CN111386161B - 磁性材料及其制造法 - Google Patents

磁性材料及其制造法 Download PDF

Info

Publication number
CN111386161B
CN111386161B CN201880075257.XA CN201880075257A CN111386161B CN 111386161 B CN111386161 B CN 111386161B CN 201880075257 A CN201880075257 A CN 201880075257A CN 111386161 B CN111386161 B CN 111386161B
Authority
CN
China
Prior art keywords
phase
magnetic material
present
magnetic
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201880075257.XA
Other languages
English (en)
Other versions
CN111386161A (zh
Inventor
山本真平
今冈伸嘉
尾崎公洋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Publication of CN111386161A publication Critical patent/CN111386161A/zh
Application granted granted Critical
Publication of CN111386161B publication Critical patent/CN111386161B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C33/00Making ferrous alloys
    • C22C33/02Making ferrous alloys by powder metallurgy
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/16Making metallic powder or suspensions thereof using chemical processes
    • B22F9/18Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds
    • B22F9/20Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds starting from solid metal compounds
    • B22F9/22Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds starting from solid metal compounds using gaseous reductors
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • C22C1/0433Nickel- or cobalt-based alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/07Alloys based on nickel or cobalt based on cobalt
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/10Ferrous alloys, e.g. steel alloys containing cobalt
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/06Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys in the form of particles, e.g. powder
    • H01F1/065Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys in the form of particles, e.g. powder obtained by a reduction
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • H01F1/14708Fe-Ni based alloys
    • H01F1/14733Fe-Ni based alloys in the form of particles
    • H01F1/14741Fe-Ni based alloys in the form of particles pressed, sintered or bonded together
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • H01F1/14766Fe-Si based alloys
    • H01F1/14775Fe-Si based alloys in the form of sheets
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • H01F1/153Amorphous metallic alloys, e.g. glassy metals
    • H01F1/15316Amorphous metallic alloys, e.g. glassy metals based on Co
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/33Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials mixtures of metallic and non-metallic particles; metallic particles having oxide skin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2998/00Supplementary information concerning processes or compositions relating to powder metallurgy
    • B22F2998/10Processes characterised by the sequence of their steps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2999/00Aspects linked to processes or compositions used in powder metallurgy
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C2202/00Physical properties
    • C22C2202/02Magnetic

Abstract

提供新的磁性材料及其制造方法,所述新的磁性材料具有比铁氧体系磁性材料高的饱和磁化,电阻率比现有的金属系磁性材料高从而解决涡流损耗等问题,磁稳定性高,特别是饱和磁化极高。在氢中将通过湿式合成得到的Co‑铁氧体纳米粒子还原,使其粒生长,同时利用歧化反应引起的相分离现象,制成使bcc或fcc‑(Fe,Co)相和富Co相纳米分散的磁性材料粉体。进而,将该粉体烧结以制成固体磁性材料。

Description

磁性材料及其制造法
技术领域
本发明涉及显示出软磁性或半硬磁性的磁性材料、特别是显示出软磁性的磁性材料及其制造方法。
背景技术
全球变暖和资源枯竭等全球环境问题正日益严重,对各种电子和电气设备的节能和节省资源的社会需求日益增加。在这种情况下,需要进一步改进在以马达为代表的驱动部和变压器的电压转换装置等中使用的软磁性材料的性能。此外,为了解决各种信息通信设备的小型多功能化、演算处理速度的高速化、记录容量的高密度化、以及基础设施等的环境卫生保全、不断复杂的物流系统和多样化的安全强化所涉及的各种问题,需要改进用于各种元件、传感器和系统的各种软磁性材料和半硬磁性材料的电磁特性、可靠性和灵敏度。
为了响应这些对于环境、能源问题的时代要求,对于电动汽车、燃料电池汽车、混合动力汽车等搭载有以高转速(以下,是指大于400rpm的转速)进行驱动的大型马达的下一代车辆的需求今后也会更加期待。其中,用于马达中的定子的软磁性材料的高性能化、低成本化是重要的课题之一。
用于这些用途的现有的软磁性材料大致分为金属系磁性材料和氧化物系磁性材料两种类型。
前者的金属系磁性材料包括作为电磁钢的代表例的含Si的结晶性材料即硅钢(Fe-Si);进一步含有Al的金属间化合物即铝硅铁粉(Fe-Al-Si);碳含量0.3质量%以下的低碳量且低杂质量的纯铁即电磁软铁(Fe);以Fe-Co为主要成分的坡莫合金;以非晶质金属(Fe-Si-B)为代表的无定形合金;进一步对该无定形合金施加适当的热处理以使微晶析出的纳米晶-无定形的相分离型的Finemet等纳米晶软磁性材料组(作为其代表性成分,Fe-Cu-Nb-Si-B、Fe-Si-B-P-Cu等)。这里所说的“纳米”是指1nm以上且小于1μm的尺寸。对于除纳米晶软磁性材料以外的磁性材料而言,制成尽可能均匀的组成、使磁壁的移动变得容易对于矫顽力的降低和铁损的减少而言是重要的。予以说明,纳米晶软磁性材料为包含结晶相、非晶相、富Cu相等的非均相体系,认为磁化反转主要由磁化旋转引起。
作为后者的氧化物系磁性材料的实例,可举出Mn-Zn铁氧体、Ni-Zn铁氧体等铁氧体系磁性材料。
在高性能软磁性材料用途种,硅钢是迄今为止最普及的软磁性材料,是饱和磁化为1.6~2.0T,矫顽磁力为3~130A/m的高磁化、低矫顽力的磁性材料。该材料是向Fe中添加了直至4质量%左右的Si而得到的材料,在没有显著损害Fe所具备的大的磁化的情况下降低结晶磁各向异性和饱和磁致伸缩常数、降低了矫顽磁力。为了使该材料高性能化,需要对于适当地进行了组成管理的材料适当地组合热轧、冷轧和退火,从而使结晶粒径增大并且除去阻碍磁壁移动的异物。除了晶粒的取向方向为随机的非取向性钢板以外,作为进一步降低矫顽力的材料,易磁化方向即Fe-Si的(100)方向在轧制方向上高度取向的取向性钢板也广泛地应用。
该材料是轧制材料,因此厚度约小于0.5mm,另外,由于是均质的金属材料,因此电阻率低至约0.5μΩm,通常将各个硅钢板表面用绝缘膜覆盖,用模具冲切、层叠、焊接,从而抑制用于下一代汽车等的高旋转用途中产生的涡流损耗,并使其具有厚度从而可应用于大型设备。因此,冲切和层叠涉及的工序费、磁特性的劣化成为了大的问题。
铝硅铁粉是具有Fe85Al5.5Si9.5附近的组成、或者在其中加入了Ni的组成的金属间化合物,在该组成附近,结晶磁各向异性常数、饱和磁致伸缩常数都成为0。因此,矫顽力小至1.6~4A/m,成为铁损小的磁性材料。但是,饱和磁化大体为1T左右,并不是足以面向下一代汽车的大小。由于硬且脆,因此具有缺乏加工性的性质,但耐磨损性优异,因此不断向利用了其性质的磁头等用途中发展。电阻率为0.8μΩm,比其他的金属轧制材料高,尚不能说是足以面向下一代汽车的大小。
电磁软铁为与硅钢同样的轧制材料,可以是具有5mm左右的比硅钢板厚的厚度的制品形态。但是,材料自身大体上为纯铁,因此饱和磁化具有接近铁的值,电阻率低达0.1~0.2μΩm,在高旋转的用途中涡流损耗变大。另外,矫顽力也比较高,为12~240A/m,特别是在低旋转时的马达中,不仅是涡流损耗,磁滞损耗产生的铁损也不能忽视。进而,由于为柔软的容易生锈的钢质,因此切削加工性、耐氧化性差,也存在磁特性容易经时变化的问题。
坡莫合金通过在Fe中将Ni合金化,从而能够减小结晶磁各向异性常数和饱和磁致伸缩常数,特别是在Ni为78质量%附近,两者都能够大体上成为0,因此能够制造矫顽力低达0.16~24A/m的磁性材料。但是,该材料的饱和磁化比较低,为0.55~1.55T,磁化与矫顽力存在折衷关系,因此难以成为能够同时实现高磁化低矫顽力的材料,存在在高性能马达中无法使用的问题。进而,电阻率也小达0.45~0.75μΩm,也存在高旋转用途中涡流损耗变大的问题。
非晶质金属等无定形材料完全为各向同性的材料,原理上结晶磁各向异性常数为0。因此,该材料也成为矫顽力低达5A/m以下、在饱和磁致伸缩常数大致成为0的组成中极低至0.4A/m的材料。但是,饱和磁化为0.5~1.6T,特别是在矫顽力成为1A/m以下的组成的材料中为0.6~0.8T,不足以在高性能马达中使用,并且电阻率为1.2~1.4μΩm,可以说比硅钢板、坡莫合金等结晶性的软磁性材料高少许,存在涡流损耗变大的问题。另外,处于非平衡状态的无定形合金由于热经历、机械变形,磁特性容易变化,制品的厚度也为0.01~0.025mm左右,绝缘、切割、排列、层叠、焊接、退火的工序比硅钢烦杂,而且由于热、应力而容易变脆,加工性也差,因此在应用于高旋转马达等的情况下,也存在磁特性的劣化、成本升高的问题。
以Fe-Cu-Nb-Si-B为首的纳米晶软磁性体是对通过暂时急冷而成为了无定形的合金在比结晶化温度高的温度下进行热处理从而使10nm左右的晶粒在无定形中析出,具有含有无定形的晶界相的进行了无规取向的纳米晶型的组织的软磁性材料。该材料的矫顽力极低达0.6~6A/m,饱和磁化为1.2~1.7T,比无定形材料高,因此目前市场不断扩大。该材料为在1988年开发出的比较新的材料,其磁特性显现的原理为:通过使晶粒直径比强磁性交换长度(也称为交换结合长度,有时也表示为L0。)小,无规取向的主相的强磁性相通过无定形界面相进行铁磁性耦合,从而进行结晶磁各向异性的平均化,成为低矫顽力。将该机制称为无规磁各向异性模型、或无规各向异性模型(例如参照非专利文献1)。
但是,该材料也与无定形同样地采用液体超急冷法制造,因此制造为薄带,其制品厚度为0.02~0.025mm左右,存在着与无定形材料同样的工序、加工性、涡流损耗、成本上的问题。进而,电阻率也小达1.2μΩm,指出了与其他轧制材料、薄带同样的涡流损耗的问题。
为了将其打破,进行了如下尝试:使用SPS(放电等离子体烧结)法,将上述薄带状的纳米晶软磁性材料粉碎,制作了块状成型材料(例如参照非专利文献2),但矫顽力为300A/m,饱和磁化为1T,与0.02mm薄带相比,磁特性大幅地劣化。目前,在比0.5mm厚的制品的制作中,除了进行层叠的方法以外,没有好的方法。
在现有的软磁性材料中,在高旋转用途中最没有涡流损耗的问题的是铁氧体系氧化物材料。该材料的电阻率为106~1012μΩm,另外,通过烧结,能够容易地块体化至0.5mm以上,能够形成无涡流损耗的成型体,因此是适合高旋转、高频用途的材料。另外,由于为氧化物,因此也不会生锈,磁特性的稳定性也优异。不过,该材料的矫顽力比较高,为2~160A/m,特别是饱和磁化小达0.3~0.5T,因此不适于面向例如下一代汽车用高性能高旋转马达。
总而言之,硅钢等金属系的软磁性材料存在如下问题:电阻低,在面向高旋转的高性能马达时产生涡流损耗,为了解决该问题需要进行层叠。因此,工序变得烦杂,层叠前的绝缘处理、冲切导致的磁特性劣化、工序费用涉及的高成本成为了大的问题。另一方面,铁氧体等氧化物系的软磁性材料的电阻大,不存在涡流损耗的问题,但由于饱和磁化小达0.5T以下,因此不适于面向下一代汽车用高性能马达。另外,从耐氧化性的观点出发,与金属系的软磁性材料相比,氧化物系的软磁性材料的稳定性更高,具有优势性。
对于在面向利用永久磁体的下一代汽车用高性能马达时大量生产的硅钢的非取向电磁钢板,在该马达中可使用的厚度的上限如专利文献1和2中所示那样,用板厚计,为约0.3mm,但下一代汽车用马达的厚度例如达到9cm,因此在使用0.3mm厚这样的薄的硅钢板的情况下,需要将约300张分别绝缘并层叠。对这样的薄板进行绝缘、冲切、排列、焊接、退火的工序烦杂,成本高。为了尽可能使该层叠的板厚变厚,因此更希望增大材料的电阻率。
如上所述,希望出现与现有的氧化物系磁性材料(特别是铁氧体系磁性材料)相比同时具有高的饱和磁化和低的矫顽力的磁稳定性优异、另外具有高耐氧化性的磁性材料(特别是软磁性材料)。进而,希望出现可发挥氧化物系磁性材料和金属系磁性材料这两者的优点的软磁性材料,具体地,显示比金属系硅钢板等高的电阻、另外可发挥金属系磁性材料的高饱和磁化、如氧化物系磁性材料那样涡流损耗小、不需要层叠和与其相关的烦杂的工序这样的优点的软磁性材料。
现有技术文献
专利文献
专利文献1:国际公开第2017/164375号
专利文献2:国际公开第2017/164376号
非专利文献
非专利文献1:G.Herzer,IEEE Transactions on Magnetics,第26卷,第5期(1990)第1397-1402页
非专利文献2:Y.Zhang,P.Sharma和A.Makino,AIP Advances,第3卷,第6期(2013)062118
发明内容
发明要解决的课题
本发明的目的在于通过使用使bcc或fcc-(Fe,Co)相和富Co相纳米分散的磁性材料,从而提供能够实现比现有的铁氧体系磁性材料格外大的饱和磁化和低的矫顽力这两者的磁稳定性高的、而且耐氧化性优异的新型磁性材料及其制造方法。另外,目的在于提供电阻率比现有的金属系磁性材料高、因此可解决上述的涡流损耗等问题的、磁稳定性高的新型磁性材料及其制造方法。
另外,本发明的目的在于通过使用使bcc-(Fe,Co)相的α-(Fe,Co)相和富Co相纳米分散的磁性材料,从而提供在宽的Co含量范围中不仅仅是简单地超越α-Fe的质量磁化(218emu/g)而且可实现最大以约10%左右超越α-Fe的质量磁化的极其巨大的饱和磁化(约240emu/g)、利用该巨大的饱和磁化可在远比以往小型且高性能的软磁性构件的制作中使用的新型磁性材料及其制造方法。
另外,在本发明中,目的在于提供粉体烧结磁性材料,其即使没有经过层叠等烦杂的工序也可用简便的工序制造厚度为0.5mm以上、进而1mm以上、进而5mm以上的成型体,同时可减小涡电流。
用于解决课题的手段
本发明人对具有比现有的氧化物系磁性材料(特别是铁氧体系磁性材料)优异的电磁特性的磁性材料、同时具有金属系磁性材料和氧化物系磁性材料这两者的优点的电磁特性优异的磁性材料、此外即使在空气中磁特性也稳定的磁性材料进行了深入研究。其结果发现与以往使用的均质的结晶性、非晶性材料、或者在非晶质中析出均质的纳米晶的纳米晶软磁性材料完全不同的、通过钴铁氧体(本发明中也记载为“Co-铁氧体”)的还原反应中的歧化而包含2种以上的晶相、或者1种晶相和无定形相的磁性材料,控制其组成和晶体结构、晶粒直径以及粉体粒径,以及确立该磁性材料的制造方法,进而确立不将该磁性材料层叠地进行固化的方法,从而完成了本发明。
为了解决上述的课题,需要如下的磁性材料:饱和磁化为0.3T,本发明的磁性材料的密度为接近金属系的密度,因此如果用Fe的密度计算,为与30emu/g相同的程度或者比其高。特别是如果限于软磁性材料,要求其饱和磁化优选为100emu/g以上,更优选为150emu/g以上。同时,也要求能够显现出软磁性区域或半硬磁性区域的矫顽力。进而,要求耐氧化性也优异。
即,本发明如下所述。
(1)磁性材料,是具有第一相和第二相的软磁性或半硬磁性的磁性材料,所述第一相具有包含Fe和Co的bcc或fcc结构的晶体,所述第二相包含Co,其中,将所述第二相中所含的Fe与Co的总和设为100原子%时的Co的含量比将所述第一相中所含的Fe与Co的总和设为100原子%时的Co的含量多。
(2)(1)所述的磁性材料,其为软磁性。
(3)(1)或(2)所述的磁性材料,其中,第一相具有由Fe100-xCox的组成式表示的组成,x为原子百分比,0.001≦x≦90。
(4)(1)~(3)中任一项所述的磁性材料,其中,第一相具有由Fe100-x(Co100-yMy)x/100的组成式表示的组成,x、y为原子百分比,0.001≦x≦90,0.001≦y<50,M为Zr、Hf、Ti、V、Nb、Ta、Cr、Mo、W、Mn、Cu、Zn、Si、Ni中的任一种以上。
(5)(1)~(4)中任一项所述的磁性材料,其包含具有含有Fe和Co的bcc或fcc结构的晶体的相作为第二相,将该相中所含的Fe和Co的总和设为100原子%时的Co的含量相对于将第一相中所含的Fe和Co的总和设为100原子%时的Co的含量,为1.1倍以上且105倍以下的量和/或1原子%以上且100原子%以下的量。
(6)(1)~(5)中任一项所述的磁性材料,其中,第二相包含Co-铁氧体相。
(7)(1)~(6)中任一项所述的磁性材料,其中,第二相包含方铁矿相。
(8)(1)~(7)中任一项所述的磁性材料,其中,具有包含Fe和Co的bcc或fcc结构的晶体的相的体积分数为磁性材料整体的5体积%以上。
(9)(6)或(7)所述的磁性材料,其中,具有相对于磁性材料整体的组成,Fe为20原子%以上且99.998原子%以下、Co为0.001原子%以上且50原子%以下、O为0.001原子%以上且55原子%以下的范围的组成。
(10)(1)~(9)中任一项所述的磁性材料,其中,第一相或第二相、或者磁性材料整体的平均晶粒直径为1nm以上且不到10μm。
(11)(1)~(10)中任一项所述的磁性材料,其中,至少第一相具有由Fe100-xCox的组成式表示的bcc或fcc相,x为原子百分比,0.001≦x≦90,该bcc或fcc相的微晶尺寸为1nm以上且不到300nm。
(12)(1)~(11)中任一项所述的磁性材料,其为粉体的形态,在软磁性的磁性材料的情况下具有10nm以上且5mm以下的平均粉体粒径,在半硬磁性的磁性材料的情况下具有10nm以上且10μm以下的平均粉体粒径。
(13)(1)~(12)中任一项所述的磁性材料,其中,第一相或第二相中的至少一相与相邻的相铁磁性耦合。
(14)(1)~(13)中任一项所述的磁性材料,其中,第一相和第二相为直接或者经由金属相或无机物相连续地结合,作为磁性材料整体形成块状的状态。
(15)制造(12)所述的磁性材料的方法,其中,在包含氢气的还原性气体中、还原温度400℃以上且1480℃以下将平均粉体粒径为1nm以上且不到1μm的钴铁氧体粉体还原。
(16)制造(1)~(13)中任一项所述的磁性材料的方法,其中,在包含氢气的还原性气体中将平均粉体粒径为1nm以上且不到1μm的钴铁氧体粉体还原,通过歧化反应生成第一相和第二相。
(17)制造(14)所述的磁性材料的方法,其中,将采用(15)或(16)所述的制造方法制造的磁性材料烧结。
(18)软磁性或半硬磁性的磁性材料的制造方法,其中,在(15)所述的制造方法中的还原工序后、或者(16)所述的制造方法中的还原工序后或生成工序后、或者(17)所述的制造方法中的烧结工序后,进行最少一次退火。
发明效果
根据本发明,可提供饱和磁化高、涡流损耗小的磁性材料、特别是也适合在高旋转马达等中利用的软磁性材料、进而耐氧化性高的各种软磁性材料和半硬磁性材料。
根据本发明,能够如铁氧体那样以粉体材料的形态使用,因此能够通过烧结等容易地块体化,因此,也可解决使用现有的薄板即金属系软磁性材料而产生的层叠等烦杂的工序、其导致的高成本等问题。
附图说明
图1的图1(A)为将(Fe0.959Co0.04Mn0.001)3O4铁氧体纳米粉体在1100℃下、氢气中还原了1小时而成的粉体(实施例11)的SEM像。图1(B)为将图1(A)的一部分用高倍率拍摄的SEM像。
图2为(Fe0.96Co0.04)3O4铁氧体纳米粉体(比较例1)的SEM像。
图3为将(Fe0.96Co0.04)3O4铁氧体纳米粉体在1100℃下、氢气中还原了1小时的粉体(实施例1)的SEM像(图中数值为在+位置处的Co含量。)。
图4为表示Fe-Co磁性材料粉体(实施例1~17)中的、饱和磁化(emu/g)和矫顽力(A/m)的钴进料组成依赖性的图(图中●和■分别表示实施例1~10的磁性粉体的饱和磁化(emu/g)和矫顽力(A/m)的值,〇和□分别表示实施例11~17的磁性材料的饱和磁化(emu/g)和矫顽力(A/m)的值。)。
具体实施方式
以下对本发明详细地说明。
本发明中所说的“磁性材料”是被称为“软磁性”的磁性材料(即,“软磁性材料”)和被称为“半硬磁性”的磁性材料(即,“半硬磁性材料”),特别是“软磁性”材料。其中,本发明中所说的“软磁性材料”是矫顽力为800A/m(≒10Oe)以下的磁性材料。为了制成优异的软磁性材料,重要的是具有低矫顽力和高饱和磁化或透磁率,为低铁损。在铁损的原因中主要有磁滞损耗和涡流损耗,为了降低前者,需要进一步减小矫顽力,为了降低后者,材料自身的电阻率高、提高供于实用的成型体整体的电阻很重要。对于半硬磁性材料(在本发明中,是指矫顽力超过800A/m且40kA/m≒500Oe以下的磁性材料)而言,要求具有与用途相符的适当的矫顽力,饱和磁化、剩余磁通密度高。其中对于高频用的软磁性或半硬磁性材料而言,由于产生大的涡电流,因此材料具有高电阻率、另外减小粉体粒径、或使板厚成为薄板或薄带的厚度变得重要。
本发明中所说的“铁磁性耦合”是指磁性体中的相邻的自旋通过交换相互作用强连结的状态,特别地,在本发明中是指相邻的2个晶粒(和/或非晶粒)中的自旋夹持晶体边界、通过交换相互作用强连结的状态。所谓这里所说的晶粒等“粒”,由一个或二个以上的“相”构成,是能够识别到在三维空间用边界隔开的块体。交换相互作用是只达到基于材料的短程有序的距离的相互作用,因此如果在晶体边界存在非磁性的相,则交换相互作用对位于其两侧的区域的自旋不起作用,在两侧的晶粒(和/或非晶粒)间不产生铁磁性耦合。在本申请中称为“晶粒”时,有时也包含非晶粒。另外,对于在磁特性不同的异种的相邻晶粒之间形成了铁磁性耦合的材料的磁曲线的特征将后述。
本发明中所说的“歧化”是指处于均质组成的相通过化学反应而产生2种以上的、组成或晶体结构不同的相,在本发明中,氢等还原性物质参与该均质组成的相,也带来发生了还原反应的结果。将该带来“歧化”的化学反应在本申请中称为“歧化反应”,在该歧化反应时,多副产水。
本发明中,“包含Fe成分和Co成分”意味着在本发明的磁性材料中必然含有Fe和Co作为其成分,该Co可任意地被其他原子(具体地,Zr、Hf、Ti、V、Nb、Ta、Cr、Mo、W、Mn、Cu、Zn、Si、Ni中的任一种以上)置换一定量,另外,可含有氧(O成分),进而,在O成分、羟基氧化铁等作为副相存在的情况下,可作为O成分与H成分结合而成的OH基(主要在磁性粉体表面存在的OH基)而含有,也可含有其他不可避免的杂质、来自原料的K等碱金属、Cl等。K等碱金属在有时带来还原反应的促进作用的方面是优选的成分。
“磁性粉体”一般是指具有磁性的粉体,在本申请中,将本发明的磁性材料的粉体称为“磁性材料粉体”。因此,“磁性材料粉体”包含在“磁性粉体”中。
另外,在本申请中,对组成、大小、温度、压力等的数值范围只要无特别限定,则认为包含两端的数值。
本发明涉及包含含有Fe和Co的bcc或fcc结构的晶体(第一相)和Co的含量比该相多的富Co相(第二相)的磁性材料,其最佳的形态为两者的相在纳米水平上混合并结合而成的“粉体”。将这些磁性材料粉体直接压粉、或者烧结从而用于各种设备。另外,根据用途,也能够配合树脂等有机化合物、玻璃、陶瓷等无机化合物、以及它们的复合材料等进行成型。
以下对包含Fe和Co的第一相以及富含Co的第二相的组成、晶体结构和形态、晶粒直径和粉体粒径、以及它们的制造方法、其中特别是制造成为本发明的磁性材料的前体的纳米复合氧化物粉体的方法、将该粉体还原的方法、将还原了的粉体固化的方法、以及这些制造方法的各工序中进行退火的方法进行说明。
<第一相>
在本发明中,第一相为包含Fe和Co的以bcc结构的立方晶(空间群Im3m)或fcc结构的立方晶(空间群Fm3m)作为晶体结构的晶体。就该相的Co含量而言,如果将该相中所含的Fe和Co的总和(总含量)设为100原子%,则为0.001原子%以上且90原子%以下。即,第一相的优选的组成如果使用组成式,则表示为Fe100-xCox(x为原子百分比,0.001≦x≦90)。
其中,只要无特别说明,Co含量或Fe含量分别是指相对于该相(第一相)中所含的Fe和Co的总和(在本申请中也有时称为总量。)的Co或Fe的原子比的值。在本发明中,也有时将其用原子百分比表示。
在抑制磁化的降低上,优选使Co含量为75原子%以下。另外,如果Co含量为60原子%以下,则根据制造方法、条件,能够实现超过2.3T的巨大的磁化,因此更优选。进而,如果Co含量为50原子%以下,则能够制造具有超过2.4T的巨大饱和磁化的磁性材料。因而,获得比纯铁大10%左右的巨大的饱和磁化是本发明的磁性材料的大的特征。进而,根据制造方法和条件,在Co含量为1原子%以上且70原子%以下的宽范围内能够制造超过纯铁的磁化(2.2T)的磁性材料。在这样宽的Co含量范围中得到可显示出超过纯铁的大的饱和磁化的磁性材料也是目前为止的材料中不存在的、本材料固有的特征。另外,在与Fe单独的情形不同、使Co添加的效果产生的软磁性区域中的磁特性的调整成为可能的方面,优选使其为0.001原子%以上。特别优选的Co的含量的范围为0.01原子%以上且60原子%以下,在该区域中,根据制造条件,能够制备各种矫顽力的软磁性材料,成为具有更优选的电磁特性的磁性材料。
该Fe-Co组成的第一相呈bcc或fcc结构。在本申请中,也将这些相称为bcc-(Fe,Co)或fcc-(Fe,Co)。另外,这些结构(bcc和fcc结构)均为属于立方晶系(Cubic CrystalSystem)的结构,因此在本申请中也有时将这两相统称为ccs-(Fe,Co)相。应予说明,在本申请中表示为(Fe,Co)相时,表示在组成中含有Fe和Co的相,也包含用以下所示的M成分置换Co的情形。在制成同时具备高饱和磁化、低矫顽力、原料供给的稳定性的磁性材料的情况下,优选以bcc结构为主体的本发明的磁性材料,根据制成磁饱和受到了抑制的优异的高频用磁性材料等目的,有时选择具有fcc结构的本发明的磁性材料。
将本发明的第一相的Co含量设为100原子%时,其Co的0.001原子%以上且不到50原子%能够用Zr、Hf、Ti、V、Nb、Ta、Cr、Mo、W、Mn、Cu、Zn、Si、Ni中的任一种以上置换(在本申请中,也将这些置换元素称为“M成分”。)。这些M成分中,如果在本发明的软磁性材料中共同添加多个元素种,则具有减小矫顽力的效果。特别是,用将第一相的Co含量设为100原子%时的原子百分比表示,如果含有1原子%以上的Ti、V、Cr、Mo中的任一种以上,则不会大幅地依赖于还原处理和退火处理中的降温速度,在能够容易地制造本发明的纳米微晶的方面有效。进而,Zr、Hf、Ti、Cr、V、Mn、Zn、Ta、Cu、Si、Ni使各向异性磁场减小,因此优选作为在本发明的软磁性材料中共存的成分。用将第一相的Co含量设为100原子%时的原子百分比表示,即使添加1原子%以下的Zr、Hf、Ti、V、Nb、Ta、Cr、Mo、W中的任一种以上,也抑制还原工序中的不适当的粒生长,Ti、Cu、Zn、Mn、Si提高耐氧化性、成型性,因此优选。
更优选的M成分含量不依赖于元素种,用相对于Co的置换量表示,为0.1原子%以上且30原子%以下。
应予说明,在本申请中,“不适当的粒生长”是指本发明的磁性材料的纳米微细组织崩溃,在伴有均质的晶体组织的同时晶体进行粒生长。另一方面,本发明中“适当的粒生长”是指在维持作为本发明的特征的纳米微细结构的同时粉体粒径大幅地生长,或者在粉体粒径大幅地生长后通过歧化反应、相分离等在晶体内出现纳米微细结构,或者为这两者的情形中的任一个。只要无特别说明,本发明中简称为“粒生长”的情况是指并非“不适当的粒生长”,而是指大致称得上适当的粒生长。应予说明,在发生了适当的粒生长和不适当的粒生长的任一种粒生长的情况下,由于都是每单位质量或者每单位体积的磁性材料的表面积变小,因此一般耐氧化性倾向于提高。
对于所有的M成分,用将第一相的总Co含量设为100原子%时的原子百分比表示,从上述的添加效果的观点出发,优选0.001原子%以上的添加,从防止阻碍本发明的磁性材料中的Co成分的各效果的观点出发,优选不到50原子%的添加。在本发明中,在表记为“Co成分”时,或者在“ccs-(Fe,Co)”相等的式中、讨论磁性材料组成的上下文中,表记为“Co”或“钴”的情况下,不仅包含Co单独的情形,也包含用M成分将Co含量的0.001以上且不到50原子%置换的组成。因此,在本申请中表记为“Fe和Co的总和”的情况下,在Fe以外的成分为Co单独的情形下是指Fe与Co的含量的总和,对于用M成分将Co含量的0.001以上且不到50原子%置换的组成中,是指Fe、Co和M成分的含量的总和。另外,需要尽可能将工序中混入的杂质除去,但也可含H、C、Al、S、N的元素,Li、K、Na等碱金属,Mg、Ca、Sr等碱土金属,稀土类或者Cl、F、Br、I等卤素等不可避免的杂质。但是,其含量优选为整体(即,第一相中所含的Fe与Co的总和)的5原子%以下,更优选为2原子%以下,进一步优选为0.1原子%以下,特别优选为0.001原子%以下。这是因为,如果大量地含有这些杂质,则磁化随着其杂质量增加而降低,有时对矫顽力也产生不良影响,根据用途,也有时脱离目标的范围。另一方面,也有如K这样的碱金属那样在某种程度上含有时起到还原助剂的作用的成分,在以整体(即,第一相中所含的Fe和Co的总和)的0.001原子%以上且5原子%以下的范围含有时,也有时得到饱和磁化高的磁性材料。因此,在妨碍本发明的目的时,特别希望不含有上述杂质。
第一相、第二相不包含不含Co的α-Fe相。这是因为,不含Co的α-Fe相在Co以外的元素的含量也极小的情况下,期待电磁软铁水平的饱和磁化,即使该α-Fe相为纳米区域的粉体,对电阻率产生的影响也不好,缺乏耐氧化性,并且成为切削加工性差的材质。不过,该不含Co的该α-Fe相只要不妨碍本发明的目的,可作为另外的相存在。相对于本发明的磁性材料整体,α-Fe相的体积分数优选不到50体积%。
这里所说的体积分数是相对于磁性材料整体的体积、对象成分所占有的体积的比例。
<第二相>
本发明中,第二相是相对于该相中所含的Fe和Co的总和的Co的含量比相对于第一相中所含的Fe和Co的总和的Co的含量多的相。作为第二相,可以列举出作为立方晶的、bcc-(Fe1-yCoy)相(空间群Im3m,是与第一相相同的晶相,但Co含量比第一相多的相)、fcc-(Fe,Co)相(空间群Fm3m)、FeCo3相、方铁矿相(代表组成是(Fe1-zCoz)aO相,a通常为0.83以上且1以下,是FeO与CoO的固溶体。在本说明书中也有时简单地标记为(Fe,Co)O相或(Co、Fe)O相。在本申请发明中,只要无特别说明,如果简称为方铁矿,则是指包含CoO、0<z≦1的组成。)、CoO相、Co-铁氧体相(代表组成为(Fe1-wCow)3O4相,0<w<1/3)等、正方晶系的FeCo相等、作为菱面体晶的α-(Fe、Co)2O3相(Co-赤铁矿相)等、进而Co-Fe无定形相等、或者它们的混合物。Co-Fe无定形相的含量在0.001体积%以上且10体积%以下之间,从抑制磁化的降低的观点出发,优选不比其多,进而为了制成高磁化的磁性材料,优选设为5体积%以下。为了控制歧化反应自身,也有时硬要含有无定形相等,这种情况下,从发挥该反应控制效果的观点出发,优选设为超过0.001体积%。
这里所说的体积分数,是相对于磁性材料整体的体积,对象成分所占有的体积的比例。
以上的第二相与第一相相比几乎都是饱和磁化差的情形,通过这些相并存,也有时电阻率大幅地上升。另外,本发明中,构成软磁性材料时,根据相的晶体结构、组成、微细结构、界面结构等,通过与它们铁磁性耦合,能够实现小的矫顽力。进而,在第二相中,也与第一相同样地,能够将Co含量的不到50原子%(其中,将第二相的总Co含量设为100原子%)置换为M成分。
<副相、其他相>
第一相、第二相中不包含既不含Fe也不含Co、只用M成分的化合物混杂的相。但是,有时有助于电阻率、耐氧化性和烧结性的特性改善。将上述的M成分的化合物相、Fe化合物相等不含Co成分的相以及M成分的含量为Co元素的含量以上的相在本申请中称为“副相”。
也可包含作为第一相和第二相以外的相的、不含Co的方铁矿相、磁铁矿相(Fe3O4)、磁赤铁矿相(γ-Fe2O3)、赤铁矿相(α-Fe2O3)、α-Fe相、γ-Fe相等副相、含有或不含Co的针铁矿、四方纤铁矿、纤铁矿、六方纤铁矿、水铁矿、绿锈等羟基氧化铁相、氢氧化钾、氢氧化钠等氢氧化物、氯化钾、氯化钠等氯化物、氟化物、碳化物、氮化物、氢化物、硫化物、硝酸盐、碳酸盐、硫酸盐、硅酸盐、磷酸盐等,就它们的体积而言,为了本发明的磁性材料具有高饱和磁化,另外为了连续地发挥稳定的磁特性、高磁化,要求比第一相、或者第一相和第二相中的ccs-(Fe,Co)相的体积的总和少。从抑制饱和磁化的降低的观点出发,这些相的含量的优选的范围相对于磁性材料整体的体积,为50体积%以下。
包含第一相、第二相和副相在内的全部相的M成分的含量不得超过第一相和第二相中所含的Co的相对于上述全部相的含量。这是因为,如果超过Co含量含有M成分,则丧失Co特有的对于电磁特性的效果,例如少量添加下的磁化的提高、在比其多地添加的情况下也抑制磁化降低的效果、电阻率提高、进而对于耐氧化性的显著的效果等其特异的特征。本申请中,说到第一相和/或第二相的Co含量,是指也包含这样的M成分的量。
<在第二相具有与第一相相同的晶体结构的情形>
第二相可具有与第一相相同的晶体结构,但优选在组成上相互具有充分的差异,例如,优选相对于第二相中的Fe和Co的总和的第二相的Co含量为第一相的Co含量的1.1倍以上、或者第二相的Co含量为1原子%(更优选2原子%)以上且比第一相的Co含量多,更优选满足这两者(即,第二相的Co含量为第一相的Co含量的1.1倍以上的量,而且为1原子%(更优选2原子%)以上)。如果第二相的Co含量为第一相的Co含量的1.2倍以上,则成为低于100A/m的低矫顽力材料,非常优选,如果为1.5倍以上,不仅矫顽力低,而且透磁率也提高,最优选。
第二相的Co含量自身不会超过100%。另外,在第一相的Co含量为下限值的0.001原子%的情况下,第二相的Co含量不会超过第一相的Co含量的105倍。第二相的Co含量优选为75原子%以下。这是因为,如果Co含量超过75原子%,则饱和磁化低的fcc-(Fe,Co)相生成,有时本发明的磁性材料整体的磁特性变差。
在上述中,所谓第二相的“Co含量”为第一相的“1.1倍以上”的情形,是指以有效数字1位以上求出了各相的Co含量后第二相的Co含量成为第一相的Co含量的1.1倍以上。
本发明的目标在于利用了上述的无规磁各向异性模型或者按照该模型的磁各向异性的波动的低矫顽力化,在晶体学上独立的第一相和第二相在纳米水平上通过交换结合(交换耦合)磁连结、或者包含第一相和第二相的ccs相中的Co含量在纳米尺度上具有空间的变化(有时将其在本发明中称为“浓度的波动”)中的任一个是重要的。不过,如果这两相的Co组成比过于接近,也有时其晶相的结晶方位聚集在相同方向上,所平均化的结晶磁各向异性的波动的值没有变得足够小,因此,没有实现足够低的矫顽力。因此,优选的第二相的Co含量相对于第二相中的Fe和Co的总和,为1原子%以上,更优选为3原子%以上。如果Co含量过度变大,则饱和磁化减小,因此优选为80原子%以下。
当然,即使在相近组成的第一相与第二相相邻的情况下,如果纳米分散(优选晶体方位不同)从而易磁化方向不一致,或者在纳米尺度上具有Co浓度的波动,并且通过双晶壁、晶界、或者晶体边界等进行交换结合,则也实现磁各向异性的平均化、矫顽力降低。但是,就每单位体积的其频度而言,与组成在某种程度上大不相同的情形相比,变得远小于其,因此也有时没有实现充分的无规磁各向异性模型产生的结晶磁各向异性的平均化。
如果存在Co含量比本发明的磁性材料整体的Co含量低的相(第一相),则Co含量比本发明的磁性材料高的相(第二相)也必定在同一磁性材料内存在。因此,如果它们铁磁性耦合从而实现了上述的各向同性,则成为本发明的磁性材料、具体地为软磁性材料。以上为在作为均质性高的组成将异相彻底地除去、以不阻碍磁畴壁移动的方式设计的电磁钢板、铝硅铁粉等大量的现有的软磁性材料中没有发现的本发明的磁性材料的特征,也可说是磁化反转通过磁化的旋转而产生的磁性材料共同的特征。
再有,可包含第一相单独、第二相单独在纳米水平上通过交换结合而磁连结的状态,重要的是即使在这种情况下相邻的纳米晶的晶轴方位不一致从而为各向同性、和/或具有纳米尺度下的Co浓度的波动。但是,在本发明中,没有实现由第一相单独的微晶构成的磁性材料或由第二相单独的微晶构成的磁性材料,即使在包含这样的结构的情况下,在本发明中,在磁性材料内第一相和第二相也必定存在。其原因在于,纳米晶的生成本身大幅地参与用于制造本发明的磁性材料的、以含钴的铁氧体的粉体、且具有纳米尺度大小的粉体(在本申请中,也称为“钴铁氧体纳米粉体”或“Co-铁氧体纳米粉体”)的还原为头绪的还原工序的各过程中的歧化反应。应予说明,在本申请中,也将纳米尺度的大小的铁氧体粉体称为“铁氧体纳米粉体”,另外,所谓纳米尺度,在没有特别规定的情况下,是指1nm以上且不到1μm。
<第二相的确定>
以下对第二相的确定方法进行说明。首先,如上所述,第一相为ccs-(Fe,Co)相,主要保证高的饱和磁化。第二相是相对于该相中所含的Fe与Co的总和的Co的含量比相对于第一相中所含的Fe和Co的总和的Co的含量多的相。在本发明中,第二相可以是比磁性材料整体的Co含量多的ccs-(Fe,Co)相,也可以是其他的晶相或无定形相、或者它们的混合相。在本发明的软磁性材料中均具有将矫顽力保持得低的效果。因此,第二相是具有这些效果的相的总体,因此可知只要Co的含量比第一相高,能够显示出前面例示的任一个相的存在,则为本发明的磁性材料。
在第二相为ccs-(Fe,Co)相的情况下,有时Co组成从第一相连续地变化。或者,根据鉴定材料的方法,有时观察到第一相和第二相的Co组成连续地变化。这样的情况下,希望第二相的Co含量(即,相对于第二相中所含的Fe和Co的总和的第二相中的Co含量)比第一相的Co含量(即,相对于第一相中所含的Fe和Co的总和的第一相中的Co含量)多,进而优选具有为第一相的Co含量的1.1倍以上和/或1原子%以上、更优选为1.1倍以上和/或2原子%以上的组成上的差。
对于第一相、第二相而言,均是Fe和Co的组成比只要能够实现本发明的目的,则并无特别限制,优选相对于Fe和Co的总和的Co的含量为0.01原子%以上且75原子%以下。
将第一相和第二相合起来的Co的含量为75原子%以下在避免饱和磁化的降低上特别优选,另外为0.01原子%以上对于避免不具有耐氧化性等的Co添加效果、矫顽力没有升高到适应目标用途的程度上为优选。进而,从耐氧化性、磁特性的平衡良好的观点出发优选的将第一相和第二相合起来的Co的含量为0.01原子%以上且60原子%以下,其中特别优选的范围为0.01原子%以上且50原子%以下。
第一相与第二相的体积比是任意的,相对于将第一相、第二相和副相合起来的本发明的磁性材料整体的体积,第一相、或者第一相和第二相中ccs-(Fe,Co)相的体积的总和优选为5体积%以上。ccs-(Fe,Co)相承担本发明的磁性材料的主要的磁化,因此在避免磁化的降低上优选为5体积%以上。进而,优选为25体积%以上,更优选为50体积%以上。为了在不使电阻率过度降低的情况下实现特别高的磁化,希望使ccs-(Fe,Co)相的体积的总和成为75体积%以上。
优选在本发明的软磁性材料的第二相中具有强磁性或反强磁性(在本申请中,弱磁性也包含在其中)的相,其原因在于,具有使第一相的结晶磁各向异性降低的效果。关于这点,结合后述的无规磁各向异性模型的说明进行论述。
<优选的第二相的例子、结晶方位的无规性验证方法>
在本发明的磁性材料中,作为强磁性优选的第二相的代表例,有第一,具有Co含量比第一相多,并且,优选地,相对于第二相中的Fe和Co的总和,该Co含量为0.1原子%以上且75原子%以下、更优选0.5原子%以上且60原子%以下、特别优选1原子%以上且50原子%以下的ccs-(Fe,Co)相。
对于第一相而言,也是相对于第一相中的Fe和Co的总和,以50原子%以上且75原子%以下包含Co的情况下,虽然实现高的饱和磁化,但Co含量增多至该程度时,不再能够发挥低的矫顽力。因此,优选通过将相对于第一相中的Fe和Co的总和、Co含量为0.01原子%以上且60原子%以下的第一相(更优选地,1原子%以上且50原子%以下的第一相)和Co含量比第一相大的第二相组合,从而实现饱和磁化大、矫顽力小的磁性材料。而且,第一相的晶粒的大小为100nm以下,优选为50nm以下,优选该晶粒的晶轴的方位没有集中在一个方向上,而是无规的。
作为该结晶的方位为无规的验证方法的例子,可列举出以下的考察晶轴的取向性的各种方法。
(i)在使用XRD(X射线衍射装置)测定的衍射图案中选择比较至少2个衍射线,观察其强度比来确认的方法。例如,如果为bcc-(Fe,Co)相,能够通过选择衍射图案中作为(110)、(200)、(211)的3个强线的各衍射线位置的至少两个衍射线进行比较,观察其强度比来确认。如果接近粉末图案中的强度比,则成为无规取向的一个佐证。
(ii)有通过使用XRD的极点测定来获知测定区域的结晶方位的分布、估测取向性的方法。
(iii)作为考察数百nm的晶粒的取向性的方法,有使用附属于SEM(扫描型电子显微镜)的EBSD(背散射电子衍射)装置求出结晶的方位和其晶系的方法。
(iv)作为确认数~数十nm的局部的晶粒的无规性的方法,有如下方法:在使用附属于TEM(透射型电子显微镜)的ED(电子束衍射装置)测定的情况下,衍射点没有明确地出现,通过观察环形图案,从而获知观察区域内的结晶方位为无规。
(v)进而,作为观察局部的结晶方位的取向性的方法,有通过TEM观察,观察在晶体边界的格子条纹的方向、原子的排列从而进行研究的方法。即,观测被晶体边界隔开的两侧的晶粒的晶面方位从而比较。
(vi)作为宏观上进行该晶体边界的观察的方法,有使用FE-SEM(场致发射型扫描电子显微镜)来获知双晶壁的方向、晶体边界的形状的方法。在极端的情况下,如果晶体边界为圆弧、复杂的曲线、迷宫图案,则呈现连晶从各种方向复杂地相互缠结的连晶组织,因此成为结晶方位为无规的佐证。
这些方法能够根据本发明的磁性材料的微细结构、晶粒直径的大小而适当地组合,也能够与后述的获知局部组成的方法组合,综合地判断本发明的磁性材料中的晶粒的取向性。顺便提及,采用(v)、(vi)的方法进行第一相彼此、第一相与第二相、或者第二相彼此间的晶界区域、第一相和/或第二相占多数的区域中的观察,在晶界没有发现异相的情况下,可成为在相邻的粒子间产生了铁磁性耦合的证据。
接着,作为优选的第二相,可列举出Co-铁氧体相和方铁矿相的两氧化物相。前者是强磁性,后者是反强磁性,只要位于第一相之间,都能够促进铁磁性耦合。
顺便提及,也已知铁氧体相促进铁磁性耦合的例子(对于这点,参照国际公开第2009/057742号(以下称为“专利文献3”)、N.Imaoka,Y.Koyama,T.Nakao,S.Nakaoka,T.Yamaguchi,E.Kakimoto,M.Tada,T.Nakagawa和M.Abe,J.Appl.Phys.,第103卷,第7期(2008)07E129(以下称为非专利文献3)),均是在硬磁性材料的Sm2Fe17N3相间存在铁氧体相,这些相铁磁性耦合,构成交换弹簧磁体。
但是,本发明涉及软磁性材料,发挥的功能与上述的硬磁性交换弹簧磁铁完全不同。在本发明中,由于作为Co-铁氧体相或方铁矿相的第二相的存在,对于居间调停第一相间的交换相互作用的方面是同样的,这样的第二相如果以包围第一相的方式存在,则电阻也高,矫顽力也减小。因此,特别是在本发明的软磁性材料中成为非常优选的第二相之一。
将磁性材料整体设为100体积%,这两种氧化物相优选为95体积%以下。这是因为,例如Co-铁氧体可称为强磁性材料,磁化比ccs-(Fe,Co)相低,虽然方铁矿也是反强磁性,但为弱磁性,虽然在某种程度上磁化存在,但比Co-铁氧体低,因此如果任一者超过95体积%,有时磁性材料整体的磁化降低。更优选的氧化物相的含量为75体积%以下,特别优选为50体积%以下。制成在某种程度上维持电阻率的同时磁化特别高的磁性材料时,优选使以上的氧化物相为25体积%以下。另外,相反如果存在方铁矿相等氧化物相,则电阻率上升,因此在为此积极地含有方铁矿相等的情况下,其优选的体积分数为0.001体积%以上,特别是为了在磁化基本上不降低的情况下使方铁矿相等存在,有效地提高电阻率,更优选0.01体积%以上,特别优选为0.1体积%以上。其中,在氧化物相不含Co-铁氧体,为方铁矿的情况下,上述体积分数的范围等也同样。
如上所述,作为第二相的优选的相,例示了Co含量比第一相多的ccs-(Fe,Co)相、Co-铁氧体相、方铁矿相,这三种相为强磁性体或反强磁性体。因此,如果这些相没有铁磁性耦合而分离,则在磁曲线中具有加和性,它们的混合材料的磁曲线成为各个磁曲线的单纯的和,在磁性材料整体的磁曲线上产生平滑的台阶高差。例如观察在外部磁场为0~7.2MA/m这样的宽磁场范围下进行磁化测定而得到的、磁性材料整体的磁曲线中的1/4主回路(将从7.2MA/m到零磁场扫描时的磁曲线称为1/4主回路)的形状时,能够推测在该1/4主回路上确实存在上述的实际情况引起的平滑的台阶高差、或者基于其的拐点。另一方面,在这些异种的磁性材料通过铁磁性耦合形成一体的情况下,在7.2MA/m至零磁场的范围的主回路上没有发现平滑的台阶高差或拐点,呈现出单调增加的、向上凸的磁曲线。为了估测铁磁性耦合的有无,除了上述的晶界区域中的微细结构观察等以外,进行以上的磁曲线的详细观察也是一个指标。
在上述的作为氧化物相的优选的第二相中,特别是方铁矿相在高的还原温度、成型温度下也能够稳定地存在,因此是在构成本发明的磁性材料上非常优选的相。另外,主要在还原工序中,由该相通过歧化反应产生的具有各种组成的ccs-(Fe,Co)相是作为第一相或者第一相和第二相承担本发明的磁性材料显现出的磁性主体的重要的相,其中在Co含量为0.5原子%以上的区域中,特别是经由方铁矿相向具有高磁性的金属相的还原反应进行,因此ccs-(Fe,Co)相从通过歧化反应而产生的阶段开始已与方铁矿相直接铁磁性耦合的情况很多,是对于作为本发明的磁性材料、特别是软磁性材料的第二相进行有效利用而言非常优选的相。
<组成分析>
在本申请的实施例中,本发明的磁性材料的金属元素的局部的组成分析主要采用EDX(能量分散型X射线分光法)进行,磁性材料整体的组成分析采用XRF(荧光X射线元素分析法)进行。一般地,第一相和第二相的Co含量采用附属于SEM、FE-SEM、或者TEM等的EDX装置测定(本申请中,有时将该附属有EDX的FE-SEM等记载为FE-SEM/EDX等)。也取决于装置的分辨率,但如果第一相和第二相的晶体结构为300nm以下的微细结构,则采用SEM或FE-SEM不能进行正确的组成分析,如果用于只检测本发明的磁性材料的Co、Fe成分之差,则能够辅助地利用。例如,要找出Co含量为5原子%以上且不到300nm的第二相时,观测磁性材料中的某一点,如果确认其定量值以Co含量计,为5原子%以上,则在以这一点为中心的直径300nm的范围内存在Co含量为5原子%以上的组织或者该组织的一部分。另外,相反,为了找出Co含量为2原子%以下的第一相,进行磁性材料中的某一点的观测,如果确认其定量值以Co含量计,为2原子%以下,则在以这一点为中心的直径300nm的范围内存在Co含量为2原子%以下的组织或者该组织的一部分。
进而,如上所述,通过将该组成分析法与XRD、FE-SEM、TEM等组合,能够获知晶粒的取向性、组成的分布,有助于验证作为本发明的特征的Co组成歧化、存在多种多样的晶相,它们的晶轴进行无规的取向。进而,为了区别ccs-(Fe,Co)相与其他方铁矿相等氧化物相,例如对使用了SEM-EDX的氧特性X射线面分布图进行解析是简便有效的。
<磁性材料整体的组成>
就本发明中的磁性材料整体中的各组成(即,将构成磁性材料整体的成分含量的总和设为100原子%时的各组成)而言,优选同时满足Fe成分设为10原子%以上且99.999原子%以下,Co成分设为0.001原子%以上且90原子%以下,O(氧)设为0原子%以上且55原子%以下的范围。进而,可含有0.0001原子%以上且5原子%以下的碱金属。优选包含K等的副相不超过整体的50体积%。
Fe为10原子%以上的情况下,能够避免饱和磁化降低,为99.999原子%以下的情况下,能够避免耐氧化性降低、加工性变得缺乏,因此优选。Co成分为0.001原子%以上的情况下,能够避免耐氧化性降低、加工性变得缺乏,为50原子%以下的情况下,能够避免饱和磁化降低,因此优选。O为对于构成第二相重要的元素的情况下,55原子%以下的范围不仅能够避免饱和磁化低,而且能够避免不发生钴铁氧体纳米粉体的还原引起的向第一相、第二相的歧化反应,向低矫顽力的软磁性材料的逐步扩展变得困难,因此优选。未必在本发明的磁性材料中必定包含氧,但为了制成耐氧化性、电阻率显著高的磁性材料,优选少许地含有。例如,在后述的缓慢氧化工序中使经还原的金属粉体的表面钝化或者通过该操作使在固体磁性材料的晶粒间界的一部分存在以方铁矿相为首的1个原子层至数个原子层的氧化层的情况下,在这种情形下相对于本发明的磁性材料整体的组成的各组成范围优选:Fe成分为20原子%以上且99.998原子%以下,Co成分为0.001原子%以上且79.999原子%以下,O为0.001原子%以上且55原子%以下的范围。
本发明的磁性材料的更优选的组成为:Fe成分为25原子%以上且99.98原子%以下,Co成分为0.01原子%以上且74.99原子%以下,O为0.01原子%以上且49.99原子%以下,位于该范围的本发明的磁性材料的饱和磁化与耐氧化性的平衡良好。
进而,在电磁特性优异、耐氧化性优异的方面,优选处于Fe成分为29.95原子%以上且99.9原子%以下、Co成分为0.05原子%以上且70原子%以下、O为0.05原子%以上且33原子%以下的组成范围的本发明的磁性材料。
在上述组成范围中,特别是制成磁化为2.2T以上的性能优异的、本发明的磁性材料的情况下,优选为Fe成分是49.95原子%以上且69.95原子%以下、Co成分是30原子%以上且50原子%以下、O是0.05原子%以上且20原子%以下的组成范围。
也依赖于Co成分含量,因此不能一概而论,但在本发明中,矫顽力小的软磁性材料倾向于含有少量的氧。
<磁特性和电特性、耐氧化性>
本发明之一为具有适于矫顽力为800A/m以下的软磁性用途的磁特性的磁性材料,以下对这方面进行说明。
这里所说的“磁特性”是指材料的磁化J(T)、饱和磁化Js(T)、磁通密度(B)、剩余磁通密度Br(T)、交换刚度常数A(J/m)、结晶磁各向异性磁场Ha(A/m)、结晶磁各向异性能量Ea(J/m3)、结晶磁各向异性常数K1(J/m3)、矫顽力HcB(A/m)、固有矫顽力HcJ(A/m)、透磁率μμ0、比透磁率μ、复透磁率μrμ0、复比透磁率μr、其实数项μ’、虚数项μ”和绝对值|μr|中的至少一个。就本申请说明书中的“磁场”的单位而言,将SI单位系的A/m与cgs高斯单位系的Oe并用,其换算式为1(Oe)=1/(4π)×103(A/m)。即,1Oe相当于约80A/m。就本申请说明书中的“饱和磁化”、“剩余磁通密度”的单位而言,将SI单位系的T与cgs高斯单位系的emu/g并用,其换算式为1(emu/g)=4π×d/104(T),其中d(Mg/m3=g/cm3)为密度。因此,由于d=7.87,因此具有218emu/g的饱和磁化的Fe在SI单位系的饱和磁化的值Ms成为2.16T。应予说明,在本申请说明书中,只要无特别说明,说到矫顽力,是指固有矫顽力HcJ
在本发明的磁性材料中,优选磁化、饱和磁化、磁通密度、剩余磁通密度、电阻率更高,对于饱和磁化,优选0.3T或30emu/g以上的大小,特别是限于软磁性材料时,优选100emu/g以上的大小。其他的本发明的磁特性例如结晶磁各向异性常数、矫顽力、透磁率、比透磁率等根据用途适当地控制。特别是透磁率、比透磁率根据用途,未必一定大,只要矫顽力足够地低,铁损抑制得低,则例如可将比透磁率调整到100~104左右的大小,特别是抑制直流重叠磁场下的磁饱和,从而也能够抑制效率的降低,容易线性地控制,或者基于关系式(1),每使透磁率降低一位数,也能够使产生涡流损耗的极限厚度平均增厚约3.2倍。本发明的特征之一在于具备不是磁畴壁移动产生的磁化反转,而是主要具备磁化的直接旋转产生的磁化反转机制,因此矫顽力低,磁畴壁移动产生的涡流损耗也小,能够将铁损抑制得低,另外,在晶体边界产生抑制外部磁场引起的磁化旋转的某些局部的磁各向异性,能够减小透磁率。
<晶体边界>
就本发明的磁性材料成为软磁性的主要因素而言,特别是与其微细结构有密切的关系。ccs-(Fe,Co)相有时乍一看观察为连续相,但如图1所示,包含大量的异相界面、晶粒间界,另外,包含包括接触双晶、贯穿双晶等单纯双晶、集边双晶、轮座双晶、多重双晶等反复双晶的双晶、连晶、骸晶(在本发明中,在不仅用异相界面、多晶晶界而且用这些各种各样的晶癖、晶相、连晶组织、位错等将结晶加以区分的情况下,将它们的边界面总称为“晶体边界”)等,通常与常见的直线的晶粒间界不同,多数情况以曲线群的形式呈现晶体边界,进而,在这样的组织中,根据位置,在Co含量上大幅地看到差异。具有以上的微细结构的本发明的磁性材料多数情况成为软磁性材料。
在本发明的磁性材料为软磁性材料的情况下,就第一相和第二相而言,在第二相为ccs-(Fe,Co)相的情况下,从钴铁氧体纳米粉体出发,在伴有粒生长的同时,随着还原反应的进行,与组成的歧化反应一起失去晶格中的氧,最终通常产生最大达到52体积%的大的体积减小。因此,作为ccs-(Fe,Co)相的第一相和第二相以将水晶等宝石、黄铁矿、霰石等矿物、岩石的结晶中看到的多彩的微细结构缩小到纳米尺度的形式保有,在内部包含具有各种Co含量的多种多样的相、纳米晶。
对于在晶粒间界、连晶中看到的组织,在Co含量上因观测场所的不同也发现差异,也有时为异相界面。因此,被这些晶体边界包围的磁性体结晶的方位如果在铁磁性耦合长度内为非取向,按照上述的无规磁各向异性模型,矫顽力大幅地降低。
<无规磁各向异性模型和本发明特有的矫顽力降低机制>
对于用无规各向异性模型所说明的本发明的软磁性材料或者根据本发明特有的矫顽力降低机制而使其低矫顽力的本发明的软磁性材料而言,优选充分满足以下三个条件。
(1)ccs-(Fe,Co)相的晶粒直径小;
(2)进行无规的取向和/或存在纳米尺度下的Co浓度的波动;
(3)通过交换相互作用从而铁磁性耦合。
这3个条件中,在用无规各向异性模型对其说明的情况下,对于(2),必须满足进行无规的取向的条件。但是,就上述(2)的条件而言,在后半部分“和/或”以后,说明了即使是没有进行无规的取向的情况下矫顽力的降低也可以因与无规各向异性模型不同的原理而产生。即,通过第一相与第二相、第一相之间、第二相之间的任一种以上的相互作用,产生基于纳米尺度的Co成分含量的浓度的波动的磁各向异性的波动,促进磁化反转,实现矫顽力的减小。根据该机制的磁化反转机制是本发明特有的,据本发明人所知,这是由本发明人首次发现的。
进而,由于以上的原因,在还原时粒生长、粒子之间没有熔合以致强磁性相连续的情形、发生了粒子之间分离的相分离的情形下,为了在软磁性区域具有本发明的磁性材料粉体的矫顽力,希望在这之后实施烧结等,进行固化,即,使之成为“第一相与第二相直接或经由金属相或无机物相而连续地结合、作为整体上形成块状的状态”。
为了通过上述(3)的交换相互作用而铁磁性耦合,由于交换相互作用是在数nm的短程有序内起作用的相互作用或力,因此为了在第一相之间连结的情况下直接结合,或者在第一相与第二相或第二相之间连结的情况下传导交换相互作用,第二相必须为强磁性或反强磁性。即使第一相和/或第二相的一部分位于超顺磁性区域,其材料自身在块体状态下为强磁性或反强磁性,因此如果与周围的强磁性或反强磁性的相充分交换结合,也有时形成传达交换相互作用的相。
本发明的磁性材料具有上述特征的原因在于,本发明主要提供高磁化且用与高频用途的其他金属系软磁性材料本质上不同的方法(即,将钴铁氧体纳米粉体还原、首先制造具有纳米微晶的金属粉体、进而将其成型而制成固体磁性材料)形成的磁性材料、堆积型的块体磁性材料。
<第一相、第二相、磁性材料整体的平均晶粒直径>
本发明的软磁性材料的第一相、或第二相的平均晶粒直径、或磁性材料整体的平均晶粒直径优选为1nm以上且不到10μm,更优选位于纳米区域。在第一相和第二相的平均晶粒直径位于纳米区域的情况下,磁性材料整体的平均晶粒直径位于纳米区域。
特别地,关于本发明的软磁性材料,为了实现上述的无规磁各向异性模型带来的低矫顽力化,应使其成为晶粒直径比L0(强磁性交换长度或交换结合长度)小的磁性材料,优选第一相或第二相中的任一个位于纳米区域。如果第一相或第二相位于纳米区域,直径比L0小,则与位于其周围的至少一个第一相或第二相的铁磁性耦合引起各向异性的平均化。一旦实现平均化,则L(自洽铁磁交换长度,self-consistent ferromagnetic exchangelength)扩大,从而磁各向异性的平均化进一步发展,大幅地减小结晶磁各向异性磁场,因此矫顽力也降低。因此,在第一相、第二相都为强磁性相的情况下,优选两者的平均晶粒直径都为不到10μm,由于上述的原因,更优选为1μm以下,进一步优选为200nm以下,虽然也依赖于Co含量,但也具有矫顽力的显著的降低效果,特别优选。在以上的情况下,多数情况下第一相的K1比第二相大,因此特别是第一相为不到10μm、优选1μm以下、更优选200nm以下时,矫顽力变得极小,成为适于各种变压器、马达等的软磁性材料。
另外,如果不到1nm,则在室温下成为超顺磁性,有时磁化、透磁率极端地变小,因此优选设为1nm以上。在上述也提及,如果不到1nm的晶粒、无定形状的相存在的情况下,需要通过1nm以上的晶粒和充分的交换相互作用使它们连结。
另外,在第二相不为强磁性相的情况下,第二相不参与上述的无规各向异性化模型引起的矫顽力降低,但通过其存在,电阻率变大,因此是优选的成分。
但是,如果其存在量、即含量过多,则饱和磁化降低,因此在第二相为非磁性相的情况下,其量应控制为不超过第一相的量。再有,尽可能微分散时,能够将作为非磁性相的第二相包入用第一相形成的L内部,因此不对矫顽力产生不良影响,在这方面优选。如果非磁性的相过大,则将第一相产生的铁磁性耦合的连锁完全地分隔。进而,在本发明的软磁性材料中随着磁畴壁进行磁化反转的部分即使是一部分也存在的情况下,如果为本发明的软磁性材料那样<K>较小的材料,则磁畴壁的宽度成为1μm以上,因此与其相符的大小的非磁性相带来磁畴壁的钉扎的效果,有可能妨碍磁畴壁移动,矫顽力变大,或者铁损变大。由这样的理由出发,在第二相为非磁性相的情况下也希望将其量控制为不超过第一相的量。
实现了无规磁各向异性模型产生的低矫顽力化的材料不太随着磁畴壁的移动而进行磁化反转,因此非磁性相等异相、位错等的对于矫顽力的影响小。不过,为了使矫顽力变小,有时粉体热处理、采用烧结等的固化后的退火是有效的。如果在加压烧结等时伴有塑性变形,位错密度上升,则诱发101J/m3以上且104J/m3以下左右的诱导磁各向异性,例如如果第一相的结晶磁各向异性平均化,也有时与其<K>的值匹敌。这种情况下,需要通过适当的退火将位错除去。另外,由于这些变形、位错使透磁率的大小减小,因此要制成高透磁率材料时,有时变得特别重要。但是,如果在还原反应工序中控制还原温度、时间、升降速度而促进歧化后不小心地退火,则在组成的均质化的同时发生晶粒的生长,有时矫顽力反而增加,因此需要注意。因此,需要适当的退火条件的管理。
<晶粒直径的测定>
本发明的晶粒直径的测定使用采用SEM法、TEM法或金属显微镜法得到的像。在观察的范围内,不仅观察异相界面、晶粒间界,而且观察全部的晶体边界,将被其包围的部分的晶体区域的直径作为晶粒直径。在难以看到晶体边界的情况下,可采用使用了硝酸酒精腐蚀溶液等的湿法、干蚀刻法等将晶体边界蚀刻。平均晶粒直径以下述为原则:选择代表性的部分,在含有最低100个晶粒的区域中计量。可比其少,但在这种情况下,要求存在统计上充分代表整体的部分,对这部分进行计量。就平均晶粒直径而言,拍摄观测区域,在其照片平面(向对象的拍摄面的放大射影面)上确定适当的直角四边形区域,在其内部应用Jeffry法求出。再有,在采用SEM、金属显微镜观察的情况下,相对于分辨率,晶体边界宽度过小,也有时观测不到,在这种情况下,平均晶粒直径的计量值给予实际的晶粒直径的上限值。具体地,只要是上限10μm的平均晶粒直径测定值,就没有问题。不过,例如由于XRD上不具有明确的衍射峰、在磁曲线上确认超顺磁性等现象,显示出磁性材料的一部分乃至全部突破晶粒直径的下限即1nm的可能性的情况下,必须通过TEM观察重新确定实际的晶粒直径。
<微晶尺寸的测定>
在本发明中,通过歧化反应,发生相分离,在第一相和/或第二相的ccs-(Fe,Co)相的Co含量上产生组成宽度。根据Co含量,X射线的衍射线峰位置变化,因此例如即使求出bcc相的(200)处的衍射线的线宽,由此确定微晶尺寸,一般也不能视为实际的微晶尺寸。但是,在本发明中,由于Co的原子半径或金属原子半径与Fe没有大的差异(Fe的金属原子半径为0.124nm,Co的原子半径为0.125nm),因此限于呈ccs结构的本发明的磁性材料的组成为Fe100-xCox(x为原子百分比,0.001≦x≦90)的情形,可将XRD测定的结果得到的微晶尺寸即“表观的微晶尺寸”视为实际的“微晶尺寸”。本发明中,只要无特别说明,所谓“微晶尺寸”,是指该“表观的微晶尺寸”。所谓微晶,是构成结晶物质的显微镜水平下的小的单晶,比构成多晶的各个结晶(所谓晶粒)要小。
在本发明中,就微晶尺寸而言,对于除去了Kα2衍射线的影响的衍射图案使用谢乐方程,将无量纲形状因子设为0.9,使用(200)衍射线宽(bcc结构和fcc结构的情形)或(110)衍射线宽(fcc结构的情形)求出。
在第一相为bcc相的情况下,第二相可呈bcc、fcc和其他结构,在第一相为fcc相的情况下,第二相的结构成为bcc结构以外的结构。其优选的bcc(fcc)相的微晶尺寸的范围为1nm以上且不到300nm。
如果不到1nm,在室温下成为超顺磁性,有时磁化、透磁率极端地变小,因此优选设为1nm以上。
优选使bcc(fcc)相的微晶尺寸不到300nm,如果成为不到200nm,则矫顽力进入软磁性区域,变得极小,成为适于各种变压器、马达等的软磁性材料,因此优选。进而,就100nm以下而言,不仅即使是Co含量低的区域也获得超过2T的高磁化,而且也同时实现低的矫顽力,是非常优选的范围。
<软磁性材料的大小>
在本发明的软磁性材料的情况下,如上述所示那样,希望在每个部分进行无规磁各向异性模型产生的磁各向异性的平均化。因此,优选以第一相和第二相为中心,也包含第一相之间、第二相之间在内,至少以L的大小进行铁磁性耦合。这是因为,在将本发明的磁性材料作为软磁性材料利用的情况下,达到L的大小的粉体能够避免高矫顽力。再有,对于本发明的磁性材料而言,由于与无规磁各向异性模型稍微不同的机制,不依赖于结晶的各向同性化,由于纳米尺度的Ni浓度的波动,存在磁各向异性起伏、实现低矫顽力的组成区域,即使在这种情况下,也需要实现在与L匹敌的足够的区域中Ni浓度起伏的状态。
就没有达到L的大小的本发明的软磁性材料粉体而言,要求通过烧结等,直接或者经由金属相或无机物相连续地结合至至少L的大小。特别地,如上所述将本发明的磁性材料的粉体例如在合成树脂、陶瓷等中分散而使用时,需要该粉体的粉体粒径比L大,或者第一相、或者第一相和第二相结合并粒生长到同等的水平。
本发明的软磁性材料的粉体的大小(平均粉体粒径)也取决于L,优选10nm以上且5mm以下。如果不到10nm,则矫顽力没有变得足够小,如果超过5mm,烧结时发生大的变形,如果无固化后的退火处理,则矫顽力反而增大。更优选为100nm以上且1mm以下,特别优选为0.5μm以上且500μm以下。如果平均粉体粒径收敛于该区域,则成为矫顽力低的软磁性材料。另外,如果在上述规定的各平均粉体粒径范围内粒径分布足够宽,则用比较小的压力容易地实现高填充,固化的成型体的单位体积的磁化变大,因此优选。与L相比,如果粉体粒径过大,有时激发磁畴壁的移动,利用本发明的软磁性材料的制造过程中的、通过歧化反应所形成的异相,阻碍该磁畴壁移动,也有时矫顽力反而增大。因此,在本发明的软磁性材料的成型时,有时可为具有适当的粉体粒径的本发明的磁性材料粉体的表面被氧化了的状态。就本发明的含Co的合金而言,通过歧化还原反应,使组织微细化,因此即使通过氧化将表面在某种程度上氧化,大多对内部的磁化旋转也没有产生大的影响,耐氧化性变得极高。因此,根据本发明的磁性材料粉体的组成、形状、大小,粉体表面的适当的缓慢氧化、空气中的各工序处理、不是还原性气氛而是非活性气体气氛等中的固化处理等在使矫顽力稳定化上也有效。
<半硬磁性材料的大小>
本发明的半硬磁性材料时的粉体的大小(平均粉体粒径)从显现出半硬磁性区域的矫顽力的同时保持高磁化、赋予耐氧化性这样的观点出发,优选设为10nm以上且10μm以下。
<平均粉体粒径的测定>
就本发明的磁性材料的粉体粒径而言,主要使用激光衍射式粒度分布计测定体积当量直径分布,通过由其分布曲线求出的中位径评价。本发明的磁性材料的粉体粒径可以以粉体的采用SEM法、TEM法得到的照片、或者金属显微镜照片为基础,选择代表性的部分,计量最低100个的直径,对它们进行体积平均而求出。可比其少,但在这种情况下,要求存在统计上充分代表整体的部分,计量这部分。特别是计量低于500nm的粉体、超过1mm的粉体的粒径时,优先使用SEM、TEM的方法。此外,将N种(N≦2)的测定法或测定装置并用,进行了合计n次的测定(N≦n)的情况下,这些数值Rn需要位于R/2≦Rn≦2R之间,这种情况下,用作为下限与上限的几何平均的R来确定粉体粒径。
如上所述,本发明的磁性材料的粉体粒径的测定法原则上,在(1)计量值为500nm以上且1mm以下的情况下,优先采用激光衍射式粒度分布计,在(2)不到500nm或超过1mm的情况下,优先采用显微镜法。在(3)为500nm以上且1mm以下、将(1)和(2)并用的情况下,用上述R来确定平均粉体粒径。在本申请中,粉体粒径的标记在(1)或(2)的情况下,为有效数字1位或2位,在(3)的情况下用有效数字1位表达。将粉体粒径的测定法并用的原因在于,在具有500nm以上、1mm以下的粉体粒径的情况下,对于(1)的方法而言,即使是有效数字一位也有可能成为不正确的值,另一方面,对于(2)的方法而言,确定不是局部的信息需要花费工夫,因此通过采用(1)的方法首先得到平均粉体粒径的值,采用(2)的方法也简便地得到值,从而将两者比较研究,用上述R来确定平均粉体粒径,是非常合理的。本申请中,采用以上的方法确定了本发明的磁性材料的粉体的平均粒径。不过,在(1)与(3)、或者(2)与(3)在有效数字一位不一致的情况下,根据平均粉体粒径范围,再次用(1)或(2)精密地测定来确定R。在这种情况下,在明显地具有强的聚集而用(1)求出粉体粒径不妥当、或者由于不均匀而采用样品图像估算的粉体粒径极端地不同、显然用(2)确定粉体粒径不妥当、或者进而根据测定装置的规格作为确定上述的粉体粒径测定法的基准的500nm和1mm这样的区分不妥当等明显的不妥当事由存在的情况下,可以不遵循上述原则,限定地重新选择(1)、(2)或(3)的任一个手法来采用。即,在(1)~(3)的测定法的范围内,为了捕捉磁性材料的真实姿态,得到尽可能接近真值的粉体粒径的体积平均值,可选择认为最妥当的方法。如果只是为了将本发明的磁性材料与其以外的磁性材料区别,平均粉体粒径用1位有效数字确定足以。
再有,例如在1100℃以上还原Co含量为10原子%以下的钴铁氧体纳米粉体的情形等下,有时宏观的粉体形状成为在内部包含大量的作为贯通孔的中空部分的立体网状、所谓的海绵形状。认为这些是通过还原反应,进行粒生长的同时氧从晶格中脱离,产生大的体积减小而形成。将内部的中空部分的体积包含在内来计量这种情形的粉体粒径。
<固体磁性材料>
本发明的磁性材料能够作为第一相与第二相直接或者经由金属相或无机物相连续地结合、作为整体形成块状的状态的磁性材料(在本申请中,也称为“固体磁性材料”。)有效利用。另外,如上所述,在粉体中大量的纳米晶已结合的情况下,也能够对该粉体配合树脂等有机化合物、玻璃或陶瓷等无机化合物、以及它们的复合材料等而成型。
<填充率>
对于填充率,只要能够实现本发明的目的,则并无特别限定,在Co成分少的本发明的磁性材料的情况下,使填充率为60体积%以上且100体积%以下从耐氧化性和磁化大小的平衡的观点出发优异,因此优选。
这里所说的填充率,是指将相对于也包含空隙的本发明的磁性材料整体的体积的本发明的磁性材料的体积(即,除了空隙、树脂等不是本发明的磁性材料的部分以外的、只被本发明的磁性材料所占有的体积)的比例用百分比表示。
上述填充率的更优选的范围为80%以上,特别优选为90%以上。本发明的磁性材料原本耐氧化性就高,填充率越增大,耐氧化性越进一步增加,不仅所应用的用途范围扩大,而且饱和磁化提高,可得到具有高性能的磁性材料。另外,在本发明的软磁性材料中,也带来粉体之间的结合提高、矫顽力降低的效果。
<本发明的磁性粉体、固体磁性材料的特征>
本发明的磁性材料粉体的大的特征之一在于是如铁氧体那样可烧结的粉体材料。能够容易地制造具有0.5mm以上的厚度的各种固体磁性材料。进而,即使是具有1mm以上、进而5mm以上的厚度的各种固体磁性材料,只要为10cm以下的厚度,就能够通过烧结等比较容易地制造。在将本发明的固体磁性材料作为软磁性材料应用的情况下,有时也以与用途相符的多种多样的形状使用。
本发明的固体磁性材料不含树脂等粘结剂,并且密度高,能够通过切削加工和/或塑性加工,采用通常的加工设备容易地加工为任意的形状。特别是,大的特征之一在于能够容易地加工为工业利用价值高的棱柱状、圆筒状、环状、圆板状或平板状等形状。一旦加工为这些形状后,也可进一步对它们实施切削加工等,加工为瓦状或具有任意的底边形状的棱柱等。即,可容易地实施切削加工和/或塑性加工以成为任意的形状、由包含圆筒面的曲面或平面所包围的任意形态。这里所说的切削加工是一般的金属材料的切削加工,是采用锯、车床、铣床、钻孔机、磨石等的机械加工,所谓塑性加工,是采用压机的起模、成型、轧制、爆炸成型等。另外,为了除去冷加工后的应变,能够在常温以上且1290℃以下进行退火。
<制造方法>
接下来,对本发明的磁性材料的制造方法进行记载,但并不特别限定于这些制造方法。
本发明的磁性材料的制造方法包括:
(1)钴铁氧体纳米粉体制造工序
(2)还原工序
这两工序,根据需要可进一步包括以下的工序中的任一个工序以上。
(3)慢氧化工序
(4)成型工序
(5)退火工序
以下对各个工序具体地说明。
(1)钴铁氧体纳米粉体制造工序(在本申请中,也称为“(1)工序”。)
作为本发明的磁性材料的原料即纳米磁性粉体的优选的制造工序,有包括使用湿式合成法、全部在室温下合成的方法的制造工序。
作为公知的铁氧体微粉体的制造方法,有干式珠磨法、干式喷射磨法、等离子体喷射法、电弧法、超声波喷雾法、羰基铁气相分解法等,即使使用这些方法,只要构成本发明的磁性材料,则也为优选的制造法。不过,为了得到作为本发明的本质的、组成歧化的纳米晶,采用主要使用水溶液的湿式法的工序最简便因而优选。
本制造工序中,将用专利文献3中记载的“铁氧体镀敷法”应用于为了制造本发明的磁性材料而使用的钴铁氧体纳米粉体的制造工序中。
通常的“铁氧体镀敷法”不仅是粉体表面镀敷,而且也应用于薄膜等,另外,其反应机理等也已公开(例如,参照阿部正纪、日本应用磁气学会志、第22卷、第9号(1998)第1225页(以下称为“非专利文献4”。)、国际公开第2003/015109号(以下称为“专利文献4”。)),本制造工序中,与这样的“铁氧体镀敷法”不同,没有利用成为镀敷的基材的粉体表面。在本制造工序中,使在铁氧体镀敷中所利用的原料等(例如氯化钴和氯化铁)在100℃以下的溶液中反应,直接合成强磁性、结晶性的钴铁氧体纳米粉体自身。在本申请中,将该工序(或方法)称为“钴铁氧体纳米粉体制造工序”(或“钴铁氧体纳米粉体制造法”)。
以下关于具有尖晶石结构的“钴铁氧体纳米粉体制造工序”进行例示说明。
将预先调整到酸性区域的适量的水溶液放入容器(本申请中,也称为反应场),在室温大气下一边超声波激发,或者以适当的强度或转数进行机械的搅拌,一边与反应液一起将pH调节液同时滴入,使溶液pH从酸性慢慢变化到碱性区域,在反应场中生成钴铁氧体纳米粒子。然后,将溶液和钴铁氧体纳米粉体分离,干燥,得到平均粉体粒径1nm以上且不到1μm的钴铁氧体粉体。以上的方法由于工序简便,因此作为成本上便宜的方法列举出。特别地,在本发明的实施例中列举出的例子中,全部工序在室温下进行,因此,通过该不使用热源的制造工序,设备费用、运行成本等负担减轻。用于制造本发明中使用的钴铁氧体纳米粉末的方法当然并不限于上述制法,关于上述制法中使用的反应开始前的反应场的初期液(在本申请中,将其也称为反应场液)、反应液以及pH调节液,以下加以说明。
应予说明,将在进料的工序中使用的各种成分的组成一般称为“进料组成”,在本申请中,具体地,将作为反应场液和/或反应液所使用的溶液(即,为了制备反应场液和/或反应液而进料的溶液)的组成称为“进料组成”。因此,在本申请中,例如称为“进料钴组成”(或“进料Co组成”)、“进料锰组成”(或“进料Mn组成”)分别是指作为反应场液和/或反应液所使用的溶液(进料溶液)中所含有的Co成分、Mn成分。
作为反应场液,优选酸性溶液,除了盐酸、硝酸、硫酸、磷酸等无机酸以外,也可使用将金属盐、进而其复合盐、络合盐溶液等在水等亲水性溶剂中溶解而成的溶液(例如氯化铁溶液、氯化钴溶液等)、或者、有机酸的水溶液(例如醋酸、草酸等)等亲水性溶剂溶液、进而它们的组合等。作为反应场液,预先在反应场中准备反应液对于有效率地进行钴铁氧体纳米粉体的合成反应是有效的。如果pH不到-1,则对提供反应场的材质产生限制,另外,有时容许并非不可避免的杂质的混入,因此优选在-1以上且不到7之间进行控制。为了提高反应场中的反应效率,将不需要的杂质的溶出、析出控制在最小限度,特别优选的pH区域为0以上且不到7。作为反应效率与收率的平衡良好的pH区域,更优选为1以上且不到6.5。作为反应场的溶剂也能够使用有机溶剂等中的亲水溶剂,优选含有水以致无机盐能够充分地电离。
反应液可以是氯化铁或氯化钴等氯化物、硝酸铁等硝酸盐、或者含有Fe成分和/或Co成分(任选地可含有M成分)的亚硝酸盐、硫酸盐、磷酸盐或氟化物等无机盐的以水为主体的溶液,有时根据需要也可使用有机酸盐的以水等亲水性溶剂为主体的溶液。另外,也可以是它们的组合。反应液中必须含有铁离子和钴离子。对反应液中的铁离子进行说明,二价的铁(Fe2+)离子单独的情形、与三价的铁(Fe3+)离子的混合物的情形和三价的铁离子单独的情形均可,在Fe3+离子单独的情形下,需要含有M成分元素的二价以下的金属离子。作为Co离子的价数,已知一价、二价和三价,在反应液或反应场液中,二价在反应的均质性的方面特别优异。
作为pH调节液,可列举出氢氧化钠、氢氧化钾、碳酸钠、碳酸氢钠、氢氧化铵等碱溶液、盐酸等酸性溶液以及其组合。也可进行醋酸-醋酸钠混合溶液这样的pH缓冲液的使用、螯合化合物等的添加等。
氧化剂未必需要,作为反应场液和反应液中的Fe离子,在只含有Fe2+离子的情况下,是必要的成分。作为氧化剂的例子,可列举出亚硝酸盐、硝酸盐、过氧化氢水、氯酸盐、高氯酸、次氯酸、溴酸盐、有机过氧化物、溶存氧水等、以及它们的组合。通过在大气中或氧浓度受控的气氛中进行搅拌,从而保持将具有作为氧化剂的作用的溶存氧连续地供给至钴铁氧体纳米粒子反应场的状况,进行反应的控制也是有效的。另外,通过在反应场中冒泡等,将氮气或氩气等非活性气体连续地或一时地导入,限制氧的氧化作用,从而也能够在不阻碍其他氧化剂的效果的情况下稳定地进行反应控制。
在典型的钴铁氧体纳米粉体制造法中,采用以下的反应机理进行钴铁氧体纳米粒子的形成。钴铁氧体纳米粒子的核在反应液中经由绿锈这样的中间生成物或者直接生成。作为反应液,含有Fe2+离子,使其吸附于已生成的粉体核或者某种程度上生长的粉体表面的OH基,放出H+。接下来,利用空气中的氧、氧化剂、阳极电流(e+)等进行氧化反应时,吸附了的Fe2+离子的一部分被氧化为Fe3+离子。液体中的Fe2+离子或者Fe2+和Co2+离子(或者Co和M成分离子)在已吸附的金属离子上再次吸附,同时一边伴有水解,一边放出H+,生成具有尖晶石结构的铁氧体相。由于在该铁氧体相的表面存在OH基,因此金属离子再次吸附,反复同样的过程,生长成钴铁氧体纳米粒子。
在该反应机制中,为了使其由Fe2+和Co2+直接变化为尖晶石结构的铁氧体,如用Fe的pH-电位图中的平衡曲线将隔开Fe2+离子和铁氧体的线横切那样,可一边调整pH和氧化还原电位,一边(缓慢地)使反应体系移动至铁氧体从Fe2+离子稳定的区域析出的区域。Co2+除了特别的情形以外,从反应初期起为二价的状态,对于氧化还原电位变化几乎没有影响,多数的情况下根据Fe的氧化还原电位的变化来记述反应(即,从混合溶液向铁氧体固相的进行)。在含有M成分元素的离子、其离子的氧化数变化而参与反应的情况下,通过使用与其组成、温度对应的pH-电位图,或者进行预测,也能够得到同样的结论。因此,希望一边适当地调整pH调节剂、氧化剂的种类、浓度、添加方法等条件,一边生成铁氧体相。
在一般公知的铁氧体纳米粉体的制造法中,多在酸性侧调整反应液,不停地添加碱溶液等,使反应场成为碱性区域,通过共沉使微粒瞬时地产生。能够考虑注意以使得不因为Fe成分与Co成分的溶解度积之差而变得不均匀。当然,可采用该方法调制,能够制作非常小的纳米粒子,因此也能够作为本发明的磁性材料的铁氧体原料使用。
另一方面,在本发明的实施例中,通过滴入反应液,将钴铁氧体纳米粉体制造法中的原料供给至反应场,也同时滴入pH调节剂,慢慢地使pH从酸性变化到碱性,从而使Co成分牢靠地进入Fe-铁氧体结构中,以这种方式设计工序。根据该工序,在制造钴铁氧体纳米粉体的阶段,在上述的机制中生成铁氧体时所放出的H+通过pH调节液的连续的向反应场中的投入而被中和,连续不断地发生钴铁氧体粒子的生成、生长。另外,在反应初期,存在绿锈生成、反应场变为绿色的期间,在该绿锈中Co成分混杂是重要的,其最终转化为铁氧体时,将Co收入晶格内,进而在其后的还原反应中,通过将其还原到金属Co,从而形成bcc-(Fe,Co)相、fcc-(Fe,Co)相等。
除了上述以外,作为用于控制反应的其他因素,可列举出搅拌和反应温度。
为了防止通过钴铁氧体纳米粉体合成反应产生的微粒聚集从而阻碍均质的反应,分散非常重要,使用一边用超声波分散一边同时进行反应激发的方法、用泵将分散液输送和循环的方法、单纯用搅拌发条或转鼓进行搅拌、或者用致动器等摇动或振动的方法等,根据反应的控制目的,使用公知的方法中的任一个或者其组合。
作为反应温度,一般地,对于本发明中使用的钴铁氧体纳米粉体制造法而言,由于是在水共存下的反应,因此选择大气压下的水的凝固点至沸点的0℃~100℃之间。
在本发明中,将体系整体置于高压下等、在超过100℃的温度区域合成钴铁氧体纳米粉体的方法例如超临界反应法等只要能够形成发挥本发明的效果的钴铁氧体纳米粒子,就属于本发明的磁性材料。
作为反应的激发方法,除了上述的温度、超声波以外,有时压力、光激发等也有效。
进而,在本发明中,在使用含Fe2+的水溶液作为反应液以应用钴铁氧体纳米粉体制造法的情况下(特别是在钴铁氧体纳米粒子中Fe作为二价离子混入的条件下使其反应的情况下),如果Co的含量不到40原子%,则在最终生成的本发明的磁性材料的铁氧体纳米粉体中观测到Fe的二价离子是重要的。其量用Fe2+/Fe3+比计,优选为0.001以上。作为其鉴定方法,可使用电子束微量分析仪(EPMA)。具体地,通过用EPMA分析钴铁氧体纳米粒子的表面,得到FeLα-FeLβ的X射线光谱,得到上述两种材料之差,与含Fe2+的氧化铁(例如磁铁矿)和Fe3 +单独的氧化铁(例如赤铁矿、磁赤铁矿)标准试样的光谱比较,从而能够鉴定钴铁氧体纳米粒子中的Fe2+离子量。
此时,EPMA的测定条件为加速电压7kV、测定直径50μm、束电流30nA、测定时间1秒/步阶。
作为钴铁氧体纳米粉体的代表性的杂质相,有Co-赤铁矿等氧化物、针铁矿、四方纤铁矿、纤铁矿、六方纤铁矿、水铁矿、绿锈等羟基氧化铁、氢氧化钾、氢氧化钠等氢氧化物,其中特别是包含水铁矿相、Co-赤铁矿相的情况下,它们在还原后形成ccs-(Fe,Co)相及其他的第二相,因此是不必一定去除的相。这些水铁矿相、Co-赤铁矿相在SEM观察等中作为具有数nm的厚度的板状的组织观察到。但是,由于是与厚度相比面积大的粒子,因此在还原反应过程中有时大幅地助长不适当的粒生长,由于Fe成分、Co成分、氧以外的杂质也多,因此用体积分数表示,希望其量比钴铁氧体纳米粉体少。特别地,在Co成分与Fe成分的原子比超过0.33且0.5以下的情况下,以水铁矿、Co-赤铁矿为中心的钴铁氧体纳米粉体以外的相的Co比变得比钴铁氧体纳米粒子大,有时在还原时发生的歧化也变得难以控制,在这样的情况下,对水铁矿相、Co-铁氧体相等杂质相的凝聚状况(特别地,使其局部存在直至数微米左右,变得不均匀)等需要充分注意。再有,与上述无关,也可将容易收进Co的水铁矿相、Co-铁氧体相的相对于全部磁性材料的含量有意地限制到0.01体积%以上且33体积%以下的范围而使其共存,以致不使上述的不含Co的不适当的副相析出。这具有不必严密地保持钴铁氧体纳米粉体制造时的控制条件的工业上的优势。
成为本发明的原料的钴铁氧体纳米粉体中的Fe与Co的组成比只要能够实现本发明的目的,则并无特别限制,相对于Fe和Co的总和的Co的含量优选为0.01原子%以上且75原子%以下,更优选地,相对于Fe和Co的总和的Co的含量为1原子%以上且55原子%以下。
成为本发明的原料的钴铁氧体纳米粉体的平均粉体粒径优选为1nm以上且不到1μm。更优选为1nm以上且100nm以下。如果为1nm以下,不能充分地控制还原时的反应,成为缺乏再现性的结果。如果超过100nm,则在还原工序中还原了的金属成分的不妥当的粒生长变得显著,在软磁性材料的情况下,矫顽力上升。另外,如果为1μm以上,则α-Fe相分离,在该相中没有将Co收进,只得到缺乏本发明的优异的电磁特性、耐氧化性的磁性材料。
本发明中所使用的钴铁氧体纳米粉体主要在水溶液中进行制造的情况下,通过倾析、离心分离、过滤(其中特别是吸滤)、膜分离、蒸馏、气化、有机溶剂置换、采用粉体的磁场回收进行的溶液分离、或者它们的组合等将水分除去。然后,在常温或300℃以下的高温下进行真空干燥,或者在空气中使其干燥。也能够通过在空气中进行热风干燥、在氩气、氦气、氮气等非活性气体(不过,在本发明中,氮气根据热处理时的温度区域,也有时不是非活性气体)或氢气等还原性气体、或者它们的混合气体中进行热处理,从而干燥。作为将液体中的不需要成分除去、不使用一切热源的干燥方法,可列举出如下方法:在离心分离后舍弃上清液,进而在精制水中使钴铁氧体纳米粉体分散,反复进行离心分离,最后用丙酮等低沸点、高蒸汽压的亲水性有机溶剂进行置换,进行常温真空干燥。
(2)还原工序(在本申请中,也称为“(2)工序”。)
是将采用上述方法制造的钴铁氧体纳米粉体还原、制造本发明的磁性材料的工序。在该还原工序中均质的钴铁氧体纳米粉体发生歧化反应,本发明的磁性材料分离为第一相和第二相。
最优选在气相中进行还原的方法,作为还原气氛,可列举出氢气、一氧化碳气、氨气、甲酸气等有机化合物气体以及它们与氩气、氦气等非活性气体的混合气体、低温氢等离子体、过冷原子状氢等,可列举出使它们在横型、纵型的管状炉、旋转式反应炉、密闭式反应炉等中流通、回流、或密闭从而进行加热器加热的方法;用红外线、微波、激光等加热的方法等。也可列举出使用流动床、以连续式使其反应的方法。此外,也可列举出用作为固体的C(碳)、Ca进行还原的方法;将氯化钙等混合在非活性气体或还原性气体中进行还原的方法;以及在工业上用Al进行还原的方法。只要得到本发明的磁性材料,则均落入本发明的制造法的范畴。
但是,在本发明的制造法中优选如下方法:在作为还原性气体的氢气、或者其与非活性气体的混合气体中进行还原。这是因为,为了制造在纳米尺度上相分离的本发明的磁性材料,如果是采用C、Ca的还原,则还原力过强,用于构成本发明的软磁性材料的反应的控制非常难,另外,存在还原后产生有毒的CO、或者必须水洗以进行除去的氧化钙混杂等问题,如果是采用氢气的还原,能够自始至终在清洁的状况下进行还原处理。
对于本发明的材料中的氧含量,一般采用非活性气体-熔解法求出,在获知了还原前的氧含量的情况下,由还原前后的重量差能够推定本发明的材料中的氧。不过,在同时大量含有在还原前后含量容易变化的氯等卤素元素、K、Na等碱元素、或者水、有机成分等富有挥发性的成分的情况下,可另外鉴定这些元素、成分的含量。这是因为,只凭还原反应前后的重量变化,不能严密地估算氧含量。
顺便提及,在来自原料的碱金属中,例如,K在450℃下从磁性材料内通过气化开始散逸,在900℃以上,将其几乎全部除去。因此,在还原反应初期,为了利用其催化剂的作用,还是残存为好,在来自原料的碱金属根据用途在制品的阶段残存时不可取的情况下,通过适当地选择还原条件,从而能够将上述碱金属适当地去除到最终所容许的范围。在带来对还原有效的效果的同时能够容易地除去的K等碱金属的最终的含量的范围的下限值为0.0001原子%以上,上限值为5原子%以下,该上限值能够进一步控制在1原子%以下,在最精密地控制的情况下能够设为0.01原子%。当然,根据还原条件,也可进一步将K等碱金属减少到检测限度以下。对于在钴铁氧体纳米粉体中残存的Cl(氯)等卤素元素,如果在还原气氛下,主要作为HCl等卤化氢释放到材料体系外。残存Cl等在450℃以上的还原温度下开始显著地减量,也依赖于Co、K含量、进而它们在还原工序中的含量变化,但只要选择大致700℃以上的还原温度,就能够从材料内部大致完全地除去。
本发明的还原反应前后的O成分的主要成为H2O而蒸发导致的重量减少也依赖于Co含量、M成分含量、氧量、副相、杂质量、水等挥发成分量、或者还原性气体种等还原反应条件等,将还原反应前的重量设为100质量%,通常为0.1质量%以上且80质量%以下之间。
再有,如本发明的实施例的一部分那样,也能够以SEM等的照片或者EDX为基础求出局部的氧含量,或者将采用XRD等鉴定的相在显微镜观察像上确定。是适合对第一相和第二相的氧含量及其分布进行粗略估算的方法。
以下对通过在还原性气体中进行热处理从而制造本发明的磁性材料的方法进行详述。典型的还原工序中的热处理通过如下进行:在还原性气流中、使用一种或二种以上的升温速度使材料的温度线性或指数函数地从室温上升到一定温度,立即使用一种或二种以上的降温速度,线性或指数函数地降温到室温,或者,在升降温过程中的升温或降温中或者升温后的任一阶段中加入保持温度一定时间(=还原时间)的过程(以下称为一定温度保持过程)。只要无特别说明,所谓本发明的还原温度,是指从升温过程切换为降温过程时的温度以及保持温度一定时间的过程中的温度中的最高温度。
作为本发明的软磁性材料的制造法,在选择用氢气还原钴铁氧体的方法的情况下,虽然依赖于Co的含量,但还原温度可设为400℃以上且1550℃以下,其中,优选选择400℃以上且1480℃以下的温度范围。总之,这是因为,如果是不到400℃的温度,还原速度非常慢,还原时间延长,有时生产率变得缺乏。进而,在想要使还原时间为1小时以下的情况下,优选使还原温度的下限成为500℃以上。
在1230℃以上且1550℃以下进行还原时,根据Co含量,有时还原中的磁性材料熔解。因此,如果通常Co含量为0.01原子%以上且15原子%以下的区域,则能够自由地选择大致400℃以上且1500℃以下的温度范围,实施还原处理,在Co含量超过15原子%且70原子%以下的情况下,优选选择400℃以上且1480℃以下的温度。
作为与本发明的磁性材料有关的制造方法,其特征在于根据本发明的方法将Co还原到金属状态,因此即使是熔点以上以及紧挨熔点的比其低的温度下的还原反应,有时也招致微细组织的粗化或者与陶瓷容器等反应器反应,从该观点来说,优选不将熔点附近以上的温度作为还原温度。虽然也依赖于共存的M成分,但一般希望不要将超过1480℃的温度选择为还原温度。
由以上可知,还原时间短且生产率高的范围、即磁性材料不熔解、对于本发明的磁性材料而言优选的还原温度的范围不依赖于Co含量,为400℃以上且1480℃以下,如果控制为800℃以上且1230℃以下的范围,则能够制成矫顽力更小的本发明的软磁性材料,因此在本发明中制造高磁特性的软磁性材料上,特别优选该温度范围。
在相同的温度下还原的情况下,还原时间越长,还原反应越发展。因此,还原时间越长,饱和磁化越升高,对于矫顽力,即使延长还原时间、或者提高还原温度,矫顽力也未必变小。关于还原时间,优选根据所期望的磁特性,适当地选择。
由以上可知,作为本发明的磁性材料的制造法,选择用氢气还原钴铁氧体的方法的情况下,优选的还原温度的范围为400℃以上且1480℃以下。其中,在得到平均粉体粒径为10nm以上且5mm以下的软磁性的钴铁氧体粉体的方面,更优选450℃以上且1425℃以下的还原温度范围。
还原进行,钴铁氧体纳米粒子进行粒生长,此时,根据还原温度,起因于原本的钴铁氧体纳米粒子的Co含量,作为生成的晶相的第一相与第二相的晶体结构和Co含量多种多样地变化。
因此,根据升温过程的升温速度、反应炉内的温度分布,晶相的构成不断变化。
希望本发明的磁性材料在其制造时的还原工序中,第一相、第二相以纳米尺度相分离。特别是本发明的软磁性材料的情况下,希望各种各样的Co含量、晶体结构的相通过歧化反应而分离,并且它们的取向性为无规,和/或具有纳米尺度的Co浓度的波动,各自进行了铁磁性耦合。
将本发明的铁氧体纳米粉体在氢中还原的情况下,通过升温过程、保持一定温度过程、降温过程,歧化反应引起的相分离现象以快速的频率发生,在此期间出现具有各种各样的组成的多彩的相,构成本发明的磁性材料。特别是将纳米级的微晶的集合体通过铁磁性耦合一体化以致晶轴的方向为各向同性和/或具有浓度的波动,如果主要通过无规磁各向异性化使结晶磁各向异性平均化,则构成优异的本发明的软磁性材料。
再有,在本发明中,对于即使在超过800℃的高温区域也在保持纳米微细结构的同时发生适当的粒生长的原因,推测如下所述。
原料为钴铁氧体纳米粉体,即使用氢将其还原而成为了第一相这样的金属状态,如果选择适当的还原条件,则原本的粒形状和组成分布也没有全部被反映于微细结构,组成分布成为均质的组织,没有发生晶粒直径粗化这样的不适当的粒生长。综合考虑这样的适当的粒生长与还原反应一起发生、以及还原引起的体积减少通常发生最大52体积%,能够容易地类推在残存与连晶、骸晶相似的组织的同时歧化发展下去。进而,认为在还原反应初期通过歧化而相分离的相的还原速度之差也参与,同时从维持纳米微细结构且以纳米区域内的大小某种程度上均质化的高温相,在降温过程中的歧化反应引起的相分离主要在ccs-(Fe,Co)相内发生,纳米粒子、纳米组织析出,从而最终整体上构成纳米尺度的非常微细的歧化结构。关于还原速度,具有如下倾向:在Co-铁氧体相、方铁矿相等含Co的氧化物相中Co含量越高,变得越快,因此一旦发生歧化,认为还原反应速度在材料内变得有差别,这也对保持纳米结构有利地发挥作用。
以上的一连串的考察也由以下得以支持:如果本发明的磁性材料熔解,通常丧失其特征。
(3)缓慢氧化工序(在本申请中也称为“(3)工序”。)
上述还原工序后的本发明的磁性材料由于包含纳米金属粒子,因此如果直接取出到大气中,考虑到有自然着火而燃烧的可能性。因此,虽然不是必要的工序,但优选根据需要在还原反应的结束后立即实施缓慢氧化处理。
所谓缓慢氧化,是通过将还原后的纳米金属粒子的表面氧化而钝化(设置方铁矿、Co-铁氧体等的表面氧化层),从而抑制急剧的氧化。缓慢氧化例如在常温附近~500℃内、在包含氧气这样的氧源的气体中进行,多数场合使用与大气相比低氧分压的非活性气体混合气体。如果超过500℃,无论使用什么样的低氧分压气体,也难以在表面控制地设置nm左右的薄氧化膜。另外,也有如下的缓慢氧化方法:一旦抽成真空后,将反应炉在常温下慢慢地开放,提高氧浓度,不使其急剧地与大气接触。
在本申请中,将包含以上这样的操作的工序称为“缓慢氧化工序”。如果经过该工序,作为下一工序的成型工序中的处理变得非常简便。
在该工序后,作为将氧化膜再次除去的方法,可列举出在氢气等还原气氛下实施成型工序的方法。不过,由于缓慢氧化工序中的表面氧化反应不是完全的可逆反应,因此不能将表面氧化膜的全部除去。
当然,在下功夫使得从还原工序到成型工序的处理在手套箱这样的能够在无氧状态下操作的装置中进行的情况下,不需要该缓慢氧化工序。
相反,在成型L的大小足够的本发明的软磁性材料的情况下,积极地利用缓慢氧化工序,在各粉体的表面形成氧化膜,在这种状态下提高耐氧化性、或者提高电阻率、或者进而使矫顽力稳定也是有效的。
进而,在Co含量多、还原温度和时间足够长、粒生长的本发明的磁性材料粉体的情况下,即使不经该缓慢氧化工序,直接在大气中释放,有时也形成稳定的钝化膜,在这种情况下,不需要特别的缓慢氧化工序。这种情况下,将在大气中释放自身视为缓慢氧化工序。
在通过缓慢氧化来确保耐氧化性、磁稳定性的情况下,有时利用该氧化层、钝化膜的层将铁磁性耦合切断,因此优选尽可能使粒生长发生后进行缓慢氧化。不是这样的话,优选如上所述不经缓慢氧化工序而进行下一成型工序,希望采用脱氧或低氧工艺使还原工序和成型工序连续。
(4)成型工序(本申请中也称为“(4)工序”。)
本发明的磁性材料作为第一相与第二相直接或者经由金属相或无机物相连续地结合、作为整体形成块状的状态的磁性材料(即,固体磁性材料)利用。本发明的磁性材料粉体其自身单独固化或者添加金属粘结剂、其他磁性材料、树脂等进行成型等,从而用于各种用途。应予说明,在(2)工序后或者进而在(3)工序后的磁性材料粉体的状态下,有时第一相与第二相已经直接或者经由金属相或无机物相连续地结合,这种情况下,即使不经过本成型工序,也作为固体磁性材料发挥功能。
作为将本发明的磁性材料单独固化的方法,也有如下方法:装入模具中进行冷压粉成型,直接使用或者接着进行冷轧、锻造、冲击波压缩成型等以成型,多数情况下,一边在50℃以上的温度下热处理一边烧结,进行成型。将通过不加压而直接进行热处理从而烧结的方法称为常压烧结法。热处理气氛优选为非氧化性气氛,可在氩、氦等稀有气体、或者氮气中等非活性气体中或者包含氢气的还原性气体中进行热处理。如果是500℃以下的温度条件,也可在大气中。另外,不仅是如常压烧结那样热处理气氛的压力为常压的情形,即使是在200MPa以下的加压气相气氛中的烧结、进一步真空中的烧结也可以。
对于热处理温度,除了在不到50℃下进行的常温成型以外,在加压成型中优选50℃以上且1480℃以下,在常压烧结中优选400℃以上且1480℃以下的温度。在超过1300℃的温度下,材料有可能熔解,需要慎重地选择组成范围。因此,成型中的特别优选的温度区域为50℃以上且1300℃以下。
该热处理也能够与压粉成型同时地进行,即使是热压法、HIP(热等静压)法、进而通电烧结法、SPS(放电等离子体烧结)法等加压烧结法,也能将本发明的磁性材料成型。再有,为了使对于本发明的加压效果变得显著,可使加热烧结工序中的加压力为0.0001GPa以上且10GPa以下的范围内。如果不到0.0001GPa,则缺乏加压的效果,与常压烧结相比在电磁特性上没有改变,因此如果加压烧结,则生产率降低而变得不利。如果超过10GPa,则加压效果饱和,因此即使过度地加压,也只是生产率下降。
另外,大的加压赋予磁性材料诱导磁各向异性,透磁率、矫顽力有可能从应控制的范围脱离。因此,加压力的优选的范围为0.001GPa以上且2GPa以下,更优选为0.01GPa以上且1GPa以下。
在热压法中,将压粉成型体装入塑性变形的胶囊中、一边从1轴~3轴方向施加大的压力一边进行热处理来热压的超高压HP法可阻止不需要的过度的氧的混入。这是因为,与使用单轴压缩机在超硬、碳制的模具中进行加压热处理的热压法不同,能够无模具的破损等问题地将即使使用碳化钨超硬模具也困难的2GPa以上的压力施加于材料,并且在压力下胶囊塑性变形,将内部密闭,从而能够不与大气接触地成型。
在成型之前,为了调整粉体粒径,也能够使用公知的方法进行粗粉碎、微粉碎或分级。
粗粉碎是还原后的粉体为数mm以上的块状物的情况下在成型前实施的工序或者在成型后再次粉体化时进行的工序。使用颚式轧碎机、锤子、捣磨机、转子磨机、针磨机、咖啡磨机等进行。
进而,为了进一步进行成型时的密度和成型性的调节,在粗粉碎之后使用筛子、振动式或声波式分级机、旋风分级器等进行粒度调整也是有效的。在粗粉碎、分级之后,如果在非活性气体或氢中进行退火,能够将结构的缺陷和变形(应变)除去,有时具有效果。
需要将还原后的磁性材料粉体或成型后的磁性材料粉碎到亚微米~数十μm时,实施微粉碎。
作为微粉碎的方法,除了在上述粗粉碎中列举的方法以外,可使用旋转球磨机、振动球磨机、行星式球磨机、湿磨机、喷射磨、切碎机、针磨机、自动乳钵等干式、湿式的微粉碎装置及它们的组合等。
作为本发明的固体磁性材料的制造方法的典型例,有时采用(1)工序制造钴铁氧体纳米粉体,接着在(2)工序中还原后,在(3)工序→(4)工序或者只在(4)工序中进行成型。作为特别优选的制造法之一,可列举出如下的制造法:采用(1)工序中例示的湿法制备钴铁氧体纳米粉体后,采用(2)工序中所示的含有氢气的方法进行还原,在(3)工序中所示的常温下进行了暴露于低氧分压的缓慢氧化后,采用(4)工序中所示的常压或加压下的烧结法进行成型的工序,特别是作为(3)工序进行了材料粉体表面的脱氧后作为(4)工序为了避免进一步的材料中的氧混入而在氢中进行成型的工序。本固体磁性材料能够成型为0.5mm以上的厚度,另外,能够通过切削加工和/或塑性加工加工成任意的形状。
在将上述(1)工序→(2)工序、(1)工序→(2)工序→(3)工序、(1)工序→(2)工序→后述的(5)工序、(1)工序→(2)工序→(3)工序→后述的(5)工序中得到的磁性材料粉体、或者、将以上的工序中得到的磁性材料粉体在(4)工序中成型而成的磁性材料再次粉碎而成的磁性材料粉体、进而将以上的工序中得到的磁性材料粉体在后述的(5)工序中退火而成的磁性材料粉体应用于高频用的磁性片材等与树脂的复合材料的情况下,通过与热固化性树脂、热塑性树脂混合后进行压缩成型,或者与热塑性树脂一起混炼后进行注射成型,或者进一步进行挤出成型、辊成型、轧制成型等,从而成型。
作为片材的形状的种类,例如在应用于电磁噪音吸收片材的情况下,可列举出厚度5μm以上且10mm以下、宽度5mm以上且5m以下、长度0.005mm以上且1m以下的采用压缩成型得到的间歇型片材、采用辊成型、轧制成型等得到的各种卷状片材、具有以A4版为代表的各种尺寸的切削或成型片材等。
(5)退火工序
本发明的磁性材料具有第一相和第二相,典型的为其一者或两者的晶粒直径位于纳米的区域。
出于各工序中产生的结晶的变形、缺陷、非氧化的活性相的稳定化等各种目的,只要不妨碍本发明的目的,有时也优选进行退火。所谓该不妨碍本发明的目的,是指不会通过退火而发生下述事项:例如发生不适当的粒生长而纳米晶粗化、或者为了适当地调整透磁率而需要的、晶体边界附近的磁各向异性消失,从而相反地使矫顽力变大或者阻碍本发明的低透磁率的实现。
例如,在(1)的钴铁氧体纳米粉体制造工序后,为了在以含有水分等的挥发成分的除去为目的的干燥的同时进行稳定的还原,出于阻止后工序中的不适当的粒生长、除去晶格缺陷等目的,有时对数nm左右的微细粒子成分进行热处理,进行所谓的预热处理(退火)。这种情况下,优选在大气中、非活性气体中、真空中在50℃至500℃左右进行退火。
另外,在(2)的还原工序后,通过将由于粒生长、还原引起的体积减少所产生的晶格、微晶的变形、缺陷除去,从而能够减少本发明的软磁性材料的矫顽力。该工序之后,在粉体状的状态下使用的用途例如将粉体用树脂、陶瓷等固定使用的压粉磁芯等用途中,在该工序后或者该工序后经过粉碎工序等后,如果在适当的条件下退火,有时能够使电磁特性提高。
另外,在(3)的缓慢氧化工序中,退火有时有利于除去由于表面氧化而产生的表面、界面、边界附近的变形、缺陷。
由于(4)的成型工序后的退火是最有效的,因此为了将预成型、压缩成型、热压等、其后的切削加工和/或塑性加工等中产生的晶格、微细结构的变形、缺陷除去,有时在该工序后积极地实施退火工序。在该工序中,也能够期待使位于其之前的工序中累计的变形、缺陷等一起缓和。进而,在上述的切削加工和/或塑性加工后,也能够对于(1)~(4)工序、(2)~(4)工序、(3)和(4)工序、进而(4)工序中的变形等或者累计的变形等汇总,进行退火。
作为退火的气氛,真空中、减压中、常压中、200MPa以下的加压中均可,作为气体种类,可以是以氩这样的稀有气体为代表的非活性气体、氮气、氢气等还原性气体、进而大气中等包含氧源的气氛等。退火温度为常温以上且1350℃以下,有时也可以是在液氮温度~常温的低温下的处理。作为退火工序的装置,能够利用还原工序、成型工序中使用的装置,另外也可将公知的装置组合来实施。
实施例
以下通过实施例等对本发明更具体地说明,但本发明并不受这些实施例等的任何限定。
本发明的评价方法如下所述。
(I)饱和磁化和矫顽力
在磁性粉体的情况下,装入聚丙烯制的圆筒壳体(内径2.4mm、粉体层的厚度大体为1.5mm),在圆盘状成型体的情况下,成型为直径3mm、厚约1mm的圆盘状,使用振动试样型磁力计(VSM)在外部磁场为-7.2~7.2MA/m的区域描绘磁曲线的全闭环,得到了室温的饱和磁化(emu/g)和矫顽力(A/m)的值。饱和磁化用5N的Ni标准试样校正,根据趋近饱和定律求出。矫顽力是使用常磁性体的Pd和/或Gd2O3标准试样对低磁场的区域的磁场的偏离进行了校正。另外,对于矫顽力,也采用使用了赫姆霍尔兹型线圈的VSM法进行测定,确认了上述测定值的妥当性。在该测定中,在磁化到7.2MA/m后,在直至零磁场的磁曲线上没有发现平滑的台阶高差、拐点的情况下,判断为“无”“1/4主回路上的拐点”。
顺便提及,在以下所示的本实施例中,确认均“无”“1/4主回路上的拐点”,可知确认有铁磁性耦合。
应予说明,测定磁场的方向在磁性粉体的情况下为轴向,在圆盘状成型体的情况下为径向。
就长方体状成型体的磁特性而言,使用具备微小单板测定夹具的直流磁化测定机(直流BH环形激光器)对试样尺寸15mm×5mm×1mm的固体磁性材料进行了测定。对于长方体状成型体的磁化测定,将外部磁场150Oe下的磁化设为饱和磁化,将其值用T(特斯拉)单位表示。
(II)耐氧化性
采用上述的方法测定在常温、大气中放置了一定时期t(天)的磁性粉体的饱和磁化σst(emu/g),与初期的饱和磁化σs0(emu/g)比较,根据Δσs(%)=100×(σs0st)/σs0的式子评价其下降率。Δσs的绝对值越接近0,能够判断为越具有高耐氧化性能。在本发明中,将Δσs的绝对值为1%以下的磁性粉体评价为在时期t天中耐氧化性良好。应予说明,本发明中,t(天)为30以上。
(III)电阻率
在试样尺寸3mmφ×1mm的圆盘状成型体的情况下,采用范德堡(van der Pauw)法测定。
在试样尺寸15mm×5mm×1mm的长方体状成型体的情况下,采用四端子法测定。进而,也采用范德堡法测定,确认了上述测定值的妥当性。
(IV)Fe含量、Co含量、氧含量、ccs-(Fe,Co)相体积分数
粉体、块体的磁性材料中的Fe和Co含量采用荧光X射线元素分析法定量。磁性材料中的第一相、第二相的Fe和Co含量以采用FE-SEM观察的像为基础,采用附属于其的EDX进行定量。另外,对于ccs-(Fe,Co)相的体积分数,与XRD法的结果一起将使用了上述FE-SEM的方法组合,通过图像解析定量。为了区别所观察的相是ccs-(Fe,Co)相和氧化物相中的哪一个,主要使用了采用SEM-EDX的氧特性X射线面分布图。进而,也由(I)中测定的饱和磁化的值,确认了ccs-(Fe,Co)相体积分数的值的妥当性。
还原工序后的磁性材料的氧量也通过还原后的重量的减少确认。进而,将采用SEM-EDX的图像解析援用于各相的鉴定。
对于K量,采用荧光X射线元素分析法定量。
(V)平均粉体粒径
采用扫描型电子显微镜(SEM)或透射型电子显微镜(TEM)观察磁性粉体,确定粉体粒径。选择充分代表整体的部分,n数设为100以上,以有效数字1位求出。
在将激光衍射式粒度分布计并用的情况下,测定体积当量直径分布,用由其分布曲线求出的中位径(μm)评价。不过,只在求出的中值径为500nm以上且不到1mm时采用该值,确认了与采用使用上述显微镜的方法粗略估算的粉体粒径以1位有效数字一致。
(VI)平均晶粒直径
采用扫描型电子显微镜(SEM)或透射型电子显微镜(TEM)观察磁性材料,以1位有效数字求出了用晶体边界包围的部分的大小。就测定区域而言,选择充分代表整体的部分,n数设为100以上。就晶粒直径而言,另外分别计量整体的平均值、第一相和第二相单独的平均值而确定。
(VII)微晶尺寸
对于采用X射线衍射法测定的bcc相的(200)衍射线或fcc相的(200)衍射线的线宽,代入谢乐方程,将无量纲形状因子设为0.9,求出了微晶尺寸。
[实施例1和比较例1]
另外制备了CoCl2·6H2O(氯化钴(II)六水合物)和FeCl2·4H2O(氯化铁(II)四水合物)的水溶液,将它们混合,将调整为50.3mM的CoCl2和FeCl2的混合水溶液放入反应器中,制成反应场液。再有,使上述混合水溶液中所含的钴的组成、即进料钴组成为4原子%。接着,在大气中一边剧烈地搅拌,一边滴入660mM的氢氧化钾水溶液(pH调节液),调整体系的pH在4.57~10.1的范围从酸性侧慢慢地转移到碱性侧,同时作为反应液(反应液中的钴的组成(进料钴组成)为4原子%)滴入168mM的FeCl2和CoCl2的混合水溶液,使其反应15分钟后,中止pH调节液和反应液的滴入,进而继续15分钟搅拌操作。接着,通过离心分离使固体成分沉淀,在精制水中再次分散,反复离心分离,从而使上清溶液的pH成为5.40,最后在乙醇中使沉淀物分散后,进行了离心分离。
然后,在常温下进行一昼夜真空干燥,从而得到了平均粉体粒径为20nm的具有(Fe0.96Co0.04)3O4组成(采用XRF测定)的Co-铁氧体纳米粉体。采用X射线衍射法对该纳米粉体解析,结果可知:立方晶的Co-铁氧体相为主相,作为杂质相,少量地含有菱面体晶的Co-赤铁矿相。另外,将该纳米粉体的SEM像示于图2中。在该照片中,描绘成球状的粉体为Co-铁氧体纳米粉体,少量地发现的数nm的厚度的板状粉体为杂质相。因此,确认了在该粉体中不含ccs-(Fe,Co)相。将其作为比较例1的粉体,将其磁特性等示于表1中。
将该Co-铁氧体纳米粉体装入氧化铝制的坩埚中,在氢气中、以10℃/min升温到300℃,以12℃/min从300℃升温到1100℃后,在1100℃进行了1小时还原处理。其后,以110℃/min降温到400℃,历时40分钟从400℃空冷到室温。接着,在20℃下、在氧分压1体积%的氩气氛中进行1小时缓慢氧化处理,得到了钴与铁的含量比为Fe96.0Co4.0组成的磁性材料粉体。相对于该磁性材料整体的O含量为0.1原子%以下,K含量也为0原子%。另外,该Fe-Co磁性材料粉体的平均粉体粒径为30μm。采用以下的方法进行关于该磁性材料的解析,将该磁性材料设为实施例1。
采用X射线衍射法等对得到的磁性材料进行了评价,结果确认了作为bcc相的α-(Fe,Co)相为主成分。另外,也确认了Co含量比该相高的α-(Fe,Co)相的存在。由此确认:为上述bcc相且Co含量低的α-(Fe,Co)相相当于第一相,为上述bcc相且Co含量高的α-(Fe,Co)相相当于第二相。
包含这些第二相在内,估算整体的bcc相的体积分数,可知为99体积%以上。
另外,也采用适于获知磁性材料的局部的Co含量、歧化的存在和程度的FE-SEM/EDX法观察了该磁性材料粉体(倍率设为2万倍。)。其结果可知,如图3中所示那样,本磁性材料的各相中的Co的含量(图的数值为各相中的Co含量,是用百分比表示相对于各相的Co和Fe的总和的Co的原子比的值)为4.06原子%以上且10.06原子%以下,大幅地不均匀地分布。再有,在图3中,在视为一个α-(Fe,Co)相的区域中也观察到以10nm级的间隔弯曲的曲线状的无数的晶体边界。因此,由该结果也查明:在α-(Fe,Co)相的区域中也存在能够用Co含量区别的相,例如存在相对于Co含量为4.06原子%的α-(Fe,Co)相,Co含量为该相的1.1倍以上且105倍以下的范围内的2.5倍、进而为1原子%以上且100原子%以下的范围内的10.06原子%的α-(Fe,Co)相,即,关于α-(Fe,Co)相,在第一相以外也存在相当于第二相的相。
进而,在与图3相比改变了场所的视场中在20点的测定点进行了同样的计量,结果各相中的Co含量为3.50原子%以上且4.05原子%以下,大幅地不均匀地分布,相对于Co含量为3.50原子%的α-(Fe,Co)相,确认了也存在Co含量为该相的1.1倍以上且105倍以下的范围内的1.15倍并且1原子%以上且100原子%以下的范围内的4.05原子%的α-(Fe,Co)相(未图示)。
由在该2个视场的合计40点计量的各相整体的结果,可以说根据本实施例,在3.50原子%以上且10.06原子%以下的范围大幅地不均匀地分布。再有,这些40个相的Co含量的平均值为4.97原子%,比作为上述所示的XRF测定值的Co含量的4原子%高,如果进一步增加视场,预期存在Co含量比4原子%低的第一相,推测整体上发生了更大幅度的歧化。
就该粉体(磁性材料)中的Co、Fe、O、K的各成分含量而言,相对于磁性材料整体,Co含量为3.9原子%以上且不到4.0原子%,Fe含量为96.0原子%,O含量为大于0原子%且0.1原子%以下,K含量为0原子%。另外,该磁性材料粉体的平均粉体粒径为50μm。
该磁性材料整体的平均晶粒直径为90nm。第一相和第二相的晶粒直径分别为100nm和70nm。另外,用75万倍的倍率进行了上述晶体边界附近的观察,结果确认了在这些晶体边界附近没有存在异相。
该磁性材料的饱和磁化为223.9emu/g,能够确认获得超过α-Fe的质量磁化(218emu/g)的饱和磁化这样的本发明的特征。另外,矫顽力为92.4A/m,在四分之一主回路上没有拐点。
因此,实施例1的磁性材料由于矫顽力为800A/m以下,因此确认为软磁性材料。将以上的本实施例的相、微晶尺寸和磁特性的测定结果示于表1中。
[比较例2~4]
除了没有添加Co成分(氯化钴水溶液)以外,采用与实施例1同样的方法制作了铁氧体纳米粉体。
对于该铁氧体纳米粉体,除了使还原条件为450℃下1小时(比较例2)、同温度下4小时(比较例3)、550℃下1小时(比较例4)以外,采用与实施例1同样的方法制作了Fe金属粉体。
这些的平均粉体粒径为100nm(比较例2)、2μm(比较例3)和2μm(比较例4)。另外,将磁特性的测定结果示于表1中。
[实施例2~10、比较例5~13]
除了将进料Co组成变为1原子%(比较例5)、2原子%(比较例6)、8原子%(比较例7)、10原子%(比较例8)、15原子%(比较例9)、20原子%(比较例10)、33原子%(比较例11)、50原子%(比较例12)和75原子%(比较例13)以外,采用与比较例1同样的方法制作了铁氧体纳米粉体。采用X射线衍射法对该纳米粉体进行了解析,结果可知:立方晶的Co-铁氧体相为主要的相,作为杂质相,含有很少的菱面体晶的Co-赤铁矿相。因此,在该粉体中不含ccs-(Fe,Co)相,将其作为比较例5~13的粉体,将其磁特性等示于表1中。这些的进料量与由XRF得到的Co含量一致到%位。
对这些铁氧体纳米粉体采用与实施例1同样的方法进行处理,制作了磁性材料粉体(实施例2~10)。
就实施例2的粉体中的Co、Fe、O、K的各成分含量而言,相对于磁性材料整体,Co含量为1.0原子%,Fe含量为98.9原子%,O原子含量为0.1原子%。K原子含量为0原子%。另外,该磁性材料粉体的平均粉体粒径为30μm。
实施例3~10的O原子含量为0.1原子%,K原子含量为0原子%。
将这些试样的粒径和磁特性的测定结果示于表1中。
[实施例11]
另外制备MnCl2·4H2O(氯化锰(II)四水合物)、CoCl2·6H2O(氯化钴(II)六水合物)和FeCl2·4H2O(氯化铁(II)四水合物)的水溶液,将它们混合,将调整为50.3mM的MnCl2、CoCl2和FeCl2的混合水溶液放入反应器中,制成了反应场液。应予说明,使上述混合水溶液中所含的钴和锰的组成、即、进料钴组成和进料锰组成分别为4原子%和0.1原子%。接着,一边在大气中剧烈地搅拌,一边滴入660mM的氢氧化钾水溶液(pH调节液),调整体系的pH在4.69以上且9.32以下的范围从酸性侧慢慢地转移至碱性侧,同时滴入168mM的FeCl2和CoCl2的混合水溶液作为反应液(反应液中的钴的组成(进料钴组成)为4原子%,反应液中的锰的组成(进料锰组成)为0.1原子%),使其反应了15分钟后,中止pH调节液和反应液的滴入,进而继续15分钟搅拌操作。接着,通过离心分离使固体成分沉淀,在精制水中再次分散,反复进行离心分离,从而使上清溶液的pH成为5.99,最后在乙醇中使沉淀物分散后,进行了离心分离。
对于该铁氧体纳米粉体,采用与实施例1同样的方法处理,制作了磁性材料粉体。
该磁性材料的饱和磁化为219.2emu/g,矫顽力为224A/m,在四分之一主回路上没有拐点。再有,本磁性材料的饱和磁化显示出超过α-Fe的质量磁化(218emu/g)的值。
采用适于获知磁性材料的局部的Co含量、歧化的存在和程度的FE-SEM/EDX法观察了实施例11的材料。观察采用与实施例1同样的做法进行。其结果可知,本磁性材料的各相中的Co的含量为3.10原子%以上且5.86原子%以下,大幅地不均匀地分布。再有,如图1(特别是图1(B))中所示那样,在实施例11的SEM像中,在视为一个α-(Fe,Co)相的区域中也观察到以10nm级的间隔弯曲的曲线状的无数的晶体边界。因此,由该结果查明:在α-(Fe,Co)相的区域中,也存在能够用Co含量相区别的相,例如存在相对于Co含量为3.10原子%的α-(Fe,Co)相、Co含量为该相的1.1倍以上且105倍以下的范围内的1.9倍、进而1原子%以上且100原子%以下的范围内的5.86原子%的α-(Fe,Co)相,即,关于α-(Fe,Co)相,在第一相以外也存在着相当于第二相的相。
该磁性材料整体的平均晶粒直径为90nm。第一相和第二相的晶粒直径分别为100nm和70nm。另外,用75万倍的倍率进行了上述晶体边界附近的观察,结果确认了在这些晶体边界附近不存在异相。
将以上的本实施例的相、微晶尺寸和磁特性的测定结果示于表2中。
[实施例12~17]
除了如表2中记载那样改变进料Mn组成(进料锰组成)、进料Co组成(进料钴组成)以外,采用与比较例1同样的方法制作铁氧体纳米粉体,采用与实施例11同样的方法处理,制作了磁性材料粉体。关于这些的Co进料量,确认了与由XRF得到的Co含量一致到%位。
将这些磁性粉体的相、微晶尺寸和磁特性的测定结果示于表2中。
再有,在图4中将实施例1~17的饱和磁化和矫顽力的测定结果相对于进料钴组成进行了汇总。图4中●、■分别为只含有Co的本发明的磁性材料的饱和磁化(emu/g)、矫顽力(A/m)的值(实施例1~10),〇、□分别表示除了Co以外还含有0.1原子%的Mn的本发明的磁性材料的饱和磁化(emu/g)、矫顽力(A/m)的值(实施例11~17)。
如表1~2中所示那样,实施例1~9和11~16表示作为本发明的磁性材料的大的特征的超过α-Fe的质量磁化(218emu/g)的饱和磁化。
如表1~2中所示那样,确认了实施例1~8和10、在Co中使Mn共存的全部实施例11~17的磁性材料的矫顽力为800A/m以下,为软磁性材料。因此可知,作为Mn的共存效果之一,可使磁性材料的矫顽力停留在软磁性材料区域的低值而使其稳定化。
该磁性材料整体的平均晶粒直径为80nm。第一相和第二相的晶粒直径分别为50nm和60nm。另外,用75万倍的倍率进行了上述晶体边界附近的观察,结果确认在这些晶体边界附近不存在异相。
另外,研究了本发明的实施例中得到的几个磁性粉体的饱和磁化的变化率Δσs(%)(t设为60),确认了成为-0.36(实施例8)、-3.85%(实施例12)和-5.27%(实施例13)。Δσs均显示负的值的事实意味着各个磁性粉与刚制作后相比,在常温放置后饱和磁化提高。另一方面,确认了与这些值相比,不含Co的比较例2、3和4的t=60处的Δσs(%)的值为5.4%、19.0%、21.3%,均没有显示出负的值。由这些结果可知,本实施例的金属粉体的耐氧化性在t=60下极其良好。
[实施例18]
除了使还原温度为550℃以外,采用与实施例5同样的方法得到了本发明的磁性粉体。实施例18的磁性材料的矫顽力为1670A/m,是超过800A/m且40kA/m以下的值,因此可知是本发明的半硬磁性材料。另外,饱和磁化为208.1emu/g,在现有的半硬磁性材料中是非常高的值,是矩形比(squareness ratio)也良好的材料。
将实施例18的磁性粉体的相、微晶尺寸和磁特性的测定结果示于表1中。通过采用XRD法的解析,可知很少地含有Co铁氧体相作为第二相。
确认了相对于将Co含量10原子%的Co-铁氧体粉体在1100℃下还原而成的实施例5的磁性材料,在550℃下还原而成的实施例18的磁性材料的微晶尺寸为约2倍,另外矫顽力为5.7倍。可知在具有相同的Co含量的磁性粉体中存在微晶尺寸越大、矫顽力越变小的关系。
[实施例19]
与比较例1同样地制作了(Fe0.669Co0.330Mn0.001)3O4铁氧体纳米粉体。在其中混合二氧化硅粉末,与实施例1同样地进行还原反应,从而得到了粉体粒径0.5μm的Fe65.7Co32.3Si1.9Mn0.1磁性材料粉体。
第一相、第二相、整体的晶粒直径为300nm,微晶尺寸为约60nm。另外,ccs相体积分数为99%以上,相对于该磁性材料整体的O含量为0.8原子%,K含量为0。
对于该磁性材料粉体,采用适于获知磁性材料的局部的Co含量和歧化的存在和程度的FE-SEM/EDX法,与实施例1同样地评价,结果可知:在α-(Fe,Co)相的区域中,也存在着能够用Co含量与作为第一相的α-(Fe,Co)相区别的相,即1.1倍以上且105倍以下、且2原子%以上且100原子%以下的α-(Fe,Co)相,即,关于α-(Fe,Co)相,在第一相以外也存在着相当于第二相的相。
判明了该磁性材料的饱和磁化为253.7emu/g,实现了超过bcc-Fe的质量磁化(218emu/g)的巨大的饱和磁化。另外,矫顽力为2176A/m,在四分之一主回路上没有拐点。
应予说明,本实施例的上述特性没有在表中示出。
因此,实施例19的磁性材料由于矫顽力为大于800A/m且40kA/m以下,因此确认为本发明的半硬磁性材料。
[实施例20]
将实施例19的磁性材料粉体装入15mm×5mm的碳化钨制超硬模具中,在大气中、室温、1GPa的条件下进行了冷压缩成型。
接下来,将该冷压缩成型体在氩气流中、以10℃/min升温到300℃,在300℃下保持了15分钟后,以10℃/min从300℃升温到900℃后,立即以75℃/min降温到400℃,历时40分钟从400℃空冷到室温。实施该常压烧结,从而得到了15mm×5mm×1mm的本发明的长方体状固体磁性材料。
该固体磁性材料的密度为5.95g/cm3。采用直流磁化测定装置得到的饱和磁化和矫顽力为1.00T和1119A/m,在1/4主回路上没有拐点。
另外,本固体磁性材料的电阻率为3.7μΩm。
根据本实施例,可知本发明的固体磁性材料的电阻率比作为其特征的1.5μΩm高,进而与作为现有材料的例如纯铁的0.1μΩm、电磁钢板的0.5μΩm相比,具有高1位数左右的电阻率。
应予说明,本实施例的上述特性未在表中示出。
[实施例21]
将实施例11的磁性材料粉体装入3mmφ的碳化钨制超硬模具中,采用与实施例20同样的方法得到了3mmφ×1mm的本发明的圆盘状固体磁性材料。
该固体磁性材料的密度为7.31g/cm3,饱和磁化和矫顽力为2.07T和60.48A/m,在1/4主回路上没有拐点。
因此,实施例21的磁性材料由于矫顽力为800A/m以下,因此确认为本发明的软磁性材料。
另外,本固体磁性材料的电阻率为1.8μΩm。
根据本实施例可知,本发明的固体磁性材料的电阻率比作为其特征的1.5μΩm高,进而与作为现有材料的例如纯铁的0.1μΩm相比,具有高1位数以上的电阻率,与电磁钢板的0.5μΩm相比,具有3~4倍的电阻率。
应予说明,本实施例的上述特性未在表中示出。
另外,鉴于上述实施例1~21和比较例1~13的结果,可推断本磁性材料的电阻率具有比现有的一般的金属系磁性材料高的1.5μΩm以上的电阻率,因此可知,采用本磁性粉体,可解决涡流损耗等问题。
顺便提及,由采用适于获知本实施例中的歧化的存在和程度的FE-SEM/EDX法得到的观察结果可知,上述实施例1~19的本磁性粉体中的第一相和第二相不是分别来自原料铁氧体粉体的主原料相和副原料相,而是均质的原料铁氧体相通过还原反应,发生歧化反应从而相分离而成的。
Figure BDA0002501040240000631
Figure BDA0002501040240000641
产业上的可利用性
根据本发明的磁性材料,能够提供对于现有的磁性材料而言背道而驰的特性,即饱和磁化高并且电阻率高,能够解决涡流损耗的问题,并且不需要层叠工序等烦杂的工序,可作为同时具有金属系磁性材料和氧化物系磁性材料两者的优点的电磁特性优异的磁性材料、进而在空气中磁特性也稳定的磁性材料利用。
本发明可作为主要在动力设备、变压器、信息通信关联设备中使用的转换器、磁头、电感器、电抗器、芯(磁芯)、磁轭、电磁开关、扼流圈、噪声滤波器、镇流器等、进而各种致动器、音圈马达、感应马达、电抗马达等旋转机用马达、线性马达、特别是其中转数超过400rpm的汽车驱动用马达以及发电机、工作机、各种发电机、各种泵等的产业机械用马达、面向空调机、冰箱、吸尘器等家庭用电气制品的马达等的转子、定子等中使用的软磁性材料利用。
进而,可作为在天线、微波元件、磁致伸缩元件、磁音响元件等霍尔元件、磁传感器、电流传感器、旋转传感器、电子罗盘等介由磁场的传感器类中使用的软磁性材料利用。
另外,可作为单稳定、双稳定电磁继电器等继电器、扭矩限制器、继电器开关、电磁阀等的开闭器、磁滞马达等的旋转机、具有制动等功能的磁滞联轴器、检测磁场、旋转速度等的传感器、磁性标签、自旋阀元件等的偏压、磁带录音机、VTR、硬盘等磁记录介质、元件等中使用的半硬磁性材料利用。
另外,可作为以高频用变压器、电抗器为首的电磁噪声吸收材料、电磁波吸收材料、磁屏蔽用材料等抑制不需要的电磁波干涉引起的阻碍的磁性材料、噪声除去用电感器等电感器元件用材料、RFID(Radio Frequency Identification)标签用材料、噪声滤波器用材料等高频用的软磁性、半硬磁性材料利用。

Claims (14)

1.磁性材料,是具有第一相和第二相的软磁性或半硬磁性的磁性材料,所述第一相具有包含Fe和Co的bcc或fcc结构的晶体,所述第二相具有包含Fe和Co的bcc或fcc结构的晶体,其中,将所述第二相中所含的Fe与Co的总和设为100原子%时的Co的含量相对于将所述第一相中所含的Fe与Co的总和设为100原子%时的Co的含量为1.1倍以上且105倍以下的量、和/或1原子%以上且100原子%以下的量,
第一相和第二相具有由Fe100-xCox的组成式表示的组成,其中x为原子百分比,0.001≦x≦90、或者具有由Fe100-x(Co100-yMy)x/100的组成式表示的组成,x、y为原子百分比,0.001≦x≦90,0.001≦y<50,M为Zr、Hf、Ti、V、Nb、Ta、Cr、Mo、W、Mn、Cu、Zn、Si、Ni中的任一种以上,
第一相或第二相中的至少一相与相邻的相铁磁性耦合。
2.根据权利要求1所述的磁性材料,其为软磁性。
3.根据权利要求1或2所述的磁性材料,其中,第二相包含Co-铁氧体相。
4.根据权利要求1~3中任一项所述的磁性材料,其中,第二相包含方铁矿相。
5.根据权利要求1~4中任一项所述的磁性材料,其中,具有包含Fe和Co的bcc或fcc结构的晶体的相的体积分数为磁性材料整体的5体积%以上。
6.根据权利要求3或4所述的磁性材料,其中,具有相对于磁性材料整体的组成,Fe为20原子%以上且99.998原子%以下、Co为0.001原子%以上且50原子%以下、O为0.001原子%以上且55原子%以下的范围的组成。
7.根据权利要求1~6中任一项所述的磁性材料,其中,第一相或第二相、或者磁性材料整体的平均晶粒直径为1nm以上且不到10μm。
8.根据权利要求1~7中任一项所述的磁性材料,其中,至少第一相具有由Fe100-xCox的组成式表示的bcc或fcc相,x为原子百分比,0.001≦x≦90,该bcc或fcc相的微晶尺寸为1nm以上且不到300nm。
9.根据权利要求1~8中任一项所述的磁性材料,其为粉体的形态,在软磁性的磁性材料的情况下具有10nm以上且5mm以下的平均粉体粒径,在半硬磁性的磁性材料的情况下具有10nm以上且10μm以下的平均粉体粒径。
10.根据权利要求1~9中任一项所述的磁性材料,其中,第一相和第二相直接或者经由金属相或无机物相连续地结合,作为磁性材料整体形成块状的状态。
11.制造权利要求9所述的磁性材料的方法,其中,在包含氢气的还原性气体中、还原温度800℃以上且1230℃以下将平均粉体粒径为1nm以上且不到1μm的钴铁氧体粉体还原。
12.制造权利要求1~9中任一项所述的磁性材料的方法,其中,在包含氢气的还原性气体中将平均粉体粒径为1nm以上且不到1μm的钴铁氧体粉体还原,通过歧化反应生成第一相和第二相。
13.制造权利要求10所述的磁性材料的方法,其中,将采用权利要求11或12所述的制造方法制造的磁性材料烧结。
14.软磁性或半硬磁性的磁性材料的制造方法,其中,在权利要求11所述的制造方法中的还原工序后、或者权利要求12所述的制造方法中的还原工序后或生成工序后、或者权利要求13所述的制造方法中的烧结工序后,进行最少一次退火。
CN201880075257.XA 2017-09-25 2018-09-20 磁性材料及其制造法 Active CN111386161B (zh)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP2017-183904 2017-09-25
JP2017183904 2017-09-25
JP2017222145 2017-11-17
JP2017-222145 2017-11-17
PCT/JP2018/034747 WO2019059256A1 (ja) 2017-09-25 2018-09-20 磁性材料とその製造法

Publications (2)

Publication Number Publication Date
CN111386161A CN111386161A (zh) 2020-07-07
CN111386161B true CN111386161B (zh) 2022-05-17

Family

ID=65809821

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201880075257.XA Active CN111386161B (zh) 2017-09-25 2018-09-20 磁性材料及其制造法

Country Status (5)

Country Link
US (1) US11732336B2 (zh)
EP (1) EP3689497A4 (zh)
JP (1) JP6942379B2 (zh)
CN (1) CN111386161B (zh)
WO (1) WO2019059256A1 (zh)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3729476A1 (de) * 2017-12-22 2020-10-28 QuerDenkFabrik AG Verfahren zur herstellung eines weichmagnetischen formteils und weichmagnetisches formteil
US11551711B2 (en) * 2019-02-15 2023-01-10 Sony Group Corporation Cobalt ferrite magnetic powder, method of producing the same, and magnetic recording medium
US11053135B2 (en) * 2019-05-03 2021-07-06 Aegis Technology Inc. Scalable process for manufacturing iron cobalt nanoparticles with high magnetic moment
JP2022035559A (ja) * 2020-08-21 2022-03-04 株式会社村田製作所 複合磁性体
JP7188512B1 (ja) * 2021-08-05 2022-12-13 日立金属株式会社 データベース、材料データ処理システム、およびデータベースの作成方法
JP2023062495A (ja) * 2021-10-21 2023-05-08 Tdk株式会社 軟磁性合金粉末、圧粉磁心、および磁性部品
CN116666093B (zh) * 2023-07-12 2023-11-21 重庆上甲电子股份有限公司 工业废弃物分步除杂制备软磁锰锌铁氧体复合料的方法
CN116825468B (zh) * 2023-08-04 2024-01-12 广东泛瑞新材料有限公司 一种铁钴磁芯及其制备方法和应用

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101627140A (zh) * 2007-03-16 2010-01-13 日立金属株式会社 磁性合金、非晶形合金薄带及磁性部件
WO2015013585A1 (en) * 2013-07-26 2015-01-29 University Of Florida Research Foundation, Incorporated Nanocomposite magnetic materials for magnetic devices and systems
CN105448450A (zh) * 2014-09-19 2016-03-30 株式会社东芝 复合磁性材料的制造方法

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH059511A (ja) 1991-07-04 1993-01-19 Mitsubishi Materials Corp Fe−Co系軟磁性粉末の製造法
GB9215109D0 (en) * 1992-07-16 1992-08-26 Univ Sheffield Magnetic materials and method of making them
CN1061163C (zh) * 1995-03-27 2001-01-24 北京科技大学 双相稀土-铁-硼磁粉及其制备方法
JP3299887B2 (ja) * 1996-06-27 2002-07-08 明久 井上 硬質磁性材料
JP2000156314A (ja) 1998-11-20 2000-06-06 Hitachi Metals Ltd 複合磁性部材
JP3835729B2 (ja) * 1999-06-21 2006-10-18 株式会社Neomax フェライト焼結磁石及びその製造方法
JP4182310B2 (ja) * 1999-10-28 2008-11-19 戸田工業株式会社 磁気記録用Fe及びCoを主成分とする紡錘状合金磁性粒子粉末の製造法
US7485366B2 (en) * 2000-10-26 2009-02-03 Inframat Corporation Thick film magnetic nanoparticulate composites and method of manufacture thereof
WO2003015109A1 (en) 2001-08-09 2003-02-20 The Circle For The Promotion Of Science And Engineering Composite magnetic material prepared by compression forming of ferrite-coated metal particles and method for preparation thereof
CN100573748C (zh) * 2004-10-29 2009-12-23 Tdk株式会社 铁氧体烧结磁体
JP4505638B2 (ja) * 2004-11-01 2010-07-21 Dowaエレクトロニクス株式会社 金属磁性粉末およびそれを用いた磁気記録媒体
JP4751227B2 (ja) 2006-04-03 2011-08-17 日本電子株式会社 軟磁性材料の製造方法
JP2008108760A (ja) * 2006-10-23 2008-05-08 Sumitomo Electric Ind Ltd 圧粉磁心および圧粉磁心の製造方法
JP4924615B2 (ja) * 2006-11-30 2012-04-25 日立金属株式会社 R−Fe−B系微細結晶高密度磁石およびその製造方法
JP4686494B2 (ja) * 2007-03-12 2011-05-25 株式会社東芝 高周波磁性材料及びその製造方法
WO2009057742A1 (ja) 2007-11-02 2009-05-07 Asahi Kasei Kabushiki Kaisha 磁石用複合磁性材料、及びその製造方法
JP5948033B2 (ja) * 2011-09-21 2016-07-06 株式会社日立製作所 焼結磁石
JP5708454B2 (ja) * 2011-11-17 2015-04-30 日立化成株式会社 アルコール系溶液および焼結磁石
JP5766637B2 (ja) 2012-03-08 2015-08-19 国立研究開発法人科学技術振興機構 bcc型FeCo合金粒子及びその製造方法並びに磁石
US10079085B2 (en) * 2013-05-31 2018-09-18 General Research Institute For Nonferrous Metals Rare-earth permanent magnetic powder, bonded magnet containing thereof and device using the bonded magnet
JP2016536777A (ja) * 2013-06-27 2016-11-24 リージェンツ オブ ザ ユニバーシティ オブ ミネソタ 窒化鉄材料及び窒化鉄材料を含む磁石
US11103922B2 (en) 2014-03-31 2021-08-31 Dowa Electronics Materials Co., Ltd. Fe—Co alloy powder and method for producing the same, and antenna, inductor and EMI filter
JP6521415B2 (ja) 2016-03-25 2019-05-29 国立研究開発法人産業技術総合研究所 磁性材料とその製造方法
US11033958B2 (en) 2016-03-25 2021-06-15 National Institute Of Advanced Industrial Science And Technology Magnetic material and manufacturing method therefor

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101627140A (zh) * 2007-03-16 2010-01-13 日立金属株式会社 磁性合金、非晶形合金薄带及磁性部件
WO2015013585A1 (en) * 2013-07-26 2015-01-29 University Of Florida Research Foundation, Incorporated Nanocomposite magnetic materials for magnetic devices and systems
CN105448450A (zh) * 2014-09-19 2016-03-30 株式会社东芝 复合磁性材料的制造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
纵向磁场退火对FeCo基双相纳米晶合金软磁特性的影响;温转萍;《中国优秀硕士学位论文全文数据库 基础科学辑》;20150115;A005-155 *

Also Published As

Publication number Publication date
WO2019059256A1 (ja) 2019-03-28
EP3689497A4 (en) 2021-06-23
US20200265976A1 (en) 2020-08-20
US11732336B2 (en) 2023-08-22
EP3689497A1 (en) 2020-08-05
CN111386161A (zh) 2020-07-07
JPWO2019059256A1 (ja) 2021-01-21
JP6942379B2 (ja) 2021-09-29

Similar Documents

Publication Publication Date Title
CN111386161B (zh) 磁性材料及其制造法
CN108885930B (zh) 磁性材料及其制造方法
CN110214355B (zh) 磁性材料及其制造方法
CN111373065B (zh) 磁性材料及其制造方法
JP4830024B2 (ja) 磁石用複合磁性材料、及びその製造方法
JP6942343B2 (ja) 磁性材料およびその製造方法
CN110506314B (zh) 磁性材料及其制造法
JP2019080055A (ja) 複合磁性材料、磁石、モータ、および複合磁性材料の製造方法
JP7001259B2 (ja) 磁性材料およびその製造法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant