WO2023286350A1 - 遠心圧縮機および過給機 - Google Patents

遠心圧縮機および過給機 Download PDF

Info

Publication number
WO2023286350A1
WO2023286350A1 PCT/JP2022/011013 JP2022011013W WO2023286350A1 WO 2023286350 A1 WO2023286350 A1 WO 2023286350A1 JP 2022011013 W JP2022011013 W JP 2022011013W WO 2023286350 A1 WO2023286350 A1 WO 2023286350A1
Authority
WO
WIPO (PCT)
Prior art keywords
annular
passage
path
housing
compressor
Prior art date
Application number
PCT/JP2022/011013
Other languages
English (en)
French (fr)
Inventor
淳 米村
亮太 崎坂
一諒 中村
Original Assignee
株式会社Ihi
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Ihi filed Critical 株式会社Ihi
Priority to CN202280021214.XA priority Critical patent/CN116981850A/zh
Priority to DE112022001218.8T priority patent/DE112022001218T5/de
Priority to JP2023535117A priority patent/JP7533795B2/ja
Publication of WO2023286350A1 publication Critical patent/WO2023286350A1/ja
Priority to US18/466,118 priority patent/US11982221B2/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B37/00Engines characterised by provision of pumps driven at least for part of the time by exhaust
    • F02B37/004Engines characterised by provision of pumps driven at least for part of the time by exhaust with exhaust drives arranged in series
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D17/00Radial-flow pumps, e.g. centrifugal pumps; Helico-centrifugal pumps
    • F04D17/08Centrifugal pumps
    • F04D17/10Centrifugal pumps for compressing or evacuating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D25/00Pumping installations or systems
    • F04D25/02Units comprising pumps and their driving means
    • F04D25/024Units comprising pumps and their driving means the driving means being assisted by a power recovery turbine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D27/00Control, e.g. regulation, of pumps, pumping installations or pumping systems specially adapted for elastic fluids
    • F04D27/02Surge control
    • F04D27/0253Surge control by throttling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/40Casings; Connections of working fluid
    • F04D29/42Casings; Connections of working fluid for radial or helico-centrifugal pumps
    • F04D29/4206Casings; Connections of working fluid for radial or helico-centrifugal pumps especially adapted for elastic fluid pumps
    • F04D29/4213Casings; Connections of working fluid for radial or helico-centrifugal pumps especially adapted for elastic fluid pumps suction ports
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/40Casings; Connections of working fluid
    • F04D29/42Casings; Connections of working fluid for radial or helico-centrifugal pumps
    • F04D29/44Fluid-guiding means, e.g. diffusers
    • F04D29/46Fluid-guiding means, e.g. diffusers adjustable
    • F04D29/462Fluid-guiding means, e.g. diffusers adjustable especially adapted for elastic fluid pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/40Casings; Connections of working fluid
    • F04D29/42Casings; Connections of working fluid for radial or helico-centrifugal pumps
    • F04D29/44Fluid-guiding means, e.g. diffusers
    • F04D29/46Fluid-guiding means, e.g. diffusers adjustable
    • F04D29/462Fluid-guiding means, e.g. diffusers adjustable especially adapted for elastic fluid pumps
    • F04D29/464Fluid-guiding means, e.g. diffusers adjustable especially adapted for elastic fluid pumps adjusting flow cross-section, otherwise than by using adjustable stator blades
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/58Cooling; Heating; Diminishing heat transfer
    • F04D29/582Cooling; Heating; Diminishing heat transfer specially adapted for elastic fluid pumps
    • F04D29/584Cooling; Heating; Diminishing heat transfer specially adapted for elastic fluid pumps cooling or heating the machine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2250/00Geometry
    • F05D2250/50Inlet or outlet
    • F05D2250/51Inlet

Definitions

  • the present disclosure relates to centrifugal compressors and superchargers. This application claims the benefit of priority based on Japanese Patent Application No. 2021-115967 filed on July 13, 2021, the content of which is incorporated herein by reference.
  • a centrifugal compressor has a compressor housing in which an intake passage is formed.
  • a compressor impeller is arranged in the intake passage. When the flow rate of the air flowing into the compressor impeller is reduced, the air compressed by the compressor impeller flows backward through the intake passage, causing a phenomenon called surging.
  • Patent Document 1 discloses a centrifugal compressor in which a throttle mechanism is provided in the compressor housing.
  • the throttle mechanism is arranged on the upstream side of the intake air flow with respect to the compressor impeller.
  • the diaphragm mechanism has a movable member.
  • the movable member is configured to be movable between a protruding position protruding into the air intake passage and a retracted position retreating from the air intake passage.
  • the throttle mechanism reduces the channel cross-sectional area of the intake channel by projecting the movable member into the intake channel. When the movable member protrudes into the air intake passage, the air flowing back in the air intake passage is blocked by the movable member. Surging is suppressed by damming up the air flowing back in the intake passage.
  • the air compressed by the compressor impeller reaches a high temperature of about 200°C.
  • the movable member becomes hot, the strength of the movable member is lowered, and the movable member does not operate normally.
  • An object of the present disclosure is to provide a centrifugal compressor and a supercharger that can normally operate movable members.
  • a centrifugal compressor includes a housing including an intake flow path, a compressor impeller arranged in the intake flow path, and a flow of intake air in the housing rather than the compressor impeller.
  • a storage chamber formed on the upstream side, a movable member arranged in the storage chamber, and an annular passage formed in the housing, the annular passage communicating with the outside of the housing and being supplied from the outside of the housing.
  • an annular passage in which the heat transfer medium flows at least a portion of the annular passage being disposed between the receiving chamber and the leading edge of the compressor impeller.
  • the inlet of the loop may be positioned vertically below the outlet of the loop.
  • the outer diameter end of the annular path may be located radially outside the outer diameter end of the storage chamber.
  • the width of the outer diameter end of the circular path may be narrower than the width of the inner diameter end.
  • a turbocharger includes the centrifugal compressor described above.
  • the movable member can be normally operated.
  • FIG. 1 is a schematic cross-sectional view of a supercharger according to the first embodiment.
  • FIG. 2 is an extraction diagram of the dashed line portion of FIG.
  • FIG. 3 is an exploded perspective view of members constituting the link mechanism.
  • FIG. 4 is a cross-sectional view taken along line IV-IV of FIG.
  • FIG. 5 is a first diagram for explaining the operation of the link mechanism.
  • FIG. 6 is a second diagram for explaining the operation of the link mechanism.
  • FIG. 7 is a third diagram for explaining the operation of the link mechanism.
  • FIG. 8 is a schematic cross-sectional view of a heat medium flow path according to the first embodiment.
  • 9 is a cross-sectional view taken along line IX-IX of FIG. 8.
  • FIG. 10 is a schematic cross-sectional view of a heat medium flow path according to the second embodiment.
  • FIG. 11 is a schematic cross-sectional view of a heat medium flow path according to the third embodiment.
  • FIG. 12 is a schematic cross-sectional view of a discharge passage according to the third embodiment.
  • FIG. 1 is a schematic cross-sectional view of a supercharger TC according to the first embodiment.
  • the direction of the arrow L shown in FIG. 1 will be described as the left side of the supercharger TC.
  • the direction of the arrow R shown in FIG. 1 will be described as the right side of the supercharger TC.
  • centrifugal compressor CC is explained as what is driven by turbine impeller 8 mentioned below.
  • the centrifugal compressor CC may be driven by an engine (not shown) or may be driven by an electric motor (motor) (not shown).
  • the centrifugal compressor CC may be incorporated in a device other than the supercharger TC, or may be a single unit.
  • the turbocharger TC includes a turbocharger main body 1.
  • the turbocharger main body 1 includes a bearing housing 2 , a turbine housing 4 , a compressor housing (housing) 100 and a link mechanism 200 . Details of the link mechanism 200 will be described later.
  • a turbine housing 4 is connected to the left side of the bearing housing 2 by fastening bolts 3 .
  • a compressor housing 100 is connected to the right side of the bearing housing 2 by fastening bolts 5 .
  • a receiving hole 2a is formed in the bearing housing 2.
  • the accommodation hole 2a penetrates the bearing housing 2 in the lateral direction of the supercharger TC.
  • a bearing 6 is arranged in the accommodation hole 2a.
  • FIG. 1 shows a full floating bearing as an example of the bearing 6 .
  • the bearing 6 may be another radial bearing such as a semi-floating bearing or a rolling bearing.
  • a portion of the shaft 7 is arranged in the accommodation hole 2a.
  • Shaft 7 is rotatably supported by bearing 6 .
  • a turbine impeller 8 is provided at the left end of the shaft 7 .
  • a turbine impeller 8 is rotatably housed within the turbine housing 4 .
  • a compressor impeller 9 is provided at the right end of the shaft 7 .
  • a compressor impeller 9 is rotatably housed within a compressor housing 100 .
  • the axial, radial, circumferential and rotational directions of shaft 7, turbine impeller 8 and compressor impeller 9 may simply be referred to as axial, radial, circumferential and rotational respectively.
  • An intake port 10 is formed in the compressor housing 100 .
  • the intake port 10 opens on the right side of the supercharger TC.
  • the intake port 10 is connected to an air cleaner (not shown).
  • a diffuser flow path 11 is formed between the bearing housing 2 and the compressor housing 100 .
  • the diffuser channel 11 pressurizes the air.
  • the diffuser flow path 11 is annularly formed from the inner side to the outer side in the radial direction.
  • the diffuser flow path 11 communicates with the intake port 10 via the compressor impeller 9 on the inner side in the radial direction.
  • a compressor scroll flow path 12 is also formed in the compressor housing 100 .
  • the compressor scroll passage 12 is positioned radially outside the compressor impeller 9, for example.
  • the compressor scroll channel 12 communicates with the intake port of the engine (not shown) and the diffuser channel 11 .
  • intake air is pressurized and accelerated while flowing between the blades of the compressor impeller 9 .
  • the pressurized and accelerated air is further pressurized in the diffuser passage 11 and the compressor scroll passage 12 .
  • the pressurized air flows out from a discharge port (not shown) and is led to the intake port of the engine.
  • the supercharger TC is equipped with the centrifugal compressor CC.
  • the centrifugal compressor CC includes a compressor housing 100, a compressor impeller 9, and a link mechanism 200 which will be described later.
  • An exhaust port 13 is formed in the turbine housing 4 .
  • the exhaust port 13 opens on the left side of the supercharger TC.
  • the exhaust port 13 is connected to an exhaust gas purification device (not shown).
  • a communication passage 14 and a turbine scroll passage 15 are formed in the turbine housing 4 .
  • the turbine scroll passage 15 is located radially outside the turbine impeller 8 .
  • the communication channel 14 is located between the turbine impeller 8 and the turbine scroll channel 15 .
  • the turbine scroll passage 15 communicates with a gas inlet (not shown). Exhaust gas discharged from an exhaust manifold of an engine (not shown) is guided to the gas inlet.
  • the communication passage 14 communicates the turbine scroll passage 15 and the exhaust port 13 . Exhaust gas guided from the gas inlet to the turbine scroll passage 15 is led to the exhaust port 13 through the communication passage 14 and between the blades of the turbine impeller 8 . The exhaust gas rotates the turbine impeller 8 during its circulation process.
  • the rotational force of the turbine impeller 8 is transmitted to the compressor impeller 9 via the shaft 7. As described above, the air is pressurized by the rotational force of the compressor impeller 9 and directed to the engine intake.
  • FIG. 2 is an extraction diagram of the dashed line portion of FIG.
  • compressor housing 100 includes a first housing member 110 and a second housing member 120 .
  • the first housing member 110 is positioned farther from the bearing housing 2 than the second housing member 120 is.
  • a second housing member 120 is connected to the bearing housing 2 .
  • the first housing member 110 is connected to the second housing member 120 .
  • the first housing member 110 has a generally cylindrical shape.
  • a through hole 111 is formed in the first housing member 110 .
  • the first housing member 110 has an end face 112 on the side that is close to (connected to) the second housing member 120 .
  • the first housing member 110 has an end face 113 on the side spaced apart from the second housing member 120 .
  • the air inlet 10 is formed in the end face 113 .
  • Through hole 111 extends from end surface 112 to end surface 113 along the rotation axis direction. In other words, the through hole 111 penetrates the first housing member 110 in the rotation axis direction.
  • Through hole 111 has air inlet 10 at end face 113 .
  • the through hole 111 has a parallel portion 111a and a reduced diameter portion 111b.
  • the parallel portion 111a is positioned closer to the end surface 113 than the reduced diameter portion 111b.
  • the inner diameter of the parallel portion 111a is approximately constant along the direction of the rotation axis.
  • the reduced diameter portion 111b is located closer to the end surface 112 than the parallel portion 111a.
  • the reduced diameter portion 111b is continuous with the parallel portion 111a.
  • the inner diameter of the portion of the reduced diameter portion 111b that is continuous with the parallel portion 111a is substantially equal to the inner diameter of the parallel portion 111a.
  • the inner diameter of the reduced-diameter portion 111b becomes smaller as the distance from the parallel portion 111a increases.
  • the inner diameter of the reduced-diameter portion 111b becomes smaller as the end face 112 is approached.
  • a notch portion 112a is formed in the end face 112 .
  • the notch portion 112 a is recessed from the end surface 112 toward the end surface 113 .
  • the notch portion 112 a is formed on the outer peripheral portion of the end face 112 .
  • the notch 112a has, for example, a substantially annular shape when viewed from the rotation axis direction.
  • a storage chamber AC is formed in the end surface 112 .
  • the accommodation chamber AC is formed closer to the intake port 10 than the leading edge LE of the blades of the compressor impeller 9 in the first housing member 110 .
  • the accommodation chamber AC is formed by an accommodation groove 112b, a bearing hole 112d, and an accommodation hole 115, which will be described later.
  • the accommodation groove 112b is formed in the end face 112.
  • the accommodation groove 112b is located between the notch 112a and the through hole 111. As shown in FIG.
  • the accommodation groove 112 b is recessed from the end surface 112 toward the end surface 113 .
  • the accommodation groove 112b has, for example, a substantially annular shape when viewed from the rotation axis direction.
  • the accommodation groove 112b communicates with the through hole 111 on the radially inner side.
  • a bearing hole 112d is formed in a wall surface 112c of the accommodation groove 112b that is parallel to the end surface 113.
  • the bearing hole 112d extends from the wall surface 112c toward the end surface 113 in the rotation axis direction.
  • Two bearing holes 112d are provided separated in the rotational direction. The two bearing holes 112d are arranged at positions shifted by 180 degrees in the rotational direction.
  • a through hole 121 is formed in the second housing member 120 .
  • the second housing member 120 has an end surface 122 on the side close to (connected to) the first housing member 110 . Also, the second housing member 120 has an end face 123 on the side remote from the first housing member 110 . In other words, the second housing member 120 has an end face 123 on the side that connects with the bearing housing 2 .
  • the through hole 121 extends from the end surface 122 to the end surface 123 along the rotation axis direction. In other words, the through hole 121 penetrates the second housing member 120 in the rotation axis direction.
  • the inner diameter of the end of the through-hole 121 near the end face 122 is approximately equal to the inner diameter of the end of the through-hole 111 near the end face 112 .
  • a shroud portion 121 a is formed on the inner wall of the through hole 121 .
  • the shroud portion 121a faces the compressor impeller 9 from the outside in the radial direction.
  • the outer diameter of the compressor impeller 9 increases as the distance from the blade leading edge LE of the compressor impeller 9 increases.
  • the inner diameter of the shroud portion 121 a increases with increasing distance from the end surface 122 . In other words, the inner diameter of shroud portion 121 a increases as it approaches end surface 123 .
  • a housing groove 122a is formed in the end face 122.
  • the accommodation groove 122 a is recessed from the end surface 122 toward the end surface 123 .
  • the accommodation groove 122a has, for example, a substantially annular shape when viewed from the rotation axis direction.
  • the first housing member 110 is inserted into the accommodation groove 122a.
  • the end surface 112 of the first housing member 110 abuts against a wall surface 122b of the accommodation groove 122a that is parallel to the end surface 123.
  • a storage chamber AC is formed between the wall surface 112c of the first housing member 110 and the wall surface 122b of the second housing member 120. As shown in FIG.
  • An intake passage 130 is formed by the through hole 111 of the first housing member 110 and the through hole 121 of the second housing member 120 . That is, the intake passage 130 is formed in the compressor housing 100 .
  • the intake channel 130 extends from an air cleaner (not shown) through the intake port 10 to the diffuser channel 11 .
  • the air cleaner side (intake port 10 side) of the intake flow path 130 is defined as the upstream side in the flow of intake air, and the diffuser flow path 11 side of the intake flow path 130 is defined as the downstream side in the flow of intake air.
  • the compressor impeller 9 is arranged in the intake passage 130 .
  • the intake passage 130 has, for example, a circular shape centered on the rotation axis of the compressor impeller 9 in a cross section perpendicular to the direction of the rotation axis.
  • the cross-sectional shape of the intake passage 130 is not limited to this, and may be, for example, an elliptical shape.
  • a sealing material (not shown) is arranged in the notch portion 112a of the first housing member 110 .
  • the sealing material suppresses the flow rate of air flowing through the gap between the first housing member 110 and the second housing member 120 .
  • the configurations of the notch portion 112a and the sealing material are not essential.
  • FIG. 3 is an exploded perspective view of members constituting the link mechanism 200.
  • link mechanism 200 includes first housing member 110 , first movable member 210 , second movable member 220 , connecting member 230 and rod 240 .
  • first movable member 210 and the second movable member 220 may be collectively referred to as movable members 210 and 220 in some cases.
  • the link mechanism 200 is arranged near the intake port 10 of the intake passage 130 (on the upstream side) from the leading edge LE of the blades of the compressor impeller 9 in the rotation axis direction.
  • the first movable member 210 is arranged in the accommodation groove 112b (accommodation chamber AC). Specifically, the first movable member 210 is arranged between the wall surface 112c of the accommodation groove 112b and the wall surface 122b (see FIG. 2) of the accommodation groove 122a in the rotation axis direction.
  • the first movable member 210 has an upstream surface S1, a downstream surface S2, an outer surface S3, and an inner surface S4.
  • the upstream surface S1 is the surface of the first movable member 210 on the upstream side.
  • the intake downstream surface S2 is the surface of the first movable member 210 on the downstream side.
  • the outer surface S3 is the radially outer surface of the first movable member 210 .
  • the inner surface S4 is a radially inner surface of the first movable member 210 .
  • the first movable member 210 has a body portion B1.
  • Body portion B ⁇ b>1 includes curved portion 211 and arm portion 212 .
  • the curved portion 211 extends in the circumferential direction.
  • Curved portion 211 is generally semi-arc shaped.
  • a first end surface 211a and a second end surface 211b in the circumferential direction of the curved portion 211 extend parallel to the radial direction and the rotational axis direction.
  • the first end surface 211a and the second end surface 211b may be inclined with respect to the radial direction and the rotation axis direction.
  • An arm portion 212 is provided on the first end surface 211 a of the curved portion 211 .
  • the arm portion 212 extends radially outward from the outer surface S ⁇ b>3 of the curved portion 211 . Also, the arm portion 212 extends in a direction (toward the second movable member 220) that is inclined with respect to the radial direction.
  • the second movable member 220 is arranged in the accommodation groove 112b (accommodation chamber AC). Specifically, the second movable member 220 is arranged between the wall surface 112c of the accommodation groove 112b and the wall surface 122b (see FIG. 2) of the accommodation groove 122a in the rotation axis direction.
  • the second movable member 220 has an upstream surface S1, a downstream surface S2, an outer surface S3, and an inner surface S4.
  • the upstream surface S1 is the surface of the second movable member 220 on the upstream side.
  • the intake downstream surface S2 is a surface of the second movable member 220 on the downstream side.
  • the outer surface S3 is a radially outer surface of the second movable member 220 .
  • the inner surface S4 is a radially inner surface of the second movable member 220 .
  • the second movable member 220 has a body portion B2.
  • Body portion B ⁇ b>2 includes curved portion 221 and arm portion 222 .
  • the curved portion 221 extends in the circumferential direction.
  • Curved portion 221 is generally semi-arc shaped.
  • a first end face 221a and a second end face 221b in the circumferential direction of the curved portion 221 extend parallel to the radial direction and the rotational axis direction.
  • the first end surface 221a and the second end surface 221b may be inclined with respect to the radial direction and the rotation axis direction.
  • An arm portion 222 is provided on the first end surface 221 a of the curved portion 221 .
  • the arm portion 222 extends radially outward from the outer surface S3 of the curved portion 221 .
  • the arm portion 222 extends in a direction (toward the first movable member 210) that is inclined with respect to the radial direction.
  • the curved portion 211 faces the curved portion 221 with the center of rotation of the compressor impeller 9 (intake flow path 130) interposed therebetween.
  • the first end face 211a of the curved portion 211 faces the second end face 221b of the curved portion 221 in the circumferential direction.
  • the second end surface 211b of the curved portion 211 faces the first end surface 221a of the curved portion 221 in the circumferential direction.
  • the movable members 210 and 220 are configured such that the curved portions 211 and 221 are movable in the radial direction, as will be described later in detail.
  • the connecting member 230 connects with the movable members 210 and 220 .
  • the connecting member 230 is positioned closer to the air inlet 10 than the first movable member 210 and the second movable member 220 .
  • the connecting member 230 is generally arc-shaped.
  • a first bearing hole 231 is formed on one end side of the connecting member 230 in the circumferential direction, and a second bearing hole 232 is formed on the other end side.
  • the first bearing hole 231 and the second bearing hole 232 open at an end surface 233 of the connecting member 230 near the movable members 210 and 220 .
  • the first bearing hole 231 and the second bearing hole 232 extend in the rotation axis direction.
  • the first bearing hole 231 and the second bearing hole 232 are non-through holes.
  • the first bearing hole 231 and the second bearing hole 232 may pass through the connecting member 230 in the rotation axis direction.
  • a rod connecting portion 234 is formed between the first bearing hole 231 and the second bearing hole 232 in the connecting member 230 .
  • the rod connecting portion 234 is formed on an end surface 235 of the connecting member 230 opposite to the movable members 210 and 220 .
  • the rod connecting portion 234 protrudes from the end surface 235 in the rotation axis direction.
  • the rod connecting portion 234 has, for example, a generally cylindrical shape.
  • the rod 240 has a roughly cylindrical shape.
  • a flat portion 241 is formed at one end of the rod 240 and a connecting portion 243 is formed at the other end.
  • the plane portion 241 extends in a plane direction approximately perpendicular to the rotation axis direction.
  • a bearing hole 242 is opened in the plane portion 241 .
  • the bearing hole 242 extends in the rotation axis direction.
  • the connecting portion 243 has a connecting hole 243a.
  • An actuator 250 (see FIG. 5), which will be described later, is connected to the connecting hole 243a.
  • the bearing hole 242 may be, for example, an elongated hole whose length in the direction perpendicular to the axis of rotation and the axial direction of the rod 240 is longer than the length in the axial direction of the rod 240 .
  • a rod large diameter portion 244 and two rod small diameter portions 245 are formed in the rod 240 between the flat portion 241 and the connecting portion 243 .
  • the rod large diameter portion 244 is arranged between the two rod small diameter portions 245 .
  • the rod small diameter portion 245 near the plane portion 241 connects the rod large diameter portion 244 and the plane portion 241 .
  • the rod small diameter portion 245 near the connecting portion 243 connects the rod large diameter portion 244 and the connecting portion 243 .
  • the outer diameter of the rod large diameter portion 244 is larger than the outer diameters of the two rod small diameter portions 245 .
  • An insertion hole 114 is formed in the first housing member 110 .
  • One end 114 a of the insertion hole 114 opens to the outside of the first housing member 110 .
  • the insertion hole 114 extends, for example, in a plane direction perpendicular to the rotation axis direction.
  • the insertion hole 114 is located radially outside the intake passage 130 .
  • the flat portion 241 side of the rod 240 is inserted through the insertion hole 114 .
  • Rod large diameter portion 244 is guided by the inner wall surface of insertion hole 114 .
  • Rod 240 is restricted from moving in directions other than the central axis direction of insertion hole 114 (the central axis direction of rod 240).
  • a receiving hole 115 is formed in the first housing member 110 .
  • the accommodation hole 115 opens into the wall surface 112c of the accommodation groove 112b.
  • the housing hole 115 is recessed from the wall surface 112c toward the intake port 10. As shown in FIG.
  • the accommodation hole 115 is located farther from the intake port 10 (closer to the second housing member 120) than the insertion hole 114 is.
  • the accommodation hole 115 has an approximately arc shape when viewed from the rotation axis direction.
  • the accommodation hole 115 extends longer in the circumferential direction than the connecting member 230 .
  • the accommodation hole 115 is circumferentially separated from the bearing hole 112d.
  • a communication hole 116 is formed in the first housing member 110 .
  • the communication hole 116 allows the insertion hole 114 and the accommodation hole 115 to communicate with each other.
  • the communication hole 116 is formed in the accommodation hole 115 at an approximately intermediate portion in the circumferential direction.
  • the communication hole 116 is, for example, an elongated hole extending substantially parallel to the extending direction of the insertion hole 114 .
  • the width of communicating hole 116 in the longitudinal direction (extending direction) is greater than the width in the lateral direction (perpendicular to the extending direction).
  • the width of insertion hole 114 in the lateral direction is larger than the outer diameter of rod connecting portion 234 of connecting member 230 .
  • the connecting member 230 is accommodated in the accommodation hole 115 (accommodation chamber AC). In this way, the first movable member 210 , the second movable member 220 and the connecting member 230 are arranged inside the accommodation chamber AC formed in the first housing member 110 .
  • the accommodation hole 115 is longer in the circumferential direction and larger in the radial direction than the connecting member 230 . Therefore, the connecting member 230 is allowed to move in the planar direction perpendicular to the rotation axis direction inside the accommodation hole 115 .
  • the rod connecting portion 234 is inserted from the communication hole 116 to the insertion hole 114 .
  • a flat portion 241 of the rod 240 is inserted through the insertion hole 114 .
  • a bearing hole 242 of the flat portion 241 faces the communication hole 116 .
  • the rod connecting portion 234 is inserted through the bearing hole 242 and connected to the rod 240 .
  • Rod connecting portion 234 is supported in bearing hole 242 .
  • FIG. 4 is a sectional view taken along line IV-IV of FIG.
  • the first movable member 210 has a connecting shaft portion 213 and a rotating shaft portion 214 .
  • the connecting shaft portion 213 and the rotating shaft portion 214 protrude in the rotating shaft direction from an upstream surface S1 (see FIG. 2) of the first movable member 210 facing the wall surface 112c.
  • the connecting shaft portion 213 and the rotating shaft portion 214 extend to the far side in FIG.
  • the rotating shaft portion 214 extends parallel to the connecting shaft portion 213 .
  • the connecting shaft portion 213 and the rotating shaft portion 214 are roughly cylindrical.
  • the outer diameter of the connecting shaft portion 213 is smaller than the inner diameter of the first bearing hole 231 of the connecting member 230 .
  • the connecting shaft portion 213 is inserted through the first bearing hole 231 .
  • the connecting shaft portion 213 is rotatably supported in the first bearing hole 231 .
  • the outer diameter of the rotating shaft portion 214 is smaller than the inner diameter of the bearing hole 112 d of the first housing member 110 .
  • the rotating shaft portion 214 is inserted through the bearing hole 112d on the vertically upper side (the side closer to the rod 240) of the two bearing holes 112d.
  • the rotating shaft portion 214 is rotatably supported in the bearing hole 112d.
  • the second movable member 220 has a connecting shaft portion 223 and a rotating shaft portion 224 .
  • the connecting shaft portion 223 and the rotating shaft portion 224 protrude in the rotating shaft direction from an upstream surface S1 (see FIG. 2) of the second movable member 220 that faces the wall surface 112c.
  • the connecting shaft portion 223 and the rotating shaft portion 224 extend to the far side in FIG.
  • the rotating shaft portion 224 extends parallel to the connecting shaft portion 223 .
  • the connecting shaft portion 223 and the rotating shaft portion 224 are approximately cylindrical.
  • the outer diameter of the connecting shaft portion 223 is smaller than the inner diameter of the second bearing hole 232 of the connecting member 230 .
  • the connecting shaft portion 223 is inserted through the second bearing hole 232 .
  • the connecting shaft portion 223 is rotatably supported in the second bearing hole 232 .
  • the outer diameter of the rotating shaft portion 224 is smaller than the inner diameter of the bearing hole 112 d of the first housing member 110 .
  • the rotating shaft portion 224 is inserted through the bearing hole 112d on the vertically lower side (the side away from the rod 240) of the two bearing holes 112d.
  • the rotating shaft portion 224 is rotatably supported in the bearing hole 112d.
  • a groove 310 recessed toward the downstream surface S2 is formed in the upstream surface S1 of the first movable member 210 . Further, a groove 320 that is recessed toward the downstream surface S2 is formed in the upstream surface S1 of the second movable member 220 .
  • the link mechanism 200 is configured by a four-bar link mechanism.
  • the four links (nodes) are the first movable member 210 , the second movable member 220 , the first housing member 110 and the connecting member 230 . Since the link mechanism 200 is composed of a four-bar link mechanism, it becomes a limited chain, has one degree of freedom, and is easy to control.
  • FIG. 5 is a first diagram for explaining the operation of the link mechanism 200.
  • FIG. 5, 6, and 7 below show views of the link mechanism 200 as seen from the intake port 10.
  • FIG. As shown in FIG. 5 the connecting portion 243 of the rod 240 is connected to the end of the drive shaft 251 of the actuator 250 .
  • the first movable member 210 and the second movable member 220 abut each other.
  • the protruding portion 215 which is the radially inner portion of the first movable member 210
  • a protruding portion 225 which is a radially inner portion of the second movable member 220 , protrudes into the intake passage 130 .
  • the positions of the first movable member 210 and the second movable member 220 in this state are called projecting positions (or throttle positions).
  • annular hole 260 is formed by the protrusion 215 and the protrusion 225 .
  • the inner diameter of the annular hole 260 is smaller than the inner diameter of the positions of the intake passage 130 where the protrusions 215 and 225 protrude.
  • the inner diameter of the annular hole 260 is, for example, smaller than the inner diameter of any position of the intake passage 130 .
  • FIG. 6 is a second diagram for explaining the operation of the link mechanism 200.
  • FIG. FIG. 7 is a third diagram for explaining the operation of the link mechanism 200.
  • the actuator 250 linearly moves the rod 240 in a direction (vertical direction in FIGS. 6 and 7) intersecting the direction of the rotation axis. 6 and 7, rod 240 has moved upward from the position shown in FIG.
  • the displacement of the rod 240 relative to the arrangement of FIG. 5 is greater in the arrangement of FIG. 7 than in the arrangement of FIG.
  • the connecting member 230 moves upward in FIGS. 6 and 7 via the rod connecting portion 234. At this time, the connecting member 230 is allowed to rotate about the rod connecting portion 234 as the center of rotation. Also, the inner diameter of the bearing hole 242 of the rod 240 has a slight play with respect to the outer diameter of the rod connecting portion 234 . Therefore, the connecting member 230 is slightly allowed to move in the planar direction perpendicular to the rotation axis direction.
  • the link mechanism 200 is a four-bar link mechanism.
  • the connecting member 230 and the movable members 210 and 220 behave with one degree of freedom with respect to the first housing member 110 .
  • the connecting member 230 slightly moves in the left-right direction while rotating slightly counterclockwise in FIGS. 6 and 7 within the above allowable range.
  • the rotating shaft portion 214 of the first movable member 210 is supported by the first housing member 110 .
  • the rotary shaft portion 214 is restricted from moving in a plane direction perpendicular to the direction of the rotary shaft.
  • the connecting shaft portion 213 is supported by the connecting member 230 . Since the movement of the connecting member 230 is permitted, the connecting shaft portion 213 is provided movably in the plane direction perpendicular to the rotation axis direction. As a result, as the connecting member 230 moves, the first movable member 210 rotates clockwise in FIGS.
  • the rotating shaft portion 224 of the second movable member 220 is supported by the first housing member 110 .
  • the rotary shaft portion 224 is restricted from moving in a plane direction perpendicular to the direction of the rotary shaft.
  • the connecting shaft portion 223 is supported by the connecting member 230 . Since the movement of the connecting member 230 is permitted, the connecting shaft portion 223 is provided movably in a plane direction perpendicular to the rotation axis direction. As a result, as the connecting member 230 moves, the second movable member 220 rotates clockwise in FIGS.
  • the first movable member 210 and the second movable member 220 move away from each other in the order shown in FIGS.
  • the protruding portions 215 and 225 move radially outward from the protruding positions and are arranged at the retracted positions. At the retracted position, for example, the protruding portions 215 and 225 are flush with the inner wall surface of the air intake passage 130 or positioned radially outside the inner wall surface of the air intake passage 130 .
  • the first movable member 210 and the second movable member 220 come close to each other and come into contact in the order of FIGS. 7, 6 and 5 . In this manner, the movable members 210 and 220 are switched between the protruded position and the retracted position according to the rotation angle about the rotation shafts 214 and 224 .
  • the movable members 210 and 220 are configured to be movable between a protruding position protruding into the air intake passage 130 and a retracted position not protruding into the air intake passage 130 .
  • the movable members 210, 220 move radially.
  • the movable members 210 and 220 may rotate around the rotation axis (circumferential direction).
  • the movable members 210, 220 may be shutter blades having two or more blades.
  • the movable members 210 and 220 do not protrude into the air intake passage 130 when positioned at the retracted position, the pressure loss of the air flowing through the air intake passage 130 can be reduced.
  • the movable members 210 and 220 are arranged such that the projecting portions 215 and 225 are positioned inside the intake passage 130 at the projecting position.
  • the cross-sectional area of the air intake passage 130 is reduced.
  • the air compressed by the compressor impeller 9 may flow back through the intake passage 130 . That is, the air compressed by the compressor impeller 9 may flow from the downstream side of the intake passage 130 toward the upstream side.
  • the movable members 210 and 220 are arranged at the projecting positions, so that the operating range of the centrifugal compressor CC can be expanded toward the small flow rate side.
  • the movable members 210 and 220 are configured as throttle members that throttle the air intake passage 130 . That is, in the present embodiment, the link mechanism 200 is configured as a throttle mechanism that throttles the air intake passage 130 . Movable members 210 and 220 can change the channel cross-sectional area of intake channel 130 by driving link mechanism 200 .
  • the centrifugal compressor CC may be installed in vehicles located in cold regions. When the centrifugal compressor CC is mounted on a vehicle located in a cold region, the movable members 210 and 220 may freeze when the engine is started, and may not operate normally.
  • the movable members 210 and 220 may be made of a resin material for weight reduction.
  • the air compressed by the compressor impeller 9 has a high temperature of about 200°C.
  • the movable members 210 and 220 become hot, the strength of the movable members 210 and 220 decreases, and the movable member 210 , 220 do not work properly.
  • the centrifugal compressor CC of this embodiment includes the heat medium flow path 400 in the compressor housing 100 .
  • the heat medium flow path 400 will be described in detail below with reference to FIGS. 8 and 9. FIG.
  • FIG. 8 is a schematic cross-sectional view of the heat medium flow path 400 according to the first embodiment.
  • 9 is a cross-sectional view taken along line IX-IX of FIG. 8.
  • the heat medium flow path 400 includes an introduction path 410, an annular path 420, and a discharge path 430. As shown in FIGS.
  • the introduction path 410 includes an introduction opening 412 .
  • the introduction opening 412 opens to the outside of the compressor housing 100 and is connected to a circulation flow path (not shown). One end of the circulation channel is connected to the introduction channel 410 and the other end is connected to the discharge channel 430 .
  • a heat exchanger and a pump are provided in the circulation flow path.
  • the circulation flow path circulates the heat medium in the order of introduction path 410 ⁇ annular path 420 ⁇ discharge path 430 ⁇ circulation path.
  • the pump is ON-controlled when the pressure ratio before and after compression of air in the centrifugal compressor CC becomes equal to or greater than a threshold, and OFF-controlled when the pressure ratio becomes less than the threshold. Further, the pump is turned on when the temperature of the link mechanism 200 becomes less than a predetermined value, and turned off when the temperature becomes equal to or higher than the predetermined value.
  • a heat medium is introduced into the introduction opening 412 from the circulation flow path.
  • the heat medium is, for example, engine cooling water, water, oil, or the like.
  • the introduction path 410 connects the circulation path and the annular path 420 .
  • the introduction passage 410 guides the heat medium introduced from the introduction opening 412 to the introduction port 422 of the annular passage 420 .
  • the annular passage 420 is separated from the accommodation chamber AC in the rotation axis direction.
  • the annular path 420 does not communicate with the storage chamber AC.
  • At least part of the annular passage 420 is arranged between the leading edge LE and the accommodation chamber AC in the rotational axis direction.
  • the outer diameter end of the annular path 420 is equal to the outer diameter end of the storage chamber AC or positioned radially outside the outer diameter end of the storage chamber AC.
  • the outer diameter end of the annular path 420 is located radially outside the positions of the movable members 210 and 220 housed in the housing chamber AC.
  • the annular passage 420 includes an inlet 422 and an outlet 424 .
  • An inlet 422 of the annular passage 420 is positioned vertically below an outlet 424 of the annular passage 420 .
  • the outlet 424 of the annular passage 420 is positioned vertically above the inlet 422 of the annular passage 420 .
  • FIG. 9 shows the positional relationship of the introduction passage 410, the annular passage 420, the introduction port 422, the discharge port 424, and the discharge passage 430 when the supercharger TC is used. Therefore, the inlet 422 is positioned vertically below the outlet 424 when the supercharger TC is in use.
  • the introduction port 422 allows the introduction path 410 and the annular path 420 to communicate with each other.
  • the introduction port 422 introduces the heat medium that has passed through the introduction path 410 into the annular path 420 .
  • the introduction port 422 is located on the outer diameter side of the annular path 420 and is continuous with the outer peripheral surface of the annular path 420 in the rotation axis direction.
  • the annular path 420 is formed around the intake passage 130 and extends in an arc shape in the first direction R1 from the inlet 422 to the outlet 424 along the circumferential direction.
  • the annular passage 420 has a constant width in the radial direction. However, it is not limited to this, and the radial width of the annular path 420 may change in the circumferential direction.
  • a partition wall 426 is formed between the annular passage 420 and the intake passage 130 , and the annular passage 420 is radially separated from the intake passage 130 .
  • the annular passage 420 is formed in a C shape, and a partition wall 428 is formed between the inlet port 422 and the outlet port 424 in the second direction R2 opposite to the first direction R1. Therefore, the annular path 420 is discontinuous from the inlet 422 to the outlet 424 in the second direction R2.
  • the annular path 420 guides the heat medium introduced from the inlet 422 to the outlet 424 along the first direction R1.
  • the discharge port 424 communicates the annular passage 420 and the discharge passage 430 .
  • the discharge port 424 introduces the heat medium passing through the annular passage 420 into the discharge passage 430 .
  • the discharge port 424 is located on the outer diameter side of the annular path 420 and is continuous with the outer peripheral surface of the annular path 420 in the rotation axis direction.
  • the discharge passage 430 has a discharge opening 432 .
  • the discharge opening 432 opens to the outside of the compressor housing 100 and is connected to a circulation flow path (not shown).
  • the discharge channel 430 connects the annular channel 420 and the circulation channel.
  • the discharge path 430 guides the heat medium introduced from the discharge port 424 to the discharge opening 432 .
  • the discharge opening 432 discharges the heat medium passing through the discharge passage 430 to the circulation passage.
  • the heat medium flow path 400 communicates with the circulation flow path provided outside the compressor housing 100 . Also, the heat medium flow path 400 circulates the heat medium supplied from the circulation flow path outside the compressor housing 100 . At least a portion of the annular path 420 is arranged between the leading edge LE and the accommodation chamber AC in the rotation axis direction.
  • the centrifugal compressor CC is mounted on a vehicle located in a cold region and the movable members 210 and 220 are frozen when the engine is started, the movable members 210 and 220 are warmed by the heat medium flowing in the vicinity of the accommodation chamber AC. be able to. Therefore, it is possible to unfreeze the movable members 210 and 220 and operate the movable members 210 and 220 normally.
  • the movable members 210 and 220 can be cooled by the heat medium flowing in the vicinity of the accommodation chamber AC. can. Therefore, it is possible to prevent the strength of the movable members 210 and 220 from decreasing due to the high temperature of the movable members 210 and 220 . As a result, it is possible to operate the movable members 210 and 220 normally.
  • the fluid moving in the circumferential direction inside the annular flow path moves from the inner diameter side toward the outer diameter side due to centrifugal force. Therefore, a space in which fluid does not exist is likely to be formed on the inner diameter side in the annular flow path.
  • the heat medium flowing from the inlet 422 to the outlet 424 moves in the annular path 420 at least in a direction opposite to the direction of gravity.
  • the inner diameter side of the loop path 420 is more likely to be filled with the heat medium, and a space in which the heat medium does not exist is less likely to be formed on the inner diameter side of the loop path 420 .
  • the outer diameter end of the annular path 420 is located radially outside the outer diameter end of the accommodation chamber AC. Thereby, the entire storage chamber AC including the outer diameter end of the storage chamber AC can be heated or cooled.
  • FIG. 10 is a schematic cross-sectional view of a heat medium flow path 500 according to the second embodiment.
  • Constituent elements that are substantially the same as those of the centrifugal compressor CC of the first embodiment are denoted by the same reference numerals, and descriptions thereof are omitted.
  • a heat medium flow path 500 of the second embodiment differs from that of the first embodiment in that it includes a first annular path 510 , a second annular path 520 , a third annular path 530 and a fourth annular path 540 .
  • the configuration of the first annular path 510 is the same as the configuration of the annular path 420 of the first embodiment, detailed description thereof will be omitted.
  • the first annular passage 510 is separated from the accommodation chamber AC in the rotation axis direction. That is, the first annular path 510 does not communicate with the accommodation chamber AC. At least part of the first annular passage 510 is arranged between the leading edge LE and the accommodation chamber AC in the rotation axis direction.
  • the outer diameter end of the first annular path 510 is equal to the outer diameter end of the accommodation chamber AC or positioned radially outside the outer diameter end of the accommodation chamber AC.
  • the outer diameter end of the first annular path 510 is located radially outside the positions of the movable members 210 and 220 housed in the housing chamber AC.
  • the second annular passage 520 communicates with the introduction passage 410 .
  • the second annular path 520 is arranged on the side opposite to the first annular path 510 with respect to the introduction path 410 .
  • the first annular path 510 and the second annular path 520 are arranged with the introduction path 410 interposed therebetween.
  • the second annular passage 520 is located closer to the diffuser flow path 11 than the first annular passage 510 and the introduction passage 410 .
  • the second loop path 520 is formed apart from the diffuser flow path 11 in the rotation axis direction.
  • the second annular path 520 is arranged to face the diffuser flow path 11 in the rotation axis direction.
  • the third annular passage 530 does not communicate with the introduction passage 410, the discharge passage 430, the first annular passage 510, and the second annular passage 520, and the heat medium is supplied by an introduction passage (not shown) separate from the introduction passage 410. be done. Further, the third annular passage 530 discharges the heat medium through a discharge passage (not shown) different from the discharge passage 430 .
  • the third annulus 530 is located near the diffuser flow path 11 with respect to the first annulus 510 .
  • the third annular passage 530 is arranged near the accommodation chamber AC with respect to the second annular passage 520 .
  • a third loop 530 is disposed between the first loop 510 and the second loop 520 .
  • the third annular passage 530 is located closer to the center of the tip end of the blades of the compressor impeller 9 than the first annular passage 510 and the second annular passage 520 .
  • the fourth annular passage 540 does not communicate with the introduction passage 410, the discharge passage 430, the first annular passage 510, and the second annular passage 520, and the heat medium is supplied by an introduction passage (not shown) separate from the introduction passage 410. be done. Further, the fourth annular passage 540 discharges the heat medium through an unillustrated discharge passage different from the discharge passage 430 .
  • the fourth annular path 540 is arranged on the side opposite to the first annular path 510 with respect to the accommodation chamber AC.
  • a storage chamber AC is arranged between the first annular path 510 and the fourth annular path 540 . In other words, the first annular passage 510 and the fourth annular passage 540 are arranged on both sides of the housing chamber AC in the rotation axis direction.
  • the second annular path 520, the third annular path 530, and the fourth annular path 540 are each formed in a C shape around the intake passage 130, similarly to the annular path 420 shown in FIG. It extends arcuately in the first direction R1 to the outlet along the direction.
  • the heat medium flow path 500 includes a second annular path 520, a third annular path 530, and a fourth annular path 540.
  • the compressed air flowing through the diffuser passage 11 can be cooled by the second annular passage 520 .
  • the heat transmitted from the diffuser flow path 11 to the accommodation chamber AC through the compressor housing 100 can be shut out.
  • the third annular passage 530 can cool the air flowing back along the shroud portion 121a together with the first annular passage 510. Also, the fourth annular passage 540 allows the movable members 210, 220 to be heated or cooled from both sides.
  • FIG. 11 is a schematic cross-sectional view of a heat medium flow path 600 according to the third embodiment. Constituent elements that are substantially the same as those of the centrifugal compressor CC of the first embodiment are denoted by the same reference numerals, and descriptions thereof are omitted.
  • a heat medium flow path 600 of the third embodiment differs from that of the first embodiment in the shapes of an introduction path 410, an annular path 420, and a discharge path 430.
  • the heat medium flow path 600 includes an introduction path 610, an annular path 620, and a discharge path 630.
  • the introduction passage 610 guides the heat medium from the introduction opening 412 toward the introduction port 622 of the annular passage 620 .
  • the introduction port 622 is positioned on the inner diameter side of the annular passage 620 and is continuous with the inner peripheral surface of the annular passage 620 in the rotation axis direction.
  • the annular path 620 is separated from the accommodation chamber AC in the rotation axis direction. In other words, the annular path 620 does not communicate with the storage chamber AC. At least part of the annular passage 620 is arranged between the leading edge LE and the accommodation chamber AC in the rotational axis direction.
  • the outer diameter end of the annular path 620 is equal to the outer diameter end of the storage chamber AC or positioned radially outside the outer diameter end of the storage chamber AC. The outer diameter end of the annular path 620 is located radially outside the positions of the movable members 210 and 220 housed in the housing chamber AC.
  • the circular path 620 has a trapezoidal shape in cross section along the direction of the rotation axis. However, it is not limited to this, and the circular path 620 may have a triangular shape or a semi-circular shape in a cross section along the rotation axis direction.
  • the width of the outer diameter end of the annular passage 620 is narrower than the width of the inner diameter end. In other words, the width of the inner diameter end of the annular passage 620 is wider than the width of the outer diameter end.
  • Circular path 620 is formed in a C-shape around intake passage 130 in the same manner as annular path 420 shown in FIG. It extends in an arc.
  • FIG. 12 is a schematic cross-sectional view of the discharge passage 630 according to the third embodiment.
  • a discharge passage 630 directs the heat medium from the discharge opening 624 of the annular passage 620 towards the discharge opening 432 .
  • the discharge port 624 is located on the inner diameter side of the annular passage 620 and is continuous with the inner peripheral surface of the annular passage 620 in the rotation axis direction. Since the configuration of the discharge path 630 is the same as the configuration of the introduction path 610, detailed description thereof will be omitted.
  • the introduction port 622 and the discharge port 624 are positioned on the inner diameter side of the annular passage 620 and are continuous with the inner peripheral surface of the annular passage 620 in the rotation axis direction.
  • the width of the annular path 620 on the outer diameter end side is narrower than the width on the inner diameter end side.
  • the introduction port 422 of the loop path 420 is positioned vertically below the discharge port 424 .
  • the present invention is not limited to this, and the introduction port 422 may be positioned vertically above the discharge port 424 .
  • the outer diameter end of the annular path 420 is located radially outside the outer diameter end of the accommodation chamber AC.
  • the invention is not limited to this, and the outer diameter end of the annular passage 420 may be located radially inside the outer diameter end of the accommodation chamber AC.
  • the width of the annular path 620 on the outer diameter end side is narrower than the width on the inner diameter end side.
  • the width of the outer diameter end side of the loop path 620 may be wider than the width of the inner diameter end side.
  • compressor impeller 100 compressor housing (housing) 130 intake channel 210 first movable member (movable member) 220 second movable member (movable member) 400 heat medium flow path 410 introduction path 412 introduction opening 420 annular path 422 introduction port 424 discharge port 430 discharge path 432 discharge opening 500 heat medium flow path 510 first annular path 520 second annular path 530 third annular path 540 fourth annular path Path 600 Heat medium path 610 Introduction path 620 Loop path 630 Discharge path AC Storage chamber CC Centrifugal compressor TC Supercharger

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)

Abstract

遠心圧縮機は、吸気流路130を含むコンプレッサハウジング100と、吸気流路130に配されるコンプレッサインペラ9と、コンプレッサハウジング100のうちコンプレッサインペラ9よりも吸気の流れにおいて上流側に形成される収容室ACと、収容室ACに配される可動部材と、コンプレッサハウジング100に形成される環状路であって、当該環状路は、コンプレッサハウジング100の外部と連通し、コンプレッサハウジング100の外部から供給される熱媒体を流通させ、当該環状路の少なくとも一部は、収容室ACとコンプレッサインペラ9のリーディングエッジLEとの間に配置される、環状路420と、を備える。

Description

遠心圧縮機および過給機
 本開示は、遠心圧縮機および過給機に関する。本出願は2021年7月13日に提出された日本特許出願第2021-115967号に基づく優先権の利益を主張するものであり、その内容は本出願に援用される。
 遠心圧縮機は、吸気流路が形成されたコンプレッサハウジングを備える。吸気流路には、コンプレッサインペラが配される。コンプレッサインペラに流入する空気の流量が減少すると、コンプレッサインペラで圧縮された空気が吸気流路を逆流し、サージングと呼ばれる現象が発生する。
 特許文献1には、コンプレッサハウジングに絞り機構を設ける遠心圧縮機について開示がある。絞り機構は、コンプレッサインペラに対し、吸気の流れにおいて上流側に配される。絞り機構は、可動部材を備える。可動部材は、吸気流路内に突出する突出位置と、吸気流路から退避する退避位置とに移動可能に構成される。絞り機構は、可動部材を吸気流路内に突出させることで、吸気流路の流路断面積を小さくする。可動部材が吸気流路内に突出すると、吸気流路内を逆流する空気は、可動部材により堰き止められる。吸気流路内を逆流する空気が堰き止められることで、サージングが抑制される。
欧州特許出願公開第3530954号明細書
 コンプレッサインペラにより圧縮された空気は、200℃程度の高温になる。このような高温の空気が吸気流路内を逆流し、可動部材により堰き止められると、可動部材が高温となり、可動部材の強度が低下し、可動部材が正常に作動しなくなる要因となる。
 本開示の目的は、可動部材を正常作動させることが可能な遠心圧縮機および過給機を提供することである。
 上記課題を解決するために、本開示の一態様に係る遠心圧縮機は、吸気流路を含むハウジングと、吸気流路に配されるコンプレッサインペラと、ハウジングのうちコンプレッサインペラよりも吸気の流れにおいて上流側に形成される収容室と、収容室に配される可動部材と、ハウジングに形成される環状路であって、当該環状路は、ハウジングの外部と連通し、ハウジングの外部から供給される熱媒体を流通させ、当該環状路の少なくとも一部は、収容室とコンプレッサインペラのリーディングエッジとの間に配置される、環状路と、を備える。
 環状路の導入口は、環状路の排出口より鉛直下方に位置してもよい。
 環状路の外径端は、収容室の外径端より径方向外側に位置してもよい。
 環状路の外径端の幅は、内径端の幅より狭くてもよい。
 本開示の一態様に係る過給機は、上記の遠心圧縮機を備える。
 本開示によれば、可動部材を正常作動させることができる。
図1は、第1実施形態に係る過給機の概略断面図である。 図2は、図1の破線部分の抽出図である。 図3は、リンク機構を構成する部材の分解斜視図である。 図4は、図2のIV-IV線断面図である。 図5は、リンク機構の動作を説明するための第1の図である。 図6は、リンク機構の動作を説明するための第2の図である。 図7は、リンク機構の動作を説明するための第3の図である。 図8は、第1実施形態に係る熱媒体流路の概略断面図である。 図9は、図8のIX-IX線断面図である。 図10は、第2実施形態に係る熱媒体流路の概略断面図である。 図11は、第3実施形態に係る熱媒体流路の概略断面図である。 図12は、第3実施形態に係る排出路の概略断面図である。
 以下に添付図面を参照しながら、本開示の一実施形態について詳細に説明する。実施形態に示す寸法、材料、その他具体的な数値等は、理解を容易とするための例示にすぎず、特に断る場合を除き、本開示を限定するものではない。なお、本明細書および図面において、実質的に同一の機能、構成を有する要素については、同一の符号を付することにより重複説明を省略する。また本開示に直接関係のない要素は図示を省略する。
(第1実施形態)
 図1は、第1実施形態に係る過給機TCの概略断面図である。図1に示す矢印L方向を過給機TCの左側として説明する。図1に示す矢印R方向を過給機TCの右側として説明する。過給機TCのうち、後述するコンプレッサハウジング100を含む部分は、遠心圧縮機CCとして機能する。以下では、遠心圧縮機CCは、後述するタービンインペラ8により駆動されるものとして説明する。ただし、これに限定されず、遠心圧縮機CCは、不図示のエンジンにより駆動されてもよいし、不図示の電動機(モータ)により駆動されてもよい。このように、遠心圧縮機CCは、過給機TC以外の装置に組み込まれてもよいし、単体であってもよい。
 図1に示すように、過給機TCは、過給機本体1を備える。過給機本体1は、ベアリングハウジング2と、タービンハウジング4と、コンプレッサハウジング(ハウジング)100と、リンク機構200とを含む。リンク機構200の詳細については、後述する。ベアリングハウジング2の左側には、締結ボルト3によってタービンハウジング4が連結される。ベアリングハウジング2の右側には、締結ボルト5によってコンプレッサハウジング100が連結される。
 ベアリングハウジング2には、収容孔2aが形成される。収容孔2aは、ベアリングハウジング2を過給機TCの左右方向に貫通する。収容孔2aには、軸受6が配される。図1では、軸受6の一例としてフルフローティング軸受を示す。ただし、軸受6は、セミフローティング軸受や転がり軸受など、他のラジアル軸受であってもよい。収容孔2aには、シャフト7の一部が配される。シャフト7は、軸受6によって回転可能に支持される。シャフト7の左端部には、タービンインペラ8が設けられる。タービンインペラ8は、タービンハウジング4内に回転可能に収容される。シャフト7の右端部には、コンプレッサインペラ9が設けられる。コンプレッサインペラ9は、コンプレッサハウジング100内に回転可能に収容される。本開示において、シャフト7、タービンインペラ8およびコンプレッサインペラ9の回転軸方向、径方向、周方向および回転方向は、それぞれ単に回転軸方向、径方向、周方向および回転方向と称され得る。
 コンプレッサハウジング100には、吸気口10が形成される。吸気口10は、過給機TCの右側に開口する。吸気口10は、不図示のエアクリーナに接続される。ベアリングハウジング2とコンプレッサハウジング100の間には、ディフューザ流路11が形成される。ディフューザ流路11は、空気を加圧する。ディフューザ流路11は、径方向の内側から外側に向けて環状に形成される。ディフューザ流路11は、径方向の内側において、コンプレッサインペラ9を介して吸気口10に連通している。
 また、コンプレッサハウジング100には、コンプレッサスクロール流路12が形成される。コンプレッサスクロール流路12は、例えば、コンプレッサインペラ9よりも径方向の外側に位置する。コンプレッサスクロール流路12は、不図示のエンジンの吸気口、および、ディフューザ流路11と連通している。コンプレッサインペラ9が回転すると、吸気口10からコンプレッサハウジング100内に空気が吸気される。吸気された空気は、コンプレッサインペラ9の翼間を流通する過程において、加圧加速される。加圧加速された空気は、ディフューザ流路11およびコンプレッサスクロール流路12でさらに加圧される。加圧された空気は、不図示の吐出口から流出し、エンジンの吸気口に導かれる。
 このように、過給機TCは、遠心圧縮機CCを備える。遠心圧縮機CCは、コンプレッサハウジング100と、コンプレッサインペラ9と、後述するリンク機構200とを含む。
 タービンハウジング4には、排気口13が形成される。排気口13は、過給機TCの左側に開口する。排気口13は、不図示の排気ガス浄化装置に接続される。タービンハウジング4には、連通流路14と、タービンスクロール流路15とが形成される。タービンスクロール流路15は、タービンインペラ8よりも径方向の外側に位置する。連通流路14は、タービンインペラ8とタービンスクロール流路15との間に位置する。
 タービンスクロール流路15は、不図示のガス流入口と連通する。ガス流入口には、不図示のエンジンの排気マニホールドから排出される排気ガスが導かれる。連通流路14は、タービンスクロール流路15と排気口13とを連通させる。ガス流入口からタービンスクロール流路15に導かれた排気ガスは、連通流路14およびタービンインペラ8の翼間を介して排気口13に導かれる。排気ガスは、その流通過程においてタービンインペラ8を回転させる。
 タービンインペラ8の回転力は、シャフト7を介してコンプレッサインペラ9に伝達される。上記のとおりに、空気は、コンプレッサインペラ9の回転力によって加圧されて、エンジンの吸気口に導かれる。
 図2は、図1の破線部分の抽出図である。図2に示すように、コンプレッサハウジング100は、第1ハウジング部材110と、第2ハウジング部材120とを含む。第1ハウジング部材110は、第2ハウジング部材120よりも、ベアリングハウジング2から離隔する側に位置する。第2ハウジング部材120は、ベアリングハウジング2に接続される。第1ハウジング部材110は、第2ハウジング部材120に接続される。
 第1ハウジング部材110は、大凡円筒形状である。第1ハウジング部材110には、貫通孔111が形成される。第1ハウジング部材110は、第2ハウジング部材120と近接(接続)する側に端面112を有する。また、第1ハウジング部材110は、第2ハウジング部材120から離隔する側に端面113を有する。端面113には、吸気口10が形成される。貫通孔111は、回転軸方向に沿って、端面112から端面113まで延在する。つまり、貫通孔111は、第1ハウジング部材110を回転軸方向に貫通している。貫通孔111は、端面113において吸気口10を有する。
 貫通孔111は、平行部111aと、縮径部111bとを有する。平行部111aは、縮径部111bよりも端面113側に位置する。平行部111aの内径は、回転軸方向に亘って大凡一定である。縮径部111bは、平行部111aよりも端面112側に位置する。縮径部111bは、平行部111aと連続する。縮径部111bの、平行部111aと連続する部位の内径が、平行部111aの内径と大凡等しい。縮径部111bの内径は、平行部111aから離隔するほど小さくなる。縮径部111bの内径は、端面112に近づくほど小さくなる。
 端面112には、切り欠き部112aが形成される。切り欠き部112aは、端面112から端面113に向かって窪む。切り欠き部112aは、端面112の外周部に形成される。切り欠き部112aは、回転軸方向から見たとき、例えば大凡環状である。
 端面112には、収容室ACが形成される。収容室ACは、第1ハウジング部材110のうちコンプレッサインペラ9の羽根のリーディングエッジLEよりも吸気口10近くに形成される。収容室ACは、後述する収容溝112b、軸受穴112d、収容穴115により形成される。
 収容溝112bは、端面112に形成される。収容溝112bは、切り欠き部112aと貫通孔111との間に位置する。収容溝112bは、端面112から端面113に向かって窪む。収容溝112bは、回転軸方向から見たとき、例えば大凡環状である。収容溝112bは、径方向内側において貫通孔111と連通する。
 収容溝112bのうち端面113と平行な壁面112cには、軸受穴112dが形成される。軸受穴112dは、壁面112cから端面113に向かって回転軸方向に延在する。軸受穴112dは、回転方向に離隔して2つ設けられる。2つの軸受穴112dは、回転方向に180度ずれた位置に配されている。
 第2ハウジング部材120には、貫通孔121が形成される。第2ハウジング部材120は、第1ハウジング部材110と近接(接続)する側に端面122を有する。また、第2ハウジング部材120は、第1ハウジング部材110から離隔する側に端面123を有する。換言すれば、第2ハウジング部材120は、ベアリングハウジング2と接続する側に端面123を有する。貫通孔121は、回転軸方向に沿って、端面122から端面123まで延在する。つまり、貫通孔121は、第2ハウジング部材120を回転軸方向に貫通する。
 貫通孔121のうち端面122近くの端部の内径は、貫通孔111のうち端面112近くの端部の内径と大凡等しい。貫通孔121の内壁には、シュラウド部121aが形成される。シュラウド部121aは、コンプレッサインペラ9に対して径方向の外側から対向する。コンプレッサインペラ9の外径は、コンプレッサインペラ9の羽根のリーディングエッジLEから離隔するほど大きくなる。シュラウド部121aの内径は、端面122から離隔するほど大きくなる。換言すれば、シュラウド部121aの内径は、端面123に近接するほど大きくなる。
 端面122には、収容溝122aが形成される。収容溝122aは、端面122から端面123に向かって窪む。収容溝122aは、回転軸方向から見たとき、例えば大凡環状である。収容溝122aには、第1ハウジング部材110が挿入される。収容溝122aのうち端面123と平行な壁面122bに、第1ハウジング部材110の端面112が当接する。このとき、第1ハウジング部材110の壁面112cと第2ハウジング部材120の壁面122bとの間には、収容室ACが形成される。
 第1ハウジング部材110の貫通孔111と、第2ハウジング部材120の貫通孔121によって、吸気流路130が形成される。つまり、吸気流路130は、コンプレッサハウジング100に形成される。吸気流路130は、不図示のエアクリーナから吸気口10を介してディフューザ流路11まで延在する。吸気流路130のエアクリーナ側(吸気口10側)を吸気の流れにおいて上流側とし、吸気流路130のディフューザ流路11側を吸気の流れにおいて下流側とする。
 コンプレッサインペラ9は、吸気流路130に配される。吸気流路130は、回転軸方向に垂直な断面において、例えば、コンプレッサインペラ9の回転軸を中心とする円形である。ただし、吸気流路130の断面形状は、これに限定されず、例えば、楕円形状であってもよい。
 第1ハウジング部材110の切り欠き部112aには、不図示のシール材が配される。シール材により、第1ハウジング部材110と第2ハウジング部材120との隙間を流通する空気の流量が抑制される。ただし、切り欠き部112aおよびシール材の構成は、必須ではない。
 図3は、リンク機構200を構成する部材の分解斜視図である。図3では、コンプレッサハウジング100のうち、第1ハウジング部材110のみが示される。図3に示すように、リンク機構200は、第1ハウジング部材110、第1可動部材210、第2可動部材220、連結部材230、ロッド240を含む。以下、第1可動部材210および第2可動部材220を、まとめて可動部材210、220と呼ぶ場合がある。リンク機構200は、回転軸方向において、コンプレッサインペラ9の羽根のリーディングエッジLEより吸気流路130の吸気口10近く(上流側)に配される。
 第1可動部材210は、収容溝112b(収容室AC)に配される。具体的には、第1可動部材210は、回転軸方向において、収容溝112bの壁面112cと、収容溝122aの壁面122b(図2参照)との間に配される。
 第1可動部材210は、上流面S1と、下流面S2と、外面S3と、内面S4とを有する。上流面S1は、第1可動部材210のうち上流側の面である。吸気下流面S2は、第1可動部材210のうち下流側の面である。外面S3は、第1可動部材210のうち径方向外側の面である。内面S4は、第1可動部材210のうち径方向内側の面である。
 第1可動部材210は、本体部B1を有する。本体部B1は、湾曲部211と、アーム部212とを含む。湾曲部211は、周方向に延在する。湾曲部211は、大凡半円弧形状である。湾曲部211のうち、周方向の第1端面211aおよび第2端面211bは、径方向および回転軸方向に平行に延在する。ただし、第1端面211aおよび第2端面211bは、径方向および回転軸方向に対し、傾斜していてもよい。
 湾曲部211の第1端面211aには、アーム部212が設けられる。アーム部212は、湾曲部211の外面S3から径方向の外側に延在する。また、アーム部212は、径方向に対して傾斜する方向(第2可動部材220側)に延在する。
 第2可動部材220は、収容溝112b(収容室AC)に配される。具体的には、第2可動部材220は、回転軸方向において、収容溝112bの壁面112cと、収容溝122aの壁面122b(図2参照)との間に配される。
 第2可動部材220は、上流面S1と、下流面S2と、外面S3と、内面S4とを有する。上流面S1は、第2可動部材220のうち上流側の面である。吸気下流面S2は、第2可動部材220のうち下流側の面である。外面S3は、第2可動部材220のうち径方向外側の面である。内面S4は、第2可動部材220のうち径方向内側の面である。
 第2可動部材220は、本体部B2を有する。本体部B2は、湾曲部221と、アーム部222とを含む。湾曲部221は、周方向に延在する。湾曲部221は、大凡半円弧形状である。湾曲部221のうち、周方向の第1端面221aおよび第2端面221bは、径方向および回転軸方向に平行に延在する。ただし、第1端面221aおよび第2端面221bは、径方向および回転軸方向に対し、傾斜していてもよい。
 湾曲部221の第1端面221aには、アーム部222が設けられる。アーム部222は、湾曲部221の外面S3から径方向の外側に延在する。また、アーム部222は、径方向に対して傾斜する方向(第1可動部材210側)に延在する。
 湾曲部211は、湾曲部221とコンプレッサインペラ9の回転中心(吸気流路130)を挟んで対向する。湾曲部211の第1端面211aは、湾曲部221の第2端面221bと周方向に対向する。湾曲部211の第2端面211bは、湾曲部221の第1端面221aと周方向に対向する。可動部材210、220は、詳しくは後述するように、湾曲部211、221が径方向に移動可能に構成される。
 連結部材230は、可動部材210、220と連結する。連結部材230は、第1可動部材210、第2可動部材220よりも吸気口10近くに位置する。連結部材230は、大凡円弧形状である。連結部材230の周方向における一端側に第1軸受穴231が形成され、他端側に第2軸受穴232が形成される。第1軸受穴231および第2軸受穴232は、連結部材230のうち、可動部材210、220近くの端面233に開口する。第1軸受穴231および第2軸受穴232は、回転軸方向に延在する。ここでは、第1軸受穴231および第2軸受穴232は、非貫通の穴で構成される。ただし、第1軸受穴231および第2軸受穴232は、連結部材230を回転軸方向に貫通してもよい。
 連結部材230には、第1軸受穴231と第2軸受穴232の間に、ロッド接続部234が形成される。ロッド接続部234は、連結部材230のうち、可動部材210、220と反対側の端面235に形成される。ロッド接続部234は、端面235から回転軸方向に突出する。ロッド接続部234は、例えば、大凡円柱形状である。
 ロッド240は、大凡円柱形状である。ロッド240の一端部に平面部241が形成され、他端部に連結部243が形成される。平面部241は、回転軸方向に大凡垂直な面方向に延在する。平面部241には、軸受穴242が開口する。軸受穴242は、回転軸方向に延在する。連結部243は、連結孔243aを有する。連結孔243aには、後述するアクチュエータ250(図5参照)が連結される。軸受穴242は、例えば、回転軸方向およびロッド240の軸方向に垂直な方向の長さが、ロッド240の軸方向の長さよりも長い長穴であってもよい。
 ロッド240には、平面部241と連結部243の間に、ロッド大径部244と、2つのロッド小径部245とが形成される。ロッド大径部244は、2つのロッド小径部245の間に配される。2つのロッド小径部245のうち平面部241近くのロッド小径部245は、ロッド大径部244と平面部241とを接続する。2つのロッド小径部245のうち連結部243近くのロッド小径部245は、ロッド大径部244と連結部243とを接続する。ロッド大径部244の外径は、2つのロッド小径部245の外径よりも大きい。
 第1ハウジング部材110には、挿通穴114が形成される。挿通穴114の一端114aは、第1ハウジング部材110の外部に開口する。挿通穴114は、例えば、回転軸方向に垂直な面方向に延在する。挿通穴114は、吸気流路130よりも径方向の外側に位置する。挿通穴114には、ロッド240の平面部241側が挿通される。ロッド大径部244は、挿通穴114の内壁面によってガイドされる。ロッド240は、挿通穴114の中心軸方向(ロッド240の中心軸方向)以外の移動が規制される。
 第1ハウジング部材110には、収容穴115が形成される。収容穴115は、収容溝112bの壁面112cに開口する。収容穴115は、壁面112cから吸気口10に向かって窪む。収容穴115は、挿通穴114よりも吸気口10から離隔するよう(第2ハウジング部材120近く)に位置する。収容穴115は、回転軸方向から見たとき、大凡円弧形状である。収容穴115は、連結部材230よりも周方向に長く延在する。収容穴115は、軸受穴112dから周方向に離隔する。
 第1ハウジング部材110には、連通孔116が形成される。連通孔116は、挿通穴114と収容穴115とを連通させる。連通孔116は、収容穴115のうち、周方向の大凡中間部分に形成される。連通孔116は、例えば、挿通穴114の延在方向に大凡平行に延在する長孔である。連通孔116の長手方向(延在方向)の幅が、短手方向(延在方向と垂直な方向)の幅よりも大きい。挿通穴114の短手方向の幅は、連結部材230のロッド接続部234の外径よりも大きい。
 連結部材230は、収容穴115(収容室AC)に収容される。このように、第1可動部材210、第2可動部材220、連結部材230は、第1ハウジング部材110に形成された収容室AC内に配される。収容穴115は、連結部材230よりも周方向に長く、径方向に大きい。そのため、連結部材230は、収容穴115の内部で、回転軸方向に垂直な面方向への移動が許容される。
 ロッド接続部234は、連通孔116から挿通穴114に挿通される。挿通穴114には、ロッド240の平面部241が挿通されている。平面部241の軸受穴242は、連通孔116に対向している。ロッド接続部234は、軸受穴242に挿通され、ロッド240と接続する。ロッド接続部234は、軸受穴242に支持される。
 図4は、図2のIV-IV線断面図である。図4に破線で示すように、第1可動部材210は、連結軸部213および回転軸部214を有する。連結軸部213および回転軸部214は、第1可動部材210のうち、壁面112cと対向する上流面S1(図2参照)から、回転軸方向に突出する。連結軸部213および回転軸部214は、図4中、奥側に延在する。回転軸部214は、連結軸部213と平行に延在する。連結軸部213および回転軸部214は、大凡円柱形状である。
 連結軸部213の外径は、連結部材230の第1軸受穴231の内径よりも小さい。連結軸部213は、第1軸受穴231に挿通される。連結軸部213は、第1軸受穴231に回転可能に支持される。回転軸部214の外径は、第1ハウジング部材110の軸受穴112dの内径よりも小さい。回転軸部214は、2つの軸受穴112dのうち鉛直上側(ロッド240に近接する側)の軸受穴112dに挿通される。回転軸部214は、軸受穴112dに回転可能に支持される。
 第2可動部材220は、連結軸部223および回転軸部224を有する。連結軸部223および回転軸部224は、第2可動部材220のうち、壁面112cと対向する上流面S1(図2参照)から、回転軸方向に突出する。連結軸部223および回転軸部224は、図4中、奥側に延在する。回転軸部224は、連結軸部223と平行に延在する。連結軸部223および回転軸部224は、大凡円柱形状である。
 連結軸部223の外径は、連結部材230の第2軸受穴232の内径よりも小さい。連結軸部223は、第2軸受穴232に挿通される。連結軸部223は、第2軸受穴232に回転可能に支持される。回転軸部224の外径は、第1ハウジング部材110の軸受穴112dの内径よりも小さい。回転軸部224は、2つの軸受穴112dのうち鉛直下側(ロッド240から離隔する側)の軸受穴112dに挿通される。回転軸部224は、軸受穴112dに回転可能に支持される。
 第1可動部材210の上流面S1には、下流面S2に向かって窪む溝310が形成される。また、第2可動部材220の上流面S1には、下流面S2に向かって窪む溝320が形成される。
 このように、リンク機構200は、4節リンク機構により構成される。4つのリンク(節)は、第1可動部材210、第2可動部材220、第1ハウジング部材110、連結部材230である。リンク機構200が、4節リンク機構により構成されることから、限定連鎖となり1自由度であって制御が容易である。
 図5は、リンク機構200の動作を説明するための第1の図である。以下の図5、図6、図7では、リンク機構200を吸気口10から見た図が示される。図5に示すように、ロッド240の連結部243には、アクチュエータ250の駆動シャフト251の端部が連結される。
 図5に示す配置では、第1可動部材210と第2可動部材220は、互いに当接する。このとき、図2および図4に示すように、第1可動部材210のうち、径方向の内側の部位である突出部215は、吸気流路130内に突出する。第2可動部材220のうち、径方向の内側の部位である突出部225は、吸気流路130内に突出する。この状態における第1可動部材210、第2可動部材220の位置を、突出位置(あるいは絞り位置)という。
 図5に示すように、突出位置では、突出部215のうち、周方向の端部215a、215bが、突出部225のうち、周方向の端部225a、225bとそれぞれ当接する。突出部215と突出部225によって環状孔260が形成される。環状孔260の内径は、吸気流路130のうち、突出部215、225が突出する位置の内径よりも小さい。環状孔260の内径は、例えば、吸気流路130のいずれの位置の内径よりも小さい。
 図6は、リンク機構200の動作を説明するための第2の図である。図7は、リンク機構200の動作を説明するための第3の図である。アクチュエータ250は、回転軸方向と交差する方向(図6、図7中、上下方向)にロッド240を直動させる。図6および図7では、ロッド240は、図5に示す位置から上側に移動する。図6の配置よりも図7の配置の方が、図5の配置に対するロッド240の移動量が大きい。
 ロッド240が移動すると、連結部材230は、ロッド接続部234を介して、図6、図7中、上側に移動する。このとき、連結部材230は、ロッド接続部234を回転中心とする回転が許容される。また、ロッド接続部234の外径に対し、ロッド240の軸受穴242の内径に僅かに遊びがある。そのため、連結部材230は、回転軸方向に垂直な面方向の移動が僅かに許容される。
 上述したように、リンク機構200は、4節リンク機構である。連結部材230、可動部材210、220は、第1ハウジング部材110に対して、1自由度の挙動を示す。具体的には、連結部材230は、上記の許容範囲内で、図6、図7中、反時計回りに僅かに回転しつつ、左右方向に僅かに動く。
 第1可動部材210のうち、回転軸部214は、第1ハウジング部材110に支持される。回転軸部214は、回転軸方向に垂直な面方向の移動が規制される。連結軸部213は、連結部材230に支持される。連結部材230の移動が許容されることから、連結軸部213は、回転軸方向に垂直な面方向に移動可能に設けられる。その結果、連結部材230の移動に伴って、第1可動部材210は、回転軸部214を回転中心として、図6、図7中、時計回り方向に回転する。
 同様に、第2可動部材220のうち、回転軸部224は、第1ハウジング部材110に支持される。回転軸部224は、回転軸方向に垂直な面方向の移動が規制される。連結軸部223は、連結部材230に支持される。連結部材230の移動が許容されることから、連結軸部223は、回転軸方向に垂直な面方向へ移動可能に設けられる。その結果、連結部材230の移動に伴って、第2可動部材220は、回転軸部224を回転中心として、図6、図7中、時計回り方向に回転する。
 こうして、第1可動部材210と第2可動部材220は、図6、図7の順に、互いに離隔する方向に移動する。突出部215、225は、突出位置よりも径方向の外側に移動し、退避位置に配置される。退避位置では、例えば、突出部215、225は、吸気流路130の内壁面と面一となるか、吸気流路130の内壁面よりも径方向の外側に位置する。退避位置から突出位置に移動するときは、図7、図6、図5の順に、第1可動部材210と第2可動部材220が互いに近づいて当接する。このように、可動部材210、220は、回転軸部214、224を回転中心とする回転角度に応じて、突出位置と退避位置とに切り替わる。
 可動部材210、220は、吸気流路130内に突出する突出位置と、吸気流路130内に突出しない退避位置とに移動可能に構成される。本実施形態では、可動部材210、220は、径方向に移動する。ただし、これに限定されず、可動部材210、220は、回転軸周り(周方向)に回転してもよい。例えば、可動部材210、220は、2以上の羽根を有するシャッター羽根であってもよい。
 可動部材210、220は、退避位置に位置するとき、吸気流路130内に突出しないことから、吸気流路130を流れる空気の圧損を小さくすることができる。
 また、図2に示すように、可動部材210、220は、突出位置において、突出部215、225が吸気流路130内に位置するように、配される。可動部材210、220が突出位置に位置すると、吸気流路130の流路断面積が小さくなる。
 コンプレッサインペラ9に流入する空気の流量が減少するに従い、コンプレッサインペラ9で圧縮された空気が吸気流路130内を逆流する場合がある。すなわち、コンプレッサインペラ9で圧縮された空気が吸気流路130の下流側から上流側に向かって流れる場合がある。
 図2に示すように、可動部材210、220が突出位置に位置するとき、突出部215、225は、コンプレッサインペラ9の羽根のリーディングエッジLEの最外径端よりも径方向内側に位置する。これにより、吸気流路130内を逆流する空気は、突出部215、225に堰き止められる。したがって、可動部材210、220は、吸気流路130内の空気の逆流を抑制することができる。
 また、吸気流路130の流路断面積が小さくなることから、コンプレッサインペラ9に流入する空気の流速が増大し、サージングの発生を抑制することができる。つまり、第1実施形態の遠心圧縮機CCは、可動部材210、220が突出位置に配されることにより、遠心圧縮機CCの作動領域を小流量側に拡大することができる。
 このように、可動部材210、220は、吸気流路130を絞る絞り部材として構成される。つまり、本実施形態において、リンク機構200は、吸気流路130を絞る絞り機構として構成される。可動部材210、220は、リンク機構200が駆動されることで、吸気流路130の流路断面積を変化させることができる。
 遠心圧縮機CCは、寒冷地に位置する車両に搭載される場合がある。遠心圧縮機CCが寒冷地に位置する車両に搭載された場合、エンジン始動時に可動部材210、220が凍結し、正常に作動しなくなる場合がある。
 また、可動部材210、220は、軽量化のため樹脂材料で形成される場合がある。コンプレッサインペラ9により圧縮された空気は、200℃程度の高温になる。このような高温の空気が吸気流路130内を逆流し、可動部材210、220により堰き止められると、可動部材210、220が高温となり、可動部材210、220の強度が低下し、可動部材210、220が正常に作動しなくなる要因となる。
 そこで、本実施形態の遠心圧縮機CCは、コンプレッサハウジング100に熱媒体流路400を備える。以下、図8および図9を用いて、熱媒体流路400について詳細に説明する。
 図8は、第1実施形態に係る熱媒体流路400の概略断面図である。図9は、図8のIX-IX線断面図である。図8および図9に示すように、熱媒体流路400は、導入路410と、環状路420と、排出路430とを含む。
 導入路410は、導入開口412を備える。導入開口412は、コンプレッサハウジング100の外部に開口し、不図示の循環流路と接続される。循環流路の一端が導入路410に接続され、他端が排出路430に接続される。
 循環流路には、不図示の熱交換器およびポンプが設けられる。循環流路は、熱媒体を導入路410→環状路420→排出路430→循環流路の順で循環させる。なお、ポンプは、遠心圧縮機CCの空気の圧縮前後の圧力比が閾値以上となった際にON制御され、圧力比が閾値未満となった際にOFF制御される。また、ポンプは、リンク機構200の温度が所定値未満となった際にON制御され、温度が所定値以上となった際にOFF制御される。
 導入開口412には、循環流路から熱媒体が導入される。熱媒体は、例えば、エンジン冷却水、水、オイル等である。導入路410は、循環流路と環状路420とを接続させる。導入路410は、導入開口412から導入された熱媒体を、環状路420の導入口422へと導く。
 図8に示すように、環状路420は、収容室ACから回転軸方向に離隔している。つまり、環状路420は、収容室ACと連通していない。回転軸方向において環状路420の少なくとも一部は、リーディングエッジLEと収容室ACの間に配置される。また、環状路420の外径端は、収容室ACの外径端と等しいか、収容室ACの外径端より径方向外側に位置する。環状路420の外径端は、収容室AC内に収容される可動部材210、220の位置よりも径方向外側に位置する。
 図9に示すように、環状路420は、導入口422と、排出口424とを備える。環状路420の導入口422は、環状路420の排出口424より鉛直下方に位置する。換言すれば、環状路420の排出口424は、環状路420の導入口422より鉛直上方に位置する。図9では、過給機TCの使用時における、導入路410、環状路420、導入口422、排出口424、排出路430の位置関係を表している。したがって、過給機TCの使用時の状態で、導入口422が排出口424よりも鉛直下方に位置する。
 導入口422は、導入路410と環状路420とを連通させる。導入口422は、導入路410を通過した熱媒体を環状路420内に導入させる。導入口422は、環状路420の外径側に位置し、環状路420の外周面と回転軸方向に連続している。
 環状路420は、吸気流路130の周囲に形成され、導入口422から周方向に沿って排出口424まで第1方向R1に円弧状に延在する。環状路420は、径方向に一定の幅を有する。ただし、これに限定されず、環状路420の径方向の幅は、周方向に変化してもよい。環状路420と吸気流路130との間には、隔壁426が形成され、環状路420は、吸気流路130から径方向に離隔している。
 環状路420は、C形状に形成され、第1方向R1とは反対の第2方向R2において、導入口422から排出口424までの間には、隔壁428が形成される。そのため、環状路420は、第2方向R2において導入口422から排出口424までの間、不連続となる。
 環状路420は、導入口422から導入された熱媒体を、導入口422から第1方向R1に沿って排出口424まで導く。排出口424は、環状路420と排出路430とを連通させる。排出口424は、環状路420を通過した熱媒体を排出路430内に導入させる。排出口424は、環状路420の外径側に位置し、環状路420の外周面と回転軸方向に連続している。
 排出路430は、排出開口432を備える。排出開口432は、コンプレッサハウジング100の外部に開口し、不図示の循環流路と接続される。排出路430は、環状路420と循環流路とを接続させる。排出路430は、排出口424から導入された熱媒体を排出開口432に導く。排出開口432は、排出路430を通過した熱媒体を循環流路に排出する。
 以上のように、熱媒体流路400は、コンプレッサハウジング100の外部に設けられた循環流路と連通する。また、熱媒体流路400は、コンプレッサハウジング100の外部の循環流路から供給される熱媒体を流通させる。そして、環状路420の少なくとも一部は、回転軸方向においてリーディングエッジLEと収容室ACの間に配置される。
 これにより、遠心圧縮機CCが寒冷地に位置する車両に搭載され、エンジン始動時に可動部材210、220が凍結していても、収容室AC近傍を流通する熱媒体により可動部材210、220を温めることができる。したがって、可動部材210、220の凍結を解除し、可動部材210、220を正常に作動させることが可能となる。
 また、可動部材210、220により吸気流路130内を逆流する高温の圧縮空気が堰き止められるような場合にも、収容室AC近傍を流通する熱媒体により可動部材210、220を冷却することができる。したがって、可動部材210、220が高温となって可動部材210、220の強度が低下することを抑制することができる。その結果、可動部材210、220を正常に作動させることが可能となる。
 一般的に、環状の流路内を周方向に移動する流体は、遠心力により内径側から外径側に向かって移動する。そのため、環状の流路内には、内径側に流体が存在しない空間が形成されやすくなる。
 導入口422が排出口424より鉛直下方に位置する場合、導入口422から排出口424に向かう熱媒体は、少なくとも重力方向とは反対方向に向かって環状路420内を移動する。これにより、環状路420の内径側に熱媒体が満たされやすくなり、環状路420の内径側に熱媒体が存在しない空間が形成され難くなる。その結果、特に収容室ACの内径側に位置する可動部材210、220を効果的に加熱または冷却することができる。
 また、環状路420の外径端は、収容室ACの外径端より径方向外側に位置する。これにより、収容室ACの外径端を含む収容室AC全体を加熱または冷却することができる。
(第2実施形態)
 図10は、第2実施形態に係る熱媒体流路500の概略断面図である。上記第1実施形態の遠心圧縮機CCと実質的に等しい構成要素については、同一符号を付して説明を省略する。第2実施形態の熱媒体流路500は、第1環状路510、第2環状路520、第3環状路530、第4環状路540を備える点で上記第1実施形態と異なっている。ここで、第1環状路510の構成は、上記第1実施形態の環状路420の構成と同じであるため、詳細な説明を省略する。
 図10に示すように、第1環状路510は、収容室ACから回転軸方向に離隔している。つまり、第1環状路510は、収容室ACと連通していない。回転軸方向において第1環状路510の少なくとも一部は、リーディングエッジLEと収容室ACの間に配置される。また、第1環状路510の外径端は、収容室ACの外径端と等しいか、収容室ACの外径端より径方向外側に位置する。第1環状路510の外径端は、収容室AC内に収容される可動部材210、220の位置よりも径方向外側に位置する。
 第2環状路520は、導入路410と連通している。第2環状路520は、導入路410に対し、第1環状路510と反対側に配される。第1環状路510および第2環状路520は、導入路410を挟んで配置される。第2環状路520は、第1環状路510および導入路410よりもディフューザ流路11近くに配置される。第2環状路520は、ディフューザ流路11に対し回転軸方向に離隔して形成される。第2環状路520は、回転軸方向においてディフューザ流路11と対向して配置される。
 第3環状路530は、導入路410、排出路430、第1環状路510および第2環状路520と連通しておらず、導入路410とは別の不図示の導入路により熱媒体が供給される。また、第3環状路530は、排出路430とは別の不図示の排出路により熱媒体を排出する。第3環状路530は、第1環状路510に対してディフューザ流路11近くに配置される。第3環状路530は、第2環状路520に対して収容室AC近くに配置される。第3環状路530は、第1環状路510および第2環状路520の間に配置される。第3環状路530は、第1環状路510および第2環状路520よりも、コンプレッサインペラ9の羽根のチップ端の中央部に近接して配置される。
 第4環状路540は、導入路410、排出路430、第1環状路510および第2環状路520と連通しておらず、導入路410とは別の不図示の導入路により熱媒体が供給される。また、第4環状路540は、排出路430とは別の不図示の排出路により熱媒体を排出する。第4環状路540は、収容室ACに対して第1環状路510とは反対側に配置される。第1環状路510および第4環状路540の間には、収容室ACが配置される。換言すれば、回転軸方向において収容室ACの両側には、第1環状路510および第4環状路540が配される。なお、第2環状路520、第3環状路530、第4環状路540は、それぞれ図9に示す環状路420と同様に、吸気流路130の周囲にC形状に形成され、導入口から周方向に沿って排出口まで第1方向R1に円弧状に延在する。
 第2実施形態によれば、熱媒体流路500は、第2環状路520、第3環状路530、第4環状路540を備える。第2環状路520により、ディフューザ流路11を流通する圧縮空気を冷却することができる。また、ディフューザ流路11からコンプレッサハウジング100を介して収容室ACに伝達する熱をシャットアウトすることができる。
 第3環状路530により、第1環状路510とともに、シュラウド部121aに沿って逆流する空気を冷却することができる。また、第4環状路540により、可動部材210、220を両側から加熱または冷却することができる。
(第3実施形態)
 図11は、第3実施形態に係る熱媒体流路600の概略断面図である。上記第1実施形態の遠心圧縮機CCと実質的に等しい構成要素については、同一符号を付して説明を省略する。第3実施形態の熱媒体流路600は、導入路410、環状路420、排出路430の形状が上記第1実施形態と異なっている。
 図11に示すように、熱媒体流路600は、導入路610、環状路620、排出路630を備える。導入路610は、導入開口412から環状路620の導入口622に向かって熱媒体を導く。導入口622は、環状路620の内径側に位置し、環状路620の内周面と回転軸方向に連続している。
 環状路620は、収容室ACから回転軸方向に離隔している。つまり、環状路620は、収容室ACと連通していない。回転軸方向において環状路620の少なくとも一部は、リーディングエッジLEと収容室ACの間に配置される。また、環状路620の外径端は、収容室ACの外径端と等しいか、収容室ACの外径端より径方向外側に位置する。環状路620の外径端は、収容室AC内に収容される可動部材210、220の位置よりも径方向外側に位置する。
 環状路620は、回転軸方向に沿った断面において台形状を有する。ただし、これに限定されず、環状路620は、回転軸方向に沿った断面において三角形状や半円形状を有してもよい。環状路620の外径端の幅は、内径端の幅より狭い。換言すれば、環状路620の内径端の幅は、外径端の幅より広い。なお、環状路620は、図9に示す環状路420と同様に、吸気流路130の周囲にC形状に形成され、導入口622から周方向に沿って排出口624まで第1方向R1に円弧状に延在する。
 図12は、第3実施形態に係る排出路630の概略断面図である。排出路630は、環状路620の排出口624から排出開口432に向かって熱媒体を導く。排出口624は、環状路620の内径側に位置し、環状路620の内周面と回転軸方向に連続している。なお、排出路630の構成は、導入路610の構成と同様であるため、詳細な説明を省略する。
 第3実施形態によれば、導入口622および排出口624は、環状路620の内径側に位置し、環状路620の内周面と回転軸方向に連続している。また、環状路620の外径端側の幅は、内径端側の幅より狭い。これにより、環状路620の外径側よりも内径側に多くの熱媒体を供給することができ、熱媒体に遠心力が作用しても収容室ACの内径側の冷却に必要な熱媒体の量を確保することができる。
 以上、添付図面を参照しながら本開示の一実施形態について説明したが、本開示はかかる実施形態に限定されないことは言うまでもない。当業者であれば、特許請求の範囲に記載された範疇において、各種の変更例または修正例に想到し得ることは明らかであり、それらについても当然に本開示の技術的範囲に属するものと了解される。
 例えば、上述した第1実施形態、第2実施形態、および、第3実施形態の構成を組み合わせてもよい。
 上記第1実施形態では、環状路420の導入口422が排出口424より鉛直下方に位置する例について説明した。しかし、これに限定されず、導入口422は、排出口424より鉛直上方に位置してもよい。
 上記第1実施形態では、環状路420の外径端が収容室ACの外径端より径方向外側に位置する例について説明した。しかし、これに限定されず、環状路420の外径端は、収容室ACの外径端より径方向内側に位置してもよい。
 上記第3実施形態では、環状路620の外径端側の幅が内径端側の幅より狭い例について説明した。しかし、これに限定されず、環状路620の外径端側の幅は、内径端側の幅より広くてもよい。
9 コンプレッサインペラ
100 コンプレッサハウジング(ハウジング)
130 吸気流路
210 第1可動部材(可動部材)
220 第2可動部材(可動部材)
400 熱媒体流路
410 導入路
412 導入開口
420 環状路
422 導入口
424 排出口
430 排出路
432 排出開口
500 熱媒体流路
510 第1環状路
520 第2環状路
530 第3環状路
540 第4環状路
600 熱媒体流路
610 導入路
620 環状路
630 排出路
AC 収容室
CC 遠心圧縮機
TC 過給機

Claims (5)

  1.  吸気流路を含むハウジングと、
     前記吸気流路に配されるコンプレッサインペラと、
     前記ハウジングのうち前記コンプレッサインペラよりも吸気の流れにおいて上流側に形成される収容室と、
     前記収容室に配される可動部材と、
     前記ハウジングに形成される環状路であって、当該環状路は、前記ハウジングの外部と連通し、前記ハウジングの外部から供給される熱媒体を流通させ、当該環状路の少なくとも一部は、前記収容室と前記コンプレッサインペラのリーディングエッジとの間に配置される、環状路と、
    を備える遠心圧縮機。
  2.  前記環状路の導入口は、前記環状路の排出口より鉛直下方に位置する、
    請求項1に記載の遠心圧縮機。
  3.  前記環状路の外径端は、前記収容室の外径端より径方向外側に位置する、
    請求項1または2に記載の遠心圧縮機。
  4.  前記環状路の外径端の幅は、内径端の幅より狭い、
    請求項1~3のいずれか1項に記載の遠心圧縮機。
  5.  請求項1~4のいずれか1項に記載の遠心圧縮機を備える過給機。
PCT/JP2022/011013 2021-07-13 2022-03-11 遠心圧縮機および過給機 WO2023286350A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN202280021214.XA CN116981850A (zh) 2021-07-13 2022-03-11 离心压缩机以及增压器
DE112022001218.8T DE112022001218T5 (de) 2021-07-13 2022-03-11 Zentrifugalverdichter und Turbolader
JP2023535117A JP7533795B2 (ja) 2021-07-13 2022-03-11 遠心圧縮機および過給機
US18/466,118 US11982221B2 (en) 2021-07-13 2023-09-13 Centrifugal compressor and turbocharger

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-115967 2021-07-13
JP2021115967 2021-07-13

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/466,118 Continuation US11982221B2 (en) 2021-07-13 2023-09-13 Centrifugal compressor and turbocharger

Publications (1)

Publication Number Publication Date
WO2023286350A1 true WO2023286350A1 (ja) 2023-01-19

Family

ID=84919929

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/011013 WO2023286350A1 (ja) 2021-07-13 2022-03-11 遠心圧縮機および過給機

Country Status (5)

Country Link
US (1) US11982221B2 (ja)
JP (1) JP7533795B2 (ja)
CN (1) CN116981850A (ja)
DE (1) DE112022001218T5 (ja)
WO (1) WO2023286350A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019073584A1 (ja) * 2017-10-12 2019-04-18 三菱重工エンジン&ターボチャージャ株式会社 コンプレッサーハウジング及びこのコンプレッサーハウジングを備えるターボチャージャー
JP2019167931A (ja) * 2018-03-26 2019-10-03 いすゞ自動車株式会社 コンプレッサ用冷却機構
WO2020031507A1 (ja) * 2018-08-07 2020-02-13 株式会社Ihi 遠心圧縮機および過給機

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4265589A (en) * 1979-06-18 1981-05-05 Westinghouse Electric Corp. Method and apparatus for surge detection and control in centrifugal gas compressors
DE102010063197A1 (de) * 2010-12-16 2012-06-21 Bayerische Motoren Werke Aktiengesellschaft Verdichter für die Aufladung einer Brennkraftmaschine
JP6586772B2 (ja) 2015-05-14 2019-10-09 アイシン精機株式会社 流体圧ポンプ
US10570905B2 (en) * 2017-08-11 2020-02-25 Garrett Transportation I Inc. Centrifugal compressor for a turbocharger, having synergistic ported shroud and inlet-adjustment mechanism
US10550761B2 (en) 2018-02-26 2020-02-04 Garrett Transportation I Inc. Turbocharger compressor having adjustable-trim mechanism
JP7375576B2 (ja) 2020-01-27 2023-11-08 マツダ株式会社 車両制御装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019073584A1 (ja) * 2017-10-12 2019-04-18 三菱重工エンジン&ターボチャージャ株式会社 コンプレッサーハウジング及びこのコンプレッサーハウジングを備えるターボチャージャー
JP2019167931A (ja) * 2018-03-26 2019-10-03 いすゞ自動車株式会社 コンプレッサ用冷却機構
WO2020031507A1 (ja) * 2018-08-07 2020-02-13 株式会社Ihi 遠心圧縮機および過給機

Also Published As

Publication number Publication date
US11982221B2 (en) 2024-05-14
JP7533795B2 (ja) 2024-08-14
DE112022001218T5 (de) 2024-01-11
CN116981850A (zh) 2023-10-31
JPWO2023286350A1 (ja) 2023-01-19
US20240003289A1 (en) 2024-01-04

Similar Documents

Publication Publication Date Title
JP5160656B2 (ja) 可変面積ディフューザ
JP6331736B2 (ja) 可変ノズルユニット及び可変容量型過給機
WO2020031507A1 (ja) 遠心圧縮機および過給機
US9702264B2 (en) Variable nozzle unit and variable geometry system turbocharger
WO2015114971A1 (ja) 可変ノズルユニット及び可変容量型過給機
JP5261390B2 (ja) ベーンを備えたロータリー・ポンプ
CN112154261A (zh) 轴承构造以及增压器
JP6152049B2 (ja) 可変ノズルユニット及び可変容量型過給機
WO2023286350A1 (ja) 遠心圧縮機および過給機
JP6939989B2 (ja) 遠心圧縮機
JP7298703B2 (ja) 遠心圧縮機
JP2015034470A (ja) 可変容量型過給機
WO2023017718A1 (ja) 遠心圧縮機および過給機
JP7255697B2 (ja) 排水構造および過給機
JP6146507B2 (ja) 可変ノズルユニット及び可変容量型過給機
WO2022259625A1 (ja) 遠心圧縮機および過給機
JP7211529B2 (ja) 遠心圧縮機
WO2022054348A1 (ja) 遠心圧縮機および過給機
JP7371760B2 (ja) 遠心圧縮機
JP7302738B2 (ja) 可変容量型過給機
WO2024053144A1 (ja) 遠心圧縮機
CN111183279A (zh) 增压器的密封构造
WO2022054598A1 (ja) 遠心圧縮機および過給機
CN113728167B (zh) 离心压缩机和增压器
JPH01208501A (ja) 可変容量タービン

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22841700

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023535117

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 202280021214.X

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 112022001218

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22841700

Country of ref document: EP

Kind code of ref document: A1