WO2019059256A1 - 磁性材料とその製造法 - Google Patents

磁性材料とその製造法 Download PDF

Info

Publication number
WO2019059256A1
WO2019059256A1 PCT/JP2018/034747 JP2018034747W WO2019059256A1 WO 2019059256 A1 WO2019059256 A1 WO 2019059256A1 JP 2018034747 W JP2018034747 W JP 2018034747W WO 2019059256 A1 WO2019059256 A1 WO 2019059256A1
Authority
WO
WIPO (PCT)
Prior art keywords
phase
magnetic material
atomic
magnetic
present
Prior art date
Application number
PCT/JP2018/034747
Other languages
English (en)
French (fr)
Inventor
真平 山本
今岡 伸嘉
尾崎 公洋
Original Assignee
国立研究開発法人産業技術総合研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立研究開発法人産業技術総合研究所 filed Critical 国立研究開発法人産業技術総合研究所
Priority to JP2019543691A priority Critical patent/JP6942379B2/ja
Priority to CN201880075257.XA priority patent/CN111386161B/zh
Priority to EP18857892.6A priority patent/EP3689497A4/en
Priority to US16/648,269 priority patent/US11732336B2/en
Publication of WO2019059256A1 publication Critical patent/WO2019059256A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C33/00Making ferrous alloys
    • C22C33/02Making ferrous alloys by powder metallurgy
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/16Making metallic powder or suspensions thereof using chemical processes
    • B22F9/18Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds
    • B22F9/20Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds starting from solid metal compounds
    • B22F9/22Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds starting from solid metal compounds using gaseous reductors
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • C22C1/0433Nickel- or cobalt-based alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/07Alloys based on nickel or cobalt based on cobalt
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/10Ferrous alloys, e.g. steel alloys containing cobalt
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/06Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys in the form of particles, e.g. powder
    • H01F1/065Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys in the form of particles, e.g. powder obtained by a reduction
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • H01F1/14708Fe-Ni based alloys
    • H01F1/14733Fe-Ni based alloys in the form of particles
    • H01F1/14741Fe-Ni based alloys in the form of particles pressed, sintered or bonded together
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • H01F1/14766Fe-Si based alloys
    • H01F1/14775Fe-Si based alloys in the form of sheets
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • H01F1/153Amorphous metallic alloys, e.g. glassy metals
    • H01F1/15316Amorphous metallic alloys, e.g. glassy metals based on Co
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/33Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials mixtures of metallic and non-metallic particles; metallic particles having oxide skin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2998/00Supplementary information concerning processes or compositions relating to powder metallurgy
    • B22F2998/10Processes characterised by the sequence of their steps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2999/00Aspects linked to processes or compositions used in powder metallurgy
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C2202/00Physical properties
    • C22C2202/02Magnetic

Definitions

  • the present invention relates to a magnetic material exhibiting soft magnetism or semi-hard magnetism, in particular a magnetic material exhibiting soft magnetism, and a method for producing the same.
  • the existing soft magnetic materials used for these applications are roughly classified into metal magnetic materials and oxide magnetic materials.
  • the former metal-based magnetic materials include silicon steel (Fe-Si), which is a crystalline material containing Si, which is a typical case of electromagnetic steel, and Sendust (Fe-Al-Si), which is an intermetallic compound containing Al. And C, low carbon content and low impurity content pure iron of less than 0.3% by mass, electromagnetic soft iron (Fe), permalloy mainly composed of Fe-Co, metglas (Fe-Si-B), etc.
  • Amorphous alloys, and nanocrystalline soft magnetic materials such as FINEMET, which is a nanocrystal-amorphous phase separation type in which fine crystals are precipitated by applying appropriate heat treatment to the amorphous alloy (Fe as a typical composition thereof -Cu-Nb-Si-B, Fe-Si-B-P-Cu, etc.).
  • the term "nano” as used herein refers to a size of at least 1 nm and less than 1 ⁇ m.
  • the nanocrystalline soft magnetic material is an inhomogeneous system including a crystal phase, an amorphous phase, a Cu-enriched phase, and the like, and the magnetization reversal is considered to be mainly due to magnetization rotation.
  • oxide-based magnetic materials examples include ferrite-based magnetic materials such as Mn--Zn ferrite and Ni--Zn ferrite.
  • Silicon steel is the most widely used soft magnetic material for high-performance soft magnetic material applications, and its high saturation magnetization with a saturation magnetization of 1.6 to 2.0 T and a coercive force of 3 to 130 A / m. It is a magnetic material of magnetic force.
  • This material is a material in which Si is added to about 4% by mass to Fe, and the coercive force is reduced by reducing the magnetocrystalline anisotropy and the saturation magnetostriction constant without largely damaging the large magnetization of Fe. is there.
  • materials appropriately controlled in composition are appropriately combined with hot and cold rolling and annealing to remove foreign matter that impedes the movement of the domain wall while increasing the crystal grain size. It is necessary to.
  • This material is a rolled material with a thickness of less than 0.5 mm in general, and a homogeneous metal material with a low electrical resistivity of approximately 0.5 ⁇ m.
  • the surface of each silicon steel plate is covered with an insulating film It is applied to large-sized equipment by giving thickness and suppressing eddy current loss that occurs in high-speed applications such as next-generation vehicles by punching out with a die, laminating, and welding. Therefore, the process cost for punching and stacking and the deterioration of the magnetic characteristics are a serious problem.
  • Sendust is an intermetallic compound having a composition around Fe 85 Al 5.5 Si 9.5 or a composition obtained by adding Ni to it. Both the crystal magnetic anisotropy constant and the saturation magnetostriction constant are 0 near this composition. become. Therefore, the coercive force is as small as 1.6 to 4 A / m, and the magnetic material has a small core loss. However, saturation magnetization is about 1 T, which is not sufficient for the next-generation vehicles. It is hard and brittle and has poor processability, but has excellent wear resistance, and has been developed for applications such as magnetic heads utilizing that property. Although the electrical resistivity is 0.8 ⁇ m, which is higher than that of other metal rolling materials, it can not be said that it is sufficient for the next-generation vehicles.
  • the electromagnetic soft iron is a rolled material similar to silicon steel, but a product form having a thickness of about 5 mm and thicker than the silicon steel sheet is possible.
  • the saturation magnetization has a value close to that of iron, but the electrical resistivity is as low as 0.1 to 0.2 ⁇ m, and the eddy current loss becomes large in high rotation applications.
  • the coercivity is also relatively high at 12 to 240 A / m, and it is not possible to ignore not only eddy current loss but also iron loss due to hysteresis loss particularly in a motor at low rotation.
  • it since it is a soft, easily rustable steel, it is inferior in machinability and oxidation resistance, and there is also a problem that the magnetic characteristics are likely to change with time.
  • Permalloy can reduce the magnetocrystalline anisotropy constant and the saturation magnetostriction constant by alloying Ni with Fe, and in particular, both can be made nearly zero at around 78 mass% of Ni, so A magnetic material with a magnetic force as low as 0.16 to 24 A / m can be manufactured.
  • this material has a relatively low saturation magnetization of 0.55 to 1.55 T, and the magnetization and the coercivity are traded off, it is difficult to be a material that can achieve high magnetization and low coercivity simultaneously, and is used for high performance motors There is a problem that can not be done.
  • the electrical resistivity is also as small as 0.45 to 0.75 ⁇ m, and there is also a problem that the eddy current loss becomes large in high rotation applications.
  • Amorphous materials such as metglas are completely isotropic materials, and their magnetocrystalline anisotropy constant is in principle zero. Accordingly, this material also has a low coercivity of 5 A / m or less, and has a very low value of 0.4 A / m when the composition has a saturation magnetostriction constant of substantially zero.
  • the saturation magnetization is 0.5 to 1.6 T, especially for materials with a composition with a coercivity of 1 A / m or less, 0.6 to 0.8 T, which is insufficient for use in high-performance motors, Furthermore, although the electrical resistivity is somewhat higher than 1.2 to 1.4 ⁇ m and crystalline soft magnetic materials such as silicon steel plates and permalloy, there is a problem that the eddy current loss becomes large.
  • amorphous alloy in non-equilibrium state is easy to change the magnetic property due to thermal history and mechanical strain, the product thickness is about 0.01 to 0.025 mm, insulation, cutting, alignment, lamination, welding Also, since the annealing process is more complicated than silicon steel, it is easily brittle due to heat and stress, and the formability is poor. Therefore, when it is applied to a high rotation motor etc., there are problems such as deterioration of magnetic characteristics and high cost. .
  • Nanocrystalline soft magnetic materials such as Fe-Cu-Nb-Si-B are heat-treated at a temperature higher than the crystallization temperature for alloys that have become amorphous by quenching once, so that crystal grains of about 10 nm can be obtained. It is a soft magnetic material having a randomly oriented nanocrystal-type structure which is precipitated in an amorphous state and has an amorphous grain boundary phase. The coercivity of this material is extremely low at 0.6 to 6 A / m, and the saturation magnetization is higher at 1.2 to 1.7 T than that of amorphous materials, so the market is currently expanding.
  • This material is a relatively new material developed in 1988, and the principle of its magnetic property expression is that the crystal grain size is ferromagnetic exchange length (also referred to as exchange coupling length, sometimes referred to as L 0 ).
  • ferromagnetic exchange length also referred to as exchange coupling length, sometimes referred to as L 0
  • L 0 exchange coupling length
  • the magnetocrystalline anisotropy is averaged to provide a low coercivity.
  • This mechanism is called a random magnetic anisotropy model or a random anisotropy model (see, for example, Non-Patent Document 1).
  • this material is also manufactured as a thin liquid ribbon, since it is manufactured by the liquid super-quenching method as in the amorphous state, and the product thickness is about 0.02 to 0.025 mm, and the process, processability, etc. similar to the amorphous material.
  • Eddy current loss has problems with cost.
  • the electrical resistivity is as low as 1.2 ⁇ m, and the problems of eddy current loss similar to other rolled materials and strips are pointed out.
  • the ferrite-based oxide material is the one with the largest eddy current loss problem in high-rotation applications.
  • the electrical resistivity of this material is 10 6 to 10 12 ⁇ m, and it can be easily bulked to 0.5 mm or more by sintering, and it can be made into a compact without eddy current loss, so it is suitable for high rotation and high frequency applications. It is a suitable material.
  • it since it is an oxide, it does not rust and is excellent in the stability of the magnetic characteristics.
  • the coercivity of this material is relatively high at 2 to 160 A / m, and in particular, because the saturation magnetization is as low as 0.3 to 0.5 T, it is not suitable for, for example, a high-performance high-rotation motor for next-generation vehicles.
  • metal-based soft magnetic materials such as silicon steel have a low electrical resistance, and there is a problem that an eddy current loss occurs for high-performance motors with high rotation, and it is necessary to perform lamination to solve them. Therefore, the process becomes complicated, and the magnetic property deterioration due to the insulation treatment and lamination before lamination and the cost increase for the process cost become major problems.
  • oxide-based soft magnetic materials such as ferrite have high electrical resistance and no problem with eddy current loss, but their saturation magnetization is as small as 0.5 T or less, so they are suitable for high-performance motors for next-generation vehicles Absent.
  • the soft magnetic material based on oxide is higher in stability and superior to the soft magnetic material based on metal.
  • the thickness of the motor is about 0.3 mm
  • the thickness of the motor for the next generation automobile is, for example, 9 cm, so when using a thin silicon steel plate such as 0.3 mm thick, insulate about 300 sheets each It will have to be stacked.
  • the steps of insulating, punching, aligning, welding and annealing such thin plates are complicated and expensive. In order to increase the thickness of the laminated plate as much as possible, it is more desirable to increase the electrical resistivity of the material.
  • a magnetic material having high oxidation resistance in particular, excellent in magnetic stability having both high saturation magnetization and low coercivity
  • conventional oxide-based magnetic materials particularly ferrite-based magnetic materials
  • soft magnetic materials capable of exhibiting the advantages of both an oxide magnetic material and a metal magnetic material, specifically, a higher electric resistance than a metal silicon steel plate or the like, and a metal It is hoped that soft magnetic materials capable of exhibiting the advantages of high saturation magnetization of magnetic system magnetic materials and small eddy current loss such as oxide magnetic materials and requiring neither lamination nor complicated processes are desired. It was rare.
  • the present invention uses a magnetic material in which a bcc or fcc- (Fe, Co) phase and a Co-enriched phase are dispersed in a nano-dispersion phase to achieve both saturation magnetization and low coercivity much greater than conventional ferrite-based magnetic materials.
  • An object of the present invention is to provide a new magnetic material having high magnetic stability and excellent oxidation resistance that can be realized, and a method for producing the same.
  • the present invention provides a new magnetic material with high magnetic stability and a method of manufacturing the same, which has a higher electrical resistivity than existing metal-based magnetic materials, and can therefore solve the above-mentioned problems such as eddy current loss.
  • the purpose is
  • the present invention uses ⁇ - (Fe, Co) phase ⁇ - (Fe, Co) phase and Co-enriched phase nano-dispersed magnetic material to obtain ⁇ -Fe mass in a wide Co content range. It is possible to realize extremely huge saturation magnetization (about 240 emu / g) which is not only exceeding magnetization (218 emu / g) but also exceeds mass magnetization of ⁇ -Fe by about 10% at the maximum.
  • An object of the present invention is to provide a new magnetic material that can be used for producing a much smaller and higher performance soft magnetic member using saturation magnetization and a method for producing the same.
  • the present invention it is possible to manufacture a compact having a thickness of 0.5 mm or more, 1 mm or more, and 5 mm or more by a simple process without complicated processes such as lamination, and at the same time eddy current. It is an object of the present invention to provide a powder sintered magnetic material that can be reduced.
  • the inventors of the present invention have studied the advantages of both magnetic metal materials and oxide magnetic materials by combining magnetic materials having electromagnetic properties superior to conventional oxide magnetic materials (in particular, ferrite magnetic materials).
  • cobalt ferrite in the present invention, “completely different from the conventionally used homogeneous crystalline or amorphous material or nanocrystal soft magnetic material in which homogeneous nanocrystals are precipitated in an amorphous state.
  • Co-ferrites are found to be disproportionation during the reduction reaction to find magnetic materials containing two or more crystal phases, or one crystal phase and an amorphous phase, and their composition and crystal structure, crystal grain size
  • the present invention has been accomplished by controlling the powder particle size, establishing the method of producing the magnetic material, and establishing the method of solidifying the magnetic material without laminating it.
  • the saturation magnetization is 0.3 T and the density of the magnetic material of the present invention is a density close to that of a metal system, the magnetic material is equivalent to or higher than 30 emu / g when calculated with the density of Fe. Is required.
  • its saturation magnetization is preferably 100 emu / g or more, more preferably 150 emu / g or more.
  • the present invention is as follows.
  • a soft magnetic or semi-hard magnetic magnetic material having a first phase having a bcc or fcc structure crystal containing Fe and Co and a second phase containing Co, wherein the magnetic material is contained in the second phase
  • the content of Co is larger than the content of Co when the total of Fe and Co contained in the first phase is 100 atomic%.
  • material The magnetic material according to (1), which is soft magnetic.
  • the magnetic material according to (1) or (2), wherein the first phase has a composition represented by a composition formula of Fe 100-x Co x (x is an atomic percentage 0.001 ⁇ x ⁇ 90) .
  • the content of Co when the phase having crystals of bcc or fcc structure containing Fe and Co is included as the second phase, and the total of Fe and Co contained in the phase is 100 atomic% is In an amount of 1.1 times to 10 5 times or less and / or an amount of 1 at% to 100 at% with respect to the content of Co when the total of Fe and Co contained in the phase is 100 at%.
  • the magnetic material according to (6) or (7), having a composition in the range of (10) The magnetic material according to any one of (1) to (9), wherein the average crystal grain size of the first phase or the second phase or the entire magnetic material is 1 nm or more and less than 10 ⁇ m.
  • At least a first phase has a bcc or fcc phase represented by a composition formula of Fe 100-x Co x (x is an atomic percentage 0.001 ⁇ x ⁇ 90), and a crystal of the bcc or fcc phase
  • the first phase and the second phase are directly or continuously bonded via the metal phase or the inorganic phase to form a block as a whole of the magnetic material.
  • (1) to (13) The magnetic material as described in any of the above.
  • the cobalt ferrite powder having an average powder particle size of 1 nm or more and less than 1 ⁇ m is reduced in a reducing gas containing hydrogen gas at a reduction temperature of 400 ° C. or more and 1480 ° C. or less. Method of manufacturing magnetic material.
  • a cobalt ferrite powder having an average powder particle size of 1 nm or more and less than 1 ⁇ m is reduced in a reducing gas containing hydrogen gas to generate a first phase and a second phase by disproportionation reaction, (1) A method of producing the magnetic material according to any one of (13).
  • (18) After the reduction step in the production method according to (15), or after the reduction step or formation step in the production method according to (16), or after the sintering step in the production method according to (17) A method for producing a soft magnetic or semi-hard magnetic material, which comprises annealing once.
  • magnetic materials having high saturation magnetization and small eddy current loss particularly soft magnetic materials suitably used for high rotation motors etc., various soft magnetic materials and semi-hard magnetic materials having high oxidation resistance. It is possible to provide according to the present invention, since it can be used in the form of a powder material like ferrite, it can be easily bulked by sintering etc. Therefore, such as lamination by using a metallic soft magnetic material which is an existing thin plate It is also possible to solve problems such as complicated processes and high costs resulting therefrom.
  • FIG. 1 (A) is an SEM of a powder (Example 11) obtained by reducing (Fe 0.959 Co 0.04 Mn 0.001 ) 3 O 4 ferrite nanopowder at 1100 ° C. for 1 hour in hydrogen gas. image.
  • FIG. 1B is a SEM image of a part of FIG. 1A taken at a high magnification. SEM image of (Fe 0.96 Co 0.04 ) 3 O 4 ferrite nanopowder (Comparative Example 1). The SEM image of the powder (Example 1) obtained by reducing (Fe 0.96 Co 0.04 ) 3 O 4 ferrite nanopowder in hydrogen gas at 1100 ° C. for 1 hour (numbers in the figure are at the + position) Co content).
  • magnetic material refers to a magnetic material referred to as “soft magnetic” (i.e., “soft magnetic material”) and a magnetic material referred to as “semi-hard magnetic material” (i.e. “semi-hard magnetic material And, in particular, “soft magnetic” materials.
  • the "soft magnetic material” referred to in the present invention is a magnetic material having a coercive force of 800 A / m (m 10 Oe) or less. In order to make an excellent soft magnetic material, it is important that it has low coercivity, high saturation magnetization or permeability, and low core loss.
  • a semi-hard magnetic material in the present invention, a magnetic material having a coercivity of more than 800 A / m and 40 kA / m ⁇ 500 Oe
  • soft magnetic or semi-hard magnetic materials for high frequency generate large eddy currents, so that the materials have high electrical resistivity, reduce the diameter of powder particles, or thin plate or strip It will be important to
  • magnétique coupling refers to a state in which adjacent spins in a magnetic substance are strongly coupled by exchange interaction, and in the present invention, in particular, two adjacent crystal grains (and / or amorphous grains). ) In which the spins in the crystal are strongly connected by exchange interaction across the crystal boundary.
  • grain such as crystal grains are lumps that can be recognized as being composed of one or more "phases" and separated from the three-dimensional space with a boundary.
  • the exchange interaction is an interaction that extends only to the distance based on the short distance order of the material, when the nonmagnetic phase exists at the crystal boundary, the exchange interaction does not work on the spin in the regions on both sides, and the crystal grains on both sides There is no ferromagnetic coupling between (and / or amorphous particles).
  • the term "crystal grain” sometimes includes amorphous grains.
  • the characteristics of the magnetic curve of the material in which ferromagnetic coupling is performed between different kinds of adjacent crystal grains having different magnetic properties will be described later (see paragraph 0071).
  • disproportionation means that two or more kinds of phases different in composition or crystal structure are produced by chemical reaction from a phase having a homogeneous composition, and in the present invention, the homogeneous It is brought about as a result of the reduction reaction involving a reducing substance such as hydrogen involved in the composition phase.
  • the chemical reaction that leads to this "disproportionation” is referred to herein as the “disproportionation reaction”, but water is often by-produced during this disproportionation reaction.
  • the meaning of "contains the Fe component and the Co component” means that the magnetic material of the present invention necessarily contains Fe and Co as its components, and the Co optionally includes other atoms.
  • the magnetic material of the present invention necessarily contains Fe and Co as its components, and the Co optionally includes other atoms.
  • one or more of Zr, Hf, Ti, V, Nb, Ta, Cr, Mo, W, Mn, Cu, Zn, Si, Ni may be substituted for a fixed amount.
  • oxygen (O component) may be contained, and when O component or iron oxyhydroxide is present as a subphase, an OH group in which the O component is bonded to the H component (mainly on the surface of the magnetic powder).
  • magneti powder generally refers to powder having magnetism
  • the powder of the magnetic material of the present invention is referred to as “magnetic material powder”. Therefore, “magnetic material powder” is included in “magnetic powder”.
  • numerical ranges such as composition, size, temperature, pressure and the like include numerical values of both ends unless otherwise specified.
  • the present invention relates to a magnetic material including a bcc or fcc structure crystal (first phase) containing Fe and Co, and a Co-enriched phase (second phase) having a higher Co content than the phase.
  • the best form is a "powder" in which both phases are mixed and combined at the nano level.
  • These magnetic material powders are compacted as they are or sintered and used in various devices.
  • it can be molded by blending an organic compound such as resin, an inorganic compound such as glass or ceramic, or a composite material thereof.
  • the composition of the first phase containing Fe and Co, and the second phase enriched with Co, the crystal structure and form, the crystal grain size and the powder grain size, and a method for producing them among them Description of a method of producing a nano composite oxide powder to be a precursor of a magnetic material of the invention, a method of reducing the powder, a method of solidifying the reduced powder, and a method of annealing in each step of these manufacturing methods Do.
  • the first phase is a crystal having a cubic crystal (space group Im3m) of bcc structure containing Fe and Co or a cubic crystal (space group Fm3m) of fcc structure as a crystal structure.
  • the Co content of this phase is 0.001 at% or more and 90 at% or less, where the total (total content) of Fe and Co contained in the phase is 100 at%. That is, the preferable composition of the first phase is expressed as Fe 100-x Co x (x is 0.001 ⁇ x ⁇ 90 in atomic percentage) using the composition formula.
  • the Co content or the Fe content is Co or Fe with respect to the total (sometimes referred to as the total amount in the present application) of Fe and Co contained in the phase (first phase), respectively.
  • the atomic ratio of In the present invention this may be expressed in atomic percent.
  • the Co content be 75 atomic% or less in order to suppress the decrease in the magnetization.
  • a Co content of 60 atomic% or less is more preferable because a huge magnetization exceeding 2.3 T can be realized.
  • a magnetic material having a giant saturation magnetization exceeding 2.4 T can be manufactured.
  • a huge saturation magnetization as large as about 10% can be obtained compared to pure iron.
  • the fact that magnetic materials exhibiting a large saturation magnetization over pure iron in such a wide Co content range can be obtained is an inherent feature of the present material that has not been found in the conventional materials. Further, it is preferable to set the content to 0.001 atomic% or more, in contrast to the case of Fe alone, in that adjustment of the magnetic characteristics in the soft magnetic region is enabled by the effect of Co addition.
  • the particularly preferable range of the Co content is 0.01 atomic percent or more and 60 atomic percent or less, and in this region, soft magnetic materials of various coercive forces can be prepared depending on the manufacturing conditions, and more preferable electromagnetic characteristics
  • the magnetic material has The first phase of this Fe--Co composition has a bcc or fcc structure.
  • these phases are also referred to as bcc- (Fe, Co) or fcc- (Fe, Co).
  • these structures are all structures belonging to a cubic crystal system (Cubic Crystal System)
  • these two phases may be collectively referred to as a ccs- (Fe, Co) phase.
  • a (Fe, Co) phase the phase in which Fe and Co are contained in a composition is represented, and the case where Co is substituted by M component shown below is also included.
  • the magnetic material of the present invention mainly having a bcc structure is preferable, but an excellent high frequency magnetic material in which magnetic saturation is suppressed.
  • the magnetic material of the present invention having an fcc structure may be selected depending on the purpose such as
  • the content of Co in the first phase of the present invention is 100 atomic%
  • the content of 0.001 atomic% or more and less than 50 atomic% of Co is Zr, Hf, Ti, V, Nb, Ta, Cr, Mo, W And Mn, Cu, Zn, Si, and / or Ni.
  • these substitution elements are also referred to as "M component").
  • M component co-addition of many element species to the soft magnetic material of the present invention has the effect of reducing the coercivity.
  • the temperature lowering rate in the reduction treatment and the annealing treatment when it contains at least one atomic percent of at least one of Ti, V, Cr, Mo and the Co content of the first phase being 100 atomic percent.
  • the present invention is effective in that the nanocrystallites of the present invention can be easily produced. Furthermore, Zr, Hf, Ti, Cr, V, Mn, Zn, Ta, Cu, Si, and Ni are preferable as components coexisting in the soft magnetic material of the present invention because they reduce the anisotropic magnetic field. One or more of Zr, Hf, Ti, V, Nb, Ta, Cr, Mo, and W are added in an atomic percentage or less when the Co content of the first phase is 100 atomic% or less. However, Ti, Cu, Zn, Mn, and Si are preferable in order to improve oxidation resistance and formability by suppressing inappropriate grain growth in the reduction step.
  • the M component content does not depend on the element species, and is 0.1 atomic% or more and 30 atomic% or less in substitution amount with respect to Co.
  • inappropriate grain growth means that the nano-fine structure of the magnetic material of the present invention is broken and the grains grow while accompanied by a homogeneous crystal structure.
  • “proper grain growth” in the present invention refers to disproportionation reaction after the powder particle size grows large while maintaining the nano-fine structure that is the feature of the present invention, or the powder particle size grows large. Either a nano-fine structure appears in the crystal due to phase separation or the like, or both.
  • the term “grain growth” in the present invention refers to the above-mentioned “inappropriate grain growth” and refers to grain growth that can be said to be generally appropriate.
  • the surface area of the magnetic material per unit mass or per unit volume decreases, and thus, the oxidation resistance generally tends to be improved. It is in.
  • any M component addition of 0.001 atomic% or more is preferable from the viewpoint of the above-mentioned addition effect by atomic percentage when the total Co content of the first phase is 100 atomic%, and addition of less than 50 atomic% Is preferable from the viewpoint of preventing inhibition of various effects of the Co component in the magnetic material of the present invention.
  • “Co” or “cobalt” is used in the formula such as “ccs- (Fe, Co)” phase or in the context of discussing the magnetic material composition. In this case, not only Co alone but also a composition in which 0.001 to less than 50 atomic percent of the Co content is replaced with an M component.
  • total of Fe and Co when expressed as “total of Fe and Co”, when the component other than Fe is Co alone, it means the total of the contents of Fe and Co, and 0.001 or more of the Co content
  • a composition in which less than 50 atomic% is replaced with an M component means the total content of Fe, Co and M components.
  • impurities mixed in the process it is necessary to remove impurities mixed in the process as much as possible, but elements of H, C, Al, S, N, alkali metals such as Li, K, Na, alkaline earth metals such as Mg, Ca, Sr, rare earth Or, it may contain inevitable impurities such as halogens such as Cl, F, Br, I and the like.
  • the content is preferably 5 atomic% or less of the whole (that is, the sum of Fe and Co contained in the first phase), more preferably 2 atomic% or less, still more preferably 0.1 atomic%
  • the content is particularly preferably 0.001 atomic% or less. If a large amount of these impurities is contained, the magnetization decreases as the amount of the impurities increases, and in some cases, the coercivity is also adversely affected, and depending on the application, it may deviate from the target range. It is.
  • the first phase and the second phase do not contain the Co-free ⁇ -Fe phase.
  • the ⁇ -Fe phase not containing Co when the content of elements other than Co is also extremely small, saturation magnetization comparable to electromagnetic soft iron is expected, but even if the ⁇ -Fe phase is a powder in the nano region, This is because the material has a poor influence on the electrical resistivity, is poor in oxidation resistance, and is inferior in machinability.
  • the ⁇ -Fe phase not containing Co may be present as a separate phase as long as the object of the present invention is not impaired.
  • the volume fraction of the ⁇ -Fe phase is preferably less than 50% by volume with respect to the entire magnetic material of the present invention.
  • the volume fraction means the ratio of the volume occupied by the target component to the volume of the entire magnetic material.
  • the second phase is a phase in which the content of Co with respect to the total of Fe and Co contained in the phase is larger than the content of Co with respect to the total of Fe and Co contained in the first phase.
  • the second phase is a cubic bcc- (Fe 1-y Co y ) phase (space group Im 3 m, the same crystal phase as the first phase but having a higher Co content than the first phase) , fcc-(Fe, Co) phase (space group Fm3m), FeCo 3-phase, wustite phase (typically composition (Fe 1-z Co z) a O phase, a is usually 0.83 or more and 1 or less, and FeO In the present specification, it may be simply referred to as (Fe, Co) O phase or (Co, Fe) O phase in the present specification, and unless otherwise specified in the present invention, speaking of wustite simply includes CoO.
  • composition of 0 ⁇ z ⁇ 1), CoO phase, Co-ferrite phase typically composition is (Fe 1-w Co w ) 3 O 4 phase, 0 ⁇ w ⁇ 1/3), etc. and FeCo phase of tetragonal, a rhombohedral ⁇ - (Fe, Co) 2 O 3 (Co- hematite phase), such as, such as more Co-Fe amorphous phase, or mixtures thereof.
  • the content of the Co-Fe amorphous phase is between 0.001% by volume and 10% by volume and is preferably not more than this from the viewpoint of suppressing the decrease in the magnetization, and in order to make the magnetic material of high magnetization further Is preferably 5% by volume or less.
  • the amorphous phase or the like may be intentionally included in order to control the disproportionation reaction itself, but in this case, it is preferable to be more than 0.001% by volume from the viewpoint of exerting the reaction control effect.
  • the volume fraction referred to here is the ratio of the volume occupied by the target component to the volume of the entire magnetic material.
  • the second phase described above is mostly in the case where the saturation magnetization is inferior to the first phase, but the coexistence of these phases may result in a large increase in electrical resistivity.
  • a small coercive force can be realized by ferromagnetic coupling with a phase depending on the crystal structure, composition, microstructure, interface structure, etc. of the phase.
  • less than 50 atomic% of the Co content can be replaced with the M component.
  • phase containing neither Fe nor Co, and mixed only with the compound of the M component is not included in the first phase or the second phase. However, it may contribute to the improvement of the characteristics of electrical resistivity, oxidation resistance and sinterability.
  • the phase which does not contain the Co component such as the compound phase of the M component or the Fe compound phase described above, and the phase in which the content of the M component is the content of the Co element or more is referred to as "subphase" in this application.
  • the phases other than the first phase and the second phase which are phases other than Co, do not contain wustite phase, magnetite phase (Fe 3 O 4 ), maghemite phase ( ⁇ -Fe 2 O 3 ), hematite phase ( ⁇ -Fe 2 O 3 )
  • Subphases such as ⁇ -Fe phase and ⁇ -Fe phase, or goethite with no or not containing Co, iron oxyhydroxide phases such as agagenite, lepidocrocite, ferrooxyhytite, ferrihydrite, greenlast, etc.
  • Hydroxides such as potassium hydroxide and sodium hydroxide, chlorides such as potassium chloride and sodium chloride, fluorides, carbides, nitrides, hydrides, sulfides, nitrates, carbonates, sulfates, silicates, phosphorus
  • An acid salt or the like may also be contained, but these volumes are the first due to the fact that the magnetic material of the present invention has high saturation magnetization and also exhibits stable magnetic characteristics and high magnetization over time.
  • phase The ccs- (Fe, Co) of the first phase and the second phase be less than the total volume of the phase is required. From the viewpoint of suppressing the decrease in saturation magnetization, the preferable range of the content of these phases is 50% by volume or less with respect to the volume of the entire magnetic material.
  • the content of the M component of all the phases including the first phase, the second phase and the subphase should not exceed the content of Co contained in the first phase and the second phase with respect to the whole phase.
  • the M component is contained in excess of the Co content, the effect on the electromagnetic characteristics peculiar to Co, for example, the effect of suppressing the decrease in the magnetization even when the magnetization is improved by adding a small amount or more, electric resistivity This is because the unique characteristics such as the improvement and the remarkable effect on the oxidation resistance are lost.
  • the Co content of the first phase and / or the second phase means an amount including such an M component.
  • the second phase may have the same crystal structure as the first phase, but it is desirable that the compositions be sufficiently different from each other, for example, the second phase relative to the sum of Fe and Co in the second phase.
  • the Co content is at least 1.1 times as high as the Co content of the first phase, or the Co content of the second phase is 1 atomic% (more preferably 2 atomic%) or more than the Co content of the first phase It is also preferable that the content of both is more than 1 (ie, the Co content of the second phase is 1.1% or more of the Co content of the first phase and further 1 atomic% (more preferably 2 atomic%)). Or more) is more preferable.
  • the Co content of the second phase is 1.2 times or more the Co content of the first phase, it becomes a low coercive force material less than 100 A / m, which is very preferable, and if it is 1.5 times or more, the coercivity Not only low, but also the permeability is most preferably improved.
  • the Co content of the second phase itself does not exceed 100%.
  • the Co content of the first phase is 0.001 atomic percent, which is the lower limit value
  • the Co content of the second phase does not exceed 10 5 times the Co content of the first phase.
  • the Co content of the second phase is preferably 75 atomic% or less. This is because when the Co content exceeds 75 atomic%, an fcc- (Fe, Co) phase having a low saturation magnetization is formed, and the magnetic properties of the entire magnetic material of the present invention may be deteriorated.
  • the Co content of each phase is determined with one or more significant figures, and It means that the Co content of the phase is at least 1.1 times the Co content of the first phase.
  • the present invention aims to reduce the coercive force by utilizing the above-mentioned random magnetic anisotropy model or the fluctuation of the magnetic anisotropy according to the model, and is a crystallographically independent first phase And the second phase are magnetically coupled at the nano level by exchange coupling, or the Co content in the ccs phase including the first phase and the second phase varies spatially at the nanoscale ( In the present invention, this is sometimes referred to as "concentration fluctuation"), which is important.
  • concentration fluctuation the crystal orientations of the crystal phases may be aligned in the same direction, and the value of fluctuation of the magnetocrystalline anisotropy to be averaged does not become sufficiently small.
  • the preferable Co content of the second phase is 1 atomic% or more, more preferably 3 atomic% or more, with respect to the total of Fe and Co in the second phase. If the Co content is too large, the saturation magnetization decreases, so the content is preferably 80 atomic% or less.
  • first phase and the second phase of close composition are adjacent to each other, they are nano-dispersed and preferably have different crystal orientations so that the magnetization directions do not match or there is a fluctuation of Co concentration in nano scale.
  • exchange coupling is performed through twin walls, grain boundaries, or crystal boundaries, averaging of the magnetic anisotropy is realized and the coercivity is reduced.
  • the frequency per unit volume is much smaller than when the compositions differ to some extent, averaging of the magnetocrystalline anisotropy by a sufficient random magnetic anisotropy model may not be achieved.
  • phase (first phase) in which the Co content is lower than that of the entire magnetic material of the present invention the phase (second phase) in which the Co content is higher than the magnetic material of the present invention is always the same.
  • the magnetic material of the present invention specifically, the soft magnetic material is obtained.
  • the above is a composition with high homogeneity, which completely removes heterophases and is not found in many existing soft magnetic materials such as electromagnetic steel sheets designed to prevent domain wall movement from being disturbed, such as Sendust. It is a feature of materials, and it can be said that magnetization reversal is a feature common to magnetic materials caused by rotation of magnetization.
  • a state in which only the first phase or only the second phase is magnetically coupled at the nano level by exchange coupling may be included, and even in this case, the crystal axis orientations of adjacent nanocrystals are not aligned. It is important to be isotropic and / or have fluctuations in the Co concentration at the nanoscale.
  • a magnetic material composed of microcrystallines of only the first phase or a magnetic material composed of microcrystallines of only the second phase can not be achieved, and even when such a structure is included, In the present invention, the first phase and the second phase are always present in the magnetic material.
  • nanocrystals itself is a powder of ferrite containing cobalt used to produce the magnetic material of the present invention, wherein the powder has a nanoscale size (herein “cobalt ferrite This is because they are greatly involved in the disproportionation reaction in each process of the reduction process starting with the reduction of the nanopowder (also referred to as “Co-ferrite nanopowder”).
  • ferrite powder of nanoscale size is also referred to as "ferrite nanopowder”
  • nanoscale refers to 1 nm or more and less than 1 ⁇ m unless otherwise specified.
  • the first phase is the ccs- (Fe, Co) phase, which mainly ensures high saturation magnetization.
  • the second phase is a phase in which the content of Co with respect to the total of Fe and Co contained in the phase is larger than the content of Co with respect to the total of Fe and Co contained in the first phase.
  • the second phase may be a ccs- (Fe, Co) phase that is higher than the Co content of the entire magnetic material, or may be another crystalline phase or an amorphous phase, or a mixed phase thereof.
  • the soft magnetic material of the present invention has an effect of keeping the coercivity low. Therefore, since the second phase is an aggregate of the phases having these effects, the magnetic material of the present invention is only required to show the presence of any of the above exemplified phases in which the content of Co is higher than that of the first phase. It turns out that it is.
  • the first phase and the Co composition may change continuously.
  • the Co compositions of the first phase and the second phase may be observed as being continuously changed.
  • the Co content of the second phase that is, the Co content in the second phase to the total of Fe and Co contained in the second phase
  • the Co content of the first phase that is, the second phase
  • Co content in the first phase More than the Co content in the first phase with respect to the total of Fe and Co contained in one phase, furthermore, 1.1 times or more and / or 1 atomic% or more of the Co content in the first phase, more preferably It is desirable that there is a compositional difference of 1.1 times or more and / or 2 atomic% or more.
  • composition ratio of Fe and Co including the first phase and the second phase is not particularly limited as long as the object of the present invention can be achieved, but the content of Co relative to the total of Fe and Co is at least 0.01 at% 75 It is desirable that the atomic percent or less.
  • the content of Co in which the first phase and the second phase are combined be 75 atomic% or less, in order to avoid a decrease in saturation magnetization, and being 0.01 atomic% or more is oxidation resistance.
  • the content of Co which is a combination of the first phase and the second phase preferable from the viewpoint of a good balance of oxidation resistance and magnetic properties, is 0.01 atomic% or more and 60 atomic% or less, And 0.01 atomic percent or more and 50 atomic percent or less.
  • the volume ratio of the first phase to the second phase is arbitrary, the first phase, or the first phase and the first phase, relative to the volume of the entire magnetic material of the present invention including the first phase, the second phase and the subphase.
  • the total volume of the ccs- (Fe, Co) phase in the second phase is preferably 5% by volume or more. Since the ccs- (Fe, Co) phase is responsible for the main magnetization of the magnetic material of the present invention, it is preferably 5% by volume or more in order to avoid the decrease in the magnetization. Furthermore, it is preferably 25% by volume or more, more preferably 50% by volume or more. In order to realize particularly high magnetization without significantly lowering the electrical resistivity, it is desirable to set the total volume of the ccs- (Fe, Co) phase to 75% by volume or more.
  • a ferromagnetic or antiferromagnetic (herein, weak magnetism is also included in this phase) phase, because the crystal magnetism of the first phase is the reason It is because it has the effect of reducing anisotropy. This matter will be discussed along with the description of the random magnetic anisotropy model described later.
  • a representative example of the second phase preferred as ferromagnetism is, first, more Co content than the first phase, and preferably, this Co content is in the second phase.
  • Ccs having a content of 0.1 to 75 atomic percent, preferably 0.5 to 60 atomic percent, particularly preferably 1 to 50 atomic percent, based on the total of Fe and Co.
  • the first phase (more preferably, the first phase of 1 to 50 at%) with a Co content of 0.01 to 60 at% relative to the total of Fe and Co in the first phase It is preferable to realize a magnetic material having a large saturation magnetization and a small coercive force by combining the second phase in which the Co content is larger than the first phase.
  • the crystal grain size of the first phase is 100 nm or less, preferably 50 nm or less, and the crystal axes of the crystal grains preferably have random orientations that do not align in one direction.
  • (V) Further, as a method of observing the local orientation of crystal orientation, there is a method of examining by observing the direction of lattice stripes at the crystal boundary or the arrangement of atoms by TEM observation. That is, the crystal plane orientations of crystal grains on both sides separated by crystal boundaries are observed and compared.
  • (Vi) As a method of macroscopically observing this crystal boundary, there is a method of using FE-SEM (field emission scanning electron microscope) to know the direction of twin wall and the shape of the crystal boundary. In an extreme case, when the crystal boundary draws a circular arc, a complicated curve, or a maze pattern, it exhibits an intergrowth structure in which intergrowths are intricately formed from various directions, so that the crystal orientation becomes random.
  • the crystal grains of the magnetic material of the present invention The orientation can also be judged comprehensively.
  • the grain boundary region between the first phase, the first phase and the second phase, or the second phase, the first phase and / or the second phase Observation in the occupied region can be evidence for the occurrence of ferromagnetic coupling between adjacent particles if no heterophase is found at the grain boundaries.
  • both oxide phases of a Co-ferrite phase and a wustite phase can be mentioned.
  • the former is ferromagnetic and the latter is antiferromagnetic, but any one can promote ferromagnetic coupling if it is between the first phase.
  • ferrite phase promotes ferromagnetic coupling
  • WO 2009/057742 (hereinafter referred to as "patent document 1"), N. Imaoka, Y. Koyama, etc. J., T. Nakao, S. Nakaoka, T. Yamaguchi, E. Kakimoto, M. Tada, T. Nakagawa and M. Abe, J. Appl. Phys., Vol. 103, No. 7 (2008) 07E129 (hereinafter referred to as In all cases, a ferrite phase exists between Sm 2 Fe 17 N 3 phases of a hard magnetic material, and these phases are ferromagnetically coupled to constitute an exchange spring magnet). .
  • the present invention relates to a soft magnetic material, and the function to be exhibited is completely different from the above hard magnetic exchange spring magnet.
  • the presence of the second phase which is the Co-ferrite phase or the wustite phase, is similar in that it mediates the exchange interaction between the first phase, and such second phase surrounds the first phase.
  • the electric resistance is high and the coercivity is also reduced. Therefore, it is one of the highly preferable second phases particularly in the soft magnetic material of the present invention.
  • these two types of oxide phases make the whole magnetic material 100 volume% and it is 95 volume% or less.
  • Co-ferrite is lower in magnetization than the ccs- (Fe, Co) phase although it is a ferromagnetic material, and wustite is weakly magnetic even though it is antiferromagnetic, and although magnetization is present to some extent, it is higher than Co-ferrite.
  • the content of the oxide phase is more preferably 75% by volume or less, particularly preferably 50% by volume or less.
  • the preferred volume fraction is 0.001% by volume or more, In particular, 0.01% by volume or more is more preferable, and particularly preferably 0.1% by volume or more, in order to cause the wustite phase or the like to exist and to effectively improve the electrical resistivity without significantly reducing the magnetization.
  • the oxide phase does not contain Co-ferrite and is wustite, the range of the above-mentioned volume fraction and the like are the same.
  • the ccs- (Fe, Co) phase having a larger Co content than that of the first phase, the Co-ferrite phase, and the wustite phase are exemplified. Is a ferromagnetic or antiferromagnet.
  • the magnetic curve is additive, so the magnetic curves of these mixed materials are simply the sum of the respective magnetic curves, and the entire magnetic material
  • a smooth step on the magnetic curve of For example, a 1/4 major loop (from 7.2 MA / m to a zero magnetic field was swept out of the magnetic curves of the entire magnetic material) obtained by measuring the magnetization in a wide magnetic field range of 0 to 7.2 MA / m from the external magnetic field If you observe the shape of the 1 ⁇ 4 major loop) when the magnetic curve is observed, it is certain that there is a smooth step or an inflection point based on it on the 1 ⁇ 4 major loop It can be guessed.
  • the wustite phase can be stably present even at high reduction temperatures and molding temperatures, and therefore it is a very preferable phase in constructing the magnetic material of the present invention It is.
  • the ccs- (Fe, Co) phase having various compositions generated from this phase by disproportionation reaction mainly in the reduction step is used as the first phase or the first and second phases of the present invention.
  • the reduction reaction proceeds to the highly magnetic metal phase via the wustite phase especially in the region where the Co content is 0.5 atomic% or more
  • the ccs- (Fe, Co) phase is already directly ferromagnetically coupled to the wustite phase from the stage of disproportionation reaction, and the second phase of the magnetic material of the present invention, particularly soft magnetic material It is a very desirable phase to utilize as
  • the local compositional analysis of the metal element of the magnetic material of the present invention is mainly performed by EDX (energy dispersive X-ray spectroscopy), and the compositional analysis of the entire magnetic material is XRF (fluorescent X-ray) Elemental analysis was performed.
  • EDX energy dispersive X-ray spectroscopy
  • XRF fluorescent X-ray Elemental analysis
  • the Co content of the first phase and the second phase is measured by an EDX apparatus attached to SEM, FE-SEM, or TEM (in this application, FE-SEM etc. attached to this EDX is referred to as FE-SEM / It may be described as EDX etc.).
  • the crystal structure of the first phase and the second phase is a fine structure of 300 nm or less, accurate composition analysis can not be performed by SEM or FE-SEM, but Co of the magnetic material of the present invention If it is for detecting only the difference of and Fe component, it can be used supplementarily.
  • Co of the magnetic material of the present invention If it is for detecting only the difference of and Fe component, it can be used supplementarily.
  • a tissue having a Co content of 5 atomic% or more or a part of the tissue exists within the range of 300 nm in diameter centering on that one point.
  • the quantitative value is 2 atomic% or less as the Co content.
  • each composition in the entire magnetic material (that is, each composition in the case where the total content of the components constituting the entire magnetic material is 100 atomic%) is 10 atomic% to 99.999 atomic% of Fe component, Co It is preferable that the components be in the range of 0.001 atomic percent to 90 atomic percent and the O (oxygen) content be in the range of 0 atomic percent to 55 atomic percent, and simultaneously satisfy these. Furthermore, an alkali metal may be contained at 0.0001 atomic% or more and 5 atomic% or less. It is desirable that the subphases including K and the like do not exceed 50% by volume of the whole.
  • the magnetic material of the present invention does not necessarily contain oxygen, but in order to obtain a magnetic material having extremely high oxidation resistance and electrical resistivity, it is preferable to contain as little as possible.
  • each composition range with respect to the composition of the entire magnetic material of the present invention is 20 atomic% or more and 99.998 atomic% or less of Fe component and 0.001 atomic% or more of Co component It is desirable that the range be 79.999 atomic% or less and O be 0.001 atomic% or more and 55 atomic% or less.
  • More preferable composition of the magnetic material of the present invention is that the Fe component is 25 atomic% or more and 99.98 atomic% or less, the Co component is 0.01 atomic% or more and 74.99 atomic% or less, and O is 0.01 atomic% or more and 49
  • the magnetic material of the present invention which has .99 atomic percent and is in this range, has a good balance of saturation magnetization and oxidation resistance.
  • this composition has a composition range of 29.95 atomic% to 99.9 atomic% for the Fe component, 0.05 atomic% to 70 atomic% for the Co component, and 0.05 atomic% to 33 atomic% for O.
  • the magnetic material of the invention is preferable in that it has excellent electromagnetic properties and excellent oxidation resistance.
  • the Fe component is 49.95 atomic% or more and 69.95 atomic% or less
  • Co component Preferably, the composition range is 30 atomic percent to 50 atomic percent
  • O is 0.05 atomic percent to 20 atomic percent.
  • the soft magnetic material having a small coercive force tends to contain less oxygen.
  • One of the present inventions is a magnetic material having a magnetic characteristic suitable for soft magnetic applications having a coercive force of 800 A / m or less, which will be described below.
  • magnetic properties refers to the magnetization J (T), saturation magnetization J s (T), magnetic flux density (B), residual magnetic flux density B r (T), and exchange stiffness constant A (J / m) of a material.
  • Magnetocrystalline anisotropy magnetic field H a (A / m), magnetocrystalline anisotropy energy E a (J / m 3 ), magnetocrystalline anisotropy constant K 1 (J / m 3 ), coercive force H cB ( A / m), intrinsic coercive force H cJ (A / m), permeability ⁇ ⁇ 0 , relative permeability ⁇ , complex permeability ⁇ r ⁇ 0 , complex relative permeability ⁇ r , its real term ⁇ ', imaginary term ⁇ And at least one of the absolute values
  • the unit of “magnetic field” is a combination of A / m of SI unit system and Oe of cgs Gaussian unit system.
  • magnetization, saturation magnetization, magnetic flux density, residual magnetic flux density, and electrical resistivity are preferably higher, and for saturation magnetization, a height of 0.3 T or 30 emu / g or more is desirable, particularly soft magnetic In the case of materials, a height of 100 emu / g or more is desirable.
  • Other magnetic properties of the present invention such as the magnetocrystalline anisotropy constant, coercivity, permeability, relative permeability, etc., are properly controlled according to the application.
  • the permeability and the relative permeability do not necessarily have to be high depending on the application, and if the coercivity is sufficiently low and the core loss is suppressed low, for example, the relative permeability is about 10 0 to 10 4
  • the limit thickness at which the eddy current loss occurs can be increased by about 3.2 times each time the value is lowered by one digit.
  • One of the features of the present invention is to provide a magnetization reversal mechanism mainly by direct rotation of magnetization instead of magnetization reversal due to domain wall movement, so that the coercive force is low and the eddy current loss due to domain wall movement is also small, and iron loss is suppressed low.
  • ⁇ Crystalline boundary> The factor by which the magnetic material of the present invention becomes soft magnetism is particularly closely related to its microstructure.
  • the ccs- (Fe, Co) phase may be observed as a seemingly continuous phase, but as shown in FIG. 1, it contains many heterophase interfaces, grain boundaries, and simple contact twins, intrusive twins, etc.
  • crystals are divided due to their crystal habit, crystal phase, intergrowth structure, dislocation, etc., their boundaries are collectively referred to as “crystal boundaries” etc.
  • the crystal boundary is exhibited as a curve group unlike the linear crystal grain boundary to be obtained, and further, in such a structure, a large difference in Co content is seen depending on the place.
  • the magnetic material of the present invention having the fine structure as described above is often a soft magnetic material.
  • the first phase and the second phase are particles starting from a cobalt ferrite nanopowder when the second phase is a ccs- (Fe, Co) phase.
  • the ccs- (Fe, Co) phase, the first phase and the second phase have various microstructures such as crystals of gemstones such as quartz, minerals such as pyrite and fluorite, and rocks. It is held in a reduced scale, and internally contains various phases and nanocrystals with various Co contents.
  • the texture that looks like grain boundaries and intergrowths also has a difference in Co content depending on the observation site, and may be a heterophase interface. Therefore, if the orientation of the magnetic substance crystal surrounded by these crystal boundaries is non-orientation within the ferromagnetic coupling length, the coercive force is greatly reduced according to the above-mentioned random magnetic anisotropy model.
  • the soft magnetic material of the present invention described by the random anisotropy model or the soft magnetic material of the present invention which has a low coercive force due to the specific coercive force lowering mechanism of the present invention satisfies the following three conditions: desirable.
  • the grain size of the ccs- (Fe, Co) phase is small, (2) random orientation and / or fluctuation of Co concentration at the nanoscale (3) ferromagnetic coupling by exchange interaction.
  • the condition of (2) above states that in the second half “and / or” or later, the decrease in coercivity may occur on a principle different from that of the random anisotropy model, even in the absence of random orientation.
  • the fluctuation of the magnetic anisotropy based on the fluctuation of the concentration of the nano component of the Co component becomes As a result, the magnetization reversal is promoted and the coercivity is reduced.
  • the magnetization reversal mechanism by this mechanism is unique to the present invention, and as far as the present inventors can know, it has been found for the first time by the present inventors.
  • the present invention In order to bring the coercivity of the magnetic material powder to the soft magnetic region, it is then sintered and solidified, that is, “the first phase and the second phase are directly, or the metal phase or the inorganic phase It is desirable to form a continuous lumped state as a whole and to form a massive state ".
  • the magnetic material of the present invention has the above-mentioned characteristics because it is a magnetic material of the present invention formed in a method different from other metallic soft magnetic materials having high magnetization and high frequency application, ie cobalt Because ferrite nano powder is reduced to produce a metal powder having nanocrystallites first, and then it is shaped into a solid magnetic material to provide a build-up bulk magnetic material. is there.
  • the average grain size of the first phase or the second phase of the soft magnetic material of the present invention, or the average grain size of the entire magnetic material is preferably 1 nm or more and less than 10 ⁇ m, and more preferably in the nano range .
  • the average grain size of the entire magnetic material is in the nano range.
  • a magnetic material having a grain size smaller than L 0 (ferromagnetic exchange length or exchange coupling length) It should be a material, but it is preferred that either the first phase or the second phase be in the nano range. If the first phase or the second phase is in the nano region and the diameter is smaller than L 0 , averaging of anisotropy due to ferromagnetic coupling with at least one of the first phase or the second phase around it is Is done.
  • the average crystal grain size is preferably less than 10 ⁇ m for both, but 1 ⁇ m or less is more preferable and 200 nm or less for the above reason. For example, although depending on the Co content, it is particularly preferable because it has a remarkable reduction effect on the coercive force.
  • K 1 of the first phase is often larger than that of the second phase, so in particular, if the first phase is less than 10 ⁇ m, preferably 1 ⁇ m or less, more preferably 200 nm or less Is extremely small, making it a soft magnetic material suitable for various transformers and motors.
  • the thickness is less than 1 nm, the film becomes superparamagnetic at room temperature and the magnetization and the magnetic permeability may be extremely reduced. Therefore, the thickness is preferably 1 nm or more. As mentioned above, if crystal grains of less than 1 nm or an amorphous phase is present, it is required to connect them with crystal grains of 1 nm or more by sufficient exchange interaction.
  • the second phase When the second phase is not a ferromagnetic phase, the second phase does not contribute to the reduction of the coercive force by the above-described random anisotropic model, but the presence of the second phase increases the electrical resistivity, which is a preferable component.
  • the saturation magnetization is reduced if the amount thereof, that is, the content is too large, when the second phase is a nonmagnetic phase, the amount should be suppressed to an amount that does not exceed the first phase. It is preferable to finely disperse as much as possible, since the second phase which is the nonmagnetic phase can be covered in the inside of L formed by the first phase, so that the coercive force is not adversely affected. If the nonmagnetic phase is too large, the chain of ferromagnetic coupling by the first phase is completely broken.
  • the soft magnetic material of the present invention when the soft magnetic material of the present invention is accompanied by a domain wall and there is a partial magnetization reversal part, the material having a small ⁇ K> such as the soft magnetic material of the present invention has a domain wall width of 1 ⁇ m or more. Therefore, the nonmagnetic phase of a size corresponding to this has a pinning-like effect on the domain wall, and may prevent domain wall movement to increase coercivity or increase core loss. For this reason as well, when the second phase is a nonmagnetic phase, it is desirable to limit the amount to an amount that does not exceed the first phase.
  • a material which has low coercivity according to the random magnetic anisotropy model performs magnetization reversal without much movement of the domain wall, so the coercivity of the nonmagnetic phase or other different phase or dislocation is less affected.
  • annealing after solidification by powder heat treatment, sintering or the like may be effective in order to lower the coercivity.
  • the induced magnetic anisotropy is induced at around 10 1 J / m 3 or more and 10 4 J / m 3 or less when the dislocation density is increased with plastic deformation during pressure sintering etc., for example, the crystal magnetism of the first phase When the anisotropy is averaged, it may be comparable to the value of ⁇ K>.
  • ⁇ Measurement of grain size> In the measurement of the crystal grain size of the present invention, an image obtained by a SEM method, a TEM method or a metallurgical microscope method is used. Within the observed range, not only the heterophase interface and the grain boundaries but also all the grain boundaries are observed, and the diameter of the crystal region in the portion surrounded by the grain boundaries is taken as the grain size. If it is difficult to see the crystal boundaries, it is better to etch the crystal boundaries using a wet method or dry etching method using a nital solution or the like.
  • the average grain size is basically selected from a representative part and measured in a region including at least 100 crystal grains.
  • the average crystal grain size is determined by photographing an observation area, defining an appropriate rectangular quadrilateral area on the photograph plane (enlarged projection plane to the photographing plane of the object), and applying the Jeffry method inside thereof.
  • the crystal boundary width may be too small and may not be observed with respect to the resolution, but in that case, the measured value of the average crystal grain size is the upper limit give. Specifically, there is no problem as long as the average crystal grain size measurement value has an upper limit of 10 ⁇ m.
  • part or all of the magnetic material may cut the lower limit of the crystal grain size by 1 nm, for example, from phenomena such as not having a clear diffraction peak on XRD and superparamagnetism being confirmed on a magnetic curve. If indicated, the actual grain size must be determined again by TEM observation.
  • phase separation occurs due to disproportionation reaction, and composition width is generated in the Co content of the ccs- (Fe, Co) phase of the first phase and / or the second phase. Since the X-ray diffraction line peak position changes depending on the Co content, for example, the line width of the diffraction line at (200) of the bcc phase is determined, and the crystallite size is actually determined even if the crystallite size is determined from this. It can not generally be regarded as.
  • the magnetics of the present invention since the atomic radius of metal or the metal atomic radius of Co is not substantially different from that of Fe (the metal atomic radius of Fe is 0.124 nm, the atomic radius of Co is 0.125 nm), the magnetics of the present invention
  • the “apparent crystallite size” which is the crystallite size obtained as a result of the XRD measurement is obtained only when the composition of the material is Fe 100 -x Co x (x is 0.001 ⁇ x ⁇ 90 in atomic percentage) It can be regarded as the actual "crystallite size".
  • “crystallite size” refers to this “apparent crystallite size” unless otherwise specified.
  • crystallite refers to a small single crystal at a microscopic level constituting a crystal substance, which is smaller than individual crystals constituting a polycrystal (so-called crystal grains).
  • the crystallite size is determined by using Scheller's equation for the diffraction pattern excluding the influence of the K ⁇ 2 diffraction line, and the non-dimensional form factor is 0.9, the (200) diffraction line width (bcc structure and fcc It was determined using (in the case of structure) or (110) diffraction linewidth (in the case of fcc structure).
  • the second phase may have bcc, fcc and other structures, but when the first phase is fcc phase, the structure of the second phase is a structure other than bcc structure It becomes.
  • the preferred crystallite size of the bcc (fcc) phase is 1 nm or more and less than 300 nm. If it is less than 1 nm, it becomes superparamagnetic at room temperature and the magnetization and permeability may become extremely small. Therefore, 1 nm or more is preferable.
  • the crystallite size of the bcc (fcc) phase is preferably less than 300 nm, and if less than 200 nm, the coercivity enters the soft magnetic region and becomes extremely small, making it a soft magnetic material suitable for various transformers, motors, etc. More preferable. Furthermore, not less than 100 nm can achieve not only high magnetization exceeding 2T even in a low Co content region, but also low coercivity can be achieved simultaneously, which is a very preferable range.
  • ⁇ Size of soft magnetic material> In the case of the soft magnetic material of the present invention, as described above, it is desirable that the averaging of the magnetic anisotropy by the random magnetic anisotropy model be performed part by part. Therefore, it is preferable that ferromagnetic coupling is performed with a size of at least L, including the first phase and the second phase, centering on the first phase and the second phase.
  • the powder having a size of L can avoid high coercivity when the magnetic material of the present invention is used as a soft magnetic material.
  • the mechanism is somewhat different from the random magnetic anisotropy model, and the anisotropy of the nanoscale Ni concentration fluctuates, and the magnetic anisotropy fluctuates and is low, regardless of crystal isotropy.
  • the composition area in which a magnetic force is generated in this case also, it is necessary to realize a state in which the Ni concentration is distorted in a sufficient area comparable to L.
  • the soft magnetic material powder of the present invention which does not reach the size of L is required to be continuously bonded to at least the size of L by sintering or the like directly or through a metal phase or an inorganic phase.
  • the powder of the magnetic material of the present invention is dispersed in, for example, a synthetic resin or a ceramic as described above, the powder particle size of the powder is larger than L or equivalent level
  • the first phase or the first phase and the second phase need to be combined and grain growth.
  • the size (average powder particle size) of the powder of the soft magnetic material of the present invention depends on L, it is preferably 10 nm or more and 5 mm or less. If it is less than 10 nm, the coercivity does not become sufficiently small, and if it exceeds 5 mm, a large strain will be applied during sintering, and the coercivity will be large if there is no annealing treatment after solidification. More preferably, it is 100 nm or more and 1 mm or less, and particularly preferably 0.5 ⁇ m or more and 500 ⁇ m or less. If the average powder particle size falls within this range, it becomes a soft magnetic material with low coercivity.
  • the particle size distribution is sufficiently wide within each average powder particle size range specified above, high filling can be easily achieved with a relatively small pressure, and the magnetization per volume of the solidified molded body becomes large, preferable. If the particle size of the powder is too large compared to L, movement of the domain wall may be excited, and in the production process of the soft magnetic material of the present invention, the domain wall movement is hindered by the heterophase formed by disproportionation reaction. In some cases, the coercivity may increase. Therefore, when molding the soft magnetic material of the present invention, it may be preferable that the surface of the magnetic material powder of the present invention having an appropriate powder particle size be in an oxidized state.
  • the structure is refined by the disproportionation reduction reaction, so even if the surface is oxidized to some extent by oxidation, it often does not significantly affect the internal magnetization rotation, and is resistant to oxidation. Sex is extremely high. Therefore, depending on the composition, shape, and size of the magnetic material powder of the present invention, appropriate gradual oxidation of the powder surface, handling of each process in air, solidification treatment in an inert gas atmosphere instead of a reducing atmosphere, etc. Are also effective in stabilizing the coercivity.
  • the size of the powder (average powder particle size) in the case of the semi-hard magnetic material of the present invention maintains high magnetization while developing the coercivity of the semi-hard magnetic region, from the viewpoint of imparting oxidation resistance,
  • the thickness is preferably 10 nm or more and 10 ⁇ m or less.
  • the powder particle diameter of the magnetic material of the present invention is evaluated mainly by measuring the volume equivalent diameter distribution using a laser diffraction type particle size distribution analyzer and measuring the median diameter obtained from the distribution curve.
  • the powder particle size of the magnetic material of the present invention is selected from representative parts based on a photograph obtained by SEM method or TEM method of powder, or a metallographic photomicrograph, and the diameter of at least 100 pieces is measured. It may be determined by volume averaging. Although it may be less than this, in that case, it is required that there is a part that is statistically sufficiently representative of the whole, and that the part is measured.
  • the laser diffraction particle size distribution analyzer has priority
  • the average powder particle size is determined with the above R.
  • the symbol of powder particle diameter is one or two significant figures in the case of (1) or (2), and is represented by one significant figure in the case of (3).
  • the powder particle size measurement method is used in combination. If it has a powder particle size of just above 500 nm and 1 mm, in the method of (1), even one significant digit may be an incorrect value, Since it takes time to confirm that the information is not local information in the method (2), the value of the average powder particle diameter is first obtained by the method (1), and the value is simply obtained by the method (2). It is because it is very reasonable to compare and study both and to determine the average powder particle size with the above R by obtaining. In the present application, the average particle diameter of the powder of the magnetic material of the present invention is determined by the above method. However, if (1) and (3), or (2) and (3) do not match in single digit significant figure, measure precisely again in (1) or (2) according to the average powder particle size range.
  • R has been determined.
  • any of the methods of (1), (2) or (3) may be reselected in a limited manner without adopting the above principle. That is, within the range of the measurement methods (1) to (3), the method considered most appropriate for capturing the true appearance of the magnetic material and obtaining the volume average value of the powder particle diameter as close to the true value as possible. It is good to choose As long as the magnetic material of the present invention is merely distinguished from other magnetic materials, it is sufficient if the average powder particle size is determined by one significant digit.
  • the macroscopic powder shape has a three-dimensional network shape including hollow portions which are many through holes. It may be like a sponge. These are considered to be formed by the fact that oxygen is removed from the crystal lattice at the same time as grain growth proceeds by a reduction reaction to cause a large volume reduction.
  • the powder particle size in this case is measured including the volume of the hollow portion inside.
  • the magnetic material of the present invention is a magnetic material in which the first phase and the second phase are bonded directly or continuously via the metal phase or the inorganic phase to form a block as a whole (herein, It can also be used as "solid magnetic material". Also, as described above, when many nanocrystals are already bound in the powder, the powder may be an organic compound such as resin, an inorganic compound such as glass or ceramic, or a composite material thereof It is also possible to mix and mold.
  • the filling rate is not particularly limited as long as the object of the present invention can be achieved, but in the case of the magnetic material of the present invention having a small amount of Co components, 60% by volume or more and 100% by volume or less is oxidation resistance and magnetization. It is preferable because it is excellent in terms of height balance.
  • the packing ratio referred to here is the volume of the magnetic material of the present invention relative to the volume of the entire magnetic material of the present invention including voids (that is, the magnetic material of the present invention excluding portions other than the magnetic material of the present invention.
  • the percentage of the volume occupied by the material alone is expressed as a percentage.
  • the more preferable range of the above-mentioned filling rate is 80% or more, and particularly preferably 90% or more.
  • the magnetic material of the present invention is originally high in oxidation resistance, but the higher the filling factor, the further the oxidation resistance is increased, and not only the application range to be applied is broadened, but the saturation magnetization is improved and the performance is high. A magnetic material is obtained. Further, in the soft magnetic material of the present invention, the effect of increasing the bonding between powders and lowering the coercive force is also brought about.
  • solid magnetic material ⁇ Features of magnetic powder of the present invention, solid magnetic material>
  • the magnetic material powder of the present invention is a sinterable powder material like ferrite.
  • Various solid magnetic materials having a thickness of 0.5 mm or more can be easily manufactured.
  • various solid magnetic materials having a thickness of 1 mm or more and 5 mm or more can be relatively easily manufactured by sintering or the like if the thickness is 10 cm or less.
  • the solid magnetic material of the present invention When the solid magnetic material of the present invention is applied as a soft magnetic material, it may be used in a wide variety of shapes according to the application.
  • the solid magnetic material of the present invention does not contain a binder such as a resin, has a high density, and can be easily processed by an ordinary processing machine into an arbitrary shape by cutting and / or plastic processing.
  • a binder such as a resin
  • one of the major features is that it can be easily processed into a shape such as a prismatic column, a cylinder, a ring, a disc or a flat plate, which has high industrial utility value.
  • Once processed into these shapes it is also possible to cut them further and process them into a tile-like or a prism having an arbitrary base shape. That is, it is possible to easily perform cutting and / or plastic working on any shape and any form surrounded by a curved surface or a plane including a cylindrical surface.
  • cutting is general metal material cutting, and it is machining with a saw, lathe, milling machine, drilling machine, grinding wheel, etc.
  • plastic processing is die cutting, forming by molding, rolling, explosion, etc. Such as molding.
  • annealing can be performed at normal temperature or more and 1290 ° C. or less to remove distortion after cold working.
  • the method for producing a magnetic material of the present invention is (1) Cobalt ferrite nano powder production process (2) Both processes of the reduction process may be included, and if necessary, any one or more of the following processes may be included. (3) Step-wise oxidation step (4) Forming step (5) Annealing step Each step will be specifically described below.
  • Cobalt ferrite nano powder production process (In the present application, also referred to as "process of (1)")
  • process of the nano magnetic powder which is a raw material of the magnetic material of this invention
  • known methods for producing ferrite fine powder include a dry bead mill method, a dry jet mill method, a plasma jet method, an arc method, an ultrasonic spray method, an iron carbonyl vapor phase decomposition method, etc. It is a preferable production method if the magnetic material of the present invention is constituted.
  • non-patent document 4 WO 2003/015109
  • pattern document 2 WO 2003/015109
  • this step is referred to as "cobalt ferrite nano powder production step” (or “cobalt ferrite nano powder production method”).
  • aqueous solution previously adjusted to an acidic region is placed in a container (also referred to as a “reaction site” in the present application), and ultrasonic agitation is performed at room temperature under air, or mechanically stirred at an appropriate strength or rotation number.
  • the pH adjustment solution is simultaneously dropped together with the reaction solution, and the solution pH is gradually changed from the acidic to the alkaline region to generate cobalt ferrite nanoparticles in the reaction site. Thereafter, the solution and the cobalt ferrite nanopowder are separated and dried to obtain cobalt ferrite powder having an average powder particle size of 1 nm or more and less than 1 ⁇ m.
  • the above method is mentioned as an inexpensive method because the process is simple.
  • the entire process is performed at room temperature, and therefore, the manufacturing process without using this heat source reduces the burden of equipment cost and running cost.
  • the method for producing the cobalt ferrite nanopowder used in the present invention is of course not limited to the above-mentioned production method, but the initial solution of the reaction site before the start of the reaction used in the above production method The following description will be made regarding the reaction solution (also referred to as “field solution”), the reaction solution, and the pH adjusting solution.
  • the composition of various components used in the step of charging is generally referred to as “charged composition”, but specifically in the present application, a solution used as a reaction field solution and / or a reaction solution (ie, a reaction
  • a solution used as a reaction field solution and / or a reaction solution ie, a reaction
  • the composition of the field solution and / or the solution to be charged to prepare the reaction liquid is referred to as "feed composition”. Therefore, in the present application, for example, those referred to as “charged cobalt composition” (or “charged Co composition”) and “charged manganese composition” (or “charged Mn composition”) are respectively as reaction field liquid and / or reaction liquid. It means the Co component and the Mn component contained in the solution used (the solution to be charged).
  • an acidic solution is preferable, and a solution obtained by dissolving a metal salt, a double salt thereof, a complex salt solution and the like in addition to inorganic acids such as hydrochloric acid, nitric acid, sulfuric acid and phosphoric acid in a hydrophilic solvent such as water
  • a hydrophilic solvent solution such as an iron chloride solution or a cobalt chloride solution or an aqueous solution of an organic acid (for example, acetic acid or oxalic acid) or a combination thereof can also be used.
  • Providing a reaction solution in advance as a reaction field solution is effective for efficiently advancing a synthesis reaction of cobalt ferrite nanopowder.
  • the material for providing the reaction site may be limited, and mixing of unavoidable impurities may be permitted, so it is desirable to control between -1 and less than 7 .
  • a particularly preferable pH range is 0 or more and less than 7 in order to increase the reaction efficiency in the reaction site and minimize elution and precipitation of unnecessary impurities. More preferably, it is 1 or more and less than 6.5 as a pH range in which the reaction efficiency and the yield are well balanced.
  • a solvent as a reaction site a hydrophilic solvent among organic solvents and the like can also be used, but water is preferably contained so that the inorganic salt can be sufficiently ionized.
  • the reaction solution is a chloride, such as iron chloride or cobalt chloride, a nitrate, such as iron nitrate, or a nitrite, a sulfate, or a phosphate containing an Fe component and / or a Co component (optionally containing an M component) It is possible to use a solution based on water of an inorganic salt such as a salt or fluoride or a solution based on a hydrophilic solvent such as water of an organic acid salt, as the case may be. Also, a combination of them may be used. It is essential that the reaction solution contains iron ions and cobalt ions.
  • iron ions in the reaction solution either of the cases of only divalent iron (Fe 2+ ) ions, the mixture of trivalent iron (Fe 3+ ) ions, and the case of only trivalent iron ions
  • a metal ion having a divalent or less than M component element As the valence of the Co ion, monovalent, divalent and trivalent are known, but in the reaction liquid or reaction field liquid, divalent is particularly excellent in terms of the homogeneity of the reaction.
  • pH adjusting solution examples include alkaline solutions such as sodium hydroxide, potassium hydroxide, sodium carbonate, sodium hydrogencarbonate and ammonium hydroxide, acidic solutions such as hydrochloric acid, and combinations thereof. It is also possible to use a pH buffer solution such as a mixed solution of acetic acid and sodium acetate, and to add a chelate compound and the like.
  • the oxidizing agent is not necessarily essential, but it is an essential component when only Fe 2+ ions are contained as Fe ions in the reaction field solution and the reaction solution.
  • oxidizing agents include nitrite, nitrate, hydrogen peroxide water, chlorate, perchloric acid, hypochlorous acid, bromate, organic peroxide, dissolved oxygen water, etc., and combinations thereof Be By stirring in the atmosphere or in an atmosphere where the oxygen concentration is controlled, it is possible to keep the situation where the dissolved oxygen having the function as an oxidizing agent is continuously supplied to the cobalt ferrite nanoparticle reaction site, and control the reaction. It is also effective to do.
  • inert gas such as nitrogen gas or argon gas is continuously or temporarily introduced by bubbling to the reaction site, etc., and the effect of other oxidizing agents is inhibited by limiting the oxidizing action of oxygen. It is also possible to control the reaction stably.
  • cobalt ferrite nanoparticles In a typical cobalt ferrite nanopowder manufacturing method, formation of cobalt ferrite nanoparticles proceeds by the following reaction mechanism.
  • the core of cobalt ferrite nanoparticles is formed in the reaction solution directly or through an intermediate product such as Greenlast.
  • the reaction solution contains Fe 2+ ions, which are adsorbed on the already generated powder nuclei or on the OH groups on the surface of the powder which has grown to some extent, and release H + .
  • an oxidation reaction is performed by oxygen in the air, an oxidizing agent, an anodic current (e + ) or the like, a part of the adsorbed Fe 2+ ions are oxidized to Fe 3+ ions.
  • the Fe 2+ ion or Fe 2+ and Co 2+ ion (or Co and M component ion) in the solution releases H + while accompanied by hydrolysis while being adsorbed again on the metal ion already adsorbed.
  • a ferrite phase having a spinel structure is formed. Since OH groups are present on the surface of this ferrite phase, metal ions are adsorbed again, and the same process is repeated to grow cobalt ferrite nanoparticles.
  • the equilibrium curve in the pH-electrogram of Fe is such that the pH is crossed across the line separating Fe 2+ ion and ferrite.
  • the reaction system should be shifted to a region where ferrite is precipitated from the stable region of (slow) Fe 2+ ion while adjusting the redox potential.
  • Co 2+ is in the bivalent state from the initial stage of the reaction except in a special case, and has almost no influence on the change of the redox potential, and in many cases the reaction due to the change of the redox potential of Fe (ie mixed solution to ferrite solid phase Is described.
  • the reaction solution is adjusted on the acid side, and the reaction field is made a basic region by adding an alkaline solution at a stretch, etc., and the particles are instantaneously formed by coprecipitation. It often occurs. It can be considered that due to the difference in the solubility product of the Fe component and the Co component, consideration is given so as not to be uneven. Of course, since it may be prepared by this method and very small nanoparticles can be produced, it can also be used as a ferrite raw material of the magnetic material of the present invention.
  • the pH adjuster is also dropped simultaneously, and the pH is gradually changed from acidic to basic.
  • the process is designed to steadily incorporate the Co component into the Fe-ferrite structure by changing it.
  • H + released when ferrite is formed by the mechanism as described above is continuously introduced into the reaction site of the pH adjusting liquid. As it is neutralized, formation and growth of cobalt ferrite particles occur one after another.
  • reaction temperature In addition to the above, other factors to control the reaction include agitation and reaction temperature.
  • Dispersion is very important in order to prevent aggregation of fine particles generated by the synthesis reaction of cobalt ferrite nanopowder and inhibition of homogeneous reaction, but a method of simultaneously performing reaction excitation while dispersing with ultrasonic waves, dispersion Any of known methods according to the purpose of reaction control, such as a method of transporting or circulating a liquid with a pump, a method of simply stirring with a stirring spring or a rotary drum, or a method of rocking or vibrating with an actuator or the like. Or the combination is used.
  • the reaction temperature is generally between 0 ° C. and 100 ° C. from the solidification point to the boiling point of water under atmospheric pressure, since the reaction is performed in the coexistence of water in the method for producing cobalt ferrite nanopowder used in the present invention. Is chosen.
  • pressure and photoexcitation may be effective as a method for exciting the reaction.
  • the cobalt ferrite nanopowder manufacturing method using an aqueous solution containing Fe 2+ as the reaction liquid (especially when reacting under the condition that Fe is mixed as cobalt ions in cobalt ferrite nanoparticles). It is important that when the content of Co is less than 40 atomic percent, divalent ions of Fe are observed in the finally formed ferrite nanopowder of the magnetic material of the present invention.
  • the amount is preferably 0.001 or more in the Fe 2+ / Fe 3+ ratio.
  • EPMA electron beam microanalyzer
  • the surface of cobalt ferrite nanoparticles is analyzed by EPMA to obtain an X-ray spectrum of FeL ⁇ -FeL ⁇ , and the difference between the above two materials is taken to obtain iron oxide containing Fe 2+ (eg magnetite)
  • the amount of Fe 2+ ions in the cobalt ferrite nanoparticles can be identified by comparison with the spectra of iron oxide only and Fe 3 + only iron oxide (eg hematite and maghematite).
  • the measurement conditions of EPMA are an acceleration voltage of 7 kV, a measurement diameter of 50 ⁇ m, a beam current of 30 nA, and a measurement time of 1 second / step.
  • Typical impurity phases of cobalt ferrite nanopowders include oxides such as Co-hematite, goethite, achagenite, lepidocrocite, ferrooxyhytite, ferrihydrite, iron oxyhydroxide such as greenlast, hydroxide hydroxide Among the hydroxides such as potassium and sodium hydroxide, among which especially the ferrihydrite phase and the Co-hematite phase are included, these reduce the ccs- (Fe, Co) phase and other second phases after reduction. As it is formed, it is a phase that does not have to be removed.
  • ferrihydrite phase and Co-hematite phase are observed as a plate-like structure having a thickness of several nm in SEM observation and the like. However, since it is a particle having a large area for its thickness, it may greatly promote inappropriate grain growth in the reduction reaction process, and there are many impurities other than Fe component, Co component and oxygen, so this amount is cobalt ferrite It is desirable that the volume fraction is smaller than that of the nanopowder.
  • the cobalt ratio of the phase other than ferrihydrite and cobalt ferrite nanopowder centering on Co-hematite is cobalt ferrite
  • aggregation of impurity phases such as ferrihydrite phase and Co-ferrite phase may be caused (in particular, several microns), since the size may be larger than nanoparticles and disproportionation occurring during reduction may be difficult to control. Care must be taken to avoid uneven distribution (to a certain extent).
  • the content of the ferrihydrite phase easily incorporating Co and the Co-ferrite phase with respect to the total magnetic material is intended to prevent precipitation of the above-mentioned inappropriate subphase not containing Co. It is also possible to co-exist in the range of .01 volume% or more and 33 volume% or less. This has the industrial merit that it is not necessary to hold
  • composition ratio of Fe to Co in the cobalt ferrite nanopowder used as the raw material of the present invention is not particularly limited as long as the object of the present invention can be achieved, but the content of Co relative to the total of Fe and Co is 0.01 atomic% or more
  • the content of Co relative to the sum of Fe and Co is preferably 1 atomic% or more and 55 atomic% or less.
  • the average powder particle size of the cobalt ferrite nanopowder which is a raw material of the present invention is preferably 1 nm or more and less than 1 ⁇ m. More preferably, it is 1 nm or more and 100 nm or less. If the thickness is 1 nm or less, the reaction during reduction can not be sufficiently controlled, resulting in poor reproducibility. If it exceeds 100 nm, inappropriate grain growth of the metal component reduced in the reduction step becomes remarkable, and in the case of a soft magnetic material, the coercivity is increased. Further, at 1 ⁇ m or more, the ⁇ -Fe phase is separated, and Co is not taken into this phase, and only a magnetic material having poor electromagnetic properties and oxidation resistance of the present invention can be obtained.
  • the cobalt ferrite nanopowder used in the present invention is mainly produced in an aqueous solution by decantation, centrifugation, filtration (in particular, suction filtration), membrane separation, distillation, vaporization, organic solvent substitution, Water is removed by solution separation by magnetic field recovery of powder, or a combination thereof. Thereafter, it is vacuum dried at normal temperature or at a high temperature of 300 ° C. or lower, or dried in air.
  • Hot-air drying in air inert gas such as argon gas, helium gas, nitrogen gas (however, in the present invention, nitrogen gas may not be an inert gas depending on the temperature range during heat treatment) or hydrogen It can also be dried by heat treatment in a reducing gas such as a gas or a mixed gas thereof.
  • step (2) Reduction step (In the present application, it is also referred to as "step (2)")
  • step (2) the cobalt ferrite nanopowder produced by the above method is reduced to produce the magnetic material of the present invention.
  • step (2) the homogeneous cobalt ferrite nanopowder undergoes disproportionation reaction, and the magnetic material of the present invention separates into a first phase and a second phase.
  • organic compound gas such as hydrogen gas, carbon monoxide gas, ammonia gas, formic acid gas and mixed gas of them and inert gas such as argon gas or helium gas And low-temperature hydrogen plasma, subcooled atomic hydrogen, etc.
  • organic compound gas such as hydrogen gas, carbon monoxide gas, ammonia gas, formic acid gas and mixed gas of them and inert gas such as argon gas or helium gas And low-temperature hydrogen plasma, subcooled atomic hydrogen, etc.
  • inert gas such as argon gas or helium gas
  • low-temperature hydrogen plasma subcooled atomic hydrogen, etc.
  • a method of reducing in a hydrogen gas or a mixed gas thereof with an inert gas as a reducing gas is preferable.
  • the reduction with C or Ca is too strong in reducing power, and it is very difficult to control the reaction for constructing the soft magnetic material of the present invention
  • There are also problems such as the generation of toxic CO after reduction and the coexistence of calcium oxide which must be removed by washing with water, but the reduction by hydrogen gas is consistently under clean conditions. It is because reduction processing can be performed.
  • the oxygen content in the material of the present invention is generally determined by the inert gas-melting method, but when the oxygen content before reduction is known, the weight difference between before and after reduction indicates the present invention.
  • the oxygen in the material of can be estimated.
  • a halogen element such as chlorine whose content is easily changed before and after reduction, an alkali element such as K and Na, or a volatile component such as water or an organic component is contained in large amounts, It is preferable to separately identify the content of these elements and components.
  • the change in weight before and after the reduction reaction alone can not precisely estimate the oxygen content.
  • the alkali metals derived from the raw material for example, K starts to dissipate by vaporization from the inside of the magnetic material at 450 ° C., and most of it is removed at 900 ° C. or higher. Therefore, in the initial stage of the reduction reaction, in some cases where it is undesirable for the alkali metal derived from the raw material to be retained to take advantage of its catalytic function, depending on the application, it is undesirable to remain at the product stage. By appropriate selection, the alkali metal can be appropriately removed to the finally acceptable range.
  • the final range of the content of alkali metals such as K which can be easily removed while having an effective effect on reduction is such that the lower limit is 0.0001 atomic% or more and the upper limit is 5 atomic% or less
  • the upper limit value can be further controlled to 1 atomic% or less, and can be 0.01 atomic% when controlled most precisely.
  • the halogen element such as Cl (chlorine) remaining in the cobalt ferrite nanopowder is released outside the material system mainly as hydrogen halide such as HCl under a reducing atmosphere. Residual Cl and the like begin to decrease significantly at reduction temperatures of 450 ° C. or higher, depending on the Co and K contents, and changes in their content in the reduction step, but if a reduction temperature of approximately 700 ° C. or higher is selected, It can be almost completely removed from the inside of the material.
  • the weight loss due to the O component becoming mainly H 2 O due to transpiration becomes the Co content, the M component content, the amount of oxygen, the amount of subphases and impurities, volatile components such as water
  • the weight before reduction reaction is usually 100% by mass, usually between 0.1% by mass and 80% by mass.
  • local oxygen content is determined based on photographs such as SEM or EDX, or phases identified by XRD or the like are identified on a microscopic observation image. It can also be done. It is a method suitable for roughly estimating the oxygen content of the first phase and the second phase and the distribution thereof.
  • the heat treatment in a typical reduction step raises the temperature of the material linearly or exponentially from room temperature to a constant temperature in a reducing gas flow, using one or more heating rates, and immediately performs one or two.
  • the reduction temperature in the present invention refers to the highest temperature among the temperature at which the temperature raising process is switched to the temperature lowering process and the temperature in the process of maintaining the temperature for a certain period of time.
  • the reduction temperature can be 400 ° C. or more and 1550 ° C. or less, depending on the content of Co. Among them, it is preferable to select a temperature range of 400 ° C. or more and 1480 ° C. or less. In general, if the temperature is less than 400 ° C., the reduction rate is very slow, and the reduction time may be prolonged and the productivity may be poor. Furthermore, when the reduction time is desired to be 1 hour or less, it is preferable to set the lower limit of the reduction temperature to 500 ° C. or more.
  • the magnetic material during reduction may dissolve depending on the Co content. Therefore, if the Co content is usually in the range of 0.01 atomic percent to 15 atomic percent, the temperature range of approximately 400 ° C. to 1500 ° C. can be freely selected and subjected to reduction treatment, but the Co content is When the amount is more than 15 atomic percent to 70 atomic percent, it is preferable to select a temperature of 400 ° C. or more and 1480 ° C. or less.
  • the characteristic of the manufacturing method of the magnetic material of the present invention is that Co is reduced to the metallic state according to the method of the present invention, so coarsening of the microstructure is caused even in the reduction reaction above the melting point and immediately below the melting point. It may react or react with a reactor such as a ceramic container. From this point of view, it is preferable not to set the temperature above the melting point as the reduction temperature. Although depending on the coexisting M component, it is generally desirable not to select a temperature exceeding 1480 ° C. as the reduction temperature.
  • the preferable reduction temperature range for the magnetic material of the present invention is 400 ° C. or more and 1480 ° C. or less regardless of the Co content. If the soft magnetic material of the present invention can be further reduced in coercivity by controlling the temperature to a range of 800 ° C. or more and 1230 ° C. or less, this temperature range corresponds to the production of a soft magnetic material having high magnetic properties in the present invention. Especially preferred.
  • the reduction reaction proceeds as the reduction time is longer. Therefore, the longer the reduction time, the higher the saturation magnetization.
  • the coercive force is not necessarily decreased even if the reduction time is increased or the reduction temperature is increased.
  • the reduction time is desirably selected appropriately depending on the desired magnetic properties.
  • the range of preferable reduction temperature is 400 to 1480 degreeC.
  • a reduction temperature range of 450 ° C. or more and 1425 ° C. or less is more preferable in terms of obtaining soft magnetic cobalt ferrite powder having an average powder particle size of 10 nm or more and 5 mm or less.
  • the reduction proceeds, and the grain growth of cobalt ferrite nanoparticles occurs, in which case the first phase and the first phase, which are crystal phases formed due to the Co content of the original cobalt ferrite nanoparticles, depending on the reduction temperature.
  • the crystal structure and Co content of the two phases change in various ways.
  • the composition of the crystal phase changes depending on the temperature rising rate in the temperature rising process and the temperature distribution in the reactor.
  • the first phase and the second phase be separated on a nanoscale in the reduction step in the production thereof.
  • various Co contents phases of the crystal structure are separated by disproportionation reaction, and their orientation is random, and / or nanoscale Co concentration It is desirable that the ferromagnetic coupling be made.
  • phase separation phenomena due to disproportionation reaction occur with great frequency through temperature raising process, constant temperature holding process and temperature lowering process, and in the meanwhile various colors with various compositions
  • the phases appear to constitute the magnetic material of the present invention.
  • aggregates of nano-order crystallites are integrated by ferromagnetic coupling such that the direction of crystallographic axis is isotropic and / or there is fluctuation in concentration, mainly by random magnetic anisotropy
  • the magnetocrystalline anisotropy is averaged, an excellent soft magnetic material of the present invention is formed.
  • the reason why appropriate grain growth occurs while maintaining the nano-fine structure is presumed as follows. Even if the raw material is cobalt ferrite nanopowder and it is reduced by hydrogen to a metallic state like the first phase, the original particle shape and composition distribution are totally reflected in the fine structure if appropriate reduction conditions are selected. Otherwise, improper grain growth does not occur such that the composition distribution becomes homogeneous and the grain size becomes coarse. Considering that such appropriate grain growth occurs together with the reduction reaction, and volume reduction due to reduction usually occurs up to 52% by volume, disproportionation proceeds while leaving a structure resembling intergrowths and crystals. It is easy to guess.
  • Phase separation due to disproportionation reaction in the temperature drop process mainly occurs in the ccs- (Fe, Co) phase, and nanoparticles and nanostructures are deposited, ultimately resulting in very fine nanoscale as a whole. It is considered that a disproportionation structure is constructed.
  • the oxide phase containing Co such as Co-ferrite phase and wustite phase tends to become faster as the Co content increases, so once disproportionation the reduction reaction rate is uniform within the material It is believed that eliminating them also works well for maintaining nanostructures.
  • the above series of considerations are also supported by the fact that the magnetic material of the present invention usually loses its characteristics once it has melted.
  • Step (3) Stepwise oxidation step
  • the magnetic material of the present invention after the reduction step contains nano metal particles, there is a possibility that when it is taken out to the atmosphere as it is spontaneously ignited and burned. Therefore, although not an essential step, it is preferable to carry out a gradual oxidation treatment immediately after the completion of the reduction reaction, if necessary.
  • the gradual oxidation is to suppress rapid oxidation by oxidizing and passivating the surface of the reduced metal nanoparticles (by providing a surface oxide layer such as wustite or Co-ferrite).
  • the gradual oxidation is performed, for example, at around normal temperature to 500 ° C.
  • the oxidation resistance is improved while actively forming the oxide film on the surface of each powder by actively utilizing the gradual oxidation process. It is also effective to improve the electrical resistivity or to stabilize the coercive force.
  • the reduction temperature and time are sufficiently long, and grain growth is carried out, it is not stable even if it is released into the atmosphere without passing through the gradual oxidation step.
  • a kinetic membrane may be formed, in which case no special gradual oxidation step is required. In this case, opening to the atmosphere can be regarded as a gradual oxidation process.
  • the ferromagnetic coupling may be broken by the layer of the oxide layer or the passive film, so grain growth should be caused as much as possible before gradual oxidation is performed. Is preferred. If this is not the case, it is preferable to carry out the next molding step without going through the gradual oxidation step as described above, and it is desirable to continue the reduction step and the molding step by a deoxygenation or low oxygen process.
  • the magnetic material of the present invention is a magnetic material in which the first phase and the second phase are bonded directly or continuously via the metal phase or the inorganic phase to form a block as a whole (ie, solid material). It is used as a magnetic material).
  • the magnetic material powder of the present invention is used alone in various applications by solidifying itself or forming by adding a metal binder, other magnetic material, resin or the like.
  • the first phase and the second phase are continuous either directly or through the metal phase or the inorganic phase. In this case, it functions as a solid magnetic material without undergoing the main forming process.
  • a method of solidifying only the magnetic material of the present invention it is put into a mold and compacted by cold compaction and used as it is or subsequently, it is compacted by cold rolling, forging, shock wave compression molding etc.
  • sintering is carried out while performing heat treatment at a temperature of 50 ° C. or higher.
  • a method of sintering by heat treatment as it is without pressure application is called a pressureless sintering method.
  • the heat treatment atmosphere is preferably a non-oxidizing atmosphere, and the heat treatment may be performed in a rare gas such as argon or helium, or in an inert gas such as nitrogen gas, or in a reducing gas containing hydrogen gas.
  • sintering may be performed not only when the pressure of the heat treatment atmosphere is normal pressure, but also in a pressurized gas phase atmosphere of 200 MPa or less or sintering in vacuum.
  • the heat treatment temperature is preferably 50 ° C. or more and 1480 ° C. or less in pressure molding and 400 ° C. or more and 1480 ° C. or less in pressureless sintering, in addition to cold forming performed at less than 50 ° C.
  • the material may melt and the composition range needs to be carefully selected. Therefore, a particularly preferable temperature range in molding is 50 ° C. or more and 1300 ° C. or less.
  • This heat treatment can be carried out simultaneously with the powder compacting, and also by pressure sintering methods such as hot pressing, HIP (hot isostatic pressing), electric current sintering, and SPS (discharge plasma sintering), It is possible to mold the magnetic material of the present invention.
  • pressure sintering methods such as hot pressing, HIP (hot isostatic pressing), electric current sintering, and SPS (discharge plasma sintering)
  • HIP hot isostatic pressing
  • electric current sintering electric current sintering
  • SPS discharge plasma sintering
  • the preferable range of the pressing force is 0.001 GPa or more and 2 GPa or less, more preferably 0.01 GPa or more and 1 GPa or less.
  • the ultra-high pressure HP method in which the green compact is charged into a plastically deformed capsule, heat-treated and hot pressed while applying a large pressure from one to three axial directions, is unnecessary excessive. It is possible to prevent oxygen contamination.
  • a hot press method that uses a uniaxial compressor and pressurized heat treatment in a cemented carbide or carbon mold, a material with a pressure of 2 GPa or more, which is difficult even with a tungsten carbide cemented carbide mold, can be used without problems such as mold breakage
  • the capsule can be molded without being exposed to the atmosphere because the capsule is plastically deformed and sealed inside by pressure.
  • coarse grinding, pulverizing or classification can also be performed using known methods in order to adjust the powder particle size.
  • the coarse crushing is a step performed before molding, or a step performed when powdering again after molding.
  • a jaw crusher hammer, stamp mill, rotor mill, pin mill, coffee mill, etc.
  • the pulverization is carried out when it is necessary to pulverize the magnetic material powder after reduction or the magnetic material after molding to submicron to several tens ⁇ m.
  • dry or wet pulverizing devices such as rotary ball mill, vibration ball mill, planetary ball mill, wet mill, jet mill, cutter mill, pin mill, automatic mortar, etc. A combination or the like is used.
  • a cobalt ferrite nanopowder is produced in the step (1), and subsequently reduced in the step (2), and then the step (3) ⁇ (4)
  • molding may be performed only in the process of (4) or the process of (4).
  • cobalt ferrite nanopowders are prepared by the wet method exemplified in the step (1), and then reduced by the method containing hydrogen gas shown in the step (2), (3 A step of forming by the sintering method under normal pressure or pressurization shown in the step (4), after performing gradual oxidation exposed to low oxygen partial pressure at normal temperature shown in the step After deoxidizing the surface of the material powder as a step, there is a manufacturing method using a step of forming in hydrogen as a step of (4) in order to avoid mixing of oxygen in the additional material.
  • the present solid magnetic material can be formed to a thickness of 0.5 mm or more, and can be processed into an arbitrary shape by cutting and / or plastic processing.
  • a magnetic material powder obtained by re-pulverizing the magnetic material formed in the above step, and a magnetic material powder obtained by annealing the magnetic material powder obtained in the above step in the step (5) described later in a magnetic sheet for high frequency In the case of application to composite materials with resins such as these, compression molding is performed after mixing with a thermosetting resin or thermoplastic resin, or injection molding is performed after kneading with a thermoplastic resin, and further extrusion molding, roll It is molded by molding or calendar molding.
  • a type of sheet shape for example, when applied to an electromagnetic noise absorbing sheet, a batch type sheet by compression molding with a thickness of 5 ⁇ m to 10 mm, a width of 5 mm to 5 m, and a length of 0.005 mm to 1 m, roll forming or Examples include various roll-shaped sheets formed by calendering and the like, and cut or formed sheets having various sizes including the A4 size.
  • the magnetic material of the present invention typically has a first phase and a second phase, and one or both crystal grain sizes are in the nano range.
  • Annealing for various purposes such as crystal distortion and defects occurring in each step and stabilization of a non-oxidizing active phase may be preferable as long as the object of the present invention is not impaired. If it does not disturb the purpose of the present invention, annealing may cause, for example, inappropriate grain growth to coarsen the nanocrystals or adjust the magnetic permeability appropriately, near the crystal boundaries. Conversely, loss of magnetic anisotropy does not increase the coercivity or inhibit the realization of the low magnetic permeability of the present invention.
  • preliminary heat treatment may be performed to heat treat fine particle components of about several nm for the purpose of removing and the like.
  • the coercivity of the soft magnetic material of the present invention can be reduced by removing distortions or defects of crystal lattices or microcrystals caused by volume reduction due to grain growth or reduction after the reduction step (2).
  • annealing under appropriate conditions may be able to improve the electromagnetic properties.
  • the annealing may be useful for removing distortions and defects near the surface, the interface, and the boundary which are generated by the surface oxidation.
  • Annealing after the forming step (4) is the most effective, removing distortions and defects in the crystal lattice, microstructure, etc. that occur in subsequent cutting and / or plastic working such as preforming, compression molding, hot pressing, etc.
  • an annealing process may be carried out actively after this process.
  • this process it is also expected that the accumulated distortion, defects and the like can be alleviated at once in the process prior to that.
  • the steps (1) to (4), the steps (2) to (4), the steps (3) and (4), and the step (4) It is also possible to carry out annealing by putting together strain at the same time or accumulated strain and the like.
  • the annealing atmosphere may be any in vacuum, under reduced pressure, under normal pressure, under pressure of 200 MPa or less, and as a gas species, inert gas represented by a rare gas such as argon, nitrogen gas, etc.
  • a reductive gas such as hydrogen gas, or an atmosphere containing an oxygen source, such as in the air, is also possible.
  • the annealing temperature may be a normal temperature or more and 1350 ° C. or less, and in some cases, a treatment at a low temperature of liquid nitrogen temperature to normal temperature is also possible.
  • the apparatus used at a reduction process and a formation process can be utilized, and it is also possible to combine and implement a well-known apparatus.
  • the direction of the measurement magnetic field is the axial direction in the case of the magnetic powder, and the radial direction in the case of the disk-shaped compact.
  • the magnetic properties of the cuboid compact were measured using a direct-current magnetization measuring machine (direct-current BH loop tracer) equipped with a small single-plate measurement jig and a solid magnetic material with a sample size of 15 mm ⁇ 5 mm ⁇ 1 mm.
  • the magnetization in the external magnetic field 150 Oe was regarded as saturation magnetization, and the value was expressed in T (Tesla) units.
  • V Average powder particle size Magnetic powder was observed with a scanning electron microscope (SEM) or a transmission electron microscope (TEM) to determine the powder particle size. The part representative of the whole was selected, and the number of n was determined to be 100 or more, with one significant digit.
  • SEM scanning electron microscope
  • TEM transmission electron microscope
  • the volume equivalent diameter distribution was measured and evaluated by the median diameter ( ⁇ m) obtained from the distribution curve. However, although the value was adopted only when the calculated median diameter was 500 nm or more and less than 1 mm, it was also confirmed that the powder particle size estimated by the method using the above-mentioned microscope matches the significant digit one digit.
  • VI Average Grain Size
  • SEM scanning electron microscope
  • TEM transmission electron microscope
  • the crystal grain size was determined by separately measuring the average value of the whole and the average value of only the first phase and the second phase.
  • Example 1 and Comparative Example 1 Separately prepare an aqueous solution of CoCl 2 ⁇ 6 H 2 O (cobalt (II) chloride hexahydrate) and FeCl 2 ⁇ 4 H 2 O (iron (II) chloride tetrahydrate) and mix them to 50.3 mM and a reaction field solution mixed aqueous solution of CoCl 2 and FeCl 2 were adjusted to take the reactor to.
  • the composition of cobalt contained in the above mixed aqueous solution, that is, the composition of charged cobalt was 4 atomic%.
  • a 660 mM aqueous solution of potassium hydroxide (pH adjusting solution) is added dropwise to gradually increase the pH of the system from the acidic side to the alkaline side within the range of 4.57 to 10.1.
  • the reaction solution is mixed with an aqueous solution of 168 mM of FeCl 2 and CoCl 2 dropwise as the reaction solution (composition of cobalt in the reaction solution (composed cobalt composition) is 4 atomic%) and allowed to react for 15 minutes. The dropping of the pH adjusting solution and the reaction solution was stopped, and stirring was continued for another 15 minutes.
  • the solid component is precipitated by centrifugation, dispersed again in purified water, and repeated centrifugation to adjust the pH of the supernatant solution to 5.40 and finally disperse the precipitate in ethanol, followed by centrifugation. went.
  • the spherically reflected powder is a Co-ferrite nanopowder, and the plate-like powder having a thickness of several nanometers which is slightly seen is the impurity phase. Therefore, it was confirmed that this powder did not contain the ccs- (Fe, Co) phase.
  • the Co-ferrite nano powder is charged into a crucible made of alumina, heated in hydrogen gas at 10 ° C./min up to 300 ° C., and heated at 300 ° C. to 1100 ° C. at 12 ° C./min, The reduction treatment was performed at 1100 ° C. for 1 hour. Thereafter, the temperature was lowered at 110 ° C./min up to 400 ° C., and it was allowed to cool for 40 minutes from 400 ° C. to room temperature. Subsequently, gradual oxidation treatment is performed at 20 ° C.
  • Example 1 The analysis on this magnetic material was conducted by the following method, and this magnetic material was referred to as Example 1.
  • an ⁇ - (Fe, Co) phase which is a bcc phase is a main component.
  • the presence of an ⁇ - (Fe, Co) phase having a higher Co content than this phase was also confirmed.
  • the ⁇ - (Fe, Co) phase which is the bcc phase and low in the Co content corresponds to the first phase
  • the ⁇ - (Fe, Co) phase which is the bcc phase and the Co content is high. It confirmed that it corresponded.
  • the volume fraction of the entire bcc phase including these second phases was estimated to be 99% by volume or more.
  • This magnetic material powder was also observed by the FE-SEM / EDX method which is suitable for knowing the local Co content of the magnetic material and the presence and degree of disproportionation (a magnification of 20,000 times ).
  • the content of Co in each phase of the present magnetic material (the numerical value in the figure is the content of Co in each phase, the atomic ratio of Co to the total of Co and Fe in each phase) It was found that the value is expressed by percentage) and disproportionately distributed as 4.06 at% or more and 10.06 at% or less.
  • innumerable crystal boundaries in a curved shape curved at intervals of about 10 nm were observed also in a region seen as one ⁇ - (Fe, Co) phase.
  • the phase can be distinguished by the Co content, for example, the Co content with respect to the ⁇ - (Fe, Co) phase having a Co content of 4.06 atomic% the amount is 2.5 times in the range of 10 5 times or less than 1.1 times than that phase, yet 10.06 atomic% in the range of 1 atomic% or more and 100 atomic percent alpha-(Fe,
  • the results also revealed that the Co) phase is also present, that is, with respect to the ⁇ - (Fe, Co) phase, a phase corresponding to the second phase is also present in addition to the first phase. .
  • the same measurement was performed at 20 measurement points in a field of view different from that in FIG.
  • the average value of the Co content of these 40 phases is 4.97 atomic%, which is higher than 4 atomic% of the Co content which is the above-mentioned XRF measurement value.
  • the presence of the first phase having a Co content lower than 4 atomic% is expected, and it is inferred that a larger disproportionation as a whole is occurring.
  • the content of each component of Co, Fe, O and K in this powder is 3.9 atomic% or more and less than 4.0 atomic% of Co content, Fe content with respect to the entire magnetic material.
  • the content of each component of Co, Fe, O and K in this powder is 3.9 atomic% or more and less than 4.0 atomic% of Co content, Fe content with respect to the entire magnetic material.
  • the O content was more than 0 atomic percent and 0.1 atomic percent or less
  • the K content was 0 atomic percent.
  • the average powder particle size of this magnetic material powder was 50 ⁇ m.
  • the average crystal grain size of the entire magnetic material was 90 nm.
  • the crystal grain sizes of the first phase and the second phase were 100 nm and 70 nm, respectively.
  • the saturation magnetization of this magnetic material is 223.9 emu / g, and it is possible to confirm the feature of the present invention that the saturation magnetization exceeding the mass magnetization (218 emu / g) of ⁇ -Fe can be obtained.
  • the coercivity was 92.4 A / m, and there was no inflection point on the quarter major loop.
  • Example 1 since the magnetic material of Example 1 had a coercive force of 800 A / m or less, it was confirmed that it was a soft magnetic material.
  • Table 1 shows the measurement results of the phase, crystallite size, and magnetic characteristics of the present example described above.
  • Ferrite nano powder was produced in the same manner as in Example 1 except that the Co component (cobalt chloride aqueous solution) was not added.
  • Example 1 except that the ferrite nanopowder is reduced at 450 ° C. for one hour (Comparative Example 2), at that temperature for four hours (Comparative Example 3), and at 550 ° C. for one hour (Comparative Example 4) Fe metal powder was produced by the same method as the above.
  • the prepared Co composition is 1 atomic% (comparative example 5), 2 atomic% (comparative example 6), 8 atomic% (comparative example 7), 10 atomic% (comparative example 8), 15 atomic% (comparative example 9), 20 Ferrite nano particles are prepared in the same manner as in Comparative Example 1 except that atomic% (Comparative Example 10), 33 atomic% (Comparative Example 11), 50 atomic% (Comparative Example 12) and 75 atomic% (Comparative Example 13) are changed. A powder was made.
  • this powder does not contain the ccs- (Fe, Co) phase, and this is used as the powder of Comparative Examples 5 to 13.
  • the magnetic properties and the like of the powder are shown in Table 1. The loadings of these were in agreement with the Co content obtained from XRF to the order of%.
  • the content of each component of Co, Fe, O, and K in the powder of Example 2 is 1.0 atomic% of Co, 98.9 atomic% of Fe, and 1.0 atomic% of Co based on the entire magnetic material.
  • the atomic content was 0.1 atomic%.
  • the K atom content was 0 atomic%.
  • the average powder particle size of this magnetic material powder was 30 ⁇ m.
  • the O atom content was 0.1 atomic%
  • the K atom content was 0 atomic%.
  • the measurement results of the particle size and magnetic properties of these samples are shown in Table 1.
  • Example 11 MnCl 2 ⁇ 4 H 2 O (manganese (II) chloride tetrahydrate), CoCl 2 ⁇ 6 H 2 O (cobalt (II) chloride hexahydrate) and FeCl 2 ⁇ 4 H 2 O (iron (II) chloride tetrahydrate)
  • a mixed solution of MnCl 2 , CoCl 2 and FeCl 2 adjusted separately to 50.3 mM by separately preparing an aqueous solution of a hydrate) was added to the reactor to prepare a reaction field solution.
  • composition of cobalt and manganese contained in the mixed aqueous solution that is, the composition of charged cobalt and the composition of charged manganese were 4 atomic% and 0.1 atomic%, respectively.
  • a 660 mM aqueous solution of potassium hydroxide pH adjusting solution
  • the mixed solution of 168 mM FeCl 2 and CoCl 2 was mixed with the reaction solution (cobalt composition in the reaction solution (charged cobalt composition) 4 atomic%, manganese composition in the reacted solution (charged manganese composition) ) Was added dropwise as 0.1 atomic%) and allowed to react for 15 minutes, then the dropping of the pH adjusting solution and the reaction solution was stopped, and the stirring operation was continued for another 15 minutes. Subsequently, solid components are precipitated by centrifugation, dispersed again in purified water, and repeated centrifugation to set the pH of the supernatant solution to 5.99 and finally disperse the precipitate in ethanol, followed by centrifugation. went.
  • the ferrite nanopowder was treated in the same manner as in Example 1 to prepare a magnetic material powder.
  • the saturation magnetization of this magnetic material was 219.2 emu / g, the coercivity was 224 A / m, and there was no inflection point on the quarter major loop.
  • the saturation magnetization of the present magnetic material was higher than the mass magnetization (218 emu / g) of ⁇ -Fe.
  • the material of Example 11 was observed by an FE-SEM / EDX method suitable to know the local Co content of the magnetic material and the presence or degree of disproportionation. The observation was performed in the same manner as Example 1. As a result, it was found that the content of Co in each phase of the present magnetic material was disproportionately distributed to 3.10 atomic percent or more and 5.86 atomic percent or less. In addition, as shown in FIG.
  • Example 11 was curved at intervals of about 10 nm even in a region considered as one ⁇ - (Fe, Co) phase. An infinite number of crystal boundaries in a curved shape were observed.
  • a phase that can be distinguished by the Co content for example, a Co content with respect to the ⁇ - (Fe, Co) phase having a Co content of 3.10 atomic% the amount is 1.9 times the range of 1.1 times or more 10 5 times or less than the phase, further 5.86 atomic% in the range of 1 atomic% or more and 100 atomic percent alpha-(Fe
  • the (Co) phase is also present, that is, with respect to the ⁇ - (Fe, Co) phase, a phase corresponding to the second phase is also present in addition to the first phase.
  • the average crystal grain size of the entire magnetic material was 90 nm.
  • the crystal grain sizes of the first phase and the second phase were 100 nm and 70 nm, respectively.
  • Table 2 shows the measurement results of the phase, crystallite size and magnetic properties of the above-mentioned example.
  • Ferrite nanopowders were prepared in the same manner as in Comparative Example 1 except that the preparation Mn composition (the preparation manganese composition) and the preparation Co composition (the preparation cobalt composition) were changed as described in Table 2, and Examples It processed by the method similar to 11, and produced magnetic material powder. With respect to these Co preparation amounts, it was confirmed to be in agreement with the Co content obtained from XRF to the order of%.
  • FIG. 4 the measurement results of saturation magnetization and coercivity of Examples 1 to 17 are summarized with respect to the prepared cobalt composition.
  • ⁇ and ⁇ are values of saturation magnetization (emu / g) and coercivity (A / m) of the magnetic material of the present invention containing only Co, respectively (Examples 1 to 10), ⁇ , ⁇ These show the values of saturation magnetization (emu / g) and coercivity (A / m) of the magnetic material of the present invention containing 0.1 atomic% of Mn in addition to Co (Examples 11 to 17).
  • Examples 1 to 9 and 11 to 16 showed saturation magnetization exceeding the mass magnetization (218 emu / g) of ⁇ -Fe, which is a major feature of the magnetic material of the present invention.
  • the magnetic materials of Examples 1 to 8 and 10, and all of the magnetic materials of Examples 11 to 17 in which Mn is allowed to coexist with Co have a coercivity of 800 A / m or less. confirmed. Therefore, it was found that as one of the coexistence effects of Mn, it is possible to keep the coercivity of the magnetic material at a low value of the soft magnetic material region and stabilize it.
  • the average crystal grain size of the entire magnetic material was 80 nm.
  • the crystal grain sizes of the first phase and the second phase were 50 nm and 60 nm, respectively.
  • Example 18 A magnetic powder of the present invention was obtained in the same manner as in Example 5, except that the reduction temperature was 550 ° C.
  • the coercivity of the magnetic material of Example 18 is 1670 A / m, and it is a value of more than 800 A / m and 40 kA / m or less. Thus, it was found to be the semi-hard magnetic material of the present invention. Further, the saturation magnetization was 208.1 emu / g, which is a very high value among existing semi-hard magnetic materials, and the squareness ratio was also a good material.
  • Table 1 The measurement results of the phase, crystallite size and magnetic properties of the magnetic powder of Example 18 are shown in Table 1.
  • Example 19 In the same manner as in Comparative Example 1 was produced (Fe 0.669 Co 0.330 Mn 0.001) 3 O 4 ferrite nanopowder. To this, silica powder is mixed, and reduction reaction is carried out in the same manner as in Example 1 to obtain Fe 65.7 Co 32.3 Si 1.9 Mn 0.1 magnetic material powder with a powder particle size of 0.5 ⁇ m. I got The crystal grain size of the first phase, the second phase, and the whole was 300 nm, and the crystallite size was about 60 nm. The ccs phase volume fraction was 99% or more, and the O content with respect to the entire magnetic material was 0.8 atomic%, and the K content was 0.
  • the magnetic material powder was evaluated in the same manner as in Example 1 by the FE-SEM / EDX method suitable for determining the local Co content of the magnetic material and the presence and degree of disproportionation.
  • (Fe, Co) even in the region of the phase is the first phase alpha-(Fe, Co) phase and the phase can be distinguished by the Co content 1.1 times 10 5 times or less, 2 atomic% or more
  • ⁇ - (Fe, Co) phase of 100 atomic% or less, that is, with respect to the ⁇ - (Fe, Co) phase, a phase corresponding to a second phase other than the first phase is also present. It became clear.
  • the saturation magnetization of this magnetic material is 253.7 emu / g, and it has been found that a huge saturation magnetization exceeding the mass magnetization of bcc-Fe (218 emu / g) is realized.
  • the coercivity was 2176 A / m, and there was no inflection point on the quarter major loop.
  • the above-mentioned characteristics of this example are not shown in the table. Therefore, since the magnetic material of Example 19 had a coercivity of more than 800 A / m and not more than 40 kA / m, it was confirmed to be a semi-hard magnetic material of the present invention.
  • Example 20 The magnetic material powder of Example 19 was charged into a 15 mm ⁇ 5 mm tungsten carbide cemented carbide die, and cold compression molding was performed in the air under the conditions of room temperature and 1 GPa. Then, the temperature of the cold-pressed compact is raised at 10 ° C./min to 300 ° C. in an argon stream, held at 300 ° C. for 15 minutes, then raised at 300 ° C. to 900 ° C. at 10 ° C./min, The temperature was immediately lowered to 400 ° C. at 75 ° C./min, and it was allowed to cool from 400 ° C. to room temperature over 40 minutes.
  • a rectangular solid magnetic material of the present invention of 15 mm ⁇ 5 mm ⁇ 1 mm was obtained.
  • the density of this solid magnetic material was 5.95 g / cm 3 .
  • the saturation magnetization and coercivity obtained by the DC magnetization measuring apparatus were 1.00 T and 1119 A / m, and there was no inflection point on the 1 ⁇ 4 major loop.
  • the electrical resistivity of this solid magnetic material was 3.7 ⁇ m.
  • the solid magnetic material of the present invention has a higher electrical resistivity than the characteristic 1.5 ⁇ m, and is further compared to the existing material, for example, 0.1 ⁇ m of pure iron or 0.5 ⁇ m of electromagnetic steel sheet, It turned out that it has a high electrical resistivity about one digit.
  • the above-mentioned characteristics of this example are not shown in the table.
  • Example 21 The magnetic material powder of Example 11 was charged into a tungsten carbide carbide metal mold of 3 mm ⁇ , and in the same manner as in Example 20, a disk-shaped solid magnetic material of 3 mm ⁇ ⁇ 1 mm according to the present invention was obtained.
  • the solid magnetic material had a density of 7.31 g / cm 3 , saturation magnetization and coercivity of 2.07 T and 60.48 A / m, and no inflection point on the 1 ⁇ 4 major loop. Therefore, since the magnetic material of Example 21 had a coercive force of 800 A / m or less, it was confirmed that it was the soft magnetic material of the present invention. Moreover, the electrical resistivity of this solid magnetic material was 1.8 ⁇ m.
  • the solid magnetic material of the present invention has an electrical resistivity higher than that of 1.5 ⁇ m, which is a feature thereof, and an electric resistivity higher than that of the existing material, eg, 0.1 ⁇ m of pure iron by one digit or more. It has been found that it has an electric resistivity three to four times that of the electromagnetic steel sheet of 0.5 ⁇ m.
  • the above-mentioned characteristics of this example are not shown in the table.
  • the electric resistivity of the present magnetic material is 1.5 ⁇ m or more higher than the existing general metal-based magnetic materials. From the above, it was found that according to the present magnetic powder, it is possible to solve problems such as eddy current loss.
  • the first phase and the second phase in the present magnetic powders of the above Examples 1 to 19 from the observation results by the FE-SEM / EDX method suitable for knowing the presence and the degree of disproportionation in this example.
  • the phase is not derived respectively from the main raw material phase and the auxiliary raw material phase of the raw material ferrite powder, and the homogeneous raw material ferrite phase is a phase separation caused by the disproportionation reaction by the reduction reaction. all right.
  • the conventional magnetic material has contradictory characteristics, extremely high saturation magnetization, high electrical resistivity, and can solve the problem of eddy current loss, and further, the complicated process such as lamination process It can be used as a magnetic material having excellent electromagnetic properties that has the advantages of both a metal-based magnetic material and an oxide-based magnetic material, which is not required, and a magnetic material having stable magnetic characteristics even in air.
  • the present invention further includes various actuators such as transformers, heads, inductors, reactors, cores (magnetic cores), yokes, magnet switches, choke coils, noise filters, ballasts, etc. mainly used for power equipment, transformers, and information communication related equipment.
  • actuators such as transformers, heads, inductors, reactors, cores (magnetic cores), yokes, magnet switches, choke coils, noise filters, ballasts, etc. mainly used for power equipment, transformers, and information communication related equipment.
  • It can be used as a soft magnetic material used for a rotor, a stator, etc., such as a motor for home electric appliances such as a motor, an air conditioner, a refrigerator, and a vacuum cleaner.
  • it can be used as a soft magnetic material used for sensors via magnetic fields such as an antenna, a microwave element, a magnetostrictive element, a magnetoacoustic element, a Hall element, a magnetic sensor, a current sensor, a rotation sensor, and an electronic compass.
  • magnetic fields such as an antenna, a microwave element, a magnetostrictive element, a magnetoacoustic element, a Hall element, a magnetic sensor, a current sensor, a rotation sensor, and an electronic compass.
  • relays such as monostable and bistable electromagnetic relays, torque limiters, relay switches, switches such as solenoid valves, rotating machines such as hysteresis motors, stabilization couplings with functions such as brakes, magnetic fields and rotational speeds etc. It can be used as a semi-hard magnetic material used for magnetic recording media such as sensors, magnetic tags, biases such as spin valve elements, tape recorders, VTRs, hard disks, etc.
  • high-frequency transformers and reactors as well as electromagnetic noise absorbing materials, magnetic materials that suppress obstacles due to unnecessary electromagnetic interference such as electromagnetic wave absorbing materials and magnetic shielding materials, materials for inductor elements such as inductors for noise removal, RFID (Radio Frequency Identification) It can be used as a soft magnetic or semi-hard magnetic material for high frequency such as a tag material or a noise filter material.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Power Engineering (AREA)
  • Dispersion Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Soft Magnetic Materials (AREA)
  • Powder Metallurgy (AREA)

Abstract

フェライト系磁性材料よりも高い飽和磁化を有し、既存の金属系磁性材料よりも電気抵抗率が高いために渦電流損失などの問題点を解決する、磁気安定性の高い、特に飽和磁化が極めて高い、新しい磁性材料とその製造方法を提供する。 湿式合成で得たCo-フェライトナノ粒子を水素中で還元して、粒成長させると同時に、不均化反応による相分離現象を利用してbcc又はfcc-(Fe,Co)相とCo富化相をナノ分散させた磁性材料粉体とする。さらに、この粉体を焼結して固形磁性材料とする。

Description

磁性材料とその製造法
 本発明は、軟磁性又は半硬磁性を示す磁性材料、特に軟磁性を示す磁性材料とその製造方法に関する。
 地球温暖化や資源枯渇など地球環境問題が深刻化し、各種電子や電気機器の省エネルギー、省資源に対する社会的要請が日増しに高まっている。中でも、モータを初めとする駆動部や変圧器のトランスなどで使用される軟磁性材料のさらなる高性能化が求められている。また、各種情報通信機器の小型多機能化、演算処理速度の高速化、記録容量の高密度化、さらにインフラなどの環境衛生保全や複雑化の一途をたどる物流システムや多様化するセキュリティ強化に関する諸問題を解決するため、各種素子やセンサーやシステムに利用される各種軟磁性材料や半硬磁性材料の電磁気特性、信頼性、そして感度向上が求められている。
 電気自動車、燃料電池自動車、ハイブリット自動車などの高回転(以下、400rpmを超える回転数を言う)で駆動する大型モータを搭載した次世代自動車の需要は、これら環境やエネルギー問題に対する時代の要請に答えていくために、今後もさらに期待される。中でも、モータに使用されるステータ向けの軟磁性材料の高性能化、低コスト化は大きな重要課題の一つである。
 これらの用途に用いられる既存の軟磁性材料は、金属系磁性材料と酸化物系磁性材料の2種類に大別される。
 前者の金属系磁性材料には、電磁鋼の代表格であるSi含有の結晶性材料である珪素鋼(Fe-Si)、さらにAlを含有させた金属間化合物であるセンダスト(Fe-Al-Si)、C含有量0.3質量%以下の低炭素量で低不純物量の純鉄である電磁軟鉄(Fe)、Fe-Coを主成分とするパーマロイ、メトグラス(Fe-Si-B)を初めとするアモルファス合金、さらにそのアモルファス合金に適切な熱処理を加えて微結晶を析出させたナノ結晶-アモルファスの相分離型であるファインメットなどのナノ結晶軟磁性材料群(その代表的組成としてはFe-Cu-Nb-Si-B、Fe-Si-B-P-Cuなど)がある。ここで言う「ナノ」とは、1nm以上1μm未満の大きさのことである。ナノ結晶軟磁性材料以外の磁性材料では、できるだけ均一な組成として磁壁の移動を容易にすることが、保磁力の低減及び鉄損の低下には重要になる。なお、ナノ結晶軟磁性材料は、結晶相と非結晶相、Cu富化相などを含む不均一な系となっており、磁化反転は主に磁化回転によるものと考えられる。
 後者の酸化物系磁性材料の例としては、Mn-ZnフェライトやNi-Znフェライトなどのフェライト系磁性材料が挙げられる。
 珪素鋼は、高性能軟磁性材料用途において、現在までに最も普及している軟磁性材料であり、飽和磁化は1.6~2.0T、保磁力は3~130A/mの高磁化低保磁力の磁性材料である。この材料は、FeにSiを4質量%程度まで添加したもので、Feに備わる大きな磁化をあまり損なわないで、結晶磁気異方性と飽和磁歪定数を低下させ、保磁力を低減させたものである。この材料を高性能化するためには、適切に組成管理された材料を熱間や冷間の圧延と焼鈍を適宜組み合わせることにより、結晶粒径を大きくしながら、磁壁の移動を妨げる異物を除去することが必要である。結晶粒の配向方向がランダムである無配向性鋼板のほか、保磁力をさらに低下させる材料として、容易磁化方向であるFe-Siの(100)方向が圧延方向に高度に配向した方向性鋼板も広く使用されている。
 この材料は、圧延材であるため概ね0.5mm未満の厚みであり、また均質な金属材料であるため概ね0.5μΩmと電気抵抗率が低く、通常、それぞれの珪素鋼板表面を絶縁膜で覆い、型で打ち抜いて、積層や溶接により、次世代自動車向けなどの高回転用途で生じる渦電流損失を抑えながら、厚みを持たせて大型機器に応用されている。従って、打ち抜きや積層にかかる工程費や磁気特性劣化が大きな問題点となっている。
 センダストは、Fe85Al5.5Si9.5付近の組成、或いはこれにNiを加えた組成を有する金属間化合物で、この組成付近で、結晶磁気異方性定数、飽和磁歪定数がともに0になる。そのため、保磁力が1.6~4A/mと小さく、鉄損の小さな磁性材料となる。しかし、飽和磁化はほぼ1T程であり、次世代自動車向けには十分な大きさではない。硬く脆いため加工性に乏しい性質を有するが、耐摩耗性に優れているので、その性質を利用した磁気ヘッドなどの用途に展開されてきた。電気抵抗率は、0.8μΩmと他の金属圧延材に比べ高いが、次世代自動車向けとしては、まだ十分な大きさと言えない。
 電磁軟鉄は、珪素鋼と同様な圧延材であるが、5mm程度と珪素鋼板より厚みのある製品形態が可能である。しかし、材料自体はほぼ純鉄なので、飽和磁化は鉄に近い値を有するが、電気抵抗率が0.1~0.2μΩmと低く、高回転の用途では渦電流損失が大きくなる。また、保磁力も12~240A/mと比較的高く、特に低回転時のモータにおいては、渦電流損失のみでなくヒステリシス損失による鉄損も無視できなくなる。さらに軟らかい錆びやすい鋼質であるため、切削加工性や耐酸化性に劣り、磁気特性が経時変化しやすい問題点もある。
 パーマロイは、FeにNiを合金化することにより、結晶磁気異方性定数と飽和磁歪定数を低減することができ、特にNiが78質量%付近で両者ともほぼ0とすることができるため、保磁力が0.16~24A/mと低い磁性材料が製造できる。しかし、この材料は飽和磁化が0.55~1.55Tと比較的低く、磁化と保磁力がトレードオフになるので、高磁化低保磁力が同時に実現できる材料となりにくく、高性能モータには使用できない問題点がある。さらに、電気抵抗率も0.45~0.75μΩmと小さく、高回転用途では渦電流損失が大きくなる問題点もある。
 メトグラスなどのアモルファス材料は、完全に等方性の材料であって、結晶磁気異方性定数が原理的に0である。従って、この材料も5A/m以下と保磁力が低く、飽和磁歪定数がほぼ0となる組成では0.4A/mと極めて低い材料になる。しかし、飽和磁化は0.5~1.6Tで、特に保磁力が1A/m以下となる組成の材料では0.6~0.8Tと、高性能モータで使用するには不十分であり、しかも、電気抵抗率は1.2~1.4μΩmと珪素鋼板やパーマロイなどの結晶性の軟磁性材料よりは幾分高いとは言え渦電流損失が大きくなる問題点がある。また、非平衡状態にあるアモルファス合金は熱履歴や機械歪で磁気特性が変化しやすく、製品の厚みも0.01~0.025mm程度で、絶縁や、切断や、整列や、積層や、溶接や、焼鈍の工程が珪素鋼よりも煩雑な上、熱やストレスで脆くなりやすく、加工性も悪いので、高回転モータなどに適応する場合、磁気特性の劣化やコスト高となる問題点もある。
 Fe-Cu-Nb-Si-Bを初めとするナノ結晶軟磁性体は、一旦急冷することでアモルファスとなった合金を結晶化温度よりも高温で熱処理をすることにより、10nm程度の結晶粒をアモルファス中に析出させて、アモルファスの粒界相を有したランダムな配向をしたナノ結晶型の組織を持つ軟磁性材料である。この材料の保磁力は、0.6~6A/mと極めて低く、飽和磁化が1.2~1.7Tとアモルファス材料より高いため、現在市場が広がっている。この材料は1988年に開発された比較的新しい材料であり、その磁気特性発現の原理は、結晶粒径を強磁性交換長(交換結合長ともいい、Lとも表記されることがある。)より小さくすることと、ランダム配向した主相の強磁性相がアモルファス界面相を通じて強磁性結合をすることにより、結晶磁気異方性の平均化がなされて低保磁力となるものである。この機構をランダム磁気異方性モデル、或いはランダム異方性モデルという(例えば、非特許文献1を参照)。
 しかしこの材料もアモルファス同様、液体超急冷法により製造されるので、薄帯として製造され、その製品厚みは、0.02~0.025mm程度であって、アモルファス材料同様な、工程、加工性、渦電流損失、コスト上の問題を抱えている。更に、電気抵抗率も1.2μΩmと小さく、他の圧延材や薄帯同様の渦電流損失の問題点が指摘されている。
 これを打破するために、SPS(放電プラズマ焼結)法を用いて、上記薄帯状のナノ結晶軟磁性材料を粉砕し、バルク成形材料を作製した試みが成されているが(例えば、非特許文献2を参照)、保磁力が300A/m、飽和磁化が1Tと0.02mm薄帯に比べて磁気特性が大きく劣化している。現在のところ、0.5mmより厚い製品の作製には、積層する方法以外に良い方法がない。
 既存の軟磁性材料において、高回転用途で、最も渦電流損の問題がないのがフェライト系酸化物材料である。この材料の電気抵抗率は、10~1012μΩmであり、また、焼結により容易に0.5mm以上にバルク化でき、渦電流損のない成形体にできるので、高回転や高周波用途にふさわしい材料である。また、酸化物なので錆びることもなく、磁気特性の安定性にも優れる。但し、この材料の保磁力は2~160A/mと比較的高く、特に飽和磁化が0.3~0.5Tと小さいために、例えば次世代自動車用高性能高回転モータ向けには適さない。
 総じて、珪素鋼などの金属系の軟磁性材料は、電気抵抗が低く、高回転の高性能モータ向けには渦電流損が生じる問題があり、それを解決するため積層を行う必要がある。そのため、工程は煩雑になり、積層前の絶縁処理や打ち抜きによる磁気特性劣化や、工程費にかかるコスト高が大きな問題になっている。一方、フェライトなどの酸化物系の軟磁性材料は、電気抵抗が大きく渦電流損失の問題はないが、飽和磁化が0.5T以下と小さいために、次世代自動車用高性能モータ向けには適さない。また、耐酸化性の観点からいえば、金属系の軟磁性材料よりも酸化物系の軟磁性材料の方が、安定性が高く優位性がある。
 永久磁石を利用した次世代自動車用高性能モータ向けに多く生産されている珪素鋼の無配向電磁鋼板について、そのモータに使用しうる厚みの上限は、特許文献1及び2に示されているように、板厚で約0.3mmとなるが、次世代自動車用モータの厚みは例えば9cmに及ぶため、0.3mm厚のような薄い珪素鋼板を使用する場合、約300枚をそれぞれ絶縁して積層しなければならないことになる。このような薄板を絶縁や、打抜や、整列や、溶接や、焼鈍する工程は煩雑でコスト高である。この積層する板厚をなるべく厚くするためには、材料の電気抵抗率を大きくすることがより望ましい。
 以上のように、従来の酸化物系磁性材料(特に、フェライト系磁性材料)よりも、高い飽和磁化と低い保磁力を併せ持つ磁気安定性に優れ、また高耐酸化性を有する磁性材料(特に、軟磁性材料)の出現が望まれていた。更には、酸化物系磁性材料と金属系磁性材料の双方の利点を発揮することが可能な軟磁性材料、具体的には、金属系の珪素鋼板などよりも高い電気抵抗を示し、また、金属系磁性材料の高い飽和磁化と、酸化物系磁性材料のように渦電流損失が小さく、積層やそれに関わる煩雑な工程を必要としないという利点を発揮することが可能な軟磁性材料の出現が望まれていた。
国際公開第2017/164375号 国際公開第2017/164376号
G.Herzer, IEEE Transactions on Magnetics, vol.26,No.5(1990)pp.1397-1402 Y.Zhang, P.Sharma and A. Makino, AIP Advances,vol.3, No.6 (2013) 062118
 本発明は、bcc又はfcc-(Fe,Co)相とCo富化相をナノ分散した磁性材料を用いることで、従来のフェライト系磁性材料よりも格段に大きな飽和磁化と低い保磁力の双方を実現することができる磁気安定性の高い、そして耐酸化性に優れた新しい磁性材料とその製造方法を提供することを目的とする。また、既存の金属系磁性材料よりも電気抵抗率が高く、そのため、前述の渦電流損失などの問題点を解決することが可能な、磁気安定性の高い新しい磁性材料とその製造方法を提供することを目的とする。
 また、本発明は、bcc-(Fe,Co)相のα-(Fe,Co)相とCo富化相をナノ分散した磁性材料を用いることで、広いCo含有量域においてα-Feの質量磁化(218emu/g)を単に上回るだけでなく、最大で約10%程度もα-Feの質量磁化を上回る極めて巨大な飽和磁化(約240emu/g)を実現することも可能で、その巨大な飽和磁化を利用して従来よりも遙かに小型で高性能な軟磁性部材の作製に使用可能な新しい磁性材料とその製造方法を提供することを目的とする。
 また、本発明では、積層などの煩雑な工程を経ずとも、簡便な工程で厚みが0.5mm以上、さらに1mm以上、そして5mm以上の成形体を製造することが可能で、同時に渦電流を低減させ得る粉体焼結磁性材料を提供することを目的とする。
 本発明者らは、従来の酸化物系磁性材料(特に、フェライト系磁性材料)よりも優れた電磁気特性を有する磁性材料、金属系磁性材料と酸化物系磁性材料の双方の利点を併せ持った電磁気特性の優れた磁性材料、加えて空気中でも磁気特性が安定した磁性材料を鋭意検討した。その結果、従来から使用されている均質な結晶性、非晶性材料、或いは非晶質の中に均質なナノ結晶が析出するナノ結晶軟磁性材料と全く異なる、コバルトフェライト(本発明では、「Co-フェライト」とも記載する)の還元反応中の不均化により、2種以上の結晶相、或いは1種の結晶相及びアモルファス相を含む磁性材料を見出し、その組成及び結晶構造、結晶粒径並びに粉体粒径を制御すること、及びその磁性材料の製造法を確立すること、さらにその磁性材料を積層せず固化する方法を確立することにより、本発明を成すに至った。
 上記の課題の解決のために、飽和磁化が0.3T、本発明の磁性材料の密度は金属系に近い密度なので、Feの密度で計算すると、30emu/gと同程度かそれより高い磁性材料が求められる。特に軟磁性材料に限ると、その飽和磁化は、好ましくは100emu/g以上、さらに好ましくは150emu/g以上が求められる。同時に、軟磁性領域又は半硬磁性領域の保磁力を発現できることも求められる。更に、耐酸化性にも優れることが求められる。
 即ち、本発明は、以下の通りである。
(1) FeとCoを含むbcc又はfcc構造の結晶を有する第1相と、Coを含む第2相と、を有する軟磁性又は半硬磁性の磁性材料であって、前記第2相に含まれるFeとCoの総和を100原子%とした場合のCoの含有量が、前記第1相に含まれるFeとCoの総和を100原子%にした場合のCoの含有量よりも多い、前記磁性材料。
(2) 軟磁性である、(1)に記載の磁性材料。
(3) 第1相がFe100-xCo(xは原子百分率で0.001≦x≦90)の組成式で表される組成を有する、(1)又は(2)に記載の磁性材料。
(4) 第1相がFe100-x(Co100-yx/100(x、yは原子百分率で0.001≦x≦90、0.001≦y<50、MはZr、Hf、Ti、V、Nb、Ta、Cr、Mo、W、Mn、Cu、Zn、Si、Niのいずれか1種以上)の組成式で表される組成を有する、(1)~(3)のいずれかに記載の磁性材料。
(5) FeとCoを含むbcc又はfcc構造の結晶を有する相を第2相として含み、その相に含まれるFeとCoの総和を100原子%とした場合のCoの含有量が、第1相に含まれるFeとCoの総和を100原子%とした場合のCoの含有量に対して1.1倍以上10倍以下の量、及び/又は1原子%以上100原子%以下の量である、(1)~(4)のいずれかに記載の磁性材料。
(6) 第2相がCo-フェライト相を含む、(1)~(5)のいずれかに記載の磁性材料。
(7) 第2相がウスタイト相を含む、(1)~(6)のいずれかに記載の磁性材料。
(8) FeとCoを含むbcc又はfcc構造の結晶を有する相の体積分率が磁性材料全体の5体積%以上である、(1)~(7)のいずれかに記載の磁性材料。
(9) 磁性材料全体の組成に対して、Feが20原子%以上99.998原子%以下、Coが0.001原子%以上50原子%以下、Oが0.001原子%以上55原子%以下の範囲の組成を有する、(6)又は(7)に記載の磁性材料。
(10) 第1相若しくは第2相、或いは磁性材料全体の平均結晶粒径が1nm以上10μm未満である、(1)~(9)のいずれかに記載の磁性材料。
(11) 少なくとも第1相がFe100-xCo(xは原子百分率で0.001≦x≦90)の組成式で表されるbcc又はfcc相を有し、そのbcc又はfcc相の結晶子サイズが1nm以上300nm未満である、(1)~(10)のいずれかに記載の磁性材料。
(12) 粉体の形態であって、軟磁性の磁性材料の場合には10nm以上5mm以下の平均粉体粒径を有し、半硬磁性の磁性材料の場合には10nm以上10μm以下の平均粉体粒径を有する、(1)~(11)のいずれかに記載の磁性材料。
(13) 第1相又は第2相の少なくとも1相が隣り合う相と強磁性結合している、(1)~(12)のいずれかに記載の磁性材料。
(14) 第1相と第2相が、直接、或いは金属相若しくは無機物相を介して連続的に結合し、磁性材料全体として塊状を成している状態である、(1)~(13)のいずれかに記載の磁性材料。
(15) 平均粉体粒径が1nm以上1μm未満のコバルトフェライト粉体を、水素ガスを含む還元性ガス中で、還元温度400℃以上1480℃以下にて還元することによって(12)に記載の磁性材料を製造する方法。
(16) 平均粉体粒径が1nm以上1μm未満のコバルトフェライト粉体を、水素ガスを含む還元性ガス中で還元し、不均化反応により第1相と第2相を生成させることによって、(1)~(13)のいずれかに記載の磁性材料を製造する方法。
(17) (15)又は(16)に記載の製造方法によって製造される磁性材料を焼結することによって、(14)に記載の磁性材料を製造する方法。
(18) (15)に記載の製造方法における還元工程後に、或いは(16)に記載の製造方法における還元工程後若しくは生成工程後に、或いは(17)に記載の製造方法における焼結工程後に、最低1回の焼鈍を行う、軟磁性又は半硬磁性の磁性材料の製造方法。
 本発明によれば、飽和磁化が高く、渦電流損失の小さな磁性材料、特に高回転モータなどにも好適に利用される軟磁性材料、さらに耐酸化性の高い各種軟磁性材料及び半硬磁性材料を提供することが可能である。
 本発明によれば、フェライトのように粉体材料の形態で使用できるので、焼結などにより容易にバルク化でき、そのため、既存の薄板である金属系軟磁性材料を使用することによる積層などの煩雑な工程やそれによるコスト高などの問題も解決することが可能である。
図1(A)は、(Fe0.959Co0.04Mn0.001フェライトナノ粉体を1100℃で1時間、水素ガス中で還元した粉体(実施例11)のSEM像。図1(B)は、図1(A)の一部を高倍率で撮影したSEM像。 (Fe0.96Co0.04フェライトナノ粉体(比較例1)のSEM像。 (Fe0.96Co0.04フェライトナノ粉体を1100℃で1時間、水素ガス中で還元した粉体(実施例1)のSEM像(図中数値は、+位置でのCo含有量である。)。 Fe-Co磁性材料粉体(実施例1~17)における、飽和磁化(emu/g)と保磁力(A/m)のコバルト仕込み組成依存性を示す図(図中●と■は、それぞれ実施例1~10の磁性粉体の飽和磁化(emu/g)と保磁力(A/m)の値を示し、〇と□は、それぞれ実施例11~17の磁性材料の飽和磁化(emu/g)と保磁力(A/m)の値を示す。)。
 以下、本発明について詳細に説明する。
 本発明で言う「磁性材料」とは、「軟磁性」と称される磁性材料(即ち、「軟磁性材料」)と「半硬磁性」と称される磁性材料(即ち、「半硬磁性材料」)のことであり、特に「軟磁性」材料のことである。ここで、本発明で言う「軟磁性材料」とは、保磁力が800A/m(≒10Oe)以下の磁性材料のことである。優れた軟磁性材料とするには、低い保磁力と高い飽和磁化或いは透磁率を有し、低鉄損であることが重要である。鉄損の原因には、主にヒステリシス損失と渦電流損失があるが、前者の低減には保磁力をより小さくすることが必要で、後者の低減には材料そのものの電気抵抗率が高いことや実用に供する成形体全体の電気抵抗を高くすることが重要になる。半硬磁性材料(本発明では、保磁力が800A/mを超え、40kA/m≒500Oeまでの磁性材料を言う)では、用途に応じた適切な保磁力を有し、飽和磁化や残留磁束密度が高いことが要求される。中でも高周波用の軟磁性或いは半硬磁性材料では、大きな渦電流が生じるため、材料が高い電気抵抗率を有すること、また粉体粒子径を小さくすること、或いは板厚を薄板或いは薄帯の厚みとすることが重要になる。
 本発明で言う「強磁性結合」とは、磁性体中の隣り合うスピンが、交換相互作用により強く結びついている状態を言い、特に本発明では隣り合う2つの結晶粒(及び/又は非晶質粒)中のスピンが結晶境界を挟んで、交換相互作用により強く結びついている状態を言う。ここで言う結晶粒などの「粒」とは、一つ又は二つ以上の「相」により構成され、三次元の空間から境界を持って隔てられていることを認識できる塊のことである。交換相互作用は材料の短距離秩序に基づく距離にしか及ばない相互作用なので、結晶境界に非磁性の相が存在すると、その両側の領域にあるスピンに交換相互作用が働かず、両側の結晶粒(及び/又は非晶質粒)間に強磁性結合が生じない。本願で「結晶粒」と言うときは、場合によっては非晶質粒も含む。また、磁気特性が異なった異種の隣り合う結晶粒の間で強磁性結合がなされた材料の磁気曲線の特徴については、後述する(段落0071参照)。
 本発明で言う「不均化」とは、均質組成にある相から、化学的な反応により、2種以上の、組成又は結晶構造が異なる相を生じることであり、本発明においては、該均質組成の相に水素などの還元性物質が関与し還元反応が生じた結果もたらされる。この「不均化」をもたらす化学的な反応を、本願では「不均化反応」と称するが、この不均化反応の際には、水が副生することが多い。
 本発明において、「Fe成分とCo成分を含む」という意味は、本発明の磁性材料には、その成分として必ずFeとCoを含有していることを意味し、そのCoが任意に他の原子(具体的には、Zr、Hf、Ti、V、Nb、Ta、Cr、Mo、W、Mn、Cu、Zn、Si、Niのいずれか1種以上)で一定量置き換えられていてもよく、また酸素(O成分)が含有されていてもよく、さらにO成分やオキシ水酸化鉄などが副相として存在する場合は、O成分がH成分と結合したOH基(主に磁性粉体表面に存在するOH基)として含まれていてもよく、その他不可避の不純物、原料由来のKなどのアルカリ金属やClなどが含まれていてもよい。Kなどのアルカリ金属は、還元反応の促進作用を及ぼす場合があるという点で好適な成分である。
 「磁性粉体」は、一般に磁性を有する粉体を言うが、本願では、本発明の磁性材料の粉体を「磁性材料粉体」と言う。よって、「磁性材料粉体」は「磁性粉体」に含まれる。
 また、本願において、組成、大きさ、温度、圧力等の数値範囲は、特に定めが無い限り、両端の数値を含むものとする。
 本発明は、FeとCoを含むbcc又はfcc構造の結晶(第1相)と、その相よりもCoの含有量が多いCo富化相(第2相)を含む磁性材料に関するもので、その最良な形態は、両者の相がナノレベルで混合して結合した「粉体」である。これらの磁性材料粉体をそのまま圧粉したり、焼結したりして各種機器に用いられる。また、用途によっては、樹脂などの有機化合物、ガラスやセラミックなどの無機化合物、またそれらの複合材料などを配合して成形することもできる。
 以下、Fe及びCoを含む第1相、及びCoが富化された第2相の組成、結晶構造や形態、結晶粒径と粉体粒径、又それらの製造方法、その中で特に、本発明の磁性材料の前駆体となるナノ複合酸化物粉体を製造する方法、その粉体を還元する方法、還元した粉体を固化する方法、さらにこれら製造方法の各工程で焼鈍する方法について説明する。
<第1相>
 本発明において、第1相は、FeとCoを含むbcc構造の立方晶(空間群Im3m)あるいはfcc構造の立方晶(空間群Fm3m)を結晶構造とする結晶である。この相のCo含有量は、その相中に含まれるFeとCoの総和(総含有量)を100原子%とすると0.001原子%以上90原子%以下である。即ち、第1相の好ましい組成は、組成式を用いると、Fe100-xCo(xは原子百分率で0.001≦x≦90)と表される。
 ここでCo含有量又はFe含有量とは、特に断わらない限り、それぞれ、その相(第1相)に含まれるFeとCoの総和(本願では、総量と称することもある。)に対するCo又はFeの原子比の値をいう。本発明では、これを原子百分率で表す場合もある。
 Co含有量が75原子%以下にすることが、磁化の低下を抑制するうえで好ましい。また、Co含有量が60原子%以下であると、製造方法や条件によっては、2.3Tを超える巨大な磁化が実現できるのでより好ましい。さらにCo含有量が50原子%以下であると、2.4Tを超える巨大飽和磁化を有する磁性材料を製造できる。このように、純鉄よりも10%程度も大きな巨大な飽和磁化が得られることは本発明の磁性材料の大きな特徴である。さらに、製造方法や条件によっては、Co含有量が1原子%以上70原子%以下の幅広い範囲で純鉄の磁化(2.2T)を超える磁性材料が製造できる。このように幅広いCo含有量域において、純鉄を凌ぐ大きな飽和磁化を示す磁性材料が得られるのも、これまでの材料には無い、本材料に固有の特徴である。また、0.001原子%以上にすることが、Fe単独の場合と異なり、Co添加の効果による軟磁性領域での磁気特性の調整を可能にさせる点で好ましい。特に好ましいCoの含有量の範囲は、0.01原子%以上60原子%以下であり、この領域では、製造条件により、様々な保磁力の軟磁性材料を調製することができ、より好ましい電磁気特性を有した磁性材料となる。
 このFe-Co組成の第1相は、bcc又はfcc構造をとる。本願ではこれらの相をbcc-(Fe,Co)又はfcc-(Fe,Co)とも称する。また、これらの構造(bcc及びfcc構造)はいずれも立方晶系(Cubic Crystal System)に属する構造であるため、本願ではこれら2相をまとめてccs-(Fe,Co)相と称することもある。なお、本願において(Fe,Co)相と表記するときは、組成にFe及びCoが含まれている相を表し、以下に示すM成分でCoが置換されている場合も含まれる。高飽和磁化、低保磁力、原料供給の安定性を兼ね備えた磁性材料とする場合は、bcc構造を主体とする本発明の磁性材料が好ましいが、磁気飽和が抑制された優れた高周波用磁性材料とするなどの目的に応じ、fcc構造を有する本発明の磁性材料が選択される場合がある。
 本発明の第1相のCo含有量を100原子%とした時、そのCoの0.001原子%以上50原子%未満は、Zr、Hf、Ti、V、Nb、Ta、Cr、Mo、W、Mn、Cu、Zn、Si、Niのいずれか1種以上で置換することができる(本願では、これらの置換元素を「M成分」とも称する。)。これらのM成分の中で、数多くの元素種を本発明の軟磁性材料に共添加すると保磁力が低減される効果がある。特にTi、V、Cr、Moのいずれか1種以上を、第1相のCo含有量を100原子%とした時の原子百分率で、1原子%以上含むと、還元処理や焼鈍処理における降温速度に大きく依存せず、本発明のナノ微結晶を容易に製造できる点で有効である。さらに、Zr、Hf、Ti、Cr、V、Mn、Zn、Ta、Cu、Si、Niは異方性磁場を低減させるので本発明の軟磁性材料に共存する成分として好ましい。Zr、Hf、Ti、V、Nb、Ta、Cr、Mo、Wのいずれか1種以上は、第1相のCo含有量を100原子%とした時の原子百分率で、1原子%以下の添加でも還元工程での不適切な粒成長を抑え、Ti、Cu、Zn、Mn、Siは耐酸化性や成形性を向上させるために好ましい。
 さらに好ましいM成分含有量は元素種に寄らず、Coに対する置換量で0.1原子%以上30原子%以下である。
 なお、本願において、「不適切な粒成長」とは、本発明の磁性材料のナノ微細組織が崩れ、均質な結晶組織を伴いながら結晶が粒成長することである。一方、本発明で「適切な粒成長」は、本発明の特徴であるナノ微細構造を維持しながら粉体粒径が大きく成長するか、粉体粒径が大きく成長した後に不均化反応、相分離などにより結晶内にナノ微細構造が現れるか、或いはその両方である場合のいずれかである。特に断らない限り、本発明で単に「粒成長」という場合は、上記「不適切な粒成長」のことを言い、概ね適切と言える粒成長を指すものとする。なお、適切な粒成長と不適切な粒成長のいずれの粒成長が起こった場合でも、単位質量当たり、或いは単位体積当たりの磁性材料の表面積が小さくなることから、一般に耐酸化性が向上する傾向にある。
 いずれのM成分においても第1相の全Co含有量を100原子%としたときの原子百分率で、0.001原子%以上の添加が上記の添加効果の観点から好ましく、50原子%未満の添加が、本発明の磁性材料におけるCo成分の諸効果の阻害防止という観点から好ましい。本発明においては、「Co成分」と表記した場合、又は「ccs-(Fe,Co)」相などの式中や磁性材料組成を論ずる文脈の中で、「Co」或いは「コバルト」と表記した場合、Co単独の場合だけでなく、Co含有量の0.001以上50原子%未満をM成分で置き換えた組成も含む。よって、本願において「FeとCoの総和」と表記した場合は、Fe以外の成分がCo単独である場合には、FeとCoの含有量の総和を意味し、Co含有量の0.001以上50原子%未満をM成分で置き換えた組成では、FeとCoとM成分の含有量の総和を意味することになる。また、工程中混入する不純物はできるだけ取り除く必要があるが、H、C、Al、S、Nの元素、Li、K、Naなどのアルカリ金属、Mg、Ca、Srなどのアルカリ土類金属、希土類、或いは、Cl、F、Br、Iなどのハロゲンなどの不可避の不純物を含んでもよい。しかし、その含有量は、全体(即ち、第1相に含まれるFeとCoの総和)の5原子%以下とするのが好ましく、より好ましくは2原子%以下、さらに好ましくは0.1原子%以下、特に好ましくは0.001原子%以下とする。これらの不純物が多く含有されると磁化がその不純物量が増加するに伴って低下し、場合によっては保磁力にも悪影響を与え、用途によっては目標とする範囲を逸脱してしまうこともあるからである。一方で、Kのようなアルカリ金属のように、ある程度含有すると還元助剤の働きをする成分もあり、全体(即ち、第1相に含まれるFeとCoの総和)の0.001原子%以上5原子%以下の範囲で含む方が、飽和磁化の高い磁性材料が得られる場合もある。従って、上記不純物は、本発明の目的を阻害する場合には、含まれないのが特に望ましい。
 第1相や第2相は、Coを含まないα-Fe相を含まない。Coを含まないα-Fe相は、Co以外の元素の含有量も極めて小さい場合、電磁軟鉄並みの飽和磁化が期待されるが、該α-Fe相がナノ領域の粉体であっても、電気抵抗率に与える影響が芳しくなく、耐酸化性に乏しく、しかも切削加工性に劣る材質となるからである。但し、このCoを含まない該α-Fe相は、本発明の目的を阻害しない限り、別相として存在してもよい。α-Fe相の体積分率は、本発明の磁性材料全体に対して50体積%未満が好ましい。
 ここでいう体積分率とは、磁性材料全体の体積に対して、対象成分が占有する体積の割合を意味する。
<第2相>
 本発明において、第2相は、該相に含まれるFeとCoの総和に対するCoの含有量が、第1相に含まれるFeとCoの総和に対するCoの含有量よりも多い相である。第2相としては、立方晶である、bcc-(Fe1-yCo)相(空間群Im3m、第1相と同じ結晶相であるが、第1相よりもCo含有量が多い相)、fcc-(Fe,Co)相(空間群Fm3m)、FeCo相、ウスタイト相(代表的組成は(Fe1-zCoO相、aは通常0.83以上1以下、FeOとCoOの固溶体である。本明細書では単に(Fe,Co)O相又は(Co、Fe)O相と標記する場合もある。本願発明では特に断らないかぎり、単にウスタイトと言えば、CoOを含んで0<z≦1の組成のものを言う。)、CoO相、Co-フェライト相(代表的組成は(Fe1-wCo相で、0<w<1/3)など、正方晶系のFeCo相など、菱面体晶であるα-(Fe、Co)相(Co-ヘマタイト相)など、さらにCo-Feアモルファス相など、又はそれらの混合物が挙げられる。Co-Feアモルファス相の含有量は0.001体積%以上10体積%以下の間にあって、これよりも多くしないのが、磁化の低下抑制の観点から好ましく、さらに高磁化の磁性材料とするためには、好ましくは5体積%以下とする。アモルファス相などは、不均化反応自体を制御するために、敢えて含有させることもあるが、この場合、0.001体積%超とするのが、この反応制御効果の発揮という観点から好ましい。
 ここでいう体積分率とは、磁性材料全体の体積に対して、対象成分が占有する体積の割合のことである。
 以上の第2相は第1相より飽和磁化が劣る場合が殆どであるが、これらの相が併存することにより、電気抵抗率が大きく上昇することもある。また、本発明において、軟磁性材料を構成するときには、相の結晶構造、組成、微細構造、界面構造などによっては、それらと強磁性結合することにより、小さな保磁力を実現することができる。さらに第2相においても、第1相同様、Co含有量の50原子%未満(但し、第2相の全Co含有量を100原子%とする)をM成分に置換することができる。
<副相、その他の相>
 FeもCoも含まず、M成分の化合物だけで混在する相は、第1相や第2相に含まれない。しかし、電気抵抗率、耐酸化性、及び焼結性の特性改善に寄与する場合がある。上記のM成分の化合物相やFe化合物相などCo成分を含まない相、及び、M成分の含有量がCo元素の含有量以上である相を本願では「副相」という。
 第1相や第2相以外の相である、Coを含まないウスタイト相、マグネタイト相(Fe)、マグヘマイト相(γ-Fe)、ヘマタイト相(α-Fe)、α-Fe相、γ-Fe相などの副相や、Co含有の有無を問わずゲーサイト、アカゲナイト、レピドクロサイト、フェロオキシハイト、フェリヒドライト、グリーンラストなどのオキシ水酸化鉄相、水酸化カリウム、水酸化ナトリウムなどの水酸化物、塩化カリウム、塩化ナトリウムなどの塩化物、フッ化物、炭化物、窒化物、水素化物、硫化物、硝酸塩、炭酸塩、硫酸塩、ケイ酸塩、リン酸塩なども含まれていてよいが、これらの体積は、本発明の磁性材料が高い飽和磁化を有するために、また継時的に安定した磁気特性や高い磁化を発揮するために、第1相、又は第1相及び第2相中のccs-(Fe,Co)相の体積の総和よりも少ないことが求められる。飽和磁化の低下を抑制する観点から、これらの相の含有量の好ましい範囲は、磁性材料全体の体積に対して50体積%以下である。
 第1相、第2相及び副相を含めた全相のM成分の含有量は、第1相及び第2相に含まれるCoの上記全相に対する含有量を超えてはならない。M成分がCo含有量を超えて含まれると、Co特有の電磁気特性への効果、例えば、少量添加における磁化の向上やそれより多く添加した場合においても磁化低下が抑制される効果、電気抵抗率向上、さらに耐酸化性に対する顕著な効果など、その特異な特徴が失われてしまうからである。本願では、第1相及び/又は第2相のCo含有量と言えば、このようなM成分も含めた量をいう。
<第2相が第1相と同じ結晶構造を有する場合>
 第2相が第1相と同じ結晶構造を有してもよいが、組成には相互に十分に差があることが望ましく、例えば、第2相中のFeとCoの総和に対する第2相のCo含有量は第1相のCo含有量の1.1倍以上多いか、又は第2相のCo含有量が1原子%(より好ましくは2原子%)以上で第1相のCo含有量よりも多いことが好ましく、その両方を満たす(即ち、第2相のCo含有量は、第1相のCo含有量の1.1倍以上の量で更に1原子%(より好ましくは2原子%)以上)ことが更に好ましい。第2相のCo含有量は第1相のCo含有量の1.2倍以上であれば、100A/mを下回る低保磁力材料となり非常に好ましく、1.5倍以上であれば、保磁力が低いだけでなく、透磁率も向上して最も好ましい。
 第2相のCo含有量自体が100%を超えることはない。また、第1相のCo含有量が下限値の0.001原子%の場合には、第2相のCo含有量が第1相のCo含有量の10倍を超えることはない。第2相のCo含有量は、好ましくは、75原子%以下である。これはCo含有量が75原子%を超えると飽和磁化の低いfcc-(Fe,Co)相が生成し、本発明の磁性材料全体の磁気特性が悪くなることがあるためである。
 上記で、第2相の「Co含有量」が第1相の「1.1倍以上」である場合とは、各相のCo含有量を有効数字1桁以上で求めた上で、第2相のCo含有量が第1相のCo含有量の1.1倍以上になることをいう。
 本発明は、前出のランダム磁気異方性モデル、若しくはそのモデルに準じた磁気異方性のゆらぎを利用した低保磁力化を目指したものであり、結晶学上独立している第1相と第2相が、ナノレベルで交換結合により磁気的に連結していること、或いは第1相と第2相を含めたccs相中のCo含有量がナノスケールで空間的な変化がある(このことを本発明では「濃度のゆらぎ」ということがある)こと、のいずれかが重要である。但し、この2相のCo組成比が近すぎると、その結晶相の結晶方位が同方向に揃っている場合もあり、平均化される結晶磁気異方性のゆらぎの値が十分小さくならず、そのため十分に低い保磁力が実現しない。したがって、好ましい第2相のCo含有量は、第2相中のFeとCoの総和に対して、1原子%以上であるが、さらに好ましくは3原子%以上である。Co含有量が大きくなりすぎると飽和磁化が減少するため、80原子%以下とすることが好ましい。
 勿論、近い組成の第1相と第2相が隣り合う場合でも、ナノ分散していて好ましくは結晶方位が異なって容易磁化方向が一致していないか、或いはナノスケールでCo濃度のゆらぎがあり、しかも双晶壁や結晶粒界、或いは結晶境界などを通じて交換結合していれば、磁気異方性の平均化が実現し保磁力が低減する。しかし、単位体積当たりのその頻度は、組成がある程度大きく異なる場合に比べて、遥かに小さくなるため、十分なランダム磁気異方性モデルによる結晶磁気異方性の平均化が成されない場合もある。
 Co含有量が本発明の磁性材料全体のCo含有量よりも低い相(第1相)が存在すれば、必ず、Co含有量が本発明の磁性材料よりも高い相(第2相)も同一の磁性材料内に存在することになる。そのため、それらが強磁性結合して、上記のような等方性が実現していれば、本発明の磁性材料、具体的には軟磁性材料となる。以上は、均質性の高い組成として、異相を徹底的に除去し、磁壁移動が阻害されないように設計された電磁鋼板、センダストなどの多くの既存の軟磁性材料には見られない本発明の磁性材料の特徴であり、磁化反転が磁化の回転によって起こる磁性材料に共通した特徴とも言える。
 なお、第1相のみ、第2相のみがナノレベルで交換結合により磁気的に連結している状態が含まれていてもよく、この場合でも隣り合うナノ結晶の結晶軸方位が揃っておらず、等方的であること、及び/又はナノスケールでのCo濃度のゆらぎがあることが重要である。しかし、本発明においては、第1相のみの微結晶で構成された磁性材料や第2相のみの微結晶で構成された磁性材料は達成されず、このような構造を含むような場合でも、本発明では、磁性材料内に第1相と第2相が必ず存在する。この理由は、ナノ結晶の生成自体が、本発明の磁性材料を製造するために用いる、コバルトを含むフェライトの粉体であって、ナノスケールの大きさを有する粉体(本願では、「コバルトフェライトナノ粉体」或いは「Co-フェライトナノ粉体」とも称する)の還元を端緒とする還元工程の各過程における不均化反応に大きく関与するからである。なお、本願では、ナノスケールの大きさのフェライト粉体を「フェライトナノ粉体」とも称し、また、ナノスケールとは、特に定めがない場合には、1nm以上1μm未満までをいう。
<第2相の特定>
 以下に、第2相の特定の仕方について述べる。まず、上述の通り、第1相はccs-(Fe,Co)相であり、主に高い飽和磁化を保証する。第2相は、その相に含まれるFeとCoの総和に対するCoの含有量が第1相に含まれるFeとCoの総和に対するCoの含有量よりも多い相である。本発明では、第2相は、磁性材料全体のCo含有量よりも多いccs-(Fe,Co)相でもよく、他の結晶相或いはアモルファス相、又はそれらの混合相でもよい。いずれであっても、本発明の軟磁性材料においては、保磁力を低く保つ効果がある。従って、第2相はこれらの効果を有する相の総体であるため、Coの含有量が第1相よりも高い、先に例示した何れかの相の存在を示すことができれば本発明の磁性材料であるとわかる。
 第2相がccs-(Fe,Co)相である場合、第1相とCo組成が連続して変化している場合がある。或いは、材料を同定する方法によっては、第1相と第2相のCo組成が連続的に変化しているように観察される場合がある。このような場合も、第2相のCo含有量(即ち、第2相に含まれるFeとCoの総和に対する第2相中のCo含有量)が、第1相のCo含有量(即ち、第1相に含まれるFeとCoの総和に対する第1相中のCo含有量)よりも多く、更に、第1相のCo含有量の1.1倍以上及び/又は1原子%以上、より好ましくは1.1倍以上及び/又は2原子%以上であるという組成上の差があることが望ましい。
 第1相や第2相を併せて、FeとCoの組成比は、本発明の目的を達成できれば特に制限はないが、FeとCoの総和に対するCoの含有量は0.01原子%以上75原子%以下であることが望ましい。
 第1相及び第2相を併せたCoの含有量が75原子%以下であることは、飽和磁化の低下を避けるうえで特に好ましく、また0.01原子%以上であることは、耐酸化性などに対するCoの添加効果がなく、保磁力が目的の用途に対応しない程度に高くなることを避けるうえで好ましい。さらに、耐酸化性や磁気特性のバランスが良いという観点から好ましい第1相及び第2相を併せたCoの含有量は、0.01原子%以上60原子%以下であり、そのうち特に好ましい範囲は、0.01原子%以上50原子%以下である。
 第1相と第2相の体積比は任意であるが、第1相、第2相及び副相を合わせた本発明の磁性材料全体の体積に対して、第1相、又は第1相及び第2相中ccs-(Fe,Co)相の体積の総和は5体積%以上であることが好ましい。ccs-(Fe,Co)相は本発明の磁性材料の主な磁化を担うため、5体積%以上であることが、磁化の低下を避けるうえで好ましい。さらに、好ましくは25体積%以上、さらに好ましくは50体積%以上である。電気抵抗率をあまり下げないで、特に高い磁化を実現させるためには、ccs-(Fe,Co)相の体積の総和を75体積%以上とするのが望ましい。
 本発明の軟磁性材料の第2相の中には、強磁性か反強磁性(本願では、弱磁性もこの中に含める)の相があることが好ましく、その理由は第1相の結晶磁気異方性を低下させる効果があるからである。この件については、後述するランダム磁気異方性モデルの説明に合わせて論ずる。
<好ましい第2相の例、結晶方位のランダム性検証方法>
 本発明の磁性材料において、強磁性として好ましい第2相の代表例は、第一に、第1相よりもCo含有量が多くて、しかも、好ましくはこのCo含有量が、第2相中のFeとCoの総和に対して、0.1原子%以上75原子%以下、さらに好ましくは0.5原子%以上60原子%以下、特に好ましくは1原子%以上50原子%以下であるようなccs-(Fe,Co)相がある。
 第1相も、第1相中のFeとCoの総和に対して、Coを50原子%以上75原子%以下で含む場合であっても、高い飽和磁化が実現するが、この程度までCo含有量が多くなると、低い保磁力を発揮できなくなる。従って、Co含有量が、第1相中のFeとCoの総和に対して、0.01以上60原子%以下の第1相(より好ましくは、1以上50原子%以下の第1相)と、Co含有量が第1相よりも大きな第2相を組み合わせることにより、飽和磁化が大きく、保磁力の小さな磁性材料を実現することが好ましい。そして、第1相の結晶粒の大きさは、100nm以下、好ましくは50nm以下として、この結晶粒の結晶軸の方位は一方向に揃わず、ランダムであることが好ましい。
 この結晶の方位がランダムであることの検証方法の例として、以下の結晶軸の配向性を調査する各種方法が挙げられる。
 (i) XRD(X線回折装置)を用いて測定した回折パターンにおいて、少なくとも2つの回折線を選び比較し、その強度比をみることで確認する方法。例えば、bcc-(Fe,Co)相であれば、回折パターンのうち(110)、(200)、(211)の3強線である各回折線位置の少なくとも2つの回折線を選び比較し、その強度比を見ることで確認することができる。パウダーパターンにおける強度比に近ければ、ランダムな配向をしている一証左となる。
 (ii) XRDを用いた極点測定により、測定領域の結晶方位の分布を知り配向性を見積もる方法がある。
 (iii) 数百nmの結晶粒の配向性を調べる方法として、SEM(走査型電子顕微鏡)に付属したEBSD(後方散乱電子回折)装置を用いて、結晶の方位とその結晶系を求める方法がある。
 (iv) 数~数十nmの局所的な結晶粒のランダムさを確認する方法として、TEM(透過型電子顕微鏡)に付属したED(電子線回折装置)を用いて測定した場合、回折スポットが明確に現れず、リングパターンが観察されることで、観察領域内で結晶方位がランダムであることを知る方法がある。
 (v) さらに局所的な結晶方位の配向性を観察する方法として、TEM観察により、結晶境界での格子縞の方向や原子の並びを観察することにより調べる方法がある。即ち、結晶境界で隔てられた両側の結晶粒の結晶面方位を観測し比較する。
 (vi) この結晶境界の観察をマクロで行う方法として、FE-SEM(電界放射型走査電子顕微鏡)を用いて、双晶壁の方向や結晶境界の形を知る方法がある。極端な場合、結晶境界が円弧や複雑な曲線、メイズパターンを描くと様々な方向から連晶が複雑に入り組んでいる連晶組織を呈しているので、結晶方位がランダムである証左となる。
 これらの方法は、本発明の磁性材料の微細構造や結晶粒径の大きさにより適宜組み合わせることができ、後で述べる局所的な組成を知る方法と組み合わせて、本発明の磁性材料における結晶粒の配向性を総合的に判断することもできる。因みに、(v)や(vi)の方法で、第1相同士、第1相と第2相、又は第2相同士間の粒界領域や、第1相及び/又は第2相が多くを占める領域での観察を行って、粒界に異相が見られない場合、隣り合う粒子間で強磁性結合が生じていることの証拠となりうる。
 続いて好ましい第2相としては、Co-フェライト相及びウスタイト相の両酸化物相が挙げられる。前者は、強磁性であり後者は反強磁性であるが、何れも、第1相の間にあれば、強磁性結合を促すことができる。
 因みに、フェライト相が強磁性結合を促す例も知られてはいるが(この点について、国際公開第2009/057742号(以後、「特許文献1」と称する)や、N.Imaoka, Y.Koyama, T.Nakao, S.Nakaoka, T.Yamaguchi, E.Kakimoto, M.Tada, T.Nakagawa and M.Abe, J.Appl.Phys., vol.103, No.7(2008) 07E129(以後、非特許文献3と称する)を参照)、いずれも、硬磁性材料のSmFe17相間にフェライト相が存在し、これらの相が強磁性結合して交換スプリング磁石を構成するものである。
 しかし、本発明は軟磁性材料に関するもので、上記の硬磁性の交換スプリング磁石とは発揮する機能が全く異なる。本発明において、Co-フェライト相やウスタイト相である第2相の存在によって、第1相間の交換相互作用を仲介する点については同様であり、このような第2相が第1相を取り囲むように存在すれば、電気抵抗も高く、保磁力も低減される。従って、特に本発明の軟磁性材料において非常に好ましい第2相の一つとなる。
 これらの2種の酸化物相は、磁性材料全体を100体積%として95体積%以下であることが好ましい。例えばCo-フェライトは強磁性材料とはいえccs-(Fe,Co)相より磁化が低く、ウスタイトも反強磁性といえども弱磁性的であって、ある程度磁化は存在するが、Co-フェライトより低いため、何れも95体積%を超えると磁性材料全体の磁化が低下することがあるからである。より好ましい酸化物相の含有量は75体積%以下、特に好ましくは50体積%以下である。電気抵抗率をある程度維持しながら、特に磁化が高い磁性材料とするときは以上の酸化物相を25体積%以下とするのが好ましい。また、逆にウスタイト相など酸化物相が存在すると電気抵抗率が上昇するので、このためにウスタイト相などを積極的に含有させる場合は、その好ましい体積分率は0.001体積%以上で、特にあまり磁化の低下を伴わないでウスタイト相などを存在させ、有効に電気抵抗率を向上させるためには0.01体積%以上がさらに好ましく、特に好ましくは0.1体積%以上である。ここで、酸化物相がCo-フェライトを含まず、ウスタイトであるとした場合でも、上記体積分率の範囲などは同様である。
 以上のように、第2相の好ましい相として、第1相よりもCo含有量が多いccs-(Fe,Co)相、Co-フェライト相、ウスタイト相を例示したが、これらの3種の相は強磁性体又は反強磁性体である。従って、これらの相が強磁性結合をせずに分離していると、磁気曲線には加成性があるので、これらの混合材料の磁気曲線はそれぞれの磁気曲線の単なる和となり、磁性材料全体の磁気曲線上に滑らかな段差が生じる。例えば外部磁場0以上7.2MA/m以下の広い磁場範囲で磁化測定を行って得た、磁性材料全体の磁気曲線のうち1/4メジャーループ(7.2MA/mから、零磁場まで掃引したときの磁気曲線を1/4メジャーループと呼ぶ)の形状を観察すると、その1/4メジャーループ上には上記の事情が起因する滑らかな段差、或いはそれに基づく変曲点の存在が確かであると推測できる。一方、これらの異種の磁性材料が強磁性結合で一体をなす場合、7.2MA/mから零磁場の範囲のメジャーループ上に滑らかな段差や変曲点が見られず、単調増加する、上に凸の磁気曲線を呈する。強磁性結合の有無を見積もるためには、上述の粒界領域での微細構造観察などに加えて、以上の磁気曲線の詳細な観察を行うことが一つの目安となる。
 上記の酸化物相である好ましい第2相のうち、特にウスタイト相は高い還元温度、成形温度においても、安定に存在することができるので、本発明の磁性材料を構成する上で非常に好ましい相である。また、主に還元工程において、この相から不均化反応によって生じる様々な組成を有したccs-(Fe,Co)相は、第1相又は、第1相及び第2相として、本発明の磁性材料が発現する磁性本体を担う重要な相であり、その中でCo含有量が0.5原子%以上の領域では特にウスタイト相を経由して高い磁性を有する金属相へと還元反応が進行するため、ccs-(Fe,Co)相が不均化反応により生じた段階から既にウスタイト相と直接強磁性結合されている場合が多く、本発明の磁性材料、特に軟磁性材料の第2相として活用するのに非常に好ましい相である。
<組成分析>
 本願の実施例において、本発明の磁性材料の金属元素の局所的な組成分析は、主にEDX(エネルギー分散型X線分光法)により行われ、磁性材料全体の組成分析はXRF(蛍光X線元素分析法)により行われた。一般に第1相と第2相のCo含有量は、SEM、FE-SEM、或いはTEMなどに付属したEDX装置により測定する(本願においては、このEDXを付属したFE-SEMなどをFE-SEM/EDXなどと記載することがある)。装置の分解能にもよるが、第1相と第2相の結晶構造が300nm以下の微細な構造であれば、SEM或いはFE-SEMでは正確な組成分析はできないが、本発明の磁性材料のCoやFe成分の差のみを検出するためであれば、補助的に利用することができる。例えば、Co含有量が5原子%以上で、300nm未満の第2相を見出すには、磁性材料中のある1点を観測して、その定量値がCo含有量として5原子%以上であることを確認すれば、その一点を中心として直径300nmの範囲内に、Co含有量が5原子%以上の組織或いはその組織の一部が存在することになる。また、逆にCo含有量が2原子%以下の第1相を見出すためには、磁性材料中のある1点の観測をして、その定量値がCo含有量として2原子%以下であることを確認すれば、その一点を中心として直径300nmの範囲内に、Co含有量2原子%以下の組織或いはその組織の一部が存在することになる。
 さらに、前述の通り、この組成分析法とXRD,FE-SEMやTEMなどを組み合わせることにより、結晶粒の配向性や組成の分布を知ることができ、本発明の特徴であるCo組成が不均化し、多様な結晶相が存在することや、それらの結晶軸がランダムな配向をしていることを検証するのに役立つ。さらに、ccs-(Fe,Co)相と他のウスタイト相などの酸化物相を区別するためには、例えばSEM-EDXを用いた酸素特性X線面分布図を解析するのが簡便で有効である。
<磁性材料全体の組成>
 本発明における磁性材料全体における各組成(即ち、磁性材料全体を構成する成分含有量の総和を100原子%とした場合における各組成)は、Fe成分が10原子%以上99.999原子%、Co成分が0.001原子%以上90原子%以下、O(酸素)が0原子%以上55原子%以下の範囲とし、これらを同時に満たすものが好ましい。さらに、アルカリ金属が0.0001原子%以上5原子%以下含まれてもよい。Kなどを含めた副相は全体の50体積%を超えないのが望ましい。
 Feが10原子%以上の場合、飽和磁化が低くなるのを回避でき、99.999原子%以下の場合、耐酸化性が低くなることや、加工性が乏しくなることを回避できるので好ましい。Co成分が0.001原子%以上の場合、耐酸化性が低くなることや、加工性が乏しくなることを回避でき、50原子%以下の場合、飽和磁化が低くなることを回避できるので、好ましい。Oは、第2相を構成するのに重要な元素となる場合には、55原子%以下の範囲が、飽和磁化が低いだけでなく、コバルトフェライトナノ粉体の還元による第1相や第2相への不均化反応が生じず、低保磁力の軟磁性材料への展開が難しくなることを回避できるので好ましい。本発明の磁性材料には必ずしも酸素を含む必要はないが、耐酸化性や電気抵抗率が顕著に高い磁性材料にするためには、僅かでも含まれる方が望ましい。例えば、後述する徐酸化工程で還元した金属粉体の表面を不働態化したり、或いはその操作によって固形磁性材料の結晶粒界の一部にウスタイト相を初めとする1原子層から数原子層の酸化層を存在させたりする場合で、この場合、本発明の磁性材料全体の組成に対する各組成範囲は、Fe成分が20原子%以上99.998原子%以下、Co成分が0.001原子%以上79.999原子%以下、Oが0.001原子%以上55原子%以下の範囲とするのが望ましい。
 本発明の磁性材料のさらに好ましい組成は、Fe成分が25原子%以上99.98原子%以下、Co成分が0.01原子%以上74.99原子%以下、Oが0.01原子%以上49.99原子%であり、この範囲にある本発明の磁性材料は、飽和磁化と耐酸化性のバランスがよい。
 さらに、Fe成分が29.95原子%以上99.9原子%以下、Co成分が0.05原子%以上70原子%以下、Oが0.05原子%以上33原子%以下の組成範囲にある本発明の磁性材料は、電磁特性が優れ、耐酸化性に優れる点で好ましい。
 上記組成範囲の中で、特に磁化が2.2T以上あるようなパフォーマンスに優れた、本発明の磁性材料とする場合は、Fe成分が49.95原子%以上69.95原子%以下、Co成分が30原子%以上50原子%以下、Oが0.05原子%以上20原子%以下の組成範囲とするのが好ましい。
 Co成分含有量にも依存するので、一概には言えないが、本発明においては保磁力の小さな軟磁性材料の方が酸素を少なく含有する傾向にある。
<磁気特性と電気特性、耐酸化性>
 本発明のひとつは、保磁力が800A/m以下である軟磁性用途に好適な磁気特性を有する磁性材料であるが、この点について以下に説明する。
 ここにいう「磁気特性」とは、材料の磁化J(T)、飽和磁化J(T)、磁束密度(B)、残留磁束密度B(T)、交換スティフネス定数A(J/m)、結晶磁気異方性磁場H(A/m)、結晶磁気異方性エネルギーE(J/m)、結晶磁気異方性定数K(J/m)、保磁力HcB(A/m)、固有保磁力HcJ(A/m)、透磁率μμ、比透磁率μ、複素透磁率μμ、複素比透磁率μ、その実数項μ’、虚数項μ”及び絶対値|μ|のうち少なくとも一つを言う。本願明細書における「磁場」の単位は、SI単位系のA/mとcgsガウス単位系のOeを併用しているが、その換算式は、1(Oe)=1/(4π)×10(A/m)である。即ち、1Oeは約80A/mに相当する。本願明細書における「飽和磁化」、「残留磁束密度」の単位は、SI単位系のTと、cgsガウス単位系のemu/gを併用しているが、その換算式は、1(emu/g)=4π×d/10(T)、ここにd(Mg/m=g/cm)は密度である。従って、218emu/gの飽和磁化を持つFeは、d=7.87なので、SI単位系での飽和磁化の値Mは2.16Tとなる。なお、本願明細書中では、特に断らない限り、保磁力と言えば、固有保磁力HcJのことを言うものとする。
 本発明の磁性材料において、磁化、飽和磁化、磁束密度、残留磁束密度、電気抵抗率はより高い方が好ましく、飽和磁化については0.3T或いは30emu/g以上の高さが望ましく、特に軟磁性材料に限ると100emu/g以上の高さが望ましい。他の本発明の磁気特性、例えば結晶磁気異方性定数、保磁力、透磁率、比透磁率などは用途に応じて適正に制御する。特に透磁率、比透磁率は、用途によっては必ずしも高い必要はなく、保磁力が十分に低くて鉄損を低く抑えられていれば、例えば敢えて比透磁率を10~10内外の大きさに調整して、特に直流重畳磁場下における磁気飽和を抑えることで、効率の低下を抑えたり、線形に制御しやすくしたりすることもできるし、或いは関係式(1)に基づいて、透磁率を1桁下げる毎に、渦電流損失が生じる限界厚みを約3.2倍ずつ厚くすることもできる。本発明の特徴の一つは、磁壁移動による磁化反転ではなく、主に磁化の直接回転による磁化反転機構を備えるため、保磁力が低く磁壁移動による渦電流損失も少なく、鉄損を低く抑えることができ、また、外部磁場による磁化回転を抑制する何らかの局所的な磁気異方性を結晶境界に生じさせ、透磁率を低減できることである。
<結晶境界>
 本発明の磁性材料が、軟磁性になる要因は、特にその微細構造と密接な関係がある。ccs-(Fe,Co)相は一見連続相に観察される場合があるが、図1のように、多くの異相界面、結晶粒界を含み、また、接触双晶、貫入双晶などの単純双晶や集片双晶、輪座双晶、多重双晶などの反復双晶を含む双晶、連晶、骸晶(本発明では、異相界面、多結晶粒界だけでなく、これらの様々な晶癖、晶相、連晶組織、転位などにより、結晶が区分されている場合、それらの境界面を総称して「結晶境界」と呼んでいる)などが含まれており、通常よく見られる直線的な結晶粒界と異なって曲線群として結晶境界を呈する場合が多くあって、さらに、そのような組織においては、場所により大きくCo含有量に差が見られる。以上のような微細構造を有する本発明の磁性材料は、軟磁性材料となる場合が多い。
 本発明の磁性材料が軟磁性材料の場合、第1相と第2相は、第2相がccs-(Fe,Co)相である場合には、コバルトフェライトナノ粉体から出発して、粒成長を伴いながら、還元反応の進行にしたがい、組成の不均化反応とともに結晶格子中の酸素を失っていき、最終的には通常、最大52体積%に及ぶ大きな体積減少が生じる。これが起因して、ccs-(Fe,Co)相である、第1相及び第2相は、水晶などの宝石、黄鉄鉱、霰石などの鉱物や岩石の結晶を見るような多彩な微細構造をナノスケールに縮小した形で保有しており、内部には、様々なCo含有量を有した多様な相やナノ結晶が含まれている。
 結晶粒界や連晶に見える組織も、Co含有量には観測場所によって差が見られ、異相界面である場合もある。従って、これらの結晶境界に囲まれた磁性体結晶の方位が強磁性結合長内で無配向であれば、前出のランダム磁気異方性モデルにしたがって、保磁力が大きく低下する。
<ランダム磁気異方性モデルと本発明特有の保磁力低下メカニズム>
 ランダム異方性モデルで説明される本発明の軟磁性材料、或いは本発明特有の保磁力低下メカニズムにより低保磁力される本発明の軟磁性材料では、以下の3条件を充足していることが望ましい。
(1)ccs-(Fe,Co)相の結晶粒径が小さいこと、
(2)ランダムな配向をしていること、及び/又はナノスケールでのCo濃度のゆらぎがあること
(3)交換相互作用により強磁性結合していること。
 この3条件のうち、ランダム異方性モデルで説明される場合、(2)についてはランダムな配向をしている条件を満たすことが必須である。しかし、上記(2)の条件は、後半部分「及び/又は」以降で、ランダムな配向をしていない場合でも保磁力の低下はランダム異方性モデルとは異なる原理で生じうることを述べている。即ち、第1相と第2相、第1相同志、第2相同志の何れか1種以上の相互作用により、ナノスケールのCo成分含有量の濃度のゆらぎに基づく磁気異方性のゆらぎが生じて、磁化反転が促され、保磁力の低減がなされる。このメカニズムによる磁化反転機構は、本発明に特有のものであり、本発明者らが知りうる限り、本発明者らによって初めて見出されたものである。
 さらに以上の理由で、還元時に粒成長や、強磁性相が連続するように粒子同士が融着していない場合や、粒子同士が分離してしまうような相分離が生じている場合、本発明の磁性材料粉体の保磁力を軟磁性領域に持っていくためには、こののち焼結などを施して固化、即ち、「第1相と第2相が、直接、或いは金属相若しくは無機物相を介して連続的に結合し、全体として塊状を成している状態」にするのが望ましい。
 上記(3)の交換相互作用により強磁性結合するためには、交換相互作用が数nmの短距離秩序内で働く相互作用或いは力であることから、第1相士が連結する場合では直接結合するか、第1相と第2相或いは第2相同士が連結する場合では、交換相互作用を伝えるために、第2相が強磁性か反強磁性である必要がある。第1相及び/又は第2相の一部が超常磁性領域にあったとしても、その材料自体がバルク状態では強磁性或いは反強磁性であるため、周囲の強磁性或いは反強磁性の相と十分交換結合していれば、交換相互作用を伝達する相にできる場合もある。
 本発明の磁性材料が上記の特徴を有するのは、本発明が、高磁化であって高周波用途の他の金属系軟磁性材料とは本質的に異なった方法で形成された磁性材料、即ちコバルトフェライトナノ粉体を還元して、まずナノ微結晶を有する金属粉体を製造し、さらにそれを成形して固形磁性材料とする、ビルドアップ型のバルク磁性材料を主に提供しているからである。
<第1相、第2相、磁性材料全体の平均結晶粒径>
 本発明の軟磁性材料の第1相、又は第2相の平均結晶粒径、或いは磁性材料全体の平均結晶粒径は、1nm以上10μm未満であることが好ましく、さらにナノ領域にあることが好ましい。第1相及び第2相の平均結晶粒径がナノ領域にある場合、磁性材料全体の平均結晶粒径はナノ領域にある。
 特に本発明の軟磁性材料に関しては、上記のランダム磁気異方性モデルによる低保磁力化を実現させるためには、L(強磁性交換長又は交換結合長)よりも小さな結晶粒径の磁性材料にすべきであるが、第1相若しくは第2相の何れかはナノ領域にあることが好ましい。第1相若しくは第2相がナノ領域にあって、Lよりも小さい径であれば、その周りにある少なくとも一つの第1相若しくは第2相と強磁性結合による異方性の平均化がなされる。一旦平均化が成されれば、L(自己無撞着強磁性交換長)が広がることにより、さらに磁気異方性の平均化が進み、結晶磁気異方性磁場が大きく低減されるため、保磁力も低下する。従って、第1相、第2相ともに強磁性相である場合、双方とも平均結晶粒径が10μm未満であることが好ましいが、上記の理由によって1μm以下であれば、さらに好ましく、200nm以下であれば、Co含有量にもよるが、保磁力の顕著な低減効果もあって、特に好ましい。以上の場合、第2相より、第1相のKの方が大きい場合が多いので、特に、第1相が、10μm未満、好ましくは1μm以下、さらに好ましくは200nm以下であれば、保磁力は極めて小さくなり、各種トランスやモータ等に好適な軟磁性材料となる。
 また1nm未満となると、室温で超常磁性となり、磁化や透磁率が極端に小さくなる場合があるので、1nm以上とすることが好ましい。上述でも触れたが、もし1nm未満の結晶粒やアモルファス状の相が存在する場合は、これらを1nm以上の結晶粒と十分交換相互作用で連結させることが求められる。
 また、第2相が強磁性相でない場合、上記のランダム異方性化モデルによる保磁力低減に第2相は関与しないが、その存在により電気抵抗率が大きくなるため好ましい成分である。
 しかし、その存在量、即ち含有量が多すぎると飽和磁化が低下するので、第2相が非磁性相の場合は、その量は第1相を超えない量に抑えるべきである。なお、できるだけ微分散している方が、非磁性相である第2相を第1相で形作られるL内部に覆いこむことができるので保磁力に悪影響を与えないという点で好ましい。あまりに非磁性の相が大きすぎると、第1相による強磁性結合の連鎖を完全に分断してしまう。さらに本発明の軟磁性材料中に磁壁を伴って、磁化反転する部分が一部でも存在する場合、本発明の軟磁性材料のように<K>が小さい材料では、磁壁の幅が1μm以上になってしまうので、これに見合う大きさの非磁性相は磁壁のピンニング的な効果を及ぼし、磁壁移動を妨げて保磁力が大きくなったり、鉄損が大きくなったりする可能性がある。このような理由からも、第2相が非磁性相の場合は、その量は第1相を超えない量に抑えるのが望ましい。
 ランダム磁気異方性モデルによる低保磁力化を成した材料は、磁壁の移動をあまり伴わずに磁化反転をするので、非磁性相などの異相や転位などの保磁力に対する影響は少ない。但し、保磁力をより小さくするために、粉体熱処理、焼結などによる固化後の焼鈍が有効である場合がある。加圧焼結などの際に塑性変形を伴い、転位密度が上昇すると10J/m以上10J/m以下程度の誘導磁気異方性が誘起され、例えば第1相の結晶磁気異方性が平均化すると、その<K>の値に匹敵する場合もある。この場合は適切な焼鈍により転位を除去させることが必要である。また、これらの歪みや転位は透磁率の大きさを低減させるので、高透磁率材料としようとする時は特に重要になる場合がある。しかし、還元反応工程で還元温度、時間、昇降速度を制御して不均化を促進した後に不用意に焼鈍すると、組成の均質化とともに結晶粒の成長が生じて、かえって保磁力が増加する場合もあるので注意を要する。そのため、適切な焼鈍条件の管理が必要となる。
<結晶粒径の測定>
 本発明の結晶粒径の測定はSEM法、TEM法又は金属顕微鏡法で得た像を用いる。観察した範囲内で、異相界面や結晶粒界だけでなく全ての結晶境界を観察し、それに囲まれた部分の結晶領域の径を結晶粒径とする。結晶境界が見えにくい場合は、ナイタール溶液などを用いた湿式法やドライエッチング法などを用いて結晶境界をエッチングする方がよい。平均結晶粒径は、代表的な部分を選び、最低100個の結晶粒が含まれている領域で計測することを原則とする。これより少なくてもよいが、その場合は、統計的に十分全体を代表する部分が存在していて、その部分を計測していることが求められる。平均結晶粒径は、観測領域を撮影して、その写真平面(対象の撮影面への拡大射影面)上に適当な直角四角形領域を定め、その内部にJeffry法を適用して求める。なお、SEMや金属顕微鏡で観察した場合は、分解能に対して結晶境界幅が小さすぎて観測されないこともあるが、その場合、平均結晶粒径の計測値は実際の結晶粒径の上限値を与える。具体的には、上限10μmの平均結晶粒径測定値であれば問題ない。但し、例えばXRD上で明確な回折ピークを持たない、超常磁性が磁気曲線上で確認されるなどの現象から、磁性材料の一部乃至全部が結晶粒径の下限である1nmを切る可能性が示された場合は、TEM観察により実際の結晶粒径を改めて決定しなければならない。
<結晶子サイズの測定>
 本発明では、不均化反応により相分離が生じ、第1相及び/又は第2相のccs-(Fe,Co)相のCo含有量に組成幅が生じる。Co含有量により、X線の回折線ピーク位置は変化するので、例えばbcc相の(200)における回折線の線幅を求めて、これにより結晶子サイズを決定しても、実際の結晶子サイズと見做すことは一般的にできない。しかしながら、本発明では、Coの原子半径若しくは金属原子半径がFeと大差ない(Feの金属原子半径は0.124nm、Coの原子半径は0.125nm)ことから、ccs構造を取る本発明の磁性材料の組成がFe100-xCo(xは原子百分率で0.001≦x≦90)である場合に限り、XRD測定の結果得られた結晶子サイズである「見掛けの結晶子サイズ」を実際の「結晶子サイズ」として見做すことが可能である。本発明では、特に断らない限り、「結晶子サイズ」とは、この「見掛けの結晶子サイズ」のことを言う。ここで、結晶子とは、結晶物質を構成する顕微鏡的レベルでの小さな単結晶のことであり、多結晶を構成する個々の結晶(いわゆる結晶粒)よりも小さい。
 本発明において、結晶子サイズは、Kα回折線の影響を除いた回折パターンに対してシェラーの式を用い、無次元形状因子を0.9として、(200)回折線幅(bcc構造及びfcc構造の場合)又は(110)回折線幅(fcc構造の場合)を用いて求めた。
 第1相がbcc相である場合、第2相はbcc、fcc及びその他の構造を取り得るがあるが、第1相がfcc相である場合は、第2相の構造はbcc構造以外の構造となる。その好ましいbcc(fcc)相の結晶子サイズの範囲は1nm以上300nm未満である。
 1nm未満となると、室温で超常磁性となり、磁化や透磁率が極端に小さくなる場合があるので、1nm以上とすることが好ましい。
 bcc(fcc)相の結晶子サイズは300nm未満とするのが好ましく、200nm未満となると、保磁力は軟磁性領域に入って極めて小さくなり、各種トランス、モータ等に好適な軟磁性材料となるのでより好ましい。さらに、100nm以下は、Co含有量の低い領域であっても2Tを超える高い磁化が得られるだけでなく、低い保磁力も同時に達成でき、非常に好ましい範囲である。
<軟磁性材料の大きさ>
 本発明の軟磁性材料の場合には、上記で示したように、ランダム磁気異方性モデルによる磁気異方性の平均化が部分毎になされると望ましい。従って、第1相と第2相を中心に、第1相同士や第2相同士も含めて、少なくともLの大きさで強磁性結合していることが好ましい。Lの大きさに至る粉体は、軟磁性材料として本発明の磁性材料を利用する場合に、高保磁力を回避できるためである。なお、本発明の磁性材料では、ランダム磁気異方性モデルとは多少異なったメカニズムで、結晶の等方化によらず、ナノスケールのNi濃度のゆらぎにより、磁気異方性がゆらいで低保磁力が成される組成領域があるが、この場合でも、Lに匹敵する十分な領域でNi濃度がゆらいだ状態が実現される必要がある。
 Lの大きさまでに至らない本発明の軟磁性材料粉体は焼結などにより、直接、或いは金属相若しくは無機物相を介して、少なくともLの大きさにまで連続的に結合させることが求められる。特に、前述のように本発明の磁性材料の粉体を、例えば、合成樹脂やセラミックなどに分散して使用するときは、その粉体の粉体粒径がLより大きいか、或いは同等のレベルにまで、第1相、或いは第1相及び第2相が結合して粒成長している必要がある。
 本発明の軟磁性材料の粉体の大きさ(平均粉体粒径)はLにもよるが、10nm以上5mm以下が好ましい。10nm未満であると、保磁力が十分小さくならず、5mmを超えると、焼結の際に大きな歪みがかかり、固化後の焼鈍処理が無いと保磁力が反って大きくなる。さらに好ましくは100nm以上1mm以下であり、特に好ましくは0.5μm以上500μm以下である。この領域に平均粉体粒径が収まれば、保磁力の低い軟磁性材料となる。また、上記で規定した各平均粉体粒径範囲内で粒径分布が十分広ければ、比較的小さな圧力で容易に高充填が達成され、固化した成形体の体積当たりの磁化が大きくなるため、好ましい。Lに比べ、粉体粒径が大きすぎると磁壁の移動が励起される場合があり、本発明の軟磁性材料の製造過程における、不均化反応によって形成される異相により、その磁壁移動が妨げられ、むしろ保磁力が大きくなる場合もある。そのため、本発明の軟磁性材料の成形の際、適切な粉体粒径を有した本発明の磁性材料粉体の表面が酸化された状態であった方がよい場合がある。本発明のCoを含む合金は、不均化還元反応により、組織が微細化されるので、酸化により表面がある程度酸化されても、内部の磁化回転に大きな影響を及ぼさないことが多く、耐酸化性は極めて高くなる。従って、本発明の磁性材料粉体の組成、形状、大きさによっては、粉体表面の適切な徐酸化、空気中での各工程ハンドリング、還元性雰囲気でなく不活性ガス雰囲気などでの固化処理なども、保磁力を安定化させる上で有効である。
<半硬磁性材料の大きさ>
 本発明の半硬磁性材料の場合の粉体の大きさ(平均粉体粒径)は、半硬磁性領域の保磁力を発現しつつ高い磁化を保ち、耐酸化性を付与させるという観点から、10nm以上10μm以下のとするのが好ましい。
<平均粉体粒径の測定>
 本発明の磁性材料の粉体粒径は、主としてレーザー回折式粒度分布計を用いて体積相当径分布を測定し、その分布曲線より求めたメジアン径によって評価する。本発明の磁性材料の粉体粒径は、粉体のSEM法やTEM法で得た写真,又は金属顕微鏡写真を元に代表的な部分を選び、最低100個の直径を計測し、それらを体積平均して求めてもよい。これより少なくてもよいが、その場合は、統計的に十分全体を代表する部分が存在していて、その部分を計測していることが求められる。特に500nmを下回る粉体、1mmを超える粉体の粒径を計測するときは、SEMやTEMを用いる方法を優先する。又、N種類(N≦2)の測定法又は測定装置を併用し、合計n回の測定(N≦n)を行った場合、それらの数値Rは、R/2≦R≦2Rの間にある必要があって、その場合、下限と上限の相乗平均であるRを持って粉体粒径を決定する。
 以上のように、本発明の磁性材料の粉体粒径の測定法は、原則として、(1)計測値が500nm以上1mm以下である場合、レーザー回折式粒度分布計を優先し、(2)500nm未満又は1mmを超える場合は、顕微鏡法を優先する。(3)500nm以上1mm以下で(1)と(2)を併用する場合は、上記Rを持って平均粉体粒径を決定する。本願では、粉体粒径の標記は、(1)或いは(2)の場合、有効数字1桁乃至2桁であり、(3)の場合は有効数字1桁で表現する。粉体粒径の測定法を併用する理由は、500nm直上、1mm直下の粉体粒径を有する場合、(1)の方法では有効数字一桁でも不正確な値となる可能性があり、一方、(2)の方法では局所的な情報でないことを確かめるのに手間を要するので、(1)の方法でまず平均粉体粒径の値を得て、(2)の方法でも簡便に値を得ることにより、両者を比較検討し、上記Rを持って平均粉体粒径を決定するのが、非常に合理的であるからである。本願では、本発明の磁性材料の粉体の平均粒径を、以上の方法によって決定している。但し、(1)と(3)、或いは(2)と(3)が有効数字一桁で一致しない場合は、平均粉体粒径範囲によって、再度(1)又は(2)で精密に測定し、Rを決定している。この場合、明らかに強い凝集があって(1)で粉体粒径を求めるのが不適切であったり、あまりに不均一でサンプル画像によって見積もられる粉体粒径が極端に異なって明らかに(2)で粉体粒径を定めるのが不適切であったり、さらには測定装置の仕様によっては、上記の粉体粒径測定法を定める基準とした500nm及び1mmという区分が不適切であったりなど、明白な不適切事由が存在する場合は、上記原則に依らず、(1)、(2)又は(3)の何れかの手法を限定的に選定し直して採用してもよい。即ち、(1)~(3)の測定法の範囲内において、磁性材料の真の姿を捉えて、できるだけ真値に近い粉体粒径の体積平均値を得るために最も適切と考えられる手法を選択するのが良い。本発明の磁性材料を、それ以外の磁性材料と区別する為だけであれば、平均粉体粒径は有効数字1桁で決定されていれば足りる。
 なお、例えばCo含有量が10原子%以下のコバルトフェライトナノ粉体を1100℃以上に還元する場合など、マクロな粉体形状が、多くの貫通孔である中空部分を内部に含む立体網目状、いわばスポンジ形状となる場合がある。これらは、還元反応により粒成長が進むと同時に結晶格子から酸素が抜けて、大きな体積減少が生ずることにより形成されるものと考えている。この場合の粉体粒径は、内部の中空部分の体積を含んで計測される。
<固形磁性材料>
 本発明の磁性材料は、第1相と第2相が、直接、或いは、金属相若しくは無機物相を介して連続的に結合し、全体として塊状を成している状態の磁性材料(本願では、「固形磁性材料」とも称する。)として活用できる。また、前述したように、粉体の中に多くのナノ結晶がすでに結合されている場合には、その粉体を樹脂などの有機化合物、ガラスやセラミックなどの無機化合物、またそれらの複合材料などを配合して成形することもできる。
<充填率>
 充填率について、本発明の目的を達成できる限り特に限定はないが、Co成分の少ない本発明の磁性材料の場合は、60体積%以上100体積%以下とするのが、耐酸化性及び磁化の高さのバランスの観点から優れているので好ましい。
 ここにいう充填率とは、空隙も含む本発明の磁性材料全体の体積に対する本発明の磁性材料の体積(即ち、空隙や樹脂などの本発明の磁性材料でない部分を除いた、本発明の磁性材料のみによって占有される体積)の割合を百分率で表したものである。
 上記充填率のさらに好ましい範囲は80%以上であり、特に好ましくは90%以上である。本発明の磁性材料はもともと耐酸化性が高いが、充填率が大きくなるほど、さらに耐酸化性が増し、適用される用途範囲が広がるだけでなく、飽和磁化が向上して、高いパフォーマンスを有した磁性材料が得られる。また、本発明の軟磁性材料においては、粉体同士の結合が高まり保磁力が低下する効果ももたらす。
<本発明の磁性粉体、固形磁性材料の特徴>
 本発明の磁性材料粉体は、フェライトのように、焼結可能な粉体材料であることが大きな特徴の一つである。0.5mm以上の厚みを持った各種固形磁性材料を容易に製造することができる。さらに1mm以上、そして5mm以上の厚みを持った各種固形磁性材料でも、10cm以下の厚みであれば、焼結などにより、比較的容易に製造可能である。本発明の固形磁性材料を軟磁性材料として応用する場合には、用途に応じた多種多様な形状で使用することもある。
 本発明の固形磁性材料は、樹脂などのバインダを含まず、かつ密度が高く、切削加工及び/又は塑性加工により、任意の形状に、通常の加工機で容易に加工することができる。特に、工業的利用価値の高い角柱状、円筒状、リング状、円板状又は平板状などの形状に、容易に加工できることが大きな特徴の一つである。一旦これらの形状に加工した後、さらにそれらに切削加工などを施し、瓦状や任意の底辺形状を有する角柱などに加工することも可能である。即ち、任意の形状や、円筒面を含む曲面或いは平面により囲まれたあらゆる形態に、容易に切削加工及び/又は塑性加工を施すこと可能である。ここで言う切削加工とは、一般的な金属材料の切削加工であり、鋸、旋盤、フライス盤、ボール盤、砥石などによる機械加工であり、塑性加工とは、プレスによる型抜きや成形、圧延、爆発成形などである。また、冷間加工後の歪み除去のために、常温以上1290℃以下で焼鈍を行うことができる。
<製造方法>
 次に本発明の磁性材料の製造方法について記載するが、特にこれらに限定されるものではない。
 本発明の磁性材料の製造方法は、
 (1)コバルトフェライトナノ粉体製造工程
 (2)還元工程
の両工程を含み、必要に応じて、さらに以下の工程のいずれか1工程以上を含んでもよい。
 (3)徐酸化工程
 (4)成形工程
 (5)焼鈍工程
以下に、それぞれの工程について、具体的に述べる。
(1)コバルトフェライトナノ粉体製造工程(本願では、「(1)の工程」とも称する。)
 本発明の磁性材料の原料であるナノ磁性粉体の好ましい製造工程としては、湿式合成法を用いて全室温で合成する方法を備えるものがある。
 公知のフェライト微粉体の製造方法としては、乾式ビーズミル法、乾式ジェットミル法、プラズマジェット法、アーク法、超音波噴霧法、鉄カルボニル気相分解法などがあり、これらの方法を用いても、本発明の磁性材料が構成されれば好ましい製造法である。但し、本発明の本質である、組成が不均化したナノ結晶を得るためには、主として水溶液を用いた湿式法を採用するのが最も工程が簡便で好ましい。
 本製造工程は、特許文献1に記載されている「フェライトめっき法」を本発明の磁性材料を製造するために使用するコバルトフェライトナノ粉体の製造工程に応用したものである。
 通常の「フェライトめっき法」は、粉体表面めっきだけでなく、薄膜などにも応用され、また、その反応機構なども既に開示されているが(例えば、阿部正紀、日本応用磁気学会誌、22巻、9号(1998)1225頁(以後、「非特許文献4」と称する。)や国際公開第2003/015109号(以後、「特許文献2」と称する。)を参照)、本製造工程においては、このような「フェライトめっき法」とは異なり、めっきの基材となる粉体表面は利用しない。本製造工程においては、フェライトめっきに利用される原料など(例えば、塩化コバルト及び塩化鉄)を100℃以下の溶液中で反応させて、強磁性で結晶性のコバルトフェライトナノ粉体そのものを直接合成する。本願では、この工程(或いは方法)を「コバルトフェライトナノ粉体製造工程」(或いは「コバルトフェライトナノ粉体製造法」)と呼ぶ。
 以下に、スピネル構造を有した「コバルトフェライトナノ粉体製造工程」に関して例示して説明する。
 予め酸性領域に調整した適量の水溶液を容器(本願では、「反応場」とも称する)に入れ、室温大気下、超音波励起しながら、若しくは適切な強度或いは回転数で、機械的撹拌を行いながら、反応液とともにpH調整液を同時に滴下して、酸性からアルカリ性領域に溶液pHを徐々に変化させ、コバルトフェライトナノ粒子を反応場中に生成させる。その後、溶液とコバルトフェライトナノ粉体を分離し、乾燥して平均粉体粒径1nm以上1μm未満のコバルトフェライト粉体を得る。以上の方法は、工程が簡便であるため、コスト的に安価な方法として挙げられる。特に、本発明の実施例で挙げられた例は、全工程が室温でなされており、そのため、この熱源を使用しない製造工程によって、設備費用やランニングコストなどの負担が軽減される。本発明で用いられるコバルトフェライトナノ粉末を製造するための方法は、勿論上記製法に限られるわけではないが、上記製法で用いられる反応開始前の反応場の初期液(本願では、これを「反応場液」とも称する)、反応液、そしてpH調整液に関して、以下に説明を加える。
 なお、仕込む工程で使用する各種成分の組成を、一般的に「仕込み組成」と称するが、本願においては、具体的には、反応場液及び/又は反応液として使用される溶液(即ち、反応場液及び/又は反応液を調製するために仕込む溶液)の組成を「仕込み組成」と称する。そのため、本願において、例えば、「仕込みコバルト組成」(又は「仕込みCo組成」)や「仕込みマンガン組成」(又は「仕込みMn組成」)と称するものは、それぞれ、反応場液及び/又は反応液として使用される溶液(仕込む溶液)に含有されているCo成分やMn成分を意味する。
 反応場液としては、酸性溶液が好ましく、塩酸、硝酸、硫酸、リン酸などの無機酸のほか、金属塩、さらにその複塩や錯塩溶液などを水などの親水性溶媒に溶解した溶液(例えば、塩化鉄溶液や塩化コバルト溶液等)、若しくは、有機酸の水溶液(例えば、酢酸やシュウ酸等)などの親水性溶媒溶液、さらにそれらの組み合わせなども使用可能である。反応場液として、予め反応液を反応場に用意することは効率的にコバルトフェライトナノ粉体の合成反応を進めるのに有効である。pHは-1未満であると、反応場を提供する材質に制限が生じ、また不可避ではない不純物の混入を許してしまう場合があるので、-1以上7未満の間で制御することが望まれる。反応場での反応効率を高め、不要な不純物の溶出、析出を最小限に食い止めるために、特に好ましいpH領域は0以上7未満である。反応効率と収率のバランスがよいpH領域として、さらに好ましくは1以上6.5未満である。反応場としての溶媒は、有機溶媒などのうち親水溶媒も使用できるが、無機塩が十分電離できるように、水が含まれることが好ましい。
 反応液は、塩化鉄若しくは塩化コバルトなどの塩化物、硝酸鉄などの硝酸塩、或いは、Fe成分及び/又はCo成分(任意にM成分を含んでもよい)を含む、亜硝酸塩、硫酸塩、リン酸塩、若しくはフッ化物などの無機塩の水を主体とする溶液でも、場合よっては有機酸塩の水などの親水性溶媒を主体とする溶液も必要に応じて使用可能である。また、それらの組み合わせでもよい。反応液の中には、鉄イオンとコバルトイオンを含むことが必須である。反応液中の鉄イオンについて述べると、二価の鉄(Fe2+)イオンのみの場合と、三価の鉄(Fe3+)イオンとの混合物の場合と、三価の鉄イオンのみの場合の何れでもよいが、Fe3+イオンのみの場合は、M成分元素の二価以下の金属イオンが含まれている必要がある。Coイオンの価数としては、一価、二価及び三価が知られているが、反応液或いは反応場液中においては、二価が反応の均質性の点で特に優れる。
 pH調整液としては、水酸化ナトリウム、水酸化カリウム、炭酸ナトリウム、炭酸水素ナトリウム、水酸化アンモニウムなどのアルカリ溶液や、塩酸などの酸性溶液、及びその組み合わせが挙げられる。酢酸-酢酸ナトリウム混合溶液のようなpH緩衝液の使用やキレート化合物などの添加なども可能である。
 酸化剤は必ずしも必須ではないが、反応場液及び反応液中のFeイオンとして、Fe2+イオンのみが含まれている場合には、必須な成分である。酸化剤の例としては、亜硝酸塩、硝酸塩、過酸化水素水、塩素酸塩、過塩素酸、次亜塩素酸、臭素酸塩、有機過酸化物、溶存酸素水など、及びそれらの組み合わせが挙げられる。大気中や酸素濃度が制御された雰囲気中で撹拌することによって、コバルトフェライトナノ粒子反応場へ連続的に、酸化剤としての働きを持つ溶存酸素が供給されている状況を保ち、反応の制御を行うことも有効である。また、反応場にバブリングするなどして、窒素ガスやアルゴンガスなどの不活性ガスを連続的あるいは一時的に導入し、酸素の酸化作用を制限することによって、他の酸化剤の効果を阻害せず、安定して反応制御を行うこともできる。
 典型的なコバルトフェライトナノ粉体製造法では、以下のような反応機構でコバルトフェライトナノ粒子の形成が進む。コバルトフェライトナノ粒子の核は、反応液中にグリーンラストのような中間生成物を介して、或いは直接生成する。反応液としてFe2+イオンが含まれており、これが既に生成した粉体核、或いはある程度成長した粉体表面のOH基に吸着され、Hを放出する。次いで空気中の酸素や酸化剤、陽極電流(e)などによって酸化反応を行うと、吸着されたFe2+イオンの一部がFe3+イオンに酸化される。液中のFe2+イオン又は、Fe2+及びCo2+イオン(或いは、Co及びM成分イオン)が、既に吸着していた金属イオン上に再び吸着しつつ、加水分解を伴いながら、Hを放出してスピネル構造を有したフェライト相が生成する。このフェライト相の表面には、OH基が存在しているので、再び金属イオンが吸着して、同様のプロセスが繰り返され、コバルトフェライトナノ粒子に成長する。
 この反応機構のなかで、Fe2+とCo2+から直接スピネル構造のフェライトに変化させるためには、FeのpH-電位図における平衡曲線で、Fe2+イオンとフェライトを仕切る線を横切るように、pHと酸化還元電位を調整しながら、(ゆっくり)Fe2+イオンの安定な領域からフェライトが析出する領域に、反応系をずらすのがよい。Co2+は特別な場合を除いて反応初期から、二価の状態であり酸化還元電位変化に対する影響はほとんどなく、多くの場合Feの酸化還元電位の変化により反応(即ち混合溶液からフェライト固相への進行)が記述される。M成分元素のイオンが含まれ、そのイオンの酸化数が変化し反応に関与する場合も、その組成や温度に対応するpH-電位図を用いるか、予測することにより、同様な議論ができる。従って、pH調整剤や酸化剤の種類、濃度、添加方法などの条件を適宜調整しながらフェライト相を生成することが望ましい。
 一般的によく知られているフェライトナノ粉体の製造法では、酸性側で反応液を調整し、一気にアルカリ溶液を添加するなどして反応場を塩基性領域とし、共沈によって微粒子を瞬時に発生させることが多い。Fe成分とCo成分の溶解度積の差により、不均一にならないように配慮されたものと考えることができる。勿論、この方法で調製してもよく、非常に小さなナノ粒子を作製することができるので、本発明の磁性材料のフェライト原料としても使用できる。
 一方、本発明の実施例では、反応液を滴下してコバルトフェライトナノ粉体製造法における原料を反応場に供給しながら、pH調整剤も同時に滴下して、徐々にpHを酸性から塩基性へ変化させることにより、Co成分を着実にFe-フェライト構造中に取り込んでいくように工程を設計している。この工程によれば、コバルトフェライトナノ粉体を製造する段階で、上述のようなメカニズムでフェライトが生成される際に放出されるHが、pH調整液の連続的な反応場への投入により中和されていき、次々にコバルトフェライト粒子の生成や成長が生じる。また、反応初期には、グリーンラストが生じて反応場が緑色になる期間があるが、このグリーンラスト中にCo成分が混在することが重要であり、これが最終的にフェライトに転化した際、格子内にCoが取り込まれ、さらにこの後の還元反応において金属Coにまで還元されることにより、bcc-(Fe,Co)相やfcc-(Fe,Co)相等が形成される。
 上記のほかに、反応を制御するためのその他の因子としては、撹拌と反応温度が挙げられる。
 コバルトフェライトナノ粉体合成反応により生じた微粒子が凝集して、均質な反応を阻害するのを防ぐために、分散は非常に重要であるが、超音波で分散しながら反応励起を同時に行う方法、分散液をポンプで搬送や循環する方法、単に撹拌バネや回転ドラムで撹拌したり、アクチュエータなどで揺動や振動させたりする方法など、反応の制御の目的に応じて、公知の方法の何れか、或いはその組み合わせが用いられる。
 反応温度としては、一般に、本発明で用いるコバルトフェライトナノ粉体製造法では水共存下での反応であるために、大気圧下での水の凝固点から沸点までの0℃以上100℃以下の間が選ばれる。
 本発明では、系全体を高圧下に置くなどして100℃を超える温度領域でコバルトフェライトナノ粉体を合成する方法、例えば超臨界反応法などは、本発明の効果を発揮するコバルトフェライトナノ粒子が形成できる限り、本発明の磁性材料に属する。
 反応の励起方法としては、上記の温度や超音波の他に、圧力や光励起なども有効な場合がある。
 さらに、本発明では、反応液としてFe2+を含む水溶液を用いてコバルトフェライトナノ粉体製造法を適用する場合(特にコバルトフェライトナノ粒子にFeが二価イオンとして混入する条件で反応させる場合)には、Coの含有量が40原子%未満であれば、最終的に生成した本発明の磁性材料のフェライトナノ粉体中にFeの二価イオンが観測されることが重要である。その量はFe2+/Fe3+比で、0.001以上であることが好ましい。この同定法としては、電子線マイクロアナライザー(EPMA)を用いると良い。具体的には、コバルトフェライトナノ粒子の表面をEPMAで分析し、FeLα-FeLβのX線スペクトルを得て、上記2種の材料の差分を取り、Fe2+を含む酸化鉄(例えばマグネタイト)及びFe3+のみの酸化鉄(例えばヘマタイトやマグヘマタイト)標準試料のスペクトルと比較することによりコバルトフェライトナノ粒子中のFe2+イオン量が同定できる。
 このとき、EPMAの測定条件は、加速電圧7kV、測定径50μm、ビーム電流30nA、測定時間1秒/ステップである。
 コバルトフェライトナノ粉体の代表的な不純物相としては、Co-ヘマタイトなどの酸化物、ゲーサイト、アカゲナイト、レピドクロサイト、フェロオキシハイト、フェリヒドライト、グリーンラストなどのオキシ水酸化鉄、水酸化カリウム、水酸化ナトリウムなどの水酸化物があるが、この中で特にフェリヒドライト相、Co-ヘマタイト相を含む場合、これらは還元後にccs-(Fe,Co)相及びその他の第2相を形成するので、必ずしも取り除く必要のない相である。これらのフェリヒドライト相、Co-ヘマタイト相はSEM観察などにおいて、数nmの厚みを持った板状の組織として観察される。しかし、厚みの割に面積の大きい粒子であるため、還元反応過程において大きく不適切な粒成長を助長することがあり、Fe成分、Co成分、酸素以外の不純物も多いため、この量はコバルトフェライトナノ粉体より体積分率で少ないことが望まれる。特に、Fe成分に対するCo成分の原子比が、0.33を超え0.5以下である場合、フェリヒドライト、Co-ヘマタイトを中心とするコバルトフェライトナノ粉体以外の相のCo比がコバルトフェライトナノ粒子より大きくなり、還元時に生じる不均化が制御しにくくなることもあるので、そのような場合には、フェリヒドライト相、Co-フェライト相などの不純物相の凝集具合(特に、数ミクロン程度にまで偏在して不均一にならないようにすること)などに十分注意を要する。なお、上記に関わらず、Coを取り込みやすいフェリヒドライト相、Co-フェライト相の全磁性材料に対する含有量を、上述のCoを含まない不適切な副相を析出させないように、意図して0.01体積%以上33体積%以下までの範囲に制限して共存させることも可能である。これは、コバルトフェライトナノ粉体製造時の制御条件を厳密に保持する必要がないという工業的なメリットがある。
 本発明の原料となるコバルトフェライトナノ粉体におけるFeとCoの組成比は、本発明の目的を達成できれば特に制限はないが、FeとCoの総和に対するCoの含有量は0.01原子%以上75原子%以下であることが望ましく、更に好ましくはFeとCoの総和に対するCoの含有量は1原子%以上55原子%以下である。
 本発明の原料となるコバルトフェライトナノ粉体の平均粉体粒径は、1nm以上1μm未満であることが好ましい。さらに好ましくは、1nm以上100nm以下である。1nm以下であると、還元時の反応が十分に制御できず、再現性に乏しい結果となる。100nmを超えると、還元工程で還元した金属成分の不適切な粒成長が著しくなり、軟磁性材料の場合には、保磁力が上昇してしまう。また1μm以上では、α-Fe相が分離してしまい、この相の中にCoが取り込まれず、本発明の優れた電磁気特性、耐酸化性の乏しい磁性材料しか得られない。
 本発明で使用されるコバルトフェライトナノ粉体は、主に水溶液中で製造を行った場合、デカンテーション、遠心分離、濾過(その中でも特に吸引濾過)、膜分離、蒸留、気化、有機溶媒置換、粉体の磁場回収による溶液分離、又はそれらの組み合わせなどによって水分を除去する。その後、常温、又は300℃以下の高温で真空乾燥させたり、空気中で乾燥させたりする。空気中での熱風乾燥や、アルゴンガス、ヘリウムガス、窒素ガスなどの不活性ガス(但し、本発明において、窒素ガスは、熱処理時の温度領域によっては不活性ガスにならないこともある)若しくは水素ガスなどの還元性ガス、或いはそれらの混合ガス中で熱処理することにより乾燥することもできる。液中の不要成分を除去し、一切熱源を使用しない乾燥方法としては、遠心分離後に上澄みを捨て、さらに精製水中にコバルトフェライトナノ粉体を分散させては遠心分離を繰り返し、最後にアセトンなどの低沸点で高蒸気圧の親水性有機溶媒で置換し、常温真空乾燥させる方法が挙げられる。
(2)還元工程(本願では、「(2)の工程」とも称する。)
 上記方法で製造したコバルトフェライトナノ粉体を還元して、本発明の磁性材料を製造する工程である。この還元工程で均質なコバルトフェライトナノ粉体が不均化反応を起こして、本発明の磁性材料は第1相と第2相に分離する。
 気相中で還元する方法が最も好ましく、還元雰囲気としては、水素ガス、一酸化炭素ガス、アンモニアガス、ギ酸ガスなどの有機化合物ガス及びそれらとアルゴンガス、ヘリウムガスなどの不活性ガスの混合気体や低温水素プラズマ、過冷却原子状水素などが挙げられ、これらを横型、縦型の管状炉、回転式反応炉、密閉式反応炉などに流通したり、還流したり、密閉したりしてヒーター加熱する方法、赤外線、マイクロ波、レーザー光などで加熱する方法などが挙げられる。流動床を用いたりして、連続式に反応させる方法も挙げられる。また、固体であるC(炭素)やCaで還元する方法、塩化カルシウムなどを混合して不活性ガス若しくは還元性ガス中で還元する方法、そして工業的にはAlで還元する方法も挙げられる。何れも、本発明の磁性材料が得られれば、本発明の製造法の範疇に入る。
 しかし、本発明の製造法においては、還元性ガスとして、水素ガス、或いはそれと不活性ガスとの混合ガス中で還元する方法が好ましい。ナノスケールで相分離した本発明の磁性材料を製造するためには、CやCaでの還元では還元力が強すぎて、本発明の軟磁性材料を構成するための反応のコントロールが非常に難しく、また還元後有毒なCOが発生したり、水洗して除かなくてはならない酸化カルシウムが混在したりするなどの問題点があるが、水素ガスによる還元では、一貫してクリーンな状況下で還元処理が行えるからである。
 本発明の材料中の酸素含有量については不活性ガス-融解法で求めるのが一般的であるが、還元前の酸素含有量が判っている場合には、還元前後の重量差から、本発明の材料中の酸素を推定することができる。但し、同時に還元前後に含有量が変化しやすい塩素などのハロゲン元素や、K、Naなどのアルカリ元素、或いは水や有機成分などの揮発性に富む成分が多量に含まれている場合には、これらの元素や成分の含有量を別途同定するのがよい。還元反応前後の重量変化だけでは、酸素含有量を厳密に見積もることができないためである。
 因みに、原料由来のアルカリ金属のうち、例えばKは、450℃で磁性材料内から気化により散逸し始め、900℃以上では、そのほとんどが除去される。従って、還元反応初期においては、その触媒的な働きを利用するために残存した方がよい原料由来のアルカリ金属が、用途によっては製品の段階では残存すると好ましくない場合にあっては、還元条件を適切に選ぶことにより、上記アルカリ金属を最終的に許容される範囲にまで適宜取り除くことができる。還元に有効な効果をもたらしながら、容易に除去できるKなどのアルカリ金属の最終的な含有量の範囲は、下限値は0.0001原子%以上で、上限値は5原子%以下であり、この上限値は、さらに1原子%以下に制御でき、最も精密に制御した場合には0.01原子%とすることができる。勿論、還元条件によっては、さらに検出限界以下にまでKなどのアルカリ金属を低減することも可能である。コバルトフェライトナノ粉体に残存するCl(塩素)などハロゲン元素については、還元雰囲気下では主にHClなどのハロゲン化水素として材料系外に放出される。残存Clなどは450℃以上の還元温度で顕著に減量し始め、CoやK含有量、さらにそれらの還元工程での含有量変化にもよるが、概ね700℃以上の還元温度を選択すれば、材料内部からほぼ完全に除去することができる。
 本発明の還元反応前後の、O成分が主にHOとなって蒸散することによる重量減少は、Co含有量、M成分含有量、酸素量、副相や不純物量、水などの揮発成分量、或いは還元性ガス種などの還元反応条件などにもよるが、還元反応前の重量を100質量%として、通常、0.1質量%以上80質量%以下の間である。
 なお、本発明の実施例の一部のように、SEMなどの写真やEDXをもとに局所的な酸素含有量を求めたり、XRDなどで同定した相を顕微鏡観察像上で特定したりすることもできる。第1相や第2相の酸素含有量やその分布を粗く見積もるのに適した方法である。
 以下に、還元性ガス中で熱処理することにより本発明の磁性材料を製造する方法について詳述する。典型的な還元工程での熱処理は、材料を還元性ガスフロー中で、一種又は二種以上の昇温速度を用いて線形或いは指数関数的に室温から一定温度まで温度上昇させ、直ちに一種又は二種以上の降温速度を用いて線形或いは指数関数的に室温まで降温させることにより、或いは、昇降温過程での昇温若しくは降温中若しくは昇温後の何れかの段階で一定時間(=還元時間)温度を保持する過程(以下、一定温度保持過程という)を加えることにより行われる。特に断らない限り、本発明の還元温度とは、昇温過程から降温過程に切り替わるときの温度、及び一定時間温度を保持する過程における温度のうちの最も高い温度を言う。
 本発明の軟磁性材料の製造法として、コバルトフェライトを水素ガスで還元する方法を選んだ場合、Coの含有量によるが、還元温度は、400℃以上1550℃以下とすることが可能であり、中でも400℃以上1480℃以下の温度範囲を選ぶことが好ましい。総じて、400℃未満の温度では、還元速度が非常に遅く、還元時間が長くなって生産性に乏しくなることがあるためである。さらに、還元時間を1時間以下にしたい場合、還元温度の下限を500℃以上にすることが好ましい。
 1230℃以上1550℃以下で還元を行う際は、Co含有量によって、還元中の磁性材料が溶解することがある。そのため、通常Co含有量が0.01原子%以上15原子%以下の領域であれば、概ね400℃以上1500℃以下の温度範囲を自由に選んで、還元処理を施すことができるが、Co含有量が15原子%を超えて70原子%までの場合、400℃以上1480℃以下の温度を選ぶのが好ましい。
 本発明の磁性材料に関する製造方法として特徴的なのは、本発明の方法によればCoが金属状態まで還元されるので、融点以上、また融点直下での還元反応であっても微細組織の粗大化を招いたり、セラミック容器などリアクターと反応したりすることがあり、この観点からいえば、融点付近以上の温度を還元温度としないのが好ましい。共存するM成分にもよるが、一般に1480℃を超える温度を還元温度に選ばないことが望ましい。
 以上より、還元時間が短く生産性の高い範囲であって、磁性材料が融解しない、本発明の磁性材料に対する好ましい還元温度の範囲は、Co含有量によらず400℃以上1480℃以下であるが、800℃以上1230℃以下の範囲に制御すると、さらに保磁力が小さな本発明の軟磁性材料とすることができるので、この温度範囲は、本発明において高磁気特性の軟磁性材料を製造する上で、特に好ましい。
 同じ温度で還元した場合、還元時間が長いほど還元反応が進む。従って、還元時間が長いほど飽和磁化は高くなるが、保磁力については、還元時間を長くしたり、還元温度を高くしたりしても、必ず小さくなると限らない。還元時間に関しては、所望の磁気特性に応じて、適宜選ぶのが望ましい。
 以上より、本発明の磁性材料の製造法として、コバルトフェライトを水素ガスで還元する方法を選んだ場合、好ましい還元温度の範囲は、400℃以上1480℃以下である。中でも、平均粉体粒径が10nm以上5mm以下の軟磁性のコバルトフェライト粉体を得るという点では、450℃以上1425℃以下の還元温度範囲がより好ましい。
 還元が進んで、コバルトフェライトナノ粒子が粒成長していくが、その際、還元温度によって、もともとのコバルトフェライトナノ粒子のCo含有量に起因して、生成する結晶相である第1相と第2相の結晶構造やCo含有量は多様に変化する。
 従って、昇温過程の昇温速度や反応炉内の温度分布により結晶相の構成が変化していくことになる。
 本発明の磁性材料は、その製造の際の還元工程において、ナノスケールで第1相、第2相が相分離することが望ましい。特に本発明の軟磁性材料の場合は、多様なCo含有量、結晶構造の相が不均化反応によって分離し、しかもそれらの配向性がランダムになっているか、及び/又はナノスケールのCo濃度のゆらぎがあり、それぞれ強磁性結合がなされていることが望ましい。
 本発明のフェライトナノ粉体を水素中還元した場合、昇温過程、一定温度保持過程、降温過程を通じて、不均化反応による相分離現象が夥しい頻度で生じ、その間様々な組成を有した多彩な相が現れて本発明の磁性材料が構成される。特にナノオーダーの微結晶の集合体が、結晶軸の方向が等方的であるか、及び/又は濃度のゆらぎがあるように強磁性結合により一体化され、主にランダム磁気異方性化により結晶磁気異方性が平均化されると、優れた本発明の軟磁性材料が構成される。
 なお、本発明において、800℃を超える高温領域でも、ナノ微細構造を保ちながら適切な粒成長が起きる理由について以下のように推察している。
 原料がコバルトフェライトナノ粉体であり、これが水素還元されて第1相のような金属状態となったとしても、適切な還元条件を選べば、元々の粒形状や組成分布が全く微細構造に反映されずに、組成分布が均質な組織となって結晶粒径が粗大化するような不適切な粒成長は起きていない。このような適切な粒成長が還元反応とともに生じることと、還元による体積減少が通常最大52体積%も起こることを考え合わせると、連晶や骸晶に似た組織を残しながら不均化が進んでいくことが容易に類推できる。さらに、還元反応初期に不均化により相分離した相の還元速度の差も関与しながら、ナノ微細構造を維持しつつ、且つ、ナノ領域内の大きさである程度均質化した高温相からも、降温過程での不均化反応による相分離が主にccs-(Fe,Co)相内で生じて、ナノ粒子やナノ組織が析出することにより、最終的に全体としてナノスケールの非常に微細な不均化構造が構成されるものと考えられる。還元速度については、Co-フェライト相、ウスタイト相などのCoを含む酸化物相では、Co含有量が高いほど早くなる傾向があるため、一度不均化が生じると還元反応速度が材料内で一律でなくなることもナノ構造を保持するのに好都合に働いていると考えている。
 以上の一連の考察は、本発明の磁性材料は融解してしまうと通常その特徴を失うことからも支持される。
(3)徐酸化工程(本願では、「(3)の工程」とも称する。)
 上記還元工程後の本発明の磁性材料はナノ金属粒子を含むので、そのまま大気に取り出すと自然発火して燃焼する可能性が考えられる。従って必須の工程ではないが、必要に応じて、還元反応の終了後直ちに徐酸化処理を施すことが好ましい。
 徐酸化とは、還元後のナノ金属粒子の表面を酸化し不働態化する(ウスタイト、Co-フェライトなどの表面酸化層を設ける)ことによって、急激な酸化を抑制することである。徐酸化は、例えば常温付近~500℃内で、酸素ガスのような酸素源を含むガス中で行うが、大気より低酸素分圧の不活性ガス混合ガスを使用する場合が多い。500℃を超えると、どのような低酸素分圧ガスを用いても、表面にnm程度の薄い酸化膜を制御して設けることが難しくなる。また、一旦真空に引いた後、反応炉を常温で徐々に開放して酸素濃度を上げていき、急激に大気に触れさせないようにする徐酸化方法もある。
 本願では、以上のような操作を含む工程を「徐酸化工程」と称する。この工程を経ると次の工程である成形工程でのハンドリングが非常に簡便になる。
 この工程の後、酸化膜を再び取り除く方法としては、成形工程を水素ガスなどの還元雰囲気下で実施する方法が挙げられる。但し、徐酸化工程における表面酸化反応は完全な可逆反応ではないので、表面酸化膜の全てを除去することはできない。
 勿論、還元工程から成形工程までのハンドリングをグローブボックスのような無酸素状態で操作できるように工夫した装置で行う場合は、この徐酸化工程を必要としない。
 逆に、Lの大きさが十分な本発明の軟磁性材料を成形する場合は、徐酸化工程を積極的に利用し、各粉体の表面に酸化膜を形成したまま、耐酸化性を向上させたり、電気抵抗率を向上させたり、さらに保磁力を安定化させたりすることも有効である。
 さらに、Co含有量が多く、還元温度や時間が十分長くて、粒成長した本発明の磁性材料粉体の場合、この徐酸化工程を経ず、大気中にそのまま解放しても、安定な不動態膜が形成される場合があって、この場合は、特段な徐酸化工程を必要としない。この場合は、大気に開放すること自体が徐酸化工程と見なせる。
 徐酸化により、耐酸化性や磁気安定性を確保する場合、その酸化層や不動態膜の層によって強磁性結合が切断される場合があるので、なるべく粒成長を起こしてから徐酸化を行う方が好ましい。そうでない場合は、上述の通り徐酸化工程を経ず、次の成形工程を行うことが好ましく、脱酸素或いは低酸素プロセスにより、還元工程と成形工程を連続させることが望ましい。
(4)成形工程(本願では、「(4)の工程」とも称する。)
 本発明の磁性材料は、第1相と第2相が、直接、或いは金属相若しくは無機物相を介して連続的に結合し、全体として塊状を成している状態である磁性材料(即ち、固形磁性材料)として利用される。本発明の磁性材料粉体は、そのもののみ固化するか、又は金属バインダや、他の磁性材料や、樹脂などを添加して成形するなどして、各種用途に用いる。なお、(2)の工程後、或いは更に(3)の工程後の磁性材料粉体の状態で、すでに第1相と第2相が、直接、或いは、金属相若しくは無機物相を介して連続的に結合されている場合があって、この場合は本成形工程を経ずとも固形磁性材料として機能する。
 本発明の磁性材料のみを固化する方法としては、型に入れ冷間で圧粉成形して、そのまま使用したり、或いは続いて、冷間で圧延、鍛造、衝撃波圧縮成形などを行って成形したりする方法もあるが、多くの場合、50℃以上の温度で熱処理しながら焼結して成形を行う。加圧せずにそのまま、熱処理をすることにより焼結する方法を常圧焼結法という。熱処理雰囲気は非酸化性雰囲気であることが好ましく、アルゴン、ヘリウムなどの希ガスや窒素ガス中などの不活性ガス中で、或いは水素ガスを含む還元性ガス中で熱処理を行うと良い。500℃以下の温度条件なら大気中でも可能である。また、常圧焼結のように、熱処理雰囲気の圧力が常圧の場合のみならず、200MPa以下の加圧気相雰囲気中での焼結でも、さらには真空中の焼結でも構わない。
 熱処理温度については、50℃未満で行われる常温成形のほか、加圧成形では50℃以上1480℃以下、常圧焼結では400℃以上1480℃以下の温度が好ましい。1300℃を超える温度では、材料が溶解する恐れがあり、組成範囲を慎重に選ぶ必要がある。従って、成形における特に好ましい温度領域は50℃以上1300℃以下である。
 この熱処理は圧粉成形と同時に行うこともでき、ホットプレス法やHIP(ホットアイソスタティックプレス)法、さらには通電焼結法、SPS(放電プラズマ焼結)法などの加圧焼結法でも、本発明の磁性材料を成形することが可能である。なお、本発明に対する加圧効果を顕著とするためには、加熱焼結工程における加圧力を0.0001GPa以上10GPa以下の範囲内とするのが良い。0.0001GPa未満であると、加圧の効果が乏しく常圧焼結と電磁気特性に変わりがないため、加圧焼結すると生産性が落ちる分不利となる。10GPaを超えると、加圧効果が飽和するので、むやみに加圧しても生産性が落ちるだけである。
 また、大きな加圧は磁性材料に誘導磁気異方性を付与し、透磁率や保磁力が制御すべき範囲から逸脱する可能性がある。従って、加圧力の好ましい範囲は0.001GPa以上2GPa以下、さらに好ましくは0.01GPa以上1GPa以下である。
 ホットプレス法の中でも、圧粉成形体を塑性変形するカプセルの中に仕込み、1軸~3軸方向から、大きな圧を掛けながら、熱処理してホットプレスする超高圧HP法は、不要な過度の酸素の混入を阻止することが可能である。一軸圧縮機を用い超硬やカーボン製の金型中で加圧熱処理するホットプレス法と異なり、タングステンカーバイド超硬金型を用いても難しい2GPa以上の圧を金型の破損などの問題なく材料に加えることができ、しかも圧力でカプセルが塑性変形し内部が密閉されることより大気に触れず成形できるからである。
 成形する前に、粉体粒径を調整するために、公知の方法を用いて、粗粉砕、微粉砕又は分級をすることもできる。
 粗粉砕は、還元後の粉体が数mm以上の塊状物であった場合、成形前に実施する工程、或いは成形の後、再び粉体化する際に行う工程である。ジョークラッシャー、ハンマー、スタンプミル、ローターミル、ピンミル、コーヒーミルなどを用いて行う。
 さらに、粗粉砕の後、ふるい、振動式或いは音波式分級機、サイクロンなどを用いて粒度調整を行うことも、より成形時の密度や成形性の調節を行うために有効である。粗粉砕、分級の後、不活性ガスや水素中で焼鈍を行うと構造の欠陥や歪みを除去することができ、場合によっては効果がある。
 微粉砕は、還元後の磁性材料粉体、或いは成形後の磁性材料を、サブミクロン~数十μmに粉砕する必要がある場合に実施する。
 微粉砕の方法としては上記粗粉砕で挙げた方法のほか、回転ボールミル、振動ボールミル、遊星ボールミル、ウエットミル、ジェットミル、カッターミル、ピンミル、自動乳鉢などの乾式や湿式の微粉砕装置及びそれらの組合せなどが用いられる。
 本発明の固形磁性材料の製造方法の典型例としては、(1)の工程によりコバルトフェライトナノ粉体を製造し、続いて(2)の工程で還元した後、(3)の工程→(4)の工程、或いは(4)の工程のみで成形する場合がある。特に好ましい製造法の一つとして、(1)の工程で例示した湿式法でコバルトフェライトナノ粉体を調製してから、(2)の工程で示した水素ガスを含む方法で還元し、(3)の工程で示した常温で低酸素分圧に晒す徐酸化を行った後、(4)の工程で示した常圧又は加圧での焼結法により成形する工程、特に、(3)の工程として材料粉体表面の脱酸素を行った後、(4)の工程として更なる材料中の酸素混入を避けるため水素中で成形する工程を用いる製造法が挙げられる。本固形磁性材料は、0.5mm以上の厚みに成形でき、また切削加工及び/又は塑性加工により、任意の形状に加工することができる。
 上記(1)の工程→(2)の工程、(1)の工程→(2)の工程→(3)の工程、(1)の工程→(2)の工程→後述の(5)の工程、(1)の工程→(2)の工程→(3)の工程→後述の(5)の工程で得た磁性材料粉体、又は、以上の工程で得た磁性材料粉体を(4)の工程で成形した磁性材料を再び粉砕した磁性材料粉体、さらに、以上の工程で得た磁性材料粉体を後述の(5)の工程で焼鈍した磁性材料粉体を、高周波用の磁性シートなどの樹脂との複合材料に応用する場合には、熱硬化性樹脂や熱可塑性樹脂と混合した後に圧縮成形を行ったり、熱可塑性樹脂と共に混練した後に射出成形を行ったり、さらに押出成形、ロール成形やカレンダ成形などを行ったりすることにより成形する。
 シートの形状の種類としては、例えば電磁ノイズ吸収シートに応用する場合、厚み5μm以上10mm以下、幅5mm以上5m以下、長さは0.005mm以上1m以下の圧縮成形によるバッチ型シート、ロール成形やカレンダ成形などによる各種ロール状シート、A4版を初めとする各種サイズを有した切削若しくは成形シートなどが挙げられる。
(5)焼鈍工程
 本発明の磁性材料は、第1相と第2相を有し、その一方或いは双方の結晶粒径がナノの領域にある場合が典型的である。
 各工程で生じる結晶の歪みや欠陥、非酸化の活性相の安定化など、様々な目的で焼鈍を行うことは、本発明の目的を阻害しない限りにおいて、好ましいこともある。この本発明の目的を阻害しないとは、焼鈍により、例えば、不適切な粒成長が生じて、ナノ結晶が粗大化したり、透磁率を適切に調整するために必要であった、結晶境界付近の磁気異方性を消失してしまったりすることで、逆に保磁力が大きくなったり、本発明の低透磁率の実現を阻害したりすることをしないことをいう。
 例えば、(1)のコバルトフェライトナノ粉体製造工程後に、含有水分などの揮発成分の除去を目的とした乾燥と同時に安定した還元を行うため、後工程における不適切な粒成長の阻止や格子欠陥を除去するなどの目的で、数nm程度の微細粒子成分を熱処理する、いわゆる予備熱処理(焼鈍)が行われることがある。この場合、大気中、不活性ガス中や真空中で50℃以上500℃以下程度で焼鈍することが好ましい。
 また、(2)の還元工程後に、粒成長や還元による体積減少で生じた結晶格子や微結晶の歪みや欠陥を除去することで、本発明の軟磁性材料の保磁力を低減させることができる。この工程の後、粉体状のままで使用する用途、例えば粉体を樹脂やセラミックなどで固めて使用する圧粉磁心などの用途では、この工程後、或いはこの工程後に粉砕工程などを挟んだ後で、適切な条件で焼鈍すると電磁気特性を向上させることができることがある。
 また、(3)の徐酸化工程では、焼鈍が、表面酸化により生じた表面、界面、境界付近の歪みや欠陥の除去に役立つことがある。
 (4)の成形工程後における焼鈍が、最も効果的で、予備成形や圧縮成形、ホットプレスなど、その後の切削加工及び/又は塑性加工などで生じる結晶格子、微細構造の歪み、欠陥を除去するために積極的にこの工程後に焼鈍工程を実施することがある。この工程では、それよりも前にある工程で、積算された歪や欠陥などを一気に緩和させることも期待できる。さらには、前述した切削加工及び/又は塑性加工後に、(1)~(4)の工程、(2)~(4)の工程、(3)及び(4)の工程、さらに(4)の工程での歪みなどを、或いは積算された歪などをまとめて、焼鈍することもできる。
 焼鈍の雰囲気としては、真空中、減圧中、常圧中、200MPa以下の加圧中の何れも可能で、ガス種としては、アルゴンのような希ガスを代表とする不活性ガス、窒素ガス、水素ガスなどの還元性ガス、さらには、大気中など酸素源を含む雰囲気などが可能である。焼鈍温度は常温以上1350℃以下、場合によっては、液体窒素温度~常温の低温での処理も可能である。焼鈍工程の装置としては、還元工程や成形工程で用いる装置を利用でき、また公知の装置を組み合わせて実施することも可能である。
 以下、実施例などにより本発明を更に具体的に説明するが、本発明はこれらの実施例などにより何ら限定されるものではない。
 本発明の評価方法は以下の通りである。
(I) 飽和磁化及び保磁力
 磁性粉体の場合、ポリプロプレン製の円筒ケース(内径2.4mm、粉体層の厚みはほぼ1.5mm)に仕込み、円盤状成形体の場合は直径3mm、厚み約1mmの円盤状に成形し、振動試料型磁力計(VSM)を用いて外部磁場が-7.2~7.2MA/mの領域で磁気曲線のフルループを描かせ、室温の飽和磁化(emu/g)及び保磁力(A/m)の値を得た。飽和磁化は5NのNi標準試料で補正し、飽和漸近則により求めた。保磁力は低磁場の領域の磁場のずれを、常磁性体のPd及び/又はGd標準試料を用いて補正した。また、保磁力については、ヘルムホルツ型コイルを用いたVSM法によっても測定を行い、上記測定値の妥当性を確認した。この測定において、7.2MA/mまで着磁した後、零磁場までの磁気曲線上に滑らかな段差、変曲点が見られない場合、「1/4メジャーループ上の変曲点」が「無」いと判断した。
 因みに、以下に示す本実施例においてはいずれも、「1/4メジャーループ上の変曲点」が「無」いことを確認しており、強磁性結合が認められることがわかった。
 なお、測定磁場の方向は、磁性粉体の場合には軸方向、円盤状成形体の場合にはラジアル方向である。
 直方体状成形体の磁気特性は、試料サイズ15mm×5mm×1mmの固形磁性材料を微小単板測定冶具が備わった直流磁化測定機(直流BHループトレーサー)を用いて測定した。直方体状成形体の磁化測定については、外部磁場150Oeにおける磁化を飽和磁化として、その値をT(テスラ)単位で表した。
(II) 耐酸化性
 常温、大気中に一定期間t(日)放置した磁性粉体の飽和磁化σst(emu/g)を上記の方法で測定し、初期の飽和磁化σs0(emu/g)と比較して、その低下率を、
Δσ(%)=100×(σs0-σst)/σs0の式
により評価した。Δσの絶対値が0に近いほど高い耐酸化性能を有すると判断できる。本発明では、Δσの絶対値が1%以下の磁性粉体を、期間t日において耐酸化性が良好と評価した。なお、本発明において、t(日)は30以上である。
(III) 電気抵抗率
 試料サイズ3mmφ×1mmの円盤状成形体の場合はファン・デル・ポー(van der Pauw)法で測定した。
 試料サイズ15mm×5mm×1mmの直方体状成形体の場合は、四端子法で測定した。さらに、ファン・デル・ポー法でも測定し、上記測定値の妥当性を確認した。
(IV) Fe含有量、Co含有量、酸素含有量、ccs-(Fe,Co)相体積分率
 粉体やバルクの磁性材料におけるFe及びCo含有量は、蛍光X線元素分析法により定量した。磁性材料中の第1相や第2相のFe及びCo含有量は、FE-SEMで観察した像をもとに、それに付属するEDXにより定量した。また、ccs-(Fe,Co)相の体積分率については、XRD法の結果とともに上記FE-SEMを用いた方法を組み合わせて画像解析により定量した。観察された相が、ccs-(Fe,Co)相と酸化物相のいずれであるかを区別するために、SEM-EDXを用いた酸素特性X線面分布図を主として使用した。さらに、(I)で測定した飽和磁化の値からも、ccs-(Fe,Co)相体積分率の値の妥当性を確認した。
 還元工程後の磁性材料の酸素量は、還元後の重量の減少によっても確認した。さらにSEM-EDXによる画像解析を各相の同定に援用した。
 K量については、蛍光X線元素分析法により定量した。
(V) 平均粉体粒径
 磁性粉体を走査型電子顕微鏡(SEM)又は透過型電子顕微鏡(TEM)で観察して粉体粒径を決定した。十分全体を代表する部分を選定し、n数は100以上として、有効数字1桁で求めた。
 レーザー回折式粒度分布計を併用する場合は、体積相当径分布を測定し、その分布曲線より求めたメジアン径(μm)で評価した。但し、求められたメジアン径が500nm以上1mm未満であるときだけその値を採用したが、上記顕微鏡を用いる方法で見積もった粉体粒径と有効数字1桁で一致することも確認した。
(VI) 平均結晶粒径
 磁性材料を走査型電子顕微鏡(SEM)又は透過型電子顕微鏡(TEM)で観察し、結晶境界で囲まれた部分の大きさを有効数字1桁で求めた。測定領域は十分全体を代表する部分を選定し、n数は100以上とした。結晶粒径は、全体の平均値、第1相及び第2相のみの平均値をそれぞれ別途計測して決定した。
(VII) 結晶子サイズ
 X線回折法により測定したbcc相の(200)回折線又はfcc相の(200)回折線の線幅に対して、シェラーの式をあてはめ、無次元形状因子を0.9として、結晶子サイズを求めた。
[実施例1及び比較例1]
 CoCl・6HO(塩化コバルト(II)六水和物)とFeCl・4HO(塩化鉄(II)四水和物)の水溶液を別途調製し、これらを混合して50.3mMに調整したCoCl及びFeClの混合水溶液をリアクターに入れて反応場液とした。なお、上記混合水溶液中に含まれるコバルトの組成、即ち、仕込みコバルト組成を4原子%とした。続いて、大気中にて激しく撹拌しながら、660mMの水酸化カリウム水溶液(pH調整液)を滴下して、系のpHを4.57以上10.1以下の範囲で酸性側からアルカリ性側に徐々に移行して調整し、同時に168mMのFeClとCoClの混合水溶液を反応液(反応液中のコバルトの組成(仕込みコバルト組成)は4原子%)として滴下して15分間反応させた後、pH調整液と反応液の滴下を中止して、さらに15分間撹拌操作を続けた。続いて、遠心分離により固形成分を沈殿させ、精製水に再度分散し遠心分離を繰り返すことにより、上澄み溶液のpHを5.40として、最後にエタノール中に沈殿物を分散した後、遠心分離を行った。
 このあと、一昼夜常温にて真空乾燥を行うことにより、平均粉体粒径が20nmの(Fe0.96Co0.04組成(XRFにより測定)を有したCo-フェライトナノ粉体を得た。このナノ粉体をX線回折法により解析した結果、立方晶のCo-フェライト相が主な相であり、不純物相として菱面体晶のCo-ヘマタイト相が僅かに含有されていることがわかった。また、該ナノ粉体のSEM像を図2に示した。この写真において、球状に写る粉体がCo-フェライトナノ粉体であり、僅かに見られる数nmの厚みの板状粉体が不純物相である。従って、この粉体にはccs-(Fe,Co)相は含まれていないことが確認された。これを比較例1の粉体とし、その磁気特性などを表1に示した。
 このCo-フェライトナノ粉体を、アルミナ製のるつぼに仕込み、水素ガス中、300℃までは10℃/minで昇温し、300℃から1100℃までは12℃/minで昇温した後、1100℃で1時間還元処理を行った。この後400℃までは110℃/minで降温し、400℃から室温までは40分をかけて放冷した。続いて20℃にて、酸素分圧1体積%のアルゴン雰囲気中で1時間徐酸化処理を行い、コバルトと鉄の含有量比が、Fe96.0Co4.0組成の磁性材料粉体を得た。この磁性材料全体に対するO含有量は0.1原子%以下であり、K含有量も0原子%であった。また、このFe-Co磁性材料粉体の平均粉体粒径は30μmであった。この磁性材料に関する解析は以下の方法により行い、この磁性材料を実施例1とした。
 得られた磁性材料をX線回折法等で評価した結果、bcc相であるα-(Fe,Co)相が主成分であることが確認された。また、この相よりもCo含有量の高いα-(Fe,Co)相の存在も確認された。これにより、上記bcc相であってCo含有量が低いα-(Fe,Co)相が第1相に相当し、上記bcc相であってCo含有量が高いα-(Fe,Co)相に相当することを確認した。
 これらの第2相を含め、全体のbcc相の体積分率を見積もると99体積%以上であることがわかった。
 また、この磁性材料粉体を磁性材料の局所的なCo含有量や不均化の存在や度合を知るのに適しているFE-SEM/EDX法によっても観察した(倍率は2万倍とした。)。その結果、図3に示したように、本磁性材料の各相におけるCoの含有量(図の数値は、各相におけるCo含有量で、各相のCoとFeの総和に対するCoの原子比の値を百分率で表したものである)は、4.06原子%以上10.06原子%以下と大きく不均化して分布していることがわかった。なお、図3には、一つのα-(Fe,Co)相と見られる領域の中にも10nmオーダーの間隔で湾曲した曲線状の無数の結晶境界が観察された。よって、α-(Fe,Co)相の領域の中にも、Co含有量で区別できる相、例えば、Co含有量が4.06原子%のα-(Fe,Co)相に対してCo含有量が、その相よりも1.1倍以上10倍以下の範囲内の2.5倍で、更に1原子%以上100原子%以下の範囲内の10.06原子%のα-(Fe,Co)相も存在していること、即ち、α-(Fe,Co)相に関して、第1相以外に第2相に相当する相も存在していることが、この結果からも明らかになった。
 更に、図3とは場所を変えた視野で20点の測定点で同様の計測を行ったところ、各相におけるCo含有量は3.50原子%以上4.05原子%以下と大きく不均化して分布しており、Co含有量が3.50原子%のα-(Fe,Co)相に対してCo含有量がその相よりも1.1倍以上10倍以下の範囲内の1.15倍で、しかも1原子%以上100原子%以下の範囲内の4.05原子%のα-(Fe,Co)相も存在していることを確認した(図示せず)。
 この2つの視野の合計40点で計測した各相全体の結果から、本実施例によれば、3.50原子%以上10.06原子%以下の範囲で大きく不均化して分布していると言える。なお、これらの40相のCo含有量の平均値は、4.97原子%となり、上記に示したXRF測定値であるCo含有量の4原子%よりも高く、さらに視野を増やしていくと、4原子%よりもCo含有量が低い第1相の存在が予想され、全体としてさらに大きな不均化が起きていると推察される。
 この粉体(磁性材料)中のCo、Fe、O、Kの各成分含有量は、磁性材料全体に対して、Co含有量は3.9原子%以上4.0原子%未満、Fe含有量は96.0原子%で、O含有量は0原子%超0.1原子%以下で、K含有量は0原子%であった。また、この磁性材料粉体の平均粉体粒径は50μmであった。
 この磁性材料全体の平均結晶粒径は、90nmであった。第1相及び第2相の結晶粒径は、それぞれ100nm及び70nmであった。また、75万倍の倍率で上記結晶境界付近の観察を行った結果、これらの結晶境界付近には異相が存在していないことを確認した。
 この磁性材料の飽和磁化は、223.9emu/gであり、α-Feの質量磁化(218emu/g)を凌ぐ飽和磁化が得られるという本発明の特徴が確認できた。また、保磁力は92.4A/mであり、4分の1メジャーループ上に変曲点はなかった。
 従って、実施例1の磁性材料は保磁力が800A/m以下なので、軟磁性材料であることが確認された。以上の本実施例の相、結晶子サイズ及び磁気特性の測定結果を表1に示した。
[比較例2~4]
 Co成分(塩化コバルト水溶液)を添加しない以外は実施例1と同様な方法で、フェライトナノ粉体を作製した。
 このフェライトナノ粉体を、還元条件を450℃で1時間(比較例2)、同温度で4時間(比較例3)、550℃で1時間(比較例4)とする以外は、実施例1と同様な方法で、Fe金属粉体を作製した。
 これらの平均粉体粒径は、100nm(比較例2)、2μm(比較例3)及び2μm(比較例4)であった。また、磁気特性の測定結果は表1に示した。
[実施例2~10、比較例5~13]
 仕込みCo組成を1原子%(比較例5)、2原子%(比較例6)、8原子%(比較例7)、10原子%(比較例8)、15原子%(比較例9)、20原子%(比較例10)、33原子%(比較例11)、50原子%(比較例12)及び75原子%(比較例13)に変更する以外は比較例1と同様な方法で、フェライトナノ粉体を作製した。このナノ粉体をX線回折法により解析した結果、立方晶のCo-フェライト相が主な相であり、不純物相として菱面体晶のCo-ヘマタイト相が僅かに含有されていることがわかった。従って、この粉体にはccs-(Fe,Co)相は含まれておらず、これを比較例5~13の粉体とし、その磁気特性などを表1に示した。これらの仕込み量はXRFから得られたCo含有量と%の位まで一致した。
 これらのフェライトナノ粉体を、実施例1と同様な方法で処理し、磁性材料粉体を作製した(実施例2~10)。
 実施例2の粉体中のCo、Fe、O、Kの各成分含有量は、磁性材料全体に対して、Co含有量は1.0原子%、Fe含有量は98.9原子%、O原子含有量は0.1原子%であった。K原子含有量は0原子%であった。また、この磁性材料粉体の平均粉体粒径は30μmであった。
 実施例3~10のO原子含有量は0.1原子%、K原子含有量は0原子%であった。
 これらの試料の粒径及び磁気特性の測定結果は表1に示した。
[実施例11]
 MnCl・4HO(塩化マンガン(II)四水和物)、CoCl・6HO(塩化コバルト(II)六水和物)とFeCl・4HO(塩化鉄(II)四水和物)の水溶液を別途調製し、これらを混合して50.3mMに調整したMnCl、CoCl及びFeClの混合水溶液をリアクターに入れて反応場液とした。なお、上記混合水溶液中に含まれるコバルトとマンガンの組成、即ち、仕込みコバルト組成と仕込みマンガン組成をそれぞれ4原子%と0.1原子%とした。続いて、大気中にて激しく撹拌しながら、660mMの水酸化カリウム水溶液(pH調整液)を滴下して、系のpHを4.69以上9.32以下の範囲で酸性側からアルカリ性側に徐々に移行して調整し、同時に168mMのFeClとCoClの混合水溶液を反応液(反応液中のコバルトの組成(仕込みコバルト組成)は4原子%、反応液中のマンガンの組成(仕込みマンガン組成)は0.1原子%)として滴下して15分間反応させた後、pH調整液と反応液の滴下を中止して、さらに15分間撹拌操作を続けた。続いて、遠心分離により固形成分を沈殿させ、精製水に再度分散し遠心分離を繰り返すことにより、上澄み溶液のpHを5.99として、最後にエタノール中に沈殿物を分散した後、遠心分離を行った。
 このフェライトナノ粉体を、実施例1と同様な方法で処理し、磁性材料粉体を作製した。
 この磁性材料の飽和磁化は219.2emu/g、保磁力は224A/mであり、4分の1メジャーループ上に変曲点はなかった。なお、本磁性材料の飽和磁化はα-Feの質量磁化(218emu/g)を凌ぐ値を示した。
 実施例11の材料を、磁性材料の局所的なCo含有量や不均化の存在や度合を知るのに適しているFE-SEM/EDX法によって観察した。観察は、実施例1と同様なやり方で行った。その結果、本磁性材料の各相におけるCoの含有量は、3.10原子%以上5.86原子%以下と大きく不均化して分布していることがわかった。なお、図1(特に図1(B))に示すとおり、実施例11のSEM像には、一つのα-(Fe,Co)相と見られる領域の中にも10nmオーダーの間隔で湾曲した曲線状の無数の結晶境界が観察された。よって、α-(Fe,Co)相の領域の中にも、Co含有量で区別できる相、例えば、Co含有量が3.10原子%のα-(Fe,Co)相に対してCo含有量が、その相よりも1.1倍以上10倍以下の範囲内の1.9倍であり、更に1原子%以上100原子%以下の範囲内の5.86原子%のα-(Fe,Co)相も存在していること、即ち、α-(Fe,Co)相に関して、第1相以外に第2相に相当する相も存在していることが、この結果からも明らかになった。
 この磁性材料全体の平均結晶粒径は、90nmであった。第1相及び第2相の結晶粒径は、それぞれ100nm及び70nmであった。また、75万倍の倍率で上記結晶境界付近の観察を行った結果、これらの結晶境界付近には異相が存在していないことを確認した。
 以上の本実施例の相、結晶子サイズ及び磁気特性の測定結果を表2に示した。
[実施例12~17]
 仕込みMn組成(仕込みマンガン組成)、仕込みCo組成(仕込みコバルト組成)を表2に記載されているとおりに変更する以外は、比較例1と同様な方法でフェライトナノ粉体を作製し、実施例11と同様な方法で処理して、磁性材料粉体を作製した。これらのCo仕込み量に関しては、XRFから得られたCo含有量と%の位まで一致することを確認した。
 これらの磁性粉体の相、結晶子サイズ及び磁気特性の測定結果は表2に示した。
 なお、図4には実施例1~17の飽和磁化と保磁力の測定結果を、仕込みコバルト組成に対してまとめた。図4中●、■は、それぞれCoのみを含有する本発明の磁性材料の飽和磁化(emu/g)、保磁力(A/m)の値であり(実施例1~10)、〇、□は、それぞれCoに加えMnを0.1原子%含有する本発明の磁性材料の飽和磁化(emu/g)、保磁力(A/m)の値を示している(実施例11~17)。
 表1~2に示す通り、実施例1~9及び11~16は、本発明の磁性材料の大きな特徴であるα-Feの質量磁化(218emu/g)を上回る飽和磁化を示した。
 表1~2に示す通り、実施例1~8及び10、CoにMnを共存させた全ての実施例11~17の磁性材料は保磁力が800A/m以下なので、軟磁性材料であることが確認された。よって、Mnの共存効果の一つとして、磁性材料の保磁力を軟磁性材料領域の低い値に留めて安定化させることが可能なことがわかった。
 この磁性材料全体の平均結晶粒径は、80nmであった。第1相及び第2相の結晶粒径は、それぞれ50nm及び60nmであった。また、75万倍の倍率で上記結晶境界付近の観察を行った結果、これらの結晶境界付近には異相が存在していないことを確認した。
 また、本発明の実施例で得られた幾つかの磁性粉体の飽和磁化の変化率Δσ(%)(tは60とした)を調べたところ、-0.36(実施例8)、-3.85%(実施例12)及び-5.27%(実施例13)となることを確認した。Δσがいずれも負の値を示したという事実は、それぞれの磁性粉が作製直後に比べ、常温放置後、飽和磁化が向上していることを意味する。他方、これらの値と比較して、Coを含まない比較例2、3及び4のt=60におけるΔσ(%)の値は、5.4%、19.0%、21.3%であって、いずれも負の値を示さないことを確認した。これらの結果から、本実施例の金属粉体の耐酸化性は、t=60において、極めて良好であることがわかった。
[実施例18]
 還元温度を550℃とする以外は、実施例5と同様な方法で本発明の磁性粉体を得た。実施例18の磁性材料の保磁力は1670A/mであり、800A/mを超え40kA/m以下の値であるから、本発明の半硬磁性材料であることがわかった。また、飽和磁化は208.1emu/gと既存の半硬磁性材料の中でも非常に高い値であり、角形比も良い材料であった。
 実施例18の磁性粉体の相、結晶子サイズ及び磁気特性の測定結果は表1に示した。第2相として、Coフェライト相が僅かに含まれることがXRD法による解析でわかった。
 Co含有量10原子%のCo-フェライト粉体を1100℃で還元した実施例5の磁性材料に対して、550℃で還元した実施例18の磁性材料の結晶子サイズは約2倍であり、また保磁力は5.7倍であることを確認した。同じCo含有量を有する磁性粉体において、結晶子サイズが大きいほど、保磁力が小さくなる関係があることがわかった。
[実施例19]
 比較例1と同様にして、(Fe0.669Co0.330Mn0.001フェライトナノ粉体を作製した。これに、シリカ粉末を混合し、実施例1と同様に還元反応を行うことにより、粉体粒径0.5μmのFe65.7Co32.3Si1.9Mn0.1磁性材料粉体を得た。
 第1相、第2相、全体の結晶粒径は300nmであり、結晶子サイズは約60nmであった。また、ccs相体積分率は99%以上であり、この磁性材料全体に対するO含有量は0.8原子%、K含有量は0であった。
 この磁性材料粉体を磁性材料の局所的なCo含有量及び不均化の存在や度合を知るのに適しているFE-SEM/EDX法によって、実施例1と同様に評価した結果、α-(Fe,Co)相の領域の中にも、第1相であるα-(Fe,Co)相とCo含有量で区別できる相、1.1倍以上10倍以下で、2原子%以上100原子%以下のα-(Fe,Co)相も存在していること、即ち、α-(Fe,Co)相に関して、第1相以外に第2相に相当する相も存在していることが明らかになった。
 この磁性材料の飽和磁化は、253.7emu/gであり、bcc-Feの質量磁化(218emu/g)を上回る巨大な飽和磁化を実現していることが判明した。また、保磁力は2176A/mであり、4分の1メジャーループ上に変曲点はなかった。
 なお、本実施例の上記特性は、表中には示していない。
 従って、実施例19の磁性材料は保磁力が800A/mを超え40kA/m以下なので、本発明の半硬磁性材料であることが確認された。
[実施例20]
 実施例19の磁性材料粉体を15mm×5mmのタングステンカーバイド製超硬金型に仕込み、大気中、室温、1GPaの条件で冷間圧縮成形を行った。
 次いで、この冷間圧縮成形体をアルゴン気流中、300℃まで10℃/minで昇温し、300℃で15分保持した後、300℃から900℃まで10℃/minで昇温した後、直ちに400℃まで75℃/minで降温し、400℃から室温までは40分をかけて放冷した。この常圧焼結を施すことにより、15mm×5mm×1mmの本発明の直方体状固形磁性材料を得た。
 この固形磁性材料の密度は5.95g/cmであった。直流磁化測定装置で得た飽和磁化及び保磁力は、1.00T及び1119A/mであり、1/4メジャーループ上に変曲点はなかった。
 また、本固形磁性材料の電気抵抗率は3.7μΩmであった。
 本実施例により、本発明の固形磁性材料は、その特徴である1.5μΩmより電気抵抗率が高く、さらに既存材料である、例えば純鉄の0.1μΩmや電磁鋼板の0.5μΩmと比べ、1桁程度高い電気抵抗率を有することがわかった。
 なお、本実施例の上記特性は、表中には示していない。
[実施例21]
 実施例11の磁性材料粉体を3mmφのタングステンカーバイド製超硬金型に仕込み、実施例20と同様な方法で、3mmφ×1mmの本発明の円盤状固形磁性材料を得た。
 この固形磁性材料の密度は7.31g/cmであって、飽和磁化及び保磁力は、2.07T及び60.48A/mであり、1/4メジャーループ上に変曲点はなかった。
 従って、実施例21の磁性材料は保磁力が800A/m以下なので、本発明の軟磁性材料であることが確認された。
 また、本固形磁性材料の電気抵抗率は1.8μΩmであった。
 本実施例により、本発明の固形磁性材料は、その特徴である1.5μΩmより電気抵抗率が高く、さらに既存材料である、例えば純鉄の0.1μΩmと比べ1桁以上高い電気抵抗率を有し、電磁鋼板の0.5μΩmと比べ3~4倍もの電気抵抗率を有することがわかった。
 なお、本実施例の上記特性は、表中には示していない。
 また、上記実施例1~21と比較例1~13の結果に鑑みて、本磁性材料の電気抵抗率は、既存の一般的な金属系磁性材料よりも高い1.5μΩm以上を有すると推認可能なことから、本磁性粉体によれば、渦電流損失などの問題点を解決することが可能であることがわかった。
 因みに、本実施例における不均化の存在や度合を知るのに適しているFE-SEM/EDX法による観察結果から、上記実施例1~19の本磁性粉体中の第1相及び第2相は、原料フェライト粉体の主原料相及び副原料相からそれぞれ由来しているものではなく、均質な原料フェライト相が還元反応により、不均化反応を起こして相分離したものであることがわかった。
Figure JPOXMLDOC01-appb-T000001

Figure JPOXMLDOC01-appb-T000002
 本発明の磁性材料によれば、従来の磁性材料では背反する特性、飽和磁化が極めて高く、かつ電気抵抗率が高くて渦電流損失の問題点を解決でき、しかも積層工程などの煩雑な工程を要しない、金属系磁性材料と酸化物系磁性材料双方の利点を併せ持った電磁気特性の優れた磁性材料、加えて空気中でも磁気特性が安定した磁性材料として利用可能である。
 本発明は、主として動力機器、変圧器や情報通信関連機器に用いられる、トランス、ヘッド、インダクタ、リアクトル、コア(磁芯)、ヨーク、マグネットスイッチ、チョークコイル、ノイズフィルタ、バラストなど、さらに各種アクチュエータ、ボイスコイルモータ、インダクションモータ、リアクタンスモータなどの回転機用モータやリニアモータ、特に中でも、回転数400rpmを超える自動車駆動用モータ及び発電機、工作機、各種発電機、各種ポンプなどの産業機械用モータ、空調機、冷蔵庫、掃除機などの家庭用電気製品向けモータなどの、ロータやステータ等に用いられる軟磁性材料として利用可能である。
 さらに、アンテナ、マイクロ波素子、磁歪素子、磁気音響素子など、ホール素子、磁気センサー、電流センサー、回転センサー、電子コンパスなどの磁場を介したセンサー類に用いられる軟磁性材料として利用可能である。
 また、単安定や双安定電磁リレーなどの継電器、トルクリミッター、リレースイッチ、電磁弁などの開閉器、ヒステリシスモーターなどの回転機、ブレーキなどの機能を有するステリシスカップリング、磁場や回転速度などを検出するセンサー、磁性タグやスピンバルブ素子などのバイアス、テープレコーダー、VTR、ハードディスクなどの磁気記録媒体や素子等に用いられる半硬磁性材料として利用可能である。
 また、高周波用トランスやリアクトルを初め、電磁ノイズ吸収材料、電磁波吸収材料や磁気シールド用材料などの不要な電磁波干渉による障害を抑制する磁性材料、ノイズ除去用インダクタなどのインダクタ素子用材料、RFID(Radio Frequency Identification)タグ用材料やノイズフィルタ用材料等の高周波用の軟磁性や半硬磁性材料として利用可能である。
 

Claims (18)

  1.  FeとCoを含むbcc又はfcc構造の結晶を有する第1相と、
     Coを含む第2相と、
    を有する軟磁性又は半硬磁性の磁性材料であって、
     前記第2相に含まれるFeとCoの総和を100原子%とした場合のCoの含有量が、前記第1相に含まれるFeとCoの総和を100原子%にした場合のCoの含有量よりも多い、
    前記磁性材料。
  2.  軟磁性である、請求項1に記載の磁性材料。
  3.  第1相がFe100-xCo(xは原子百分率で0.001≦x≦90)の組成式で表される組成を有する、請求項1または2に記載の磁性材料。
  4.  第1相がFe100-x(Co100-yx/100(x、yは原子百分率で0.001≦x≦90、0.001≦y<50、MはZr、Hf、Ti、V、Nb、Ta、Cr、Mo、W、Mn、Cu、Zn、Si、Niのいずれか1種以上)の組成式で表される組成を有する、請求項1~3のいずれか一項に記載の磁性材料。
  5.  FeとCoを含むbcc又はfcc構造の結晶を有する相を第2相として含み、その相に含まれるFeとCoの総和を100原子%とした場合のCoの含有量が、第1相に含まれるFeとCoの総和を100原子%とした場合のCoの含有量に対して1.1倍以上10倍以下の量、及び/又は1原子%以上100原子%以下の量である、請求項1~4のいずれか一項に記載の磁性材料。
  6.  第2相がCo-フェライト相を含む、請求項1~5のいずれか一項に記載の磁性材料。
  7.  第2相がウスタイト相を含む、請求項1~6のいずれか一項に記載の磁性材料。
  8.  FeとCoを含むbcc又はfcc構造の結晶を有する相の体積分率が磁性材料全体の5体積%以上である、請求項1~7のいずれか一項に記載の磁性材料。
  9.  磁性材料全体の組成に対して、Feが20原子%以上99.998原子%以下、Coが0.001原子%以上50原子%以下、Oが0.001原子%以上55原子%以下の範囲の組成を有する、請求項6又は7に記載の磁性材料。
  10.  第1相若しくは第2相、或いは磁性材料全体の平均結晶粒径が1nm以上10μm未満である、請求項1~9のいずれか一項に記載の磁性材料。
  11.  少なくとも第1相がFe100-xCo(xは原子百分率で0.001≦x≦90)の組成式で表されるbcc又はfcc相を有し、そのbcc又はfcc相の結晶子サイズが1nm以上300nm未満である、請求項1~10のいずれか一項に記載の磁性材料。
  12.  粉体の形態であって、
     軟磁性の磁性材料の場合には10nm以上5mm以下の平均粉体粒径を有し、
     半硬磁性の磁性材料の場合には10nm以上10μm以下の平均粉体粒径を有する、
    請求項1~11のいずれか一項に記載の磁性材料。
  13.  第1相又は第2相の少なくとも1相が隣り合う相と強磁性結合している、請求項1~12のいずれか一項に記載の磁性材料。
  14.  第1相と第2相が、直接、或いは金属相若しくは無機物相を介して連続的に結合し、磁性材料全体として塊状を成している状態である、請求項1~13のいずれか一項に記載の磁性材料。
  15.  平均粉体粒径が1nm以上1μm未満のコバルトフェライト粉体を、水素ガスを含む還元性ガス中で、還元温度400℃以上1480℃以下にて還元することによって請求項12に記載の磁性材料を製造する方法。
  16.  平均粉体粒径が1nm以上1μm未満のコバルトフェライト粉体を、水素ガスを含む還元性ガス中で還元し、不均化反応により第1相と第2相を生成させることによって、請求項1~13のいずれか一項に記載の磁性材料を製造する方法。
  17.  請求項15又は16に記載の製造方法によって製造される磁性材料を焼結することによって、請求項14に記載の磁性材料を製造する方法。
  18.  請求項15に記載の製造方法における還元工程後に、或いは請求項16に記載の製造方法における還元工程後若しくは生成工程後に、或いは請求項17に記載の製造方法における焼結工程後に、最低1回の焼鈍を行う、軟磁性又は半硬磁性の磁性材料の製造方法。
     
PCT/JP2018/034747 2017-09-25 2018-09-20 磁性材料とその製造法 WO2019059256A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2019543691A JP6942379B2 (ja) 2017-09-25 2018-09-20 磁性材料とその製造法
CN201880075257.XA CN111386161B (zh) 2017-09-25 2018-09-20 磁性材料及其制造法
EP18857892.6A EP3689497A4 (en) 2017-09-25 2018-09-20 MAGNETIC MATERIAL AND METHOD OF MANUFACTURING THEREOF
US16/648,269 US11732336B2 (en) 2017-09-25 2018-09-20 Magnetic material and method for producing same

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2017183904 2017-09-25
JP2017-183904 2017-09-25
JP2017222145 2017-11-17
JP2017-222145 2017-11-17

Publications (1)

Publication Number Publication Date
WO2019059256A1 true WO2019059256A1 (ja) 2019-03-28

Family

ID=65809821

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/034747 WO2019059256A1 (ja) 2017-09-25 2018-09-20 磁性材料とその製造法

Country Status (5)

Country Link
US (1) US11732336B2 (ja)
EP (1) EP3689497A4 (ja)
JP (1) JP6942379B2 (ja)
CN (1) CN111386161B (ja)
WO (1) WO2019059256A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7474969B1 (ja) 2023-12-26 2024-04-26 マグネデザイン株式会社 Gsrセンサ

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019122307A1 (de) * 2017-12-22 2019-06-27 Querdenkfabrik Ag Verfahren zur herstellung eines weichmagnetischen formteils und weichmagnetisches formteil
DE112020000814T5 (de) * 2019-02-15 2021-11-11 Sony Group Corporation Kobaltferrit-magnetpulver, verfahren zur herstellung desselben und magnetisches aufzeichnungsmedium
US11053135B2 (en) * 2019-05-03 2021-07-06 Aegis Technology Inc. Scalable process for manufacturing iron cobalt nanoparticles with high magnetic moment
JP2022035559A (ja) * 2020-08-21 2022-03-04 株式会社村田製作所 複合磁性体
JP7188512B1 (ja) * 2021-08-05 2022-12-13 日立金属株式会社 データベース、材料データ処理システム、およびデータベースの作成方法
JP2023062495A (ja) * 2021-10-21 2023-05-08 Tdk株式会社 軟磁性合金粉末、圧粉磁心、および磁性部品
CN116666093B (zh) * 2023-07-12 2023-11-21 重庆上甲电子股份有限公司 工业废弃物分步除杂制备软磁锰锌铁氧体复合料的方法
CN116825468B (zh) * 2023-08-04 2024-01-12 广东泛瑞新材料有限公司 一种铁钴磁芯及其制备方法和应用

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH059511A (ja) * 1991-07-04 1993-01-19 Mitsubishi Materials Corp Fe−Co系軟磁性粉末の製造法
WO2003015109A1 (en) 2001-08-09 2003-02-20 The Circle For The Promotion Of Science And Engineering Composite magnetic material prepared by compression forming of ferrite-coated metal particles and method for preparation thereof
JP2007281017A (ja) * 2006-04-03 2007-10-25 Jeol Ltd 軟磁性材料及び軟磁性材料の製造方法
WO2009057742A1 (ja) 2007-11-02 2009-05-07 Asahi Kasei Kabushiki Kaisha 磁石用複合磁性材料、及びその製造方法
JP2013185222A (ja) * 2012-03-08 2013-09-19 Japan Science & Technology Agency bcc型FeCo合金粒子及びその製造方法並びに磁石
JP2015200018A (ja) * 2014-03-31 2015-11-12 Dowaエレクトロニクス株式会社 Fe−Co合金粉末およびその製造方法並びにアンテナ、インダクタおよびEMIフィルタ
WO2017164375A1 (ja) 2016-03-25 2017-09-28 国立研究開発法人産業技術総合研究所 磁性材料とその製造方法
WO2017164376A1 (ja) 2016-03-25 2017-09-28 国立研究開発法人産業技術総合研究所 磁性材料とその製造法

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB9215109D0 (en) * 1992-07-16 1992-08-26 Univ Sheffield Magnetic materials and method of making them
CN1061163C (zh) * 1995-03-27 2001-01-24 北京科技大学 双相稀土-铁-硼磁粉及其制备方法
JP3299887B2 (ja) * 1996-06-27 2002-07-08 明久 井上 硬質磁性材料
JP2000156314A (ja) 1998-11-20 2000-06-06 Hitachi Metals Ltd 複合磁性部材
JP3835729B2 (ja) * 1999-06-21 2006-10-18 株式会社Neomax フェライト焼結磁石及びその製造方法
JP4182310B2 (ja) * 1999-10-28 2008-11-19 戸田工業株式会社 磁気記録用Fe及びCoを主成分とする紡錘状合金磁性粒子粉末の製造法
US7485366B2 (en) * 2000-10-26 2009-02-03 Inframat Corporation Thick film magnetic nanoparticulate composites and method of manufacture thereof
CN100573748C (zh) * 2004-10-29 2009-12-23 Tdk株式会社 铁氧体烧结磁体
JP4505638B2 (ja) * 2004-11-01 2010-07-21 Dowaエレクトロニクス株式会社 金属磁性粉末およびそれを用いた磁気記録媒体
JP2008108760A (ja) 2006-10-23 2008-05-08 Sumitomo Electric Ind Ltd 圧粉磁心および圧粉磁心の製造方法
CN101379574B (zh) * 2006-11-30 2012-05-23 日立金属株式会社 R-Fe-B系微晶高密度磁铁及其制造方法
JP4686494B2 (ja) * 2007-03-12 2011-05-25 株式会社東芝 高周波磁性材料及びその製造方法
JP5316920B2 (ja) * 2007-03-16 2013-10-16 日立金属株式会社 軟磁性合金、アモルファス相を主相とする合金薄帯、および磁性部品
JP5948033B2 (ja) * 2011-09-21 2016-07-06 株式会社日立製作所 焼結磁石
JP5708454B2 (ja) * 2011-11-17 2015-04-30 日立化成株式会社 アルコール系溶液および焼結磁石
KR101687981B1 (ko) * 2013-05-31 2017-01-02 제너럴 리서치 인스티튜트 포 넌페러스 메탈스 희토류 영구자석 분말, 그것을 포함한 접착성 자성체 및 접착성 자성체를 응용한 소자
WO2014210027A1 (en) * 2013-06-27 2014-12-31 Regents Of The University Of Minnesota Iron nitride materials and magnets including iron nitride materials
WO2015013585A1 (en) * 2013-07-26 2015-01-29 University Of Florida Research Foundation, Incorporated Nanocomposite magnetic materials for magnetic devices and systems
JP6230513B2 (ja) * 2014-09-19 2017-11-15 株式会社東芝 複合磁性材料の製造方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH059511A (ja) * 1991-07-04 1993-01-19 Mitsubishi Materials Corp Fe−Co系軟磁性粉末の製造法
WO2003015109A1 (en) 2001-08-09 2003-02-20 The Circle For The Promotion Of Science And Engineering Composite magnetic material prepared by compression forming of ferrite-coated metal particles and method for preparation thereof
JP2007281017A (ja) * 2006-04-03 2007-10-25 Jeol Ltd 軟磁性材料及び軟磁性材料の製造方法
WO2009057742A1 (ja) 2007-11-02 2009-05-07 Asahi Kasei Kabushiki Kaisha 磁石用複合磁性材料、及びその製造方法
JP2013185222A (ja) * 2012-03-08 2013-09-19 Japan Science & Technology Agency bcc型FeCo合金粒子及びその製造方法並びに磁石
JP2015200018A (ja) * 2014-03-31 2015-11-12 Dowaエレクトロニクス株式会社 Fe−Co合金粉末およびその製造方法並びにアンテナ、インダクタおよびEMIフィルタ
WO2017164375A1 (ja) 2016-03-25 2017-09-28 国立研究開発法人産業技術総合研究所 磁性材料とその製造方法
WO2017164376A1 (ja) 2016-03-25 2017-09-28 国立研究開発法人産業技術総合研究所 磁性材料とその製造法

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
G. HERZER, IEEE TRANSACTIONS ON MAGNETICS, vol. 26, no. 5, 1990, pages 1397 - 1402
MASAKI ABE, JOURNAL OF THE MAGNETIC SOCIETY OF JAPAN, vol. 22, no. 9, 1998, pages 1225
N. IMAOKAY KOYAMAT. NAKAOS. NAKAOKAT. YAMAGUCHIE. KAKIMOTOM. TADAT. NAKAGAWAM. ABE, J. APPL. PHYS., vol. 103, no. 7, 2008, pages 07E129
Y ZHANGP. SHARMAA. MAKINO, AIP ADVANCES, vol. 3, no. 6, 2013, pages 062118

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7474969B1 (ja) 2023-12-26 2024-04-26 マグネデザイン株式会社 Gsrセンサ

Also Published As

Publication number Publication date
JP6942379B2 (ja) 2021-09-29
JPWO2019059256A1 (ja) 2021-01-21
US11732336B2 (en) 2023-08-22
CN111386161A (zh) 2020-07-07
EP3689497A1 (en) 2020-08-05
US20200265976A1 (en) 2020-08-20
EP3689497A4 (en) 2021-06-23
CN111386161B (zh) 2022-05-17

Similar Documents

Publication Publication Date Title
JP6521416B2 (ja) 磁性材料とその製造法
US11732336B2 (en) Magnetic material and method for producing same
JP6521415B2 (ja) 磁性材料とその製造方法
US11459646B2 (en) Magnetic material and method for producing same
EP2228808B1 (en) Composite magnetic material for magnet and method for manufacturing such material
JP6942343B2 (ja) 磁性材料およびその製造方法
US11331721B2 (en) Magnetic material and process for manufacturing same
JP7001259B2 (ja) 磁性材料およびその製造法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18857892

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
ENP Entry into the national phase

Ref document number: 2019543691

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018857892

Country of ref document: EP

Effective date: 20200428