WO2019037785A1 - 一种复合多孔膜及其制备方法和用途 - Google Patents

一种复合多孔膜及其制备方法和用途 Download PDF

Info

Publication number
WO2019037785A1
WO2019037785A1 PCT/CN2018/102316 CN2018102316W WO2019037785A1 WO 2019037785 A1 WO2019037785 A1 WO 2019037785A1 CN 2018102316 W CN2018102316 W CN 2018102316W WO 2019037785 A1 WO2019037785 A1 WO 2019037785A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
porous
stretching
water
composite porous
Prior art date
Application number
PCT/CN2018/102316
Other languages
English (en)
French (fr)
Inventor
周建军
李林
胡志宇
Original Assignee
北京师范大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201710744074.XA external-priority patent/CN109422890A/zh
Application filed by 北京师范大学 filed Critical 北京师范大学
Priority to KR1020197035820A priority Critical patent/KR20200047451A/ko
Priority to EP18847905.9A priority patent/EP3674354A4/en
Priority to JP2020511525A priority patent/JP7273415B2/ja
Priority to US16/640,391 priority patent/US11603443B2/en
Publication of WO2019037785A1 publication Critical patent/WO2019037785A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/22Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by diffusion
    • B01D53/228Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by diffusion characterised by specific membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/36Pervaporation; Membrane distillation; Liquid permeation
    • B01D61/362Pervaporation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0002Organic membrane manufacture
    • B01D67/0023Organic membrane manufacture by inducing porosity into non porous precursor membranes
    • B01D67/0025Organic membrane manufacture by inducing porosity into non porous precursor membranes by mechanical treatment, e.g. pore-stretching
    • B01D67/0027Organic membrane manufacture by inducing porosity into non porous precursor membranes by mechanical treatment, e.g. pore-stretching by stretching
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/12Composite membranes; Ultra-thin membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/12Composite membranes; Ultra-thin membranes
    • B01D69/1213Laminated layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/12Composite membranes; Ultra-thin membranes
    • B01D69/1216Three or more layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/12Composite membranes; Ultra-thin membranes
    • B01D69/125In situ manufacturing by polymerisation, polycondensation, cross-linking or chemical reaction
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/26Polyalkenes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/26Polyalkenes
    • B01D71/261Polyethylene
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/30Polyalkenyl halides
    • B01D71/32Polyalkenyl halides containing fluorine atoms
    • B01D71/34Polyvinylidene fluoride
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/40Polymers of unsaturated acids or derivatives thereof, e.g. salts, amides, imides, nitriles, anhydrides, esters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/40Polymers of unsaturated acids or derivatives thereof, e.g. salts, amides, imides, nitriles, anhydrides, esters
    • B01D71/401Polymers based on the polymerisation of acrylic acid, e.g. polyacrylate
    • B01D71/4011Polymethylmethacrylate
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/48Polyesters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/70Polymers having silicon in the main chain, with or without sulfur, nitrogen, oxygen or carbon only
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/70Polymers having silicon in the main chain, with or without sulfur, nitrogen, oxygen or carbon only
    • B01D71/701Polydimethylsiloxane
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/001Combinations of extrusion moulding with other shaping operations
    • B29C48/0022Combinations of extrusion moulding with other shaping operations combined with cutting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/022Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the choice of material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/03Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the shape of the extruded material at extrusion
    • B29C48/07Flat, e.g. panels
    • B29C48/08Flat, e.g. panels flexible, e.g. films
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/15Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor incorporating preformed parts or layers, e.g. extrusion moulding around inserts
    • B29C48/154Coating solid articles, i.e. non-hollow articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/16Articles comprising two or more components, e.g. co-extruded layers
    • B29C48/18Articles comprising two or more components, e.g. co-extruded layers the components being layers
    • B29C48/21Articles comprising two or more components, e.g. co-extruded layers the components being layers the layers being joined at their surfaces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/30Extrusion nozzles or dies
    • B29C48/305Extrusion nozzles or dies having a wide opening, e.g. for forming sheets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/30Extrusion nozzles or dies
    • B29C48/305Extrusion nozzles or dies having a wide opening, e.g. for forming sheets
    • B29C48/31Extrusion nozzles or dies having a wide opening, e.g. for forming sheets being adjustable, i.e. having adjustable exit sections
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/30Extrusion nozzles or dies
    • B29C48/305Extrusion nozzles or dies having a wide opening, e.g. for forming sheets
    • B29C48/31Extrusion nozzles or dies having a wide opening, e.g. for forming sheets being adjustable, i.e. having adjustable exit sections
    • B29C48/313Extrusion nozzles or dies having a wide opening, e.g. for forming sheets being adjustable, i.e. having adjustable exit sections by positioning the die lips
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/36Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die
    • B29C48/365Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die using pumps, e.g. piston pumps
    • B29C48/37Gear pumps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/36Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die
    • B29C48/375Plasticisers, homogenisers or feeders comprising two or more stages
    • B29C48/387Plasticisers, homogenisers or feeders comprising two or more stages using a screw extruder and a gear pump
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/88Thermal treatment of the stream of extruded material, e.g. cooling
    • B29C48/911Cooling
    • B29C48/9135Cooling of flat articles, e.g. using specially adapted supporting means
    • B29C48/914Cooling of flat articles, e.g. using specially adapted supporting means cooling drums
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/92Measuring, controlling or regulating
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • C08J7/042Coating with two or more layers, where at least one layer of a composition contains a polymer binder
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • C08J7/043Improving the adhesiveness of the coatings per se, e.g. forming primers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/0008Organic ingredients according to more than one of the "one dot" groups of C08K5/01 - C08K5/59
    • C08K5/0083Nucleating agents promoting the crystallisation of the polymer matrix
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/10Homopolymers or copolymers of propene
    • C08L23/12Polypropene
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/403Manufacturing processes of separators, membranes or diaphragms
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • H01M50/417Polyolefins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • H01M50/42Acrylic resins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/443Particulate material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/449Separators, membranes or diaphragms characterised by the material having a layered structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • H01M50/491Porosity
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2323/00Details relating to membrane preparation
    • B01D2323/15Use of additives
    • B01D2323/21Fillers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2323/00Details relating to membrane preparation
    • B01D2323/50Control of the membrane preparation process
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/02Details relating to pores or porosity of the membranes
    • B01D2325/021Pore shapes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/04Characteristic thickness
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2948/00Indexing scheme relating to extrusion moulding
    • B29C2948/92Measuring, controlling or regulating
    • B29C2948/92009Measured parameter
    • B29C2948/92114Dimensions
    • B29C2948/92152Thickness
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2948/00Indexing scheme relating to extrusion moulding
    • B29C2948/92Measuring, controlling or regulating
    • B29C2948/92504Controlled parameter
    • B29C2948/92609Dimensions
    • B29C2948/92647Thickness
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2948/00Indexing scheme relating to extrusion moulding
    • B29C2948/92Measuring, controlling or regulating
    • B29C2948/92504Controlled parameter
    • B29C2948/92704Temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2948/00Indexing scheme relating to extrusion moulding
    • B29C2948/92Measuring, controlling or regulating
    • B29C2948/92819Location or phase of control
    • B29C2948/92857Extrusion unit
    • B29C2948/92904Die; Nozzle zone
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/001Combinations of extrusion moulding with other shaping operations
    • B29C48/0018Combinations of extrusion moulding with other shaping operations combined with shaping by orienting, stretching or shrinking, e.g. film blowing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2023/00Use of polyalkenes or derivatives thereof as moulding material
    • B29K2023/10Polymers of propylene
    • B29K2023/12PP, i.e. polypropylene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2323/00Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
    • C08J2323/02Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
    • C08J2323/10Homopolymers or copolymers of propene
    • C08J2323/12Polypropene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2327/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers
    • C08J2327/02Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers not modified by chemical after-treatment
    • C08J2327/12Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2327/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers
    • C08J2327/02Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers not modified by chemical after-treatment
    • C08J2327/12Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms
    • C08J2327/14Homopolymers or copolymers of vinyl fluoride
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2327/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers
    • C08J2327/02Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers not modified by chemical after-treatment
    • C08J2327/12Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms
    • C08J2327/16Homopolymers or copolymers of vinylidene fluoride
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2327/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers
    • C08J2327/02Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers not modified by chemical after-treatment
    • C08J2327/12Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms
    • C08J2327/18Homopolymers or copolymers of tetrafluoroethylene
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/471Spacing elements inside cells other than separators, membranes or diaphragms; Manufacturing processes thereof
    • H01M50/474Spacing elements inside cells other than separators, membranes or diaphragms; Manufacturing processes thereof characterised by their position inside the cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the invention belongs to the technical field of porous membranes, and in particular relates to a composite porous membrane, a preparation method thereof and use thereof.
  • the polyolefin porous membrane is a polymer membrane and is a porous membrane having a pore diameter of 5 nm to 1000 nm, which is widely used for a gas permeable material (such as diapers, medical dressings, clothes linings, etc.), for liquid separation.
  • a gas permeable material such as diapers, medical dressings, clothes linings, etc.
  • the dry stretching process can also be divided into a unidirectional stretching process and a biaxial stretching process.
  • the wet preparation process is to add a high-boiling small-molecule substance as a porogen to a polyolefin and dissolve it in an organic solvent to form a cast piece, and then phase-separate by cooling, extract a small molecule with an organic solvent, and perform biaxial stretching to form a porous structure.
  • the dry biaxial stretching process has been widely used because it does not require the use of a solvent, and the strength of the porous film is relatively high in the longitudinal and transverse directions.
  • the dry biaxial stretching process mainly forms a polypropylene film having a high ⁇ crystal content by adding a ⁇ -crystal modifier having nucleation effect in the polypropylene, and the ⁇ crystal to the ⁇ crystal occurs during the stretching process.
  • the transformation uses a difference in density between different phases of polypropylene to form a porous structure for producing a single-layer polypropylene porous film.
  • a porous film obtained by stretching a polypropylene uniform original film having a high ⁇ crystal form content which is a melt-processed method for forming a polypropylene resin for film formation, is proposed.
  • a nucleating agent is added to obtain a film having ⁇ -form polypropylene, and then a porous film is obtained by 4-5 times longitudinal stretching and 2-4 times transverse stretching. Since the multiple of the longitudinal stretching is large, it is easily split in the longitudinal direction during the cutting process when used as a battery separator, resulting in a decrease in yield and production efficiency. Meanwhile, when the porous film prepared by the method is used as a lithium ion battery separator, since the polypropylene is a low-surface energy non-polar material, the carbonate-based polar electrolyte in the battery is a non-polar polypropylene separator. Poor infiltration.
  • the non-polar polypropylene diaphragm and the battery pole piece during battery assembly are also prone to poor fit due to the difference in polarity. Therefore, slowing the longitudinal cracking during the use of the biaxially oriented polypropylene separator and increasing the polarity of the membrane surface are important for improving the performance of the separator.
  • one of the objects of the present invention is to provide a composite porous film comprising at least one porous base layer and at least one side surface of the porous base layer, and a preparation method and use thereof At least one uniaxially stretched coating layer; specifically, the composite porous film includes at least one porous base layer and at least one layer on one or both sides of the porous base layer oriented in a transverse direction of the composite porous film.
  • the nanofiber-like non-polyolefin-based polymer porous layer, or the composite porous film includes a biaxially stretched porous base layer and a unidirectional stretch coating layer on at least one side surface of the porous base layer.
  • the composite porous membrane is prepared by introducing a coating liquid before transverse stretching, and the nanofiber-like non-polyolefin polymer porous layer oriented in the transverse stretching direction of the composite porous membrane can The longitudinal cracking of the composite porous membrane during use is inhibited, and the performance of the composite porous membrane is improved.
  • a second object of the present invention is to provide a lithium ion battery separator comprising the above composite porous membrane; a lithium ion battery separator including the composite porous membrane can form a gel in an electrolyte to improve electrolysis
  • the liquid's wetting property to the membrane improves the cycle and performance of the battery; it also improves the service life of the lithium ion battery separator.
  • a third object of the present invention is to provide a gas separation membrane comprising the above composite porous membrane; and a gas separation membrane comprising the composite porous membrane, wherein a coating layer has a different permeability coefficient to different gases, and gas separation can be achieved. And enrichment.
  • a fourth object of the present invention is to provide an apparatus for preparing a composite porous membrane.
  • a first aspect of the invention provides a composite porous membrane comprising at least one porous base layer and at least one uniaxially stretched coating layer on at least one side surface of the porous base layer.
  • the composite porous membrane comprises a biaxially oriented porous base layer and a unidirectional stretch coating layer on at least one side surface of the porous base layer.
  • the composite porous film further includes a biaxially stretched coating layer on at least one side surface of the porous base layer.
  • the composite porous film further includes a biaxially stretched coating layer on at least one side surface between the porous base layer and the unidirectionally stretched coating layer.
  • the uniaxially stretched coating layer on at least one side surface of the porous base layer may be a porous coating layer or a non-porous dense coating layer.
  • the biaxially stretched coating layer on at least one side surface of the porous base layer may be a porous coating layer or a non-porous dense coating layer.
  • the coating layer has a thickness of from 0.1 to 4 microns, preferably from 1 to 2 microns.
  • the coating layer formed after the coating liquid is dried forms a non-porous dense coating layer during stretching.
  • the non-porous dense structure is formed of a polymer in the coating liquid.
  • the coating liquid of the coating layer is a composite coating solution of the solution of the organic solvent as the medium and the inorganic filler
  • the coating layer formed after the coating liquid is dried forms a porous coating layer during the stretching process.
  • the porous structure is caused by interfacial tensile cracking of the polymer and the inorganic filler in the coating liquid.
  • the coating liquid of the coating layer is a water-based dispersion, that is, an emulsion or an aqueous dispersion of the polymer
  • the coating layer formed after the coating liquid is dried forms a porous coating during stretching.
  • the porous structure is caused by the accumulation of gaps in the accumulation of polymer particles.
  • the coating liquid of the coating layer is a water-based dispersion, that is, an emulsion of a polymer or a composite coating liquid of an aqueous dispersion and an inorganic filler
  • the coating layer formed after the coating liquid is dried is pulled.
  • a porous coating layer is formed during stretching. The porous structure is caused by the accumulation of gaps in the polymer particles and the tensile cracking of the interface between the polymer and the inorganic filler.
  • the coating layer formed after the coating liquid is dried forms a non-porous dense coating layer during stretching.
  • the non-porous dense structure is formed of a polymer in the coating liquid.
  • the coating liquid of the coating layer is a composite coating liquid of a water-soluble polymer solution and an inorganic filler which is water-based
  • the coating layer formed after the coating liquid is dried forms a porous shape during stretching. Coating layer.
  • the porous structure is caused by interfacial tensile cracking of the polymer and the inorganic filler in the coating liquid.
  • the composite porous film comprises at least one porous base layer and at least one layer on one or both sides of the porous base layer oriented in the transverse direction of the composite porous film.
  • a porous layer of a non-polyolefin polymer is another embodiment of the present invention.
  • the composite porous film includes at least one porous base layer and at least one nanofiber-like non-polyolefin-based polymer porous layer oriented in the transverse stretching direction of the composite porous film; those known to those skilled in the art
  • the arrangement of the porous base layer and the nanofiber-like non-polyolefin-based polymer porous layer oriented in the transverse direction of the composite porous film is not specifically limited, and may be any layer known to those skilled in the art. The arrangement between the layers can be used.
  • the composite porous membrane has good resistance to longitudinal cracking, and also has good ion transport performance and significantly improved performance.
  • the composite porous film comprises a porous base layer and a nanofiber-like non-polyolefin-based polymer porous layer oriented in a transverse stretching direction of the composite porous film; the transverse stretching along the composite porous film
  • the direction-oriented nanofiber-like non-polyolefin-based polymer porous layer is located on one surface of the porous base layer.
  • the composite porous film comprises a porous base layer and two nanofiber-like non-polyolefin-based polymer porous layers oriented in the transverse stretching direction of the composite porous film; the transverse stretching along the composite porous film
  • the direction-oriented nanofiber-like non-polyolefin-based polymer porous layer is located on both side surfaces of the porous base layer.
  • the thickness of the nanofiber-like non-polyolefin-based polymer porous layer oriented in the transverse stretching direction of the composite porous film is not particularly limited, and it can be known to those skilled in the art, and the transverse stretching method is employed. Any of the thicknesses which can be prepared; preferably, the nanofiber-like non-polyolefin-based polymer porous layer oriented in the transverse stretching direction of the composite porous film has a thickness of 0.1 to 4 ⁇ m, preferably 1 to 2 ⁇ m. .
  • the non-polyolefin-based polymer is preferably a non-polyethylene-based polymer, a non-polypropylene-based polymer; preferably, the non-polyolefin-based polymer is preferably a non-polypropylene-based polymer.
  • the nanofibers have a diameter of from 10 to 500 nm, preferably from 15 to 250 nm.
  • the selection of the porous base layer is not particularly limited, and it may be any one known to those skilled in the art to prepare a composite porous film, and the purpose of use thereof may be achieved as a battery separator.
  • the porous base layer can function to block the positive and negative electrodes and provide an ion transport channel.
  • the porous base layer is selected from the group consisting of porous polyolefin base layers, and as the porous polyolefin base layer, it is particularly advantageous to use a porous polyethylene base layer, a porous polypropylene base layer or a porous polypropylene/polyethylene/polypropylene three-layer composite base layer.
  • the porous substrate is selected from the group consisting of porous polypropylene based layers.
  • the porosity, gas permeability and thickness of the porous base layer are not particularly limited, and may be any porosity, gas permeability and thickness known in the art, and the porous base layer is for porosity,
  • the gas permeability and the thickness are selected to satisfy the purpose of preparing the composite porous film having high ion transport performance of the present invention, and the purpose of the separator for electronic components is to achieve the purpose of blocking the positive and negative electrodes and providing an ion transport channel.
  • the porous base layer has a porosity of 25-60%; the porous base layer has a Gurley gas permeability value of 100-400 s; and the porous base layer has a thickness of 5 to 55 ⁇ m.
  • the composite porous film has a longitudinal tensile strength of 60 to 130 MPa; a longitudinal elongation at break of 5 to 70%; a transverse tensile strength of 15 to 60 MPa; and a transverse elongation at break of 10 to 10%. 100%; the composite porous film has a thickness of 10 to 60 ⁇ m, and more preferably 15 to 30 ⁇ m; and the composite porous film has a Gurley gas permeability of 100 to 400 s.
  • a second aspect of the present invention provides a method for producing the above composite porous membrane, the preparation method comprising the steps of:
  • the composite stretched film is obtained by transversely stretching a longitudinally stretched film coated with a coating liquid.
  • the following steps may be further included between the step (S2) and the step (S3) of the preparation method:
  • the coating liquid is applied to one side or both side surfaces of the high- ⁇ crystal film obtained in the step (S2) to obtain a high- ⁇ crystal film coated with a coating liquid.
  • the composite porous film refers to a coating film coated on one side or both sides of a longitudinally stretched film obtained by stretching in a longitudinal direction, and is subjected to transverse stretching.
  • a composite porous membrane is obtained; or, the composite porous membrane refers to coating a coating liquid on one or both sides of a high beta crystal film, and longitudinally stretching the film to obtain a longitudinally stretched film; A coating liquid is applied to one or both sides of the stretched film, and after transverse stretching, a composite porous film is obtained.
  • the coating liquid comprises a solution in which an organic solvent is used as a medium or a solution or dispersion in which water is used as a medium;
  • the solution using an organic solvent as a medium includes a solution formed by dissolving a polymer or a polymer composition with an organic solvent; and the water-based solution comprises dissolving a water-soluble polymer or a water-soluble polymer composition with water.
  • the aqueous medium-containing dispersion comprises an emulsion of a polymer or a polymer composition obtained by emulsion polymerization of a water-insoluble polymer or a water-insoluble polymer composition, or is insoluble in water.
  • a polymer or water-insoluble polymer composition obtained by grinding or pulverizing an aqueous dispersion containing a polymer or polymer composition.
  • the solution in which the organic solvent is used as the medium or the solution or dispersion in which the water is used as the medium may further include an inorganic filler.
  • the inorganic filler comprises silica, titania, cerium oxide, zirconium dioxide, aluminum oxide, barium sulfate, calcium carbonate, carbon nitride, boehmite, silicon carbide, molecular sieve, talcum powder, montmorillonite One or more of the soil.
  • the polymer or polymer composition comprises polyvinylidene fluoride, vinylidene fluoride-hexafluoropropylene copolymer, polyacrylonitrile, polyvinylidene chloride, Polymethacrylate, polyethylene, polyethylene wax, chlorinated polyethylene, chlorinated polypropylene, polyvinyl alcohol, polyurethane, copolymer of methacrylate and acrylonitrile, polyoxyethylene ether, sodium alginate , cellulose derivatives, polydimethylsiloxane, polyimide, polyurethane, sodium polystyrene sulfonate, sulfonated polyetheretherketone, polyvinyl alcohol vinyl sulfonic acid graft copolymer, sulfonated poly One or more of sulfone, sulfonated polybenzimidazole, sulfonated polyphenylquinoline, perfluorosulfonic acid poly
  • the organic solvent may be selected from a solvent of a ketone such as acetone, methyl ethyl ketone or the like, or may be selected from an alcohol solvent such as methanol, ethanol or the like, or may be selected from the group consisting of an alcohol solvent such as methanol, ethanol, or the like.
  • the halogenated hydrocarbon solvent such as methyl chloride, dichloromethane, chloroform, carbon tetrachloride or the like may also be selected from amide solvents such as N,N-dimethylformamide, N,N-dimethylacetamide, and the like.
  • benzene solvents such as benzene, toluene, xylene, and the like, as well as tetrahydrofuran, N-methylpyrrolidone, dimethyl sulfoxide, diethyl ether, and the like.
  • the water-soluble polymer or water-soluble polymer composition comprises polyvinyl alcohol, polyoxyethylene ether, sodium alginate, sodium carboxymethyl cellulose, polypropylene One or more of an amide, a chitosan, a konjac glucomannan or the like.
  • the water-insoluble polymer or the water-insoluble polymer composition comprises polyvinylidene fluoride, polyvinylidene chloride, polytetrafluoroethylene, and partial One or more of a vinyl fluoride-hexafluoropropylene copolymer, polystyrene, polymethyl methacrylate, polyurethane, perfluorosulfonic acid polymer (such as Nafion).
  • a third aspect of the present invention provides a method for producing the above composite porous membrane, the preparation method comprising the steps of:
  • the composite porous film is prepared by coating a coating liquid on one side or both side surfaces of the longitudinally stretched film and then stretching it in the transverse direction.
  • the composite porous film of the present invention is prepared;
  • the coating liquid is subjected to transverse stretching treatment to prepare a nanofiber-like non-polyolefin polymer porous layer oriented in the transverse stretching direction of the composite porous film.
  • the longitudinally stretched film is a longitudinally stretched film prepared by conventional means by those skilled in the art.
  • the longitudinally stretched film has a porosity of from 5 to 35%.
  • the longitudinally stretched film has a porosity of 15-35%.
  • the longitudinally stretched film has a thickness of from 16 to 80 micrometers; more preferably, the longitudinally stretched film has a thickness of from 20 to 60 micrometers.
  • the composite porous membrane can be produced by the following method:
  • the high- ⁇ film is longitudinally stretched to obtain a longitudinally stretched film, and a coating liquid is applied to one or both sides of the longitudinally stretched film, and then transversely stretched to prepare the composite porous film.
  • the high ⁇ crystal film is a polypropylene high ⁇ crystal film
  • the isotacticity and melt index of the polypropylene are not
  • it can be prepared by a nucleating agent to obtain a high ⁇ crystal film, and further longitudinally stretched to obtain a longitudinally stretched film having a porosity of 5 to 35%; exemplarily, the polypropylene is homopolymerized.
  • the polypropylene has an isotacticity of from 90 to 98%; a melt index of from 1 to 10 g/10 min.
  • the polypropylene has an isotacticity of from 95 to 98%; a melt index of from 2 to 5 g/10 min.
  • the nucleating agent capable of promoting the formation of the ⁇ crystal form is selected from the group consisting of having a high nucleation efficiency and under static crystallization conditions.
  • the nucleating agent is selected from the group consisting of commercially available products or products synthesized according to methods known in the art. The type of nucleating agent and the nucleation efficiency can be found in the literature Varga J. Journal of Macromolecular Science: Physics 2002, 41, 1121.
  • the nucleating agent may be either an organic small molecule such as N,N-dicyclohexylterephthalamide, N,N-dicyclohexyl-2,6-naphthalenediamide or ⁇ -quinacridine.
  • it may be an inorganic salt such as a hydrazine salt of adipic acid and/or suberic acid, a calcium salt of pimelic acid and/or suberic acid, a calcium or barium salt of tetrahydrophthalic anhydride, or a calcium salt of hexahydrophthalic anhydride.
  • the nucleating agent may be used in combination, and those skilled in the art may understand that the mixing ratio of the nucleating agent is not particularly required and is suitable for the system of the present invention. Those skilled in the art will appreciate that the ratio of nucleating agent to polypropylene which is capable of promoting the formation of the beta form is also a conventional choice, for example, from 0.001 to 0.1% by weight.
  • the processes of melt extrusion and crystal forming employed are well known in the art.
  • the temperature of the slab roll is not particularly limited, and the temperature may be such that the melt-extruded polypropylene is crystallized on the surface thereof.
  • the temperature of the slab roll is from 110 to 140 ° C, and more preferably, the temperature of the slab roll is from 120 to 130 ° C.
  • the melt extrusion is preferably carried out in a screw extruder; it will be understood by those skilled in the art that the screw extruder is not Specifically, it may be a single screw extruder or a twin screw extruder, and may be applied to the system of the present invention.
  • the molding is preferably formed by a die; it will be understood by those skilled in the art that the die is not particularly limited, and may be an adjustable die or an unadjustable die, which is suitable for use in the system of the present invention. can.
  • the melt extrusion temperature of the melt extruder is not specifically limited, and those skilled in the art can be used in the present invention.
  • a polypropylene system can be melt extruded and a high beta film can be obtained.
  • the temperature of the melt extrusion of the screw extruder for extruding the high ⁇ crystal film is 200 to 260 ° C, preferably, the melt extrusion of the screw extruder for extruding the high ⁇ film.
  • the temperature is 220 to 250 °C.
  • the thickness of the high- ⁇ crystal film is not particularly limited, and is suitable for the system of the composite porous film of the present invention, and the The composite porous membrane functions as a barrier to the positive and negative electrodes and provides a lithium ion transport channel.
  • the selection of the thickness of the high beta film sheet can be reasonably selected according to the thickness of the target product-composite porous film and the transverse stretching and the longitudinal stretching ratio.
  • the high beta crystal film has a thickness of 80 to 300 micrometers, and more preferably, the high beta crystal film has a thickness of 100 to 200 micrometers.
  • the content of the ⁇ crystal in the high ⁇ crystal film is not particularly limited, and the high ⁇ crystal film can be prepared and prepared.
  • the obtained high ⁇ crystal film sheet can be prepared to obtain a composite porous film system suitable for the present invention, and the stretched high ⁇ crystal film sheet must also be capable of realizing the function of the composite porous film, that is, It acts to block the positive and negative electrodes and provides a lithium ion transport channel.
  • the content of ⁇ crystals in the high ⁇ crystal film is higher than 80%, and it is also preferable that the content of ⁇ crystals in the high ⁇ crystal film is higher than 85%.
  • the longitudinal stretching temperature is 60-120 ° C, preferably, the longitudinal stretching temperature is 80-110 ° C;
  • the ratio of the longitudinal stretching is 2.5 to 5.5 times, preferably, the magnification of the longitudinal stretching is 3-5 times;
  • the thickness of the coating layer obtained after drying the coating liquid is 0.3 to 10 ⁇ m; preferably, The coating obtained after drying of the coating liquid has a thickness of from 2 to 10 ⁇ m, preferably from 3 to 5 ⁇ m.
  • the temperature of the transverse stretching and the magnification of the transverse stretching are not specifically limited, and may be applied to The system of the composite porous membrane of the present invention may be used; those skilled in the art may select different lateral stretching ratios depending on the application field of the composite porous membrane, thereby controlling the thickness of the coating layer or regulating along the composite porous membrane.
  • the temperature of the transverse stretching is 120-150 ° C; the magnification of the transverse stretching is 2-5 times; further preferably, the temperature of the transverse stretching is 130-140 ° C;
  • the stretch ratio is 2.5-4.5 times.
  • the composite porous membrane can be produced by the following method:
  • polypropylene is melt extruded, high speed drawing orientation molding to obtain a polypropylene initial film
  • the polypropylene initial film is subjected to high temperature annealing to obtain a polypropylene pre-stretched sheet
  • step c) specifically comprises the following steps:
  • the polypropylene pre-stretched sheet is subjected to a multi-layer lamination treatment, and after pre-stretching at 20-50% at 20-50 ° C, the stretching is continued at 100-130 ° C for 30-80%, optionally after stretching.
  • the multi-laminated longitudinally stretched film is peeled off to prepare a longitudinally stretched film; then, a coating liquid is applied to one or both sides of the longitudinally stretched film, and then transversely stretched to prepare the composite porous membrane.
  • the multi-laminating treatment may be performed by laminating at least one layer of the polypropylene pre-stretched film, and after stretching, preparing a longitudinally stretched film comprising at least one layer;
  • a 16-layer polypropylene pre-stretched film was subjected to a lamination treatment, and after stretching, interlayer peeling was carried out to obtain a longitudinally stretched film comprising 1-4 layers.
  • the processes of melt extrusion and high-speed draft orientation molding are all conventionally known in the art, that is, after the polypropylene is melt-extruded, it is drawn at a high speed and formed on a cooling roll, that is, A polypropylene initial film is obtained.
  • the temperature of the chill roll is not particularly limited, and the temperature may be such that the melt-extruded polypropylene is cooled and solidified on its surface.
  • the temperature of the chill roll is 60-120 ° C, and preferably, the temperature of the chill roll is 70-90 ° C.
  • the melt extrusion is preferably carried out in a screw extruder; it will be understood by those skilled in the art that the screw extruder is not particularly limited, and may be a single screw extruder or a twin screw extrusion.
  • the machine can be used in the system of the present invention.
  • the molding is preferably formed by a die; it will be understood by those skilled in the art that the die is not particularly limited, and may be an adjustable die or an unadjustable die, which is suitable for use in the system of the present invention. can.
  • the melt extrusion temperature of the melt extruder is not specifically limited, and those skilled in the art can use the polypropylene system of the present invention, and can perform melt extrusion and obtain polypropylene pre-stretching. Stretch the membrane.
  • the temperature of melt extrusion of the screw extruder of the extruded polypropylene pre-stretched film is 200 to 260 ° C, preferably, the screw extruder of the extruded polypropylene pre-stretched film
  • the melt extrusion temperature is 220 to 250 °C.
  • the purpose of the high-speed draft orientation molding is to form an oriented structure of the polypropylene molecular chain, and the speed of the high-speed drawing is not particularly limited.
  • the high speed drafting speed is 20-80 m/min, and preferably, the high speed drawing speed is 40-60 m/min.
  • the high-temperature annealing refers to placing the initial polypropylene film at a certain temperature for a certain period of time, so as to continue the crystallization of the polypropylene which is not crystallized during the rapid cooling process, thereby improving the crystallinity and making the crystal structure more complete. perfect.
  • the high temperature annealing temperature is 100-140 ° C
  • the annealing time is 8-10 h
  • the high temperature annealing temperature is 120-130 ° C
  • the annealing time is 4-5 h.
  • the thickness of the polypropylene pre-stretched film which is actually stretched and the longitudinally stretched film which is prepared after the stretching is not particularly limited, and is applicable.
  • the function of the composite porous membrane can be achieved, that is, it functions to block the positive and negative electrodes and provide a lithium ion transport channel.
  • the thickness of the longitudinally stretched film obtained is different according to the thickness of the superposed laminate of the polypropylene pre-stretched sheets; Different preparation processes, different thicknesses or peeling are selected to obtain longitudinally stretched films of different layer numbers; preferably, the polypropylene pre-stretched film has a thickness of 16-60 microns, and more preferably, a polypropylene pre-stretched film The thickness of the sheet is 20-30 microns.
  • the longitudinally stretched film has a thickness of from 16 to 80 micrometers; more preferably, the longitudinally stretched film has a thickness of from 20 to 60 micrometers.
  • the composition and content of the coating liquid are not particularly limited, and it is known to those skilled in the art that nano-oriented orientations can be prepared on the surface of the porous substrate in the transverse direction of the composite porous film.
  • a fibrous non-polyolefin-based polymer porous layer preferably, the coating liquid is a water-based dispersion; the coating liquid includes a water-insoluble polymer or a water-insoluble polymer composition
  • the water-insoluble polymer or the water-insoluble polymer composition is dispersed in the system in the form of particles having an average diameter of from 0.01 to 3 ⁇ m, more preferably from 0.1 to 1 ⁇ m.
  • the water-based dispersion may be an emulsion of a polymer or a polymer composition obtained by emulsion polymerization of a water-insoluble polymer or a water-insoluble polymer composition.
  • the selection and amount of the water-insoluble polymer or the water-insoluble polymer composition in the water-based dispersion are not specifically limited, and any one known to those skilled in the art may be prepared.
  • the surface may form nanoparticles coated with a polymer or a polymer composition, and during the transverse stretching, the nanoparticles are stretched with the longitudinally stretched film; and the nanofiber-like porous body is prepared to be oriented in the transverse stretching direction.
  • the water-insoluble polymer or the water-insoluble polymer composition has a glass transition temperature or melting point lower than the transverse stretching temperature; preferably, the water-insoluble polymer or water-insoluble
  • the polymer composition includes polyvinylidene fluoride, polyvinylidene chloride, vinylidene fluoride-hexafluoropropylene copolymer, polystyrene, polymethyl methacrylate, polybutylene succinate, polyurethane, perfluoro One or more of a sulfonic acid polymer such as Nafion.
  • the water-insoluble polymer or the water-insoluble polymer composition is present in an amount of from 5 to 50% by mass, more preferably from 10 to 30% by mass based on the water-based dispersion.
  • the water is present in a water-based dispersion in a mass percentage of from 50 to 95%, more preferably from 70 to 90%.
  • the coating liquid further includes an organic filler or an inorganic filler; the addition of the organic filler or the inorganic filler may be advantageous for further increasing the coating layer, that is, oriented in the transverse direction of the composite porous film.
  • the nanofiber-like non-polyolefin polymer porous layer has porosity, puncture resistance and high temperature resistance of the composite porous film.
  • the inorganic filler or organic filler may be selected from any system known to those skilled in the art which is suitable for use in a composite porous membrane.
  • the inorganic filler comprises silica, titania, cerium oxide, zirconium dioxide, aluminum oxide, barium sulfate, calcium carbonate, carbon nitride, boehmite, silicon carbide, molecular sieve, talcum powder, montmorillonite One or more of the soil.
  • the organic filler comprises one or more of high temperature resistant polymers such as polytetrafluoroethylene, polyetheretherketone, polyethersulfone, polyphenylene ether and the like.
  • the size of the inorganic filler is not particularly limited as long as the purpose of uniform coating on the porous substrate can be achieved.
  • the inorganic particles may be either solid inorganic particles or porous inorganic particles.
  • the inorganic porous particles themselves preferably have an average pore diameter of usually 0.0001 to 0.5 ⁇ m.
  • the amount of the organic filler or the inorganic filler to be added in the coating liquid is not particularly limited, and the composite porous membrane according to the preparation has different application fields, wherein the organic filler or the inorganic filler is used.
  • the amount added is also different.
  • the organic filler is added in an amount of 5 to 10% by weight of the coating liquid; and the inorganic filler is added in an amount of 5 to 20% by weight of the coating liquid.
  • the coating liquid further comprises a binder; the addition of the binder may be advantageous for further increasing the coating layer, that is, the nanofiber shape oriented in the transverse stretching direction of the composite porous film.
  • the non-polyolefin polymer porous layer has a bonding property with the porous base layer to prolong its service life.
  • the binder may be selected from any system known to those skilled in the art that is suitable for use in a composite porous membrane.
  • the binder comprises a polyacrylate emulsion, a polyurethane emulsion, a polybutadiene-styrene emulsion, polyvinyl alcohol, carboxymethyl cellulose, and the like.
  • the binder is added in an amount of 2 to 8% by weight based on the mass of the coating liquid; preferably 3 to 6% by weight.
  • a fourth aspect of the present invention provides the use of the above composite porous film, which can be used in the field of preparing a lithium ion battery separator, a gas separation membrane, and the like.
  • a fifth aspect of the invention provides a lithium battery separator comprising the composite porous membrane described above.
  • a sixth aspect of the invention provides a gas separation membrane comprising the above composite porous membrane.
  • the main component of the coating liquid for preparing the coating layer is a material having a different diffusion coefficient for a gas.
  • the material having different diffusion coefficients for the gas includes a polymer such as silicone rubber, polyimide, polysulfone, polyphenylene ether, cellulose acetate or the like.
  • the gas separation membrane can be used to prepare a gas separation membrane having a gas separation functional layer.
  • a seventh aspect of the present invention provides an apparatus for producing the above composite porous membrane, the apparatus comprising a feeding extrusion system, a casting casting system, a longitudinal stretching system, a second coating system, and a transverse stretching system ;
  • the loading extrusion system is coupled to a longitudinal stretching system by a cast slab system that is coupled to a transverse stretching system by a second coating system.
  • the loading extrusion system comprises a loading machine, a screw extruder, a first melt line, a filter and a second melt line.
  • the second melt conduit is connected to a cast slab system.
  • the loading machine is located above the feed opening of the screw extruder; the screw extruder is connected to the filter through a first melt conduit; the filter is passed through a second melt conduit Cast casting system connected;
  • a metering pump is further disposed in the first melt conduit.
  • the cast slab system comprises a die and a slab roll.
  • the die is selected from a thickness-adjustable touch head; the cast roll is selected from a temperature-controlled slab roll.
  • the device further comprises a first coating system.
  • the first coating system is disposed between the casting slab system and the longitudinal stretching system.
  • the first coating system comprises a first coating member.
  • the second coating system comprises a second coating member.
  • the longitudinal stretching system comprises a preheating, stretching and heat setting roll set with precise temperature control.
  • the transverse stretching system comprises a track, a chain, an oven and a transmission.
  • the apparatus further comprises a traction winding system for the purpose of passing the prepared composite porous membrane through the traction winding system to obtain a coiled composite porous membrane.
  • the apparatus further comprises a thickness measurement feedback control system.
  • the thickness measurement feedback control system includes a thickness gauge and a control system; the thickness gauge performs on-line measurement on the thickness of the film, and automatically adjusts the die by controlling the control system to realize automatic control of the thickness of the porous film.
  • the thickness measurement feedback control system includes a first thickness measurement feedback control system and a second thickness measurement feedback control system.
  • the first thickness measurement feedback control system is disposed between the casting slab system and the longitudinal stretching system.
  • the first thickness measurement feedback control system is disposed between the first coating system and the longitudinal stretching system.
  • the second thickness measurement feedback control system is arranged after the transverse stretching system.
  • the second thickness measurement feedback control system is disposed between the transverse stretching system and the traction winding system.
  • the first thickness measurement feedback control system includes a diaphragm thickness gauge for measuring and controlling the thickness of the unstretched diaphragm or coating the at least one surface with a coating liquid. The thickness of the unstretched diaphragm is measured and controlled.
  • the second thickness measurement feedback control system includes a film thickness gauge for the purpose of measuring and controlling the thickness of the stretched film.
  • the apparatus further comprises an automatic control system
  • the automatic control system includes a pressure and temperature control module, a PLC, a frequency converter, and a sensor for controlling temperature, pressure, tension, and speed of the device.
  • An eighth aspect of the present invention provides a method for preparing a composite porous membrane, which is prepared by using the above apparatus, and the preparation method comprises the following steps:
  • step (b) casting the melt of step (a) through a die onto a slab roll to form a high beta crystal film
  • step (c) stripping the high beta crystal film of step (b) from the slab roll;
  • a coating liquid to one or both sides of the membrane via a first coating system
  • the high beta crystal film is monitored by a film thickness gauge to measure the thickness of the unstretched film or the unstretched film having at least one side of the surface coated with the coating liquid. thickness;
  • step (d) obtaining the unstretched film of step (c) or the unstretched film coated with the coating liquid on one or both sides through a longitudinal stretching system to obtain a longitudinally stretched film;
  • step (e) applying a coating liquid to one or both sides of the longitudinally stretched film of step (d) via a second coating system;
  • step (f) The film of the step (e) is subjected to a transverse stretching system to obtain a transversely stretched film to prepare the composite porous film.
  • the preparation method further comprises the following steps:
  • step (g) passing the composite porous membrane of step (f) through a traction winding system to obtain a coiled composite porous membrane
  • the thickness of the composite porous membrane is monitored by a film thickness gauge prior to being pulled through the take-up system.
  • the coating liquid coating can be carried out by any means known in the art, for example, by spraying, knife coating, gravure coating or the like.
  • the present invention provides a composite porous membrane comprising at least one porous base layer and at least one uniaxially stretched coating layer on at least one side surface of the porous base layer, and a preparation method and use thereof
  • the composite porous film comprises at least one porous base layer and at least one layer located on one or both sides of the porous base layer, and a nanofiber-like non-polyolefin polymerization oriented in a transverse direction of stretching of the composite porous film.
  • the porous layer, or the composite porous membrane comprises a biaxially oriented polypropylene porous base layer and a unidirectional stretch coating layer on at least one side surface of the porous base layer.
  • the composite porous membrane is prepared by introducing a coating liquid before transverse stretching, and the nanofiber-like non-polyolefin polymer porous layer oriented in the transverse stretching direction of the composite porous membrane can The longitudinal cracking of the composite porous membrane during use is inhibited, and the performance of the composite porous membrane is improved.
  • the present invention also provides an apparatus for preparing a composite porous membrane, the apparatus comprising a feeding extrusion system, a casting casting system, a longitudinal stretching system, a second coating system, a transverse stretching system;
  • the device is prepared to obtain a composite porous membrane with better performance parameters, and the method is simple in process, convenient to prepare, and suitable for industrial production.
  • the present invention also provides a lithium battery separator comprising a composite porous membrane as described above, the gas separation membrane comprising the composite porous membrane described above, and the composite porous membrane for lithium
  • the coating layer can form a gel in the electrolyte, improve the wettability of the electrolyte to the separator, or improve the heat resistance of the porous substrate layer.
  • the composite porous membrane is used for gas separation, the permeability coefficient of the coating layer to different gases is different, and gas separation and enrichment can be achieved.
  • Fig. 1 is a scanning electron micrograph of a composite porous film of Example 1 of the present invention.
  • Figure 3 is a view of the apparatus for preparing a composite porous membrane of the present invention.
  • the reference numerals are as follows, 1 is the loading machine; 2 is the screw extruder; 3 is the metering pump; 4 is the filter; 5 is the second melt pipe; 6 is the die; 7 is the casting roll 8 is the first coating member; 9 is the diaphragm thickness gauge; 10 is the longitudinal stretching system; 11 is the second coating member; 12 is the transverse stretching system; 13 is the film thickness gauge; Volume system; 15 is an automatic control system.
  • the homopolypropylene resin having a melt index of 2.5 g/10 min and the polypropylene ⁇ crystal nucleating agent N,N-dicyclohexyl-2,6-naphthalenediamide which is 0.03 wt% of the homopolypropylene resin are uniformly mixed. After melting at a temperature of 200-250 ° C, a polypropylene layer melt is formed;
  • the crystal was cooled on a slab roll at 128 ° C to obtain a polypropylene film containing ⁇ crystal, that is, a high ⁇ crystal film.
  • the film was subjected to 4.5 times longitudinal stretching at 100 ° C, the two surfaces were respectively coated with an aqueous dispersion having a solid content of 20% and a polyvinylidene fluoride particle size of 200 nm to form a coating having a thickness of 6 ⁇ m, and then entered.
  • the transverse stretching system was subjected to 3.0-fold transverse stretching at 135 ° C to obtain a 20 ⁇ m thick composite polypropylene porous film.
  • Two of the polyvinylidene fluoride layers have a thickness of 2 ⁇ m, and the core polypropylene porous base layer has a thickness of 16 ⁇ m.
  • the polyvinylidene fluoride fibers in the polyvinylidene fluoride layers of the two skin layers have a diameter of 30 to 70 nm.
  • Fig. 1 is a scanning electron micrograph of a composite porous film of Example 1 of the present invention.
  • the homopolypropylene resin having a melt index of 2.5 g/10 min was melted at a temperature of 200-250 ° C in a single-screw extruder, extruded through a T-die, and wound up at a speed of 50 m/min to obtain a highly oriented film.
  • the two surfaces of the longitudinally stretched film were respectively coated with an aqueous dispersion having a solid content of 20% and a polyvinylidene fluoride particle size of 200 nm to form a coating having a thickness of 6 ⁇ m, and then entered into a transverse stretching system at 140 ° C.
  • the transverse stretching was carried out at 4.0 times to obtain a 20 ⁇ m thick composite polypropylene porous film.
  • Two of the polyvinylidene fluoride layers have a thickness of 2 ⁇ m, and the core polypropylene porous base layer has a thickness of 12 ⁇ m.
  • the polyvinylidene fluoride nanofibers in the two surface layer polyvinylidene fluoride layers have a diameter of 30 to 50 nm.
  • Example 3 except that the coated aqueous dispersion was a polymethyl methacrylate having a solid content of 15% and a particle size of 500 nm, and the same as in Example 1, the thickness of the two polymethyl methacrylate layers was 2, respectively.
  • the micron, core polypropylene backing layer has a thickness of 16 microns.
  • the two surface layer polymethyl methacrylate nanofibers have a diameter of 80-120 nm.
  • the homopolypropylene resin having a melt index of 2.5 g/10 min and the polypropylene ⁇ crystal nucleating agent N,N-dicyclohexyl-2,6-naphthalenediamide which is 0.03 wt% of the homopolypropylene resin are uniformly mixed. After melting at a temperature of 200-250 ° C, a polypropylene layer melt is formed;
  • the crystal was cooled on a slab roll at 128 ° C to obtain a polypropylene film containing ⁇ crystal, that is, a high ⁇ crystal film.
  • the film was subjected to 4.5 times longitudinal stretching at 100 ° C, then into a transverse stretching system, and 3.0 times transverse stretching at 135 ° C to obtain a polypropylene-based film having a thickness of 16 ⁇ m, in a polypropylene-based film.
  • the two surfaces were respectively coated with an aqueous dispersion having a solid content of 20% and a polyvinylidene fluoride particle size of 200 nm to form a coating having a thickness of 2 ⁇ m, and dried to obtain a 20 ⁇ m thick composite polypropylene porous film.
  • Fig. 1 it can be seen from Fig. 1 that, by using the preparation method of the present invention, after coating a 200 nm spherical particle-aggregated polyvinylidene fluoride coating on the surface of a polypropylene longitudinally stretched film, the spherical polyvinylidene fluoride particles are followed by The substrate is stretched transversely to form nanofibers oriented in the transverse direction, the nanofibers having a diameter of about 10-70 nm. As can be seen from Fig. 2, without the preparation method of the present invention, the coating was not transversely stretched, and a polyvinylidene fluoride coating in which spherical particles were aggregated was obtained.
  • the homopolypropylene resin having a melt index of 2.5 g/10 min and the polypropylene ⁇ crystal nucleating agent N,N-dicyclohexyl-2,6-naphthalenediamide which is 0.03 wt% of the homopolypropylene resin are uniformly mixed.
  • the feeder 1 is added to the single-screw extruder 2, and after being melted at a temperature of 160-230 ° C, it is metered by the metering pump 3, passes through the filter 4, and then enters the T-die 6 through the second melt pipe 5
  • the slab roll 7 was cooled to obtain a polypropylene film containing a ⁇ crystal nucleating agent.
  • the polypropylene film containing the ⁇ crystal nucleating agent has a thickness of 140 ⁇ m.
  • the film was passed through a film thickness gauge 9 into a longitudinal stretching system 10, and subjected to a longitudinal stretching of 4.5 times at 100 ° C to obtain a longitudinally stretched film.
  • the longitudinally stretched film was coated on both sides with a solid dispersion of polymethyl methacrylate having a solid content of 25% by weight on both sides, and the thickness of the coating after drying was 6 ⁇ m.
  • the coated longitudinally stretched film was subjected to 3.0-fold transverse stretching at 135 ° C in a transverse stretching system to obtain a double-coated composite polypropylene porous film of polymethyl methacrylate having a porous structure on the surface.
  • the coating layer has a thickness of 2 ⁇ m; the composite polypropylene porous film has a thickness of 20 ⁇ m.
  • the separator When the composite polypropylene porous film prepared as described above is used as a lithium ion battery separator, the separator has a significant improvement in the wettability and liquid absorption rate of the lithium ion battery electrolyte compared to the single layer polypropylene separator.
  • Example 5 is the same as Example 4 except that the longitudinally stretched film is coated with a Nafion solution (purchased from DuPont) on one side of the coating system (II), and the thickness of the coating after drying is 3 ⁇ m.
  • a single-coated composite polypropylene porous film of Nafion having a non-porous dense structure on one side was obtained.
  • the thickness of the coating layer was 1.0 ⁇ m; the thickness of the composite polypropylene porous film was 19 ⁇ m.
  • the composite polypropylene porous film prepared above is used as a lithium sulfur battery separator, since the Nafion layer on the surface is a non-porous dense structure, the polysulfide dissolved in the electrolyte cannot be transported through the separator, and the lithium ion can be combined with The sulfonate in Nafion combines and transports, so the composite polypropylene porous membrane can slow down the "shuttle effect" of polysulfide in lithium-sulfur batteries and improve the cycle performance of lithium-sulfur batteries.
  • Example 6 is the same as Example 4 except that the longitudinally stretched film is coated with a xylene solution of polydimethylsiloxane on one side through a second coating system, and the thickness of the coating after drying is 6 ⁇ m.
  • a one-side coated composite polypropylene porous film of polydimethylsiloxane having a non-porous dense structure on one side was obtained by transverse stretching.
  • the coating layer has a thickness of 2 ⁇ m; the composite polypropylene porous film has a thickness of 20 ⁇ m.
  • the composite polypropylene porous membrane prepared above was used as a gas separation membrane, and the ethanol/water solution was separated by pervaporation, and a good separation effect was obtained.
  • An apparatus for preparing a composite polypropylene porous membrane as described in Examples 4-6 comprising a feed extrusion system, a cast casting system, a longitudinal stretching system, a second coating system, and transverse stretching system;
  • the loading extrusion system is coupled to a longitudinal stretching system by a cast slab system that is coupled to a transverse stretching system by a second coating system.
  • the loading extrusion system comprises a loading machine 1, a screw extruder 2, a first melt pipe, a filter 4 and a second melt pipe 5;
  • the second melt conduit 5 is connected to a casting slab system; the loading machine 1 is located above the feed opening of the screw extruder 2; the screw extruder 2 passes through the first melt conduit Connected to the filter 4; the filter 4 is connected to the casting slab system via a second melt conduit 5; a metering pump 3 is also provided in the first melt conduit.
  • the cast slab system comprises a die 6 and a slab roll 7; the die 6 is selected from a thickness-adjustable touch head; the slab roll 7 is selected from the group consisting of Precisely controlled casting rolls.
  • the apparatus further includes a first coating system; the first coating system is disposed between the casting slab system and the longitudinal stretching system; the first coating system A coating member 8 is included; the second coating system includes a second coating member 11.
  • the longitudinal stretching system 10 includes a preheating, stretching and heat setting roll set with precise temperature control;
  • the transverse stretching system 12 includes a track, a chain, an oven and a transmission .
  • the apparatus further includes a traction winding system 14.
  • the apparatus further includes a thickness measurement feedback control system; the thickness measurement feedback control system includes a thickness gauge and a control system; the thickness gauge performs on-line measurement of the thickness of the film, and The die can be automatically adjusted by the control system to achieve automatic control of the thickness of the polypropylene porous film.
  • the thickness measurement feedback control system includes a first thickness measurement feedback control system and a second thickness measurement feedback control system; the first thickness measurement feedback control system is disposed in the casting casting system Between the longitudinal and vertical stretching systems; the first thickness feedback control system is disposed between the first coating system and the longitudinal stretching system; the second thickness feedback control system is disposed after the transverse stretching system; The second thickness measurement feedback control system is disposed between the transverse stretching system and the traction winding system 14.
  • the first thickness measurement feedback control system includes a diaphragm thickness gauge 9; the second thickness measurement feedback control system includes a film thickness gauge 13 for measuring and controlling the thickness of the stretched film.
  • the apparatus further includes an automatic control system 15; the automatic control system 15 includes a pressure and temperature control module, a PLC, a frequency converter, and a sensor.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Polymers & Plastics (AREA)
  • Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Medicinal Chemistry (AREA)
  • Water Supply & Treatment (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Analytical Chemistry (AREA)
  • Materials Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
  • Laminated Bodies (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Cell Separators (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)

Abstract

本发明提供了一种复合多孔膜及其制备方法和用途,所述复合多孔膜包括至少一层多孔基层和位于所述多孔基层至少一侧表面的至少一层单向拉伸涂覆层;具体地,所述复合多孔膜包括至少一层多孔基层和位于所述多孔基层一侧或两侧表面的至少一层沿复合多孔膜横向拉伸方向取向的纳米纤维状的非聚烯烃类聚合物多孔层,或者,所述复合多孔膜包括双向拉伸的聚丙烯多孔基层和位于所述多孔基层至少一侧表面的单向拉伸涂覆层。所述制备方法中采用在横向拉伸之前引入涂覆液的方式制备得到了所述复合多孔膜,所述沿复合多孔膜横向拉伸方向取向的纳米纤维状非聚烯烃类聚合物多孔层能抑制复合多孔膜在使用过程中的纵向开裂,提升复合多孔膜的使用性能。

Description

一种复合多孔膜及其制备方法和用途
本申请要求2017年8月25日向中国国家知识产权局提交的专利申请号为201710744074.X,发明名称为“一种复合多孔膜及其制备方法和用途”的在先申请的优先权。同时要求2018年4月4日向中国国家知识产权局提交的专利申请号为201810302163.3,发明名称为“一种含沿横向拉伸方向取向的纳米纤维状多孔层的复合多孔膜”的在先申请的优先权。这两篇在先申请的全文通过引用的方式结合于本申请中。
技术领域
本发明属于多孔膜技术领域,具体涉及一种复合多孔膜及其制备方法和用途。
背景技术
聚烯烃多孔膜是一种高分子膜,是孔径在5nm~1000nm之间的多孔膜,其被广泛地应用于透气性材料(如尿不湿、医用敷料、衣服衬料等),液体分离用材料,超滤材料,膜过滤材料,以及超级电容器和电池隔膜材料等领域中。
现有的聚烯烃多孔膜的制备方法主要有两种,一种是熔融挤出拉伸法(干法),一种是热诱导相分离法(TIPS,湿法)。其中,干法拉伸工艺还可以分为单向拉伸工艺和双向拉伸工艺。湿法制备工艺是将高沸点小分子物质作为致孔剂添加到聚烯烃中并溶于有机溶剂形成铸片,然后降温发生相分离,用有机溶剂萃取小分子,进行双向拉伸后形成多孔结构。干法双向拉伸工艺由于不需要使用溶剂,多孔膜纵横方向强度比较高而获得了广泛的应用。
干法双向拉伸工艺主要是通过在聚丙烯中加入具有成核作用的β晶型改进剂,形成具有高β晶含量的聚丙烯膜片,其在拉伸过程中,发生β晶向α晶的转变,利用聚丙烯不同相态间密度的差异形成多孔结构,用于生产单层聚丙烯多孔膜。在先的研究(CN1062357A)中提出一种以高β晶型含量的聚丙烯均匀原始膜片经拉伸得到的多孔膜,所述多孔膜是采用熔融加工制备的方法在成膜用聚丙烯树脂中加入成核剂来 得到具有β晶型聚丙烯的膜片,然后通过4-5倍的纵向拉伸和2-4倍的横向拉伸得到多孔膜。由于纵向拉伸的倍数大,当作为电池隔膜使用时在裁切过程中容易沿着纵向裂开,导致降低合格率和生产效率。同时,采用所述方法制备得到的多孔膜在作为锂离子电池隔膜应用时,由于聚丙烯是低表面能的非极性材料,电池中的碳酸酯类极性电解液对非极性聚丙烯隔膜的浸润性差。同时,电池装配过程中非极性的聚丙烯隔膜与电池极片之间也容易由于极性的差别导致贴合不佳。因此,减缓双向拉伸聚丙烯隔膜使用过程中的纵向开裂、提高隔膜表面的极性对提升隔膜的使用性能具有重要的意义。
发明内容
为了解决现有技术的不足,本发明的目的之一是提供一种复合多孔膜及其制备方法和用途,所述复合多孔膜包括至少一层多孔基层和位于所述多孔基层至少一侧表面的至少一层单向拉伸涂覆层;具体地,所述复合多孔膜包括至少一层多孔基层和位于所述多孔基层一侧或两侧表面的至少一层沿复合多孔膜横向拉伸方向取向的纳米纤维状的非聚烯烃类聚合物多孔层,或者,所述复合多孔膜包括双向拉伸的多孔基层和位于所述多孔基层至少一侧表面的单向拉伸涂覆层。所述制备方法中采用在横向拉伸之前引入涂覆液的方式制备得到了所述复合多孔膜,所述沿复合多孔膜横向拉伸方向取向的纳米纤维状非聚烯烃类聚合物多孔层能抑制复合多孔膜在使用过程中的纵向开裂,提升复合多孔膜的使用性能。
本发明的目的之二是提供一种锂离子电池隔膜,所述锂离子电池隔膜包括上述的复合多孔膜;包括所述复合多孔膜的锂离子电池隔膜在电解液中能形成凝胶,改善电解液对隔膜的浸润性能,改善电池的循环和使用性能;且还可以提高锂离子电池隔膜的使用寿命。
本发明的目的之三是提供一种气体分离膜,其包括上述的复合多孔膜;包括所述复合多孔膜的气体分离膜中涂覆层对不同气体的透过系数不同,可以实现气体的分离和富集。
本发明的目的之四是提供一种制备复合多孔膜的装置。
本发明的目的具体是通过如下技术方案实现的:
本发明的第一个方面是提供一种复合多孔膜,所述复合多孔膜包括至少一层多 孔基层和位于所述多孔基层至少一侧表面的至少一层单向拉伸涂覆层。
在本发明的一种实施方式中,所述复合多孔膜包括双向拉伸的多孔基层和位于所述多孔基层至少一侧表面的单向拉伸涂覆层。
根据本发明,所述复合多孔膜还包括位于所述多孔基层至少一侧表面的双向拉伸涂覆层。
根据本发明,所述复合多孔膜还包括在所述多孔基层和单向拉伸涂覆层之间的至少一侧表面的双向拉伸涂覆层。
根据本发明,所述位于所述多孔基层至少一侧表面的单向拉伸涂覆层可以是多孔的涂覆层,也可以是无孔密实的涂覆层。
根据本发明,所述位于所述多孔基层至少一侧表面的双向拉伸涂覆层可以是多孔的涂覆层,也可以是无孔密实的涂覆层。
根据本发明,所述涂覆层的厚度为0.1-4微米,优选为1-2微米。
优选地,当涂覆层的涂覆液为以有机溶剂为介质的溶液时,涂覆液干燥后形成的涂覆层在拉伸过程中形成无孔密实的涂覆层。所述无孔密实结构是由涂覆液中的聚合物形成的。
优选地,当涂覆层的涂覆液为以有机溶剂为介质的溶液与无机填料的复合涂覆液时,涂覆液干燥后形成的涂覆层在拉伸过程中形成多孔的涂覆层。所述多孔结构是由于涂覆液中的聚合物和无机填料的界面拉伸破裂导致的。
优选地,当涂覆层的涂覆液为以水为介质的分散液即聚合物的乳液或水分散体时,涂覆液干燥后形成的涂覆层在拉伸过程中形成多孔的涂覆层。所述多孔结构是由于聚合物颗粒堆积产生间隙导致的。
优选地,当涂覆层的涂覆液为以水为介质的分散液即聚合物的乳液或水分散体与无机填料的复合涂覆液时,涂覆液干燥后形成的涂覆层在拉伸过程中形成多孔的涂覆层。所述多孔结构是由于聚合物颗粒堆积产生间隙以及聚合物和无机填料界面拉伸破裂导致的。
优选地,当涂覆层的涂覆液为以水为介质的水溶性聚合物溶液时,涂覆液干燥后形成的涂覆层在拉伸过程中形成无孔密实的涂覆层。所述无孔密实结构是由涂覆液中的聚合物形成的。
优选地,当涂覆层的涂覆液为以水为介质的水溶性聚合物溶液与无机填料的复 合涂覆液时,涂覆液干燥后形成的涂覆层在拉伸过程中形成多孔的涂覆层。所述多孔结构是由于涂覆液中的聚合物和无机填料的界面拉伸破裂导致的。
在本发明的另一种实施方式中,所述复合多孔膜包括至少一层多孔基层和位于所述多孔基层一侧或两侧表面的至少一层沿复合多孔膜横向拉伸方向取向的纳米纤维状的非聚烯烃类聚合物多孔层。
根据本发明,所述复合多孔膜中包括至少一层多孔基层和至少一层沿复合多孔膜横向拉伸方向取向的纳米纤维状的非聚烯烃类聚合物多孔层;本领域技术人员知晓的所述多孔基层和所述沿复合多孔膜横向拉伸方向取向的纳米纤维状的非聚烯烃类聚合物多孔层的排布方式没有具体的限定,其可以为本领域技术人员知晓的任一种层与层之间的排布方式均可。该复合多孔膜具有较好的抗纵向开裂能力,同时还具有较好的离子传输性能以及显著提高的使用性能。
根据本发明,所述复合多孔膜中包括一层多孔基层和一层沿复合多孔膜横向拉伸方向取向的纳米纤维状的非聚烯烃类聚合物多孔层;所述沿复合多孔膜横向拉伸方向取向的纳米纤维状的非聚烯烃类聚合物多孔层位于所述多孔基层一侧表面。
根据本发明,所述复合多孔膜中包括一层多孔基层和两层沿复合多孔膜横向拉伸方向取向的纳米纤维状的非聚烯烃类聚合物多孔层;所述沿复合多孔膜横向拉伸方向取向的纳米纤维状的非聚烯烃类聚合物多孔层位于所述多孔基层两侧表面。
根据本发明,所述沿复合多孔膜横向拉伸方向取向的纳米纤维状的非聚烯烃类聚合物多孔层的厚度没有特别的限定,其可以为本领域技术人员知晓的,采用横向拉伸方法可以制备得到的任一种厚度;优选地,所述沿复合多孔膜横向拉伸方向取向的纳米纤维状的非聚烯烃类聚合物多孔层的厚度为0.1-4微米,优选为1-2微米。
根据本发明,所述非聚烯烃类聚合物优选为非聚乙烯类聚合物、非聚丙烯类聚合物;优选地,所述非聚烯烃类聚合物优选为非聚丙烯类聚合物。
根据本发明,所述纳米纤维的直径为10-500nm,优选为15-250nm。
在上述各实施方式中,所述多孔基层的选择没有特别的限定,其可以是本领域技术人员知晓的任一种可以制备复合多孔膜的基层,且实现其使用目的即可,以作为电池隔膜为例,所述多孔基层能起到阻隔正负极并且提供离子传输通道的作用即可。优选地,所述多孔基层选自多孔聚烯烃基层,作为该多孔聚烯烃基层,尤其有利的是使用多孔聚乙烯基层、多孔聚丙烯基层或多孔聚丙烯/聚乙烯/聚丙烯三层复合 基层。还优选地,所述多孔基层选自多孔聚丙烯基层。
在上述各实施方式中,所述多孔基层的孔隙率、透气性和厚度没有具体的限定,其可以是本领域知晓的任一种孔隙率、透气性和厚度,所述多孔基层对于孔隙率、透气性和厚度的选择需满足其可以制备得到本发明的具有较高离子传输性能的复合多孔膜,实现电子元器件用隔膜的目的即可,即起着阻隔正负极并且提供离子传输通道的作用即可;优选地,所述多孔基层的孔隙率为25-60%;所述多孔基层的Gurley透气性值为100-400s;所述多孔基层的厚度为5-55微米。
在上述各实施方式中,所述复合多孔膜的纵向拉伸强度为60-130MPa;纵向断裂伸长率为5-70%;横向拉伸强度为15-60MPa;横向断裂伸长率为10-100%;所述复合多孔膜的厚度为10-60微米,还优选为15-30微米;所述复合多孔膜的Gurley透气性值为100-400s。
本发明的第二个方面是提供上述复合多孔膜的制备方法,所述制备方法包括以下步骤:
(S1)向聚丙烯中加入能够促进β晶型形成的成核剂;
(S2)将步骤(S1)的混有成核剂的聚丙烯经熔融挤出,成型,得到高β晶膜片;
(S3)将高β晶膜片经纵向拉伸得到纵向拉伸膜,将涂覆液涂布到所述纵向拉伸膜的一侧或两侧表面;
(S4)将涂布有涂覆液的纵向拉伸膜经横向拉伸得到所述复合多孔膜。
根据本发明的第二方面,所述制备方法的步骤(S2)和步骤(S3)之间还可包括如下步骤:
(S2’)将涂覆液涂布到步骤(S2)所得的高β晶膜片的一侧或两侧表面,得到涂布有涂覆液的高β晶膜片。
根据本发明的第二方面,所述的复合多孔膜是指高β晶膜片在经纵向拉伸得到的纵向拉伸膜的一侧或两侧表面涂布涂覆液,经横向拉伸后,得到复合多孔膜;或者,所述的复合多孔膜是指在高β晶膜片的一侧或两侧表面涂布涂覆液,经纵向拉伸后,得到纵向拉伸膜;在纵向拉伸膜的一侧或两侧表面涂布涂覆液,经横向拉伸后,得到复合多孔膜。
根据本发明的第二方面,步骤(S3)和步骤(S2’)中,所述涂覆液包括以有机溶剂为介质的溶液或以水为介质的溶液或分散液;
所述以有机溶剂为介质的溶液包括用有机溶剂将聚合物或聚合物组合物溶解形成的溶液;所述以水为介质的溶液包括用水将水溶性聚合物或水溶性聚合物组合物溶解形成的溶液;所述以水为介质的分散液包括将不溶于水的聚合物或不溶于水的聚合物组合物通过乳液聚合的方法得到聚合物或聚合物组合物的乳液,或将不溶于水的聚合物或不溶于水的聚合物组合物通过研磨或粉碎的方法得到的含聚合物或聚合物组合物的水分散体。
优选地,所述以有机溶剂为介质的溶液或以水为介质的溶液或分散液还可以包括无机填料。优选地,所述无机填料包括二氧化硅、二氧化钛、氧化镧、二氧化锆、三氧化二铝、硫酸钡、碳酸钙、氮化碳、勃姆石、碳化硅、分子筛、滑石粉、蒙脱土中的一种或多种。
优选地,所述以有机溶剂为介质的溶液中,所述的聚合物或聚合物组合物包括聚偏氟乙烯、偏氟乙烯-六氟丙烯共聚物、聚丙烯腈、聚偏二氯乙烯、聚甲基丙烯酸酯、聚乙烯、聚乙烯蜡、氯化的聚乙烯、氯化的聚丙烯、聚乙烯醇、聚氨酯、甲基丙烯酸酯与丙烯腈的共聚物、聚氧乙烯醚、海藻酸钠、纤维素衍生物、聚二甲基硅氧烷、聚酰亚胺、聚氨酯、聚苯乙烯磺酸钠、磺化聚醚醚酮、聚乙烯醇乙烯基磺酸接枝共聚物、磺化聚砜、磺化聚苯并咪唑、磺化聚苯基喹啉、全氟磺酸聚合物(如Nafion)等中的一种或几种。
优选地,所述以有机溶剂为介质的溶液中,所述的有机溶剂可选自酮类的溶剂如丙酮、丁酮等,也可以选自醇类溶剂如甲醇、乙醇等,也可以选自卤代烃类溶剂如一氯甲烷、二氯甲烷、氯仿、四氯化碳等,也可以选自酰胺类溶剂如N,N-二甲基甲酰胺、N,N-二甲基乙酰胺等,也可以选自苯类溶剂如苯、甲苯、二甲苯等,以及四氢呋喃、N-甲基吡咯烷酮、二甲基亚砜、乙醚等。
优选地,所述以水为介质的溶液中,所述的水溶性聚合物或水溶性聚合物组合物包括聚乙烯醇、聚氧乙烯醚、海藻酸钠、羧甲基纤维素钠、聚丙烯酰胺、壳聚糖、魔芋葡甘糖等中的一种或几种。
优选地,所述以水为介质的分散液中,所述的不溶于水的聚合物或不溶于水的聚合物组合物包括聚偏氟乙烯、聚偏二氯乙烯、聚四氟乙烯、偏氟乙烯-六氟丙烯共聚物、聚苯乙烯、聚甲基丙烯酸甲酯、聚氨酯、全氟磺酸聚合物(如Nafion)等中的一种或几种。
本发明的第三个方面是提供上述复合多孔膜的制备方法,所述制备方法包括以下步骤:
在纵向拉伸膜一侧或两侧表面涂布涂覆液,再经横向拉伸,制备得到所述复合多孔膜。
根据本发明的第三方面,所述纵向拉伸膜经涂覆后,再经横向拉伸过程,其中的纵向拉伸膜经横向拉伸处理即制备得到本发明所述的复合多孔膜;其中的涂覆液经横向拉伸处理即制备得到沿复合多孔膜横向拉伸方向取向的纳米纤维状的非聚烯烃类聚合物多孔层。
根据本发明的第三方面,所述纵向拉伸膜为本领域技术人员常规手段制备得到的纵向拉伸膜。优选地,所述纵向拉伸膜的孔隙率为5-35%。还优选地,所述纵向拉伸膜的孔隙率为15-35%。优选地,所述纵向拉伸膜的厚度为16-80微米;还优选地,所述纵向拉伸膜的厚度为20-60微米。
根据本发明的第三方面,所述复合多孔膜可以通过如下方法制备得到:
1)向聚丙烯中加入能够促进β晶型形成的成核剂,将混有成核剂的聚丙烯经熔融挤出,成型,得到高β晶膜片;
2)将高β晶膜片经纵向拉伸得到纵向拉伸膜,在纵向拉伸膜一侧或两侧表面涂布涂覆液,再经横向拉伸,制备得到所述复合多孔膜。
根据本发明的第二和第三方面,步骤(S2)和步骤1)中,所述高β晶膜片为聚丙烯高β晶膜片,对所述聚丙烯的等规度和熔融指数没有特别的限定,其可以进行经成核剂制备得到高β晶膜片,并进而通过纵向拉伸得到孔隙率为5-35%的纵向拉伸膜;示例性地,所述聚丙烯是均聚聚丙烯或共聚聚丙烯。优选地,所述聚丙烯的等规度为90-98%;熔融指数为1-10g/10min。还优选地,所述聚丙烯的等规度为95-98%;熔融指数为2-5g/10min。
根据本发明的第二和第三方面,步骤(S1)和步骤1)中,所述能够促进β晶型形成的成核剂选自具有较高的成核效率,且在静态结晶的条件下β晶含量在50%以上的成核剂。作为示例性地,所述成核剂选自市售商品或根据现有技术已知的方法进行合成的产品。所述成核剂的种类及成核效率可参见文献Varga J.Journal of Macromolecular Science:Physics 2002,41,1121。作为示例性地,所述成核剂既可以是有机小分子如N,N-二环己基对苯二甲酰胺、N,N-二环己基-2,6萘二酰胺或γ-奎丫啶 等,也可以是无机盐如己二酸和/或辛二酸的联氨盐、庚二酸和/或辛二酸的钙盐、四氢苯酐的钙盐或钡盐、六氢苯酐的钙盐或钡盐等;所述成核剂可以混合使用,本领域技术人员可以理解,所述成核剂的混合比例没有特殊要求,适用于本发明所述的体系即可。本领域技术人员可以理解,能够促进β晶型形成的成核剂与聚丙烯的用量比也为常规的选择,例如为0.001-0.1wt%。
根据本发明的第二和第三方面,步骤(S2)和步骤1)中,在制备本发明的高β晶膜片中,所采用的熔融挤出和结晶成型等工艺流程均为本领域公知的常规方式,即将所述聚丙烯熔融后,在流延铸片辊上结晶成型,即可得到高β晶膜片。本领域技术人员可以理解,所述铸片辊的温度没有特别的限定,其温度可以是能使熔融挤出后的聚丙烯在其表面进行结晶成型即可。优选地,所述铸片辊的温度为110-140℃,还优选地,所述铸片辊的温度为120-130℃。
根据本发明的第二和第三方面,步骤(S2)和步骤1)中,所述熔融挤出优选在螺杆挤出机中进行;本领域技术人员可以理解,对所述螺杆挤出机没有具体限定,可以是单螺杆挤出机也可以是双螺杆挤出机,适用于本发明所述的体系即可。所述成型优选经模头成型;本领域技术人员可以理解,对所述模头没有具体限定,可以是可调节的模头也可以是不可调节的模头,适用于本发明所述的体系即可。
根据本发明的第二和第三方面,步骤(S2)和步骤1)中,对所述熔融挤出机的熔融挤出温度没有具体的限定,本领域技术人员知晓的能够使用于本发明的聚丙烯体系,且能进行熔融挤出并获得高β晶膜片即可。优选地,所述挤出高β晶膜片的螺杆挤出机的熔融挤出的温度为200~260℃,优选地,所述挤出高β晶膜片的螺杆挤出机的熔融挤出的温度为220~250℃。
根据本发明的第二和第三方面,步骤(S2)和步骤1)中,所述高β晶膜片的厚度没有特别限定,适用于本发明的复合多孔膜的体系,且能够实现所述复合多孔膜的作用即可,即起着阻隔正负极并且提供锂离子传输通道的作用。所述高β晶膜片厚度的选择可以根据目标产物—复合多孔膜的厚度及横向拉伸和纵向拉伸倍率进行合理的选择。优选地,所述高β晶膜片的厚度为80-300微米,还优选地,所述高β晶膜片的厚度为100-200微米。
根据本发明的第二和第三方面,步骤(S2)和步骤1)中,所述高β晶膜片中β晶的含量没有特别限定,能够制备得到所述高β晶膜片,且制备得到的高β晶膜片经拉 伸后可以制备得到适用于本发明的复合多孔膜体系,所述经拉伸后的高β晶膜片还必须是能够实现所述复合多孔膜的作用,即起着阻隔正负极并且提供锂离子传输通道的作用。优选地,所述高β晶膜片中β晶的含量高于80%,还优选地,所述高β晶膜片中β晶的含量高于85%。
根据本发明的第二和第三方面,步骤(S3)和步骤2)中,所述纵向拉伸的温度为60-120℃,优选地,所述纵向拉伸的温度为80-110℃;所述纵向拉伸的倍率为2.5-5.5倍,优选地,所述纵向拉伸的倍率为3-5倍;所述涂覆液干燥后得到的涂层厚度为0.3-10微米;优选地,所述涂覆液干燥后得到的涂层厚度为2-10微米,优选为3-5微米。
根据本发明的第二和第三方面,步骤(S4)和步骤2)中,本领域技术人员知晓的,所述横向拉伸的温度和横向拉伸的倍率没有具体的限定,其可以适用于本发明的复合多孔膜的体系即可;本领域技术人员根据所述复合多孔膜的应用领域不同,可以选择不同的横向拉伸的倍率,进而调控涂覆层的厚度、或者调控沿复合多孔膜横向拉伸方向取向的纳米纤维状的非聚烯烃类聚合物多孔层的厚度、以及纳米纤维直径和纤维的长度。优选地,所述横向拉伸的温度为120-150℃;所述横向拉伸的倍率为2-5倍;还优选地,所述横向拉伸的温度为130-140℃;所述横向拉伸的倍率为2.5-4.5倍。
根据本发明的第三方面,所述复合多孔膜可以通过如下方法制备得到:
a)将聚丙烯经熔融挤出,高速牵伸取向成型,得到聚丙烯初始膜片;
b)将聚丙烯初始膜片进行高温退火,得到聚丙烯预拉伸片;
c)采用干法单向拉伸工艺将聚丙烯预拉伸膜片拉伸后得到纵向拉伸膜,在纵向拉伸膜一侧或两侧表面涂布涂覆液,再经横向拉伸,制备得到所述复合多孔膜。
根据本发明,步骤c)具体包括如下步骤:
c’)将聚丙烯预拉伸片进行多层叠合处理,在20-50℃预拉伸20-50%后,在100-130℃继续拉伸30-80%,任选地将拉伸后的多层叠合的纵向拉伸膜剥离分开,制备得到纵向拉伸膜;然后,在纵向拉伸膜一侧或两侧表面涂布涂覆液,再经横向拉伸,制备得到所述复合多孔膜。
步骤c’)中,所述多层叠合处理可以是将至少1层聚丙烯预拉伸膜片进行叠合处理,拉伸后制备得到包括至少1层的纵向拉伸膜;还优选为将8-16层聚丙烯预拉伸膜片进行叠合处理,拉伸后进行层间剥离得到包括1-4层的纵向拉伸膜。
步骤a)中,所采用的熔融挤出和高速牵伸取向成型等工艺流程均为本领域公知的常规方式,即将所述聚丙烯熔融挤出后,高速牵伸,在冷却辊上成型,即可得到聚丙烯初始膜片。本领域技术人员可以理解,所述冷却辊的温度没有特别的限定,其温度可以是能使熔融挤出后的聚丙烯在其表面冷却固化成型即可。优选地,所述冷却辊的温度为60-120℃,还优选地,所述冷却辊的温度为70-90℃。
步骤a)中,所述熔融挤出优选在螺杆挤出机中进行;本领域技术人员可以理解,对所述螺杆挤出机没有具体限定,可以是单螺杆挤出机也可以是双螺杆挤出机,适用于本发明所述的体系即可。所述成型优选经模头成型;本领域技术人员可以理解,对所述模头没有具体限定,可以是可调节的模头也可以是不可调节的模头,适用于本发明所述的体系即可。
步骤a)中,对所述熔融挤出机的熔融挤出温度没有具体的限定,本领域技术人员知晓的能够使用于本发明的聚丙烯体系,且能进行熔融挤出并获得聚丙烯预拉伸膜片即可。优选地,所述挤出聚丙烯预拉伸膜片的螺杆挤出机的熔融挤出的温度为200~260℃,优选地,所述挤出聚丙烯预拉伸膜片的螺杆挤出机的熔融挤出的温度为220~250℃。
步骤a)中,所述高速牵伸取向成型的目的是使聚丙烯分子链形成取向结构,所述高速牵伸的速度没有特别的限定。优选地,所述高速牵伸的速度为20-80m/min,还优选地,所述高速牵伸的速度为40-60m/min。
步骤b)中,所述高温退火是指将聚丙烯初始膜片在一定温度下放置一定的时间,目的是使在快速冷却过程中没有结晶的聚丙烯继续结晶,提高结晶度,使结晶结构更加完善。优选地,所述高温退火的温度为100-140℃,退火的时间为8-10h,还优选地,所述高温退火的温度为120-130℃,退火时间为4-5h。
步骤c)和步骤c’)中,在干法单向拉伸工艺中,实际进行拉伸的聚丙烯预拉伸膜片和拉伸后制备得到的纵向拉伸膜的厚度没有特别限定,适用于本发明的复合多孔膜的体系,且能够实现所述复合多孔膜的作用即可,即起着阻隔正负极并且提供锂离子传输通道的作用。由于在干法单向拉伸工艺中多采用多层叠合处理的方式,故根据多层叠合处理的聚丙烯预拉伸片叠合的厚度不同,得到的纵向拉伸膜的厚度也不同;根据不同的制备工艺,选取不同厚度或剥离得到不同层数叠合的纵向拉伸膜;优选地,聚丙烯预拉伸膜片的厚度为16-60微米,还优选地,聚丙烯预拉伸膜片 的厚度为20-30微米。优选地,所述纵向拉伸膜的厚度为16-80微米;还优选地,所述纵向拉伸膜的厚度为20-60微米。
根据本发明的第三方面,对所述涂覆液的组成和含量没有特别的限定,其可以为本领域技术人员知晓的可以在多孔基层表面制备得到沿复合多孔膜横向拉伸方向取向的纳米纤维状的非聚烯烃类聚合物多孔层;优选地,所述涂覆液为以水为介质的分散液;所述涂覆液包括不溶于水的聚合物或不溶于水的聚合物组合物;所述不溶于水的聚合物或不溶于水的聚合物组合物以颗粒形态分散于体系中,所述颗粒的平均直径为0.01-3μm,还优选为0.1-1μm。
根据本发明的第三方面,所述以水为介质的分散液可以是将不溶于水的聚合物或不溶于水的聚合物组合物通过乳液聚合的方法得到聚合物或聚合物组合物的乳液,或者还可以是将不溶于水的聚合物或不溶于水的聚合物组合物通过研磨或粉碎的方法得到的含聚合物或聚合物组合物的水分散体;本领域技术人员知晓的,所述以水为介质的分散液中的不溶于水的聚合物或不溶于水的聚合物组合物的选择和用量没有具体的限定,其可以为本领域技术人员知晓的任一种可以制备得到以水为介质的聚合物基分散液,再经涂覆后可以制备的到所述沿复合多孔膜横向拉伸方向取向的纳米纤维状的非聚烯烃类聚合物多孔层即可;优选地,所述不溶于水的聚合物或不溶于水的聚合物组合物以颗粒形态分散于涂覆液中,将其涂覆在纵向拉伸膜至少一侧表面后,在纵向拉伸膜表面可以形成涂覆有聚合物或聚合物组合物的纳米颗粒,在横向拉伸的过程中,纳米颗粒随纵向拉伸膜被拉伸;制备得到含沿横向拉伸方向取向的纳米纤维状多孔层。优选地,所述不溶于水的聚合物或不溶于水的聚合物组合物的玻璃化转变温度或熔点低于横向拉伸温度;优选地,所述不溶于水的聚合物或不溶于水的聚合物组合物包括聚偏氟乙烯、聚偏二氯乙烯、偏氟乙烯-六氟丙烯共聚物、聚苯乙烯、聚甲基丙烯酸甲酯、聚丁二酸丁二醇酯、聚氨酯、全氟磺酸聚合物(如Nafion)等中的一种或几种。优选地,所述不溶于水的聚合物或不溶于水的聚合物组合物在以水为介质的分散液中的质量百分含量为5-50%,还优选为10-30%。优选地,所述水在以水为介质的分散液中的质量百分含量为50-95%,还优选为70-90%。
根据本发明的第三方面,所述涂覆液中还包括有机填料或无机填料;所述有机填料或无机填料的加入可以有利于进一步提高涂覆层,即沿复合多孔膜横向拉伸方向 取向的纳米纤维状的非聚烯烃类聚合物多孔层的孔隙率、耐穿刺性能以及提高复合多孔膜的耐高温性能。所述无机填料或有机填料选自本领域技术人员知晓的任一种适用于复合多孔膜的体系即可。优选地,所述无机填料包括二氧化硅、二氧化钛、氧化镧、二氧化锆、三氧化二铝、硫酸钡、碳酸钙、氮化碳、勃姆石、碳化硅、分子筛、滑石粉、蒙脱土中的一种或多种。优选地,所述有机填料包括耐高温高分子如聚四氟乙烯、聚醚醚酮、聚醚砜、聚苯醚等中的一种或多种。
根据本发明的第三方面,对于所述无机填料的尺寸并无特殊限制,只要能够实现在多孔基层上均匀涂覆的目的即可。在本发明的技术方案中,无机颗粒既可以是实心无机颗粒,也可以是多孔的无机颗粒。当为多孔的无机颗粒时,无机多孔颗粒本身优选的平均孔径通常为0.0001-0.5μm。
根据本发明的第三方面,所述涂覆液中所述有机填料或无机填料的加入量没有特别的限定,根据制备得到的所述复合多孔膜的应用领域不同,其中有机填料或无机填料的加入量也有所不同。优选地,所述有机填料的加入量为涂覆液的5-10wt%;所述无机填料的加入量为涂覆液的5-20wt%。
根据本发明的第三方面,所述涂覆液中还包括粘结剂;所述粘结剂的加入可以有利于进一步提高涂覆层,即沿复合多孔膜横向拉伸方向取向的纳米纤维状的非聚烯烃类聚合物多孔层与多孔基层的粘结性能,延长其使用寿命。所述粘结剂选自本领域技术人员知晓的任一种适用于复合多孔膜的体系即可。优选地,所述粘结剂包括聚丙烯酸酯乳液、聚氨酯乳液、聚丁二烯-苯乙烯乳液、聚乙烯醇、羧甲基纤维素等。所述粘结剂的加入量为涂覆液质量的2-8wt%;优选为3-6wt%。
本发明的第四个方面是提供上述复合多孔膜的用途,其可以用于制备锂离子电池隔膜、气体分离膜等领域中。
本发明的第五个方面是提供一种锂电池隔膜,所述锂电池隔膜包括上述的复合多孔膜。
本发明的第六个方面是提供一种气体分离膜,所述气体分离膜包括上述的复合多孔膜。
根据本发明,制备所述涂覆层的涂覆液的主要组分为对气体具有不同扩散系数的材料。
优选地,所述对气体具有不同扩散系数的材料包括硅橡胶、聚酰亚胺、聚砜、 聚苯醚、醋酸纤维素等高分子。
根据本发明,所述气体分离膜可以用于制备具有气体分离功能层的气体分离膜。
本发明的第七个方面是提供一种制备上述复合多孔膜的装置,所述装置包括上料挤出系统、流延铸片系统、纵向拉伸系统、第二涂布系统和横向拉伸系统;
所述上料挤出系统通过流延铸片系统与纵向拉伸系统相连,所述纵向拉伸系统通过第二涂布系统与横向拉伸系统连接。
根据本发明,所述上料挤出系统包括上料机、螺杆挤出机、第一熔体管道、过滤器和第二熔体管道。
优选地,所述第二熔体管道与流延铸片系统相连。
优选地,所述上料机位于所述螺杆挤出机的进料口的上方;所述螺杆挤出机通过第一熔体管道与过滤器相连;所述过滤器通过第二熔体管道与流延铸片系统相连;
优选地,所述第一熔体管道中还设置有计量泵。
根据本发明,所述流延铸片系统包括模头和铸片辊。
优选地,所述模头选自厚度可自动调节的摸头;所述铸片辊选自温度精确控制的铸片辊。
根据本发明,所述装置还包括第一涂布系统。
根据本发明,所述第一涂布系统设置于流延铸片系统与纵向拉伸系统之间。
根据本发明,所述第一涂布系统包括第一涂布构件。
根据本发明,所述第二涂布系统包括第二涂布构件。
根据本发明,所述纵向拉伸系统包括温度精确控制的预热、拉伸和热定型辊组。
根据本发明,所述横向拉伸系统包括轨道、链铗、烘箱和传动机构。
根据本发明,所述装置还包括牵引收卷系统,其目的是将制备得到的复合多孔膜经过所述牵引收卷系统得到成卷的复合多孔膜。
根据本发明,所述装置还包括测厚反馈控制系统。所述测厚反馈控制系统包括测厚仪和控制系统;所述测厚仪对膜的厚度进行在线测量,并通过控制系统控制可自动调节模头,实现对多孔膜厚度的自动控制。
根据本发明,所述测厚反馈控制系统包括第一测厚反馈控制系统和第二测厚反馈控制系统。
根据本发明,所述第一测厚反馈控制系统设置于流延铸片系统与纵向拉伸系统 之间。优选地,所述第一测厚反馈控制系统设置于第一涂布系统与纵向拉伸系统之间。
根据本发明,所述第二测厚反馈控制系统设置于横向拉伸系统之后。优选地,所述第二测厚反馈控制系统设置于横向拉伸系统与牵引收卷系统之间。
根据本发明,所述第一测厚反馈控制系统包括膜片测厚仪,其目的是对未经拉伸的膜片的厚度进行测量和控制或对至少一侧表面涂布有涂覆液的未经拉伸的膜片的厚度进行测量和控制。
根据本发明,所述第二测厚反馈控制系统包括薄膜测厚仪,其目的是对经过拉伸的薄膜的厚度进行测量和控制。
根据本发明,所述装置还包括自动控制系统;
根据本发明,所述自动控制系统包括压力和温度控制模块、PLC、变频器、传感器,用于实现对装置的温度、压力、张力和速度等进行控制。
本发明的第八个方面是提供一种复合多孔膜的制备方法,其是采用上述的装置制备得到的,所述制备方法包括如下步骤:
(a)将含能够促进β晶型形成的成核剂的聚丙烯经上料机进入螺杆挤出机熔融,熔体经第一熔体管道流经计量泵,准确计量后,经过滤器过滤后进入第二熔体管道;
(b)将步骤(a)的熔体经模头流延到铸片辊上结晶形成高β晶的膜片;
(c)将步骤(b)的高β晶的膜片从铸片辊上剥离;
任选地,经第一涂布系统将涂覆液涂布到膜片的一侧或两侧表面;
任选地,将高β晶的膜片经膜片测厚仪监测,测得未经拉伸的膜片的厚度或至少一侧表面涂布有涂覆液的未经拉伸的膜片的厚度;
(d)将步骤(c)的未经拉伸的膜片或一侧或两侧表面涂布有涂覆液的未经拉伸的膜片经过纵向拉伸系统得到纵向拉伸的膜片;
(e)经第二涂布系统将涂覆液涂布到步骤(d)的纵向拉伸的膜片的一侧或两侧表面;
(f)将步骤(e)的膜片经过横向拉伸系统得到横向拉伸的膜片,制备得到所述复合多孔膜。
根据本发明,所述制备方法还包括如下步骤:
(g)将步骤(f)的复合多孔膜经过牵引收卷系统得到成卷的复合多孔膜;
任选地,在经牵引收卷系统之前,经薄膜测厚仪监测复合多孔膜的厚度。
根据本发明,所述涂覆液涂布可以采用现有技术中已知的任一种方式实施,例如采用喷涂、刮涂、凹版涂布等方式实施。
有益效果:
1.本发明提供了一种复合多孔膜及其制备方法和用途,所述复合多孔膜包括至少一层多孔基层和位于所述多孔基层至少一侧表面的至少一层单向拉伸涂覆层;具体地,所述复合多孔膜包括至少一层多孔基层和位于所述多孔基层一侧或两侧表面的至少一层沿复合多孔膜横向拉伸方向取向的纳米纤维状的非聚烯烃类聚合物多孔层,或者,所述复合多孔膜包括双向拉伸的聚丙烯多孔基层和位于所述多孔基层至少一侧表面的单向拉伸涂覆层。所述制备方法中采用在横向拉伸之前引入涂覆液的方式制备得到了所述复合多孔膜,所述沿复合多孔膜横向拉伸方向取向的纳米纤维状非聚烯烃类聚合物多孔层能抑制复合多孔膜在使用过程中的纵向开裂,提升复合多孔膜的使用性能。
2.本发明还提供了一种制备复合多孔膜的装置,所述装置包括上料挤出系统、流延铸片系统、纵向拉伸系统、第二涂布系统、横向拉伸系统;所述装置制备得到性能参数较好的复合多孔膜,且所述方法工艺简单,制备方便,适用于工业化生产。
3.本发明还提供一种锂电池隔膜和一种气体分离膜,所述锂电池隔膜包括上述的复合多孔膜;所述气体分离膜包括上述的复合多孔膜;所述复合多孔膜用于锂电池中作为隔膜应用时,涂覆层在电解液中能形成凝胶、改善电解液对隔膜的浸润性或提高多孔基底层的耐热性能。所述复合多孔膜用于气体分离时,涂覆层对不同气体的透过系数不同,可以实现气体的分离和富集。
附图说明
图1为本发明实施例1的复合多孔膜的扫描电镜图。
图2为本发明对比例1的复合多孔膜的扫描电镜图。
图3为本发明所述的制备复合多孔膜的装置;
其中的附图标记如下所述,1为上料机;2为螺杆挤出机;3为计量泵;4为过滤器;5为第二熔体管道;6为模头;7为铸片辊;8为第一涂布构件;9为膜片测厚仪; 10为纵向拉伸系统;11为第二涂布构件;12为横向拉伸系统;13为薄膜测厚仪;14为牵引收卷系统;15为自动控制系统。
具体实施方式
为使本发明的目的、技术方案和优点更加清楚明白,以下结合具体实施例,并参照附图,对本发明进一步详细说明。但本领域技术人员知晓,本发明并不局限于附图和以下实施例。
实施例1
将熔融指数为2.5g/10min的均聚聚丙烯树脂与占均聚聚丙烯树脂0.03wt%的聚丙烯β晶成核剂N,N-二环己基-2,6萘二酰胺混合均匀,在200-250℃的温度熔融后,形成聚丙烯层熔体;
将聚丙烯层熔体经T型模头挤出后,在128℃的铸片辊上冷却结晶,得到含有β晶的聚丙烯膜片,即高β晶膜片。该膜片在100℃下进行4.5倍纵向拉伸后,两个表面分别涂布固含量为20%、聚偏氟乙烯粒度为200nm的水分散液,形成厚度为6微米的涂层,随后进入横向拉伸系统,在135℃下进行3.0倍横向拉伸,得到20微米厚的复合聚丙烯多孔膜。其中两个聚偏氟乙烯层的厚度分别为2微米,芯层聚丙烯多孔基层的厚度为16微米。两个表层的聚偏氟乙烯层中聚偏氟乙烯纤维的直径为30-70nm。
图1为本发明实施例1的复合多孔膜的扫描电镜图。
实施例2
将熔融指数为2.5g/10min的均聚聚丙烯树脂经单螺杆挤出机在200-250℃的温度熔融后,经T型模头挤出,以50m/min的速度收卷得到高度取向的聚丙烯膜片。聚丙烯膜片在125℃退火结晶后,得到聚丙烯预拉伸片。聚丙烯预拉伸片在30℃预拉伸40%后,在125℃继续拉伸50%得到孔隙率为30%的纵向拉伸膜。该纵向拉伸膜两个表面分别涂布固含量为20%、聚偏氟乙烯粒度为200nm的水分散液,形成厚度为6微米的涂层,随后进入横向拉伸系统,在140℃下进行4.0倍横向拉伸,得到20微米厚的复合聚丙烯多孔膜。其中两个聚偏氟乙烯层的厚度分别为2微米,芯层聚丙烯多孔基层的厚度为12微米。两个表层聚的偏氟乙烯层中聚偏氟乙烯纳米纤维的直径为30-50nm。
实施例3
实施例3除涂布的水分散液是固含量15%、粒度为500nm的聚甲基丙烯酸甲酯外,其余与实施例1相同,得到两个聚甲基丙烯酸甲酯层的厚度分别为2微米,芯层聚丙烯多孔基层的厚度为16微米。两个表层的聚甲基丙烯酸甲酯纳米纤维的直径为80-120nm。
对比例1
将熔融指数为2.5g/10min的均聚聚丙烯树脂与占均聚聚丙烯树脂0.03wt%的聚丙烯β晶成核剂N,N-二环己基-2,6萘二酰胺混合均匀,在200-250℃的温度熔融后,形成聚丙烯层熔体;
将聚丙烯层熔体经T型模头挤出后,在128℃的铸片辊上冷却结晶,得到含有β晶的聚丙烯膜片,即高β晶膜片。该膜片在100℃下进行4.5倍纵向拉伸后,随后进入横向拉伸系统,在135℃下进行3.0倍横向拉伸,得到厚度为16微米的聚丙烯基膜,在聚丙烯基膜的两个表面分别涂布固含量为20%、聚偏氟乙烯粒度为200nm的水分散液,形成厚度为2微米的涂层,干燥,得到20微米厚的复合聚丙烯多孔膜。
图2为本发明对比例1的复合多孔膜的扫描电镜图。
从图1可以看出,采用本发明的制备方法,在聚丙烯纵向拉伸膜表面涂覆200nm的球形颗粒聚集的聚偏氟乙烯涂层经拉伸后,球形的聚偏氟乙烯颗粒随着基底的横向拉伸,变形成沿着横向取向的纳米纤维,纳米纤维的直径约10-70nm。从图2中可以看出,没有采用本发明的制备方法,涂层没有横向拉伸,得到的是球形颗粒聚集的聚偏氟乙烯涂层。
实施例4
将熔融指数为2.5g/10min的均聚聚丙烯树脂与占均聚聚丙烯树脂0.03wt%的聚丙烯β晶成核剂N,N-二环己基-2,6萘二酰胺混合均匀,通过上料机1加入到单螺杆挤出机2中,在温度为160-230℃熔融后,由计量泵3计量,经过过滤器4后经第二熔体管道5进入到T型模头6挤出,在铸片辊7上冷却,得到含β晶成核剂的聚丙烯膜片。所述含β晶成核剂的聚丙烯膜片的厚度为140微米。
该膜片经过膜片测厚仪9进入纵向拉伸系统10,在100℃下进行4.5倍纵向拉伸得到纵向拉伸膜片。
纵向拉伸膜片经第二涂布系统在两侧涂布固含量为25wt%的聚甲基丙烯酸甲酯 水分散体,干燥后涂层厚度为6微米。经涂布的纵向拉伸膜片进入横向拉伸系统在135℃下进行3.0倍横向拉伸,得到表面具有多孔结构的聚甲基丙烯酸甲酯的双面涂布的复合聚丙烯多孔膜。
所述涂覆层的厚度为2微米;所述复合聚丙烯多孔膜的厚度为20微米。
将上述制备得到的复合聚丙烯多孔膜用作锂离子电池隔膜时,所述隔膜对锂离子电池电解液的浸润性和吸液率均较单层聚丙烯隔膜有明显的提高。
实施例5
实施例5同实施例4,区别仅在于,纵向拉伸膜片经涂布系统(II)在一侧表面涂布Nafion溶液(购买自杜邦公司),干燥后涂层厚度为3微米,经横向拉伸得到一侧表面为无孔密实结构的Nafion的单面涂布的复合聚丙烯多孔膜。
所述涂覆层的厚度为1.0微米;所述复合聚丙烯多孔膜的厚度为19微米。
将上述制备得到的复合聚丙烯多孔膜用作锂硫电池隔膜时,由于表面的Nafion层为无孔密实结构,溶于电解液中的多硫化物无法穿过隔膜进行传输,而锂离子能够与Nafion中的磺酸根结合而进行传输,因此复合聚丙烯多孔膜能够减缓锂硫电池中多硫化物的“飞梭效应”而提高锂硫电池的循环性能。
实施例6
实施例6同实施例4,区别仅在于,纵向拉伸膜片经第二涂布系统在一侧表面涂布聚二甲基硅氧烷的二甲苯溶液,干燥后涂层厚度为6微米,经横向拉伸得到一侧表面为无孔密实结构的聚二甲基硅氧烷的单面涂布的复合聚丙烯多孔膜。
所述涂覆层的厚度为2微米;所述复合聚丙烯多孔膜的厚度为20微米。
将上述制备得到的复合聚丙烯多孔膜用作气体分离膜,渗透汽化分离乙醇/水溶液,取得了很好的分离效果。
实施例7
一种制备实施例4-6中所述的复合聚丙烯多孔膜的装置,所述装置包括上料挤出系统、流延铸片系统、纵向拉伸系统、第二涂布系统和横向拉伸系统;
所述上料挤出系统通过流延铸片系统与纵向拉伸系统相连,所述纵向拉伸系统通过第二涂布系统与横向拉伸系统连接。
在本发明的一个优选实施方式中,所述上料挤出系统包括上料机1、螺杆挤出机2、第一熔体管道、过滤器4和第二熔体管道5;
所述第二熔体管道5与流延铸片系统相连;所述上料机1位于所述螺杆挤出机2的进料口的上方;所述螺杆挤出机2通过第一熔体管道与过滤器4相连;所述过滤器4通过第二熔体管道5与流延铸片系统相连;所述第一熔体管道中还设置有计量泵3。
在本发明的一个优选实施方式中,所述流延铸片系统包括模头6和铸片辊7;所述模头6选自厚度可自动调节的摸头;所述铸片辊7选自温度精确控制的铸片辊。
在本发明的一个优选实施方式中,所述装置还包括第一涂布系统;所述第一涂布系统设置于流延铸片系统与纵向拉伸系统之间;所述第一涂布系统包括涂布构件8;所述第二涂布系统包括第二涂布构件11。
在本发明的一个优选实施方式中,所述纵向拉伸系统10包括温度精确控制的预热、拉伸和热定型辊组;所述横向拉伸系统12包括轨道、链铗、烘箱和传动机构。
在本发明的一个优选实施方式中,所述装置还包括牵引收卷系统14。
在本发明的一个优选实施方式中,所述装置还包括测厚反馈控制系统;所述测厚反馈控制系统包括测厚仪和控制系统;所述测厚仪对膜的厚度进行在线测量,并通过控制系统控制可自动调节模头,实现对聚丙烯多孔膜厚度的自动控制。
在本发明的一个优选实施方式中,所述测厚反馈控制系统包括第一测厚反馈控制系统和第二测厚反馈控制系统;所述第一测厚反馈控制系统设置于流延铸片系统与纵向拉伸系统之间;所述第一测厚反馈控制系统设置于第一涂布系统与纵向拉伸系统之间;所述第二测厚反馈控制系统设置于横向拉伸系统之后;所述第二测厚反馈控制系统设置于横向拉伸系统与牵引收卷系统14之间。
所述第一测厚反馈控制系统包括膜片测厚仪9;所述第二测厚反馈控制系统包括薄膜测厚仪13,其目的是对经过拉伸的薄膜的厚度进行测量和控制。
在本发明的一个优选实施方式中,所述装置还包括自动控制系统15;所述自动控制系统15包括压力和温度控制模块、PLC、变频器、传感器。
以上,对本发明的实施方式进行了说明。但是,本发明不限定于上述实施方式。凡在本发明的精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (10)

  1. 一种复合多孔膜,所述复合多孔膜包括至少一层多孔基层和位于所述多孔基层至少一侧表面的至少一层单向拉伸涂覆层。
  2. 根据权利要求1所述的复合多孔膜,所述复合多孔膜包括双向拉伸的多孔基层和位于所述多孔基层至少一侧表面的单向拉伸涂覆层。
    优选地,所述复合多孔膜还包括位于所述多孔基层至少一侧表面的双向拉伸涂覆层。
    优选地,所述复合多孔膜还包括在所述多孔基层和单向拉伸涂覆层之间的至少一侧表面的双向拉伸涂覆层。
    优选地,所述位于所述多孔基层至少一侧表面的单向拉伸涂覆层是多孔的涂覆层,或者是无孔密实的涂覆层。
    优选地,所述位于所述多孔基层至少一侧表面的双向拉伸涂覆层是多孔的涂覆层,或者是无孔密实的涂覆层。
  3. 根据权利要求1所述的复合多孔膜,所述复合多孔膜包括至少一层多孔基层和位于所述多孔基层一侧或两侧表面的至少一层沿复合多孔膜横向拉伸方向取向的纳米纤维状的非聚烯烃类聚合物多孔层。
    优选地,所述复合多孔膜中包括至少一层多孔基层和至少一层沿复合多孔膜横向拉伸方向取向的纳米纤维状的非聚烯烃类聚合物多孔层;
    优选地,所述复合多孔膜中包括一层多孔基层和一层沿复合多孔膜横向拉伸方向取向的纳米纤维状的非聚烯烃类聚合物多孔层;所述沿复合多孔膜横向拉伸方向取向的纳米纤维状的非聚烯烃类聚合物多孔层位于所述多孔基层一侧表面;或者,
    所述复合多孔膜中包括一层多孔基层和两层沿复合多孔膜横向拉伸方向取向的纳米纤维状的非聚烯烃类聚合物多孔层;所述沿复合多孔膜横向拉伸方向取向的纳米纤维状的非聚烯烃类聚合物多孔层位于所述多孔基层两侧表面。
    优选地,所述非聚烯烃类聚合物优选为非聚乙烯类聚合物、非聚丙烯类聚合物;优选地,所述非聚烯烃类聚合物优选为非聚丙烯类聚合物。
    优选地,所述纳米纤维的直径为10-500nm,优选为15-250nm。
  4. 根据权利要求1-3任一项所述的复合多孔膜,其中,所述多孔基层选自多孔聚烯烃基层,作为该多孔聚烯烃基层,尤其有利的是使用多孔聚乙烯基层、多孔聚丙烯基层或多孔聚丙烯/聚乙烯/聚丙烯三层复合基层。还优选地,所述多孔基层选自多孔聚丙烯基层。
  5. 权利要求1、2或4所述的复合多孔膜的制备方法,所述制备方法包括以下步骤:
    (S1)向聚丙烯中加入能够促进β晶型形成的成核剂;
    (S2)将步骤(S1)的混有成核剂的聚丙烯经熔融挤出,成型,得到高β晶膜片;
    (S3)将高β晶膜片经纵向拉伸得到纵向拉伸膜,将涂覆液涂布到所述纵向拉伸膜的一侧或两侧表面;
    (S4)将涂布有涂覆液的纵向拉伸膜经横向拉伸得到所述复合多孔膜。
    优选地,所述制备方法的步骤(S2)和步骤(S3)之间还可包括如下步骤:
    (S2’)将涂覆液涂布到步骤(S2)所得的高β晶膜片的一侧或两侧表面,得到涂布有涂覆液的高β晶膜片。
    优选地,步骤(S3)和步骤(S2’)中,所述涂覆液包括以有机溶剂为介质的溶液或以水为介质的溶液或分散液;
    所述以有机溶剂为介质的溶液包括用有机溶剂将聚合物或聚合物组合物溶解形成的溶液;所述以水为介质的溶液包括用水将水溶性聚合物或水溶性聚合物组合物溶解形成的溶液;所述以水为介质的分散液包括将不溶于水的聚合物或不溶于水的聚合物组合物通过乳液聚合的方法得到聚合物或聚合物组合物的乳液,或将不溶于水的聚合物或不溶于水的聚合物组合物通过研磨或粉碎的方法得到的含聚合物或聚合物组合物的水分散体。
    优选地,所述以有机溶剂为介质的溶液或以水为介质的溶液或分散液还可以包括无机填料。
    优选地,所述以有机溶剂为介质的溶液中,所述的聚合物或聚合物组合物包括聚偏氟乙烯、偏氟乙烯-六氟丙烯共聚物、聚丙烯腈、聚偏二氯乙烯、聚甲基丙烯酸酯、聚乙烯、聚乙烯蜡、氯化的聚乙烯、氯化的聚丙烯、聚乙烯醇、聚氨酯、甲基丙烯酸酯与丙烯腈的共聚物、聚氧乙烯醚、海藻酸钠、纤维素衍生物、聚二甲基硅氧烷、聚酰亚胺、聚氨酯、聚苯乙烯磺酸钠、磺化聚醚醚酮、聚乙烯醇乙烯基磺酸接枝共聚物、磺化聚砜、磺化聚苯并咪唑、磺化聚苯基喹啉、全氟磺酸聚合物(如Nafion)等中的一种或几种。
    优选地,所述以有机溶剂为介质的溶液中,所述的有机溶剂可选自酮类的溶剂如丙酮、丁酮等,也可以选自醇类溶剂如甲醇、乙醇等,也可以选自卤代烃类溶剂如一氯甲烷、二氯甲烷、氯仿、四氯化碳等,也可以选自酰胺类溶剂如N,N-二甲基甲酰胺、N,N-二甲基乙酰胺等,也可以选自苯类溶剂如苯、甲苯、二甲苯等,以及四氢呋喃、N-甲基吡咯烷酮、二甲基亚砜、乙醚等。
    优选地,所述以水为介质的溶液中,所述的水溶性聚合物或水溶性聚合物组合物包括聚乙烯醇、聚氧乙烯醚、海藻酸钠、羧甲基纤维素钠、聚丙烯酰胺、壳聚糖、魔芋葡甘糖等中的一种或几种。
    优选地,所述以水为介质的分散液中,所述的不溶于水的聚合物或不溶于水的聚合物组合物包括聚偏氟乙烯、聚偏二氯乙烯、聚四氟乙烯、偏氟乙烯-六氟丙烯共聚物、聚苯乙烯、聚甲基丙烯酸甲酯、聚氨酯、全氟磺酸聚合物(如Nafion)等中的一种或几种。
  6. 权利要求1、3或4所述的复合多孔膜的制备方法,所述制备方法包括以下步骤:
    在纵向拉伸膜一侧或两侧表面涂布涂覆液,再经横向拉伸,制备得到所述复合多孔膜。
    优选地,所述纵向拉伸膜经涂覆后,再经横向拉伸过程,其中的纵向拉伸膜经横向拉伸处理即制备得到本发明所述的多孔基层;其中的涂覆液经横向拉伸处理即制备得到沿复合多孔膜横向拉伸方向取向的纳米纤维状的非聚烯烃类聚合物多孔层。
    优选地,所述纵向拉伸膜的孔隙率为5-35%。还优选地,所述纵向拉伸膜的孔隙率为15-35%。优选地,所述纵向拉伸膜的厚度为16-80微米;还优选地,所述纵向拉伸膜的厚度为20-60微米。
    优选地,所述复合多孔膜可以通过如下方法制备得到:
    1)向聚丙烯中加入能够促进β晶型形成的成核剂,将混有成核剂的聚丙烯经熔融挤出,成型,得到高β晶膜片;
    2)将高β晶膜片经纵向拉伸得到纵向拉伸膜,在纵向拉伸膜一侧或两侧表面涂布涂覆液,再经横向拉伸,制备得到所述复合多孔膜。
    优选地,所述高β晶膜片的厚度为80-300微米,还优选地,所述高β晶膜片的厚度为100-200微米。
    优选地,步骤(S3)和步骤2)中,所述纵向拉伸的温度为60-120℃,优选地,所述纵向拉伸的温度为80-110℃;所述纵向拉伸的倍率为2.5-5.5倍,优选地,所述纵向拉伸的倍率为3-5倍;所述涂覆液干燥后得到的涂层厚度为0.3-10微米;优选地,所述涂覆液干燥后得到的涂层厚度为2-10微米,优选为3-5微米。
    优选地,步骤(S4)和步骤2)中,所述横向拉伸的温度为120-150℃;所述横向拉伸的倍率为2-5倍;还优选地,所述横向拉伸的温度为130-140℃;所述横向拉伸的倍率为2.5-4.5倍。
    优选地,所述复合多孔膜也可以通过如下方法制备得到:
    a)将聚丙烯经熔融挤出,高速牵伸取向成型,得到聚丙烯初始膜片;
    b)将聚丙烯初始膜片进行高温退火,得到聚丙烯预拉伸片;
    c)采用干法单向拉伸工艺将聚丙烯预拉伸膜片拉伸后得到纵向拉伸膜,在纵向拉伸膜一侧或两侧表面涂布涂覆液,再经横向拉伸,制备得到所述复合多孔膜。
    根据本发明,步骤c)具体包括如下步骤:
    c’)将聚丙烯预拉伸片进行多层叠合处理,在20-50℃预拉伸20-50%后,在100-130℃继续拉伸30-80%,任选地将拉伸后的多层叠合的纵向拉伸膜剥离分开,制备得到纵向拉伸膜;然后,在纵向拉伸膜一侧或两侧表面涂布涂覆液,再经横向拉伸,制备得到所述复合多孔膜。
    优选地,步骤c)中,所述多层叠合处理可以是将至少1层聚丙烯预拉伸膜片进行叠合处理,拉伸后制备得到包括至少1层的纵向拉伸膜;还优选为将8-16层聚丙烯预拉伸膜片进行叠合处理,拉伸后进行层间剥离得到包括1-4层的纵向拉伸膜。
    优选地,所述涂覆液为以水为介质的分散液;所述涂覆液包括不溶于水的聚合物或不溶于水的聚合物组合物;所述不溶于水的聚合物或不溶于水的聚合物组合物以颗粒形态分散于体系中,所述颗粒的平均直径为0.01-3μm,还优选为0.1-1μm。
    优选地,所述以水为介质的分散液可以是将不溶于水的聚合物或不溶于水的聚合物组合物通过乳液聚合的方法得到聚合物或聚合物组合物的乳液,或者还可以是将不溶于水的聚合物或不溶于水的聚合物组合物通过研磨或粉碎的方法得到的含聚合物或聚合物组合物的水分散体。
    优选地,所述不溶于水的聚合物或不溶于水的聚合物组合物的玻璃化转变温度或熔点低于横向拉伸温度。
    优选地,所述不溶于水的聚合物或不溶于水的聚合物组合物包括聚偏氟乙烯、聚偏二氯乙烯、偏氟乙烯-六氟丙烯共聚物、聚苯乙烯、聚甲基丙烯酸甲酯、聚丁二酸丁二醇酯、聚氨酯、全氟磺酸聚合物(如Nafion)等中的一种或几种。
    优选地,所述不溶于水的聚合物或不溶于水的聚合物组合物在以水为介质的分散液中的质量百分含量为5-50%,还优选为10-30%。
    优选地,所述水在以水为介质的分散液中的质量百分含量为50-95%,还优选为70-90%。
    优选地,所述涂覆液中还包括有机填料或无机填料;所述无机填料包括二氧化硅、二氧化钛、氧化镧、二氧化锆、三氧化二铝、硫酸钡、碳酸钙、氮化碳、勃姆石、碳化硅、分子筛、滑石粉、蒙脱土中的一种或多种。优选地,所述有机填料包括耐高温高分子如聚四氟乙烯、聚醚醚酮、聚醚砜、聚苯醚等中的一种或多种。
    优选地,所述有机填料的加入量为涂覆液的5-10wt%;所述无机填料的加入量为涂覆液的5-20wt%。
    优选地,所述涂覆液中还包括粘结剂;所述粘结剂包括聚丙烯酸酯乳液、聚氨酯乳液、聚丁二烯-苯乙烯乳液、聚乙烯醇、羧甲基纤维素等;所述粘结剂的加入量为涂覆液质量的2-8wt%;优选为3-6wt%。
  7. 一种锂电池隔膜,所述锂电池隔膜包括权利要求1-4任一项所述的复合多孔膜。
  8. 一种气体分离膜,所述气体分离膜包括权利要求1-4任一项所述的复合多孔膜。
  9. 一种制备权利要求1-4任一项所述的复合多孔膜的装置,所述装置包括上料挤出系统、流延铸片系统、纵向拉伸系统、第二涂布系统和横向拉伸系统;
    所述上料挤出系统通过流延铸片系统与纵向拉伸系统相连,所述纵向拉伸系统通过第二涂布系统与横向拉伸系统连接。
    优选地,所述上料挤出系统包括上料机、螺杆挤出机、第一熔体管道、过滤器和第二熔体管道;所述第二熔体管道与流延铸片系统相连;所述上料机位于所述螺杆挤出机的进料口的上方;所述螺杆挤出机通过第一熔体管道与过滤器相连;所述过滤器通过第二熔体管道与流延铸片系统相连。
    优选地,所述第一熔体管道中还设置有计量泵。
    优选地,所述流延铸片系统包括模头和铸片辊;所述模头选自厚度可自动调节的摸头;所述铸片辊选自温度精确控制的铸片辊。
    优选地,所述装置还包括第一涂布系统,所述第一涂布系统设置于流延铸片系统与纵向拉伸系统之间。
    优选地,所述第一涂布系统包括第一涂布构件;所述第二涂布系统包括第二涂布构件。
    优选地,所述纵向拉伸系统包括温度精确控制的预热、拉伸和热定型辊组,所述横向拉伸系统包括轨道、链铗、烘箱和传动机构。
    优选地,所述装置还包括牵引收卷系统,其目的是将制备得到的复合多孔膜经过所述牵引收卷系统得到成卷的复合多孔膜。
    优选地,所述装置还包括测厚反馈控制系统;所述测厚反馈控制系统包括测厚仪和控制系统;所述测厚仪对膜的厚度进行在线测量,并通过控制系统控制可自动调节模头,实现对多孔膜厚度的自动控制。
    优选地,所述测厚反馈控制系统包括第一测厚反馈控制系统和第二测厚反馈控制系统, 所述第一测厚反馈控制系统设置于流延铸片系统与纵向拉伸系统之间,所述第二测厚反馈控制系统设置于横向拉伸系统之后。
    优选地,所述第一测厚反馈控制系统包括膜片测厚仪,用于对未经拉伸的膜片的厚度进行测量和控制或对至少一侧表面涂布有涂覆液的未经拉伸的膜片的厚度进行测量和控制。
    优选地,所述第二测厚反馈控制系统包括薄膜测厚仪,用于对经过拉伸的薄膜的厚度进行测量和控制。
    优选地,所述装置还包括自动控制系统;所述自动控制系统包括压力和温度控制模块、PLC、变频器、传感器,用于实现对装置的温度、压力、张力和速度进行控制。
  10. 一种复合多孔膜的制备方法,其是采用权利要求9所述的装置制备得到的,所述制备方法包括如下步骤:
    (a)将含能够促进β晶型形成的成核剂的聚丙烯经上料机进入螺杆挤出机熔融,熔体经第一熔体管道流经计量泵,准确计量后,经过滤器过滤后进入第二熔体管道;
    (b)将步骤(a)的熔体经模头流延到铸片辊上结晶形成高β晶的膜片;
    (c)将步骤(b)的高β晶的膜片从铸片辊上剥离;
    任选地,经第一涂布系统将涂覆液涂布到膜片的一侧或两侧表面;
    任选地,将高β晶的膜片经膜片测厚仪监测,测得未经拉伸的膜片的厚度或至少一侧表面涂布有涂覆液的未经拉伸的膜片的厚度;
    (d)将步骤(c)的未经拉伸的膜片或一侧或两侧表面涂布有涂覆液的未经拉伸的膜片经过纵向拉伸系统得到纵向拉伸的膜片;
    (e)经第二涂布系统将涂覆液涂布到步骤(d)的纵向拉伸的膜片的一侧或两侧表面;
    (f)将步骤(e)的膜片经过横向拉伸系统得到横向拉伸的膜片,制备得到所述复合多孔膜。
    根据本发明,所述制备方法还包括如下步骤:
    (g)将步骤(f)的复合多孔膜经过牵引收卷系统得到成卷的复合多孔膜;
    任选地,在经牵引收卷系统之前,经薄膜测厚仪监测复合多孔膜的厚度。
PCT/CN2018/102316 2017-08-25 2018-08-24 一种复合多孔膜及其制备方法和用途 WO2019037785A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020197035820A KR20200047451A (ko) 2017-08-25 2018-08-24 복합 다공성막 및 이의 제조 방법과 용도
EP18847905.9A EP3674354A4 (en) 2017-08-25 2018-08-24 COMPOSITE POROUS MEMBRANE AND PROCESSES FOR PREPARATION AND USE
JP2020511525A JP7273415B2 (ja) 2017-08-25 2018-08-24 複合多孔質膜及びその製造方法と用途
US16/640,391 US11603443B2 (en) 2017-08-25 2018-08-24 Composite porous membrane and preparation method therefor and use thereof

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201710744074.X 2017-08-25
CN201710744074.XA CN109422890A (zh) 2017-08-25 2017-08-25 一种复合聚丙烯微孔膜及其制备方法和用途
CN201810302163 2018-04-04
CN201810302163.3 2018-04-04

Publications (1)

Publication Number Publication Date
WO2019037785A1 true WO2019037785A1 (zh) 2019-02-28

Family

ID=65439781

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/102316 WO2019037785A1 (zh) 2017-08-25 2018-08-24 一种复合多孔膜及其制备方法和用途

Country Status (5)

Country Link
US (1) US11603443B2 (zh)
EP (1) EP3674354A4 (zh)
JP (1) JP7273415B2 (zh)
KR (1) KR20200047451A (zh)
WO (1) WO2019037785A1 (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112538188A (zh) * 2019-09-20 2021-03-23 中国石油化工股份有限公司 一种智能控湿阻隔复合薄膜及其制备方法和应用
CN114142160A (zh) * 2021-11-27 2022-03-04 周菊青 一种纳米陶瓷-聚丙烯复合电池隔膜及制备方法
CN114832803A (zh) * 2022-04-08 2022-08-02 重庆城市综合交通枢纽(集团)有限公司 成膜组合物及其制备方法和复合光催化剂的用途
CN116041758A (zh) * 2022-12-07 2023-05-02 四川大学 高储能、低损耗的聚乙烯/聚偏二氟乙烯复合薄膜及其制备方法和应用
CN116494623A (zh) * 2023-06-30 2023-07-28 河北海伟电子新材料科技股份有限公司 介电复合膜及在薄膜电容器中的用途

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220190306A1 (en) * 2020-12-10 2022-06-16 Applied Materials, Inc. Web edge metrology
CN112599724B (zh) * 2020-12-14 2023-03-24 天津市捷威动力工业有限公司 一种复合正极、全固态锂硫电池及它们的干法制备方法
CN115312965A (zh) * 2021-05-08 2022-11-08 江苏星源新材料科技有限公司 复合隔膜及其制备方法
WO2023135153A1 (en) * 2022-01-11 2023-07-20 Blue Foot Membranes Nv Method for operating a water filtration module and module
WO2023144410A1 (en) 2022-01-31 2023-08-03 Blue Foot Membranes Nv Method for the production of a membrane envelope
CN114243210B (zh) * 2022-02-25 2022-05-13 深圳市博盛新材料有限公司 一种耐老化锂离子电池隔膜及其制作方法
CN114870654A (zh) * 2022-05-09 2022-08-09 广东工业大学 一种纳米改性碳片基超滤膜材料及其制备方法与应用
CN115377606B (zh) * 2022-08-23 2023-12-12 北京化工大学 一种多功能锂硫电池用高性能壳聚糖/聚丙烯腈隔膜及其制备方法和应用
CN115621660B (zh) * 2022-09-08 2023-05-09 阜阳隆能科技有限公司 一种用于锂电池电芯的复合隔膜、锂电池电芯及锂电池
CN115591405A (zh) * 2022-10-27 2023-01-13 杭州科百特过滤器材有限公司(Cn) 一种纤维素超滤膜及其制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1062357A (zh) 1990-11-13 1992-07-01 中国科学院化学研究所 高透过性聚丙烯微孔膜及其制法
CN101245150A (zh) * 2007-05-08 2008-08-20 中国科学院化学研究所 非对称性的聚丙烯多孔膜及其制备方法
CN103724646A (zh) * 2013-12-27 2014-04-16 四川东方绝缘材料股份有限公司 一种聚酯型涂层低水汽透过率聚酯薄膜及其制备方法
CN203779820U (zh) * 2014-04-28 2014-08-20 山东胜通集团股份有限公司 聚酯光学膜自控生产系统
US20150162588A1 (en) * 2012-08-21 2015-06-11 Amogreentech Co., Ltd. Composite porous separation membrane having shut-down function, method of manufacturing same, and secondary batteries using same
CN105826508A (zh) * 2016-05-27 2016-08-03 北京师范大学 压电陶瓷复合隔膜、其制备方法及锂离子电池

Family Cites Families (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4257997A (en) * 1979-06-01 1981-03-24 Celanese Corporation Solvent stretch process for preparing a microporous film
JPH0564862A (ja) * 1991-02-27 1993-03-19 Oji Yuka Synthetic Paper Co Ltd 鉛筆筆記性及び印刷性に優れた合成紙
JPH0676808A (ja) * 1992-06-29 1994-03-18 Japan Gore Tex Inc 電池用隔膜及び電池
JPH06172562A (ja) * 1992-11-25 1994-06-21 Diafoil Co Ltd 積層ポリエステルフィルム
ATE268351T1 (de) * 1997-10-23 2004-06-15 Tonen Sekiyukagaku Kk Verfahren zur herstellung einer hochdurchlässigen mitroporösen polyolefinische folie
US6010776A (en) * 1998-05-19 2000-01-04 3M Innovative Properties Company Microporous materials containing cross-linked oil
DE60035849T2 (de) * 1999-06-01 2008-04-30 Teijin Ltd. Polyesterfilm für tintenbild-empfängersubstrat und tintenbild-empfängersubstrat
CA2602827A1 (en) * 2005-03-31 2006-10-12 Tonen Chemical Corporation Microporous polyolefin membrane and method for producing the same
CA2602830A1 (en) * 2005-03-31 2006-10-12 Tonen Chemical Corporation Method for producing microporous polyolefin membrane and microporous membrane
JP3992055B2 (ja) * 2005-05-11 2007-10-17 東洋紡績株式会社 蒸着フィルム
US20100093878A1 (en) * 2007-12-27 2010-04-15 E.I. Du Pont De Nemours And Company Crosslinkable fluoropolymer, crosslinked fluoropolymers and crosslinked fluoropolymer membranes
US20110223486A1 (en) * 2010-03-12 2011-09-15 Xiaomin Zhang Biaxially oriented porous membranes, composites, and methods of manufacture and use
JP5419817B2 (ja) 2010-07-13 2014-02-19 三菱樹脂株式会社 積層多孔フィルム、非水電解液二次電池用セパレータ、および非水電解液二次電池
WO2013035747A1 (ja) * 2011-09-09 2013-03-14 旭化成せんい株式会社 ポリケトン多孔膜
KR101434378B1 (ko) 2011-11-15 2014-08-27 데이진 가부시키가이샤 비수계 이차전지용 세퍼레이터 및 그 제조 방법, 그리고 비수계 이차전지
CN102394282B (zh) * 2011-11-25 2014-12-10 佛山市金辉高科光电材料有限公司 一种锂离子二次电池多孔多层隔膜及其制造方法
US10559802B2 (en) * 2012-08-07 2020-02-11 Celgard, Llc Separator membranes for lithium ion batteries and related methods
JP6093636B2 (ja) * 2013-04-24 2017-03-08 三菱樹脂株式会社 積層多孔フィルム、非水電解液二次電池用セパレータ、及び非水電解液二次電池
HUE037883T2 (hu) * 2013-05-31 2018-09-28 Toray Industries Többrétegû, mikroporózus poliolefin membrán, és annak elõállítási eljárása
EP3046163B1 (en) 2013-09-10 2020-07-22 Toray Industries, Inc. Separator for secondary cell, and secondary cell
JP6290570B2 (ja) 2013-10-02 2018-03-07 積水化学工業株式会社 耐熱性微多孔フィルム、非水電解液二次電池用セパレータ、非水電解液二次電池、及び耐熱性微多孔フィルムの製造方法
US10340544B2 (en) 2013-12-19 2019-07-02 Treofan Germany Gmbh & Co. Kg Ion-exchange membrane made of a biaxially stretched β-porous film
JP6331556B2 (ja) * 2014-03-26 2018-05-30 東レ株式会社 積層多孔性フィルム、その製造方法および蓄電デバイス用セパレータ
JP2015201389A (ja) 2014-04-09 2015-11-12 三菱樹脂株式会社 積層多孔フィルム、非水電解液二次電池用セパレータ、及び非水電解液二次電池
JP6294176B2 (ja) 2014-07-02 2018-03-14 旭化成株式会社 微多孔性フィルムの製造方法
KR20160049851A (ko) * 2014-10-28 2016-05-10 에스케이이노베이션 주식회사 압출코팅법을 이용한 이차전지용 분리막의 제조방법 및 이로부터 제조된 분리막
US20180083247A1 (en) * 2015-04-01 2018-03-22 Mitsubishi Chemical Corporation Multilayer porous film, battery separator, and battery
JP6826052B2 (ja) * 2015-06-03 2021-02-03 セルガード エルエルシー 改良された低電気抵抗微多孔質バッテリセパレータ膜、セパレータ、電池、バッテリ及び関連する方法
CN114725618A (zh) * 2015-09-18 2022-07-08 赛尔格有限责任公司 微孔膜、电池隔板、锂电池、车辆和相关方法
TWI708634B (zh) * 2015-11-20 2020-11-01 日商迪愛生股份有限公司 使用聚合物之透過膜及其積層體
CN115350601A (zh) * 2017-09-12 2022-11-18 赛尔格有限责任公司 干法工艺聚合物膜及应用

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1062357A (zh) 1990-11-13 1992-07-01 中国科学院化学研究所 高透过性聚丙烯微孔膜及其制法
CN101245150A (zh) * 2007-05-08 2008-08-20 中国科学院化学研究所 非对称性的聚丙烯多孔膜及其制备方法
US20150162588A1 (en) * 2012-08-21 2015-06-11 Amogreentech Co., Ltd. Composite porous separation membrane having shut-down function, method of manufacturing same, and secondary batteries using same
CN103724646A (zh) * 2013-12-27 2014-04-16 四川东方绝缘材料股份有限公司 一种聚酯型涂层低水汽透过率聚酯薄膜及其制备方法
CN203779820U (zh) * 2014-04-28 2014-08-20 山东胜通集团股份有限公司 聚酯光学膜自控生产系统
CN105826508A (zh) * 2016-05-27 2016-08-03 北京师范大学 压电陶瓷复合隔膜、其制备方法及锂离子电池

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
VARGA J.: "Journal of Macromolecular Science: Physics", vol. 41, 2002, pages: 1121

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112538188A (zh) * 2019-09-20 2021-03-23 中国石油化工股份有限公司 一种智能控湿阻隔复合薄膜及其制备方法和应用
CN112538188B (zh) * 2019-09-20 2022-10-21 中国石油化工股份有限公司 一种智能控湿阻隔复合薄膜及其制备方法和应用
CN114142160A (zh) * 2021-11-27 2022-03-04 周菊青 一种纳米陶瓷-聚丙烯复合电池隔膜及制备方法
CN114142160B (zh) * 2021-11-27 2023-07-28 上海比杰科技有限公司 一种纳米陶瓷-聚丙烯复合电池隔膜及制备方法
CN114832803A (zh) * 2022-04-08 2022-08-02 重庆城市综合交通枢纽(集团)有限公司 成膜组合物及其制备方法和复合光催化剂的用途
CN116041758A (zh) * 2022-12-07 2023-05-02 四川大学 高储能、低损耗的聚乙烯/聚偏二氟乙烯复合薄膜及其制备方法和应用
CN116041758B (zh) * 2022-12-07 2024-05-07 四川大学 高储能、低损耗的聚乙烯/聚偏二氟乙烯复合薄膜及其制备方法和应用
CN116494623A (zh) * 2023-06-30 2023-07-28 河北海伟电子新材料科技股份有限公司 介电复合膜及在薄膜电容器中的用途
CN116494623B (zh) * 2023-06-30 2024-01-19 河北海伟电子新材料科技股份有限公司 介电复合膜及在薄膜电容器中的用途

Also Published As

Publication number Publication date
KR20200047451A (ko) 2020-05-07
JP2020531323A (ja) 2020-11-05
JP7273415B2 (ja) 2023-05-15
EP3674354A1 (en) 2020-07-01
US20200360866A1 (en) 2020-11-19
US11603443B2 (en) 2023-03-14
EP3674354A4 (en) 2021-07-28

Similar Documents

Publication Publication Date Title
WO2019037785A1 (zh) 一种复合多孔膜及其制备方法和用途
CN110350155B (zh) 一种含沿横向拉伸方向取向的纳米纤维状多孔层的复合微孔膜
CN109422890A (zh) 一种复合聚丙烯微孔膜及其制备方法和用途
CN110343278B (zh) 一种复合聚丙烯微孔膜及其制法和包括该膜的锂离子电池隔膜
JP4755339B2 (ja) 耐破壊性ポリオレフィン膜
CN101462381B (zh) 聚烯烃微孔隔膜及其制作方法
CN109509856B (zh) 一种芳香族聚酰胺微孔膜及其制备方法和用途
CN109192902B (zh) 一种多级安全防护锂电池隔膜的制备方法及锂电池隔膜
CN109065817B (zh) 一种多孔多层复合隔膜及其制备方法
CN114512767B (zh) 锂离子电池隔膜、其制备方法及由其制得的锂离子电池
CN107808943B (zh) 一种多层聚烯烃微孔隔膜及其制备方法
JP5194476B2 (ja) 多孔性ポリプロピレンフィルム
JP2008248231A (ja) 多孔性ポリプロピレンフィルム
CN108779282A (zh) 聚烯烃微多孔膜及其制造方法、电池用隔膜以及电池
US10790492B2 (en) Microporous polyolefin membrane, separator for battery, and production processes therefor
JP2012014914A (ja) 微多孔膜及びその製造方法、並びに非水電解液2次電池用セパレータ
TW201807867A (zh) 聚烯烴微多孔膜及其製造方法以及電池用隔膜及其製造方法
CN103874725B (zh) 多孔性聚烯烃膜和蓄电装置
CN115483499A (zh) 一种湿法多层复合锂离子电池隔膜及其制备方法和应用
CN110350131B (zh) 一种相转化法制备复合聚丙烯微孔膜的方法及其制品和用途
JP6311585B2 (ja) 多孔体及びその製造方法
US11955662B2 (en) Separator for electric storage device
CN106953054B (zh) 一种长碳链聚酰胺多孔膜及其制备方法与用途
CN106252564A (zh) 一种高穿刺强度锂离子电池隔膜的制备方法
JP7357161B2 (ja) 蓄電デバイス用セパレータ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18847905

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020511525

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018847905

Country of ref document: EP

Effective date: 20200325