WO2019064806A1 - 非水電解質二次電池 - Google Patents

非水電解質二次電池 Download PDF

Info

Publication number
WO2019064806A1
WO2019064806A1 PCT/JP2018/025742 JP2018025742W WO2019064806A1 WO 2019064806 A1 WO2019064806 A1 WO 2019064806A1 JP 2018025742 W JP2018025742 W JP 2018025742W WO 2019064806 A1 WO2019064806 A1 WO 2019064806A1
Authority
WO
WIPO (PCT)
Prior art keywords
negative electrode
positive electrode
current collector
electrode current
active material
Prior art date
Application number
PCT/JP2018/025742
Other languages
English (en)
French (fr)
Inventor
祐 石黒
篤 見澤
Original Assignee
パナソニック株式会社
三洋電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社, 三洋電機株式会社 filed Critical パナソニック株式会社
Priority to CN201880063377.8A priority Critical patent/CN111183542B/zh
Priority to JP2019544302A priority patent/JP7064270B2/ja
Publication of WO2019064806A1 publication Critical patent/WO2019064806A1/ja
Priority to US16/795,147 priority patent/US11456460B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • H01M10/0431Cells with wound or folded electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • H01M10/0587Construction or manufacture of accumulators having only wound construction elements, i.e. wound positive electrodes, wound negative electrodes and wound separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/528Fixed electrical connections, i.e. not intended for disconnection
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/531Electrode connections inside a battery casing
    • H01M50/536Electrode connections inside a battery casing characterised by the method of fixing the leads to the electrodes, e.g. by welding
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a non-aqueous electrolyte secondary battery having a current collection structure suitable for high capacity.
  • non-aqueous electrolyte secondary batteries are widely used as driving power sources for portable electronic devices such as smartphones, tablet computers, laptop computers, and portable music players.
  • Applications of non-aqueous electrolyte secondary batteries are expanding to power tools, power-assisted bicycles, and electric vehicles, and high-power non-aqueous electrolyte secondary batteries are required.
  • Patent Document 1 discloses a high-power non-aqueous electrolyte secondary battery by bringing the outermost electrode and the can into surface contact with each other at the outermost electrode.
  • the output of the non-aqueous electrolyte secondary battery is increased by contacting the outermost periphery of the electrode group with the negative electrode and providing the negative electrode current collection lead on the inner peripheral portion.
  • the diameter of the electrode body was increased.
  • it is necessary to wrap the winding tape on the upper and lower portions of the electrode group, and further, the negative electrode There is a problem that a crack of the mixture is formed and the cycle maintenance rate is deteriorated.
  • the present invention has been made in view of the above, and it is possible to improve output characteristics by electrically connecting a negative electrode current collector lead and a battery can, and to suppress the cracks of the outermost negative electrode mixture layer, and to use a secondary non-aqueous electrolyte secondary
  • the purpose is to provide a battery.
  • an electrode assembly in which a negative electrode plate and a positive electrode plate are wound with a separator interposed therebetween and upper and lower portions are fixed by a winding tape
  • the negative electrode plate has a first negative electrode current collector exposed portion and a second negative electrode current collector exposed portion in which the negative electrode active material layer is not formed on each of the end portions on the inner peripheral side and the outer peripheral side Bonding to the first negative electrode collector exposed portion, and at least a portion of the second negative electrode collector exposed portion contacting the battery can
  • the positive electrode plate has a first positive electrode collector exposed portion where the positive electrode active material layer is not formed on at least a part of the outer peripheral side of the negative electrode collector lead, and the positive electrode collector lead is the first positive electrode collector
  • the present invention it is possible to increase the roundness on the half straight line connecting the electrode body axis where the stress is concentrated most by the expansion and contraction of the electrode body and the center of the positive electrode current collector lead. Stress concentration can be relaxed. Therefore, even if charge and discharge cycles are repeated, formation of cracks in the electrode body can be suppressed.
  • FIG. 1 is a cross-sectional perspective view of a non-aqueous electrolyte secondary battery according to an embodiment of the present invention. It is a top view of the negative electrode plate of the nonaqueous electrolyte secondary battery concerning one embodiment of the present invention. It is a top view of the positive electrode of the nonaqueous electrolyte secondary battery concerning one embodiment of the present invention. It is sectional drawing of the electrode body of the non-aqueous electrolyte secondary battery which concerns on one Embodiment of this invention.
  • FIG. 1 is a cross-sectional perspective view of a non-aqueous electrolyte secondary battery 10 according to an embodiment of the present invention.
  • An electrode assembly 16 and a non-aqueous electrolyte are accommodated in a bottomed cylindrical battery can 21.
  • the inside of the battery is sealed by caulking and fixing the sealing body 20 in the grooved portion formed in the vicinity of the opening of the battery can 21 via the gasket 19.
  • the negative electrode plate 11 has a negative electrode active material layer 11 a formed on a negative electrode current collector.
  • the negative electrode active material layer 11a may be formed on at least one surface of the negative electrode current collector.
  • a negative electrode collector exposed portion in which the negative electrode active material layer 11 a is not formed on both surfaces of the negative electrode current collector is provided at both end portions of the negative electrode plate 11 in the length direction. Since the negative electrode plate 11 and the positive electrode plate 13 are wound along the length direction when producing the electrode body 16, the negative electrode current collector exposed portions are disposed at the end portions on the inner peripheral side and the outer peripheral side of the electrode body, respectively. Be done.
  • the negative electrode collector exposed portion on the inner peripheral side is referred to as a first negative electrode collector exposed portion 11 b
  • the negative electrode collector exposed portion on the outer peripheral side is referred to as a second negative electrode collector exposed portion 11 c.
  • the negative electrode current collector lead 12 is joined to the first negative electrode current collector exposed portion 11 b.
  • welding methods such as resistance welding, ultrasonic welding, and laser welding, and Gusari method are exemplified.
  • the negative electrode active material layer 11a can be formed by applying a negative electrode mixture slurry prepared by kneading the negative electrode active material and the binder in a dispersion medium on a negative electrode current collector and drying it.
  • the dried negative electrode active material layer 11 a is preferably compressed by a roller to a predetermined thickness.
  • the energy density of the non-aqueous electrolyte secondary battery can be improved by compressing the negative electrode active material layer 11a.
  • a carbon material capable of reversibly absorbing and desorbing lithium ions and a metal material capable of being alloyed with lithium can be used.
  • the carbon material include graphite such as natural graphite and artificial graphite.
  • Metallic materials include silicon and tin, and their oxides.
  • the carbon material and the metal material can be used alone or in combination of two or more.
  • the negative electrode current collector for example, a metal foil formed of copper, a copper alloy, nickel, a nickel alloy, and stainless steel can be used. Among these, metal foils formed of copper and copper alloys are preferred. Moreover, as the negative electrode current collection lead 12, it is preferable to use the metal plate which consists of a metal illustrated by the negative electrode collector.
  • the positive electrode plate 13 has a positive electrode active material layer formed on a positive electrode current collector.
  • the positive electrode active material layer may be formed on at least one surface of the positive electrode current collector.
  • a positive electrode collector exposed portion is provided on at least a part of the positive electrode plate 13.
  • the positive electrode current collector lead 14 is joined to the positive electrode current collector exposed portion.
  • welding methods such as resistance welding, ultrasonic welding, and laser welding, and Gusari method are exemplified.
  • the positive electrode current collector exposed portion is formed in a region other than the winding direction end of the positive electrode current collector (for example, a position at a distance of 20% or more of the length of the positive electrode current collector from both ends) ing. This reduces the resistance.
  • the positive electrode current collection lead protrudes from the inner region of the wound electrode group.
  • the inner region means the innermost circumference and the outermost circumference on the outermost circumference side from the central circle located at the center between the innermost circumference and the outermost circumference when looking at a cross section perpendicular to the axial direction of the wound type electrode group.
  • the positive electrode current collector exposed portion is disposed such that the positive electrode current collector lead protrudes from the inner region.
  • the positive electrode active material layer can be formed by applying and drying a positive electrode mixture slurry prepared by kneading a positive electrode active material, a conductive agent, and a binder in a dispersion medium on a positive electrode current collector.
  • the dried positive electrode active material layer is preferably compressed by a roller to a predetermined thickness.
  • the energy density of the non-aqueous electrolyte secondary battery can be improved by compressing the positive electrode active material layer.
  • a lithium transition metal complex oxide capable of reversibly absorbing and desorbing lithium ions
  • the lithium transition metal composite oxide represented by the general formula LiMO 2 (in M Co, Ni, and at least one of Mn), LiMn 2 O 4 and LiFePO 4 and the like. These can be used alone or in combination of two or more. Alternatively, at least one selected from the group consisting of Al, Ti, Mg, and Zr may be added to the lithium transition metal complex oxide, or may be substituted for the transition metal element.
  • the positive electrode current collector for example, a metal foil formed of aluminum, an aluminum alloy, nickel, a nickel alloy, and stainless steel can be used. Among these, metal foils formed of aluminum and an aluminum alloy are preferred. Moreover, as a positive electrode current collection lead, the metal plate which consists of a metal illustrated by the positive electrode current collector can be used.
  • the electrode assembly 16 is manufactured by winding the negative electrode plate 11 and the positive electrode plate 13 with the separator 15 interposed therebetween, and fixing the upper and lower portions of the electrode assembly with a winding tape.
  • the negative electrode plate 11 is wound so as to start winding the end on the side to which the negative electrode current collection lead 12 is welded, and the negative electrode current collection lead 12 protrudes in the downward direction of the electrode body, and the positive electrode current collection lead 14 projects in the upper direction of the electrode body.
  • the winding end of the positive electrode 13 and the coated end of the negative electrode are shown in FIG.
  • the electrode body 16 is wound so that the negative electrode 11 is formed at the outermost periphery, and the positive electrode plate is opposed via the separator.
  • a negative electrode active material layer 11 a is formed on the inner peripheral surface and the outer peripheral surface of the negative electrode current collector.
  • the coated end of the negative electrode active material layer 11a is different between the inner peripheral surface and the outer peripheral surface, and the coated end of the negative electrode active material layer closer to the inner peripheral surface than the outer peripheral surface is terminated on the outer peripheral side.
  • the negative electrode current collector is further stretched, and terminated by winding at least one round of the electrode body.
  • the positive electrode 13 has a positive electrode active material layer 13 a formed on the inner peripheral surface and the outer peripheral surface of the positive electrode current collector.
  • the coating ends of the inner peripheral surface and the outer peripheral surface of the positive electrode active material layer 13a are at substantially the same position, and the positive electrode current collector also ends at the substantially same position.
  • a half straight line (second half straight line) connecting the coating end (i.e., the coating end on the inner peripheral surface side) which is the outermost periphery of the negative electrode active material layer 11a, the center of the end portion of the positive electrode plate and the winding axis
  • the negative electrode active material layer 11a, the positive electrode 13, and the positive electrode current collection lead 14 are disposed such that the half line (first half line) connecting the central portion of the positive electrode current collection lead and the winding axis does not coincide.
  • the outermost peripheral surface of the electrode body with high roundness can be arranged in the half linear direction connecting the winding axis on which the expansion / contraction stress works most by charge / discharge and the positive electrode current collector lead 14 And cracking of the active material layer due to cycles can be suppressed.
  • the angle formed by the first half line and the second half line is, for example, 20 degrees or more and 160 degrees or less, preferably 30 degrees or more and 150 degrees or less, more preferably 70 degrees or more and 110 degrees or less, and particularly 85 degrees or more and 95 or less is there.
  • both the positive electrode end and the negative electrode active material layer end are disposed in one of the regions divided by the straight line connecting the winding axis and the center of the positive electrode current collection lead.
  • the length from the end of the positive electrode 13 to the end of the negative electrode active material layer 11a is, for example, 4 mm or more, and more preferably 7 mm or more.
  • the ratio of the outer diameter of the electrode body 16 to the outer diameter of the battery can 21 at the time of discharge Is preferably 0.97 or more, particularly in view of high energy density.
  • the roundness of the electrode body can be increased.
  • the roundness of the electrode body is preferably 0.98 or more.
  • the bottomed cylindrical battery can 21 can be manufactured, for example, by drawing a metal plate. Iron, nickel, and stainless steel are illustrated as a metal which can be used for the metal plate. When using iron, it is preferable to carry out nickel plating on the surface.
  • a microporous film containing a polyolefin such as polyethylene (PE) or polypropylene (PP) as a main component can be used.
  • the microporous film can be used alone or in combination of two or more layers.
  • a layer mainly composed of polyethylene (PE) having a low melting point as an intermediate layer and polypropylene (PP) excellent in oxidation resistance as a surface layer.
  • Inorganic particles such as aluminum oxide (Al 2 O 3 ), titanium oxide (TiO 2 ) and silicon oxide (SiO 2 ) can be added to the separator.
  • Such inorganic particles can be supported in a separator, and can be coated on the separator surface together with a binder.
  • An aramid resin can also be applied to the surface of the separator.
  • non-aqueous electrolyte one in which a lithium salt as an electrolyte salt is dissolved in a non-aqueous solvent can be used.
  • cyclic carbonates As the non-aqueous solvent, cyclic carbonates, linear carbonates, cyclic carboxylic esters and linear carboxylic esters can be used, and it is preferable to use two or more of these in combination.
  • cyclic carbonates include ethylene carbonate (EC), propylene carbonate (PC) and butylene carbonate (BC).
  • FEC fluoroethylene carbonate
  • chain carbonates include dimethyl carbonate (DMC), ethyl methyl carbonate (EMC), diethyl carbonate (DEC) and methyl propyl carbonate (MPC).
  • cyclic carboxylic acid esters examples include ⁇ -butyrolactone ( ⁇ -BL) and ⁇ -valerolactone ( ⁇ -VL), and linear carboxylic acid esters such as methyl acetate (MA), methyl pivalate, ethyl pivalate, methyl Isobutyrate and methyl propionate are exemplified.
  • ⁇ -BL ⁇ -butyrolactone
  • ⁇ -VL ⁇ -valerolactone
  • linear carboxylic acid esters such as methyl acetate (MA), methyl pivalate, ethyl pivalate, methyl Isobutyrate and methyl propionate are exemplified.
  • LiPF 6 LiBF 4 , LiCF 3 SO 3 , LiN (CF 3 SO 2 ) 2 , LiN (C 2 F 5 SO 2 ) 2 , LiN (CF 3 SO 2 ) (C 4 F 9 SO 2 ) , LiC (CF 3 SO 2) 3, LiC (C 2 F 5 SO 2) 3, LiAsF 6, LiClO 4, Li 2 B 10 Cl 10 and Li 2 B 12 Cl 12 and the like.
  • LiPF 6 is preferable, and the concentration in the non-aqueous electrolyte is preferably 0.5 to 2.0 mol / L.
  • Other lithium salts such as LiBF 4 can also be mixed with LiPF 6 .
  • Example 1 (Fabrication of negative electrode plate) Graphite as a negative electrode active material and SiO are mixed at 95: 5, and 1.5 parts by mass of carboxymethylcellulose (CMC) as a thickener and 1.5 parts by mass of styrene butadiene rubber as a binder are mixed. did. The mixture was poured into water as a dispersion medium and kneaded to prepare a negative electrode mixture slurry. The negative electrode mixture slurry was applied onto both sides of a copper negative electrode current collector having a thickness of 8 ⁇ m by a doctor blade method, and dried to form a negative electrode active material layer 11a.
  • CMC carboxymethylcellulose
  • the first negative electrode current collector exposed portion 11 b and the second negative electrode current collector exposed portion 11 c were provided at respective positions corresponding to both end portions of the completed negative electrode plate 11 in the length direction.
  • the negative electrode active material layer 11a was compressed by a roller, and the compressed electrode plate was cut into a predetermined size.
  • the negative electrode current collector lead 12 was joined to the first negative electrode current collector exposed portion 11b by ultrasonic welding to produce the negative electrode plate 11 shown in FIG.
  • the positive electrode current collector exposed portion was provided at a position corresponding to the central portion of the completed positive electrode plate 13.
  • the positive electrode active material layer was compressed by a roller, and the compressed electrode plate was cut into a predetermined size.
  • the positive electrode current collector lead 14 was joined to the positive electrode current collector exposed portion by ultrasonic welding to produce the positive electrode plate 13.
  • An electrode body 16 was produced by winding the negative electrode plate 11 and the positive electrode plate 13 via a separator 15 made of a microporous polyethylene film.
  • the first negative electrode collector exposed portion 11 b was disposed on the inner peripheral side of the electrode assembly 16
  • the second negative electrode collector exposed portion 11 c was disposed on the outer peripheral side of the electrode assembly 16.
  • the length of the separator was adjusted so that the second negative electrode current collector exposed portion 11 c was disposed at the outermost peripheral portion of the electrode body 16.
  • the upper and lower portions of the electrode body 16 were respectively fixed with a winding stop tape.
  • a non-aqueous solvent was prepared by mixing ethylene carbonate (EC) and dimethyl carbonate (DMC) at a volume ratio of 30:70 (1 atm, 25 ° C.).
  • EC ethylene carbonate
  • DMC dimethyl carbonate
  • LiPF 6 lithium hexafluorophosphate
  • the insulating plate 18 was disposed on the upper portion of the electrode body 16, and the rotating disk was pressed against the outer side surface in the vicinity of the opening of the battery can 21 to perform grooving.
  • the gasket 19 was disposed in the grooved portion, and the positive electrode current collection lead 14 was connected to the sealing body 20.
  • the cylindrical non-aqueous electrolyte secondary battery shown in FIG. 1 is fixed by caulking and fixing the sealing body 20 to the grooved portion of the battery can via the gasket 19. 10 was produced.
  • Example 1 the distance between the positive electrode end and the negative electrode active material layer end is 5 mm, and the angle between the first half line and the second half line is 30 degrees.
  • the battery size was a so-called 18650 cell, and the capacity was 2.6 Ah.
  • Example 2 The procedure of Example 1 was repeated except that the distance between the positive electrode end and the negative electrode active material layer end, and the angle between the first half line and the second half line were as described in Table 1.
  • Example 1 and Example 7 and Example 3 and Example 8 are compared, it is confirmed that the cycle characteristics are further excellent because the distance between the positive electrode end and the negative electrode mixture end is reduced. did it.
  • the present invention it is possible to provide a non-aqueous electrolyte secondary battery excellent in cycle characteristics. Therefore, the industrial applicability of the present invention is large.
  • non-aqueous electrolyte secondary battery 11 negative electrode plate 11 a negative electrode active material layer 11 b first negative electrode current collector exposed portion 11 c second negative electrode current collector exposed portion 12 negative electrode current collector lead 12 a protrusion 13 positive electrode plate 14 positive electrode current collector lead 15

Abstract

非水電解質二次電池は、負極板が内周側端部に負極集電リードが接合され、外周側端部に負極活物質層が形成されていない負極集電体露出部を有し、外周側端部の負極集電体露出部が電池缶と接触し、電極体軸と垂直な平面において、軸と正極集電リードの中心を結ぶ線と、軸と負極板の外周側負極活物質層の塗工端と外周側の正極板の終端部との中心とを結ぶ線とが一致しない非水電解質二次電池である。

Description

非水電解質二次電池
 本発明は、高容量化に適した集電構造を有する非水電解質二次電池に関する。
 近年、非水電解質二次電池はスマートフォン、タブレット型コンピュータ、ノートパソコン及び携帯型音楽プレイヤーなどの携帯型電子機器の駆動電源として広く用いられている。非水電解質二次電池の用途は電動工具、電動アシスト自転車及電気自動車などに拡大しており、非水電解質二次電池には高出力化が求められている。
 非水電解質二次電池の極板には金属箔からなる集電体上に活物質層が形成されており、極板の一部に集電体上に活物質層が形成されていない集電体露出部が設けられている。その集電体露出部に集電リードを接続することにより、極板と外部端子との間の電流経路が確保される。
 ところが、負極の集電リードを極板最外周の集電体露出部に接続し集電をとると、一本の電極リードに電流が集中するため、出力を確保することが出来ない。そこで、例えば特許文献1では、電極最外周において最外周の電極と缶とを面接触させることによって、高出力型の非水電解質二次電池が開示されている。
特開2007―128747号公報
 一方、本発明は電極群最外周を負極と接触させると共に、内周部に負極集電リードを設けることによって、非水電解質二次電池において高出力化を図った。さらに高容量化をするために、電極体の径を大きくした。しかしながら、電極体を固定し、電池缶に挿入するために電極群の上部及び下部に周回テープを巻く必要があり、さらに、周回テープの厚みによる段差と巻回電極体の膨張収縮の応力によって負極合剤の割れ目が形成され、サイクル維持率が悪化するという課題があった。
 本発明は上記に鑑みてなされたものであり、負極集電リードと電池缶との電気的接続によって出力特性を向上させると共に、最外周の負極合剤層の割れ目を抑制させる非水電解質二次電池を提供することを目的とする。
 上記課題を解決するために本発明の一態様に係る非水電解質二次電池は、負極板及び正極板がセパレータを介して巻回され、上部及び下部を周回テープによって固定された電極体と、非水電解質と、電極体及び非水電解質を収容する有底筒状の電池缶と、電池缶の開口部を封止する封口体とを備え、
 負極板が内周側及び外周側の端部のそれぞれに負極活物質層が形成されていない第1負極集電体露出部及び第2負極集電体露出部を有し、負極集電リードが第1負極集電体露出部に接合され、第2負極集電体露出部の少なくとも一部が電池缶と接触し、
 正極板は負極集電リードより外周側の少なくとも一部において、正極活物質層が形成されていない第1正極集電体露出部を有し、正極集電リードが第1正極集電体露出部に接合されており、電極体の巻回軸と垂直な平面において、巻回軸と正極集電リードの中心を結ぶ第1半直線と、巻回軸と負極板の負極活物質層の外周側の終端部と正極板の外周側の終端部との中心とを結ぶ第2半直線とが一致しないことを特徴としている。
 本発明の一態様によれば、電極体の膨張収縮によって最も応力が集中する電極体軸と正極集電リードの中心を結ぶ半直線上の真円度を高めることができ、周回テープの段差部の応力の集中を緩和することができる。したがって、充放電サイクルを繰り返しても、電極体内の割れ目の形成を抑制することができる。
本発明の一実施形態に係る非水電解質二次電池の断面斜視図である。 本発明の一実施形態に係る非水電解質二次電池の負極板の平面図である。 本発明の一実施形態に係る非水電解質二次電池の正極の平面図である。 本発明の一実施形態に係る非水電解質二次電池の電極体の断面図である。
 本発明を実施するための形態について図面を参照しながら詳細に説明する。なお、本発明は下記の実施形態に限定されず、その要旨を変更しない範囲で適宜変更して実施することができる。
 図1は本発明の一実施形態である非水電解質二次電池10の断面斜視図である。有底筒状の電池缶21に電極体16と非水電解質が収容されている。電池缶21の開口部の近傍に形成された溝入れ部にガスケット19を介して封口体20をかしめ固定することにより電池内部が密閉されている。
 負極板11は、図2に示すように、負極集電体上に形成された負極活物質層11aを有している。負極活物質層11aは負極集電体の少なくとも一方の面に形成されていればよい。負極板11の長さ方向の両端部に負極集電体の両面に負極活物質層11aが形成されていない負極集電体露出部が設けられている。電極体16を作製する際、負極板11と正極板13は長さ方向に沿って巻回されるため、負極集電体露出部はそれぞれ電極体の内周側及び外周側の端部に配置される。ここでは、内周側の負極集電体露出部を第1負極集電体露出部11bとし、外周側の負極集電体露出部を第2負極集電体露出部11cとする。負極集電リード12は第1負極集電体露出部11bに接合されている。接合方法としては、抵抗溶接、超音波溶接、及びレーザ溶接などの溶接法、並びにグサリ法が例示される。
 負極活物質層11aは、負極活物質と結着剤を分散媒中で混練して作製した負極合剤スラリーを負極集電体上に塗布し、乾燥して形成することができる。乾燥後の負極活物質層11aはローラーで所定厚みになるように圧縮することが好ましい。負極活物質層11aを圧縮することで非水電解質二次電池のエネルギー密度を向上することができる。
 負極活物質としては、リチウムイオンを可逆的に吸蔵、放出することができる炭素材料やリチウムと合金化することができる金属材料を用いることができる。炭素材料としては、天然黒鉛及び人造黒鉛などの黒鉛が例示される。金属材料としては、ケイ素及びスズ、並びにこれらの酸化物が挙げられる。炭素材料及び金属材料は単独で、又は2種以上を混合して用いることができる。また、充放電に伴う体積変化の大きいケイ素やスズの酸化物を含む負極活物質を用いることによって、本発明の効果をより明確に得ることが明確に得ることができる。
 負極集電体としては、例えば、銅、銅合金、ニッケル、ニッケル合金、及びステンレス鋼から形成された金属箔を使用することができる。これらの中で、銅及び銅合金から形成された金属箔が好ましい。また、負極集電リード12としては、負極集電体に例示された金属からなる金属板を用いることが好ましい。
 正極板13は、正極集電体上に形成された正極活物質層を有している。正極活物質層は正極集電体の少なくとも一方の表面に形成されていればよい。正極板13の少なくとも一部に正極集電体露出部が設けられている。正極集電体露出部は、正極集電リード14が正極集電体露出部に接合されている。接合方法としては、抵抗溶接、超音波溶接、及びレーザ溶接などの溶接法、並びにグサリ法が例示される。
 正極集電体露出部は、正極集電体の巻回方向端部以外の領域(例えば、両方の端部から正極集電体の長さの20%以上の距離を離れた位置)に形成されている。これにより、抵抗が小さくなる。この場合、正極集電リードは、巻回式電極群の内部領域から突出する。内部領域とは、巻回式電極群の軸方向と垂直な断面を見たとき、最内周と最外周との中央に位置する中心円から、最外周側に最内周と最外周との距離の30%までの領域と、上記中心円から最内周側に最内周と最外周との距離のまでの領域とを合わせた領域である。言い換えれば、正極集電体露出部は、内部領域から正極集電リードが突出するように、配置されている。
 正極集電リード上と、正極集電リードが接合された正極集電体の裏面には絶縁テープを貼り付けることが好ましい。これにより、正極集電リードに起因する内部短絡を防止することができる。
 正極活物質層は、正極活物質と導電剤と結着剤を分散媒中で混練して作製した正極合剤スラリーを正極集電体上に塗布、乾燥して形成することができる。乾燥後の正極活物質層はローラーで所定厚みになるように圧縮することが好ましい。正極活物質層を圧縮することで非水電解質二次電池のエネルギー密度を向上することができる。
 正極活物質としては、リチウムイオンを可逆的に吸蔵、放出することができるリチウム遷移金属複合酸化物を用いることができる。リチウム遷移金属複合酸化物としては、一般式LiMO(MはCo、Ni、及びMnの少なくとも1つ)、LiMn及びLiFePOが挙げられる。これらは単独で、又は2種以上を混合して用いることができる。Al、Ti、Mg、及びZrからなる群から選ばれる少なくとも1つをリチウム遷移金属複合酸化物に添加し、又は遷移金属元素と置換して用いることもできる。
 正極集電体としては、例えば、アルミニウム、アルミニウム合金、ニッケル、ニッケル合金、及びステンレス鋼から形成された金属箔を使用することができる。これらの中で、アルミニウム及びアルミニウム合金から形成された金属箔が好ましい。また、正極集電リードとしては、正極集電体に例示された金属からなる金属板を用いることができる。
 電極体16は、負極板11と正極板13とをセパレータ15を介して巻回し、周回テープで電極体の上部及び下部を固定して作製される。負極板11は、負極集電リード12が溶接された側の端部を巻き始めとするように、巻回されており、負極集電リード12は電極体の下方向に突出し、正極集電リード14は電極体の上方向に突出している。
 正極13の巻終わり端部及び負極の塗工端を図3に示す。電極体16は負極11が最外周に形成されるように巻回されており、セパレータを介して正極板が対向している。
 負極11は、負極集電体の内周面と外周面に負極活物質層11aが形成されている。負極活物質層11aの塗工端は、内周面と外周面とで異なっており、外周面側よりも内周面側の負極活物質層の塗工端が外周側で終端している。負極集電体はさらに延伸しており、少なくとも電極体一周分以上巻回して終端している。
 正極13は、正極集電体の内周面と外周面に正極活物質層13aが形成されている。正極活物質層13aの内周面と外周面の塗工端は略同一位置であり、正極集電体も略同一の位置で終端している。
 この時、負極活物質層11aの最外周である塗工端(すなわち内周面側の塗工端)と正極板の終端部の中心と巻回軸とを結ぶ半直線(第2半直線)と、正極集電リードの中心部と巻回軸とを結ぶ半直線(第1半直線)とが一致しないように、負極活物質層11aと正極13と正極集電リード14を配置する。このように配置することによって、充放電によって最も膨張収縮応力が働く巻回軸と正極集電リード14を結ぶ半直線方向に、真円度の高い電極体の最外周面を配置することができ、サイクルによる活物質層の割れ等を抑制することができる。
 第1半直線と第2半直線のなす角は、例えば20度以上160度以下であり、30度以上150度以下が好ましく、さらに70度以上110度以下が好ましく、特に85度以上95以下である。
 また、正極13の終端部と軸中心とを結ぶ半直線と、負極活物質層11aの終端部と軸中心とを結ぶ半直線とがなす角の間に第1半直線がないことが好ましい。言い換えると、巻回軸と前記正極集電リードの中心を結ぶ直線によって分けられる領域のどちらか一方に、正極端及び負極活物質層端の両方ともが配置されている。
 なお、正極13の終端部から負極活物質層11aの終端部までの長さは、例えば4mm以上であり、さらに好ましくは7mm以上である。
 また、電極体16の巻回軸と垂直平面において、放電時における、前記電極体16の外径と電池缶21の外径との比(電極体16の外径/電池缶21の外径)が0.97以上とすると、特に高エネルギー密度化の観点で好ましい。またこのように、比較的大きな電極体16を挿入するために、上記のように正極13の終端部と負極活物質層11aの終端部と正極集電リード14位置を適切に配置することによって、電極体の真円度を高めることができる。電極体の真円度は0.98以上にすることが好ましい。
 有底筒状の電池缶21は、例えば金属板を絞り加工することにより作製することができる。その金属板に用いることのできる金属として、鉄、ニッケル、及びステンレスが例示される。鉄を用いる場合はその表面にニッケルめっきをすることが好ましい。
 セパレータ15としては、ポリエチレン(PE)やポリプロピレン(PP)のようなポリオレフィンを主成分とする微多孔膜を用いることができる。微多孔膜は1層単独で、又は2層以上を積層して用いることができる。2層以上の積層セパレータにおいては、融点が低いポリエチレン(PE)を主成分とする層を中間層に、耐酸化性に優れたポリプロピレン(PP)を表面層とすることが好ましい。セパレータには酸化アルミニウム(Al)、酸化チタン(TiO)及び酸化ケイ素(SiO)のような無機粒子を添加することができる。このような無機粒子はセパレータ中に担持させることができ、セパレータ表面に結着剤とともに塗布することもできる。セパレータの表面にアラミド系の樹脂を塗布することもできる。
 非水電解質として、非水溶媒中に電解質塩としてのリチウム塩を溶解させたものを用いることができる。
 非水溶媒として、環状炭酸エステル、鎖状炭酸エステル、環状カルボン酸エステル及び鎖状カルボン酸エステルを用いることができ、これらは2種以上を混合して用いることが好ましい。環状炭酸エステルとしては、エチレンカーボネート(EC)、プロピレンカーボネート(PC)及びブチレンカーボネート(BC)が例示される。また、フルオロエチレンカーボネート(FEC)のように、水素の一部をフッ素で置換した環状炭酸エステルを用いることもできる。鎖状炭酸エステルとしては、ジメチルカーボネート(DMC)、エチルメチルカーボネート(EMC)、ジエチルカーボネート(DEC)及びメチルプロピルカーボネート(MPC)などが例示される。環状カルボン酸エステルとしてはγ-ブチロラクトン(γ-BL)及びγ-バレロラクトン(γ-VL)が例示され、鎖状カルボン酸エステルとしては酢酸メチル(MA)、ピバリン酸メチル、ピバリン酸エチル、メチルイソブチレート及びメチルプロピオネートが例示される。
 リチウム塩として、LiPF、LiBF、LiCFSO、LiN(CFSO、LiN(CSO、LiN(CFSO)(CSO)、LiC(CFSO、LiC(CSO、LiAsF、LiClO、Li10Cl10及びLi12Cl12が例示される。これらの中でもLiPFが好ましく、非水電解液中の濃度は0.5~2.0mol/Lであることが好ましい。LiPFにLiBFなど他のリチウム塩を混合することもできる。
 本発明の実施形態について、以下に具体的な実施例を用いてより詳細に説明する。
 (実施例1)
 (負極板の作製)
 負極活物質としての黒鉛とSiOを95:5で混合し、増粘剤としての1.5質量部のカルボキシメチルセルロース(CMC)と、結着剤としての1.5質量部のスチレンブタジエンゴムを混合した。その混合物を分散媒としての水へ投入し、混練して負極合剤スラリーを作製した。その負極合剤スラリーを、厚み8μmの銅製の負極集電体の両面にドクターブレード法により塗布し、乾燥して負極活物質層11aを形成した。このとき、完成した負極板11の長さ方向の両端部に対応するそれぞれの位置に第1負極集電体露出部11bと第2負極集電体露出部11cを設けた。次いで、負極活物質層11aをローラーにより圧縮し、圧縮された極板を所定サイズに切断した。最後に、第1負極集電体露出部11bに負極集電リード12を超音波溶接で接合して図2に示す負極板11を作製した。
 (正極板の作製)
 正極活物質として100質量部のLiNi0.82Co0.15Al0.03と、導電剤としての1質量部のアセチレンブラックと、結着剤としての0.9質量部のポリフッ化ビニリデン(PVDF)を混合した。その混合物を分散媒としてのN-メチル-2-ピロリドン(NMP)に投入し、混練して正極合剤スラリーを調製した。その正極合剤スラリーをドクターブレード法により厚みが15μmのアルミニウム製の正極集電体の両面に塗布し、乾燥して正極活物質層を形成した。このとき、完成した正極板13の中央部に対応する位置に正極集電体露出部を設けた。次いで、正極活物質層をローラーにより圧縮し、圧縮された極板を所定サイズに切断した。最後に、正極集電体露出部に正極集電リード14を超音波溶接で接合して正極板13を作製した。
 (電極体の作製)
 負極板11及び正極板13を、ポリエチレン製微多孔膜からなるセパレータ15を介して巻回することにより電極体16を作製した。電極体16の作製の際、第1負極集電体露出部11bを電極体16の内周側に配置し、第2負極集電体露出部11cを電極体16の外周側に配置した。さらに、第2負極集電体露出部11cが電極体16の最外周部に配置されるようにセパレータの長さを調整した。電極体16の上下部をそれぞれ巻き止めテープで固定した。
 (非水電解質の調製)
 エチレンカーボネート(EC)とジメチルカーボネート(DMC)を30:70の体積比(1気圧、25℃)で混合して非水溶媒を調製した。この非水溶媒に電解質塩としてのヘキサフルオロリン酸リチウム(LiPF)を1mol/Lの濃度で溶解して非水電解質を調製した。
 (非水電解質二次電池の作製)
 環状の絶縁板17を電極体16の下部の端面に貼り付けた。その際、負極集電リード12の電極体16の端面からの突出部12aを絶縁板17の開口部に挿入した。そして図3に示すように、負極集電リード12の突出部12aを電極体16の端面上及び電極体16の外周側面上に沿って折り曲げた後、有底筒状の電池缶21の開口部から電極体16を挿入した。なお、負極集電リード12を電池缶21の底部に溶接により接合した。
 次に、電極体16の上部に絶縁板18を配置し、電池缶21の開口部の近傍の外側面に回転する円板を押し当てて溝入れ加工を行った。その溝入れ部にガスケット19を配置し、正極集電リード14を封口体20に接続した。そして、非水電解質を電池缶21の内部へ注入した後、封口体20を電池缶の溝入れ部にガスケット19を介してかしめ固定することにより図1に示す円筒形の非水電解質二次電池10を作製した。
 実施例1では、正極端部と負極活物質層端部との距離を5mm、第1半直線と第2半直線の角度を30度とした。なお、電池サイズはいわゆる18650セルとし、容量2.6Ahとした。
 (実施例2~8)
 正極端部と負極活物質層端部との距離と、第1半直線と第2半直線の角度を表1に記載のようにする以外は実施例1と同様に作製した。
 (比較例1)
 第1半直線と第2半直線の角度を0度、すなわち一致するようにした以外は実施例1と同様に作製した。
 (サイクルによる評価)
 実施例1~8及び比較例1の各電池を作製し、それぞれの電池を1.0Itの定電流で電圧が4.2Vになるまで充電し、さらに4.2Vの定電圧で電流が0.02Itになるまで充電した。20分の休止後、各電池を1.0Itの定電流で電圧が2.5Vになるまで放電をした。このサイクルを45℃環境下で500サイクル行い、サイクル維持率を測定した。なお、初期容量に対する500サイクル時の容量維持率をサイクル維持率とした。
Figure JPOXMLDOC01-appb-T000001
 実施例1~8と比較例1の結果を比較すると、第1半直線と第2半直線とを一致しないようにずらすことによって、サイクル特性が良化することが確認できた。さらに、実施例3のサイクル特性が最も優れていることが確認できた。つまり90度に近づけば近づくほど良好な結果が得られることが分かった。
 次に、実施例1と実施例7、実施例3と実施例8とを比較すると、正極終端と負極合剤終端部との距離がながくなることによって、さらにサイクル特性が優れていることが確認できた。
 本発明によれば、サイクル特性に優れた非水電解質二次電池を提供することができる。そのため、本発明の産業上の利用可能性は大きい。
10   非水電解質二次電池
11   負極板
11a  負極活物質層
11b  第1負極集電体露出部
11c  第2負極集電体露出部
12   負極集電リード
12a  突出部
13   正極板
14   正極集電リード
15   セパレータ
16   電極体
17   絶縁板
18   絶縁板
19   ガスケット
20   封口体
21   電池缶

Claims (6)

  1.  負極板及び正極板がセパレータを介して巻回され、上部及び下部の周回テープによって固定された電極体と、
     非水電解質と、
     前記電極体及び前記非水電解質を収容する有底筒状の電池缶と、
    前記電池缶の開口部を封止する封口体とを備える非水伝電解質二次電池であって、
     前記負極板が巻回方向の内周側及び外周側の端部のそれぞれに負極活物質層が形成されていない第1負極集電体露出部及び第2負極集電体露出部を有し、
    負極集電リードが前記第1負極集電体露出部に接合され、前記第2負極集電体露出部の少なくとも一部が前記電池缶の内壁と接触し、
     正極板は負極集電リードより外周側の一部において、正極活物質層が形成されていない第1正極集電体露出部を有し、
    正極集電リードが前記第1正極集電体露出部に接合されており、
     電極体の巻回軸と垂直な平面において、巻回軸と前記正極集電リードの中心を結ぶ第1半直線と、巻回軸と負極板の負極活物質層の外周側の終端部と正極板の外周側の終端部との中心とを結ぶ第2半直線とが一致しない、非水電解質二次電池。
  2. 前記第1半直線と前記第2半直線がなす角が20~160°である、請求項1に記載の非水電解質二次電池。
  3.  前記電極体の巻回軸と垂直平面において、
     放電時における、前記電極体の外径と前記電池缶の外径との比(電極体の外径/電池缶の外径)が0.97以上である、請求項1に記載の非水電解質二次電池。
  4. 前記電極体の巻回軸と垂直平面において、
    前記電極体の真円度が0.98以上である、請求項1に記載の非水電解質二次電池。
  5. 前記正極板の終端部から前記負極活物質層の外周側の終端部までの長さが4mm以上である、請求項1に記載の非水電解質二次電池。
  6.  前記正極の終端部と前記負極活物質層の外周側の終端部とが、巻回軸と前記正極集電リードの中心を結ぶ直線によって分けられる領域の一方にのみ配置されている、請求項1に記載の非水電解質二次電池。
PCT/JP2018/025742 2017-09-29 2018-07-06 非水電解質二次電池 WO2019064806A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201880063377.8A CN111183542B (zh) 2017-09-29 2018-07-06 非水电解质二次电池
JP2019544302A JP7064270B2 (ja) 2017-09-29 2018-07-06 非水電解質二次電池
US16/795,147 US11456460B2 (en) 2017-09-29 2020-02-19 Nonaqueous electrolyte secondary battery

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017189366 2017-09-29
JP2017-189366 2017-09-29

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/795,147 Continuation US11456460B2 (en) 2017-09-29 2020-02-19 Nonaqueous electrolyte secondary battery

Publications (1)

Publication Number Publication Date
WO2019064806A1 true WO2019064806A1 (ja) 2019-04-04

Family

ID=65900931

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/025742 WO2019064806A1 (ja) 2017-09-29 2018-07-06 非水電解質二次電池

Country Status (4)

Country Link
US (1) US11456460B2 (ja)
JP (1) JP7064270B2 (ja)
CN (1) CN111183542B (ja)
WO (1) WO2019064806A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020084986A1 (ja) * 2018-10-26 2020-04-30 パナソニックIpマネジメント株式会社 円筒型二次電池

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102646837B1 (ko) * 2022-07-19 2024-03-12 주식회사 엘지에너지솔루션 원통형 배터리, 배터리 팩 및 자동차

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05101815A (ja) * 1991-10-09 1993-04-23 Sanyo Electric Co Ltd 非水電解液電池
JPH0652867A (ja) * 1992-07-31 1994-02-25 Sanyo Electric Co Ltd 有機電解質電池
JPH08153542A (ja) * 1994-09-27 1996-06-11 Asahi Chem Ind Co Ltd 非水系電池
JP2006012813A (ja) * 2004-06-28 2006-01-12 Samsung Sdi Co Ltd 電極組立体及びこれを用いたリチウムイオン二次電池
JP2010186740A (ja) * 2009-01-16 2010-08-26 Panasonic Corp 非水系電池用電極群およびその製造方法並びに円筒形非水系二次電池およびその製造方法
JP2010533952A (ja) * 2007-07-16 2010-10-28 エルジー・ケム・リミテッド 活性材料が塗布されていない部分に密着した弾性部材を有する構造のゼリー−ロール、及びそれを使用する二次バッテリー
JP2012178237A (ja) * 2011-02-25 2012-09-13 Sanyo Electric Co Ltd 非水電解質二次電池

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5354629A (en) 1991-10-09 1994-10-11 Sanyo Electric Co., Ltd. Monaqueous electrolyte battery
US5989743A (en) 1994-09-27 1999-11-23 Asahi Kasei Kogyo Kabushiki Kaisha Non-aqueous battery
JP3948121B2 (ja) * 1998-06-16 2007-07-25 宇部興産株式会社 電池及びその製造方法
JP2002110222A (ja) * 2000-10-03 2002-04-12 Sanyo Electric Co Ltd 円筒型蓄電池
JP4140425B2 (ja) * 2003-04-10 2008-08-27 ソニー株式会社 二次電池
JP4379699B2 (ja) * 2004-01-19 2009-12-09 ソニー株式会社 リチウムイオン二次電池用電解質およびそれを用いたリチウムイオン二次電池
TWI291778B (en) * 2004-11-08 2007-12-21 Sony Corp Secondary battery
ITMI20042554A1 (it) 2004-12-30 2005-03-30 Solvay Solexis Spa Procedimento per la preparazione di dispersioni di fluoropolimeri
JP2007128747A (ja) * 2005-11-04 2007-05-24 Sony Corp 電池
JP6052867B2 (ja) 2012-11-13 2016-12-27 三菱電機株式会社 電動機及び換気扇
US20180040881A1 (en) * 2015-03-13 2018-02-08 Sanyo Electric Co., Ltd. Non-aqueous electrolyte secondary battery
JP2017076470A (ja) * 2015-10-13 2017-04-20 湘南Corun Energy株式会社 アルカリ蓄電池及びその製造方法
WO2017122251A1 (ja) * 2016-01-12 2017-07-20 三洋電機株式会社 非水電解質二次電池

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05101815A (ja) * 1991-10-09 1993-04-23 Sanyo Electric Co Ltd 非水電解液電池
JPH0652867A (ja) * 1992-07-31 1994-02-25 Sanyo Electric Co Ltd 有機電解質電池
JPH08153542A (ja) * 1994-09-27 1996-06-11 Asahi Chem Ind Co Ltd 非水系電池
JP2006012813A (ja) * 2004-06-28 2006-01-12 Samsung Sdi Co Ltd 電極組立体及びこれを用いたリチウムイオン二次電池
JP2010533952A (ja) * 2007-07-16 2010-10-28 エルジー・ケム・リミテッド 活性材料が塗布されていない部分に密着した弾性部材を有する構造のゼリー−ロール、及びそれを使用する二次バッテリー
JP2010186740A (ja) * 2009-01-16 2010-08-26 Panasonic Corp 非水系電池用電極群およびその製造方法並びに円筒形非水系二次電池およびその製造方法
JP2012178237A (ja) * 2011-02-25 2012-09-13 Sanyo Electric Co Ltd 非水電解質二次電池

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020084986A1 (ja) * 2018-10-26 2020-04-30 パナソニックIpマネジメント株式会社 円筒型二次電池
JPWO2020084986A1 (ja) * 2018-10-26 2021-09-09 パナソニックIpマネジメント株式会社 円筒型二次電池
JP7320738B2 (ja) 2018-10-26 2023-08-04 パナソニックIpマネジメント株式会社 円筒型二次電池

Also Published As

Publication number Publication date
CN111183542A (zh) 2020-05-19
US11456460B2 (en) 2022-09-27
US20200185725A1 (en) 2020-06-11
JP7064270B2 (ja) 2022-05-10
JPWO2019064806A1 (ja) 2020-11-26
CN111183542B (zh) 2023-06-02

Similar Documents

Publication Publication Date Title
JP6879214B2 (ja) 非水電解質二次電池
JPWO2012111061A1 (ja) 電池および電池の製造方法
JPWO2018180828A1 (ja) 円筒形電池
WO2017122251A1 (ja) 非水電解質二次電池
WO2018142928A1 (ja) 二次電池
JP2010086780A (ja) 角形二次電池
JP2014035925A (ja) 非水電解質二次電池
JP6547750B2 (ja) 非水電解質二次電池
WO2012053556A1 (ja) 非水電解質二次電池
JP4097443B2 (ja) リチウム二次電池
US11456460B2 (en) Nonaqueous electrolyte secondary battery
JP2009266706A (ja) リチウムイオン二次電池
WO2013038676A1 (ja) 非水電解質二次電池
WO2013047515A1 (ja) 非水電解質二次電池
JP5296971B2 (ja) 二次電池用負極の製造方法
WO2018100853A1 (ja) 円筒形電池
JP5413945B2 (ja) 積層型ラミネート非水電解質二次電池
JP2006244833A (ja) リチウム二次電池およびその製造方法
JP2001229970A (ja) 円筒形リチウムイオン電池
WO2017051516A1 (ja) 非水電解質二次電池
JP2001185220A (ja) 円筒形リチウムイオン電池
JP5786137B2 (ja) 円筒形リチウムイオン二次電池
JP2016085884A (ja) 電池
JP2019121500A (ja) 円筒形二次電池
JP5954339B2 (ja) 角形二次電池及びその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18862083

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019544302

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18862083

Country of ref document: EP

Kind code of ref document: A1