  • the compressed air flows through the scroll passage 3 in the compressor housing 1
  • the compressed air is cooled from the outer peripheral side of the scroll passage 3 by the cooling water flowing through the outer cooling passage 11, and from the inner peripheral side of the scroll passage 3 It is cooled by the cooling water flowing through the inner cooling passage 12.
  • compressed air flows out of the turbocharger compressor.
  • the compressed air is subsequently cooled by an intercooler (not shown) and then supplied to an engine (not shown).
  • the compressed air is cooled by the cooling water flowing through the outer cooling passage 11 and the inner cooling passage 12 so that the compressed air of a suitable temperature flows into the intercooler. Therefore, the cooling capacity required for the intercooler can be reduced, and the size of the intercooler can be reduced. As a result, space saving of the intercooler is realized.
  • the cooling passage 11 and the inner cooling passage 12 are separated by the separation wall 13, the cooling passage is formed so as to surround the scroll passage 3 from the inner peripheral side to the outer peripheral side of the scroll passage 3
  • the range in which the outer cooling passage 11 and the inner cooling passage 12 extend in the direction along the cross-sectional shape of the scroll passage 3 is smaller than in the case where they are present. For this reason, since generation
  • the outer cooling passage 11 includes a curved passage portion 11 a having a cross-sectional shape curved along the cross-sectional shape of the scroll passage 3.
  • the distance between the curved passage portion 11 a and the scroll passage 3 is as short as possible along the cross-sectional shape of the scroll passage 3, so that the compressed air can be cooled efficiently.
  • the reference longitudinal direction L in which the length is the largest in the cross section of the inner cooling passage 12 is the direction along the rotation axis L 0 of the compressor wheel.
  • the cooling water flowing through the inner cooling passage 12 is compressed from the hot compressed air in the scroll passage 3 by the air in the air passage 2a, that is, the compressor wheel (not shown) Since the heat transfer to the air can be reduced, the compressor performance can be improved.
  • the maximum portions 12 a 1 and 12 b 1 in the width direction of the inner cooling passage 12 are positioned close to the diffuser passage 4. Thereby, the cooling effect of the compressed air in the diffuser passage 4 can be improved.
  • the temperature of the compressed air flowing out of the turbocharger is lower when the cooling water is circulated through at least one of the outer cooling passage 11 and the inner cooling passage 12 to perform cooling. It turned out to be low. Further, compared with the case where the cooling water is caused to flow through one of the outer cooling passage 11 or the inner cooling passage 12, the direction when the cooling water is caused to flow through both the outer cooling passage 11 and the inner cooling passage 12 is more compressed. It turned out that the cooling effect is large.
  • the outer cooling passage 11 extending along the circumferential direction on the outer peripheral side of the scroll passage 3 and the inner cooling passage 12 extending along the circumferential direction on the inner peripheral side of the scroll passage 3 are separated by the separation wall 13 Therefore, the outer cooling passage 11 and the inner cooling passage 12 have the cross-sectional shape of the scroll passage 3 as compared with the case where the cooling passage is formed to surround the scroll passage 3 from the inner peripheral side to the outer peripheral side of the scroll passage 3. The range extending along the direction becomes smaller.
  • the cooling water flowing through the outer cooling passage 11 and the inner cooling passage 12 cools the compressed air in the scroll passage 3, the cooling water may boil. In this case, if the water vapor is not discharged from the outer cooling passage 11 and the inner cooling passage 12, the flow of the cooling water may be clogged, which may affect the cooling of the compressed air.
  • any one of the first communication ports 5a to 5d or the second communication ports 6a to 6d opens vertically upward.
  • the pressure control valve opens when the pressure of water vapor increases, and the water vapor is discharged from the outer cooling passage 11 and the inner cooling passage 12 through the communication opening. can do.
  • the openings of the first communication ports 5a to 5d and the openings of the second communication ports 6a to 6d are 90 with respect to each other as long as the purpose is to discharge the water vapor from the outer cooling passage 11 and the inner cooling passage 12. It is not limited to making an angle. If there is a degree of freedom in selecting the direction of each communication port, at least one of the first communication ports 5a to 5d and the second communication ports 6a to 6d is vertical with the compressor housing 1 attached to the engine It may be formed to open in the upward direction.
  • each of the first communication port and the second communication port is four, it is not limited to four.
  • the first communication port and the second communication port may be at least two each. If each of the outer cooling passage 11 and the inner cooling passage 12 has at least two communication ports, the inlet and outlet of each of the outer cooling passage 11 and the inner cooling passage 12 according to the layout in the engine room where the turbocharger is provided. It will be possible to The first communication port and the second communication port are used to hold the core at the time of casting the compressor housing, but the presence of two or more of the first communication port and the second communication port makes The retention of the child can be improved.
  • the outer cooling passage 11 is the cross section along the rotation axis L 0 of the compressor wheel, both end edges of the curved passage portion 11a in the direction along the cross section of the scroll passage 3 11a1 and 11a2 , And includes flat passage portions 11b and 11c having a cross-sectional shape that extends flat from the lower end of
  • the compressor housing 1 is formed by filling powder in a mold and baking it in a shape corresponding to the shape of the compressor housing 1, but the portions further curved from the both end edges 11a1 and 11a2 of the curved passage portion 11a are If it has an extended configuration, it will not break easily when the mold is broken.
  • the flat passage portions 11b and 11c are configured to extend from both end edge portions 11a1 and 11a2 of the curved passage portion 11a, but the present invention is not limited to this.
  • the flat passage portion 11b or 11c may extend from one of the end edges 11a1 and 11a2, or the outer cooling passage 11 may include only the curved passage portion 11a.
  • the cooling water flows through the outer cooling passage 11 and then flows through the inner cooling passage 12, but the present invention is not limited to this configuration.
  • the cooling water may flow through the outer cooling passage 11 after flowing through the inner cooling passage 12.
  • the first communication port 5 a and the second communication port 6 b communicate with each other through the connection pipeline 7.
  • the compressor housing according to the second embodiment is different from the first embodiment in the shape of the inner cooling passage 12.
  • the same components as those of the first embodiment are denoted by the same reference numerals, and the detailed description thereof is omitted.
  • the largest portions 12a1 and 12b1 of the width of the inner cooling passage 12 are on the opposite side of the diffuser passage 4 than the gravity center positions Ga and Gb. .
  • the other configuration is the same as that of the first embodiment.
  • the largest cooling area portion (maximum portions 12a1 and 12b1) of the inner cooling passage 12 has a cooling area along the cross-sectional shape of the scroll passage 3 and also the diffuser passage 4 Therefore, the cooling effect of the compressed air is enhanced, and the compressed air can be cooled efficiently.
  • the compressor housing according to the third embodiment is different from the first embodiment in the shape of the inner cooling passage 12.
  • the same components as those of the first embodiment are denoted by the same reference numerals, and the detailed description thereof is omitted.
  • the inner cooling passage 12 has a curved cross-sectional shape along the cross-sectional shape of the scroll passage 3.
  • the outer cooling passage 11 and the inner cooling passage 12 are configured to have constant widths W 0 and W 1 , respectively, along the cross-sectional shape of the scroll passage 3.
  • the other configuration is the same as that of the first embodiment.
  • the widths of the outer cooling passage 11 and the inner cooling passage 12 are constant at W 0 and W 1 respectively, but in another embodiment, the outer cooling passage 11 in the direction along the cross sectional shape of the scroll passage 3. And at least one of the width of the inner cooling passage 12 may be changed.
  • the widths of the outer cooling passage 11 and the inner cooling passage 12 are equal, the pressure loss when the cooling water flows from the outer cooling passage 11 into the inner cooling passage 12 can be suppressed to a low level.
  • the cooling water can efficiently cool compressed air by reducing stagnation and making the flow uniform.
  • the inner cooling passage 12 has a cross-sectional shape curved along the cross-sectional shape of the scroll passage 3, the distance between the inner cooling passage 12 and the scroll passage 3 is the cross-sectional shape of the scroll passage 3.
  • the compressed air can be cooled efficiently since it is as short as possible.
  • the inner cooling passage 12 of the third embodiment may be shaped such that the largest portions 12a1 and 12b1 are closer to the diffuser passage 4 than the gravity center positions Ga and Gb.
  • the cross-sectional area on the side close to the diffuser passage 4 is large and the pressure loss is small, so the flow of cooling water may be biased to the side close to the diffuser passage 4.
  • the largest portions 12a1 and 12b1 are on the opposite side of the diffuser passage 4 than the gravity center positions Ga and Gb. The shape is preferred.
  • the compressor housing according to the fourth embodiment changes the communication relationship between the outer cooling passage 11 and the inner cooling passage 12 with respect to each of the first to third embodiments.
  • the following description will be made based on a mode in which the communication relationship between the outer cooling passage 11 and the inner cooling passage 12 is changed with respect to the third embodiment, but the second embodiment is different from the first embodiment in the outer cooling passage 11 and the inner cooling passage 12.
  • the communication relationship may be changed.
  • the same components as those in the first to third embodiments are denoted by the same reference numerals, and the detailed description thereof will be omitted.
  • the cooling water flows into the outer cooling passage 11 through the inlet 21, flows through the outer cooling passage 11, and then flows out of the outer cooling passage 11 through the outlet 22. ing. Further, cooling water different from the cooling water flowing through the outer cooling passage 11 flows into the inner cooling passage 12 through the inlet 23 and flows through the inner cooling passage 12, and then the inner cooling passage 12 through the outlet 24. It is configured to flow out of the The configuration differs from that of the first embodiment in that the outlet 22 and the inlet 23 do not communicate with each other. The other configuration is the same as that of the first embodiment.
  • the cooling water flows separately to each of the outer cooling passage 11 and the inner cooling passage 12, the cooling capacity of the compressed air in the scroll passage 3 (see FIG. 7) is increased, and the compressed air is more efficiently It can be cooled.
  • Embodiment 5 the compressor housing according to the fifth embodiment will be described.
  • the compressor housing according to the fifth embodiment changes the communication relationship between the outer cooling passage 11 and the inner cooling passage 12 with respect to each of the first to third embodiments.
  • the following description will be made based on a mode in which the communication relationship between the outer cooling passage 11 and the inner cooling passage 12 is changed with respect to the third embodiment, but the second embodiment is different from the first embodiment in the outer cooling passage 11 and the inner cooling passage 12.
  • the communication relationship may be changed.
  • the same components as those in the first to third embodiments are denoted by the same reference numerals, and the detailed description thereof will be omitted.
  • the outer cooling passage 11 and the inner cooling passage 12 are connected at their respective downstream ends, and the cooling flowed into the outer cooling passage 11 through the inlet 21 and circulated through the outer cooling passage 11
  • the water and the cooling water flowing into the inner cooling passage 12 through the inlet 23 and flowing through the inner cooling passage 12 respectively flow out from one outlet 22. That is, the outlet of the outer cooling passage 11 and the outlet of the inner cooling passage 12 merge.
  • the other configuration is the same as that of the first embodiment.
  • each of the outer cooling passage 11 and the inner cooling passage 12 is one common outlet 22, compared with the case where the outer cooling passage 11 and the inner cooling passage 12 have an inlet and an outlet, respectively, when casting the compressor housing 1
  • the cost of the core used can be reduced, and the core retention performance can be further improved.
  • the cooling water flows separately to each of the outer cooling passage 11 and the inner cooling passage 12, the cooling ability of the compressed air in the scroll passage 3 (see FIG. 7) is high.
  • the compressed air can be cooled more efficiently.
  • Embodiment 6 a compressor housing according to Embodiment 6 will be described.
  • the compressor housing according to the sixth embodiment changes the communication relationship between the outer cooling passage 11 and the inner cooling passage 12 with respect to each of the first to third embodiments.
  • the following description will be made based on a mode in which the communication relationship between the outer cooling passage 11 and the inner cooling passage 12 is changed with respect to the third embodiment, but the second embodiment is different from the first embodiment in the outer cooling passage 11 and the inner cooling passage 12.
  • the communication relationship may be changed.
  • the same components as those in the first to third embodiments are denoted by the same reference numerals, and the detailed description thereof will be omitted.
  • the downstream end of the outer cooling passage 11 and the upstream end of the inner cooling passage 12 are directly connected, and the inlet 21 flows into the outer cooling passage 11 and flows through the outer cooling passage 11 Water flows into the inner cooling passage 12 and flows through the inner cooling passage 12, and then flows out from the outlet 22.
  • the other configuration is the same as that of the first embodiment.
  • the connecting pipeline connecting the inlet of the outer cooling passage 11 and the outlet of the inner cooling passage 12 Since the outer cooling passage 11 and the inner cooling passage 12 can be configured as one continuous cooling passage without using any of the connection pipelines connecting the outlet and the inlet of the inner cooling passage 12, Can be made compact.
  • the cooling water flows through the outer cooling passage 11 and then flows through the inner cooling passage 12, but the present invention is not limited to this configuration.
  • the cooling water may flow through the outer cooling passage 11 after flowing through the inner cooling passage 12.
  • the component denoted by reference numeral 22 is the inlet of the cooling water
  • the component denoted by reference numeral 21 is the outlet of the cooling water.
  • the coolant flowing through the outer cooling passage 11 and the inner cooling passage 12 is the cooling water, but it is not limited to the cooling water.
  • the coolant any liquid such as oil or any gas such as air can be used.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Supercharger (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)

Abstract

エンジンに供給される給気を圧縮するためのコンプレッサーホイールを収容するコンプレッサーハウジングの内部には、コンプレッサーホイールで圧縮された給気が流れる渦巻き状のスクロール通路の外周側において周方向に沿って延びる外側冷却通路と、スクロール通路の内周側において周方向に沿って延びる内側冷却通路であって、周方向に沿って延びる分離壁によって外側冷却通路と隔てられる内側冷却通路とが形成される。

Description

コンプレッサーハウジング及びこのコンプレッサーハウジングを備えるターボチャージャー
 本開示は、エンジンに供給される給気を圧縮するためのコンプレッサーホイールを収容するコンプレッサーハウジング及びこのコンプレッサーハウジングを備えるターボチャージャーに関する。
 ターボチャージャーは、エンジンに供給される給気を圧縮するためのコンプレッサーを有している。空気は圧縮されると温度が上昇するが、圧縮空気が高温のままエンジンに供給されると、ノッキングが起こりやすくなり、出力低下や燃費の悪化を招くことから、圧縮空気をエンジンに供給する前に冷却するためのインタークーラーが設けられる。
 一方、最近のエンジンは燃費向上の観点から電動化が進み、エンジンルーム内に設けられるバッテリーや電装品が増えているので、インタークーラーの省スペース化が求められている。圧縮空気の冷却性能とインタークーラーの省スペース化を両立するためには、インタークーラー自体の冷却効率を向上させるか、又は、インタークーラーへの流入前の圧縮空気の温度、すなわちターボチャージャーから流出する圧縮空気の温度を低下させることが考えられる。また、空気の圧縮によって温度が上昇するため、熱せられたコンプレッサーハウジングによって、コンプレッサーホイールに吸い込まれる空気及びコンプレッサーホイールによって圧縮中の空気の温度が上昇する。そのため、空気が加熱されなかった場合と比べて、コンプレッサー性能が低下する。これを防ぐためには、断熱材などの配置で熱を伝わりにくくするか、コンプレッサーハウジングの温度を低下させることで伝熱量を低下させることが考えられる。
 特許文献1及び2は、圧縮空気が流れる渦巻き状のスクロール通路を囲む冷却通路がターボチャージャーのコンプレッサーハウジングに形成されており、ターボチャージャーから流出する圧縮空気の温度を低下させ、コンプレッサー効率を向上させることができる。
独国特許出願公開第102007023142号明細書 独国特許出願公開第102010042104号明細書
 特許文献1及び2の冷却通路は、スクロール通路を囲むように形成されているので、スクロール通路の断面形状に沿う方向に非常に長く延びている。このため、冷却水等の冷却材が冷却通路を流通する際によどみ点が多くなることや、大きな流路断面積を有する冷却通路に冷却材を流通させることによって流速が小さくなること等によって、冷却効率が悪化するといった問題点があった。
 上述の事情に鑑みて、本開示の少なくとも1つの実施形態は、ターボチャージャーにおいて効率よく圧縮空気を冷却できるコンプレッサーハウジング及びこのコンプレッサーハウジングを備えるターボチャージャーを提供することを目的とする。
(1)本発明の少なくとも1つの実施形態に係るコンプレッサーハウジングは、
 エンジンに供給される給気を圧縮するためのコンプレッサーホイールを収容するコンプレッサーハウジングであって、
 前記コンプレッサーハウジングの内部には、
 前記コンプレッサーホイールで圧縮された前記給気が流れる渦巻き状のスクロール通路の外周側において周方向に沿って延びる外側冷却通路と、
 前記スクロール通路の内周側において周方向に沿って延びる内側冷却通路であって、周方向に沿って延びる分離壁によって前記外側冷却通路と隔てられる内側冷却通路と
が形成される。
 上記(1)の構成によると、スクロール通路の外周側において周方向に沿って延びる外側冷却通路と、スクロール通路の内周側において周方向に沿って延びる内側冷却通路とが分離壁によって隔てられているので、スクロール通路の内周側から外周側までスクロール通路を囲むように冷却通路が形成されている場合に比べて、外側冷却通路及び内側冷却通路がスクロール通路の断面形状に沿う方向に延びる範囲は小さくなる。このため、外側冷却通路及び内側冷却通路のそれぞれを冷却材が流れるときのよどみ点の発生が抑えられ、冷却材の流速の低下も抑えられることから、圧縮空気の冷却効率も高くなる。その結果、スクロール通路の外周側及び内周側のそれぞれから、外側冷却通路及び内側冷却通路を流れる冷却材がスクロール通路内の圧縮空気を効率的に冷却することになるので、ターボチャージャーにおいて効率よく圧縮空気を冷却することができる。
(2)いくつかの実施形態では、上記(1)の構成において、
 前記外側冷却通路は、前記コンプレッサーホイールの回転軸線に沿った断面において、前記スクロール通路の断面形状に沿って湾曲した断面形状を有する湾曲通路部分を含む。
 上記(2)の構成によると、湾曲通路部分はスクロール通路の断面形状に沿って湾曲した断面形状を有することにより、湾曲通路部分とスクロール通路との間の距離がスクロール通路の断面形状に沿って可能な限り短くなるので、効率よく圧縮空気を冷却することができる。
(3)いくつかの実施形態では、上記(2)の構成において、
 前記外側冷却通路は、前記コンプレッサーホイールの回転軸線に沿った断面において、前記スクロール通路の断面形状に沿う方向における前記湾曲通路部分の両端縁部の少なくとも一方から平坦に延びる断面形状を有する平坦通路部分をさらに含む。
 コンプレッサーハウジングは、金型の中に粉を充填してコンプレッサーハウジングの形と対応する形に焼き固めて鋳造されるが、湾曲通路部分の端縁部からさらに湾曲した部分が延びる構成を有していると、型を割るときに割れにくくなる。しかしながら、上記(3)の構成によると、湾曲通路部分の端縁部から平坦に延びる断面形状を有する平坦通路部分が形成された構成を有していると、型が割れやすくなり、コンプレッサーハウジングの製造性が向上する。
(4)いくつかの実施形態では、上記(1)~(3)のいずれかの構成において、
 前記内側冷却通路は、前記コンプレッサーホイールの回転軸線に沿った断面において、前記スクロール通路の断面形状に沿って湾曲した断面形状を含む。
 上記(4)の構成によると、内側冷却通路はスクロール通路の断面形状に沿って湾曲した断面形状を有することにより、内側冷却通路とスクロール通路との間の距離がスクロール通路の断面形状に沿って可能な限り短くなるので、効率よく圧縮空気を冷却することができる。
(5)いくつかの実施形態では、上記(1)~(4)のいずれかの構成において、
 前記コンプレッサーホイールの回転軸線に沿った断面において、前記内側冷却通路の断面の重心位置を通過し、且つ、前記内側冷却通路の断面において最も長さが大きくなる直線方向を基準長手方向と定義した場合に、前記基準長手方向は前記コンプレッサーホイールの回転軸線に沿った方向である。
 上記(5)の構成によると、内側冷却通路の断面において最も長さが大きくなる基準長手方向がコンプレッサーホイールの回転軸線に沿った方向であることにより、内側冷却通路を流れる冷却材は、スクロール通路内の高温の圧縮空気から、コンプレッサーホイールに吸い込まれる空気及びコンプレッサーホイールによって圧縮される空気への伝熱を低減することができるので、コンプレッサー性能を向上することができる。
(6)いくつかの実施形態では、上記(5)の構成において、
 前記コンプレッサーハウジングの内部には、前記スクロール通路に連通するとともに前記スクロール通路から前記コンプレッサーホイールの径方向内側に延びるディフューザー通路がさらに形成され、
 前記基準長手方向と直交する方向を幅方向とした場合に、前記内側冷却通路の前記幅方向の最大部分が前記重心位置よりもディフューザー通路側にある。
 上記(6)の構成によると、内側冷却通路の最も冷却面積の大きい部分がディフューザー通路の近くに位置することにより、ディフューザー通路における圧縮空気の冷却効果が高まり、コンプレッサーホイール付近も冷却することができるので、圧縮空気の温度低下だけではなく、コンプレッサー性能を向上することができる。
(7)いくつかの実施形態では、上記(5)の構成において、
 前記コンプレッサーハウジングの内部には、前記スクロール通路に連通するとともに前記スクロール通路から前記コンプレッサーホイールの径方向内側に延びるディフューザー通路がさらに形成され、
 前記基準長手方向と直交する方向を幅方向とした場合に、前記内側冷却通路の前記幅方向の最大部分が前記重心位置よりもディフューザー通路とは反対側にある。
 上記(7)の構成によると、内側冷却通路の最も冷却面積の大きい部分(最大部分)がスクロール通路の断面形状に沿い、また、ディフューザー通路に対しても冷却面積を取ることができるので、圧縮空気の冷却効果が高まり、効率よく圧縮空気を冷却することができる。
(8)いくつかの実施形態では、上記(5)~(7)のいずれかの構成において、
 前記基準長手方向と直交する方向の前記内側冷却通路の幅は前記外側冷却通路の幅と同じ又はそれよりも大きい。
 上記(8)の構成によると、内側冷却通路を、ディフューザー通路側に伝熱面積を多くとれるような構成にすることができるので、ディフューザー通路における圧縮空気の冷却効果を向上することができる。
(9)いくつかの実施形態では、上記(1)~(8)のいずれかの構成において、
 前記外側冷却通路と前記コンプレッサーハウジングの外部とを連通する少なくとも2つの第1連通口と、
 前記内側冷却通路と前記コンプレッサーハウジングの外部とを連通する少なくとも2つの第2連通口と
を備える。
 上記(9)の構成によると、外側冷却通路及び内側冷却通路のいずれも少なくとも2つの連通口を有しているので、ターボチャージャーが設けられるエンジンルーム内のレイアウトに合わせて、外側冷却通路及び内側冷却通路それぞれの出入口の取り合いが可能になる。また、第1連通口及び第2連通口は、コンプレッサーハウジングの鋳造時に中子を保持するために使用されるが、第1連通口及び第2連通口はそれぞれ2つ以上存在することにより、中子の保持性を向上することができる。
(10)いくつかの実施形態では、上記(9)の構成において、
 前記コンプレッサーハウジングが前記エンジンに対して取り付けられた状態で、前記少なくとも2つの第1連通口及び前記少なくとも2つの第2連通口のうちの少なくとも1つが鉛直方向上向きに開口する。
 外側冷却通路及び内側冷却通路を流れる冷却材が液体の場合、スクロール通路内の圧縮空気を冷却することによって冷却材が沸騰する可能性がある。冷却材が沸騰した場合、冷却材の蒸気を外側冷却通路及び内側冷却通路から排出しないと、冷却材の流れが詰まってしまい、圧縮空気の冷却に支障をきたすおそれがある。しかし、上記(10)の構成によると、第1連通口及び第2連通口のうちの少なくとも1つが鉛直方向上向きに開口することにより、この鉛直方向上向きに開口する連通口を介して冷却材の蒸気を外側冷却通路及び内側冷却通路から排出することができる。
(11)いくつかの実施形態では、上記(9)または(10)の構成において、
 前記第1連通口の開口部と前記第2連通口の開口部とは、互いに対して90°の角度をなしている。
 コンプレッサーホイールの回転軸線が鉛直方向又は水平方向のいずれかを向くようにターボチャージャーを設置した場合、上記(11)の構成によると、第1連通口又は第2連通口のいずれか一方が鉛直方向上向きに開口するので、鉛直方向上向きに開口する連通口を介して冷却材の蒸気を外側冷却通路及び内側冷却通路から排出することができる。
(12)いくつかの実施形態では、上記(9)~(11)のいずれかの構成において、
 前記少なくとも2つの第1連通口のうちの1つが、前記外側冷却通路を流れる冷却材の入口であり、前記少なくとも2つの第1連通口のうちの別の1つが、前記外側冷却通路を流れる冷却材の出口であり、
 前記少なくとも2つの第2連通口のうちの1つが、前記内側冷却通路を流れる冷却材の入口であり、前記少なくとも2つの第2連通口のうちの別の1つが、前記内側冷却通路を流れる冷却材の出口である。
 上記(12)の構成によると、外側冷却通路及び内側冷却通路のそれぞれに冷却材が別々に流れるので、スクロール通路内の圧縮空気の冷却能力が高くなり、より効率よく圧縮空気を冷却することができる。
(13)いくつかの実施形態では、上記(1)~(8)のいずれかの構成において、
 前記外側冷却通路を流れる冷却材の出口と前記内側冷却通路を流れる冷却材の出口とは合流している。
 上記(13)の構成によると、外側冷却通路及び内側冷却通路それぞれの出口が共通の1つの出口となるので、外側冷却通路及び内側冷却通路がそれぞれ入口及び出口を有する場合に比べて、コンプレッサーハウジングの鋳造時に使用する中子のコストを下げることができ、さらに中子の保持性を向上することができる。
(14)いくつかの実施形態では、上記(1)~(8)のいずれかの構成において、
 前記外側冷却通路を流れる冷却材の入口と前記内側冷却通路を流れる冷却材の出口とは、又は、前記外側冷却通路を流れる冷却材の出口と前記内側冷却通路を流れる冷却材の入口とは、直接接続されている。
 上記(14)の構成によると、外側冷却通路の入口と内側冷却通路の出口とを接続する接続管路、外側冷却通路の出口と内側冷却通路の入口とを接続する接続管路のいずれも使用せずに、外側冷却通路と内側冷却通路とを連続した1つの冷却通路として構成することができるので、ターボチャージャーをコンパクトにすることができる。
(15)本発明の少なくとも1つの実施形態に係るターボチャージャーは、
 上記(1)~(14)のいずれかのコンプレッサーハウジングを備える。
 上記(15)の構成によると、コンプレッサーハウジングに形成された外側冷却通路及び内側冷却通路のそれぞれを流通する冷却材によって、スクロール通路内の圧縮空気を効率よく冷却することができる。
 本開示の少なくとも1つの実施形態によれば、スクロール通路の外周側において周方向に沿って延びる外側冷却通路と、スクロール通路の内周側において周方向に沿って延びる内側冷却通路とが分離壁によって隔てられているので、スクロール通路の内周側から外周側までスクロール通路を囲むように冷却通路が形成されている場合に比べて、外側冷却通路及び内側冷却通路がスクロール通路の断面形状に沿う方向に延びる範囲は小さくなる。このため、外側冷却通路及び内側冷却通路のそれぞれを冷却材が流れるときのよどみ点の発生が抑えられ、冷却材の流速の低下も抑えられることから、圧縮空気の冷却効率も高くなる。その結果、スクロール通路の外周側及び内周側のそれぞれから、外側冷却通路及び内側冷却通路を流れる冷却材がスクロール通路内の圧縮空気を効率的に冷却することになるので、ターボチャージャーにおいて効率よく圧縮空気を冷却することができる。
本開示の実施形態1に係るコンプレッサーハウジングの斜視図である。 図1のII-II線に沿った断面図である。 本開示の実施形態1に係るコンプレッサーハウジングに形成された内側冷却通路の詳細な形状を説明するための図である。 本開示の実施形態2に係るコンプレッサーハウジングを備えたターボチャージャーにおける圧縮空気の冷却効果についての実験結果を表したグラフである。 本開示の実施形態2に係るコンプレッサーハウジングを備えたターボチャージャーにおけるコンプレッサー性能の向上効果についての実験結果を表すグラフである。 本開示の実施形態2に係るコンプレッサーハウジングの断面図である。 本開示の実施形態3に係るコンプレッサーハウジングの断面図である。 本開示の実施形態3に係るコンプレッサーハウジングの変形例の断面図である。 本開示の実施形態4に係るコンプレッサーハウジングに形成された外側冷却通路及び内側冷却通路の斜視図である。 本開示の実施形態5に係るコンプレッサーハウジングに形成された外側冷却通路及び内側冷却通路の斜視図である。 本開示の実施形態6に係るコンプレッサーハウジングに形成された外側冷却通路及び内側冷却通路の斜視図である。
 以下、図面を参照して本発明のいくつかの実施形態について説明する。ただし、本発明の範囲は以下の実施形態に限定されるものではない。以下の実施形態に記載されている構成部品の寸法、材質、形状、その相対配置などは、本発明の範囲をそれにのみ限定する趣旨ではなく、単なる説明例に過ぎない。
(実施形態1)
 図1に示されるように、ターボチャージャーのコンプレッサーハウジング1は、図示しないコンプレッサーホイールで圧縮される空気が流入する円筒形状の空気入口部2を有している。コンプレッサーハウジング1には、空気入口部2の周りに形成された渦巻き状のスクロール通路3が形成されている。コンプレッサーホイールによって圧縮された圧縮空気はスクロール通路3を流通してターボチャージャーから流出した後、図示しないエンジンに供給されるが、スクロール通路3は、その断面積が圧縮空気の流通方向に向かって、すなわちスクロール通路3の入口側から出口側に向かって増加するように構成されている。
 図2に示されるように、コンプレッサーハウジング1には、空気入口部2の内部の空気通路2aとスクロール通路3とを連通するディフューザー通路4が、スクロール通路3から図示しないコンプレッサーホイールの径方向内側に延びるように形成されている。また、コンプレッサーハウジング1には、スクロール通路3の外周側において周方向に沿って延びる外側冷却通路11と、スクロール通路3の内周側において周方向に沿って延びる内側冷却通路12とが形成されている。外側冷却通路11及び内側冷却通路12のそれぞれに冷却材である冷却水が流通することによって、スクロール通路3を流通する圧縮空気が冷却される。コンプレッサーハウジング1内において外側冷却通路11と内側冷却通路12とは、周方向に沿って延びる分離壁13によって隔てられている。
 図1に示されるように、コンプレッサーハウジング1は、外側冷却通路11(図2参照)とコンプレッサーハウジング1の外部とを連通する4つの第1連通口5a,5b,5c,5dと、内側冷却通路12(図2参照)とコンプレッサーハウジング1の外部とを連通する4つの第2連通口6a,6b,6c,6dとを備えている。第1連通口5a,5b,5c,5dの開口部と第2連通口6a,6b,6c,6dの開口部とは、互いに対して90°の角度をなしている。
 第1連通口5aは、冷却水が外側冷却通路11に流入するための入口を構成し、第1連通口5bは、冷却水が外側冷却通路11から流出するための出口を構成する。第2連通口6aは、冷却水が内側冷却通路12に流入するための入口を構成し、第2連通口6bは、冷却水が内側冷却通路12から流出するための出口を構成する。第1連通口5bと第2連通口6aとは、接続管路7によって連通している。すなわち、接続管路7を介して外側冷却通路11と内側冷却通路12とが連通している。
 図2に示されるように、外側冷却通路11は、コンプレッサーホイールの回転軸線Lに沿った断面においてスクロール通路3の断面形状に沿って湾曲した断面形状を有する湾曲通路部分11aと、スクロール通路3の断面形状に沿う方向における湾曲通路部分11aの両端縁部11a1,11a2から平坦に延びる断面形状を有する平坦通路部分11b,11cとを含んでいる。外側冷却通路11は、スクロール通路3の断面形状に沿って一定の幅Wを有するように構成されている。実施形態1においては、外側冷却通路11の幅はW0で一定であるが、別の実施形態では、スクロール通路3の断面形状に沿う方向に外側冷却通路11の幅が変化する形態であってもよい。
 図3に示されるように、コンプレッサーホイールの回転軸線Lに沿った断面において、内側冷却通路12の断面の重心位置Gを通過し、且つ、内側冷却通路12の断面において最も長さが大きくなる直線方向を基準長手方向Lと定義した場合に、基準長手方向Lはコンプレッサーホイールの回転軸線Lに沿った方向である。ここで、コンプレッサーホイールの回転軸線Lに沿った方向とは、コンプレッサーホイールの回転軸線Lと基準長手方向Lとのなす角度θが45°未満であることを意味する。
 圧縮空気がスクロール通路3(図2参照)を流通する方向において、スクロール通路3の出口側に近い内側冷却通路12の断面を12aとし、スクロール通路3の入口側に近い内側冷却通路12の断面を12bとする。断面12aにおいて重心位置Gを通過し、且つ、内側冷却通路12の断面12aにおいて最も長さが大きくなる直線方向を基準長手方向L1と定義する。また、断面12bにおいて重心位置Gbを通過し、且つ、内側冷却通路12の断面12bにおいて最も長さが大きくなる直線方向をする基準長手方向L2と定義する。
 内側冷却通路12の断面12a,12bのそれぞれにおいて、基準長手方向L及びLと直交する方向を幅方向とする。断面12a,12bのそれぞれにおいて、内側冷却通路12の幅の最大部分12a1,12b1(それぞれの長さをWa,Wbとする)が重心位置G,Gよりもディフューザー通路4(図2参照)側にある。すなわち、スクロール通路3の入口側から出口側に渡って、内側冷却通路12の幅方向の最大部分はディフューザー通路4に近い位置にある。
 また、内側冷却通路12は、内側冷却通路12の幅が外側冷却通路11の幅W0(図2参照)よりも大きくなるように構成されている。この構成によると、内側冷却通路12を、ディフューザー通路4側に伝熱面積を多くとれるような構成にすることができるので、ディフューザー通路4における圧縮空気の冷却効果を向上することができる。
 次に、実施形態1に係るコンプレッサーハウジング1内において圧縮空気が冷却水によって冷却される動作を説明する。
 図1に示されるように、冷却水の入口である第1連通口5aを介して冷却水が外側冷却通路11(図2参照)に流入する。冷却水は、外側冷却通路11を流通した後、冷却水の出口である第1連通口5bを介して外側冷却通路11から流出する。外側冷却通路11から流出した冷却水は接続管路7を通り、冷却水の入口である第2連通口6aを介して内側冷却通路12(図2参照)に流入する。冷却水は、内側冷却通路12を流通した後、冷却水の出口である第2連通口6bを介して内側冷却通路12から流出する。
 図2に示されるように、空気通路2aを流通する空気は、図示しないコンプレッサーホイールによって圧縮されて圧縮空気となり、ディフューザー通路4を通ってスクロール通路3内に流入する。圧縮空気は、コンプレッサーハウジング1内でスクロール通路3を流通する際に、スクロール通路3の外周側からは、外側冷却通路11を流通する冷却水によって冷却され、スクロール通路3の内周側からは、内側冷却通路12を流通する冷却水によって冷却される。圧縮空気は、スクロール通路3を流通した後、ターボチャージャーのコンプレッサーから流出する。圧縮空気は続いて、図示しないインタークーラーで冷却された後、図示しないエンジンに供給される。
 圧縮空気は、外側冷却通路11及び内側冷却通路12を流通する冷却水によって冷却されるので、適度な温度の圧縮空気がインタークーラーに流入するようになる。このため、インタークーラーに要求される冷却能力を低減することができ、インタークーラーのサイズを小さくすることができる。この結果、インタークーラーの省スペース化が実現される。
 上述したように、外側冷却通路11と内側冷却通路12とが分離壁13によって隔てられているので、スクロール通路3の内周側から外周側までスクロール通路3を囲むように冷却通路が形成されている場合に比べて、外側冷却通路11及び内側冷却通路12がスクロール通路3の断面形状に沿う方向に延びる範囲は小さくなる。このため、外側冷却通路11及び内側冷却通路12のそれぞれを冷却水が流れるときのよどみ点の発生が抑えられ、冷却水の流速の低下も抑えられることから、圧縮空気の冷却効率も高くなる。その結果、スクロール通路3の外周側及び内周側のそれぞれから、外側冷却通路11及び内側冷却通路12を流れる冷却水がスクロール通路3内の圧縮空気を効率的に冷却することになるので、ターボチャージャーにおいて効率よく圧縮空気を冷却することができる。
 また、上述したように、外側冷却通路11は、スクロール通路3の断面形状に沿って湾曲した断面形状を有する湾曲通路部分11aを含んでいる。これにより、湾曲通路部分11aとスクロール通路3との間の距離がスクロール通路3の断面形状に沿って可能な限り短くなるので、効率よく圧縮空気を冷却することができる。
 また、上述したように、内側冷却通路12の断面において最も長さが大きくなる基準長手方向Lはコンプレッサーホイールの回転軸線Lに沿った方向となっている。この構成によると、図2に示されるように、内側冷却通路12を流れる冷却水は、スクロール通路3内の高温の圧縮空気から、空気通路2a内の空気、すなわち、図示しないコンプレッサーホイールによって圧縮される空気への伝熱を低減することができるので、コンプレッサー性能を向上することができる。
 さらに、上述したように、スクロール通路3の入口側から出口側に渡って、内側冷却通路12の幅方向の最大部分12a1,12b1はディフューザー通路4に近い位置にある。これにより、ディフューザー通路4における圧縮空気の冷却効果を向上することができる。
 次に、上述した圧縮空気の冷却効果及びコンプレッサー性能の向上効果について実験によって確認した結果を説明する。
 後述する実施形態2に係るコンプレッサーハウジング1の構成を有するターボチャージャーに対して実験を行った。コンプレッサーホイールの回転数が高回転数、中回転数、低回転数となる運転条件のそれぞれに対し、空気通路2a(図2参照)に供給する空気の供給条件を変更して、コンプレッサーがサージ領域の近傍、チョーク領域の近傍、コンプレッサーの効率が最も良好なピーク領域のそれぞれの運転条件となるようにした。空気通路2a内はできるだけ大気圧に保つようにし、ターボチャージャーのタービン側の温度は600℃に固定した。
 コンプレッサーホイールの回転数が高回転数となる運転条件で、50℃の冷却水を流量6l/minの流量で、内側冷却通路12(図6参照)のみに流通させた場合、外側冷却通路11(図2参照)のみに流通させた場合、内側冷却通路12に流通させた後に外側冷却通路11に流通させた場合、外側冷却通路11に流通させた後に内側冷却通路12に流通させた場合、外側冷却通路11及び内側冷却通路12のいずれにも冷却水を流通させない場合の5つの場合で、ターボチャージャーから流出する圧縮空気の温度を測定した。その測定結果、すなわち、圧縮空気の冷却効果についての実験結果を図4に示す。
 図4から、冷却なしの場合に比べて、外側冷却通路11及び内側冷却通路12の少なくとも一方に冷却水を流通させて冷却を行った場合の方が、ターボチャージャーから流出する圧縮空気の温度が低いことが分かった。また、外側冷却通路11又は内側冷却通路12の一方に冷却水を流通させた場合に比べて、外側冷却通路11及び内側冷却通路12の両方に冷却水を流通させた場合の方が圧縮空気の冷却効果が大きいことが分かった。
 また、外側冷却通路11及び内側冷却通路12のいずれにも冷却水を流通させない場合と、冷却水を外側冷却通路11に流通させた後に内側冷却通路12に流通させた場合とのそれぞれにおいて、コンプレッサーへの空気供給量に対する給気圧力比、すなわち、コンプレッサーの入口側の圧力に対する出口側の圧力の比を測定した。その測定結果、すなわち、コンプレッサー性能の向上効果についての実験結果を図5に示す。
 コンプレッサーホイールの回転数が低回転数のときは顕著な差異はないが、コンプレッサーホイールの回転数が中回転数及び高回転数のとき、外側冷却通路11及び内側冷却通路12のいずれにも冷却水を流通させない場合の給気圧力比よりも、冷却水を外側冷却通路11に流通させた後に内側冷却通路12に流通させた場合の給気圧力比が大きくなっている。この結果により、圧縮空気を冷却することによりコンプレッサー性能が向上することが分かった。
 このように、スクロール通路3の外周側において周方向に沿って延びる外側冷却通路11と、スクロール通路3の内周側において周方向に沿って延びる内側冷却通路12とが分離壁13によって隔てられているので、スクロール通路3の内周側から外周側までスクロール通路3を囲むように冷却通路が形成されている場合に比べて、外側冷却通路11及び内側冷却通路12がスクロール通路3の断面形状に沿う方向に延びる範囲は小さくなる。このため、外側冷却通路11及び内側冷却通路12のそれぞれを冷却水が流れるときのよどみ点の発生が抑えられ、冷却水の流速の低下も抑えられることから、圧縮空気の冷却効率も高くなる。その結果、スクロール通路3の外周側及び内周側のそれぞれから、外側冷却通路11及び内側冷却通路12を流れる冷却水がスクロール通路3内の圧縮空気を効率的に冷却することになるので、ターボチャージャーにおいて効率よく圧縮空気を冷却することができる。
 実施形態1では、外側冷却通路11及び内側冷却通路12を流れる冷却水がスクロール通路3内の圧縮空気を冷却する際、冷却水が沸騰する場合がある。この場合、水蒸気を外側冷却通路11及び内側冷却通路12から排出しないと、冷却水の流れが詰まってしまい、圧縮空気の冷却に支障をきたすおそれがある。しかし、実施形態1では、第1連通口5a~5dの開口部と第2連通口6a~6dの開口部とは、互いに対して90°の角度をなしているので、コンプレッサーホイールの回転軸線Lが鉛直方向又は水平方向のいずれかを向くようにターボチャージャーを設置した場合、第1連通口5a~5d又は第2連通口6a~6dのいずれか一方が鉛直方向上向きに開口するようになる。鉛直方向上向きに開口する連通口に例えば圧力制御弁を設けることにより、水蒸気の圧力が高まると圧力制御弁が開いて、その連通口を介して水蒸気を外側冷却通路11及び内側冷却通路12から排出することができる。
 尚、外側冷却通路11及び内側冷却通路12からの水蒸気の排出を目的とする限りでは、第1連通口5a~5dの開口部と第2連通口6a~6dの開口部とを互いに対して90°にすることに限定するものではない。各連通口の向きの選択に自由度があれば、コンプレッサーハウジング1がエンジンに対して取り付けられた状態で、第1連通口5a~5d及び第2連通口6a~6dのうちの少なくとも1つが鉛直方向上向きに開口するように形成してもよい。
 また、第1連通口及び第2連通口それぞれの個数は4つであるが、4つに限定するものではない。第1連通口及び第2連通口はそれぞれ少なくとも2つあればよい。外側冷却通路11及び内側冷却通路12のいずれも少なくとも2つの連通口を有していれば、ターボチャージャーが設けられるエンジンルーム内のレイアウトに合わせて、外側冷却通路11及び内側冷却通路12それぞれの出入口の取り合いが可能になる。また、第1連通口及び第2連通口は、コンプレッサーハウジングの鋳造時に中子を保持するために使用されるが、第1連通口及び第2連通口はそれぞれ2つ以上存在することにより、中子の保持性を向上することができる。
 実施形態1では、上述したように、外側冷却通路11は、コンプレッサーホイールの回転軸線Lに沿った断面において、スクロール通路3の断面形状に沿う方向における湾曲通路部分11aの両端縁部11a1,11a2から平坦に延びる断面形状を有する平坦通路部分11b,11cを含んでいる。コンプレッサーハウジング1は、金型の中に粉を充填してコンプレッサーハウジング1の形と対応する形に焼き固めて鋳造されるが、湾曲通路部分11aの両端縁部11a1,11a2からさらに湾曲した部分が延びる構成を有していると、型を割るときに割れにくくなる。しかしながら、湾曲通路部分11aの両端縁部11a1,11a2から平坦に延びる断面形状を有する平坦通路部分11b,11cが形成された構成を有していると、型が割れやすくなり、コンプレッサーハウジング1の製造性が向上する。
 尚、実施形態1では、湾曲通路部分11aの両端縁部11a1,11a2から平坦通路部分11b,11cが延びるように構成されているが、この形態に限定するものではない。両端縁部11a1,11a2の一方から平坦通路部分11b又は11cが延びるように構成されてもよいし、外側冷却通路11が湾曲通路部分11aのみを含む形態であってもよい。
 実施形態1では、冷却水が外側冷却通路11を流通した後に内側冷却通路12を流通する構成であったが、この形態に限定するものではない。冷却水が内側冷却通路12を流通した後に外側冷却通路11を流通する構成であってもよい。冷却水が内側冷却通路12を流通した後に外側冷却通路11を流通する構成の場合、第1連通口5aと第2連通口6bとが接続管路7によって連通する。
(実施形態2)
 次に、実施形態2に係るコンプレッサーハウジングについて説明する。実施形態2に係るコンプレッサーハウジングは、実施形態1に対して、内側冷却通路12の形状を変更したものである。尚、実施形態2において、実施形態1の構成要件と同じものは同じ参照符号を付し、その詳細な説明は省略する。
 図6に示されるように、内側冷却通路12の断面12a,12bのそれぞれにおいて、内側冷却通路12の幅の最大部分12a1,12b1が重心位置Ga,Gbよりもディフューザー通路4とは反対側にある。その他の構成は実施形態1と同じである。
 実施形態2の構成によると、内側冷却通路12の最も冷却面積の大きい部分(最大部分12a1,12b1)がスクロール通路3の断面形状に沿い、また、ディフューザー通路4に対しても冷却面積を取ることができるので、圧縮空気の冷却効果が高まり、効率よく圧縮空気を冷却することができる。
(実施形態3)
 次に、実施形態3に係るコンプレッサーハウジングについて説明する。実施形態3に係るコンプレッサーハウジングは、実施形態1に対して、内側冷却通路12の形状を変更したものである。尚、実施形態3において、実施形態1の構成要件と同じものは同じ参照符号を付し、その詳細な説明は省略する。
 図7に示されるように、内側冷却通路12は、スクロール通路3の断面形状に沿って湾曲した断面形状を有している。外側冷却通路11及び内側冷却通路12はそれぞれ、スクロール通路3の断面形状に沿って一定の幅W,Wを有するように構成されている。それぞれの幅W,Wは等しくなっている(W=W)。その他の構成は実施形態1と同じである。実施形態3においては、外側冷却通路11及び内側冷却通路12の幅はそれぞれW,Wで一定であるが、別の実施形態では、スクロール通路3の断面形状に沿う方向に外側冷却通路11及び内側冷却通路12の幅の少なくとも一方が変化する形態であってもよい。
 実施形態3の構成によると、外側冷却通路11及び内側冷却通路12それぞれの幅が等しいことにより、冷却水が外側冷却通路11から内側冷却通路12に流入する際の圧力損失を低く抑えられるので、冷却水は、よどみが低減されるとともに流れが均一化されることで、効率よく圧縮空気を冷却することができる。
 また、内側冷却通路12は、スクロール通路3の断面形状に沿って湾曲した断面形状を有していることにより、内側冷却通路12とスクロール通路3との間の距離がスクロール通路3の断面形状に沿って可能な限り短くなるので、効率よく圧縮空気を冷却することができる。
 図8に示されるように、実施形態3の内側冷却通路12を、最大部分12a1,12b1が重心位置Ga,Gbよりもディフューザー通路4側にあるような形状にしてもよい。この形態により、スクロール通路3内の圧縮空気を効率よく冷却することができるとともに、ディフューザー通路4における圧縮空気の冷却効果を向上することができる。
 ただし、図8に示される形態では、ディフューザー通路4に近い側の断面積が大きく圧力損失が小さいため、冷却水の流れがディフューザー通路4に近い側に偏る可能性がある。このような冷却水の偏りの回避のためには、図6に示される実施形態2のように、最大部分12a1,12b1が重心位置Ga,Gbよりもディフューザー通路4とは反対側にあるような形状のほうが好ましい。
(実施形態4)
 次に、実施形態4に係るコンプレッサーハウジングについて説明する。実施形態4に係るコンプレッサーハウジングは、実施形態1~3のそれぞれに対して、外側冷却通路11及び内側冷却通路12の連通関係を変更したものである。以下では、実施形態3に対して外側冷却通路11及び内側冷却通路12の連通関係を変更した形態に基づいて説明するが、実施形態1又は2に対して外側冷却通路11及び内側冷却通路12の連通関係を変更した形態であってもよい。尚、実施形態4において、実施形態1~3の構成要件と同じものは同じ参照符号を付し、その詳細な説明は省略する。
 図9に示されるように、冷却水は、入口21を介して外側冷却通路11に流入し、外側冷却通路11を流通した後、出口22を介して外側冷却通路11から流出するように構成されている。また、外側冷却通路11を流通する冷却水とは別の冷却水が、入口23を介して内側冷却通路12に流入し、内側冷却通路12を流通した後、出口24を介して内側冷却通路12から流出するように構成されている。実施形態1とは、出口22と入口23とが連通していない点で構成が異なる。その他の構成は、実施形態1と同じである。
 実施形態4では、外側冷却通路11及び内側冷却通路12のそれぞれに冷却水が別々に流れるので、スクロール通路3(図7参照)内の圧縮空気の冷却能力が高くなり、より効率よく圧縮空気を冷却することができる。
(実施形態5)
 次に、実施形態5に係るコンプレッサーハウジングについて説明する。実施形態5に係るコンプレッサーハウジングは、実施形態1~3のそれぞれに対して、外側冷却通路11及び内側冷却通路12の連通関係を変更したものである。以下では、実施形態3に対して外側冷却通路11及び内側冷却通路12の連通関係を変更した形態に基づいて説明するが、実施形態1又は2に対して外側冷却通路11及び内側冷却通路12の連通関係を変更した形態であってもよい。尚、実施形態5において、実施形態1~3の構成要件と同じものは同じ参照符号を付し、その詳細な説明は省略する。
 図10に示されるように、外側冷却通路11と内側冷却通路12とが、それぞれの下流端側で接続され、入口21を介して外側冷却通路11に流入して外側冷却通路11を流通した冷却水と、入口23を介して内側冷却通路12に流入して内側冷却通路12を流通した冷却水とはそれぞれ、1つの出口22から流出するようになっている。すなわち、外側冷却通路11の出口と内側冷却通路12の出口とは合流している。その他の構成は実施形態1と同じである。
 外側冷却通路11及び内側冷却通路12それぞれの出口が共通の1つの出口22となるので、外側冷却通路11及び内側冷却通路12がそれぞれ入口及び出口を有する場合に比べて、コンプレッサーハウジング1の鋳造時に使用する中子のコストを下げることができ、さらに中子の保持性能を向上することができる。
 また、実施形態5も実施形態4と同様に、外側冷却通路11及び内側冷却通路12のそれぞれに冷却水が別々に流れるので、スクロール通路3(図7参照)内の圧縮空気の冷却能力が高くなり、より効率よく圧縮空気を冷却することができる。
(実施形態6)
 次に、実施形態6に係るコンプレッサーハウジングについて説明する。実施形態6に係るコンプレッサーハウジングは、実施形態1~3のそれぞれに対して、外側冷却通路11及び内側冷却通路12の連通関係を変更したものである。以下では、実施形態3に対して外側冷却通路11及び内側冷却通路12の連通関係を変更した形態に基づいて説明するが、実施形態1又は2に対して外側冷却通路11及び内側冷却通路12の連通関係を変更した形態であってもよい。尚、実施形態6において、実施形態1~3の構成要件と同じものは同じ参照符号を付し、その詳細な説明は省略する。
 図11に示されるように、外側冷却通路11の下流端と内側冷却通路12の上流端とが直接接続され、入口21を介して外側冷却通路11に流入して外側冷却通路11を流通した冷却水は、内側冷却通路12に流入して内側冷却通路12を流通した後、出口22から流出するようになっている。その他の構成は実施形態1と同じである。
 外側冷却通路11の下流端と内側冷却通路12の上流端とが直接接続されているので、外側冷却通路11の入口と内側冷却通路12の出口とを接続する接続管路、外側冷却通路11の出口と内側冷却通路12の入口とを接続する接続管路のいずれも使用せずに、外側冷却通路11と内側冷却通路12とを連続した1つの冷却通路として構成することができるので、ターボチャージャーをコンパクトにすることができる。
 実施形態6では、冷却水が外側冷却通路11を流通した後に内側冷却通路12を流通する構成であったが、この形態に限定するものではない。冷却水が内側冷却通路12を流通した後に外側冷却通路11を流通する構成であってもよい。冷却水が内側冷却通路12を流通した後に外側冷却通路11を流通する構成の場合、符号22の構成要素が冷却水の入口となり、符号21の構成要素が冷却水の出口となる。
 実施形態1~6では、外側冷却通路11及び内側冷却通路12を流通する冷却材は冷却水であったが、冷却水に限定するものではない。冷却材として、オイル等の任意の液体や、空気等の任意の気体を使用することもできる。
1 コンプレッサーハウジング
2 空気入口部
2a 空気通路
3 スクロール通路
4 ディフューザー通路
5a,5b,5c,5d 第1連通口
6a,6b,6c,6d 第2連通口
7 接続管路
11 外側冷却通路
11a 湾曲通路部分
11a1,11a2 (湾曲通路部分の)端部
11b,11c 平坦通路部分
12 内側冷却通路
12a,12b (内側冷却通路の)断面
12a1,12b1 最大部分
13 分離壁
21 入口
22 出口
23 入口
24 出口
G,G,G (内側冷却通路の断面の)重心位置
 コンプレッサーホイールの回転軸線
L,L,L 基準長手方向
 (外側冷却通路の)幅
,W (最大部分の)幅
θ,θ 角度

Claims (15)

  1.  エンジンに供給される給気を圧縮するためのコンプレッサーホイールを収容するコンプレッサーハウジングであって、
     前記コンプレッサーハウジングの内部には、
     前記コンプレッサーホイールで圧縮された前記給気が流れる渦巻き状のスクロール通路の外周側において周方向に沿って延びる外側冷却通路と、
     前記スクロール通路の内周側において周方向に沿って延びる内側冷却通路であって、周方向に沿って延びる分離壁によって前記外側冷却通路と隔てられる内側冷却通路と
    が形成されるコンプレッサーハウジング。
  2.  前記外側冷却通路は、前記コンプレッサーホイールの回転軸線に沿った断面において、前記スクロール通路の断面形状に沿って湾曲した断面形状を有する湾曲通路部分を含む、請求項1に記載のコンプレッサーハウジング。
  3.  前記外側冷却通路は、前記コンプレッサーホイールの回転軸線に沿った断面において、前記スクロール通路の断面形状に沿う方向における前記湾曲通路部分の両端縁部の少なくとも一方から平坦に延びる断面形状を有する平坦通路部分をさらに含む、請求項2に記載のコンプレッサーハウジング。
  4.  前記内側冷却通路は、前記コンプレッサーホイールの回転軸線に沿った断面において、前記スクロール通路の断面形状に沿って湾曲した断面形状を含む、請求項1~3のいずれか一項に記載のコンプレッサーハウジング。
  5.  前記コンプレッサーホイールの回転軸線に沿った断面において、前記内側冷却通路の断面の重心位置を通過し、且つ、前記内側冷却通路の断面において最も長さが大きくなる直線方向を基準長手方向と定義した場合に、前記基準長手方向は前記コンプレッサーホイールの回転軸線に沿った方向である、請求項1~4のいずれか一項に記載のコンプレッサーハウジング。
  6.  前記コンプレッサーハウジングの内部には、前記スクロール通路に連通するとともに前記スクロール通路から前記コンプレッサーホイールの径方向内側に延びるディフューザー通路がさらに形成され、
     前記基準長手方向と直交する方向を幅方向とした場合に、前記内側冷却通路の前記幅方向の最大部分が前記重心位置よりもディフューザー通路側にある、請求項5に記載のコンプレッサーハウジング。
  7.  前記コンプレッサーハウジングの内部には、前記スクロール通路に連通するとともに前記スクロール通路から前記コンプレッサーホイールの径方向内側に延びるディフューザー通路がさらに形成され、
     前記基準長手方向と直交する方向を幅方向とした場合に、前記内側冷却通路の前記幅方向の最大部分が前記重心位置よりもディフューザー通路とは反対側にある、請求項5に記載のコンプレッサーハウジング。
  8.  前記基準長手方向と直交する方向の前記内側冷却通路の幅は前記外側冷却通路の幅と同じ又はそれよりも大きい、請求項5~7のいずれか一項に記載のコンプレッサーハウジング。
  9.  前記外側冷却通路と前記コンプレッサーハウジングの外部とを連通する少なくとも2つの第1連通口と、
     前記内側冷却通路と前記コンプレッサーハウジングの外部とを連通する少なくとも2つの第2連通口と
    を備える、請求項1~8のいずれか一項に記載のコンプレッサーハウジング。
  10.  前記コンプレサーハウジングが前記エンジンに対して取り付けられた状態で、前記少なくとも2つの第1連通口及び前記少なくとも2つの第2連通口のうちの少なくとも1つが鉛直方向上向きに開口する、請求項9に記載のコンプレッサーハウジング。
  11.  前記第1連通口の開口部と前記第2連通口の開口部とは、互いに対して90°の角度をなしている、請求項9または10に記載のコンプレッサーハウジング。
  12.  前記少なくとも2つの第1連通口のうちの1つが、前記外側冷却通路を流れる冷却材の入口であり、前記少なくとも2つの第1連通口のうちの別の1つが、前記外側冷却通路を流れる冷却材の出口であり、
     前記少なくとも2つの第2連通口のうちの1つが、前記内側冷却通路を流れる冷却材の入口であり、前記少なくとも2つの第2連通口のうちの別の1つが、前記内側冷却通路を流れる冷却材の出口である、請求項9~11のいずれか一項に記載のコンプレッサーハウジング。
  13.  前記外側冷却通路を流れる冷却材の出口と前記内側冷却通路を流れる冷却材の出口とは合流している、請求項1~8のいずれか一項に記載のコンプレッサーハウジング。
  14.  前記外側冷却通路を流れる冷却材の入口と前記内側冷却通路を流れる冷却材の出口とは、又は、前記外側冷却通路を流れる冷却材の出口と前記内側冷却通路を流れる冷却材の入口とは、直接接続されている、請求項1~8のいずれか一項に記載のコンプレッサーハウジング。
  15.  請求項1~14のいずれか一項に記載のコンプレッサーハウジングを備えるターボチャージャー。
PCT/JP2017/037084 2017-10-12 2017-10-12 コンプレッサーハウジング及びこのコンプレッサーハウジングを備えるターボチャージャー WO2019073584A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN201780090070.2A CN110573749B (zh) 2017-10-12 2017-10-12 压缩机壳体以及具备该压缩机壳体的涡轮增压器
PCT/JP2017/037084 WO2019073584A1 (ja) 2017-10-12 2017-10-12 コンプレッサーハウジング及びこのコンプレッサーハウジングを備えるターボチャージャー
US16/607,179 US11136996B2 (en) 2017-10-12 2017-10-12 Compressor housing and turbocharger including the same
JP2019547869A JP6898996B2 (ja) 2017-10-12 2017-10-12 コンプレッサーハウジング及びこのコンプレッサーハウジングを備えるターボチャージャー
EP17928774.3A EP3696426A4 (en) 2017-10-12 2017-10-12 COMPRESSOR HOUSING AND TURBOCHARGER WITH THE COMPRESSOR HOUSING

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/037084 WO2019073584A1 (ja) 2017-10-12 2017-10-12 コンプレッサーハウジング及びこのコンプレッサーハウジングを備えるターボチャージャー

Publications (1)

Publication Number Publication Date
WO2019073584A1 true WO2019073584A1 (ja) 2019-04-18

Family

ID=66100686

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/037084 WO2019073584A1 (ja) 2017-10-12 2017-10-12 コンプレッサーハウジング及びこのコンプレッサーハウジングを備えるターボチャージャー

Country Status (5)

Country Link
US (1) US11136996B2 (ja)
EP (1) EP3696426A4 (ja)
JP (1) JP6898996B2 (ja)
CN (1) CN110573749B (ja)
WO (1) WO2019073584A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023286350A1 (ja) * 2021-07-13 2023-01-19 株式会社Ihi 遠心圧縮機および過給機

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021173248A (ja) * 2020-04-28 2021-11-01 三菱重工業株式会社 ターボチャージャ

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50143915A (ja) * 1974-04-26 1975-11-19
JPH0176598U (ja) * 1987-11-10 1989-05-24
DE102007023142A1 (de) 2007-05-16 2008-11-20 Audi Ag Strömungsverdichter für eine Brennkraftmaschine, insbesondere Abgasturbolader mit einem solchen Strömungsverdichter
JP2010209846A (ja) * 2009-03-11 2010-09-24 Ihi Corp ターボチャージャ
DE102010042104A1 (de) 2010-10-07 2012-04-26 Bayerische Motoren Werke Aktiengesellschaft Abgasturbolader
JP2015048801A (ja) * 2013-09-03 2015-03-16 トヨタ自動車株式会社 ターボチャージャー

Family Cites Families (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2384251A (en) * 1943-01-14 1945-09-04 Wright Aeronautical Corp Liquid cooled supercharger
US2854296A (en) * 1954-05-20 1958-09-30 Maschf Augsburg Nuernberg Ag Gas turbine with automatic cooling means
BE791867A (fr) * 1971-11-26 1973-05-24 Wallace Murray Corp Compresseur de turbocompresseur a double enceinte collectrice
GB1448252A (en) * 1973-09-14 1976-09-02 Wallace Murray Corp Turbocharging system
JP3942675B2 (ja) * 1996-09-20 2007-07-11 本田技研工業株式会社 内燃機関における流体ポンプ構造
DE19845375A1 (de) * 1998-10-02 2000-04-06 Asea Brown Boveri Verfahren und Vorrichtung zur indirekten Kühlung der Strömung in zwischen Rotoren und Statoren von Turbomaschinen ausgebildeten Radialspalten
EP0961034B1 (de) * 1998-05-25 2003-09-03 ABB Turbo Systems AG Radialverdichter
JP2003035153A (ja) * 2001-07-23 2003-02-07 Fuji Heavy Ind Ltd ターボチャージャのコンプレッサハウジング構造
DE10245798B4 (de) * 2002-10-01 2004-08-19 Robert Bosch Gmbh Elektrisch betriebener Ladeluftverdichter mit integrierter Luftkühlung
US7469689B1 (en) * 2004-09-09 2008-12-30 Jones Daniel W Fluid cooled supercharger
KR200382954Y1 (ko) * 2005-02-15 2005-04-27 주식회사 에스엠 열교환관이 설치된 온수순환펌프
CN200949564Y (zh) * 2006-06-29 2007-09-19 上海开利泵业(集团)有限公司 有关用水作冷却介质优化配套电机电磁的管道泵
JP5791232B2 (ja) * 2010-02-24 2015-10-07 三菱重工航空エンジン株式会社 航空用ガスタービン
US8621865B2 (en) * 2010-05-04 2014-01-07 Ford Global Technologies, Llc Internal combustion engine with liquid-cooled turbine
KR101038369B1 (ko) 2010-11-29 2011-06-01 현대마린테크 주식회사 터보 과급기의 수냉식 터빈
JP5974886B2 (ja) 2012-12-21 2016-08-23 トヨタ自動車株式会社 過給機
JP5761170B2 (ja) * 2012-12-27 2015-08-12 トヨタ自動車株式会社 ターボチャージャ
JP6011423B2 (ja) 2013-04-09 2016-10-19 トヨタ自動車株式会社 過給機
JP5949709B2 (ja) * 2013-09-03 2016-07-13 トヨタ自動車株式会社 水冷式過給機のハウジング
JP6070587B2 (ja) * 2014-01-22 2017-02-01 トヨタ自動車株式会社 内燃機関
KR101610100B1 (ko) * 2014-03-24 2016-04-08 현대자동차 주식회사 공기 압축기 및 이를 포함하는 연료전지 시스템
JP2015227619A (ja) * 2014-05-30 2015-12-17 株式会社オティックス ターボチャージャ
DE102014218587B4 (de) * 2014-09-16 2022-09-29 Ford Global Technologies, Llc Aufgeladene Brennkraftmaschine mit flüssigkeitskühlbarer Turbine und Verfahren zur Steuerung der Kühlung dieser Turbine
JP6215248B2 (ja) * 2015-03-18 2017-10-18 株式会社豊田自動織機 ターボチャージャ
JP6220803B2 (ja) * 2015-03-18 2017-10-25 株式会社豊田自動織機 ターボチャージャ
US10487722B2 (en) * 2017-12-01 2019-11-26 Ford Global Technologies, Llc Compressor housing
JP6883247B2 (ja) * 2018-01-23 2021-06-09 株式会社豊田自動織機 ターボチャージャ
US10738795B2 (en) * 2018-02-21 2020-08-11 Garrett Transportation I Inc. Turbocharger with thermo-decoupled wheel contour inlet for water-cooled compressor housing

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50143915A (ja) * 1974-04-26 1975-11-19
JPH0176598U (ja) * 1987-11-10 1989-05-24
DE102007023142A1 (de) 2007-05-16 2008-11-20 Audi Ag Strömungsverdichter für eine Brennkraftmaschine, insbesondere Abgasturbolader mit einem solchen Strömungsverdichter
JP2010209846A (ja) * 2009-03-11 2010-09-24 Ihi Corp ターボチャージャ
DE102010042104A1 (de) 2010-10-07 2012-04-26 Bayerische Motoren Werke Aktiengesellschaft Abgasturbolader
JP2015048801A (ja) * 2013-09-03 2015-03-16 トヨタ自動車株式会社 ターボチャージャー

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3696426A4 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023286350A1 (ja) * 2021-07-13 2023-01-19 株式会社Ihi 遠心圧縮機および過給機
US11982221B2 (en) 2021-07-13 2024-05-14 Ihi Corporation Centrifugal compressor and turbocharger
JP7533795B2 (ja) 2021-07-13 2024-08-14 株式会社Ihi 遠心圧縮機および過給機

Also Published As

Publication number Publication date
JP6898996B2 (ja) 2021-07-07
EP3696426A4 (en) 2021-04-21
JPWO2019073584A1 (ja) 2020-02-27
US11136996B2 (en) 2021-10-05
US20200386242A1 (en) 2020-12-10
CN110573749A (zh) 2019-12-13
EP3696426A1 (en) 2020-08-19
CN110573749B (zh) 2021-11-19

Similar Documents

Publication Publication Date Title
CN106795812B (zh) 用于涡轮机的热交换和改进降噪的板
US11525364B2 (en) Transition piece, combustor provided with same, and gas turbine provided with combustor
JP6263365B2 (ja) ガスタービン翼
CN103380347A (zh) 废气冷却器
JP5567180B1 (ja) タービン翼の冷却構造
CN108625908A (zh) 涡轮增压器
WO2014181404A1 (ja) 熱交換器
CN104302889A (zh) 排气涡轮增压器
JP6137032B2 (ja) タービンハウジング
WO2019073584A1 (ja) コンプレッサーハウジング及びこのコンプレッサーハウジングを備えるターボチャージャー
JP2016211512A (ja) タービンハウジング
CN106574507A (zh) 涡轮叶片
JP6580494B2 (ja) 排気フレーム
JP5975057B2 (ja) タービンハウジング
JP5935677B2 (ja) タービンハウジング
US10634056B2 (en) Combustor and gas turbine
JP5237601B2 (ja) 蒸気タービンノズルボックス及び蒸気タービン
CN109973154A (zh) 一种带有冷却结构的航空发动机涡轮叶片
US20120261098A1 (en) Heat exchanger
JP2018071411A (ja) 排気ターボ過給機
US20170226862A1 (en) Fluid cooled rotor for a gas turbine
CN107461286A (zh) 一种两栖船用的发动机集中式进气道
CN111795216B (zh) 用于排放系统的混流管道
EP3726063B1 (en) Fluid-cooled electrically driven compressor and stator housing therefor
US10883778B2 (en) Heat exchanger for a gas turbine engine

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17928774

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019547869

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017928774

Country of ref document: EP

Effective date: 20200512