WO2019041797A1 - 一种低接触电阻低压铝电解电容器用电极箔腐蚀方法 - Google Patents

一种低接触电阻低压铝电解电容器用电极箔腐蚀方法 Download PDF

Info

Publication number
WO2019041797A1
WO2019041797A1 PCT/CN2018/080808 CN2018080808W WO2019041797A1 WO 2019041797 A1 WO2019041797 A1 WO 2019041797A1 CN 2018080808 W CN2018080808 W CN 2018080808W WO 2019041797 A1 WO2019041797 A1 WO 2019041797A1
Authority
WO
WIPO (PCT)
Prior art keywords
seconds
temperature
low
hydrochloric acid
etching
Prior art date
Application number
PCT/CN2018/080808
Other languages
English (en)
French (fr)
Inventor
严季新
陈健
王建中
赵宇飞
吴春春
冒慧敏
Original Assignee
南通海星电子股份有限公司
南通海一电子有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 南通海星电子股份有限公司, 南通海一电子有限公司 filed Critical 南通海星电子股份有限公司
Priority to JP2018566562A priority Critical patent/JP6768088B2/ja
Publication of WO2019041797A1 publication Critical patent/WO2019041797A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23FNON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL; MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLIC MATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASS C23 AND AT LEAST ONE PROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25
    • C23F1/00Etching metallic material by chemical means
    • C23F1/10Etching compositions
    • C23F1/14Aqueous compositions
    • C23F1/16Acidic compositions
    • C23F1/20Acidic compositions for etching aluminium or alloys thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/004Details
    • H01G9/04Electrodes or formation of dielectric layers thereon
    • H01G9/048Electrodes or formation of dielectric layers thereon characterised by their structure
    • H01G9/055Etched foil electrodes

Definitions

  • the present invention relates to an electrochemical etching method for a low pressure anode foil for a capacitor.
  • the low-frequency corrosion foil frequency conversion corrosion method for aluminum electrolytic capacitors is: 1 acid liquid pretreatment; 2 hole corrosion; 3 reaming corrosion; 4 post treatment, cleaning and annealing.
  • the corrosion frequency uses the power frequency as the power frequency (50Hz). After corrosion, the thickness of the residual core layer is uneven, the corrosion layer is corroded, and the corrosion aluminum powder is not fully cleaned, resulting in a large contact resistance of the electrode foil after formation. In addition, the cleaning effect Poor, it will also lead to residual impurity ions, affecting electrode foil leakage current and aluminum electrolytic capacitor life.
  • the object of the present invention is to overcome the above deficiencies and provide an electrochemical corrosion method for a low-voltage anode foil for a capacitor having good cleaning effect, less impurity ions, low contact resistance and long service life.
  • an electrode foil etching method for a low contact resistance low voltage aluminum electrolytic capacitor comprising the following steps:
  • the anode foil obtained in the step (a) is used in an amount of 6 to 12 wt% hydrochloric acid, 0.05 to 1 wt% sulfuric acid, at a temperature of 5 to 50 ° C, and a current density of 0.1 to 1 A/cm 2 for 10 to 85 seconds;
  • the anode foil obtained in the step (b) is 6 to 12 wt% hydrochloric acid, 0.05 to 1 wt% sulfuric acid, and is subjected to a temperature of 5 to 50 ° C for 10 to 85 seconds;
  • the anode foil obtained in the step (e) is subjected to pore reaming in 6 to 12 wt% hydrochloric acid, 0.05 to 1 wt% sulfuric acid, and 0.01 to 1 wt% phosphoric acid etching solution, and the current density is 0.1 to 1 A/cm 2 , and the temperature is 10 ⁇ 45°C, low frequency corrosion for 10 ⁇ 85 seconds according to the 5 ⁇ 35Hz power frequency of sine wave change;
  • the anode foil obtained by the step (f) is treated with 6 to 12 wt% hydrochloric acid, 0.05 to 1 wt% sulfuric acid, 0.01 to 1 wt% phosphoric acid, and is subjected to a temperature of 10 to 45 ° C for 10 to 85 seconds;
  • the lye pretreatment, the boring and the reaming process are carried out step by step, and after each step, the bath liquid treatment and the warm water washing process are added.
  • the corrosion residual morphology of the uniform residual core layer is obtained by controlling the power frequency. A low frequency corrosion method with low contact resistance.
  • Figure 1 is a cross-sectional view of a comparative electrode foil
  • the anode foil obtained in the step (a) is treated with 6 wt% hydrochloric acid and 0.1 wt% sulfuric acid at a temperature of 30 ° C and a current density of 0.3 A/cm 2 for 20 seconds;
  • the anode foil obtained in the step (b) is treated with 6 wt% hydrochloric acid and 0.1 wt% sulfuric acid at a temperature of 30 ° C for 20 seconds;
  • the anode foil obtained in the step (e) is subjected to reaming etching in 6 wt% hydrochloric acid, 0.1 wt% sulfuric acid, 0.01 wt% phosphoric acid etching solution, a current density of 0.1 A/cm 2 , a temperature of 30 ° C, and a sine
  • the frequency of the 5 to 35 Hz wave changes from low to high for low frequency corrosion for 20 seconds;
  • the anode foil obtained by the treatment of the step (f) is treated with 6 wt% hydrochloric acid, 0.1 wt% sulfuric acid, 0.01 wt% phosphoric acid, and the temperature is 30 ° C for 20 seconds;
  • the anode foil obtained in the step (a) is treated with 8 wt% hydrochloric acid and 0.3 wt% sulfuric acid at a temperature of 40 ° C and a current density of 0.5 A/cm 2 for 40 seconds;
  • the anode foil obtained in the step (e) is subjected to reaming etching in an 8 wt% hydrochloric acid, 0.3 wt% sulfuric acid, 0.1 wt% phosphoric acid etching solution, a current density of 0.3 A/cm 2 , a temperature of 35 ° C, and a sine
  • the frequency of the 5 to 35 Hz wave changes from low to high for low frequency corrosion for 40 seconds;
  • the anode foil obtained by the treatment of the step (f) is treated with 8 wt% hydrochloric acid, 0.3 wt% sulfuric acid, 0.1 wt% phosphoric acid, and the temperature is 35 ° C for 40 seconds;
  • the anode foil obtained in the step (a) is treated with 10 wt% hydrochloric acid and 0.5 wt% sulfuric acid at a temperature of 45 ° C and a current density of 0.7 A/cm 2 for 60 seconds;
  • the anode foil obtained in the step (b) is treated with 10 wt% hydrochloric acid and 0.5 wt% sulfuric acid at a temperature of 45 ° C for 60 seconds;
  • the anode foil obtained in the step (e) is subjected to reaming etching in 10 wt% hydrochloric acid, 0.5 wt% sulfuric acid, 0.5 wt% phosphoric acid etching solution, a current density of 0.4 A/cm 2 , a temperature of 40 ° C, and a sine
  • the frequency of the 5 to 35 Hz wave changes from low to high for low frequency corrosion for 60 seconds;
  • the anode foil obtained by the treatment of the step (f) is treated with 10 wt% hydrochloric acid, 0.5 wt% sulfuric acid, and 0.5 wt% phosphoric acid at a temperature of 40 ° C for 60 seconds;
  • the anode foil obtained in the step (a) is treated with 12 wt% hydrochloric acid and 0.8 wt% sulfuric acid at a temperature of 50 ° C and a current density of 0.9 A/cm 2 for 80 seconds;
  • the anode foil obtained in the step (b) is treated with 12 wt% hydrochloric acid and 0.8 wt% sulfuric acid at a temperature of 50 ° C for 80 seconds;
  • the anode foil obtained in the step (e) is subjected to reaming etching in 12 wt% hydrochloric acid, 0.8 wt% sulfuric acid, 0.8 wt% phosphoric acid etching solution, a current density of 0.5 A/cm 2 , a temperature of 45 ° C, and a sine
  • the frequency of the 5 to 35 Hz wave changes from low to high for low frequency corrosion for 80 seconds;
  • the anode foil obtained by the treatment of the step (f) is treated with 12 wt% hydrochloric acid, 0.8 wt% sulfuric acid, and 0.8 wt% phosphoric acid at a temperature of 45 ° C for 80 seconds;
  • step (b) The anode foil obtained in the step (a) is treated with 8 wt% hydrochloric acid and 0.5 wt% sulfuric acid at a temperature of 50 ° C and a current density of 0.3 A/cm 2 for 3 minutes;
  • the anode foil obtained in the step (b) is subjected to pore reaming corrosion in an 8 wt% hydrochloric acid, 0.5 wt% sulfuric acid etching solution, a current density of 0.3 A/cm 2 , a temperature of 50 ° C, and a 50 Hz power source which varies according to a sine wave. Electrochemical etching for 4 minutes;
  • the invention is carried out step by step in the pre-treatment of the lye, the boring and the reaming process, and the treatment in the bath and the warm water cleaning process are added after each step, and the uniform residual layer corrosion is obtained by controlling the power frequency during the reaming process. Morphology.
  • the present invention is not limited to the above embodiments, and all the modes in which the present invention is constructed by a similar structure and method of the present invention are within the scope of the present invention.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Power Engineering (AREA)
  • Metallurgy (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Cleaning And De-Greasing Of Metallic Materials By Chemical Methods (AREA)
  • Laminated Bodies (AREA)
  • Detergent Compositions (AREA)
  • ing And Chemical Polishing (AREA)

Abstract

本发明公开了一种低接触电阻低压铝电解电容器用电极箔腐蚀方法,包括以下步骤:用氢氧化钠溶液浸泡前处理;盐酸、硫酸溶液加电腐蚀10~85秒,盐酸、硫酸溶液浸泡10~85秒,自来水清洗,重复腐蚀、浸泡及清洗步骤4次;在盐酸、硫酸及磷酸腐蚀液中进行扩孔加电腐蚀10~85秒,盐酸、硫酸及磷酸溶液浸泡10~85秒,自来水清洗,重复腐蚀、浸泡及清洗步骤8次;采用盐酸溶液浸泡、硝酸溶液浸泡,纯水清洗后退火处理。本发明采用多级发孔多级低频扩孔控制腐蚀形貌,并对应进行多步槽液中处理及温水清洗,使腐蚀过程的铝粉及杂质离子得到充分清洗,最终得到残芯层厚度均匀、腐蚀层铝含量适中、铝粉及杂质离子含量低的低接触电阻低压铝电解电容器用电极箔,化成后接触电阻可降低40%以上。

Description

一种低接触电阻低压铝电解电容器用电极箔腐蚀方法 技术领域:
本发明涉及一种电容器用低压阳极箔的电化学腐蚀方法。
背景技术:
目前,铝电解电容器用低压腐蚀箔变频腐蚀方法为:①酸液前处理;②发孔腐蚀;③扩孔腐蚀;④后处理、清洗及退火。腐蚀过程使用电源频率为工频(50Hz),腐蚀后,残芯层厚度不均,腐蚀层腐蚀量较大,腐蚀铝粉未得到充分清洗,导致化成后电极箔接触电阻大;此外,清洗效果不佳,亦会导致残留杂质离子,影响电极箔漏电流及铝电解电容器的使用寿命。
发明内容:
本发明的目的是为了克服以上的不足,提供一种清洗效果好,杂质离子少,接触电阻低,使用寿命长的电容器用低压阳极箔的电化学腐蚀方法。
本发明的目的通过以下技术方案来实现:一种低接触电阻低压铝电解电容器用电极箔腐蚀方法,包括以下步骤:
(a)采用0.01~5wt%的氢氧化钠溶液,在20~60℃温度下浸泡电解电容器低压阳极箔0.5~3分钟;
(b)步骤(a)得到的阳极箔采用6~12wt%盐酸、0.05~1wt%硫酸,在温度为5~50℃、电流密度为0.1~1A/cm 2条件下作用10~85秒;
(c)步骤(b)得到的阳极箔采用6~12wt%盐酸、0.05~1wt%硫酸,在温度为5~50℃条件下作用10~85秒;
(d)步骤(c)得到的阳极箔采用温度为40~60℃的自来水清洗10~85秒;
(e)重复步骤(b)、(c、)(d)4次;
(f)步骤(e)处理得到的阳极箔在6~12wt%盐酸、0.05~1wt%硫酸、0.01~1wt%磷酸腐蚀液中进行扩孔腐蚀,电流密度为0.1~1A/cm 2,温度为10~45℃,按正弦波变化的5~35Hz电源频率进行低频腐蚀10~85秒;
(g)步骤(f)处理得到的阳极箔采用6~12wt%盐酸、0.05~1wt%硫酸、0.01~1wt%磷酸,在温度为10~45℃条件下作用10~85秒;
(h)步骤(g)得到的阳极箔采用温度为40~60℃的自来水清洗10~85秒;
(i)重复步骤(f)、(g)、(h)8次;
(j)采用2~6wt%的盐酸溶液,温度为20~80℃下浸泡30~180秒;
(k)采用0.1~4wt%的硝酸溶液,温度为20~80℃下浸泡30~180秒;
(l)采用纯水清洗30~180秒后,在400~460℃温度下退火处理20~180秒。
本发明与现有技术相比具有以下优点:
碱液前处理,发孔及扩孔过程分步进行,并在每一步后增加槽液中处理及温水清洗流程,扩孔过程中,通过控制电源频率,获得均匀残芯层腐蚀形貌,得到一种低接触电阻的低频腐蚀方法。
附图说明:
图1为对比例电极箔截面形貌图;
图2为本发明电极箔截面形貌图:
具体实施方式:
下面结合具体实施例对本发明作进一步的阐述,但本发明并不限于以 下实施例。所述方法无特别说明的均为常规方法。
实施例1
(a)将电解电容器低压阳极光箔置于0.01wt%的氢氧化钠溶液,在40℃温度下浸泡3分钟;
(b)步骤(a)得到的阳极箔采用6wt%盐酸、0.1wt%硫酸,在温度为30℃、电流密度为0.3A/cm 2条件下作用20秒;
(c)步骤(b)得到的阳极箔采用6wt%盐酸、0.1wt%硫酸,在温度为30℃条件下作用20秒;
(d)步骤(c)得到的阳极箔采用温度为40℃的自来水清洗30秒;
(e)重复步骤(b)、(c)、(d)4次;
(f)步骤(e)处理得到的阳极箔在6wt%盐酸、0.1wt%硫酸、0.01wt%磷酸腐蚀液中进行扩孔腐蚀,电流密度为0.1A/cm 2,温度为30℃,按正弦波变化的5~35Hz频率由低到高进行低频腐蚀20秒;
(g)步骤(f)处理得到的阳极箔采用6wt%盐酸、0.1wt%硫酸、0.01wt%磷酸,在温度为30℃条件下作用20秒;
(h)步骤(g)得到的阳极箔采用温度为40℃的自来水清洗30秒;
(i)重复步骤(f)、(g)、(h)8次;
(j)采用2wt%的盐酸溶液,温度为50℃下浸泡30秒;
(k)采用0.1wt%的硝酸溶液,温度为50℃下浸泡30秒;
(l)采用纯水清洗60秒后,在420℃温度下退火处理150秒。
实施例2
(a)将电解电容器低压阳极光箔置于0.5wt%的氢氧化钠溶液,在50 ℃温度下浸泡2分钟;
(b)步骤(a)得到的阳极箔采用8wt%盐酸、0.3wt%硫酸,在温度为40℃、电流密度为0.5A/cm 2条件下作用40秒;
(c)步骤(b)得到的阳极箔采用8wt%盐酸、0.3wt%硫酸,在温度为40℃条件下作用40秒;
(d)步骤(c)得到的阳极箔采用温度为45℃的自来水清洗40秒;
(e)重复步骤(b)、(c)、(d)4次;
(f)步骤(e)处理得到的阳极箔在8wt%盐酸、0.3wt%硫酸、0.1wt%磷酸腐蚀液中进行扩孔腐蚀,电流密度为0.3A/cm 2,温度为35℃,按正弦波变化的5~35Hz频率由低到高进行低频腐蚀40秒;
(g)步骤(f)处理得到的阳极箔采用8wt%盐酸、0.3wt%硫酸、0.1wt%磷酸,在温度为35℃条件下作用40秒;
(h)步骤(g)得到的阳极箔采用温度为45℃的自来水清洗40秒;
(i)重复步骤(f)、(g)、(h)8次;
(j)采用3wt%的盐酸溶液,温度为60℃下浸泡60秒;
(k)采用1wt%的硝酸溶液,温度为60℃下浸泡60秒;
(l)采用纯水清洗90秒后,在430℃温度下退火处理120秒。
实施例3
(a)将电解电容器低压阳极光箔置于2wt%的氢氧化钠溶液,在55℃温度下浸泡1分钟;
(b)步骤(a)得到的阳极箔采用10wt%盐酸、0.5wt%硫酸,在温度为45℃、电流密度为0.7A/cm 2条件下作用60秒;
(c)步骤(b)得到的阳极箔采用10wt%盐酸、0.5wt%硫酸,在温度 为45℃条件下作用60秒;
(d)步骤(c)得到的阳极箔采用温度为50℃的自来水清洗60秒;
(e)重复步骤(b)、(c)、(d)4次;
(f)步骤(e)处理得到的阳极箔在10wt%盐酸、0.5wt%硫酸、0.5wt%磷酸腐蚀液中进行扩孔腐蚀,电流密度为0.4A/cm 2,温度为40℃,按正弦波变化的5~35Hz频率由低到高进行低频腐蚀60秒;
(g)步骤(f)处理得到的阳极箔采用10wt%盐酸、0.5wt%硫酸、0.5wt%磷酸,在温度为40℃条件下作用60秒;
(h)步骤(g)得到的阳极箔采用温度为50℃的自来水清洗60秒;
(i)重复步骤(f)、(g)、(h)8次;
(j)采用4wt%的盐酸溶液,温度为70℃下浸泡90秒;
(k)采用2wt%的硝酸溶液,温度为70℃下浸泡90秒;
(l)采用纯水清洗120秒后,在440℃温度下退火处理90秒。
实施例4
(a)采用4wt%的氢氧化钠溶液,在60℃温度下浸泡电解电容器低压阳极箔0.5分钟;
(b)步骤(a)得到的阳极箔采用12wt%盐酸、0.8wt%硫酸,在温度为50℃、电流密度为0.9A/cm 2条件下作用80秒;
(c)步骤(b)得到的阳极箔采用12wt%盐酸、0.8wt%硫酸,在温度为50℃条件下作用80秒;
(d)步骤(c)得到的阳极箔采用温度为55℃的自来水清洗40秒;
(e)重复步骤(b)、(c)、(d)4次;
(f)步骤(e)处理得到的阳极箔在12wt%盐酸、0.8wt%硫酸、 0.8wt%磷酸腐蚀液中进行扩孔腐蚀,电流密度为0.5A/cm 2,温度为45℃,按正弦波变化的5~35Hz频率由低到高进行低频腐蚀80秒;
(g)步骤(f)处理得到的阳极箔采用12wt%盐酸、0.8wt%硫酸、0.8wt%磷酸,在温度为45℃条件下作用80秒;
(h)步骤(g)得到的阳极箔采用温度为80℃的自来水清洗40秒;
(i)重复步骤(f)、(g)、(h)8次;
(j)采用5wt%的盐酸溶液,温度为80℃下浸泡120秒;
(k)采用3wt%的硝酸溶液,温度为55℃下浸泡120秒;
(l)采用纯水清洗150秒后,在450℃温度下退火处理60秒。
对比例(现有腐蚀工艺)
(a)采用0.05wt%的磷酸溶液,在60℃温度下浸泡电解电容器低压阳极箔1分钟;
(b)步骤(a)得到的阳极箔采用8wt%盐酸、0.5wt%硫酸,在温度为50℃、电流密度为0.3A/cm 2条件下作用3分钟;
(c)步骤(b)处理得到的阳极箔在8wt%盐酸、0.5wt%硫酸腐蚀液中进行扩孔腐蚀,电流密度为0.3A/cm 2,温度为50℃,按正弦波变化的50Hz电源频率进行电化学腐蚀4分钟;
(d)步骤(c)处理得到的阳极箔采用1wt%的硝酸溶液,温度为70℃下浸泡60秒;
(e)采用纯水清洗60秒后,在420℃温度下退火处理60秒。
本发明腐蚀电极箔与现有工艺的腐蚀电极箔生产线化成后,对比数据结果如下(化成条件:己二酸铵槽液,Vfe=21V):
Figure PCTCN2018080808-appb-000001
从对比结果可以看出,采用本发明腐蚀工艺产出的腐蚀电极箔化成后接触电阻显著降低,对比现有腐蚀工艺,降低超过40%。
本发明通过在碱液前处理,发孔及扩孔过程分步进行,并在每一步后增加槽液中处理及温水清洗流程,扩孔过程中,通过控制电源频率,获得均匀残芯层腐蚀形貌。
申请人又一声明,本发明通过上述实施例来说明本发明的实现方法及装置结构,但本发明并不局限于上述实施方式,即不意味着本发明必须依赖上述方法及结构才能实施。所属技术领域的技术人员应该明了,对本发明的任何改进,对本发明所选用实现方法等效替换及步骤的添加、具体方式的选择等,均落在本发明的保护范围和公开的范围之内。
本发明并不限于上述实施方式,凡采用和本发明相似结构及其方法来实现本发明目的的所有方式,均在本发明的保护范围之内。

Claims (1)

  1. 一种低接触电阻低压铝电解电容器用电极箔腐蚀方法,其特征在于:包括以下步骤:
    (a)采用0.01~5wt%的氢氧化钠溶液,在20~60℃温度下浸泡电解电容器低压阳极箔0.5~3分钟;
    (b)步骤(a)得到的阳极箔采用6~12wt%盐酸、0.05~1wt%硫酸,在温度为5~50℃、电流密度为0.1~1A/cm 2条件下作用10~85秒;
    (c)步骤(b)得到的阳极箔采用6~12wt%盐酸、0.05~1wt%硫酸,在温度为5~50℃条件下作用10~85秒;
    (d)步骤(c)得到的阳极箔采用温度为40~60℃的自来水清洗10~85秒;
    (e)重复步骤(b)、(c、)、(d)4次;
    (f)步骤(e)处理得到的阳极箔在6~12wt%盐酸、0.05~1wt%硫酸、0.01~1wt%磷酸腐蚀液中进行扩孔腐蚀,电流密度为0.1~1A/cm 2,温度为10~45℃,按正弦波变化的5~35Hz电源频率进行低频腐蚀10~85秒;
    (g)步骤(f)处理得到的阳极箔采用6~12wt%盐酸、0.05~1wt%硫酸、0.01~1wt%磷酸,在温度为10~45℃条件下作用10~85秒;
    (h)步骤(g)得到的阳极箔采用温度为40~60℃的自来水清洗10~85秒;
    (i)重复步骤(f)、(g)、(h)8次;
    (j)采用2~6wt%的盐酸溶液,温度为20~80℃下浸泡30~180秒;
    (k)采用0.1~4wt%的硝酸溶液,温度为20~80℃下浸泡30~180秒;
    (l)采用纯水清洗30~180秒后,在400~460℃温度下退火处理20~180秒。
PCT/CN2018/080808 2017-08-30 2018-03-28 一种低接触电阻低压铝电解电容器用电极箔腐蚀方法 WO2019041797A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018566562A JP6768088B2 (ja) 2017-08-30 2018-03-28 低接触抵抗の低圧用アルミニウム電解コンデンサ用の電極箔のエッチング方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710765155.8 2017-08-30
CN201710765155.8A CN107591247A (zh) 2017-08-30 2017-08-30 一种低接触电阻低压铝电解电容器用电极箔腐蚀方法

Publications (1)

Publication Number Publication Date
WO2019041797A1 true WO2019041797A1 (zh) 2019-03-07

Family

ID=61050326

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/080808 WO2019041797A1 (zh) 2017-08-30 2018-03-28 一种低接触电阻低压铝电解电容器用电极箔腐蚀方法

Country Status (3)

Country Link
JP (1) JP6768088B2 (zh)
CN (1) CN107591247A (zh)
WO (1) WO2019041797A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112981516A (zh) * 2021-02-03 2021-06-18 广州金立电子有限公司 一种铝电解电容器用阳极铝箔腐蚀方法

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107591247A (zh) * 2017-08-30 2018-01-16 南通海星电子股份有限公司 一种低接触电阻低压铝电解电容器用电极箔腐蚀方法
CN108486645B (zh) * 2018-03-19 2020-09-22 南通海星电子股份有限公司 一种贴片式铝电解电容器低压电极箔的腐蚀方法
CN113026087B (zh) * 2021-04-29 2021-08-10 南通海星电子股份有限公司 一种汽车电子用纳微孔结构铝电极箔制备方法
CN113279046A (zh) * 2021-05-20 2021-08-20 浙江丰川电子环保科技股份有限公司 一种电解电容器用阳极铝箔快速化学腐蚀工艺
CN113611536A (zh) * 2021-08-10 2021-11-05 南通海星电子股份有限公司 一种减少低压电极箔箔灰的制造方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01212423A (ja) * 1988-02-19 1989-08-25 Matsushita Electric Ind Co Ltd アルミ電解コンデンサ用電極箔の製造方法
JPH0653083A (ja) * 1992-07-30 1994-02-25 Matsushita Electric Ind Co Ltd アルミニウム電解コンデンサ用電極箔の製造方法
CN1920114A (zh) * 2006-08-02 2007-02-28 扬州宏远电子有限公司 低压铝电解电容器用阳极箔的腐蚀方法
CN101425391A (zh) * 2008-07-29 2009-05-06 东莞市东阳光电容器有限公司 一种铝电解电容器用低压阳极箔的制备方法
CN101645354A (zh) * 2009-08-27 2010-02-10 南通华冠电子科技有限公司 铝电解电容器用中高压阳极箔的生产工艺
CN102094231A (zh) * 2011-01-11 2011-06-15 江苏立富电极箔有限公司 中高压铝电解电容器用阳极箔的腐蚀工艺
CN107591247A (zh) * 2017-08-30 2018-01-16 南通海星电子股份有限公司 一种低接触电阻低压铝电解电容器用电极箔腐蚀方法

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4052275A (en) * 1976-12-02 1977-10-04 Polychrome Corporation Process for electrolytic graining of aluminum sheet
DE3127161A1 (de) * 1981-07-09 1983-01-20 Siemens AG, 1000 Berlin und 8000 München Verfahren zum herstellen einer elektrodenfolie fuer insbesondere niedervolt-elektrolytkondensatoren
JP3539048B2 (ja) * 1996-03-14 2004-06-14 松下電器産業株式会社 アルミ電解コンデンサ用電極箔の製造方法
JPH1126320A (ja) * 1997-07-02 1999-01-29 Matsushita Electric Ind Co Ltd アルミニウム電解コンデンサ用電極箔およびアルミニウム電解コンデンサ
JP3959106B2 (ja) * 1998-12-28 2007-08-15 日本製箔株式会社 電解コンデンサ電極用硬質アルミニウム箔
JP2000216064A (ja) * 1999-01-25 2000-08-04 Nippon Foil Mfg Co Ltd 点状光沢の少ない電解コンデンサ用電極箔及びその製造方法
JP3729031B2 (ja) * 2000-06-23 2005-12-21 松下電器産業株式会社 アルミ電解コンデンサ用電極箔の製造方法
JP4385535B2 (ja) * 2001-03-09 2009-12-16 パナソニック株式会社 エッチング用カーボン電極およびこれを用いたアルミ電解コンデンサ用電極箔のエッチング方法
JP4572649B2 (ja) * 2004-10-12 2010-11-04 パナソニック株式会社 電解コンデンサ用電極箔の製造方法
JP4709069B2 (ja) * 2006-05-31 2011-06-22 ニチコン株式会社 電解コンデンサ用アルミニウム電極箔の製造方法
JP2009105190A (ja) * 2007-10-23 2009-05-14 Panasonic Corp 電解コンデンサ用電極箔の製造装置
JP2009290084A (ja) * 2008-05-30 2009-12-10 Nichicon Corp 電解コンデンサ用電極箔の製造方法
CN101423946A (zh) * 2008-07-29 2009-05-06 东莞市东阳光电容器有限公司 一种节能灯用中高压阳极箔的腐蚀箔制备工艺
JP5437624B2 (ja) * 2008-12-08 2014-03-12 株式会社タカラ 蓄熱材寝具
JP5353958B2 (ja) * 2011-06-15 2013-11-27 パナソニック株式会社 電解コンデンサ用陽極箔及びこれを用いたアルミ電解コンデンサまたは機能性高分子アルミ電解コンデンサならびに電解コンデンサ用陽極箔の製造方法
CN104611760B (zh) * 2014-12-15 2017-05-10 肇庆华锋电子铝箔股份有限公司 一种电子铝箔的节能环保电化学腐蚀扩容方法
CN106449110A (zh) * 2016-12-07 2017-02-22 南通海星电子股份有限公司 铝电解电容器用中高压腐蚀箔五级扩面腐蚀方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01212423A (ja) * 1988-02-19 1989-08-25 Matsushita Electric Ind Co Ltd アルミ電解コンデンサ用電極箔の製造方法
JPH0653083A (ja) * 1992-07-30 1994-02-25 Matsushita Electric Ind Co Ltd アルミニウム電解コンデンサ用電極箔の製造方法
CN1920114A (zh) * 2006-08-02 2007-02-28 扬州宏远电子有限公司 低压铝电解电容器用阳极箔的腐蚀方法
CN101425391A (zh) * 2008-07-29 2009-05-06 东莞市东阳光电容器有限公司 一种铝电解电容器用低压阳极箔的制备方法
CN101645354A (zh) * 2009-08-27 2010-02-10 南通华冠电子科技有限公司 铝电解电容器用中高压阳极箔的生产工艺
CN102094231A (zh) * 2011-01-11 2011-06-15 江苏立富电极箔有限公司 中高压铝电解电容器用阳极箔的腐蚀工艺
CN107591247A (zh) * 2017-08-30 2018-01-16 南通海星电子股份有限公司 一种低接触电阻低压铝电解电容器用电极箔腐蚀方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112981516A (zh) * 2021-02-03 2021-06-18 广州金立电子有限公司 一种铝电解电容器用阳极铝箔腐蚀方法
CN112981516B (zh) * 2021-02-03 2022-04-05 广州金立电子有限公司 一种铝电解电容器用阳极铝箔腐蚀方法

Also Published As

Publication number Publication date
JP2019535120A (ja) 2019-12-05
JP6768088B2 (ja) 2020-10-14
CN107591247A (zh) 2018-01-16

Similar Documents

Publication Publication Date Title
WO2019041797A1 (zh) 一种低接触电阻低压铝电解电容器用电极箔腐蚀方法
CN106653373B (zh) 一种铝电解电容器用化成箔及其生产工艺
CN105551805B (zh) 中高压铝电解电容器用电极箔的中处理方法
KR102317276B1 (ko) 표면 실장 알루미늄 전해 커패시터용 전극박의 제조 방법
WO2019085387A1 (zh) 一种提高铝电解电容器用电极箔发孔密度的预处理方法
CN105097286B (zh) 一种超高压储能材料的腐蚀方法
CN108456916B (zh) 一种中高压电子铝箔的腐蚀方法
CN105401201B (zh) 一种用于tft液晶玻璃面板的铝合金基材的阳极氧化工艺
CN110517892B (zh) 一种固态铝电解电容器用电极箔的制造方法
CN101752095A (zh) 一种腐蚀铝箔的发孔方法
CN110783108B (zh) 一种腐蚀箔的制作方法
CN103361692B (zh) 中高压电子铝箔电沉积弥散锡晶核的方法
CN105702465B (zh) 一种ups电源用电极箔的制造方法
CN112080787B (zh) 一种铝电解电容器用腐蚀箔及其制备方法
CN105200509A (zh) 一种电子储能材料的清洗方法
CN103695982A (zh) 一种铝或铝合金宽温阳极氧化的电解液及氧化方法
CN101532162B (zh) 特高压铝电解电容器用阳极箔的腐蚀工艺
CN102723205A (zh) 中高压铝电解电容器阳极箔的腐蚀方法
WO2023056725A1 (zh) 一种孔长高一致性的腐蚀铝箔的制备方法
CN101205618A (zh) 中高压铝电解电容器用阳极铝箔腐蚀方法
CN109440179A (zh) 一种表面粗化的金属钽基体及其制备方法
CN104357886B (zh) 中高压阳极用高纯铝箔表面化学沉积弥散锡、锌晶核的方法
CN110783110A (zh) 一种固态电容器用电极箔的制造方法
CN102082050B (zh) 一种闪光灯用电极铝箔的深度腐蚀方法
CN109786113A (zh) 一种铝电解电容器用化成箔及其生产工艺

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018566562

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18851713

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18851713

Country of ref document: EP

Kind code of ref document: A1