JP5954339B2 - 角形二次電池及びその製造方法 - Google Patents

角形二次電池及びその製造方法 Download PDF

Info

Publication number
JP5954339B2
JP5954339B2 JP2014015247A JP2014015247A JP5954339B2 JP 5954339 B2 JP5954339 B2 JP 5954339B2 JP 2014015247 A JP2014015247 A JP 2014015247A JP 2014015247 A JP2014015247 A JP 2014015247A JP 5954339 B2 JP5954339 B2 JP 5954339B2
Authority
JP
Japan
Prior art keywords
electrode
current collector
core
plate
electrode core
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014015247A
Other languages
English (en)
Other versions
JP2014112548A (ja
Inventor
恭朋 谷口
恭朋 谷口
卓 近藤
近藤  卓
山内 康弘
康弘 山内
能間 俊之
俊之 能間
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP2014015247A priority Critical patent/JP5954339B2/ja
Publication of JP2014112548A publication Critical patent/JP2014112548A/ja
Application granted granted Critical
Publication of JP5954339B2 publication Critical patent/JP5954339B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Sealing Battery Cases Or Jackets (AREA)
  • Secondary Cells (AREA)
  • Connection Of Batteries Or Terminals (AREA)

Description

この発明は、扁平状の巻回電極体を有する角形二次電池及びその製造方法に関する。
近年、ハイブリット型自動車など二次電池を駆動電源とする電気自動車が普及しつつあるが、電気自動車には高出力な二次電池が必要である。また、携帯電話やノートパソコンなどのモバイル型電子機器への一層の高機能化により、これらの用途においても一層の高出力化が求められている。
電池の高容量化には、正負電極の対向面積を大きくする必要があるが、正負電極板を多数積層した積層電極体構造や、長尺の正負電極板を、セパレータを介して巻回した渦巻き電極体構造であると、正負極の対向面積を大きくできるので、電池の高出力化を図り易い。
これらの構造の高出力電池では、電流を安定して取り出すために、正負芯体の露出部分に集電板を溶接し、この集電板を外部端子に接続する構造が採用されている。また、集電板と正負芯体との接続点が多いほど安定して大電流を取り出せることから、溶接箇所を2箇所以上とすることが行われている(特許文献1参照)。
抵抗溶接において溶接箇所を複数とすると、図5に示すように、電流が横方向にも広がり、先に溶接した箇所を介して電流が流れる。この電流は、溶接に役立たない電流(無効電流)であるので、所望の溶接箇所に必要な電流を流すことができない。その一方、所望の溶接箇所に必要量の電流を流すべく電圧を大きくすると、スパッタが発生し、良質の溶接が行えなくなるという問題がある。
特開2006−12830号公報 特開2002−164035号公報 特開2002−184451号公報
上記特許文献2、3には、芯体の面方向端縁の同一面上に集電板を複数の部材に分割して配置し、それぞれの集電板に一対の溶接用電極を接触させ、溶接電流を流すことにより、集電部材と芯体を抵抗溶接する場合に生じる課題を解決するための技術が提案されている。しかしながら、上記特許文献2、3に記載の技術では、強度が弱い芯体の面方向端縁と集電板とを溶接するため、溶接面積を大きくしにくく、集電効率を十分に向上できない。また、溶接に際して特殊な手法を用いる必要があり、その分、電池の生産性が低下する。
第1の発明は、上記に鑑み、両端にそれぞれ正極芯体及び負極芯体の露出部を有する扁
平状の電極体の芯体露出部に対して集電板を抵抗溶接する際、少ない溶接電流であっても確実な溶接を生産性高く行うことができ、集電効率に優れた大出力対応の角形二次電池を提供することを目的とする。
一方、本発明は、集電板と電極芯体を抵抗溶接する際に生じる無効電流を低減することが可能な角形二次電池の製造方法を提供する。
本発明の角形二次電池の製造方法は、
第1電極芯体上に第1電極活物質層が形成された第1電極板、第2電極板、及びセパレータを巻回した扁平状の電極体と、
前記第1電極芯体に接続された第1集電板と、を備え、
前記電極体は、前記電極体の巻回軸が延びる方向における一方の端部に巻回された第1電極芯体を有し、
前記巻回された第1電極芯体は、前記電極体の巻回軸が延びる方向に対して垂直な方向において、一方の端部に前記第1電極芯体が湾曲した状態で配置される第1湾曲部を有し、他方の端部に前記第1電極芯体が湾曲した状態で配置される第2湾曲部を有し、前記第1湾曲部と前記第2湾曲部の間に前記第1電極芯体が束ねられた領域を有し、前記第1湾曲部の厚みは前記第1電極芯体が束ねられた領域の厚みよりも大きく、
前記第1集電板は、前記第1電極芯体が束ねられた領域における前記巻回された第1電極芯体の最外周面に接続される接続部と、前記接続部から前記第1電極芯体が束ねられた領域における前記第1電極芯体から離れる方向に屈曲し、前記第1湾曲部における前記巻回された第1電極芯体の最外周面と対向するようにして前記巻回された第1電極芯体の前記第1湾曲部側の端部よりも外側まで延びる延長部を有する、角形二次電池の製造方法であって、
前記束ねられた領域の前記第1電極芯体の積層方向における外面に前記接続部を配置し、一対の溶接用電極で前記接続部と前記束ねられた領域の前記第1電極芯体とを挟み込んだ状態で抵抗溶接を行い、前記抵抗溶接の際、前記第1集電板の前記延長部と前記第1湾曲部とが離間した状態で、前記第1集電板の前記接続部を前記第1電極芯体が束ねられた領域に溶接接続する接続工程を有する。
このような方法であると、前記接続部を前記第1電極芯体が束ねられた領域に抵抗溶接する際、第1集電板の延長部と第1湾曲部が接していないため、第1集電板の延長部から第1湾曲部に無効電流が流れることを防止できる。
第1の発明は、両端のそれぞれから、第1電極芯体及び第2電極芯体が、それぞれ複数枚直接重なり合った状態で突出した扁平状電極体と、前記第1電極芯体が複数枚直接重なり合った状態で突出した第1電極芯体集合領域であって、前記第1電極芯体の積層面に平行な一方の面に配置され、抵抗溶接された第1集電板と、を備える角形二次電池において、前記第1集電板が取り付けられた領域と離間した他の領域に、前記直接重なり合い積層された第1電極芯体同士が溶融接着された第1電極芯体溶融接着部が形成されていること
を特徴とする。
この構成では、第1電極芯体が直接重なり合う第1電極芯体集合領域の一部に、複数枚直接重なり合った第1電極芯体同士が溶融接着された第1電極芯体溶融接着部が設けられている。この第1電極芯体溶融接着部は、第1電極の活物質層で発電された電気が第1集電板へ流れる電流バイパスとして機能する。このバイパスの働きにより、第1集電板と第1電極板との間の通電における電気抵抗が低下するので、集電効率が向上する。
また、この第1電極芯体溶融接着部は、第1集電板が取り付けられた領域と離間した他の領域に形成されているので、第1電極芯体溶融接着部と第1集電板溶接部の何れか一方が、他方の溶接作業を障害することがない。すなわち、電気抵抗溶接により第1電極芯体を溶融集結して第1電極芯体溶融接着部を形成する場合、先に第1集電板が溶接されていても、先に溶接された第1集電板溶接点を介して無効電流(溶接に寄与しない電流)が流れることがない。また、電気抵抗溶接により第1集電板を第1電極芯体に取り付ける際、先に溶接された第1電極芯体溶融接着部を介して無効電流が流れることがない。よって、上記構成によると、円滑に良質の電気抵抗溶接を行うことができ、これにより集電効率に優れた高出力対応の角形二次電池を得ることができる。
また、複数枚の芯体の積層面に平行な一方の面に集電板を配置して抵抗溶接するため、溶接面積を大きくすることが容易であり、且つ抵抗溶接に複雑な手法を必要としないので、生産性に優れる。
上記構成において、前記第1集電板の抵抗溶接部分の対向側に、第1集電板受け部品が取り付けられている構成とすることができる。
第1集電板を抵抗溶接により第1電極芯体集合領域に取り付ける際、効果的に溶接電流を流すためには、第1集電板の抵抗溶接部分の対向側に第1集電板受け部品を配置して溶接することが好ましい。この場合、第1集電板受け部品は第1電極芯体集合領域に溶接固定され、溶接箇所の強度を高めるように機能する。
上記構成において、前記第1芯体溶融接着部には、第1芯体溶接部材が取り付けられ、前記第1芯体溶接部材が取り付けられた面の対向側には、第1芯体溶接部材受け部品が取り付けられている構成とすることができる。
第1電極芯体溶融接着部を形成するための抵抗溶接においても、溶接箇所に効率よく溶接電流を流すためには、溶接部材(集電板側)と溶接部材受け部品(集電板受け部品側)とを配置して溶接することが好ましい。この場合、溶接後に残存する溶接部材と溶接部材受け部品とが、溶接箇所の強度を高めるように機能する。
また、第1の発明の角形二次電池においては、第1電極は、正極であってもよく、負極であってもよい。第2電極もまた、第1電極と同様の手法で、第2集電板が取り付けられ、且つ芯体溶融接着部が形成されていてもよい。
第1電極が正極である場合、第1電極芯体及び第1集電板は、アルミニウム又はアルミ
ニウム合金からなる構成とすることが好ましく、第1電極が負極である場合、第1電極芯体及び第1集電板は、銅又は銅合金からなることが好ましい。
また、溶接部材、溶接部材受け部品もまた、正極側に関してはアルミニウム又はアルミニウム合金からなる構成とすることが好ましく、負極側に関しては銅又は銅合金からなることが好ましい。
上記で列挙した、アルミニウム、アルミニウム合金、銅、及び銅合金は、何れも電気伝導性が良好で、熱伝導率が良好な材料である。このため、従来の手法で抵抗溶接する時には、大電流を流す必要があるため、通常はスパッタによってチリが発生しやすいが、本発明の角形二次電池によれば、上記本効果(良質の電気抵抗溶接を行うことができ、
集電効率が高い)を良好に奏することができる。しかしながら、上記の正極側と負極側とを入れ替えた構成、すなわち正極に銅を用いる場合や、負極にアルミニウムを用いる場合は、電位により銅又はアルミニウムが劣化する(溶ける)おそれがあるので、好ましくない。
なお、第1の発明の角形二次電池における芯体、集電板、集電板受け部品、溶接部材、溶接部材受け部品は、いずれも同じ金属からなっていてもよく、それぞれ異なる金属からなる場合であってもよい。
また、第1の発明の角形二次電池に用いる扁平状電極体としては、上記構成を有していれば、巻回形電極体、積層形電極体のいずれであってもよい。また、本発明は、二次電池の種類を問うものではなく、例えば、非水電解質二次電池、ニッケル−カドミウム蓄電池、ニッケル−水素蓄電池等に適用できる。
なお、一方の電極のみに対して第1の発明の集電板、芯体溶融接着部の構成を採用する場合、他方の電極においては、公知の集電板取り付け方法により集電板を取り付けることができ、例えば超音波溶接等を用いることができる。
第1の発明によると、より小さな溶接電流で確実な溶接が行え、且つスパッタによって発生するチリによる内部短絡の発生が少なく、集電効率に優れた大出力対応の角形二次電池を生産性高く提供することができる。
図1は、本発明にかかる電池の斜視図である。 図2は、本発明にかかる電極体を示す図である。 図3は、本発明にかかる電池に用いる正負電極板を示す図である。 図4は、本発明にかかる電池において、電極体に集電板を取り付ける方法を 説明する図である。 図5は、変形例3にかかる電池において、電極体に集電板を取り付ける方法 を説明する図である。
(実施の形態)
以下に、本発明電池をリチウムイオン二次電池に適用した場合について、図面を用いて説明する。図1は、本実施の形態にかかるリチウムイオン二次電池を示す図であり、図2は、リチウムイオン二次電池に用いる電極体を示す図である。
図1に示すように、本実施の形態に係るリチウムイオン二次電池は、角形の外装缶1と
、外装缶1の開口を封止する封口体2と、封口体2から外部に突出した正負極外部端子5,6と、を有している。
電極体10は、正極板11と負極板12(図3参照)とが、ポリエチレン製の微多孔膜からなるセパレータを介して巻回されてなる。図2に示すように、電極体の正極芯体集合領域11cには正極集電板14aが、負極芯体集合領域12cには負極集電板15aがそれぞれ取り付けられている。
この電極体10は、非水電解質とともに上記外装缶1内に収容され、正極集電板14a及び負極集電板15aがそれぞれ外部端子5,6と電気的に接続され、電流が外部に取り出される構造である。
図3に、電極体作製に用いる正負電極板を示す。正負電極板ともに、箔状の芯体に活物質層11a,12aが塗布形成されており、長手方向に沿った一方の端部に芯体露出部11b,12bを有している。このような正負電極板を、正極芯体露出部11bが渦巻き電極体の一方の端部から突出し、負極芯体露出部12bが他方の端部から突出するようにセパレータを介して配置させた後、巻回され、その後プレスされて扁平状の電極体が作製される。この突出した正負電極芯体露出部が、正負電極芯体集合領域11c、12cとなる。なお、長手方向に沿った両方の端部に芯体露出部を有していてもよいが、この場合、重量エネルギー密度が低下することになる。
上記構造のリチウムイオン二次電池の作製方法について説明する。
<正極板の作製>
コバルト酸リチウム(LiCoO)からなる正極活物質と、アセチレンブラックまたはグラファイト等の炭素系導電剤と、ポリビニリデンフルオライド(PVDF)からなる結着剤とを、質量比90:5:5の割合で量り採り、これらをN−メチル−2−ピロリドンからなる有機溶剤等に溶解させた後、混合し、正極活物質スラリーを調製した。
次に、ダイコーターまたはドクターブレード等を用いて、帯状のアルミニウム箔(厚さが20μm)からなる正極芯体の両面に、この正極活物質スラリーを均一な厚みで塗布した。ただし、正極芯体の長手方向に沿う一方の端部(両面ともに同一方向の端部)にはスラリーを塗布せず、その芯体を露出させて、正極芯体露出部を形成した。
この極板を乾燥機内に通して上記有機溶剤を除去し、乾燥極板を作製した。この乾燥極板を、ロールプレス機を用いて、その厚みが0.06mmとなるように圧延して、正極板を作製した。このようにして作製した正極板を幅が100mmとなる短冊状に切り出し、幅が10mmの帯状のアルミニウムからなる正極芯体露出部を設けた正極板を得た(図3(a)参照)。
本実施の形態にかかるリチウムイオン二次電池で用いる正極活物質としては、上記コバルト酸リチウム以外にも、例えばニッケル酸リチウム(LiNiO)、マンガン酸リチウム(LiMn)、鉄酸リチウム(LiFeO)、またはこれらの酸化物に含まれる遷移金属の一部を他の元素で置換した酸化物等のリチウム含有遷移金属複合酸化物を単独で、あるいは二種以上を混合して用いることができる。
<負極板の作製>
体積平均粒径20μmの人造黒鉛からなる負極活物質と、スチレンブタジエンゴムからなる結着剤と、カルボキシメチルセルロースからなる増粘剤とを、質量比98:1:1の割合で量り採り、これらを適量の水と混合し、負極活物質スラリーを調製した。
次に、ダイコーターまたはドクターブレード等を用いて、帯状の銅箔(厚さが12μm)からなる負極芯体の両面に、この負極活物質スラリーを均一な厚さで塗布した。ただし、負極芯体の長手方向に沿う一方の端部(両面ともに同一方向の端部)にはスラリーを塗布せず、その芯体を露出させて、負極芯体露出部を形成した。
この極板を乾燥機内に通して水分を除去し、乾燥極板を作製した。その後、この乾燥極板を、ロールプレス機によりその厚みが0.05mmとなるように圧延して、負極板を作製した。このようにして作製した負極板を幅が110mmとなる短冊状に切り出し、幅が8mmの帯状の負極芯体露出部を設けた負極板を得た(図3(b)参照)。
ここで、本実施の形態にかかるリチウムイオン二次電池で用いる負極材料としては、例えば天然黒鉛、カーボンブラック、コークス、ガラス状炭素、炭素繊維、あるいはこれらの焼成体等の炭素質物、または前記炭素質物と、リチウム、リチウム合金、およびリチウムを吸蔵・放出できる金属酸化物からなる群から選ばれる1種以上との混合物を用いることができる。
<電極体の作製>
上記正極板と負極板とポリエチレン製微多孔膜(厚さが0.022mm)からなるセパレータとを、同極の芯体露出部同士が複数枚直接重なり、異なる芯体露出部同士が巻回方向に対し互いに逆向きに突出し、かつ異なる活物質層間にはセパレータが介在するように3つの部材を位置あわせし重ね合わせ、巻き取り機により巻回し、絶縁性の巻き止めテープを設け、その後プレスして扁平状の電極体を完成させた。
<集電板の取り付け>
この後、図4に示すように、アルミニウム製の正極集電板14aを正極芯体集合領域11cに、アルミニウム製の正極集電板受け部品16aを正極集電板14aと対向する正極芯体集合領域11c(図3(a)参照)にあてがい、正極集電板14aおよび正極集電板受け部品16aに一対の溶接用電極を押し当て、一対の溶接用電極に電流を流して正極集電板14aおよび正極集電板受け部品16aを抵抗溶接した(図4(a)参照)。
ついで、正極集電板14aの上記とは異なる位置に対向する正極芯体集合領域11cにアルミニウム製の正極集電板受け部品16bをあてがい、上記と同様に抵抗溶接した(図4(b)参照)。
この後、アルミニウム製の正極芯体溶接部材14bを正極芯体集合領域11cに、アルミニウム製の正極芯体溶接部材受け部品16cを正極芯体溶接部材14bと対向する正極芯体集合領域11cにあてがい、上記と同様に抵抗溶接し、この部分の正極芯体を溶融させ正極芯体同士を溶融接着させた(図4(c)参照;正極芯体溶融接着部の形成)。このときの溶接条件は、下記表1に示す。
負極板についても同様にして、負極集電板を抵抗溶接し、負極芯体露出部同士を溶融接着し、負極芯体溶融接着部を形成した。負極集電板15a、負極集電板受け部品、負極芯体溶接部材15b、及び負極芯体溶接部材受け部品は、それぞれ銅製のものを用いた。
なお、溶接電流を効果的に作用させるために、集電板、集電板受け部品、溶接部材、溶接部材受け部品それぞれの溶接用電極をあてがう位置に、芯体側に突出した凸部を設けた。
<電解液の作製>
エチレンカーボネート(EC)とプロピレンカーボネート(PC)とジエチルカーボネート(DEC)とを体積比1:1:8の割合(1気圧、25℃と換算した場合における)で混合した非水溶媒に、電解質塩としてのLiPFを1.0M(モル/リットル)の割合で溶解したものを電解液とした。
ここで、本実施の形態にかかるリチウムイオン二次電池で用いる非水溶媒としては、上記の組み合わせに限定されるものではなく、例えばエチレンカーボネート、プロピレンカーボネート、ブチレンカーボネート、γ−ブチロラクトン等のリチウム塩の溶解度が高い高誘電率溶媒と、ジエチルカーボネート、ジメチルカーボネート、エチルメチルカーボネート、1,2−ジメトキシエタン、テトラヒドロフラン、アニソール、1,4−ジオキサン、4−メチル−2−ペンタノン、シクロヘキサノン、アセトニトリル、プロピオニトリル、ジメチルホルムアミド、スルホラン、蟻酸メチル、蟻酸エチル、酢酸メチル、酢酸エチル、酢酸プロピル、プロピオン酸エチル等の低粘性溶媒とを混合させて用いることができる。さらに、前記高誘電率溶媒や低粘性溶媒をそれぞれ二種以上の混合溶媒とすることもできる。また、電解質塩としては、上記LiPF以外にも、例えばLiN(CSO、LiN(CFSO、LiClOまたはLiBF等を単独で、あるいは2種以上混合して用いることができる。
<電池の組み立て>
上記扁平状電極体の正極集電板14a及び負極集電板14bを、それぞれ正極外部端子5及び負極外部端子6に電気的に接続し、封口板2に絶縁性のガスケット(図示せず)を介して加締め接合する。そして、封口板2と一体化された電極群10を外装缶1内に挿入して外装缶1の開口部に封口板2を嵌合し、封口板2の周囲と外装缶1の接合部をレーザ溶接し、封口板2に設けられた電解液注入孔(図示せず)から所定量の上記電解液を注入した後、この電解液注入孔を密閉することにより本実施の形態にかかる電池を組み立てた。
(実施例1)
上記実施の形態と同様にして、実施例1に係る電池を作製した。
(変形例1)
芯体溶融接着部を形成せず、集電板と芯体露出部との溶接点数をそれぞれ2としたこと以外は、上記実施の形態と同様にして、変形例1に係る電池を作製した。このときの溶接条件は、下記表1に示す。
(変形例2)
芯体溶融接着部を形成せず、集電板と芯体露出部との溶接点数をそれぞれ3としたこと以外は、上記実施の形態と同様にして、変形例2に係る電池を作製した。このときの溶接条件は、下記表1に示す。
〔抵抗値の測定〕
上記実施例1および変形例1にかかる電池の正極芯体と正極集電板との間の抵抗値を、テスターにより測定した。この結果を下記表1に示す。
上記表1から、芯体溶融接着部を形成した実施例1は、抵抗が0.213mΩであり、芯体溶融接着部を形成していない変形例1、2の0.298mΩ、0.250mΩよりも小さいことがわかる。
このことは、次のように考えられる。溶融接着部が存在すると、この部分が集電板へ集められる電流のバイパスとなるので、両者間の抵抗値が低下する。また、このバイパスは、通常の条件で集電板と芯体露出部を溶接した部分よりも導電性に優れるため、集電板と芯体露出部との溶接点数が多い変形例2よりも抵抗が小さくなる。
また、溶接点数が増加するに伴い、溶接に必要な電流値が大きくなることがわかる。これは、図5に示すように、溶接点数が増加すると、増加した箇所を溶接する際に、先に溶接された部分を迂回して流れる電流が生じるため、溶接に必要な電流を当該溶接箇所に流すために、大きな電流を必要とするためである。
また、集電板と芯体露出部との溶接点数が3である変形例2は、抵抗が0.250mΩであり、溶接点数が2である変形例2の0.298mΩよりは小さいものの、溶接点数が2で溶融接着部を設けた実施例1の0.213mΩよりは大きいことがわかる。
このことは、次のように考えられる。上述したように、変形例2では溶接点数が3と実施例1の2よりも多いため、3点目の溶接においては先に溶接された2点を迂回して流れる電流が生じるため、溶接電流を大きくしても十分大きな溶接面積が得られない。このため、溶接点増加の効果よりも溶融接着部形成の効果が上回り、上記表1に示すような結果となる。
(追加事項)
本発明では、正負電極板の少なくとも一方端部に芯体露出部を設ける必要があるが、このことは対向する両端部に芯体露出部を設けることを排除するものではない。ただし、両端部に芯体露出部を設けると、活物質層の面積が小さくなるというデメリットを生じる。
また、本発明において、正極芯体溶接部材及び正極集電板を、それぞれ芯体に溶接した後、電気的に接続し、負極芯体溶接部材に負極集電板を電気的に接続する構成としてもよい。この構成では、正負芯体溶接部材が集電板の一部として機能するので、芯体と集電板全体の接触面積が大きくなり、集電効率がより高まる。
上記実施例では、アルミニウム製の正極芯体、正極集電板、正極集電板受け部品、正極芯体溶接部材、及び正極芯体溶接部材受け部品を用い、銅製の負極芯体、負極集電板、負極集電板受け部品、負極芯体溶接部材、及び負極芯体溶接部材受け部品を用いた場合につ
いて説明したが、これに限定されない。
また、リチウムイオン二次電池に限らず、ニッケル−水素蓄電池、ニッケル−カドミウム蓄電池等、他の角形二次電池に対しても適用可能である。また、上記実施例においては、扁平状の巻回電極体を用いる例について説明したが、例えば、平板状の正・負極板を、セパレータを介して積層した電極体を用いることもできる。
以上説明したように、本発明によると、端部から突出した、複数枚直接重なり合った芯体同士を溶融接着させることにより、集電における電流のバイパスを形成することができるので、集電効率を飛躍的に高めることができる。また、本発明によると、少ない溶接時消費電力でもって確実な溶接が生産性高く行え、且つスパッタの発生のない良質の溶接接合を行えるので、集電効率に優れた大出力対応型の角形二次電池を低コストで実現することができる。よって、本発明の産業上の利用可能性は大きい。
1 外装缶
2 封口体
5,6 電極端子
10 電極体
11 正極板
12 負極板
11a,12a 活物質層
11b,12b 芯体露出部
11c,12c 芯体集合領域
14a 正極集電板
14b 正極芯体溶接部材
15a 負極集電板
15b 負極芯体溶接部材
16a,b 正極集電板受け部品
16c 正極芯体溶接部材受け部品





Claims (10)

  1. 第1電極芯体上に第1電極活物質層が形成された第1電極板、第2電極板、及びセパレータを巻回した扁平状の電極体と、
    前記第1電極芯体に接続された第1集電板と、を備え、
    前記電極体は、前記電極体の巻回軸が延びる方向における一方の端部に巻回された第1電極芯体を有し、
    前記巻回された第1電極芯体は、前記電極体の巻回軸が延びる方向に対して垂直な方向において、一方の端部に前記第1電極芯体が湾曲した状態で配置される第1湾曲部を有し、他方の端部に前記第1電極芯体が湾曲した状態で配置される第2湾曲部を有し、前記第1湾曲部と前記第2湾曲部の間に前記第1電極芯体が束ねられた領域を有し、前記第1湾曲部の厚みは前記第1電極芯体が束ねられた領域の厚みよりも大きく、
    前記第1集電板は、前記第1電極芯体が束ねられた領域における前記巻回された第1電極芯体の最外周面に接続される接続部と、前記接続部から前記第1電極芯体が束ねられた領域における前記第1電極芯体から離れる方向に屈曲し、前記第1湾曲部における前記巻回された第1電極芯体の最外周面と対向するようにして前記巻回された第1電極芯体の前記第1湾曲部側の端部よりも外側まで延びる延長部を有する、角形二次電池の製造方法であって、
    前記束ねられた領域の前記第1電極芯体の積層方向における外面に前記接続部を配置し、一対の溶接用電極で前記接続部と前記束ねられた領域の前記第1電極芯体とを挟み込んだ状態で抵抗溶接を行い、前記抵抗溶接の際、前記第1集電板の前記延長部と前記第1湾曲部とが離間した状態で、前記第1集電板の前記接続部を前記第1電極芯体が束ねられた領域に溶接接続する接続工程を有する角形二次電池の製造方法。
  2. 開口部を有する有底筒状の角形外装缶と、
    前記開口部を封止する封口板と、を有し、
    前記電極体は、前記電極体の巻回軸が延びる方向が前記角形外装缶の底部と平行な方向になるように前記角形外装缶内に配置され、
    前記延長部は、前記接続部から屈曲して前記第1電極芯体が束ねられた領域における前記第1電極芯体から離れる方向に延びる第1延長部と、前記第1延長部から屈曲して前記封口板に向かう方向に延びる第2延長部を有する請求項1に記載の角形二次電池の製造方
    法。
  3. 前記電極体の前記巻回された第1電極芯体側を前記電極体の巻回軸に沿って見たとき、
    前記第2延長部は、前記第1延長部から前記巻回された第1電極芯体の前記第1湾曲部側の端部よりも前記封口板側まで真っ直ぐに延びた請求項2に記載の角形二次電池の製造方法。
  4. 開口部を有する有底筒状の角形外装缶と、
    前記開口部を封止する封口板と、
    前記第1電極板に電気的に接続された第1外部端子を備え、
    前記第1外部端子と前記第1集電板がガスケットを介して前記封口板に加締め接合された請求項1〜3のいずれかに記載の角形二次電池の製造方法。
  5. 開口部を有する有底筒状の角形外装缶と、
    前記開口部を封止する封口板と、
    前記第1電極板に電気的に接続された第1外部端子を備え、
    前記封口板の電池外部側の面において、前記第1外部端子が取り付けられた部分には凹んだ部分が形成されている請求項1〜4のいずれかに記載の角形二次電池の製造方法。
  6. 前記電極体には絶縁性の巻き止めテープが設けられている請求項1〜5のいずれかに記載の角形二次電池の製造方法。
  7. 前記接続部と前記第1電極芯体が束ねられた領域の溶接点が2点である請求項1〜6のいずれかに記載の角形二次電池の製造方法。
  8. 前記第1電極芯体が束ねられた領域において、前記第1集電板の前記接続部が接続された部分と前記第1電極芯体が束ねられた領域を介して対向する部分に第1集電板受け部品が取り付けられる請求項1〜7のいずれかに記載の角形二次電池の製造方法。
  9. 開口部を有する有底筒状の角形外装缶と、
    前記開口部を封止する封口板と、
    前記第1電極板に電気的に接続された第1外部端子を備え、
    前記第1外部端子は、前記封口板の外面側に絶縁性のガスケットを介して前記封口板に対して平行に配置される鍔部を有し、
    前記鍔部の中央には、外部端子接続部を有する請求項1〜8のいずれかに記載の角形二次電池の製造方法。
  10. 前記電極体及び前記第1集電板を前記電極体の厚み方向に平面視したとき、
    前記第1集電板の前記接続部における前記電極体の中央側の端辺は、
    前記第1集電板の前記第1延長部と前記第2延長部の境界部に形成された屈曲部における前記電極体の中央側の端部よりも前記電極体の中央側に位置する請求項2に記載の角形二次電池の製造方法。
JP2014015247A 2014-01-30 2014-01-30 角形二次電池及びその製造方法 Active JP5954339B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014015247A JP5954339B2 (ja) 2014-01-30 2014-01-30 角形二次電池及びその製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014015247A JP5954339B2 (ja) 2014-01-30 2014-01-30 角形二次電池及びその製造方法

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2008254428A Division JP2010086780A (ja) 2008-09-30 2008-09-30 角形二次電池

Publications (2)

Publication Number Publication Date
JP2014112548A JP2014112548A (ja) 2014-06-19
JP5954339B2 true JP5954339B2 (ja) 2016-07-20

Family

ID=51169527

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014015247A Active JP5954339B2 (ja) 2014-01-30 2014-01-30 角形二次電池及びその製造方法

Country Status (1)

Country Link
JP (1) JP5954339B2 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220059911A1 (en) * 2018-12-27 2022-02-24 Sanyo Electric Co., Ltd. Secondary battery

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000150306A (ja) * 1998-11-12 2000-05-30 Toyota Motor Corp 電池またはキャパシタの集電方式
JP4061938B2 (ja) * 2001-12-20 2008-03-19 トヨタ自動車株式会社 蓄電素子およびその製造方法
JP2005259414A (ja) * 2004-03-10 2005-09-22 Japan Storage Battery Co Ltd 電池
US20050214642A1 (en) * 2004-03-29 2005-09-29 Kim Ki-Ho Electrode package and secondary battery using the same
JP2010086780A (ja) * 2008-09-30 2010-04-15 Sanyo Electric Co Ltd 角形二次電池

Also Published As

Publication number Publication date
JP2014112548A (ja) 2014-06-19

Similar Documents

Publication Publication Date Title
JP5550923B2 (ja) 角形二次電池の製造方法
JP5693982B2 (ja) 非水系二次電池
JP4659861B2 (ja) 扁平型二次電池およびその製造方法
JP5591569B2 (ja) 角形電池及びその製造方法ならびにこれを用いてなる組電池
JP5784928B2 (ja) 非水系二次電池
JP6250921B2 (ja) 電池
US9876257B2 (en) Secondary battery and electrode production method
JP2010086780A (ja) 角形二次電池
JP5735096B2 (ja) 非水二次電池用電極の製造方法、および非水二次電池の製造方法
JP5937969B2 (ja) 非水系二次電池
JP6173729B2 (ja) 電池の製造方法
JP2007299536A (ja) 非水電解質二次電池
JP6376442B2 (ja) 蓄電素子
JP5348720B2 (ja) 扁平形非水二次電池
JP2014049371A (ja) 扁平形非水二次電池およびその製造方法
JP2018147574A (ja) 角形リチウムイオン二次電池
JP4776336B2 (ja) フィルム状外装体を備えた電池
JP2012028187A (ja) 発電要素および二次電池
JP4781070B2 (ja) 封口電池及びその製造方法
JP2009110812A (ja) 電池及びその製造方法
JP5954339B2 (ja) 角形二次電池及びその製造方法
WO2017051516A1 (ja) 非水電解質二次電池
KR101722662B1 (ko) 파우치형 이차 전지
JP6376441B2 (ja) 蓄電素子及び蓄電素子の製造方法
JP2012043704A (ja) 非水電解液電池

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20140314

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20141222

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150106

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150306

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20150319

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150915

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151113

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160405

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160419

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160517

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160530

R151 Written notification of patent or utility model registration

Ref document number: 5954339

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151