WO2022054348A1 - 遠心圧縮機および過給機 - Google Patents

遠心圧縮機および過給機 Download PDF

Info

Publication number
WO2022054348A1
WO2022054348A1 PCT/JP2021/019858 JP2021019858W WO2022054348A1 WO 2022054348 A1 WO2022054348 A1 WO 2022054348A1 JP 2021019858 W JP2021019858 W JP 2021019858W WO 2022054348 A1 WO2022054348 A1 WO 2022054348A1
Authority
WO
WIPO (PCT)
Prior art keywords
flow path
main body
radial
side flow
communication flow
Prior art date
Application number
PCT/JP2021/019858
Other languages
English (en)
French (fr)
Inventor
淳 米村
亮太 崎坂
Original Assignee
株式会社Ihi
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Ihi filed Critical 株式会社Ihi
Publication of WO2022054348A1 publication Critical patent/WO2022054348A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B37/00Engines characterised by provision of pumps driven at least for part of the time by exhaust
    • F02B37/12Control of the pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B39/00Component parts, details, or accessories relating to, driven charging or scavenging pumps, not provided for in groups F02B33/00 - F02B37/00
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/40Casings; Connections of working fluid
    • F04D29/42Casings; Connections of working fluid for radial or helico-centrifugal pumps
    • F04D29/44Fluid-guiding means, e.g. diffusers
    • F04D29/46Fluid-guiding means, e.g. diffusers adjustable
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Definitions

  • Patent Document 1 discloses a centrifugal compressor having a throttle mechanism in the compressor housing.
  • the diaphragm mechanism includes a diaphragm member.
  • the throttle member is configured to be movable between a protruding position protruding into the intake flow path and a retracting position retracting from the intake flow path. When the throttle member projects into the intake flow path, the air flowing back in the intake flow path is blocked by the throttle member. Surging is suppressed by blocking the air flowing back in the intake flow path.
  • Patent Document 1 As described above, in Patent Document 1, the air flowing back during surging can be blocked, and the compressor efficiency can be improved. However, further improvement in compressor efficiency is desired.
  • An object of the present disclosure is to provide a centrifugal compressor capable of improving compressor efficiency.
  • the centrifugal compressor includes a first divided main body, a second divided main body connected to the first divided main body, and an impeller formed on the second divided main body.
  • a throttle configured to be movable between a communication flow path connecting the and the inlet side flow path, a protruding position where the throttle member protrudes into the inlet side flow path, and a retracted position where the throttle member retracts from the inlet side flow path. It includes a mechanism and a valve configured to be movable between a closed position that closes the communication flow path and an open position that opens the communication flow path.
  • a second radial direction plane may be provided.
  • the first axial plane and the second axial plane are formed on the radial outer side of the inlet side flow path over the entire circumference of the inlet side flow path, and the first radial direction plane and the second radial direction plane communicate with each other. It may be formed on the radial outer side of the road over the entire circumference of the communication flow path.
  • the inlet side flow path is divided into a first inlet side flow path formed in the first division main body and a second inlet side flow path formed in the second division main body, and the inner diameter of the first inlet side flow path is , It may be smaller than the inner diameter of the second inlet side flow path.
  • the first axial plane and the second axial plane are formed on the radial outer side of the communication flow path over the entire circumference of the communication flow path, and the first radial direction surface and the second radial direction surface are the inlet side flow path. It may be formed on the outer side in the radial direction over the entire circumference of the inlet side flow path.
  • the communication flow path is divided into a first communication flow path formed in the first division main body and a second communication flow path formed in the second division main body, and the inner diameter of the first communication flow path is the second communication flow path. It may be larger than the inner diameter of the flow path.
  • the turbocharger includes the above centrifugal compressor.
  • the compressor efficiency can be improved.
  • FIG. 1 is a schematic cross-sectional view of the turbocharger.
  • FIG. 2 is an extracted view of the broken line portion of FIG.
  • FIG. 3 is an exploded perspective view of the members constituting the link mechanism.
  • FIG. 4 is a sectional view taken along line IV-IV of FIG.
  • FIG. 5 is a first diagram for explaining the operation of the link mechanism.
  • FIG. 6 is a second diagram for explaining the operation of the link mechanism.
  • FIG. 7 is a third diagram for explaining the operation of the link mechanism.
  • FIG. 8 is an extraction diagram of the alternate long and short dash line portion of FIG.
  • FIG. 9 is a diagram showing an open state in which the valve opens the communication flow path.
  • FIG. 10 is a schematic configuration diagram of the centrifugal compressor in the first modification.
  • FIG. 1 is a schematic cross-sectional view of the turbocharger TC.
  • the arrow L direction shown in FIG. 1 will be described as the left side of the turbocharger TC.
  • the arrow R direction shown in FIG. 1 will be described as the right side of the turbocharger TC.
  • the supercharger TC includes a supercharger main body 1.
  • the turbocharger main body 1 includes a bearing housing 2, a turbine housing 4, and a compressor housing 100.
  • a turbine housing 4 is connected to the left side of the bearing housing 2 by a fastening bolt 3.
  • a compressor housing 100 is connected to the right side of the bearing housing 2 by a fastening bolt 5.
  • a housing hole 2a is formed in the bearing housing 2.
  • the accommodating hole 2a penetrates the bearing housing 2 in the left-right direction of the turbocharger TC.
  • a bearing 6 is arranged in the accommodating hole 2a.
  • FIG. 1 shows a fully floating bearing as an example of the bearing 6.
  • the bearing 6 may be another radial bearing such as a semi-floating bearing or a rolling bearing.
  • a part of the shaft 7 is arranged in the accommodating hole 2a.
  • the shaft 7 is rotatably supported by the bearing 6.
  • a turbine impeller 8 is provided at the left end of the shaft 7.
  • the turbine impeller 8 is rotatably housed in the turbine housing 4.
  • a compressor impeller 9 is provided at the right end of the shaft 7.
  • the compressor impeller 9 is rotatably housed in the compressor housing 100.
  • An intake port 10 is formed in the compressor housing 100.
  • the intake port 10 opens on the right side of the turbocharger TC.
  • the intake port 10 is connected to an air cleaner (not shown).
  • a diffuser flow path 11 is formed between the bearing housing 2 and the compressor housing 100.
  • the diffuser flow path 11 is formed in an annular shape from the inside to the outside in the radial direction (hereinafter, simply referred to as the radial direction) of the shaft 7 (compressor impeller 9).
  • the diffuser flow path 11 communicates with the intake port 10 via the compressor impeller 9 on the inner side in the radial direction.
  • the diffuser flow path 11 pressurizes air.
  • a compressor scroll flow path 12 is formed in the compressor housing 100.
  • the compressor scroll flow path 12 is formed in an annular shape.
  • the compressor scroll flow path 12 is located, for example, radially outside the compressor impeller 9.
  • the compressor scroll flow path 12 communicates with the intake port of an engine (not shown) and the diffuser flow path 11.
  • the intake air is pressurized and accelerated in the process of flowing between the blades of the compressor impeller 9.
  • the pressurized and accelerated air is pressurized in the diffuser flow path 11 and the compressor scroll flow path 12.
  • the pressurized air flows out from a discharge port (not shown) and is guided to the intake port of the engine.
  • An exhaust port 13 is formed in the turbine housing 4.
  • the exhaust port 13 opens on the left side of the turbocharger TC.
  • the exhaust port 13 is connected to an exhaust gas purification device (not shown).
  • a communication flow path 14 and a turbine scroll flow path 15 are formed in the turbine housing 4.
  • the turbine scroll flow path 15 is located radially outside the turbine impeller 8.
  • the communication flow path 14 is located between the turbine impeller 8 and the turbine scroll flow path 15.
  • the turbine scroll flow path 15 communicates with a gas inlet (not shown). Exhaust gas discharged from an engine exhaust manifold (not shown) is guided to the gas inlet.
  • the communication flow path 14 connects the turbine scroll flow path 15 and the exhaust port 13 via the turbine impeller 8. The exhaust gas guided from the gas inlet to the turbine scroll flow path 15 is guided to the exhaust port 13 via the communication flow path 14 and the blades of the turbine impeller 8. The exhaust gas rotates the turbine impeller 8 in the distribution process.
  • the rotational force of the turbine impeller 8 is transmitted to the compressor impeller 9 via the shaft 7. As described above, the air is pressurized by the rotational force of the compressor impeller 9 and guided to the intake port of the engine.
  • the turbocharger TC of this embodiment includes a centrifugal compressor CC.
  • the centrifugal compressor CC includes a compressor housing 100, a compressor impeller 9, and a bearing housing 2.
  • the centrifugal compressor CC of the present embodiment will be described as being driven by the turbine impeller 8.
  • the present invention is not limited to this, and the centrifugal compressor CC may be driven by an engine (not shown) or an electric motor (motor) (not shown).
  • the centrifugal compressor CC may be incorporated in a device other than the turbocharger TC, or may be a single unit.
  • FIG. 2 is an extracted view of the broken line portion of FIG.
  • FIG. 2 is a schematic configuration diagram of the centrifugal compressor CC of the present embodiment.
  • the centrifugal compressor CC includes a compressor housing 100, a throttle mechanism 200, and a valve (which may also be referred to as an “open / close valve” in the present disclosure) 300.
  • the arrow L direction will be described as the downstream side in the intake flow direction (hereinafter, may be simply referred to as “downstream side”).
  • the arrow R direction will be described as the upstream side in the intake flow direction (hereinafter, may be simply referred to as “upstream side”).
  • the compressor housing 100 includes a first split main body 110 and a second split main body 120.
  • the first split main body 110 is located on the side opposite to the bearing housing 2 with respect to the second split main body 120 in the rotation axis direction (hereinafter, simply referred to as the rotation axis direction) of the shaft 7 (compressor impeller 9).
  • the second split main body 120 is located between the first split main body 110 and the bearing housing 2.
  • the second split main body 120 faces the bearing housing 2 in the direction of the rotation axis.
  • the second split main body 120 is connected to the bearing housing 2 in the rotation axis direction.
  • the second divided main body 120 faces the first divided main body 110 in the direction of the rotation axis.
  • the first divided main body 110 is connected to the second divided main body 120 in the rotation axis direction.
  • the first divided main body 110 has a roughly cylindrical shape.
  • a through hole 111 is formed in the first division main body 110.
  • the first split main body 110 has an end face 112 on the side close to (connecting) with the second split main body 120. Further, the first divided main body 110 has an end face 113 on the side separated from the second divided main body 120.
  • An intake port 10 is formed on the end surface 113.
  • the through hole 111 extends from the end face 112 to the end face 113 along the rotation axis direction. That is, the through hole 111 penetrates the first division main body 110 in the rotation axis direction.
  • the through hole 111 has a parallel portion 111a and a reduced diameter portion 111b.
  • the parallel portion 111a is located on the end face 113 side of the diameter reduction portion 111b.
  • the inner diameter of the parallel portion 111a is substantially constant over the direction of the axis of rotation.
  • the reduced diameter portion 111b is located closer to the end surface 112 than the parallel portion 111a.
  • the reduced diameter portion 111b is continuous with the parallel portion 111a. In the reduced diameter portion 111b, the inner diameter of the portion continuous with the parallel portion 111a is approximately equal to the inner diameter of the parallel portion 111a.
  • the inner diameter of the reduced diameter portion 111b becomes smaller as it is separated from the parallel portion 111a (closer to the end face 112).
  • a notch 112a is formed on the end face 112.
  • the cutout portion 112a is recessed from the end surface 112 toward the end surface 113.
  • the cutout portion 112a is formed on the outer peripheral edge of the end face 112.
  • the cutout portion 112a is, for example, generally annular when viewed from the direction of the rotation axis.
  • a storage chamber AC is formed on the end face 112.
  • the accommodation chamber AC is formed on the upstream side of the leading edge LE of the blades of the compressor impeller 9.
  • the accommodation chamber AC includes an accommodation groove 112b, a bearing hole 112d, and an accommodation hole 115.
  • the accommodation hole 115 will be described later with reference to FIG.
  • the accommodating groove 112b is formed on the end face 112.
  • the accommodating groove 112b is located between the notch 112a and the through hole 111.
  • the accommodating groove 112b is recessed from the end surface 112 toward the end surface 113.
  • the accommodating groove 112b is, for example, generally annular when viewed from the direction of the rotation axis.
  • the accommodating groove 112b communicates with the through hole 111 on the inner side in the radial direction.
  • a bearing hole 112d is formed in the wall surface 112c of the accommodating groove 112b parallel to the end surface 113.
  • the bearing hole 112d extends in the rotation axis direction from the wall surface 112c toward the end surface 113.
  • Two bearing holes 112d are provided so as to be separated from each other in the rotation direction (hereinafter, simply referred to as a rotation direction and a circumferential direction) of the shaft 7 (compressor impeller 9).
  • the two bearing holes 112d are arranged at positions offset by 180 degrees in the rotational direction.
  • a through hole 121 is formed in the second divided main body 120.
  • the second split main body 120 has an end face 122 on the side close to (connecting) with the first split main body 110.
  • the second split main body 120 has an end face 123 on a side separated from the first split main body 110 (a side connected to the bearing housing 2).
  • the through hole 121 extends from the end face 122 to the end face 123 along the rotation axis direction. That is, the through hole 121 penetrates the second division main body 120 in the rotation axis direction.
  • the through hole 121 communicates with the through hole 111.
  • a compressor impeller 9 is arranged in the through hole 121. That is, a part of the through hole 121 forms an impeller accommodating space for accommodating the compressor impeller 9.
  • a shroud portion 121a is formed on the inner wall of the through hole 121. The shroud portion 121a faces the compressor impeller 9 from the outside in the radial direction. The outer diameter of the compressor impeller 9 increases as it approaches the bearing housing 2 from the leading edge LE. The inner diameter of the shroud portion 121a increases as it is separated from the end face 122 (closer to the end face 123).
  • a housing groove 122a is formed on the end face 122.
  • the accommodating groove 122a is recessed from the end face 122 toward the end face 123.
  • the accommodating groove 122a is, for example, generally annular when viewed from the direction of the rotation axis.
  • the end face 112 of the first division main body 110 is inserted into the accommodating groove 122a.
  • the end surface 112 of the first division main body 110 abuts on the wall surface 122b of the accommodating groove 122a parallel to the end surface 123.
  • a storage chamber AC is formed between the first divided main body 110 (wall surface 112c) and the second divided main body 120 (wall surface 122b).
  • the through hole 111 of the first division main body 110 and a part of the through hole 121 of the second division main body 120 form an inlet side flow path 130 on the inlet side (upstream side) of the compressor impeller 9.
  • the inlet side flow path 130 is formed so as to straddle the first divided main body 110 and the second divided main body 120.
  • the inlet side flow path 130 extends from the intake port 10 to the leading edge LE in the rotation axis direction.
  • the through hole 121 of the second division main body 120 forms an outlet side flow path 140 on the outlet side (downstream side) of the compressor impeller 9.
  • the outlet side flow path 140 is located radially outside the compressor impeller 9.
  • the outlet side flow path 140 includes a diffuser flow path 11 and a compressor scroll flow path 12.
  • the cross-sectional shape perpendicular to the rotation axis direction is, for example, a circle centered on the rotation axis of the compressor impeller 9.
  • the cross-sectional shape of the inlet side flow path 130 is not limited to this, and may be, for example, an elliptical shape.
  • FIG. 3 is an exploded perspective view of the members constituting the diaphragm mechanism 200.
  • the throttle mechanism 200 includes a first division main body 110, a first throttle member 210, a second throttle member 220, a connecting member 230, and a rod 240.
  • the throttle mechanism 200 is arranged on the upstream side of the leading edge LE of the compressor impeller 9 in the rotation axis direction.
  • the first drawing member 210 is arranged in the accommodation groove 112b (accommodation chamber AC). Specifically, the first drawing member 210 is arranged between the wall surface 112c of the accommodating groove 112b and the wall surface 122b of the accommodating groove 122a (see FIG. 2) in the rotation axis direction.
  • the first throttle member 210 has a main body portion B1.
  • the main body portion B1 includes a curved portion 211 and an arm portion 212.
  • the curved portion 211 extends in the circumferential direction of the compressor impeller 9.
  • the curved portion 211 has a substantially semicircular arc shape.
  • the curved portion 211 has a first end surface 211a and a second end surface 211b in the circumferential direction.
  • the first end surface 211a and the second end surface 211b extend in parallel in the radial direction and the rotation axis direction. However, the first end surface 211a and the second end surface 211b may be inclined with respect to the radial direction and the rotation axis direction.
  • An arm portion 212 is provided on the first end surface 211a of the curved portion 211.
  • the arm portion 212 extends radially outward with respect to the first end surface 211a of the curved portion 211. Further, the arm portion 212 projects from the first end surface 211a toward the second throttle member 220.
  • the second throttle member 220 is arranged in the accommodation groove 112b (accommodation chamber AC). Specifically, the second throttle member 220 is arranged between the wall surface 112c of the accommodating groove 112b and the wall surface 122b of the accommodating groove 122a (see FIG. 2) in the rotation axis direction.
  • the second diaphragm member 220 has a main body portion B2.
  • the main body portion B2 includes a curved portion 221 and an arm portion 222.
  • the curved portion 221 extends in the circumferential direction of the compressor impeller 9.
  • the curved portion 221 has a substantially semicircular arc shape.
  • the curved portion 221 has a first end surface 221a and a second end surface 221b in the circumferential direction.
  • the first end surface 221a and the second end surface 221b extend in parallel in the radial direction and the rotation axis direction. However, the first end surface 221a and the second end surface 221b may be inclined with respect to the radial direction and the rotation axis direction.
  • An arm portion 222 is provided on the first end surface 221a of the curved portion 221.
  • the arm portion 222 extends radially outward with respect to the first end surface 221a of the curved portion 221. Further, the arm portion 222 projects from the first end surface 221a toward the first throttle member 210.
  • the curved portion 211 faces the curved portion 221 with the rotation center axis (inlet side flow path 130) of the compressor impeller 9 interposed therebetween.
  • the first end surface 211a of the curved portion 211 faces the second end surface 221b of the curved portion 221 in the circumferential direction.
  • the second end surface 211b of the curved portion 211 faces the first end surface 221a of the curved portion 221 in the circumferential direction.
  • the first drawing member 210 and the second drawing member 220 are configured so that the curved portions 211 and 221 can move in the radial direction, as will be described in detail later.
  • the connecting member 230 is arranged on the upstream side of the first drawing member 210 and the second drawing member 220.
  • the connecting member 230 has a generally arcuate shape.
  • a first bearing hole 231 is formed at one end of the connecting member 230 in the circumferential direction, and a second bearing hole 232 is formed at the other end.
  • the first bearing hole 231 and the second bearing hole 232 open on the downstream surface 233 on the downstream side of the connecting member 230.
  • the first bearing hole 231 and the second bearing hole 232 extend in the rotation axis direction.
  • the first bearing hole 231 and the second bearing hole 232 are composed of non-penetrating holes.
  • the first bearing hole 231 and the second bearing hole 232 may penetrate the connecting member 230 in the rotation axis direction.
  • the connecting member 230 is connected to the first drawing member 210 and the second drawing member 220 as described in detail later.
  • a rod connecting portion 234 is formed between the first bearing hole 231 and the second bearing hole 232 in the circumferential direction.
  • the rod connecting portion 234 is formed on the upstream surface 235 on the upstream side of the connecting member 230.
  • the rod connecting portion 234 projects from the upstream surface 235 in the direction of the rotation axis.
  • the rod connecting portion 234 has, for example, a roughly cylindrical shape.
  • the rod 240 has a roughly cylindrical shape.
  • a flat surface portion 241 is formed at one end of the rod 240, and a connecting portion 243 is formed at the other end.
  • the flat surface portion 241 extends in the plane direction substantially perpendicular to the rotation axis direction.
  • a bearing hole 242 opens in the flat surface portion 241.
  • the bearing hole 242 extends in the direction of the rotation axis.
  • the connecting portion 243 has a connecting hole 243a.
  • An actuator described later is connected to the connecting portion 243 (connecting hole 243a).
  • the bearing hole 242 may be a long hole whose length in the direction perpendicular to the rotation axis direction and the axial direction of the rod 240 is longer than the axial length of the rod 240, for example.
  • a large diameter portion 244 and two small diameter portions 245 are formed between the flat surface portion 241 and the connecting portion 243.
  • the large diameter portion 244 is arranged between the two rod small diameter portions 245.
  • the small diameter portion 245 close to the flat surface portion 241 connects the large diameter portion 244 and the flat surface portion 241.
  • the small diameter portion 245 close to the connecting portion 243 connects the large diameter portion 244 and the connecting portion 243.
  • the outer diameter of the large diameter portion 244 is larger than the outer diameter of the two small diameter portions 245.
  • An insertion hole 114 is formed in the first split main body 110.
  • One end 114a of the insertion hole 114 opens to the outside of the first division main body 110.
  • the insertion hole 114 extends, for example, in a direction perpendicular to the rotation axis direction.
  • the insertion hole 114 is located outside the through hole 111 (inlet side flow path 130) in the radial direction.
  • the flat surface portion 241 side of the rod 240 is inserted into the insertion hole 114.
  • the rod 240 is restricted from moving in a direction other than the central axial direction of the insertion hole 114 (the central axial direction of the rod 240).
  • a storage hole 115 is formed in the first split main body 110.
  • the accommodating hole 115 opens in the wall surface 112c of the accommodating groove 112b.
  • the accommodating hole 115 is recessed upstream from the wall surface 112c.
  • the accommodating hole 115 is located on the downstream side of the insertion hole 114.
  • the accommodating hole 115 has a substantially arc shape when viewed from the direction of the rotation axis.
  • the accommodating hole 115 extends longer in the circumferential direction than the connecting member 230.
  • the accommodating hole 115 is separated from the bearing hole 112d in the circumferential direction.
  • a communication hole 116 is formed in the first division main body 110.
  • the communication hole 116 is formed in the accommodating hole 115.
  • the communication hole 116 connects the insertion hole 114 and the accommodating hole 115.
  • the communication hole 116 is formed in an approximately intermediate portion in the circumferential direction of the accommodating hole 115.
  • the communication hole 116 is, for example, an elongated hole extending substantially parallel to the extension direction of the insertion hole 114.
  • the width in the longitudinal direction is larger than the width in the lateral direction.
  • the width of the insertion hole 114 in the lateral direction is larger than the outer diameter of the rod connecting portion 234 of the connecting member 230.
  • the connecting member 230 is accommodated in the accommodation hole 115 (accommodation chamber AC). In this way, the first drawing member 210, the second drawing member 220, and the connecting member 230 are arranged in the accommodation chamber AC.
  • the accommodating hole 115 is longer in the circumferential direction and larger in the radial direction than the connecting member 230. Therefore, the connecting member 230 is allowed to move in the plane direction perpendicular to the rotation axis direction inside the accommodating hole 115.
  • the rod connection portion 234 is inserted from the communication hole 116 into the insertion hole 114.
  • the flat surface portion 241 of the rod 240 is inserted into the insertion hole 114.
  • the bearing hole 242 of the flat surface portion 241 faces the communication hole 116 in the rotation axis direction.
  • the rod connecting portion 234 is inserted (connected) into the bearing hole 242.
  • the rod connection portion 234 is supported by the bearing hole 242.
  • FIG. 4 is a sectional view taken along line IV-IV of FIG.
  • the first throttle member 210 has a connecting shaft portion 213 and a rotating shaft portion 214.
  • the connecting shaft portion 213 and the rotating shaft portion 214 project in the rotation axis direction from the upstream surface of the first drawing member 210 facing the wall surface 112c.
  • the rotation shaft portion 214 extends in parallel with the connecting shaft portion 213.
  • the connecting shaft portion 213 and the rotating shaft portion 214 have a substantially cylindrical shape.
  • the outer diameter of the connecting shaft portion 213 is smaller than the inner diameter of the first bearing hole 231 of the connecting member 230.
  • the connecting shaft portion 213 is inserted into the first bearing hole 231.
  • the connecting shaft portion 213 is rotatably supported by the first bearing hole 231.
  • the outer diameter of the rotating shaft portion 214 is smaller than the inner diameter of the bearing hole 112d of the first split main body 110.
  • the rotating shaft portion 214 is inserted into the bearing hole 112d on the vertically upper side (the side close to the rod 240) of the two bearing holes 112d.
  • the rotary shaft portion 214 is rotatably supported by the bearing hole 112d.
  • the second throttle member 220 has a connecting shaft portion 223 and a rotating shaft portion 224.
  • the connecting shaft portion 223 and the rotating shaft portion 224 project in the rotation axis direction from the upstream surface of the second drawing member 220 facing the wall surface 112c.
  • the rotation shaft portion 224 extends parallel to the connecting shaft portion 223.
  • the connecting shaft portion 223 and the rotating shaft portion 224 have a substantially cylindrical shape.
  • the outer diameter of the connecting shaft portion 223 is smaller than the inner diameter of the second bearing hole 232 of the connecting member 230.
  • the connecting shaft portion 223 is inserted into the second bearing hole 232.
  • the connecting shaft portion 223 is rotatably supported by the second bearing hole 232.
  • the outer diameter of the rotating shaft portion 224 is smaller than the inner diameter of the bearing hole 112d of the first split main body 110.
  • the rotating shaft portion 224 is inserted into the bearing hole 112d on the vertically lower side (the side separated from the rod 240) of the two bearing holes 112d.
  • the rotary shaft portion 224 is rotatably supported by the bearing hole 112d.
  • the aperture mechanism 200 is composed of a four-section link mechanism.
  • the four links (sections) are a first drawing member 210, a second drawing member 220, a first division main body 110, and a connecting member 230. Since the throttle mechanism 200 is composed of a four-node link mechanism, it has a limited chain and has one degree of freedom and is easy to control.
  • FIG. 5 is a first diagram for explaining the operation of the aperture mechanism 200.
  • FIGS. 5, 6 and 7 below a view of the throttle mechanism 200 as viewed from the intake port 10 side is shown.
  • the end portion of the drive shaft 251 of the actuator 250 is connected to the connecting portion 243 of the rod 240.
  • the first drawing member 210 and the second drawing member 220 are in contact with each other.
  • the protruding portion 215 which is an inner portion in the radial direction of the first throttle member 210, protrudes (exposed) into the inlet side flow path 130.
  • the protruding portion 225 which is an inner portion in the radial direction, protrudes (exposed) into the inlet side flow path 130.
  • the positions of the first diaphragm member 210 and the second diaphragm member 220 in this state are referred to as protrusion positions (or diaphragm positions).
  • annular hole 260 is formed by the protrusion 215 and the protrusion 225.
  • the inner diameter of the annular hole 260 is smaller than the inner diameter of the inlet side flow path 130 at the position where the protrusions 215 and 225 protrude.
  • the inner diameter of the annular hole 260 is, for example, smaller than the inner diameter of any position of the inlet side flow path 130.
  • FIG. 6 is a second diagram for explaining the operation of the aperture mechanism 200.
  • FIG. 7 is a third diagram for explaining the operation of the aperture mechanism 200.
  • the actuator 250 linearly moves the rod 240 in a direction intersecting the rotation axis direction (vertical direction in FIGS. 6 and 7). In FIGS. 6 and 7, the rod 240 moves upward from the position shown in FIG.
  • the amount of movement of the rod 240 with respect to the arrangement of FIG. 5 is larger in the arrangement of FIG. 7 than in the arrangement of FIG.
  • the connecting member 230 moves upward in FIGS. 6 and 7 via the rod connecting portion 234. At this time, the connecting member 230 is allowed to rotate about the rod connecting portion 234 as the rotation center. Further, the inner diameter of the bearing hole 242 of the rod 240 has a slight play with respect to the outer diameter of the rod connecting portion 234. Therefore, the connecting member 230 is slightly allowed to move in the plane direction perpendicular to the rotation axis direction.
  • the aperture mechanism 200 is a four-section link mechanism.
  • the connecting member 230, the first drawing member 210, and the second drawing member 220 exhibit one degree of freedom with respect to the first divided main body 110. Specifically, the connecting member 230 slightly swings in the left-right direction while slightly rotating counterclockwise in FIGS. 6 and 7 within the above allowable range.
  • the rotation shaft portion 214 is supported by the first division main body 110.
  • the rotation shaft portion 214 is restricted from moving in the plane direction perpendicular to the rotation axis direction.
  • the connecting shaft portion 213 is supported by the connecting member 230. Since the connecting member 230 is allowed to move, the connecting shaft portion 213 is provided so as to be movable in the plane direction perpendicular to the rotation axis direction. As a result, as the connecting member 230 moves, the first throttle member 210 rotates clockwise in FIGS. 6 and 7 with the rotation shaft portion 214 as the center of rotation.
  • the rotation shaft portion 224 is supported by the first division main body 110.
  • the rotation shaft portion 224 is restricted from moving in the plane direction perpendicular to the rotation axis direction.
  • the connecting shaft portion 223 is supported by the connecting member 230. Since the connecting member 230 is allowed to move, the connecting shaft portion 223 is provided so as to be movable in the plane direction perpendicular to the rotation axis direction. As a result, as the connecting member 230 moves, the second throttle member 220 rotates in the clockwise direction in FIGS. 6 and 7 with the rotation shaft portion 224 as the center of rotation.
  • the first drawing member 210 and the second drawing member 220 move in the order of FIGS. 6 and 7 in the direction of separating from each other.
  • the protrusions 215 and 225 move radially outward of the protrusion position (retracted position).
  • the protrusions 215 and 225 are flush with the inner wall surface of the inlet side flow path 130 or are located radially outside the inner wall surface of the inlet side flow path 130.
  • the first drawing member 210 and the second drawing member 220 approach each other and come into contact with each other in the order of FIGS. 7, 6, and 5.
  • the first throttle member 210 and the second throttle member 220 are switched between the protruding position and the retracted position according to the rotation angle centered on the rotation shaft portion 214 and 224.
  • the first throttle member 210 and the second throttle member 220 are configured to be movable between a protruding position protruding into the inlet side flow path 130 and a retracted position retracted from the inlet side flow path 130.
  • the first throttle member 210 and the second throttle member 220 move in the radial direction of the compressor impeller 9.
  • the present invention is not limited to this, and the first throttle member 210 and the second throttle member 220 may rotate in the circumferential direction of the compressor impeller 9.
  • the first diaphragm member 210 and the second diaphragm member 220 may be shutter blades having two or more blades.
  • the first throttle member 210 and the second throttle member 220 When the first throttle member 210 and the second throttle member 220 are located in the retracted position (hereinafter, also referred to as the retracted position state), the first throttle member 210 and the second throttle member 220 do not protrude into the inlet side flow path 130, and therefore the intake air (air) flowing through the inlet side flow path 130. ) Pressure loss can be reduced.
  • the protruding portions 215 and 225 are inside the inlet side flow path 130. Is placed in.
  • the flow path cross-sectional area (effective cross-sectional area) of the inlet side flow path 130 becomes smaller.
  • the protruding portions 215 and 225 are located radially inside the outermost diameter end of the leading edge LE of the compressor impeller 9. As a result, the air flowing back through the compressor impeller 9 is blocked by the protrusions 215 and 225. In this way, the first throttle member 210 and the second throttle member 220 can suppress the backflow of air in the inlet side flow path 130.
  • the centrifugal compressor CC of the present embodiment can expand the operating region to the small flow rate side by moving the first throttle member 210 and the second throttle member 220 to the protruding positions.
  • FIG. 8 is an extraction diagram of the alternate long and short dash line portion of FIG.
  • a valve 300 is provided in the first division main body 110.
  • a communication flow path 150 is formed in the first division main body 110 and the second division main body 120.
  • the communication flow path 150 is formed so as to straddle the first divided main body 110 and the second divided main body.
  • the communication flow path 150 is located radially outside the inlet side flow path 130.
  • the communication flow path 150 connects the inlet side flow path 130 and the outlet side flow path 140.
  • the valve 300 is configured to be movable between a closed position that closes the communication flow path 150 and an open position that opens the communication flow path 150.
  • FIG. 8 shows a closed state in which the valve 300 is blocking the communication flow path 150.
  • the valve 300 includes a valve body 301.
  • a sheet surface 303 is formed on the inner wall of the communication flow path 150.
  • the valve body 301 is configured to be movable to a protruding position protruding into the communication flow path 150 and a retracting position retracting from the communication flow path 150.
  • the first division main body 110 has a cylindrical portion 117 and an outer diameter protrusion 118.
  • the cylindrical portion 117 is located radially inside the outer diameter protrusion 118.
  • the cylindrical portion 117 is located radially inside the compressor scroll flow path 12.
  • An inlet side flow path 130 is formed in the cylindrical portion 117.
  • a storage chamber AC is formed in the cylindrical portion 117.
  • An outer diameter protrusion 118 is connected to a part of the outer peripheral surface of the cylindrical portion 117.
  • the outer diameter protrusion 118 projects radially outward from the outer peripheral surface of the cylindrical portion 117.
  • the boundary between the cylindrical portion 117 and the outer diameter protrusion 118 is generally formed at the inner diameter end position of the compressor scroll flow path 12.
  • a part of the cylindrical portion 117 protrudes to the left side in FIG. 8 from the outer diameter protrusion 118 in the direction of the axis of rotation.
  • a valve 300 is attached to the right side of the outer diameter protrusion 118 in FIG.
  • the second divided main body 120 has a cylindrical portion 127 and a scroll protrusion 128.
  • the cylindrical portion 127 is located radially inside the scroll protrusion 128.
  • a part of the compressor scroll flow path 12 is formed in the scroll protrusion 128.
  • the cylindrical portion 127 is located radially inside the compressor scroll flow path 12.
  • An inlet side flow path 130 and an impeller accommodating space are formed in the cylindrical portion 127.
  • a scroll protrusion 128 is connected to a part of the cylindrical portion 127 in the circumferential direction.
  • the scroll protrusion 128 projects in the direction of the rotation axis (on the right side in FIG. 8) with respect to the compressor scroll flow path 12.
  • the scroll protrusion 128 protrudes to the right in FIG. 8 from the cylindrical portion 127.
  • the boundary between the cylindrical portion 127 and the scroll protrusion 128 is formed approximately at the inner diameter end position of the compressor scroll flow path 12.
  • the cylindrical portion 117 of the first split main body 110 faces the cylindrical portion 127 of the second split main body 120 in the direction of the rotation axis.
  • the cylindrical portion 117 of the first split main body 110 is radially opposed to the scroll protrusion 128 of the second split main body 120.
  • the cylindrical portion 117 of the first split main body 110 is radially separated from the scroll protrusion 128 of the second split main body 120.
  • a first axial direction surface (which may also be referred to as a "first axial direction facing surface” in the present disclosure) 162 is formed on the cylindrical portion 117 of the first division main body 110.
  • the first axial plane 162 faces the cylindrical portion 127 of the second split main body 120 in the direction of the rotation axis.
  • a second axial plane (which may also be referred to as a "second axial facing plane” in the present disclosure) 164 is formed in the cylindrical portion 127 of the second split main body 120.
  • the second axial plane 164 faces the first axial plane 162 in the rotation axis direction.
  • the distance in the rotation axis direction between the first axial direction surface 162 and the second axial direction surface 164 is the rotation axis direction between the outer diameter protrusion 118 of the first division main body 110 and the scroll protrusion 128 of the second division main body 120. Less than the distance. In other words, the distance in the rotation axis direction between the outer diameter protrusion 118 of the first division main body 110 and the scroll protrusion 128 of the second division main body 120 is the distance between the first axial direction surface 162 and the second axial direction surface 164. Greater than the distance along the axis of rotation.
  • the outer diameter protrusion 118 and the scroll protrusion 128 do not abut in the rotation axis direction, but the first axial surface 162 and the second axial surface 164 abut in the rotation axis direction. Further, by ensuring that the first axial direction surface 162 and the second axial direction surface 164 are in contact with each other, the first divided main body 110 and the second divided main body 120 can be positioned in the rotation axis direction. As described above, in the present embodiment, the first axial plane 162 is in contact with the second axial plane 164 in the rotation axis direction.
  • the first axial direction surface 162 and the second axial direction surface 164 are formed on the radial outer side of the inlet side flow path 130 over the entire circumference of the inlet side flow path 130. Further, an annular notch C1 is formed between the first axial plane 162 and the second axial plane 164, and the axial seal member S1 is arranged in the notch C1.
  • the axial seal member S1 is, for example, an O-ring.
  • the axial seal member S1 is compressed in the rotation axis direction by the first axial surface 162 and the second axial surface 164.
  • the axial seal member S1 seals between the first axial surface 162 and the second axial surface 164.
  • the outer diameter protrusion 118 of the first split main body 110 faces the scroll protrusion 128 of the second split main body 120 in the direction of the rotation axis.
  • the outer diameter protrusion 118 of the first split main body 110 is separated from the scroll protrusion 128 of the second split main body 120 in the rotation axis direction. That is, a gap is formed between the outer diameter protrusion 118 and the scroll protrusion 128 in the direction of the rotation axis.
  • a protrusion 118a protruding to the left side in FIG. 8 is formed on the outer diameter protrusion 118 of the first division main body 110.
  • the scroll protrusion 128 of the second split main body 120 is formed with a recess 128a recessed on the left side in FIG.
  • the recessed portion 128a faces the protruding portion 118a in the direction of the rotation axis.
  • a protrusion 118a is inserted into the recess 128a.
  • a gap is formed between the protrusion 118a and the recess 128a in the direction of the rotation axis.
  • the communication flow path 150 has a portion extending in the rotation axis direction from the compressor scroll flow path 12 to the valve 300 in the outer diameter protrusion 118 of the first division main body 110 and the scroll protrusion 128 of the second division main body 120. Further, the communication flow path 150 has a portion extending in the radial direction from the valve 300 to the inlet side flow path 130 in the outer diameter protrusion 118 and the cylindrical portion 117 of the first division main body 110. As a result, the communication flow path 150 connects the outlet side flow path 140 and the inlet side flow path 130. A part of the communication flow path 150 penetrates the central portion of the recessed portion 128a and the protruding portion 118a.
  • the protrusion 118a is formed with a first radial surface (which may also be referred to as a "first radial facing surface” in the present disclosure) 166.
  • the first radial surface 166 faces the recess 128a in the radial direction.
  • a second radial surface (which may also be referred to as a "second radial facing surface” in the present disclosure) 168 is formed in the recessed portion 128a.
  • the second radial surface 168 faces the first radial surface 166 in the radial direction.
  • the radial distance between the first radial surface 166 and the second radial surface 168 is the inner peripheral surface on the inner diameter side of the cylindrical portion 117 of the first divided main body 110 and the scroll protrusion 128 of the second divided main body 120. Less than the radial distance. In other words, the radial distance between the cylindrical portion 117 of the first split main body 110 and the scroll protrusion 128 of the second split main body 120 is the radial distance between the first radial surface 166 and the second radial surface 168. Greater than the distance.
  • the first radial surface 166 and the second radial surface 168 abut in the radial direction without the cylindrical portion 117 and the scroll protrusion 128 abutting in the radial direction. Further, by ensuring that the first radial surface 166 and the second radial surface 168 are in contact with each other, the first divided main body 110 and the second divided main body 120 can be positioned in the radial direction. As described above, in the present embodiment, the first radial surface 166 is in radial contact with the second radial surface 168.
  • the first radial surface 166 and the second radial surface 168 are formed on the radial outer side of the communication flow path 150 over the entire circumference of the communication flow path 150.
  • An annular notch C2 is formed between the first radial surface 166 and the second radial surface 168, and the radial sealing member S2 is arranged in the notch C2.
  • the radial seal member S2 is, for example, an O-ring.
  • the radial seal member S2 is compressed in the radial direction by the first radial surface 166 and the second radial surface 168.
  • the radial sealing member S2 seals between the first radial surface 166 and the second radial surface 168.
  • the inlet side flow path 130 includes a first inlet side flow path 130a and a second inlet side flow path 130b.
  • the first inlet side flow path 130a is formed in the first division main body 110.
  • the second inlet side flow path 130b is formed in the second division main body 120.
  • the inlet side flow path 130 is divided into a first inlet side flow path 130a and a second inlet side flow path 130b.
  • the inner diameter R1 of the first inlet side flow path 130a is smaller than the inner diameter R2 of the second inlet side flow path 130b.
  • the inner diameter R2 of the second inlet side flow path 130b is larger than the inner diameter R1 of the first inlet side flow path 130a.
  • the inner diameter R1 is the inner diameter of a portion of the first inlet side flow path 130a adjacent to the upstream side of the first throttle member 210 and the second throttle member 220.
  • the inner diameter R2 is the inner diameter of a portion of the second inlet side flow path 130b adjacent to the downstream side of the first throttle member 210 and the second throttle member 220.
  • the communication flow path 150 includes a first communication flow path 150a and a second communication flow path 150b.
  • the first communication flow path 150a is formed in the first division main body 110.
  • the second communication flow path 150b is formed in the second division main body 120. In this way, the communication flow path 150 is divided into a first communication flow path 150a and a second communication flow path 150b.
  • a pressure sensor (not shown) is provided in the outlet side flow path 140.
  • the valve 300 is open / closed controlled by a control unit (not shown) based on the output of the pressure sensor. For example, the valve 300 is controlled to open the communication flow path 150 when the control unit determines that the pressure in the outlet side flow path 140 is equal to or higher than the threshold value.
  • FIG. 9 is a diagram showing an open state in which the valve 300 opens the communication flow path 150.
  • the valve 300 when the valve 300 opens the communication flow path 150, a part of the air flowing through the outlet side flow path 140 flows out to the inlet side flow path 130 via the communication flow path 150. As a result, the pressure in the outlet side flow path 140 decreases. In this way, the valve 300 can prevent the boost pressure (supply pressure) of the centrifugal compressor CC from becoming too high. Further, the valve 300 can suppress the occurrence of surging. Therefore, the valve 300 can reduce the region where the operation of the centrifugal compressor CC becomes unstable.
  • the compressor housing 100 of the present embodiment includes an inlet side flow path 130, a throttle mechanism 200 for narrowing the inlet side flow path 130, a communication flow path 150, and a valve 300 for opening and closing the communication flow path 150.
  • the compressor housing 100 is divided into a first divided main body 110 and a second divided main body 120.
  • the communication flow path 150 and the valve 300 are provided in the compressor housing 100, it is possible to reduce the region where the operation of the centrifugal compressor CC becomes unstable, and as a result, the compressor efficiency of the centrifugal compressor CC is improved. Can be made to.
  • the first split main body 110 and the second split main body 120 may deviate from the design shape due to manufacturing errors due to machining. If the shapes of the first division main body 110 and the second division main body 120 deviate from the design shape, when the first division main body 110 and the second division main body 120 are connected, the position of the inlet side flow path 130 and each of the throttle mechanism 200 The position of parts may deviate from the design position. If the position of the inlet side flow path 130 or the position of each component of the throttle mechanism 200 deviates from the design position, the compressor efficiency of the centrifugal compressor CC decreases.
  • the first divided main body 110 and the second divided main body 120 have a first axial direction surface 162 and a second axial direction surface 164 that abut each other in the rotation axis direction. Further, the first divided main body 110 and the second divided main body 120 have a first radial surface 166 and a second radial surface 168 that are in radial contact with each other.
  • the first axial plane 162 and the second axial plane 164 and the first radial plane 166 and the second radial plane 168 are provided at different positions. As a result, the positioning of the first divided main body 110 and the second divided main body 120 in the rotation axis direction and the radial positioning can be performed at different locations.
  • the positional accuracy of the first division main body 110 and the second division main body 120 in the rotation axis direction and the radial direction can be improved. Therefore, the first split main body 110 and the second split main body 120 are centrifugal as compared with the case where the first axial direction surface 162, the second axial direction surface 164, the first radial direction surface 166, and the second radial direction surface 168 are not formed. The compressor efficiency of the compressor CC can be improved.
  • connection portion there may be a gap in the connection portion (division surface) between the first division main body 110 and the second division main body 120 due to manufacturing errors due to machining.
  • the air in the inlet side flow path 130 leaks out of the compressor housing 100. If air leaks, the compressor efficiency of the centrifugal compressor CC will decrease.
  • the axial seal member S1 is provided between the first axial surface 162 and the second axial surface 164. Further, a radial sealing member S2 is provided between the first radial surface 166 and the second radial surface 168.
  • the axial seal member S1 can reduce the amount of air leaking to the outside from the inlet side flow path 130.
  • the radial sealing member S2 can reduce the amount of air leaking to the outside from the communication flow path 150. Therefore, the first split main body 110 and the second split main body 120 can improve the compressor efficiency of the centrifugal compressor CC as compared with the case where the axial seal member S1 and the radial seal member S2 are not provided.
  • the inner diameter R1 of the first inlet side flow path 130a is smaller than the inner diameter R2 of the second inlet side flow path 130b. Therefore, when the air flowing through the first inlet-side flow path 130a flows into the second inlet-side flow path 130b, it is less likely to collide with the second axial direction surface 164 of the second split main body 120. As a result, the pressure loss of the air flowing through the inlet side flow path 130 can be reduced.
  • FIG. 10 is a schematic configuration diagram of the centrifugal compressor CC in the first modification.
  • the components that are substantially the same as the turbocharger TC of the above embodiment are designated by the same reference numerals and the description thereof will be omitted.
  • the configurations of the first axial surface 162, the second axial surface 164, the first radial surface 166, and the second radial surface 168 are different from those of the above embodiment.
  • the first axial direction surface 262 is formed on the outer diameter protrusion 118 of the first division main body 110.
  • the first axial direction surface 262 faces the scroll protrusion 128 of the second split main body 120 in the rotation axis direction.
  • a second axial surface 264 is formed on the scroll protrusion 128 of the second division main body 120.
  • the second axial plane 264 faces the first axial plane 262 in the rotation axis direction.
  • the distance in the rotation axis direction between the first axial plane 262 and the second axial plane 264 is smaller than the distance in the rotation axis direction between the cylindrical portion 117 of the first division main body 110 and the cylindrical portion 127 of the second division main body 120. ..
  • the first axial plane 262 is in contact with the second axial plane 264 in the rotation axis direction.
  • the first axial direction surface 262 and the second axial direction surface 264 are formed on the radial outer side of the communication flow path 150 over the entire circumference of the communication flow path 150.
  • An annular notch C1 is formed between the first axial plane 262 and the second axial plane 264, and the axial seal member S1 is arranged in the notch C1.
  • a first radial surface 266 is formed on the cylindrical portion 117 of the first divided main body 110.
  • the first radial surface 266 faces the scroll protrusion 128 of the second split main body 120 in the radial direction.
  • a second radial surface 268 is formed on the scroll protrusion 128 of the second division main body 120.
  • the second radial surface 268 is radially opposed to the first radial surface 266. In the first modification, the first radial surface 266 is in radial contact with the second radial surface 268.
  • the first radial surface 266 and the second radial surface 268 are formed on the radial outer side of the inlet side flow path 130 over the entire circumference of the inlet side flow path 130.
  • An annular notch C2 is formed between the first radial surface 266 and the second radial surface 268, and the radial sealing member S2 is arranged in the notch C2.
  • the inner diameter R3 of the first communication flow path 150a is larger than the inner diameter R4 of the second communication flow path 150b.
  • the inner diameter R4 of the second communication flow path 150b is smaller than the inner diameter R3 of the first communication flow path 150a.
  • the inner diameter R3 is the inner diameter of a portion of the first communication flow path 150a adjacent to the scroll protrusion 128 of the second division main body 120.
  • the inner diameter R4 is the inner diameter of a portion of the second communication flow path 150b adjacent to the outer diameter protrusion 118 of the first division main body 110.
  • the same actions and effects as those of the above embodiment can be obtained.
  • the inner diameter R3 of the first communication flow path 150a is larger than the inner diameter R2 of the second communication flow path 150b. Therefore, when the air flowing through the second communication flow path 150b flows into the first communication flow path 150a, it is less likely to collide with the first axial direction surface 262 of the first division main body 110. As a result, the pressure loss of the air flowing through the communication flow path 150 can be reduced.
  • the present invention is not limited to this, and the inner diameter R1 of the first inlet side flow path 130a may be equal to the inner diameter R2 of the second inlet side flow path 130b or may be larger than the inner diameter R2.
  • the present invention is not limited to this, and the inner diameter R3 of the first communication flow path 150a may be equal to the inner diameter R4 of the second communication flow path 150b or may be smaller than the inner diameter R4.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)

Abstract

遠心圧縮機CCは、第1分割本体110と、第1分割本体110と接続される第2分割本体120と、第2分割本体120に形成されるコンプレッサインペラ9の出口側流路140と、第1分割本体110と第2分割本体120とに跨いで形成されるコンプレッサインペラ9の入口側流路130と、第1分割本体110と第2分割本体120とに跨いで形成され、出口側流路140と入口側流路130とを接続する連通流路150と、入口側流路130内に絞り部材220が突出する突出位置と、入口側流路130から絞り部材220が退避した退避位置とに移動可能に構成された絞り機構200と、連通流路150を閉塞する閉塞位置と、連通流路150を開放する開放位置とに移動可能に構成されたバルブ300と、を備える。

Description

遠心圧縮機および過給機
 本開示は、遠心圧縮機および過給機に関する。本出願は2020年9月9日に提出された日本特許出願第2020-151017号に基づく優先権の利益を主張するものであり、その内容は本出願に援用される。
 特許文献1には、コンプレッサハウジングに絞り機構を有する遠心圧縮機について開示がある。絞り機構は、絞り部材を備える。絞り部材は、吸気流路内に突出する突出位置と、吸気流路から退避する退避位置とに移動可能に構成される。絞り部材が吸気流路内に突出することで、吸気流路内を逆流する空気は、絞り部材により堰き止められる。吸気流路内を逆流する空気が堰き止められることで、サージングが抑制される。
特開2009-236035号公報
 このように、特許文献1では、サージング時に逆流した空気を堰き止めることができ、コンプレッサ効率を向上させることができる。しかし、さらなるコンプレッサ効率の向上が希求されている。
 本開示の目的は、コンプレッサ効率を向上させることが可能な遠心圧縮機を提供することである。
 上記課題を解決するために、本開示の一態様に係る遠心圧縮機は、第1分割本体と、第1分割本体と接続される第2分割本体と、第2分割本体に形成されるインペラの出口側流路と、第1分割本体と第2分割本体とに跨いで形成されるインペラの入口側流路と、第1分割本体と第2分割本体とに跨いで形成され、出口側流路と入口側流路とを接続する連通流路と、入口側流路内に絞り部材が突出する突出位置と、入口側流路から絞り部材が退避した退避位置とに移動可能に構成された絞り機構と、連通流路を閉塞する閉塞位置と、連通流路を開放する開放位置とに移動可能に構成されたバルブと、を備える。
 第1分割本体に形成され、第2分割本体とインペラの回転軸方向に対向する第1軸方向面と、第2分割本体に形成され、第1軸方向面と回転軸方向に対向する第2軸方向面と、第1分割本体に形成され、第2分割本体とインペラの径方向に対向する第1径方向面と、第2分割本体に形成され、第1径方向面と径方向に対向する第2径方向面と、を備えてもよい。
 第1軸方向面および第2軸方向面は、入口側流路の径方向外側に入口側流路の全周に亘って形成され、第1径方向面および第2径方向面は、連通流路の径方向外側に連通流路の全周に亘って形成されてもよい。
 入口側流路は、第1分割本体に形成される第1入口側流路と、第2分割本体に形成される第2入口側流路とに分割され、第1入口側流路の内径は、第2入口側流路の内径よりも小さくてもよい。
 第1軸方向面および第2軸方向面は、連通流路の径方向外側に連通流路の全周に亘って形成され、第1径方向面および第2径方向面は、入口側流路の径方向外側に入口側流路の全周に亘って形成されてもよい。
 連通流路は、第1分割本体に形成される第1連通流路と、第2分割本体に形成される第2連通流路とに分割され、第1連通流路の内径は、第2連通流路の内径よりも大きくてもよい。
 第1軸方向面と第2軸方向面との間に配される軸方向シール部材と、第1径方向面と第2径方向面との間に配される径方向シール部材と、を備えてもよい。
 上記課題を解決するために、本開示の一態様に係る過給機は、上記遠心圧縮機を備える。
 本開示によれば、コンプレッサ効率を向上させることができる。
図1は、過給機の概略断面図である。 図2は、図1の破線部分の抽出図である。 図3は、リンク機構を構成する部材の分解斜視図である。 図4は、図2のIV-IV線断面図である。 図5は、リンク機構の動作を説明するための第1の図である。 図6は、リンク機構の動作を説明するための第2の図である。 図7は、リンク機構の動作を説明するための第3の図である。 図8は、図1の一点鎖線部分の抽出図である。 図9は、バルブが連通流路を開放している開状態を表す図である。 図10は、第1変形例における遠心圧縮機の概略構成図である。
 以下に添付図面を参照しながら、本開示の一実施形態について詳細に説明する。実施形態に示す寸法、材料、および、具体的な数値等は、理解を容易とするための例示にすぎず、特に断る場合を除き、本開示を限定するものではない。なお、本明細書および図面において、実質的に同一の機能、構成を有する要素については、同一の符号を付することにより重複説明を省略する。また本開示に直接関係のない要素は図示を省略する。
 図1は、過給機TCの概略断面図である。図1に示す矢印L方向を過給機TCの左側として説明する。図1に示す矢印R方向を過給機TCの右側として説明する。図1に示すように、過給機TCは、過給機本体1を備える。
 過給機本体1は、ベアリングハウジング2と、タービンハウジング4と、コンプレッサハウジング100とを含む。ベアリングハウジング2の左側には、締結ボルト3によってタービンハウジング4が連結される。ベアリングハウジング2の右側には、締結ボルト5によってコンプレッサハウジング100が連結される。
 ベアリングハウジング2には、収容孔2aが形成される。収容孔2aは、過給機TCの左右方向にベアリングハウジング2を貫通する。収容孔2aには、軸受6が配される。図1では、軸受6の一例としてフルフローティング軸受を示す。ただし、軸受6は、セミフローティング軸受や転がり軸受など、他のラジアル軸受であってもよい。収容孔2aには、シャフト7の一部が配される。シャフト7は、軸受6によって回転可能に支持される。シャフト7の左端部には、タービンインペラ8が設けられる。タービンインペラ8は、タービンハウジング4内に回転可能に収容される。シャフト7の右端部には、コンプレッサインペラ9が設けられる。コンプレッサインペラ9は、コンプレッサハウジング100内に回転可能に収容される。
 コンプレッサハウジング100には、吸気口10が形成される。吸気口10は、過給機TCの右側に開口する。吸気口10は、不図示のエアクリーナに接続される。ベアリングハウジング2とコンプレッサハウジング100の間には、ディフューザ流路11が形成される。ディフューザ流路11は、シャフト7(コンプレッサインペラ9)の径方向(以下、単に径方向という)の内側から外側に向けて環状に形成される。ディフューザ流路11は、径方向の内側において、コンプレッサインペラ9を介して吸気口10に連通している。ディフューザ流路11は、空気を加圧する。
 コンプレッサハウジング100には、コンプレッサスクロール流路12が形成される。コンプレッサスクロール流路12は、環状に形成される。コンプレッサスクロール流路12は、例えば、コンプレッサインペラ9よりも径方向の外側に位置する。コンプレッサスクロール流路12は、不図示のエンジンの吸気口、および、ディフューザ流路11と連通している。コンプレッサインペラ9が回転すると、吸気口10からコンプレッサハウジング100内に空気が吸気される。吸気された空気は、コンプレッサインペラ9の翼間を流通する過程において、加圧加速される。加圧加速された空気は、ディフューザ流路11およびコンプレッサスクロール流路12で加圧される。加圧された空気は、不図示の吐出口から流出し、エンジンの吸気口に導かれる。
 タービンハウジング4には、排気口13が形成される。排気口13は、過給機TCの左側に開口する。排気口13は、不図示の排気ガス浄化装置に接続される。タービンハウジング4には、連通流路14と、タービンスクロール流路15とが形成される。タービンスクロール流路15は、タービンインペラ8よりも径方向の外側に位置する。連通流路14は、タービンインペラ8とタービンスクロール流路15との間に位置する。
 タービンスクロール流路15は、不図示のガス流入口と連通する。ガス流入口には、不図示のエンジンの排気マニホールドから排出される排気ガスが導かれる。連通流路14は、タービンインペラ8を介してタービンスクロール流路15と排気口13とを接続する。ガス流入口からタービンスクロール流路15に導かれた排気ガスは、連通流路14およびタービンインペラ8の翼間を介して排気口13に導かれる。排気ガスは、流通過程においてタービンインペラ8を回転させる。
 タービンインペラ8の回転力は、シャフト7を介してコンプレッサインペラ9に伝達される。上記のとおりに、空気は、コンプレッサインペラ9の回転力によって加圧されて、エンジンの吸気口に導かれる。
 本実施形態の過給機TCは、遠心圧縮機CCを備える。遠心圧縮機CCは、コンプレッサハウジング100と、コンプレッサインペラ9と、ベアリングハウジング2とを含む。本実施形態の遠心圧縮機CCは、タービンインペラ8により駆動されるものとして説明する。ただし、これに限定されず、遠心圧縮機CCは、不図示のエンジンにより駆動されてもよいし、不図示の電動機(モータ)により駆動されてもよい。遠心圧縮機CCは、過給機TC以外の装置に組み込まれてもよいし、単体であってもよい。
 図2は、図1の破線部分の抽出図である。図2は、本実施形態の遠心圧縮機CCの概略構成図である。図2に示すように、遠心圧縮機CCは、コンプレッサハウジング100と、絞り機構200と、バルブ(本開示において、「開閉バルブ」とも称され得る)300とを含む。本開示において、矢印L方向を吸気の流れ方向における下流側として説明する(以下、単に「下流側」と称され得る)。本開示において、矢印R方向を吸気の流れ方向における上流側として説明する(以下、単に「上流側」と称され得る)。
 コンプレッサハウジング100は、第1分割本体110と、第2分割本体120とを含む。第1分割本体110は、シャフト7(コンプレッサインペラ9)の回転軸方向(以下、単に回転軸方向という)において、第2分割本体120に対し、ベアリングハウジング2と反対側に位置する。
 第2分割本体120は、第1分割本体110とベアリングハウジング2との間に位置する。第2分割本体120は、ベアリングハウジング2と回転軸方向に対向する。第2分割本体120は、ベアリングハウジング2と回転軸方向に接続される。第2分割本体120は、第1分割本体110と回転軸方向に対向する。第1分割本体110は、第2分割本体120と回転軸方向に接続される。
 第1分割本体110は、大凡円筒形状である。第1分割本体110には、貫通孔111が形成される。第1分割本体110は、第2分割本体120と近接(接続)する側に端面112を有する。また、第1分割本体110は、第2分割本体120から離隔する側に端面113を有する。端面113には、吸気口10が形成される。貫通孔111は、回転軸方向に沿って、端面112から端面113まで延在する。つまり、貫通孔111は、第1分割本体110を回転軸方向に貫通している。
 貫通孔111は、平行部111aと、縮径部111bとを有する。平行部111aは、縮径部111bよりも端面113側に位置する。平行部111aの内径は、回転軸方向に亘って大凡一定である。縮径部111bは、平行部111aよりも端面112近くに位置する。縮径部111bは、平行部111aと連続する。縮径部111bにおいて、平行部111aと連続する部位の内径は、平行部111aの内径と大凡等しい。縮径部111bの内径は、平行部111aから離隔するほど(端面112に近づくほど)、小さくなる。
 端面112には、切り欠き部112aが形成される。切り欠き部112aは、端面112から端面113に向かって窪む。切り欠き部112aは、端面112の外周縁に形成される。切り欠き部112aは、回転軸方向から見たとき、例えば大凡環状である。
 端面112には、収容室ACが形成される。収容室ACは、コンプレッサインペラ9の羽根の前縁端(リーディングエッジ)LEよりも上流側に形成される。収容室ACは、収容溝112b、軸受穴112d、収容穴115を含む。収容穴115については、図3を用いて後で説明する。
 収容溝112bは、端面112に形成される。収容溝112bは、切り欠き部112aと貫通孔111との間に位置する。収容溝112bは、端面112から端面113に向かって窪む。収容溝112bは、回転軸方向から見たとき、例えば大凡環状である。収容溝112bは、径方向内側において貫通孔111と連通する。
 収容溝112bのうち端面113に平行な壁面112cには、軸受穴112dが形成される。軸受穴112dは、壁面112cから端面113に向かって回転軸方向に延在する。軸受穴112dは、シャフト7(コンプレッサインペラ9)の回転方向(以下、単に回転方向、周方向という)に離隔して2つ設けられる。2つの軸受穴112dは、回転方向に180度ずれた位置に配されている。
 第2分割本体120には、貫通孔121が形成される。第2分割本体120は、第1分割本体110と近接(接続)する側に端面122を有する。第2分割本体120は、第1分割本体110から離隔する側(ベアリングハウジング2と接続する側)に端面123を有する。貫通孔121は、回転軸方向に沿って、端面122から端面123まで延在する。つまり、貫通孔121は、第2分割本体120を回転軸方向に貫通する。貫通孔121は、貫通孔111と連通する。
 貫通孔121内には、コンプレッサインペラ9が配される。つまり、貫通孔121の一部は、コンプレッサインペラ9を収容するインペラ収容空間を形成する。貫通孔121の内壁には、シュラウド部121aが形成される。シュラウド部121aは、コンプレッサインペラ9に対して径方向の外側から対向する。コンプレッサインペラ9の外径は、リーディングエッジLEからベアリングハウジング2に近づくほど大きくなる。シュラウド部121aの内径は、端面122から離隔するほど(端面123に近接するほど)大きくなる。
 端面122には、収容溝122aが形成される。収容溝122aは、端面122から端面123に向かって窪む。収容溝122aは、回転軸方向から見たとき、例えば大凡環状である。収容溝122aには、第1分割本体110の端面112が挿入される。収容溝122aのうち端面123に平行な壁面122bに、第1分割本体110の端面112が当接する。このとき、第1分割本体110(壁面112c)と第2分割本体120(壁面122b)との間には、収容室ACが形成される。
 第1分割本体110の貫通孔111と、第2分割本体120の貫通孔121の一部は、コンプレッサインペラ9の入口側(上流側)の入口側流路130を形成する。入口側流路130は、第1分割本体110と第2分割本体120とに跨いで形成される。入口側流路130は、回転軸方向において吸気口10からリーディングエッジLEまで延在する。また、第2分割本体120の貫通孔121は、コンプレッサインペラ9の出口側(下流側)の出口側流路140を形成する。出口側流路140は、コンプレッサインペラ9よりも径方向外側に位置する。出口側流路140は、ディフューザ流路11およびコンプレッサスクロール流路12を含む。
 入口側流路130において、回転軸方向に垂直な断面形状は、例えば、コンプレッサインペラ9の回転軸を中心とする円形である。ただし、入口側流路130の断面形状は、これに限定されず、例えば、楕円形状であってもよい。
 図3は、絞り機構200を構成する部材の分解斜視図である。図3では、コンプレッサハウジング100のうち、第1分割本体110のみが示される。図3に示すように、絞り機構200は、第1分割本体110、第1絞り部材210、第2絞り部材220、連結部材230、ロッド240を含む。絞り機構200は、回転軸方向において、コンプレッサインペラ9のリーディングエッジLEより上流側に配される。
 第1絞り部材210は、収容溝112b(収容室AC)内に配される。具体的には、第1絞り部材210は、回転軸方向において、収容溝112bの壁面112cと、収容溝122aの壁面122b(図2参照)との間に配される。
 第1絞り部材210は、本体部B1を有する。本体部B1は、湾曲部211と、アーム部212とを含む。湾曲部211は、コンプレッサインペラ9の周方向に延在する。湾曲部211は、大凡半円弧形状である。湾曲部211は、周方向に第1端面211aおよび第2端面211bを有する。第1端面211aおよび第2端面211bは、径方向および回転軸方向に平行に延在する。ただし、第1端面211aおよび第2端面211bは、径方向および回転軸方向に対し、傾斜していてもよい。
 湾曲部211の第1端面211aには、アーム部212が設けられる。アーム部212は、湾曲部211の第1端面211aに対して径方向の外側に延在する。また、アーム部212は、第1端面211aから第2絞り部材220に向かって突出する。
 第2絞り部材220は、収容溝112b(収容室AC)内に配される。具体的には、第2絞り部材220は、回転軸方向において、収容溝112bの壁面112cと、収容溝122aの壁面122b(図2参照)との間に配される。
 第2絞り部材220は、本体部B2を有する。本体部B2は、湾曲部221と、アーム部222とを含む。湾曲部221は、コンプレッサインペラ9の周方向に延在する。湾曲部221は、大凡半円弧形状である。湾曲部221は、周方向に第1端面221aおよび第2端面221bを有する。第1端面221aおよび第2端面221bは、径方向および回転軸方向に平行に延在する。ただし、第1端面221aおよび第2端面221bは、径方向および回転軸方向に対し、傾斜していてもよい。
 湾曲部221の第1端面221aには、アーム部222が設けられる。アーム部222は、湾曲部221の第1端面221aに対して径方向の外側に延在する。また、アーム部222は、第1端面221aから第1絞り部材210に向かって突出する。
 湾曲部211は、湾曲部221とコンプレッサインペラ9の回転中心軸(入口側流路130)を挟んで対向する。湾曲部211の第1端面211aは、湾曲部221の第2端面221bと周方向に対向する。湾曲部211の第2端面211bは、湾曲部221の第1端面221aと周方向に対向する。第1絞り部材210および第2絞り部材220は、詳しくは後述するように、湾曲部211、221が径方向に移動可能なように構成される。
 連結部材230は、第1絞り部材210、第2絞り部材220よりも上流側に配される。連結部材230は、大凡円弧形状である。連結部材230の周方向における一端に第1軸受穴231が形成され、他端に第2軸受穴232が形成される。第1軸受穴231および第2軸受穴232は、連結部材230のうち、下流側の下流面233に開口する。第1軸受穴231および第2軸受穴232は、回転軸方向に延在する。ここでは、第1軸受穴231および第2軸受穴232は、非貫通の穴で構成される。ただし、第1軸受穴231および第2軸受穴232は、連結部材230を回転軸方向に貫通してもよい。連結部材230は、詳しくは後述するように第1絞り部材210および第2絞り部材220と連結する。
 連結部材230には、周方向において第1軸受穴231と第2軸受穴232の間に、ロッド接続部234が形成される。ロッド接続部234は、連結部材230のうち、上流側の上流面235に形成される。ロッド接続部234は、上流面235から回転軸方向に突出する。ロッド接続部234は、例えば、大凡円柱形状である。
 ロッド240は、大凡円柱形状である。ロッド240の一端に平面部241が形成され、他端に連結部243が形成される。平面部241は、回転軸方向に大凡垂直な面方向に延在する。平面部241には、軸受穴242が開口する。軸受穴242は、回転軸方向に延在する。連結部243は、連結孔243aを有する。連結部243(連結孔243a)には、後述するアクチュエータが連結される。軸受穴242は、例えば、回転軸方向およびロッド240の軸方向に垂直な方向の長さが、ロッド240の軸方向の長さよりも長い長穴であってもよい。
 ロッド240には、平面部241と連結部243の間に、大径部244と、2つの小径部245とが形成される。大径部244は、2つのロッド小径部245の間に配される。2つの小径部245のうち平面部241に近い小径部245は、大径部244と平面部241とを接続する。2つの小径部245のうち連結部243に近い小径部245は、大径部244と連結部243とを接続する。大径部244の外径は、2つの小径部245の外径よりも大きい。
 第1分割本体110には、挿通穴114が形成される。挿通穴114の一端114aは、第1分割本体110の外部に開口する。挿通穴114は、例えば、回転軸方向に垂直な方向に延在する。挿通穴114は、貫通孔111(入口側流路130)よりも径方向の外側に位置する。挿通穴114には、ロッド240の平面部241側が挿通される。ロッド240は、挿通穴114の中心軸方向(ロッド240の中心軸方向)以外の方向の移動が規制される。
 第1分割本体110には、収容穴115が形成される。収容穴115は、収容溝112bの壁面112cに開口する。収容穴115は、壁面112cから上流側に窪む。収容穴115は、挿通穴114よりも下流側に位置する。収容穴115は、回転軸方向から見たとき、大凡円弧形状である。収容穴115は、連結部材230よりも周方向に長く延在する。収容穴115は、軸受穴112dから周方向に離隔する。
 第1分割本体110には、連通孔116が形成される。連通孔116は、収容穴115に形成される。連通孔116は、挿通穴114と収容穴115とを接続する。連通孔116は、収容穴115のうち、周方向の大凡中間部分に形成される。連通孔116は、例えば、挿通穴114の延在方向に大凡平行に延在する長孔である。連通孔116では、長手方向の幅が、短手方向の幅よりも大きい。挿通穴114の短手方向の幅は、連結部材230のロッド接続部234の外径よりも大きい。
 連結部材230は、収容穴115(収容室AC)内に収容される。このように、第1絞り部材210、第2絞り部材220、連結部材230は、収容室AC内に配される。収容穴115は、連結部材230よりも周方向において長く、径方向においても大きい。そのため、連結部材230は、収容穴115の内部で、回転軸方向に垂直な面方向への移動が許容される。
 ロッド接続部234は、連通孔116から挿通穴114に挿通される。挿通穴114には、ロッド240の平面部241が挿通されている。平面部241の軸受穴242は、連通孔116と回転軸方向に対向している。ロッド接続部234は、軸受穴242に挿通される(接続される)。ロッド接続部234は、軸受穴242に支持される。
 図4は、図2のIV-IV線断面図である。図4に破線で示すように、第1絞り部材210は、連結軸部213および回転軸部214を有する。連結軸部213および回転軸部214は、第1絞り部材210のうち、壁面112cと対向する上流側の面から、回転軸方向に突出する。回転軸部214は、連結軸部213と平行に延在する。連結軸部213および回転軸部214は、大凡円柱形状である。
 連結軸部213の外径は、連結部材230の第1軸受穴231の内径よりも小さい。連結軸部213は、第1軸受穴231に挿通される。連結軸部213は、第1軸受穴231に回転可能に支持される。回転軸部214の外径は、第1分割本体110の軸受穴112dの内径よりも小さい。回転軸部214は、2つの軸受穴112dのうち鉛直上側(ロッド240に近接する側)の軸受穴112dに挿通される。回転軸部214は、軸受穴112dに回転可能に支持される。
 第2絞り部材220は、連結軸部223および回転軸部224を有する。連結軸部223および回転軸部224は、第2絞り部材220のうち、壁面112cと対向する上流側の面から、回転軸方向に突出する。回転軸部224は、連結軸部223と平行に延在する。連結軸部223および回転軸部224は、大凡円柱形状である。
 連結軸部223の外径は、連結部材230の第2軸受穴232の内径よりも小さい。連結軸部223は、第2軸受穴232に挿通される。連結軸部223は、第2軸受穴232に回転可能に支持される。回転軸部224の外径は、第1分割本体110の軸受穴112dの内径よりも小さい。回転軸部224は、2つの軸受穴112dのうち鉛直下側(ロッド240から離隔する側)の軸受穴112dに挿通される。回転軸部224は、軸受穴112dに回転可能に支持される。
 このように、絞り機構200は、4節リンク機構により構成される。4つのリンク(節)は、第1絞り部材210、第2絞り部材220、第1分割本体110、連結部材230である。絞り機構200が、4節リンク機構により構成されることから、限定連鎖となり1自由度であって制御が容易である。
 図5は、絞り機構200の動作を説明するための第1の図である。以下の図5、図6、図7では、絞り機構200を吸気口10側から見た図が示される。図5に示すように、ロッド240の連結部243には、アクチュエータ250の駆動シャフト251の端部が連結される。
 図5に示す配置では、第1絞り部材210と第2絞り部材220は、互いに当接する。このとき、図2および図4に示すように、第1絞り部材210のうち、径方向の内側の部位である突出部215は、入口側流路130内に突出(露出)する。第2絞り部材220のうち、径方向の内側の部位である突出部225は、入口側流路130内に突出(露出)する。この状態における第1絞り部材210、第2絞り部材220の位置を、突出位置(あるいは絞り位置)という。
 図5に示すように、突出位置では、突出部215のうち、周方向の端部215a、215bと、突出部225のうち、周方向の端部225a、225bとが当接する。突出部215と突出部225によって環状孔260が形成される。環状孔260の内径は、入口側流路130のうち、突出部215、225が突出する位置の内径よりも小さい。環状孔260の内径は、例えば、入口側流路130のいずれの位置の内径よりも小さい。
 図6は、絞り機構200の動作を説明するための第2の図である。図7は、絞り機構200の動作を説明するための第3の図である。アクチュエータ250は、回転軸方向と交差する方向(図6、図7中、上下方向)にロッド240を直動させる。図6および図7では、ロッド240は、図5に示す位置から上側に移動する。図6の配置よりも図7の配置の方が、図5の配置に対するロッド240の移動量が大きい。
 ロッド240が移動すると、連結部材230は、ロッド接続部234を介して、図6、図7中、上側に移動する。このとき、連結部材230は、ロッド接続部234を回転中心とする回転が許容される。また、ロッド接続部234の外径に対し、ロッド240の軸受穴242の内径が、僅かに遊びを有する。そのため、連結部材230は、回転軸方向に垂直な面方向の移動が僅かに許容される。
 上述したように、絞り機構200は、4節リンク機構である。連結部材230、第1絞り部材210および第2絞り部材220は、第1分割本体110に対して、1自由度の挙動を示す。具体的には、連結部材230は、上記の許容範囲内で、図6、図7中、反時計回りに僅かに回転しつつ、左右方向に僅かに揺れ動く。
 第1絞り部材210のうち、回転軸部214は、第1分割本体110に支持される。回転軸部214は、回転軸方向に垂直な面方向の移動が規制される。連結軸部213は、連結部材230に支持される。連結部材230の移動が許容されることから、連結軸部213は、回転軸方向に垂直な面方向に移動可能に設けられる。その結果、連結部材230の移動に伴って、第1絞り部材210は、回転軸部214を回転中心として、図6、図7中、時計回り方向に回転する。
 同様に、第2絞り部材220のうち、回転軸部224は、第1分割本体110に支持される。回転軸部224は、回転軸方向に垂直な面方向の移動が規制される。連結軸部223は、連結部材230に支持される。連結部材230の移動が許容されることから、連結軸部223は、回転軸方向に垂直な面方向へ移動可能に設けられる。その結果、連結部材230の移動に伴って、第2絞り部材220は、回転軸部224を回転中心として、図6、図7中、時計回り方向に回転する。
 こうして、第1絞り部材210と第2絞り部材220は、図6、図7の順に、互いに離隔する方向に移動する。突出部215、225は、突出位置よりも径方向の外側に移動する(退避位置)。退避位置では、例えば、突出部215、225は、入口側流路130の内壁面と面一となるか、入口側流路130の内壁面よりも径方向の外側に位置する。退避位置から突出位置に移動するときは、図7、図6、図5の順に、第1絞り部材210と第2絞り部材220が互いに近づいて当接する。このように、第1絞り部材210、第2絞り部材220は、回転軸部214、224を回転中心とする回転角度に応じて、突出位置と退避位置とに切り替わる。
 このように、第1絞り部材210および第2絞り部材220は、入口側流路130内に突出する突出位置と、入口側流路130から退避した退避位置とに移動可能に構成される。本実施形態では、第1絞り部材210および第2絞り部材220は、コンプレッサインペラ9の径方向に移動する。ただし、これに限定されず、第1絞り部材210および第2絞り部材220は、コンプレッサインペラ9の周方向に回転してもよい。例えば、第1絞り部材210および第2絞り部材220は、2以上の羽根を有するシャッター羽根であってもよい。
 第1絞り部材210および第2絞り部材220は、退避位置に位置するとき(以下、退避位置状態ともいう)、入口側流路130内に突出しないため、入口側流路130を流れる吸気(空気)の圧損を小さくすることができる。
 また、図2に示すように、第1絞り部材210および第2絞り部材220は、突出位置に位置するとき(以下、突出位置状態ともいう)、突出部215、225が入口側流路130内に配される。突出部215、225が入口側流路130内に配されることにより、入口側流路130の流路断面積(有効断面積)が小さくなる。
 コンプレッサインペラ9に流入する空気の流量が減少するに従い、コンプレッサインペラ9で圧縮された空気が入口側流路130を逆流する(すなわち、下流側から上流側に向かって空気が流れる)現象が発生する。
 図2に示すように、突出位置状態では、突出部215、225は、コンプレッサインペラ9のリーディングエッジLEの最外径端よりも径方向内側に位置する。これにより、コンプレッサインペラ9を逆流する空気は、突出部215、225に堰き止められる。こうして、第1絞り部材210および第2絞り部材220は、入口側流路130内の空気の逆流を抑制することができる。
 また、突出位置状態では、入口側流路130の流路断面積が小さくなることから、コンプレッサインペラ9に流入する空気の流速が増大する。その結果、遠心圧縮機CCのサージングの発生を抑制することができる。つまり、本実施形態の遠心圧縮機CCは、第1絞り部材210および第2絞り部材220を突出位置に移動させることで、その作動領域を小流量側に拡大することができる。
 図8は、図1の一点鎖線部分の抽出図である。図8に示すように、第1分割本体110には、バルブ300が設けられる。また、第1分割本体110と第2分割本体120には、連通流路150が形成される。連通流路150は、第1分割本体110と第2分割本体とを跨いで形成される。連通流路150は、入口側流路130よりも径方向外側に位置する。連通流路150は、入口側流路130と出口側流路140とを接続する。バルブ300は、連通流路150を閉塞する閉塞位置と、連通流路150を開放する開放位置とに移動可能に構成される。図8では、バルブ300が連通流路150を閉塞している閉状態を表している。
 バルブ300は、弁体301を備える。連通流路150の内壁には、シート面303が形成される。弁体301は、連通流路150内に突出する突出位置と、連通流路150内から退避する退避位置に移動可能に構成される。弁体301は、連通流路150に突出するとき、シート面303と当接する。弁体301がシート面303と当接することで、連通流路150が閉塞される。弁体301がシート面303から離隔すると、連通流路150は閉塞状態から開放状態となる。
 第1分割本体110は、円筒部117と、外径突起部118とを有する。円筒部117は、外径突起部118よりも径方向内側に位置する。円筒部117は、コンプレッサスクロール流路12よりも径方向内側に位置する。円筒部117には、入口側流路130が形成される。円筒部117には、収容室ACが形成される。円筒部117の外周面の一部には、外径突起部118が接続される。外径突起部118は、円筒部117の外周面から径方向外側に突出する。円筒部117と外径突起部118との境は、大凡コンプレッサスクロール流路12の内径端位置に形成される。円筒部117の一部は、回転軸方向において、外径突起部118よりも図8中、左側に突出している。外径突起部118のうち、図8中、右側には、バルブ300が取り付けられている。
 第2分割本体120は、円筒部127と、スクロール突起部128とを有する。円筒部127は、スクロール突起部128よりも径方向内側に位置する。スクロール突起部128内には、コンプレッサスクロール流路12の一部が形成される。円筒部127は、コンプレッサスクロール流路12よりも径方向内側に位置する。円筒部127には、入口側流路130およびインペラ収容空間が形成される。円筒部127の周方向の一部には、スクロール突起部128が接続される。スクロール突起部128は、コンプレッサスクロール流路12に対し、回転軸方向(図8中、右側)に突出する。スクロール突起部128は、円筒部127よりも図8中、右側に突出している。円筒部127とスクロール突起部128との境は、大凡コンプレッサスクロール流路12の内径端位置に形成される。
 第1分割本体110の円筒部117は、第2分割本体120の円筒部127と回転軸方向に対向している。第1分割本体110の円筒部117は、第2分割本体120のスクロール突起部128と径方向に対向している。第1分割本体110の円筒部117は、第2分割本体120のスクロール突起部128から径方向に離隔している。
 第1分割本体110の円筒部117には、第1軸方向面(本開示において、「第1軸方向対向面」とも称され得る)162が形成される。第1軸方向面162は、第2分割本体120の円筒部127と回転軸方向に対向する。第2分割本体120の円筒部127には、第2軸方向面(本開示において、「第2軸方向対向面」とも称され得る)164が形成される。第2軸方向面164は、第1軸方向面162と回転軸方向に対向する。第1軸方向面162と第2軸方向面164との回転軸方向の距離は、第1分割本体110の外径突起部118と第2分割本体120のスクロール突起部128との回転軸方向の距離より小さい。換言すれば、第1分割本体110の外径突起部118と第2分割本体120のスクロール突起部128との回転軸方向の距離は、第1軸方向面162と第2軸方向面164との回転軸方向の距離より大きい。これにより、外径突起部118とスクロール突起部128とが回転軸方向に当接せずに、第1軸方向面162および第2軸方向面164が回転軸方向に当接する。また、第1軸方向面162と第2軸方向面164とが確実に当接することで、第1分割本体110と第2分割本体120の回転軸方向の位置決めを行うことができる。このように、本実施形態では、第1軸方向面162は、第2軸方向面164と回転軸方向に当接している。
 第1軸方向面162および第2軸方向面164は、入口側流路130の径方向外側に入口側流路130の全周に亘って形成される。また、第1軸方向面162と第2軸方向面164との間には、環状の切り欠きC1が形成され、この切り欠きC1に軸方向シール部材S1が配される。軸方向シール部材S1は、例えばOリングである。軸方向シール部材S1は、第1軸方向面162と第2軸方向面164とにより回転軸方向に圧縮される。軸方向シール部材S1は、第1軸方向面162と第2軸方向面164との間をシールする。
 第1分割本体110の外径突起部118は、第2分割本体120のスクロール突起部128と回転軸方向に対向している。第1分割本体110の外径突起部118は、第2分割本体120のスクロール突起部128と回転軸方向に離隔している。つまり、回転軸方向において、外径突起部118とスクロール突起部128の間には、隙間が形成されている。第1分割本体110の外径突起部118には、図8中、左側に突出する突起部118aが形成される。
 第2分割本体120のスクロール突起部128には、図8中、左側に窪む窪み部128aが形成される。窪み部128aは、突起部118aと回転軸方向に対向している。窪み部128aには、突起部118aが挿入される。回転軸方向において、突起部118aと窪み部128aとの間には、隙間が形成されている。
 連通流路150は、第1分割本体110の外径突起部118および第2分割本体120のスクロール突起部128において、コンプレッサスクロール流路12からバルブ300まで回転軸方向に延在する部分を有する。また、連通流路150は、第1分割本体110の外径突起部118および円筒部117において、バルブ300から入口側流路130まで径方向に延在する部分を有する。これにより、連通流路150は、出口側流路140と入口側流路130とを接続する。連通流路150の一部は、窪み部128aおよび突起部118aの中心部を貫通する。
 突起部118aには、第1径方向面(本開示において、「第1径方向対向面」とも称され得る)166が形成される。第1径方向面166は、窪み部128aと径方向に対向する。窪み部128aには、第2径方向面(本開示において、「第2径方向対向面」とも称され得る)168が形成される。第2径方向面168は、第1径方向面166と径方向に対向する。第1径方向面166と第2径方向面168との径方向の距離は、第1分割本体110の円筒部117と第2分割本体120のスクロール突起部128の内径側の内周面との径方向の距離より小さい。換言すれば、第1分割本体110の円筒部117と第2分割本体120のスクロール突起部128との径方向の距離は、第1径方向面166と第2径方向面168との径方向の距離より大きい。これにより、円筒部117とスクロール突起部128とが径方向に当接せずに、第1径方向面166および第2径方向面168が径方向に当接する。また、第1径方向面166と第2径方向面168とが確実に当接することで、第1分割本体110と第2分割本体120の径方向の位置決めを行うことができる。このように、本実施形態では、第1径方向面166は、第2径方向面168と径方向に当接している。
 第1径方向面166および第2径方向面168は、連通流路150の径方向外側に連通流路150の全周に亘って形成される。第1径方向面166と第2径方向面168との間には、環状の切り欠きC2が形成され、この切り欠きC2に径方向シール部材S2が配される。径方向シール部材S2は、例えばOリングである。径方向シール部材S2は、第1径方向面166と第2径方向面168とにより径方向に圧縮される。径方向シール部材S2は、第1径方向面166と第2径方向面168との間をシールする。
 入口側流路130は、第1入口側流路130aと、第2入口側流路130bとを含む。第1入口側流路130aは、第1分割本体110に形成される。第2入口側流路130bは、第2分割本体120に形成される。このように、入口側流路130は、第1入口側流路130aと第2入口側流路130bとに分割される。第1入口側流路130aの内径R1は、第2入口側流路130bの内径R2よりも小さい。換言すれば、第2入口側流路130bの内径R2は、第1入口側流路130aの内径R1よりも大きい。ここで、内径R1は、第1入口側流路130aのうち、第1絞り部材210、第2絞り部材220の上流側に隣接する部位の内径である。また、内径R2は、第2入口側流路130bのうち、第1絞り部材210、第2絞り部材220の下流側に隣接する部位の内径である。
 連通流路150は、第1連通流路150aと、第2連通流路150bとを含む。第1連通流路150aは、第1分割本体110に形成される。第2連通流路150bは、第2分割本体120に形成される。このように、連通流路150は、第1連通流路150aと第2連通流路150bとに分割される。
 以下、本実施形態のバルブ300の動作について説明する。出口側流路140には、不図示の圧力センサが設けられている。バルブ300は、圧力センサの出力に基づいて、不図示の制御ユニットにより開閉制御される。例えば、バルブ300は、制御ユニットにより出口側流路140内の圧力が閾値以上であると判定されたとき、連通流路150を開放するように制御される。
 図9は、バルブ300が連通流路150を開放している開状態を表す図である。図9に示すように、バルブ300が連通流路150を開放すると、出口側流路140を流通する空気の一部は、連通流路150を介して、入口側流路130に流出する。これにより、出口側流路140内の圧力が低下する。このように、バルブ300は、遠心圧縮機CCの過給圧(供給圧)が高くなり過ぎることを抑制することができる。また、バルブ300は、サージングの発生を抑制することができる。したがって、バルブ300は、遠心圧縮機CCの動作が不安定となる領域を低減することができる。
 以上のように、本実施形態のコンプレッサハウジング100は、入口側流路130と、入口側流路130を絞る絞り機構200と、連通流路150と、連通流路150を開閉するバルブ300とを備える。また、コンプレッサハウジング100は、第1分割本体110と、第2分割本体120とに分割される。第1分割本体110と第2分割本体120とが別体により構成されることにより、コンプレッサハウジング100に絞り機構200を組み込む際の各部品の組込位置精度を向上させることができる。そのため、組み込み後の絞り機構200の動作精度を向上させることができ、その結果、遠心圧縮機CCのコンプレッサ効率を向上させることができる。
 また、コンプレッサハウジング100に連通流路150およびバルブ300が設けられることから、遠心圧縮機CCの動作が不安定となる領域を低減することができ、その結果、遠心圧縮機CCのコンプレッサ効率を向上させることができる。
 第1分割本体110と第2分割本体120は、機械加工による製造誤差により設計形状からずれる場合がある。第1分割本体110と第2分割本体120の形状が設計形状からずれると、第1分割本体110と第2分割本体120を接続した際に、入口側流路130の位置や絞り機構200の各部品の位置などが設計位置からずれる場合がある。入口側流路130の位置や絞り機構200の各部品の位置などが設計位置からずれると、遠心圧縮機CCのコンプレッサ効率が低下する。
 そのため、本実施形態では、第1分割本体110および第2分割本体120は、互いに回転軸方向に当接する第1軸方向面162および第2軸方向面164を有する。また、第1分割本体110および第2分割本体120は、互いに径方向に当接する第1径方向面166および第2径方向面168を有する。第1軸方向面162および第2軸方向面164と、第1径方向面166および第2径方向面168とは、それぞれ異なる箇所に設けられる。これにより、第1分割本体110と第2分割本体120との回転軸方向の位置決めと、径方向の位置決めをそれぞれ異なる箇所で行うことができる。また、回転軸方向および径方向の位置決めにより、第1分割本体110および第2分割本体120の回転軸方向および径方向の位置精度を向上させることができる。そのため、第1分割本体110および第2分割本体120は、第1軸方向面162、第2軸方向面164、第1径方向面166、第2径方向面168が形成されない場合に比べ、遠心圧縮機CCのコンプレッサ効率を向上させることができる。
 第1分割本体110と第2分割本体120との接続部(分割面)には、機械加工による製造誤差により隙間が生じる場合がある。第1分割本体110と第2分割本体120との間に隙間が生じると、入口側流路130内の空気がコンプレッサハウジング100外に漏出する。空気が漏出すると、遠心圧縮機CCのコンプレッサ効率が低下してしまう。
 そのため、本実施形態では、第1軸方向面162と第2軸方向面164との間には、軸方向シール部材S1が設けられる。また、第1径方向面166と第2径方向面168との間には、径方向シール部材S2が設けられる。軸方向シール部材S1により、入口側流路130から外部に漏出する空気の量を低減することができる。径方向シール部材S2により、連通流路150から外部に漏出する空気の量を低減することができる。そのため、第1分割本体110および第2分割本体120は、軸方向シール部材S1および径方向シール部材S2を備えない場合に比べ、遠心圧縮機CCのコンプレッサ効率を向上させることができる。
 また、本実施形態では、第1入口側流路130aの内径R1は、第2入口側流路130bの内径R2よりも小さい。そのため、第1入口側流路130aを流通した空気が、第2入口側流路130bに流入した際に、第2分割本体120の第2軸方向面164と衝突し難くなる。その結果、入口側流路130を流通する空気の圧損を小さくすることができる。
 図10は、第1変形例における遠心圧縮機CCの概略構成図である。上記実施形態の過給機TCと実質的に等しい構成要素については、同一符号を付して説明を省略する。第1変形例は、第1軸方向面162、第2軸方向面164、第1径方向面166、第2径方向面168の構成が上記実施形態と異なる。
 第1変形例では、第1分割本体110の外径突起部118には、第1軸方向面262が形成される。第1軸方向面262は、第2分割本体120のスクロール突起部128と回転軸方向に対向する。第2分割本体120のスクロール突起部128には、第2軸方向面264が形成される。第2軸方向面264は、第1軸方向面262と回転軸方向に対向する。第1軸方向面262と第2軸方向面264との回転軸方向の距離は、第1分割本体110の円筒部117と第2分割本体120の円筒部127との回転軸方向の距離より小さい。第1変形例では、第1軸方向面262は、第2軸方向面264と回転軸方向に当接している。
 第1軸方向面262および第2軸方向面264は、連通流路150の径方向外側に連通流路150の全周に亘って形成される。第1軸方向面262と第2軸方向面264との間には、環状の切り欠きC1が形成され、この切り欠きC1に軸方向シール部材S1が配される。
 第1分割本体110の円筒部117には、第1径方向面266が形成される。第1径方向面266は、第2分割本体120のスクロール突起部128と径方向に対向する。第2分割本体120のスクロール突起部128には、第2径方向面268が形成される。第2径方向面268は、第1径方向面266と径方向に対向する。第1変形例では、第1径方向面266は、第2径方向面268と径方向に当接している。
 第1径方向面266および第2径方向面268は、入口側流路130の径方向外側に入口側流路130の全周に亘って形成される。第1径方向面266と第2径方向面268との間には、環状の切り欠きC2が形成され、この切り欠きC2に径方向シール部材S2が配される。
 第1変形例では、第1連通流路150aの内径R3は、第2連通流路150bの内径R4より大きい。換言すれば、第2連通流路150bの内径R4は、第1連通流路150aの内径R3より小さい。内径R3は、第1連通流路150aのうち、第2分割本体120のスクロール突起部128と隣接する部位の内径である。また、内径R4は、第2連通流路150bのうち、第1分割本体110の外径突起部118と隣接する部位の内径である。
 第1変形例によれば、上記実施形態と同様の作用および効果を得ることができる。また、第1変形例によれば、第1連通流路150aの内径R3は、第2連通流路150bの内径R2よりも大きい。そのため、第2連通流路150bを流通した空気が、第1連通流路150aに流入した際に、第1分割本体110の第1軸方向面262と衝突し難くなる。その結果、連通流路150を流通する空気の圧損を小さくすることができる。
 以上、添付図面を参照しながら本開示の一実施形態について説明したが、本開示はかかる実施形態に限定されないことは言うまでもない。当業者であれば、特許請求の範囲に記載された範疇において、各種の変更例または修正例に想到し得ることは明らかであり、それらについても当然に本開示の技術的範囲に属するものと了解される。
 上記実施形態および第1変形例では、第1入口側流路130aの内径R1が第2入口側流路130bの内径R2よりも小さい例について説明した。しかし、これに限定されず、第1入口側流路130aの内径R1は、第2入口側流路130bの内径R2と等しくてもよいし、内径R2より大きくてもよい。
 上記第1変形例では、第1連通流路150aの内径R3が第2連通流路150bの内径R4より大きい例について説明した。しかし、これに限定されず、第1連通流路150aの内径R3は、第2連通流路150bの内径R4と等しくてもよいし、内径R4より小さくてもよい。
 上記実施形態および第1変形例では、第1分割本体110と第2分割本体120の間に軸方向シール部材S1および径方向シール部材S2を配する例について説明した。しかし、本開示は、これに限定されず、第1分割本体110と第2分割本体120との間には、軸方向シール部材S1および径方向シール部材S2が配されなくてもよい。
CC 遠心圧縮機
S1 軸方向シール部材
S2 径方向シール部材
9 コンプレッサインペラ
110 第1分割本体
120 第2分割本体
130 入口側流路
130a 第1入口側流路
130b 第2入口側流路
140 出口側流路
150 連通流路
150a 第1連通流路
150b 第2連通流路
162 第1軸方向面
164 第2軸方向面
166 第1径方向面
168 第2径方向面
200 絞り機構
210 第1絞り部材(絞り部材)
220 第2絞り部材(絞り部材)
262 第1軸方向面
264 第2軸方向面
266 第1径方向面
268 第2径方向面
300 バルブ

Claims (8)

  1.  第1分割本体と、
     前記第1分割本体と接続される第2分割本体と、
     前記第2分割本体に形成されるインペラの出口側流路と、
     前記第1分割本体と前記第2分割本体とに跨いで形成される前記インペラの入口側流路と、
     前記第1分割本体と前記第2分割本体とに跨いで形成され、前記出口側流路と前記入口側流路とを接続する連通流路と、
     前記入口側流路内に絞り部材が突出する突出位置と、前記入口側流路から前記絞り部材が退避した退避位置とに移動可能に構成された絞り機構と、
     前記連通流路を閉塞する閉塞位置と、前記連通流路を開放する開放位置とに移動可能に構成されたバルブと、
    を備える遠心圧縮機。
  2.  前記第1分割本体に形成され、前記第2分割本体と前記インペラの回転軸方向に対向する第1軸方向面と、
     前記第2分割本体に形成され、前記第1軸方向面と前記回転軸方向に対向する第2軸方向面と、
     前記第1分割本体に形成され、前記第2分割本体と前記インペラの径方向に対向する第1径方向面と、
     前記第2分割本体に形成され、前記第1径方向面と前記径方向に対向する第2径方向面と、
    を備える、請求項1に記載の遠心圧縮機。
  3.  前記第1軸方向面および前記第2軸方向面は、前記入口側流路の径方向外側に前記入口側流路の全周に亘って形成され、
     前記第1径方向面および前記第2径方向面は、前記連通流路の径方向外側に前記連通流路の全周に亘って形成される、請求項2に記載の遠心圧縮機。
  4.  前記入口側流路は、前記第1分割本体に形成される第1入口側流路と、前記第2分割本体に形成される第2入口側流路とに分割され、
     前記第1入口側流路の内径は、前記第2入口側流路の内径よりも小さい、請求項3に記載の遠心圧縮機。
  5.  前記第1軸方向面および前記第2軸方向面は、前記連通流路の径方向外側に前記連通流路の全周に亘って形成され、
     前記第1径方向面および前記第2径方向面は、前記入口側流路の径方向外側に前記入口側流路の全周に亘って形成される、請求項2に記載の遠心圧縮機。
  6.  前記連通流路は、前記第1分割本体に形成される第1連通流路と、前記第2分割本体に形成される第2連通流路とに分割され、
     前記第1連通流路の内径は、前記第2連通流路の内径よりも大きい、請求項5に記載の遠心圧縮機。
  7.  前記第1軸方向面と前記第2軸方向面との間に配される軸方向シール部材と、
     前記第1径方向面と前記第2径方向面との間に配される径方向シール部材と、
    を備える、請求項2~6のいずれ1項に記載の遠心圧縮機。
  8.  請求項1~7のいずれか1項に記載の遠心圧縮機を備える過給機。
PCT/JP2021/019858 2020-09-09 2021-05-25 遠心圧縮機および過給機 WO2022054348A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020151017 2020-09-09
JP2020-151017 2020-09-09

Publications (1)

Publication Number Publication Date
WO2022054348A1 true WO2022054348A1 (ja) 2022-03-17

Family

ID=80631481

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/019858 WO2022054348A1 (ja) 2020-09-09 2021-05-25 遠心圧縮機および過給機

Country Status (1)

Country Link
WO (1) WO2022054348A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010174806A (ja) * 2009-01-30 2010-08-12 Ihi Corp 遠心圧縮機
JP2014101827A (ja) * 2012-11-21 2014-06-05 Ihi Corp 過給機
JP2017155664A (ja) * 2016-03-02 2017-09-07 株式会社豊田自動織機 遠心圧縮機
US20170298943A1 (en) * 2016-04-19 2017-10-19 Honeywell International Inc. Adjustable-trim centrifugal compressor for a turbocharger
WO2020031507A1 (ja) * 2018-08-07 2020-02-13 株式会社Ihi 遠心圧縮機および過給機

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010174806A (ja) * 2009-01-30 2010-08-12 Ihi Corp 遠心圧縮機
JP2014101827A (ja) * 2012-11-21 2014-06-05 Ihi Corp 過給機
JP2017155664A (ja) * 2016-03-02 2017-09-07 株式会社豊田自動織機 遠心圧縮機
US20170298943A1 (en) * 2016-04-19 2017-10-19 Honeywell International Inc. Adjustable-trim centrifugal compressor for a turbocharger
WO2020031507A1 (ja) * 2018-08-07 2020-02-13 株式会社Ihi 遠心圧縮機および過給機

Similar Documents

Publication Publication Date Title
CN112334667B (zh) 离心压缩机及增压器
JPH09236020A (ja) ターボチャージャ
WO2022054348A1 (ja) 遠心圧縮機および過給機
JP6939989B2 (ja) 遠心圧縮機
JP7298703B2 (ja) 遠心圧縮機
WO2021070826A1 (ja) 遠心圧縮機
WO2021171772A1 (ja) 遠心圧縮機
WO2021235027A1 (ja) 遠心圧縮機
JP7196994B2 (ja) 可変容量型過給機
WO2024053144A1 (ja) 遠心圧縮機
JP2013155640A (ja) ターボ機械の可変静翼機構
WO2022054598A1 (ja) 遠心圧縮機および過給機
WO2022259625A1 (ja) 遠心圧縮機および過給機
WO2021070498A1 (ja) 排水構造および過給機
WO2023017718A1 (ja) 遠心圧縮機および過給機
WO2021235026A1 (ja) 遠心圧縮機
CN113728167B (zh) 离心压缩机和增压器
WO2023286350A1 (ja) 遠心圧縮機および過給機
US20220316388A1 (en) Turbine
JP2023131315A (ja) 過給機

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21866309

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21866309

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP