WO2019021586A1 - 基板処理装置、及び基板処理装置の部品検査方法 - Google Patents

基板処理装置、及び基板処理装置の部品検査方法 Download PDF

Info

Publication number
WO2019021586A1
WO2019021586A1 PCT/JP2018/018814 JP2018018814W WO2019021586A1 WO 2019021586 A1 WO2019021586 A1 WO 2019021586A1 JP 2018018814 W JP2018018814 W JP 2018018814W WO 2019021586 A1 WO2019021586 A1 WO 2019021586A1
Authority
WO
WIPO (PCT)
Prior art keywords
deterioration
substrate processing
processing apparatus
early
resin coating
Prior art date
Application number
PCT/JP2018/018814
Other languages
English (en)
French (fr)
Inventor
橋詰 彰夫
Original Assignee
株式会社Screenホールディングス
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Screenホールディングス filed Critical 株式会社Screenホールディングス
Priority to KR1020197038603A priority Critical patent/KR102377316B1/ko
Priority to CN201880043423.8A priority patent/CN110809814B/zh
Publication of WO2019021586A1 publication Critical patent/WO2019021586A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67242Apparatus for monitoring, sorting or marking
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B08CLEANING
    • B08BCLEANING IN GENERAL; PREVENTION OF FOULING IN GENERAL
    • B08B3/00Cleaning by methods involving the use or presence of liquid or steam
    • B08B3/04Cleaning involving contact with liquid
    • B08B3/041Cleaning travelling work
    • B08B3/042Cleaning travelling work the loose articles or bulk material travelling gradually through a drum or other container, e.g. by helix or gravity
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B08CLEANING
    • B08BCLEANING IN GENERAL; PREVENTION OF FOULING IN GENERAL
    • B08B3/00Cleaning by methods involving the use or presence of liquid or steam
    • B08B3/04Cleaning involving contact with liquid
    • B08B3/08Cleaning involving contact with liquid the liquid having chemical or dissolving effect
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/02Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness
    • G01B11/06Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness for measuring thickness ; e.g. of sheet material
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/02Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
    • G01N27/04Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance
    • G01N27/06Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance of a liquid
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/304Mechanical treatment, e.g. grinding, polishing, cutting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67017Apparatus for fluid treatment
    • H01L21/67028Apparatus for fluid treatment for cleaning followed by drying, rinsing, stripping, blasting or the like
    • H01L21/6704Apparatus for fluid treatment for cleaning followed by drying, rinsing, stripping, blasting or the like for wet cleaning or washing
    • H01L21/67051Apparatus for fluid treatment for cleaning followed by drying, rinsing, stripping, blasting or the like for wet cleaning or washing using mainly spraying means, e.g. nozzles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67017Apparatus for fluid treatment
    • H01L21/67028Apparatus for fluid treatment for cleaning followed by drying, rinsing, stripping, blasting or the like
    • H01L21/6704Apparatus for fluid treatment for cleaning followed by drying, rinsing, stripping, blasting or the like for wet cleaning or washing
    • H01L21/67057Apparatus for fluid treatment for cleaning followed by drying, rinsing, stripping, blasting or the like for wet cleaning or washing with the semiconductor substrates being dipped in baths or vessels

Definitions

  • the present invention relates to a substrate processing apparatus for processing a substrate. More specifically, the present invention relates to a substrate processing apparatus provided with a component inspection unit and a method of inspecting a component of the substrate processing apparatus.
  • the substrates referred to in the present specification include, for example, semiconductor wafers, substrates for liquid crystal displays, substrates for plasma displays, substrates for organic EL, substrates for optical disks, substrates for magnetic disks, substrates for magneto-optical disks, photomask substrates, Ceramic substrates, substrates for solar cells, etc. are included.
  • the components of these devices are coated with resin such as PTFE (polytetrafluoroethylene) or PFA (tetrafluoroethylene-perfluoroalkylvinylether copolymer) for the purpose of corrosion resistance by the chemical solution used for substrate processing.
  • resin such as PTFE (polytetrafluoroethylene) or PFA (tetrafluoroethylene-perfluoroalkylvinylether copolymer) for the purpose of corrosion resistance by the chemical solution used for substrate processing.
  • resin such as PTFE (polytetrafluoroethylene) or PFA (tetrafluoroethylene-perfluoroalkylvinylether copolymer)
  • the above resin coating is used for the metal parts for the purpose of preventing metal contamination of the substrate caused by metal parts (for example, a titanium disk in a scrubber apparatus) and preventing particle generation.
  • a coating may be applied.
  • the inspection operation using an actual substrate is periodically performed, and the degree of deterioration of the part is measured by measuring the amount of particles, metal concentration, etc. generated by the inspection operation, and an abnormality (coating peeling) is found. If it is done, measures such as replacement of parts and recoating process are taken.
  • the present invention can detect deterioration of parts early in inspection of resin-coated parts of a substrate processing apparatus using a processing liquid, and cope with it before serious abnormality occurs in parts.
  • the present invention adopts the following configuration.
  • the substrate processing apparatus is a substrate processing apparatus that performs substrate processing with a processing liquid, and the inspection unit that inspects the deterioration of a resin-coated component that constitutes the substrate processing apparatus, and the resin coating
  • the early-deteriorated portion which is easily deteriorated as compared with the resin coating to be inspected in the part, and the inspection means detects the deterioration of the resin coating in the early-deteriorated portion, the deterioration detection Means for judging the degree of deterioration of the part to be inspected on the basis of the detection result of the deterioration detection means.
  • the early deterioration portion may be provided in a component to be inspected by the inspection unit.
  • a true inspection target portion when there is a predetermined portion (hereinafter, also referred to as a true inspection target portion) where it is desired to detect the coating deterioration early in the inspection target part, the progression of wear of the portion and the early deterioration portion The error of the degree is small, and it is possible to detect the deterioration of the true inspection object more accurately.
  • the deterioration detecting means includes metal concentration measuring means for measuring the concentration of a predetermined metal in the liquid in contact with the early deterioration portion, and based on the measured metal concentration, the resin coating in the early deterioration portion It may detect the deterioration of
  • the part is made of metal or if a metal base (primer) is used for the resin coating
  • the deterioration of the resin coating can be detected by measuring the metal concentration in the liquid. That is, in the case described above, when the coating is degraded, the metal component is eluted in the liquid, and by detecting the change in the metal concentration accompanying this, it is possible to grasp the appearance such as pinholes in the resin coating. Even when an abnormal condition occurs, it can be detected.
  • the metal concentration measurement means may be a resistivity meter. Since it is only necessary to know whether a metal component is detected in the liquid in the inspection, the presence or absence of the metal component in the liquid can be quickly and easily determined by performing measurement based on the conductivity of the liquid using a resistivity meter. Can be determined.
  • the liquid may be an apparatus cleaning liquid for cleaning the inside of the substrate processing apparatus, and / or the processing liquid.
  • the deterioration detection means includes a photographing means for photographing an image of the early deterioration unit, and a color information extraction means for acquiring color information from image data photographed by the photographing means, and the color information acquisition means
  • the deterioration of the resin coating in the early deterioration portion may be detected from the color information acquired by
  • the color information may include values of RGB components.
  • RGB components can be easily converted to other color spaces by a known method.
  • the deterioration detection means includes a thickness measurement means for measuring the thickness of the early deterioration portion, and detects deterioration of the resin coating in the early deterioration portion from the thickness of the early deterioration portion measured by the thickness measurement means. It may be
  • the surface of the resin coating layer may be blistered in some places (ie, the thickness may increase) or the resin coating may be peeled off (ie, the thickness may be decreased). Therefore, the deterioration phenomenon can be detected by measuring the thickness of the early deterioration portion as described above.
  • the thickness measuring means may be a laser displacement meter. With such a configuration, it is possible to perform measurement with high accuracy by the non-contact method.
  • the inspection means may determine the degree of deterioration of the part to be inspected based on the comparison between the deterioration of the resin coating detected by the deterioration detection means and a predetermined threshold.
  • the threshold may be set in accordance with a difference in conditions including at least one of the specification of the substrate processing apparatus, the process of substrate processing, and the supply condition of the liquid. If these conditions differ, the degree of progress of deterioration of the resin coating, etc. will differ according to the difference, so by setting a threshold for each condition, a more accurate inspection should be carried out. Can.
  • the substrate processing apparatus further includes an output unit that outputs the degree of deterioration of the inspection target component determined by the inspection unit, and the output unit is configured to determine the degree of deterioration determined by the inspection unit. If the degree exceeds a predetermined reference, a warning signal may be output. According to such a configuration, it is possible to prevent the user from taking action such as replacement of parts at an early stage, that is, before the occurrence of the deterioration phenomenon in the true inspection object, and to prevent the continued use of the deteriorated parts. Can.
  • the resin coated portion in the early deterioration portion and the portion of the base on which the coating is applied may have different colors. With such a configuration, for example, in the case of detecting deterioration by an image, it is possible to easily detect that the resin coating on the early deterioration part has peeled off.
  • the component inspection method for a substrate processing apparatus is a method for inspecting deterioration of a resin-coated component that constitutes a substrate processing apparatus that performs substrate processing with a processing liquid, and the method for inspecting a component is Deterioration to detect the deterioration of the resin coating in the early deterioration area, and the early deterioration area disposing step, wherein the resin coating provides the early deterioration area which is easily deteriorated as compared with the resin coating to be inspected in the part It is characterized by having a detection step and a deterioration determination step of determining the degree of deterioration of the part to be inspected based on the detection result by the deterioration detection step.
  • the early deterioration portion may be provided to a component to be inspected.
  • the metal concentration of the liquid in contact with the early deterioration portion may be measured, and the deterioration of the resin coating in the early deterioration portion may be detected from the measured metal concentration.
  • the deterioration detection step an image of the early deterioration unit is photographed, color information is acquired from the photographed image data, and deterioration of the resin coating in the early deterioration unit is detected from the acquired color information. You may do it.
  • the thickness of the early deterioration portion may be measured, and the deterioration of the resin coating in the early deterioration portion may be detected from the measured thickness of the early deterioration portion.
  • the degree of deterioration of the component to be inspected may be determined based on the deterioration of the resin coating detected in the deterioration detection step and a predetermined threshold.
  • the component inspection method may further include a warning step of outputting a warning signal when the degree of deterioration determined in the deterioration determination step exceeds a predetermined reference.
  • an inspection means capable of detecting deterioration of parts early in the inspection of resin-coated parts of a substrate processing apparatus using a processing liquid and dealing with it before serious abnormality occurs in the parts. can do.
  • FIG. 1 is a schematic configuration view showing a substrate processing apparatus according to a first embodiment.
  • FIG. 2 is a schematic front view showing the main configuration of a processing tank in the substrate processing apparatus according to the first embodiment.
  • FIG. 3 is a schematic plan view showing the plate portion of the lifter and the substrate holding member.
  • FIG. 4 is a flow chart showing the flow of processing when setting the determination reference for detecting the deterioration phenomenon of the early deterioration part in the first embodiment.
  • FIG. 5 is a flow chart showing an example of the timing for performing the part deterioration determination process in the first embodiment.
  • FIG. 6 is a view showing an example in the case where the early deterioration portion is provided at another place.
  • FIG. 7 is a schematic block diagram showing a substrate processing apparatus according to the second embodiment.
  • FIG. 8 is a flow chart showing the flow of processing when setting the early deterioration detection reference in the second embodiment.
  • FIG. 9 is a flowchart showing an example of processing when carrying out inspection of parts in the second embodiment.
  • FIG. 10 is a schematic block diagram showing a substrate processing apparatus according to the third embodiment.
  • FIG. 11 is a graph showing the correlation between the metal concentration of the treatment liquid and the specific resistance value.
  • FIG. 12 is a flow chart showing the flow of processing when setting the early deterioration detection reference in the third embodiment.
  • FIG. 13 is a flowchart showing an example of processing when carrying out inspection of parts in the third embodiment.
  • FIG. 1 is a schematic configuration view showing a substrate processing apparatus 100 of the present embodiment
  • FIG. 2 is a schematic front view showing the main configuration of a processing tank 110 of the substrate processing apparatus 100
  • the substrate processing apparatus 100 is a so-called batch-type apparatus for storing the processing liquid in the processing tank 110 and immersing the substrate in the processing tank 110 using the lifter 130 for holding the substrate W to perform cleaning processing of the substrate W and the like. It is.
  • a plurality of substrates W hereinafter, a group of a plurality of substrates W are also referred to as a lot
  • the substrate processing apparatus 100 may be a multilayer type apparatus using different processing baths for each processing liquid, or a single-layer type apparatus capable of exchanging the processing liquid while holding the substrate W in the processing bath. It may be.
  • the substrate processing apparatus 100 includes a processing tank 110 including a dip tank 111 and an overflow tank 112, a processing liquid discharge nozzle 120 disposed in the processing tank, and a processing liquid supply source 125. , A lifter 130, a camera 140, a lighting device 245, a drainage recovery unit 150, and a control device 160.
  • each part of the lifter 130 and the immersion tank 111 are coated with a resin to prevent erosion by the chemical solution. And has a coating layer on the surface. Since metal is used as the base of the coating, if the coating is peeled off or blisters occur on the surface due to corrosion by a chemical solution, the metal component of the base is eluted in the treatment solution, and metal contamination of the substrate occurs. Occur.
  • PCTFE polychlorotrifluoroethylene
  • ECTFE chloro trifluoroethylene ⁇ ethylene copolymer
  • PFA tetrafluoroethylene ⁇ perfluoroalkyl vinyl ether copolymer
  • PTFE Polytetrafluoroethylene
  • the treatment liquid discharge nozzles 120 are provided on both sides of the bottom of the immersion tank 111, and supply the treatment liquid such as various chemical solutions and pure water into the immersion tank 111.
  • the treatment liquid discharge nozzle 120 is a cylindrical nozzle extending along the longitudinal direction of the treatment tank 110, and includes a plurality of discharge holes. Further, the treatment liquid discharge nozzle 120 is connected to the treatment liquid supply source 125 outside the treatment tank 110, and a predetermined treatment liquid is supplied from the treatment liquid supply source 125.
  • the treatment liquid discharge nozzle 120 may be provided with one slit-shaped discharge port instead of the plurality of discharge holes.
  • processing liquid is used in the meaning including a chemical solution and pure water.
  • processing solution includes a coating solution such as a photoresist solution for film formation, a chemical solution for removing an unnecessary film, a chemical solution for etching, and the like.
  • the processing liquid supplied from the processing liquid supply source 125 is discharged from the discharge holes of the processing liquid discharge nozzle 120 into the immersion tank 111.
  • the discharge holes are provided toward the central bottom of the immersion tank 111, and the processing liquid discharged from the processing liquid discharge nozzles 120 on both sides flows parallel to the bottom wall of the immersion tank 111, and eventually the bottom of the immersion tank 111. It collides at the center, and then a flow of the processing liquid directed upward is formed near the central portion of the immersion tank 111. Then, the treatment liquid supplied from the treatment liquid discharge nozzle 120 overflows from the upper portion of the immersion tank 111, and the overflowing treatment liquid is collected in the drainage recovery unit 150 in communication with the bottom of the overflow tank 112. Be done.
  • the lifter 130 is a mechanism for immersing the substrate W in the processing liquid stored in the immersion tank 111.
  • the lifter 130 is provided in a cantilever shape on the elevation driving source 131, the lifter arm 132, the plate portion 133 connected to the lifter arm, and the plate portion 133, and three substrate holding members (one for holding the substrate W A central holding member 134 and two side holding members 135A, 135B) are provided.
  • the central holding member 134 is in contact with the substrate outer edge positioned vertically downward from the center of the substrate W held in a posture in which the upper and lower surfaces are positioned in the horizontal direction (hereinafter also referred to as a standing posture).
  • the side holding members 135A and 135B are disposed at equal distances from the center holding member 134 on both sides along the outer edge of the substrate W held in the upright position, with the center holding member 134 in between.
  • the upper end of the central holding member 134 and the lower ends of the side holding members 135A and 135B are arranged so as to have a predetermined interval in the vertical direction.
  • FIG. 3 is a schematic plan view of the plate portion 133 of the lifter 130 and the three substrate holding members.
  • a plurality of grooves for holding the substrate W in a standing posture in which the outer edge portion of the substrate W is fitted, are provided with a plurality of grooves at predetermined intervals in the longitudinal direction.
  • the groove of the sliver portion K is formed with an appropriate width to hold the substrate W, when the resin coating is worn away and the width expands due to the damage by the chemical solution, the substrate W can be in a normal posture. At this time, it becomes impossible to hold the substrate W, and a problem occurs in which adjacent substrates W are in contact with each other.
  • the lifter arm 132, the plate portion 133, and the substrate holding members 134, 135A, and 135B can be integrally lifted and lowered in the vertical direction by the lifting and lowering drive source 131.
  • the lifter 130 immerses the plurality of substrates W held in parallel by the three substrate holding members at predetermined intervals in the processing liquid stored in the immersion tank 111, and the upper side of the processing tank 110. It can be raised and lowered between a position where substrate transfer with the transfer robot is performed.
  • various known mechanisms such as a ball screw mechanism, a belt mechanism, an air cylinder and the like can be adopted as the elevation drive source 131.
  • the plate portion 133 of the lifter 130 is provided with an early deterioration portion E1 in which the film thickness of the resin coating is thinner than the other portions.
  • the early deterioration portion E1 is applied with a resin coating with a thickness of 100 micrometers.
  • the camera 140 is disposed on the wall surface in the substrate processing apparatus 100 so that the early deterioration portion E1 of the lifter 130 can be photographed.
  • the camera 140 is provided with a light receiving element such as a CCD image sensor, for example, and in each light receiving element, light is converted into charge according to the amount of light received.
  • the camera 140 includes three CCD image sensors for R, G and B color components, and the charge output from each light receiving element is used as an output signal (photographing data) as a control device. It is input to 160.
  • the illumination device 145 is disposed above the device capable of illuminating the inside of the substrate processing apparatus 100, and a general light source such as an LED or a fluorescent lamp can be used, but the light to be emitted is white light. Is desirable.
  • the drainage recovery unit 150 recovers the treatment liquid overflowing from the immersion tank 111 into the overflow tank 112.
  • the drainage collected in the drainage collection unit 150 is subjected to purification processing, and then sent to the treatment liquid supply source 125 to be circulated and used.
  • the apparatus may be configured to be discharged out of the apparatus without performing the purification process of the drainage.
  • the hardware configuration of the control device 160 is similar to that of a general computer. That is, an input unit such as a keyboard, an output unit such as a monitor, a central processing unit (CPU), a read only memory (ROM), a random access memory (RAM), a mass storage device, and the like are provided.
  • the CPU of the control device 160 executes a predetermined processing program to control each operation mechanism such as the transfer robot of the substrate processing apparatus 100, the processing liquid discharge nozzle 120, and the lifter 130, and the processing in the substrate processing apparatus 100 is performed. .
  • the determination unit 161 performs an image process on the image of the early deterioration unit E1 captured by the camera 140 to determine the deterioration of the components of the substrate processing apparatus 100 (ie, Perform parts inspection).
  • the signal processing unit 162 acquires values of RGB color components from the image acquired by the camera 140. Specifically, a signal output from the camera 140 is received, and shading correction is performed on each of the R, G, and B color components to correct variation in output level of each light receiving element.
  • the luminance value for each of the R, G, and B color components of each pixel after shading correction is a value used for determination, and has a value range of 0 to 255, for example.
  • the inspection reference storage unit 163 is configured by the above-described RAM or magnetic disk, and the determination threshold used for the determination by the determination unit 161, the inspection reference, data of a new part image captured by the camera 140, and a deteriorated part sample image Store data, etc.
  • the output unit 164 outputs various types of information including the inspection result.
  • the output destination of information is typically a display device such as a monitor, it outputs information to a printing device, outputs a message or an alarm from a speaker, or sends a message to a user terminal by e-mail or the like. It may be transmitted or information may be transmitted to an external computer.
  • the determination unit 161 performs an inspection based on the image captured by the camera 140 as to whether or not the early degradation unit E1 is degraded. More specifically, the deterioration determination is performed based on color information of RGB color components obtained from the image data of the early deterioration unit E1.
  • the early deterioration portion E1 is the target of the deterioration determination
  • the true inspection target portion is the other portion, for example, the comb portion K of the lifter 130 or the like.
  • the scissor portion K of the lifter 130 is in contact with the processing liquid during substrate processing, but the early deterioration portion E1 may be provided at a position not in contact with the processing liquid during substrate processing to avoid substrate contamination if possible. desirable.
  • the early deterioration portion E1 may be provided at a position not in contact with the processing liquid during substrate processing to avoid substrate contamination if possible. desirable.
  • the early deterioration portion E1 proceeds due to chemical vapor generated in the substrate processing apparatus, even during substrate processing, such as the early deterioration portion E1 above the lifter 130, the back plate of the lifter 130 and the immersion tank 111. Even if the early deterioration portion E1 is disposed at a position not in direct contact with the processing liquid, the deterioration progresses by the chemical vapor.
  • the early-deteriorated portion E1 is set to have a thinner coating film thickness than the other portions, whereby the deterioration phenomenon (for example, resin loss, peeling, blistering, etc.) earlier than the other portions. Elution of metal components occurs). For this reason, when such a deterioration phenomenon occurs in the early deterioration part E1, if this can be detected, replacement of parts, recoating of resin, or the like before the deterioration phenomenon occurs in the true inspection object part And other measures can be taken. Then, the detection of the deterioration phenomenon of the early deterioration portion E1 may be performed by determination based on a reference using a predetermined threshold (hereinafter referred to as an early deterioration detection reference) as described below.
  • a predetermined threshold hereinafter referred to as an early deterioration detection reference
  • a warning may be issued from the output unit 164.
  • the warning issued from the output unit 164 may be an error screen displayed on the monitor, an alarm issued from a speaker, or blinking of an alarm lamp.
  • FIG. 4 is a flow chart showing a flow of processing when setting a determination reference for detecting the deterioration phenomenon of the early deterioration portion E1.
  • an early deterioration portion is provided to the parts to be inspected (step S101).
  • the early deterioration unit is photographed by the camera 140, and the signal processing unit 162 acquires values of R, G, and B (initial RGB values) (step S102).
  • the initial RGB values are stored in the inspection standard storage unit 163 (step S103).
  • a deterioration determination threshold is set based on the initial RGB values of the early deterioration unit (step S102).
  • the threshold may be, for example, a value obtained by adding (or subtracting) a predetermined margin from the initial RGB value.
  • the deterioration determination threshold is defined in the set of pixels indicating the early-deteriorated portion in the image acquired by the camera 140. That is, in the set of pixels indicating the early-deteriorated portion in the image acquired by the camera 140, it is determined how many pixels that are equal to or greater than the deterioration determination threshold will cause a warning to be issued.
  • early deterioration detection is performed so as to issue a warning when a pixel having a value equal to or greater than the deterioration determination threshold in the set of pixels indicating the inspection target part exceeds a predetermined number.
  • a reference is set (step S105). Then, the early deterioration detection criteria set in this way are registered in the inspection criteria storage unit 163 (step S106).
  • the degree of progress of component deterioration differs depending on the type of the component, the location of the component, the material of the component, the use of the apparatus (chemical solution used), and the like. Therefore, the deterioration determination threshold may be set for each combination of the various conditions using a data table.
  • the outline of the normal operation of the substrate W in the substrate processing apparatus 100 is determined by placing the lot of unprocessed substrate W received from the outside by the transfer robot on the lifter 130 and setting this in the immersion tank 111 in which the processing liquid is stored. After immersion for a period of time, the transfer robot receives and takes out the processed lot and returns it to the outside.
  • the component deterioration determination is performed at a timing when the substrate processing apparatus 100 is not performing the immersion processing of the substrate W.
  • FIG. 5 is a flow chart showing an example of the timing for carrying out the part deterioration determination process.
  • the signal processing unit 162 acquires the RGB values of the pixels of the early deterioration unit E1 from the data of the captured image (step S112).
  • the determination unit 161 compares the early deterioration detection reference stored in the inspection reference storage unit 163 with the acquired RGB value (step S113), and when the RGB value does not exceed the early deterioration detection reference, Substrate processing for one lot is performed (step S114). On the other hand, when the acquired RGB value exceeds the determination reference, the output unit 164 outputs a warning notifying that the component is deteriorated (step S115).
  • the timing of performing the component deterioration determination process is not limited to this, and may be performed after substrate processing in units of one lot is completed.
  • the early deterioration portion E1 is provided in the plate portion 133 of the lifter 130 at a position to be immersed in the treatment liquid of the immersion tank 111, but is provided at a location other than this It is also good.
  • An example in the case of providing an early degradation part in another place is shown in FIG.
  • the early deterioration portion E2 is provided in a portion of the plate portion 133 of the lifter 130 which is not immersed in the treatment liquid.
  • the part enclosed with the dashed-dotted line in FIG. 6 has shown the part immersed in a process liquid.
  • Some chemical solutions used for substrate processing may be heated and used according to the purpose of processing.
  • the plate portion 133 of the lifter 130 is a portion not immersed in the processing solution , Attacked by the vapor of the heated chemical solution. Therefore, by providing the early deterioration portion E2 in such a place and setting the early deterioration detection criteria reflecting the correlation with the degree of deterioration of the true inspection object portion immersed in the chemical solution, the true inspection object It is possible to detect the deterioration before the deterioration phenomenon occurs in the part.
  • the deterioration phenomenon occurs in the early deterioration part E2 by providing the early deterioration part E2 at a position not immersed in the treatment liquid, the deterioration phenomenon adversely affects the treatment liquid (generation of particles, elution of metal, etc. ) Can be reduced.
  • a plurality of early deterioration parts may be provided at various positions, or the entire plate part 133 may be used as the early deterioration part.
  • a new part having (only) a function as an early deterioration portion may be installed in the immersion tank 111.
  • the early deterioration portion may be configured such that the color of the resin coating layer and the color of the underlying metal portion are different colors (more preferably, colors in a complementary color relationship). By doing this, it becomes easy to detect a change in color (RGB value) when coating peeling occurs, and it becomes possible to carry out more efficient inspection.
  • FIG. 7 is a schematic configuration view showing a substrate processing apparatus 200 of the present embodiment.
  • the substrate processing apparatus 200 according to the present embodiment has substantially the same configuration as that of the first embodiment, and differs in the method of detecting the deterioration phenomenon in the early deterioration portion E1.
  • the parts that are processes are given the same reference numerals, and detailed descriptions thereof will be omitted.
  • the substrate processing apparatus 200 in the present embodiment differs from the camera 140 in the first embodiment as a means for detecting the deterioration phenomenon in that the configuration is different in that it has a laser displacement meter 170. .
  • the configuration of the early deterioration portion E1 is different from that of the first embodiment as described later.
  • the configuration of the early deterioration portion E1 in the present embodiment will be described.
  • the place where the early deterioration portion E1 is provided is the plate portion 133 of the lifter 130 as in the case of the first embodiment. More specifically, when the lifter 130 is lowered to a position where the substrate W is subjected to the immersion treatment in the immersion tank 111, the position is in contact (immersion) in the treatment liquid.
  • the material of the resin used for coating is different from that of the other parts, and a resin of a material having higher permeability than the resin of the other parts is used.
  • PCTFE is used as a coating resin of locations other than the early deterioration part E1
  • PFA is used as a coating resin for the early deterioration part E1.
  • the laser displacement meter 170 is a displacement sensor that measures the distance to an object by a method of triangular distance measurement.
  • the laser displacement meter 170 is disposed at a position where the irradiation light is horizontally irradiated toward the early deterioration portion E1 in a state where the lifter 130 is at the standby position located at the upper part of the processing tank 110.
  • the distance to the deteriorated portion E1 is measured.
  • the value of the distance measured in this manner is input to the signal processing unit 162 of the control device 160.
  • the coating film thickness of the early deterioration portion 1 also changes. That is, when blistering occurs, the thickness of the portion increases, and when the resin coating is peeled or worn out, the thickness of the portion decreases.
  • the distance measured by the laser displacement meter 170 is the thickness of the coating film thickness of the early deterioration portion E1. It fluctuates according to the change. That is, if the coating film thickness of the early deterioration part E1 increases, the measurement distance becomes short, and conversely, if the coating film thickness becomes thin, the measurement distance becomes long. For this reason, the thickness of the early deterioration part E1 can be measured based on the distance measured by the laser displacement meter 170.
  • the inspection of parts in the present embodiment is performed in the same flow as the processing of the first embodiment except that the inspection of parts is performed based on the distance between the laser displacement meter 170 and the early deterioration portion E1 (the thickness of the early deterioration portion E1). It will be. That is, the determination unit 161 of the control device 160 compares the predetermined threshold (early deterioration detection reference) with the value measured by the laser displacement meter 170 to determine the degree of deterioration of the true inspection target part. to decide.
  • the setting process of the early deterioration detection criterion in the present embodiment will be described below.
  • FIG. 8 is a flowchart showing the flow of processing when setting the early deterioration detection reference in the present embodiment.
  • an early-deteriorated portion is provided on the part to be inspected (for example, the lifter 130) (step S201).
  • the distance to the early deterioration portion is measured by the laser displacement meter 170, and an initial distance value (i.e., an initial film thickness) is acquired (step S202).
  • the initial distance value is stored in the inspection standard storage unit 163 (step S203).
  • the deterioration determination threshold is set based on the initial distance value of the early deterioration unit (step S204).
  • the threshold may be, for example, a value obtained by adding a predetermined margin to the initial distance value (upper limit threshold) and a reduced value (lower limit threshold).
  • the deterioration determination threshold is used as the early deterioration detection reference as it is.
  • the early deterioration detection criteria set in this way are registered in the inspection criteria storage unit 163 (step S205).
  • FIG. 9 is a flow chart showing an example of processing when carrying out inspection of parts in the present embodiment.
  • the lifter 130 is raised and moved to the standby position (steps S211 and S212). In that state, the distance to the early deterioration portion E1 is measured by the laser displacement meter 170, and the measured value is input to the control device 160 (step S213).
  • the determination unit 161 compares the threshold value stored in the inspection standard storage unit 163 with the value of the distance (step S214), and the measured distance is within the range of the upper threshold and the lower threshold. Ends the flow as it is.
  • the output unit 164 transmits a warning signal for notifying deterioration of the component (step S215).
  • one laser displacement meter 170 is used to measure the distance to the early deterioration portion E1 (that is, the film thickness of the early deterioration portion E1)
  • a plurality of laser displacement meters are used.
  • the film thickness of the early deterioration part E1 may be measured.
  • a second laser that irradiates a laser to a portion corresponding to the early deterioration portion E1 on the surface opposite to the surface on which the early deterioration portion E1 of the plate portion 133 of the lifter 130 is provided
  • a displacement gauge is provided to measure the distance from both the front and back of the plate portion 133.
  • FIG. 10 is a schematic block diagram showing a substrate processing apparatus 300 of this embodiment.
  • the substrate processing apparatus 300 according to the present embodiment has substantially the same configuration as that of the first embodiment, and differs in the method of detecting the deterioration phenomenon in the early deterioration portion E1.
  • the parts that are processes are given the same reference numerals, and detailed descriptions thereof will be omitted.
  • the substrate processing apparatus 300 in the present embodiment is different in that it has a resistivity meter 180 in place of the camera 140 of the first embodiment as a detecting means of the deterioration phenomenon. .
  • the deterioration inspection of the components using the resistivity meter 180 is demonstrated.
  • the resistivity meter 180 is provided with a sensor for measuring the specific resistance value of the liquid, and the sensor can be brought into contact with the treatment liquid (preferably to be immersed when the treatment liquid is supplied to the immersion tank 111). ), Installed on the inner wall of the immersion tank 111.
  • the sensor part be a material that is excellent in chemical resistance and heat resistance.
  • the specific resistance value in the processing liquid is measured by the specific resistance meter 180, and the measured value is input to the signal processing unit 162 of the control device 160.
  • the specific resistance value in the processing liquid there is a strong correlation between the specific resistance value in the processing liquid and the metal (ion) concentration. That is, when the resin coating is deteriorated, the metal component elutes in the liquid (treatment liquid) in contact with the portion, so the metal ion concentration of the liquid increases, and the resistivity of the treatment liquid is inversely proportional to this. The value decreases. For this reason, the amount of the metal component in the liquid can be grasped by acquiring the specific resistance value.
  • the determination unit 161 determines whether or not deterioration has occurred in the early deterioration unit E1 based on the specific resistance value of the processing liquid acquired by the resistivity meter 180 (that is, true Determine the degree of deterioration of the inspection target part). Specifically, a predetermined threshold (early deterioration detection reference) is compared with the specific resistance value measured by the specific resistance meter 180. Such setting processing of the early deterioration detection criteria will be described below.
  • FIG. 12 is a flowchart showing the flow of processing when setting the early deterioration detection reference in the present embodiment.
  • an early deterioration portion is provided to the part to be inspected (for example, the lifter 130) (step S301).
  • the treatment liquid is stored in the immersion tank 111, and the lifter 130 is lowered so that the early deterioration unit E1 is immersed in the treatment liquid, and in this state, the immersion tank 111 is stored by the resistivity meter 180.
  • the specific resistance value of the processing solution is measured (step S302).
  • storage part 163 step S303.
  • a value obtained by subtracting a predetermined margin based on the initial specific resistance value is registered as a threshold value in the inspection standard storage unit 163 (step S304).
  • the threshold is used as the early deterioration detection reference as it is.
  • the above threshold value is set relatively close to the initial specific resistance value. It is good.
  • the timing of performing the inspection, the flow of the processing of the inspection, and the like are substantially the same as those of the first embodiment, and the inspection can be performed before and after the substrate processing in lot units.
  • the inspection can be performed even during processing of the substrate W. The flow of the process will be described below.
  • FIG. 13 is a flow chart showing an example of processing when carrying out inspection of parts in the present embodiment.
  • the lifter 130 is lowered to a position where the early deterioration unit E1 is immersed in the processing liquid (step S311).
  • the specific resistance value in the processing liquid is measured by the specific resistance meter 180, and the value is input to the control device 160 (step S312).
  • the determination unit 161 compares the threshold value stored in the inspection standard storage unit 163 with the acquired specific resistance value (step S313), and when the specific resistance value exceeds the threshold, the substrate processing is performed. To continue (S314).
  • the output unit 164 sends a warning signal notifying that the component is abnormal (step S115).
  • the resistivity meter 180 is installed in the immersion tank 111.
  • the position at which the resistivity meter is installed is not necessarily limited to that in the immersion tank 111, and the liquid in contact with the early deterioration portion E1. It may be installed anywhere as long as it can measure the specific resistance value of. For example, it may be installed at the bottom of the overflow tank 112 or may be installed in the drainage recovery unit 150.
  • the present invention can also be applied to a so-called single wafer processing type substrate processing apparatus. That is, an early deterioration portion is provided in a component (for example, a spin chuck) or the like of a single wafer type substrate processing apparatus, and the deterioration of the early deterioration portion is detected by the measuring means described in any of the above embodiments. Deterioration of the true inspection target part can be grasped at an early stage.
  • a component for example, a spin chuck
  • Deterioration of the true inspection target part can be grasped at an early stage.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Pathology (AREA)
  • Immunology (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Analytical Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Coating Apparatus (AREA)
  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)
  • Cleaning Or Drying Semiconductors (AREA)

Abstract

本発明に係る基板処理装置は、処理液により基板処理を行う基板処理装置であって、該基板処理装置を構成する、樹脂コーティングされた部品の劣化を検査する検査手段と、前記樹脂コーティングが、前記部品において検査されるべき樹脂コーティングと比較して劣化しやすく施された早期劣化部と、を有しており、前記検査手段は、前記早期劣化部における樹脂コーティングの劣化を検知する、劣化検知手段を備え、該劣化検知手段による検知結果に基づいて、前記検査対象の部品の劣化の程度を判定する。

Description

基板処理装置、及び基板処理装置の部品検査方法
 本発明は基板を処理する基板処理装置に関する。より具体的には、部品の検査手段を備えた基板処理装置及び、基板処理装置の部品を検査する方法に関する。なお、本明細書でいう基板には、例えば、半導体ウェハ、液晶ディスプレイ用基板、プラズマディスプレイ用基板、有機EL用基板、光ディスク用基板、磁気ディスク用基板、光磁気ディスク用基板、フォトマスク基板、セラミック基板、太陽光電池用基板などが含まれる。
 従来から、この種の装置として、処理液を処理槽に貯留し、基板を保持するリフターを用いて、基板を該処理槽に浸漬して基板の洗浄を行ういわゆるバッチ型の装置と、基板を水平に保持して回転させ、該回転する基板表面にノズルから処理液を吐出する、いわゆる枚葉型の装置が広く知られている(例えば、特許文献1、特許文献2)。
 これらの装置の構成部品には、基板処理に用いる薬液による耐蝕を目的として、PTFE(ポリテトラフルオロエチレン)、PFA(テトラフルオロエチレン・パーフルオロアルキルビニルエーテル共重合体)などの樹脂コーティングが施されている。例えば、バッチ式の装置であれば、薬液に浸漬されるリフターは石英からなる部品本体に、金属製の下地を設けた上で上記の樹脂コーティングが施されて、薬液による部品本体の劣化を防止している。また、枚葉型の装置においても、金属製の部品(例えば、スクラバ装置におけるチタンディスクなど)を原因とする基板の金属汚染の防止、パーティクル発生の防止などを目的として、金属製部品に上記樹脂コーティングが施されることもある。
 上記の樹脂コーティングは長期間使用することにより、ピンホールなどの異常が発生し、これを原因として、樹脂の剥離によるパーティクルを生じたり、樹脂コーティングの下地部分の金属が溶出して金属汚染が生じたりするという問題がある。特に、バッチ式装置のリフターにおいて、基板を保持するクシバ部のコーティングが減耗して溝の幅が大きくなると、正しく基板を保持できなくなり、隣り合って保持されている基板同士が接触する要因となる。
 このため、従来から定期的に実基板を用いた検査運転を行い、該検査運転により生じるパーティクルの量、金属濃度等を計測することによって部品の劣化度を測定し、異常(コーティング剥がれ)が発見された場合には、部品の交換、再コーティング処理、などの対策がなされている。
 しかしながら、このような方法では、適時な部品異常の検知は困難であるため、実際に装置部品に異常が生じてから、検査で異常が検出されるまでの間は、異常のある状態で基板処理が行われてしまうという問題があった。また、コーティングの剥がれがひどくなっている場合には、部品に対して再コーティング処理を行うことができないため、装置の修繕コストが増加してしまう。さらに、検査のためだけに装置を運転する必要がある(装置稼働率の低下)といった問題も生じている。
特開2002-96012号公報 特開2003-92343号公報
 本発明は上記の様な問題に鑑み、処理液を用いる基板処理装置の樹脂コーティング部品の検査において、早期に部品の劣化を検出し、部品に重大な異常が生じる前に対応することが可能となる検査手段を提供することを目的とする。
 前記の目的を達成するために、本発明は以下の構成を採用する。
 本発明に係る基板処理装置は、処理液により基板処理を行う基板処理装置であって、該基板処理装置を構成する、樹脂コーティングされた部品の劣化を検査する検査手段と、前記樹脂コーティングが、前記部品において検査されるべき樹脂コーティングと比較して劣化しやすく施された早期劣化部と、を有しており、前記検査手段は、前記早期劣化部における樹脂コーティングの劣化を検知する、劣化検知手段を備え、該劣化検知手段による検知結果に基づいて、前記検査対象の部品の劣化の程度を判定することを特徴とする。
 このような構成であると、樹脂コーティングの劣化が処理対象基板又は装置に悪影響を及ぼす部品(又はその特定箇所)の劣化を早期に検出することが可能になる。即ち、樹脂コーディングの劣化が生じても基板や処理装置に対する悪影響が小さな部位に、敢えてコーティングが劣化し易い箇所を設けておき、当該劣化し易い箇所の劣化現象を検出するようにしておくと、他の部分については実際に劣化を生じる前にこれを検知することが可能になる。これによって、基板又は装置への重大な悪影響を生じる前に、部品を交換する等の対応を取ることが可能になる。
 また、前記早期劣化部は、前記検査手段による検査対象となる部品に設けられていてもよい。このような構成であると、検査対象部品において早期にコーティングの劣化を検出したい所定の箇所(以下、真の検査対象部ともいう)がある場合に、該箇所と早期劣化部との減耗の進行度の誤差が小さく、より正確に真の検査対象部の劣化を検知することが可能になる。
 また、前記劣化検知手段は、前記早期劣化部に接触する液体中の所定の金属の濃度を計測する、金属濃度計測手段を備え、該計測された金属の濃度から、前記早期劣化部における樹脂コーティングの劣化を検知するものであってもよい。
 部品が金属製であるか、又は、樹脂コーティングに金属の下地(プライマー)が用いられていれば、前記液体中の金属濃度を計測することで、樹脂コーティングの劣化を検知することができる。即ち、上記のような場合、コーティングが劣化した場合には、前記液体中に金属成分が溶出するため、これに伴う金属濃度の変化を検出することで、樹脂コーティングにピンホールなどの外観上把握しにくい異常が生じた場合であっても、検知することができる。
 また、前記金属濃度計測手段は、比抵抗計であってもよい。検査においては前記液体中から金属成分が検出されるか否かが判明すればよいため、比抵抗計によって液体の導電性に基づく測定を行うことで、迅速かつ容易に液体中の金属成分の有無を判定することが可能になる。
 また、前記液体は、前記基板処理装置内部を洗浄する装置洗浄液、及び/又は、前記処理液であってもよい。このような構成であれば、例えば、枚葉型装置のチャンバーを洗浄する、チャンバー洗浄レシピを実行している際に、部品の検査も併せて実施することなどが可能になり、装置の稼働率の向上に寄与することができる。
 また、前記劣化検知手段は、前記早期劣化部の画像を撮影する撮影手段と、該撮影手段により撮影された画像データから色情報を取得する色情報抽出手段と、を備え、前記色情報取得手段により取得された色情報から、前記早期劣化部における樹脂コーティングの劣化を検知するものであってもよい。
 このように画像データに基づいて劣化を検知する構成であると、前記早期劣化部の監視を常時行うことも可能になるため、即時性に優れた検査を実施することができる。
 また、前記色情報は、RGB成分の値を含むものであってもよい。このようにRGB色空間により検査対象の色を特定することで、ほぼ人間の知覚と同等の色の違いを反映させた画像情報に基づく判定を行うことができるため、例えば白黒に二値化された画像情報等に比べて、精度良く部品の検査を行うことが可能になる。なお、RGB成分の値は他の色空間への変換も公知の方法により容易に行うことができる。
 また、前記劣化検知手段は、前記早期劣化部の厚みを測定する、厚み測定手段を備え、該厚み測定手段により測定された早期劣化部の厚みから、前記早期劣化部における樹脂コーティングの劣化を検知するものであってもよい。
 樹脂コーティングが劣化すると、例えば、樹脂コーティング層の表面が水ぶくれ状に所々浮き上がる現象(ブリスター)が発生したり(即ち厚みが増加する)、また、樹脂コーティングが剥がれてしまったり(即ち厚みが減少する)する。このため、上記のように早期劣化部の厚みを測定することによって、劣化現象を検知することができる。
 また、前記厚み測定手段は、レーザー変位計であってもよい。このような構成であると、非接触の方式により、高い精度での測定を行うことが可能になる。
 また、前記検査手段は、前記劣化検知手段が検知した前記樹脂コーティングの劣化と所定の閾値との対比に基づいて前記検査対象の部品の劣化の程度を判定するものであってもよい。
 このように、予め定められた閾値との対比によって劣化の程度を判定することによって、オペレーターの知識レベル、習熟度等に関係無く、均質で即時性のある検査を実施することができる。
 また、前記閾値は、前記基板処理装置の仕様、前記基板処理のプロセス、前記液体の供給条件、のうち少なくとも一つを含む条件の違いに応じて設定されていてもよい。これらの条件が異なれば、その違いに応じて、樹脂コーティングの劣化の進行度合いなどが異なってくるため、それぞれの条件毎に閾値を設定しておくことで、より精度の高い検査を実施することができる。
 また、前記基板処理装置は、前記検査手段により判定された、検査対象部品の劣化の程度を出力する、出力手段をさらに有しており、前記出力手段は、前記検査手段により判定された劣化の程度が所定の基準を超えた場合には、警告信号を出力するものであってもよい。このような構成によると、早期に、即ち真の検査対象部に劣化現象が生じる前に、ユーザーが部品の交換などの対応を取ることができ、劣化した部品を使用し続けることを防止することができる。
 また、前記早期劣化部における樹脂コーティング部分と、該コーティングが施された下地の部分とが、異なる色であってもよい。このような構成であると、例えば画像による劣化検知を行う場合には、早期劣化部の樹脂コーティングが剥がれたことを容易に検知することが可能になる。
 本発明に係る、基板処理装置の部品検査方法は、処理液により基板処理を行う基板処理装置を構成する、樹脂コーティングされた部品の劣化を検査する方法であって、前記基板装置内に、前記樹脂コーティングが、前記部品において検査されるべき樹脂コーティングと比較して劣化しやすく施された早期劣化部を設ける、早期劣化部配置ステップと、前記早期劣化部における樹脂コーティングの劣化を検知する、劣化検知ステップと、該劣化検知ステップによる検知結果に基づいて、検査対象部品の劣化の程度を判定する、劣化判定ステップと、を有することを特徴とする。
 また、前記早期劣化部配置ステップでは、前記早期劣化部を、検査対象となる部品に設けるようにしてもよい。
 また、前記劣化検知ステップでは、前記早期劣化部に接触する液体の金属濃度を計測し、該計測された金属濃度から前記早期劣化部における樹脂コーティングの劣化を検知するようにしてもよい。
 また、前記劣化検知ステップでは、前記早期劣化部の画像を撮影して、該撮影された画像データから色情報を取得し、該取得された色情報から前記早期劣化部における樹脂コーティングの劣化を検知するようにしてもよい。
 また、前記劣化検知ステップでは、前記早期劣化部の厚みを測定し、該測定された早期劣化部の厚みから前記早期劣化部における樹脂コーティングの劣化を検知するようにしてもよい。
 また、前記劣化判定ステップでは、前記劣化検知ステップにおいて検知された前記樹脂コーティングの劣化と、所定の閾値とに基づいて、前記検査対象の部品の劣化の程度を判定するようにしてもよい。
 また、前記の部品検査方法は、前記劣化判定ステップにおいて判定された劣化の程度が所定の基準を超えた場合には警告信号を出力する、警告ステップをさらに有するようにしてもよい。
 本発明によれば、処理液を用いる基板処理装置の樹脂コーティング部品の検査において、早期に部品の劣化を検出し、部品に重大な異常が生じる前に対応することが可能となる検査手段を提供することができる。
図1は、第1の実施例に係る基板処理装置を示す概略構成図である。 図2は、第1の実施例に係る基板処理装置における処理槽の要部構成を示す概略正面図である。 図3は、リフターの板部及び基板保持部材を示す概略平面図である。 図4は、第1の実施例における、早期劣化部の劣化現象を検出するための、判定基準を設定する際の処理の流れを示すフローチャートである。 図5は、第1の実施例における、部品劣化判定処理を実施するタイミングの一例を示すフローチャートである。 図6は、早期劣化部を他の場所に設ける場合の一例を示す図である。 図7は、第2の実施例に係る基板処理装置を示す概略構成図である。 図8は、第2の実施例における早期劣化検出基準を設定する際の処理の流れを示すフローチャートである。 図9は、第2の実施例における部品の検査を実施する際の処理の例を示すフローチャートである。 図10は、第3の実施例に係る基板処理装置を示す概略構成図である。 図11は、処理液の金属濃度と比抵抗値の相関関係を示すグラフである。 図12は、第3の実施例における早期劣化検出基準を設定する際の処理の流れを示すフローチャートである。 図13は、第3の実施例における部品の検査を実施する際の処理の例を示すフローチャートである。
 以下に図面を参照して、この発明を実施するための形態を、実施例に基づいて例示的に詳しく説明する。ただし、この実施例に記載されている構成部品の寸法、材質、形状、その相対配置などは、特に記載がない限りは、この発明の範囲をそれらのみに限定する趣旨のものではない。
 <実施例1>
 図1は本実施例の基板処理装置100を示す概略構成図、図2は基板処理装置100の処理槽110の要部構成を示す概略正面図である。基板処理装置100は、処理液を処理槽110に貯留し、基板Wを保持するリフター130を用いて、基板を該処理槽110に浸漬して基板Wの洗浄処理等を行ういわゆるバッチ型の装置である。基板処理装置100には、搬送ロボット(図示しない)によって、複数の基板W(以下、ひとまとまりの複数の基板Wをロットともいう)が装置内外に搬入出される。なお、基板処理装置100は、処理液毎に異なる処理槽を用いる多層式の装置であってもよいし、基板Wを処理槽内に保持したまま処理液を入れ換え可能な単層式の装置であってもよい。
 図1、及び図2に示すように、基板処理装置100は、浸漬槽111及びオーバーフロー槽112を備える処理槽110と、処理槽内に配置される処理液吐出ノズル120と、処理液供給源125と、リフター130と、カメラ140と、照明装置245と、排液回収部150、及び制御装置160を備えている。
 これらの各構成のうち、少なくとも処理液(及び該処理液の蒸気)と接触するもの、例えば、リフター130の各部及び浸漬槽111などには、薬液による侵蝕を抑止するために樹脂コーティングが施されており、表面にコーティング層を有している。該コーティングの下地として金属が用いられているため、薬液による侵蝕によってコーティングが剥がれたり、表面にブリスターが生じたりした場合には、下地の金属成分が処理液中に溶出し、基板の金属汚染が発生する。
 なお、コーティングに用いられる樹脂としては、例えば、PCTFE(ポリクロロトリフルオロエチレン)、ECTFE(クロロトリフルオエチレン・エチレン共重合体)、PFA(テトラフルオロエチレン・パーフルオロアルキルビニルエーテル共重合体)、PTFE(ポリテトラフルオロエチレン)などが挙げられる。
 処理液吐出ノズル120は、浸漬槽111の底部両側のそれぞれに設けられ、浸漬槽111内に各種薬液や純水等の処理液を供給するノズルである。処理液吐出ノズル120は、処理槽110の長手方向に沿って延びる円筒状のノズルであり、複数の吐出孔を備えている。また、処理液吐出ノズル120は、処理槽110外部の処理液供給源125に接続されており、所定の処理液が処理液供給源125から供給される。なお、処理液吐出ノズル120には、複数の吐出孔に代えて、1つのスリット状の吐出口を設けるようにしてもよい。
 なお、基板処理に用いられる薬液としては、例えばSPM(硫酸と過酸化水素水の混合液)、オゾン過水(オゾン、過酸化水素水の混合液)、SC1(アンモニア水と過酸化水素水の混合液)、SC2(塩酸と過酸化水素水の混合液)、FPM(フッ酸と過酸化水の混合液)、FOM(フッ酸とオゾン過水の混合液)、HF(フッ酸)、H3PO4(燐酸)などが挙げられる。なお、本明細書においては、「処理液」の語は、薬液と純水とを含む意味で用いられる。また、成膜処理のためのフォトレジスト液などの塗布液、不要な膜を除去するための薬液、エッチングのための薬液なども「処理液」に含む。
 処理液供給源125から供給された処理液は、処理液吐出ノズル120の吐出孔から浸漬槽111内に吐出される。ここで、吐出孔は浸漬槽111の中央底部に向かって設けられており、両側の処理液吐出ノズル120から吐出された処理液は浸漬槽111の底壁と平行に流れ、やがて浸漬槽111底部中央にて衝突し、その後浸漬槽111の中央部近傍に上方に向けた処理液の流れを形成することとなる。そして、処理液吐出ノズル120から供給された処理液は浸漬槽111の上部から溢れ出るようになっており、溢れ出た処理液はオーバーフロー槽112底部と連絡している排液回収部150に回収される。
 リフター130は、浸漬槽111に貯留されている処理液に基板Wを浸漬させる機構である。リフター130は、昇降駆動源131と、リフターアーム132と、リフターアームに接続される板部133、板部133に片持ち梁状に設けられ、基板Wを保持する3つの基板保持部材(1つの中央保持部材134と、2つの側方保持部材135A、135B)とを備えている。
 リフター130の基板保持部材のうち、中央保持部材134は、水平方向に上下面が位置する姿勢(以下、立姿勢ともいう)に保持された基板Wの中央から鉛直下方に位置する基板外縁と接して基板を保持するものである。側方保持部材135A、135Bは、立姿勢に保持された基板Wの外縁に沿って、中央保持部材134を中間として、その両側方に中央保持部材134から均等な距離の位置に配置される。そして、中央保持部材134の上端と、側方保持部材135A、135Bの下端とは、上下方向に所定の間隔が生じるように配置されている。
 図3は、リフター130の板部133及び上記3つの基板保持部材の概略平面図である。図3に示すように、基板保持部材のそれぞれは、基板Wの外縁部がはまり込んで基板Wを立姿勢で保持する複数の溝が長手方向に所定間隔で配設されているクシバ部Kを備えている。なお、クシバ部Kの溝は、基板Wを保持するために適切な幅で形成されているが、薬液によるダメージで樹脂コーティングが減耗し当該幅が広がってしまうと、基板Wを正常な立姿勢にて保持することが不可能になり、隣接する基板W同士が接触する不具合が発生する。
 リフターアーム132、板部133、各基板保持部材134、135A、135Bは、昇降駆動源131によって鉛直方向に一体的に昇降可能となっている。これによって、リフター130は3つの基板保持部材によって所定間隔にて平行に配列して保持された複数の基板Wを、浸漬槽111に貯留された処理液に浸漬する位置と、処理槽110の上方であって搬送ロボットとの基板受け渡しを行う位置との間で昇降させることができる。なお、昇降駆動源131には、ボールネジ機構、ベルト機構、エアシリンダなどの公知の種々の機構を採用することができる。
 また、リフター130の板部133には、樹脂コーティングの膜厚が他の部分よりも薄くなっている早期劣化部E1が設けられている。例えば、早期劣化部E1以外の箇所のコーティング膜厚が150マイクロメートルである場合、早期劣化部E1は100マイクロメートルの厚さで樹脂コーティングが施される。早期劣化部E1は、基板Wを浸漬槽111で浸漬処理する位置にリフター130を下降させた際に、処理液中に接触(浸漬)する位置に配置される。
 カメラ140はリフター130の早期劣化部E1を撮影可能なように、基板処理装置100内の壁面に配置される。カメラ140は、例えばCCDイメージセンサなどの受光素子を備えており、それぞれの受光素子では、受光量に応じて光が電荷に変換される。なお、本実施例では、カメラ140は、R、G及びBの各色成分用の3つのCCDイメージセンサを備えており、各受光素子から出力される電荷は、出力信号(撮影データ)として制御装置160に入力される。
 照明装置145は、基板処理装置100内を照明可能な装置の上方に配置され、例えばLED、蛍光灯等のように一般的な光源を用いることができるが、照射される光は白色光であることが望ましい。
 排液回収部150は、浸漬槽111からオーバーフロー槽112へと溢れ出た処理液を回収する。排液回収部150に回収された排液は、浄化処理された後、処理液供給源125へ送られて循環使用される。或いは、排液の浄化処理を行わずに、装置外へと排出するように構成してもよい。
 制御装置160のハードウェアとしての構成は一般的なコンピュータと同様である。即ち、キーボードなどの入力部、モニタなどの出力部、CPU(Central Processing Unit)、ROM(Read only memory)、RAM(Random access memory)及び、大容量記憶装置などを備える構成となっている。制御装置160のCPUが所定の処理プログラムを実行することによって、基板処理装置100の搬送ロボット、処理液吐出ノズル120、リフター130などの各動作機構が制御され、基板処理装置100における処理が行われる。
 続けて、制御装置160の部品検査に係る機能について説明する。詳細については後述するが、判定部161はカメラ140によって撮像された早期劣化部E1の画像に対して画像処理を行うことによって、基板処理装置100を構成する部品の劣化についての判定処理(即ち、部品の検査)を行う。
 信号処理部162は、カメラ140によって取得される画像から、RGB色成分の値を取得する。具体的には、カメラ140から出力される信号を受信して、R、G、Bの色成分毎にそれぞれシェーディング補正を行い、受光素子ごとの出力レベルのばらつきを補正する。なお、本実施例においては、シェーディング補正後の各画素のR、G、Bの色成分毎の輝度値を、判定に用いる値とし、例えば0~255の値域を持つものとする。
 検査基準記憶部163は、上記のRAM又は磁気ディスクにて構成されており、判定部161による判定に用いられる判定閾値、検査基準、カメラ140によって撮像された新品部品画像のデータ、劣化部品サンプル画像データ、などを記憶する。
 出力部164は検査結果を含む各種の情報を出力する。情報の出力先は、典型的にはモニタなどの表示装置であるが、印刷装置に対して情報を出力したり、スピーカからメッセージや警報を出力したり、ユーザーの端末に電子メール等でメッセージを送信したり、外部のコンピュータに対して情報を送信したりしてもよい。
 (劣化判定処理方法について)
 次に、上記判定部161による部品の劣化判定処理について説明する。判定部161は、早期劣化部E1が劣化しているか否かについて、カメラ140によって撮影された画像に基づいて検査を行う。より具体的には、早期劣化部E1の画像データから得られるRGB色成分による色情報に基づいて、劣化判定を行う。なお、本実施例において劣化判定の対象となるのは早期劣化部E1であるが、真の検査対象部はそれ以外の部分、例えばリフター130のクシバ部Kなどである。
 なお、リフター130のクシバ部Kは、基板処理時において処理液に接触するが、早期劣化部E1は可能であれば基板汚染を避けるために基板処理時において処理液に接触しない位置に設けることが望ましい。基板処理装置において発生する薬液蒸気によりリフター130の劣化が進行するような場合においては、早期劣化部E1をリフター130の上方、リフター130の背板や浸漬槽111の上方など、基板処理時においても直接に処理液と接触しない位置に設置していても早期劣化部E1は薬液蒸気により劣化が進行する。したがって、早期劣化部E1の劣化の進行と、リフター130のクシバ部K の劣化との相関を予め実験などを通じて把握しておくことにより、基板汚染リスクを回避しつつ検査を行うことが可能である。
 上記の通り、早期劣化部E1は他の部位よりもコーティング膜厚が薄く設定されており、これにより、他の部位に比べて早期に劣化現象(例えば、樹脂の減耗、剥離、ブリスターの発生、金属成分の溶出など)が生じる。このため、早期劣化部E1においてこのような劣化現象が生じた際に、これを検出することができれば、真の検査対象部について劣化現象が生じる前に、部品の交換、樹脂の再コーティング処理、などの対応を行うことができる。そして、早期劣化部E1の劣化現象の検出は、以下に述べるように所定の閾値を用いた基準(以下、早期劣化検出基準という)に基づく判定により行うとよい。
 また、早期劣化部E1が劣化していると判定された場合には、出力部164から警告を発報するようにすればよい。このようにすることで、正常でない部品を使用し続けることを防止することができる。なお、出力部164から発する警告とは、モニタに表示されるエラー画面であってもよいし、スピーカから発せられるアラームであってもよいし、警報ランプの明滅などであってもよい。
 図4は、早期劣化部E1の劣化現象を検出するための、判定基準を設定する際の処理の流れを示すフローチャートである。図4に示すように、装置を新規に立ち上げる際又は部品を新品に交換する際に、検査対象となる部品に早期劣化部を設ける(ステップS101)。次に早期劣化部をカメラ140で撮影し、信号処理部162よってR、G、Bの値(初期RGB値)を取得する(ステップS102)。そして、初期RGB値を検査基準記憶部163に保存する(ステップS103)。
 続けて、早期劣化部の初期RGB値に基づいて、劣化判定閾値を設定する(ステップS102)。なお、該閾値は、例えば初期RGB値に対して所定のマージンを加えた(或いは減じた)値とすることができる。
 ところで、早期劣化部の外観上の変化は該早期劣化部の全体に亘って一様に生じるわけではないため、劣化判定閾値と、早期劣化検出基準との関係を定義する必要がある。即ち、カメラ140によって取得された画像における早期劣化部を示す画素の集合のうち、劣化判定閾値以上となる画素がどの程度あれば、警告を発するようにするかを定める。本実施例においては、取得された画像において、検査対象部品を示す画素の集合のうち、劣化判定閾値以上の値を示す画素が所定の数を超えた場合に、警告を発するように早期劣化検出基準を設定する(ステップS105)。そして、このように設定された早期劣化検出基準を検査基準記憶部163に登録する(ステップS106)。
 なお、部品の種類、部品が配置される場所、部品の素材、装置の用途(用いられる薬液)、などの違いによって、部品劣化の進行度合いなどが異なってくる。そのため、劣化判定閾値は、データテーブルを用いて、上記様々な条件の組み合わせ毎に設定するとよい。
 続けて、早期劣化部E1の劣化判定の実施のタイミングについて説明する。基板処理装置100における基板Wの通常の動作の概略は、搬送ロボットが外部から受け取った未処理の基板Wのロットをリフター130に載置し、これを処理液が貯留された浸漬槽111に所定時間浸漬した後に、搬送ロボットが受け取り、処理済みのロットを搬出して外部に戻すというものである。
 以上のことから、基板Wの浸漬処理中には、処理液中に浸漬している早期劣化部E1を適切に撮影することができない。このため、本実施例において、部品劣化判定は、基板処理装置100が基板Wの浸漬処理を行っていないタイミングで実施される。
 図5は部品劣化判定処理を実施するタイミングの一例を示すフローチャートである。図5に示すように、まず基板処理装置100において、ロット単位での基板処理を開始する前のアイドルタイムに、早期劣化部E1をカメラ140で撮影する(S111)。そして、信号処理部162が撮影された画像のデータから早期劣化部E1の画素のRGB値を取得する(ステップS112)。そして、判定部161が、検査基準記憶部163に保存されている早期劣化検出基準と取得したRGB値とを比較し(ステップS113)、RGB値が早期劣化検出基準を超えていない場合には、1ロット分の基板処理を実施する(ステップS114)。一方、取得したRGB値が判定基準を超えている場合には、出力部164から部品の劣化を報知する警告を出力する(ステップS115)。
 なお、部品劣化判定処理を実施するタイミングはこれに限られず、1ロット単位での基板処理を終えた後に実施してもよい。
 (変形例)
 上記の実施例1においては、早期劣化部E1が、リフター130の板部133のうち、浸漬槽111の処理液中に浸漬する位置に設けられていたが、これ以外の場所に設けられていてもよい。図6に、早期劣化部を他の場所に設ける場合の一例を示す。本変形例においては、早期劣化部E2はリフター130の板部133のうち、処理液に浸漬されない箇所に設けられている。なお、図6において一点鎖線で囲まれた箇所は、処理液中に浸漬される部分を示している。
 基板処理に用いられる薬液には、処理の目的に応じて加熱して用いられるものもあり、この場合には、リフター130の板部133は、処理液中に浸漬していない箇所であっても、加熱された薬液の蒸気によって侵蝕される。そのため、このような箇所に早期劣化部E2を設け、薬液に浸漬される真の検査対象部の劣化の程度との相関関係を反映させた早期劣化検出基準を設定することでも、真の検査対象部に劣化現象が生じる前に、劣化を検出することが可能になる。
 なお、早期劣化部E2を、処理液に浸漬されない位置に設けることで、早期劣化部E2に劣化現象が生じた際に、該劣化現象による処理液への悪影響(パーティクルの発生、メタルの溶出など)を減じることができる。
 また、早期劣化部は様々な位置に複数設けられていてもよいし、板部133の全体を早期劣化部としてもよい。また、一つの部品を装置全体における早期劣化部として構成することも可能である。例えば、浸漬槽111内に早期劣化部として(だけ)の機能を有する新たな部品を設置しても構わない。
 また、早期劣化部は、樹脂コーティング層の色と、その下地の金属部分の色が、異なる色(より望ましくは、補色の関係にある色)となるように構成されていてもよい。このようにしておくことで、コーティング剥がれが生じた際の色(RGB値)の変化を検知しやすくなり、より効率的な検査を行うことが可能になる。
 <実施例2>
 次に、本発明に係る第2の実施例について説明する。図7は本実施例の基板処理装置200を示す概略構成図である。なお、本実施例に係る基板処理装置200は、実施例1とその構成を略同じくし、早期劣化部E1における劣化現象の検出方法において違いを有するものであるため、実施例1と同じ構成、処理である部分には同一の符号を付して、詳細な説明を省略する。
 図7に示すように、本実施例における基板処理装置200は、劣化現象の検出手段として、実施例1のカメラ140に変えて、レーザー変位計170を有する点において、その構成を異にしている。また、図示しないが、本実施例においては、後述のように早期劣化部E1の構成が実施例1とは異なっている。
 まず、本実施例における早期劣化部E1の構成について説明する。早期劣化部E1が設けられる箇所は、実施例1の場合と同じくリフター130の板部133である。より具体的には、基板Wを浸漬槽111で浸漬処理する位置にリフター130を下降させた際に、処理液中に接触(浸漬)する位置である。そして、本実施例における早期劣化部E1は、コーティングに用いられる樹脂の材質が他の部分と異なっており、他の部分の樹脂よりも浸透性の高い材質の樹脂が用いられる。例えば、早期劣化部E1以外の箇所のコーティング樹脂としてPCTFEが用いられている場合に、早期劣化部E1にはコーティング樹脂としてPFAが用いられる。
 次に、レーザー変位計170について説明する。レーザー変位計170は三角測距の方式により、対象物までの距離を計測する変位センサである。レーザー変位計170は、リフター130が処理槽110の上部に位置する待機位置にある状態において、早期劣化部E1に向けて照射光が水平に照射される位置に配置され、レーザー変位計170と早期劣化部E1との間の距離を計測する。そして、このようにして計測された距離の値は、制御装置160の信号処理部162に入力される。
 ところで、早期劣化部E1において劣化現象が生じると、早期劣化部1のコーティング膜厚にも変化が生じる。即ち、ブリスターが発生した場合には当該部分の厚みが増加し、樹脂コーティングが剥がれた場合や減耗した場合には、当該部分の厚みが減少する。
 ここで、基板処理装置200内において、早期劣化部E1とレーザー変位計170との位置関係が確定されていると、レーザー変位計170によって計測される距離は、早期劣化部E1のコーティング膜厚の変化に応じて変動する。即ち、早期劣化部E1のコーティング膜厚が増加すれば、計測距離は短くなり、逆にコーティング膜厚が薄くなれば計測距離は長くなる。このため、レーザー変位計170によって計測される距離に基づいて、早期劣化部E1の厚みを測定することができる。
 続けて、本実施例における部品の検査について説明する。本実施例における部品の検査は、レーザー変位計170と早期劣化部E1との間の距離(早期劣化部E1の厚み)に基づいて行われる他は、実施例1の処理と同様の流れで行われる。即ち、制御装置160の判定部161が、予め定められた閾値(早期劣化検出基準)と、レーザー変位計170によって計測された値とを対比することによって、真の検査対象部の劣化の程度を判断する。本実施例における早期劣化検出基準の設定処理について、以下で説明する。
 図8は、本実施例における早期劣化検出基準を設定する際の処理の流れを示すフローチャートである。図8に示すように、装置を新規に立ち上げる際又は部品を新品に交換する際に、検査対象となる部品(例えば、リフター130)に早期劣化部を設ける(ステップS201)。次に、レーザー変位計170によって早期劣化部との距離を計測し、初期距離値(即ち初期の膜厚)を取得する(ステップS202)。そして、初期距離値を検査基準記憶部163に保存する(ステップS203)。
 続けて、早期劣化部の初期距離値に基づいて、劣化判定閾値を設定する(ステップS204)。閾値は、例えば初期距離値に対して所定のマージンを加えた値(上限閾値)、及び減じた値(下限閾値)とすることができる。なお、本実施例では、当該劣化判定閾値がそのまま早期劣化検出基準となる。そして、このように設定された早期劣化検出基準を検査基準記憶部163に登録する(ステップS205)。
 本実施例においても、検査を実施するタイミング、検査の処理の流れなどは実施例1と略同様である。以下に検査を実施する際の処理の流れを説明する。図9は、本実施例における部品の検査を実施する際の処理の例を示すフローチャートである。図9に示すように、基板処理装置200において、1ロット分の基板処理が終了した後に、リフター130上昇させ、待機位置に移動させる(ステップS211、S212)。その状態において、レーザー変位計170によって、早期劣化部E1までの距離を計測し、制御装置160に該計測された値を入力する(ステップS213)。次に、判定部161が、検査基準記憶部163に保存されている閾値と距離の値を比較し(ステップS214)、計測された距離が上限閾値以下かつ下限閾値以上の範囲内である場合には、そのまま本フローを終了する。一方、ステップS214において、計測された距離が上限閾値以下かつ下限閾値以上の範囲外である場合には、出力部164から部品の劣化を報知する警告信号を発信する(ステップS215)。この様なタイミングで検査を行うことで、既に処理済みのロットについて、支障があるか否か(不良の発生程度)を検証することも可能になる。
 (変形例)
 上記実施例2においては、レーザー変位計170を1つ用いて、早期劣化部E1との距離(即ち、早期劣化部E1の膜厚)を計測していたが、複数のレーザー変位計を用いて早期劣化部E1の膜厚を計測するようにしてもよい。具体的には、リフター130の板部133の早期劣化部E1が設けられているのとは反対側の面の、早期劣化部E1に対応する箇所に対してレーザーを照射する、第2のレーザー変位計を設け、板部133の表裏両面から距離を計測する。
 こうして得た二つの距離値を用いることで、リフター130の配置位置の微差など、計測におけるノイズを少なくして、早期劣化部E1の厚みをより正確に計測することが可能になる。
 <実施例3>
 続けて、本発明に係る第3の実施例について説明する。図10は本実施例の基板処理装置300を示す概略構成図である。なお、本実施例に係る基板処理装置300は、実施例1とその構成を略同じくし、早期劣化部E1における劣化現象の検出方法において違いを有するものであるため、実施例1と同じ構成、処理である部分には同一の符号を付して、詳細な説明を省略する。
 図10に示すように、本実施例における基板処理装置300は、劣化現象の検出手段として、実施例1のカメラ140に変えて、比抵抗計180を有する点において、その構成を異にしている。以下で、比抵抗計180を用いた部品の劣化検査について説明する。
 比抵抗計180は液体の比抵抗値を計測するセンサを備えており、該センサが、浸漬槽111に処理液が供給された際に該処理液に接触可能に(望ましくは浸漬されるように)、浸漬槽111の内壁に設置される。比抵抗計180は市販品を含め既知の技術を用いることができるが、特にセンサ部分は、耐薬品性、耐熱性に優れた素材であることが望ましい。
 上記の構成において、比抵抗計180によって、処理液中の比抵抗値が計測され、該計測された値は、制御装置160の信号処理部162に入力される。なお、図11に示すように処理液中の比抵抗値と金属(イオン)濃度との間には強い相関関係がある。即ち、樹脂コーティングに劣化現象が生じると、その箇所に接触する液体(処理液)中に金属成分が溶出するため、液体の金属イオン濃度が上昇し、これに反比例して、処理液の比抵抗値が減少する。このため、比抵抗値を取得することによって、液体中の金属成分の量を把握することができる。
 以上の前提のもと、判定部161は、比抵抗計180によって取得される処理液の比抵抗値に基づいて、早期劣化部E1に劣化が生じているか否かを判定する(即ち、真の検査対象部の劣化の程度を判断する)。具体的には、予め定められた閾値(早期劣化検出基準)と、比抵抗計180によって計測された比抵抗値とを対比する。このような、早期劣化検出基準の設定処理について、以下で説明する。
 図12は、本実施例における早期劣化検出基準を設定する際の処理の流れを示すフローチャートである。図12に示すように、装置を新規に立ち上げる際又は部品を新品に交換する際に、検査対象となる部品(例えば、リフター130)に早期劣化部を設ける(ステップS301)。次に、浸漬槽111に処理液を貯留して、その中に早期劣化部E1が処理液中に浸漬するようにリフター130を下降させ、その状態で比抵抗計180により浸漬槽111に貯留されている処理液の比抵抗値を計測する(ステップS302)。そして、比抵抗計180から比抵抗値を取得した制御装置160は、検査基準記憶部163に、該比抵抗値のデータを初期比抵抗値として保存する(ステップS303)。
 そして、当該初期比抵抗値に基づいて、所定のマージンを減じた値を、閾値として検査基準記憶部163に登録する(ステップS304)。なお、本実施例では、当該閾値が、そのまま早期劣化検出基準となる。
 ところで、処理液から得られる比抵抗値が、初期比抵抗値に近い値であるほど対象部品のメタル溶出の度合いは小さいことになる。このため、例えば、警報を発生させてから部品の交換などの対応を行うまでに時間的余裕を持たせたいなどの場合は、上記閾値は比較的初期比抵抗値に近い値に設定しておくとよい。
 本実施例においても、検査を実施するタイミング、検査の処理の流れなどは実施例1と略同様であり、ロット単位の基板処理の前後に検査を実施することが可能である。ただし、本実施例においては、処理対象の基板Wに金属成分が含まれていない場合には、基板Wの処理中であっても、検査を実施することが可能である。以下でその処理の流れについて説明する。
 図13は、本実施例における部品の検査を実施する際の処理の例を示すフローチャートである。図13に示すように、基板処理装置300において、基板Wの処理を行う際に、早期劣化部E1が処理液中に浸漬する位置にリフター130を下降させる(ステップS311)。そして、その状態において、比抵抗計180によって処理液中の比抵抗値を計測し、制御装置160に該値を入力する(ステップS312)。次に、判定部161が、検査基準記憶部163に保存されている閾値と取得された比抵抗値を比較し(ステップS313)、該比抵抗値が閾値を超えている場合には、基板処理を続行する(S314)。一方、ステップS313において、比抵抗値が閾値を超えていない場合には、出力部164から部品の異常を報知する警告信号を発信する(ステップS115)。
 (変形例)
 上記実施例3では、比抵抗計180は、浸漬槽111内に設置されていたが、比抵抗計を設置する位置は必ずしも浸漬槽111内に限る必要はなく、早期劣化部E1と接触した液体の比抵抗値を計測できる場所であれば、どこに設置しても構わない。例えば、オーバーフロー槽112の底部に設置してもよいし、排液回収部150内に設置してもよい。
 <その他>
 なお、上記の各実施例及び変形例は、本発明を例示的に説明するものに過ぎず、本発明は上記の具体的な態様には限定されない。本発明は、その技術的思想の範囲内で種々の変形が可能である。例えば、上記の各実施例に記載のそれぞれの計測手段を、併せて備えるようにしてもよい。このような異なる複数の観点での検査を実施することで、より精度の高い検査を実施することができる。
 また、いわゆる枚葉型の基板処理装置に対して、本発明を適用することも可能である。即ち、枚葉型の基板処理装置の構成部品(例えばスピンチャック)などに早期劣化部を設け、上記のいずれかの実施例に記載の計測手段により早期劣化部の劣化現象を検知することで、真の検査対象部の劣化を早期に把握可能とすることができる。
 100、200、300・・・基板処理装置
 110・・・処理槽
 120・・・処理液吐出ノズル
 130・・・リフター
 140・・・カメラ
 150・・・排液回収部
 160・・・制御装置
 170・・・レーザー変位計
 180・・・比抵抗計
 E1、E2・・・早期劣化部
 W・・・基板

Claims (20)

  1.  処理液により基板処理を行う基板処理装置であって、
     該基板処理装置を構成する、樹脂コーティングされた部品の劣化を検査する検査手段と、
     前記樹脂コーティングが、前記部品において検査されるべき樹脂コーティングと比較して劣化しやすく施された早期劣化部と、を有しており、
     前記検査手段は、
     前記早期劣化部における樹脂コーティングの劣化を検知する、劣化検知手段を備え、
     該劣化検知手段による検知結果に基づいて、前記検査対象の部品の劣化の程度を判定すること
     を特徴とする、基板処理装置。
  2.  前記早期劣化部は、前記検査手段による検査対象となる部品に設けられていること
     を特徴とする、請求項1に記載の基板処理装置。
  3.  前記劣化検知手段は、前記早期劣化部に接触する液体中の所定の金属の濃度を計測する、金属濃度計測手段を備え、該計測された金属の濃度から、前記早期劣化部における樹脂コーティングの劣化を検知すること
     を特徴とする、請求項1又は2に記載の基板処理装置。
  4.  前記金属濃度計測手段は、比抵抗計であること
     を特徴する、請求項3に記載の基板処理装置。
  5.  前記液体は、前記基板処理装置内部を洗浄する装置洗浄液、及び/又は、前記処理液であること
     を特徴とする、請求項3又は4に記載の基板処理装置。
  6.  前記劣化検知手段は、前記早期劣化部の画像を撮影する撮影手段と、該撮影手段により撮影された画像データから色情報を取得する色情報抽出手段と、を備え、
     前記色情報取得手段により取得された色情報から、前記早期劣化部における樹脂コーティングの劣化を検知すること
     を特徴とする、請求項1又は2に記載の基板処理装置。
  7.  前記色情報は、RGB成分の値を含むこと
     を特徴とする、請求項6に記載の基板処理装置。
  8.  前記劣化検知手段は、前記早期劣化部の厚みを測定する、厚み測定手段を備え、該厚み測定手段により測定された早期劣化部の厚みから、前記早期劣化部における樹脂コーティングの劣化を検知すること、
     を特徴とする、請求項1又は2に記載の基板処理装置。
  9.  前記厚み測定手段は、レーザー変位計であること
     を特徴とする、請求項8に記載の基板処理装置。
  10.  前記検査手段は、前記劣化検知手段が検知した前記樹脂コーティングの劣化と所定の閾値との対比に基づいて前記検査対象の部品の劣化の程度を判定すること
     を特徴とする、請求項1から9のいずれか一項に記載の基板処理装置。
  11.  前記閾値は、前記基板処理装置の仕様、前記基板処理のプロセス、前記液体の供給条件、のうち少なくとも一つを含む条件の違いに応じて設定されていること
     を特徴とする、請求項10に記載の基板処理装置。
  12.  前記検査手段により判定された、検査対象部品の劣化の程度を出力する、出力手段をさらに有しており、
     前記出力手段は、前記検査手段により判定された劣化の程度が所定の基準を超えた場合には、警告信号を出力すること
     を特徴とする、請求項1から11のいずれか一項に記載の基板処理装置。
  13.  前記早期劣化部における樹脂コーティング部分と、該コーティングが施された下地の部分とが、異なる色であること
     を特徴とする、請求項1から12のいずれか一項に記載の基板処理装置。
  14.  処理液により基板処理を行う基板処理装置を構成する、樹脂コーティングされた部品の劣化を検査する方法であって、
     前記基板装置内に、前記樹脂コーティングが、前記部品において検査されるべき樹脂コーティングと比較して劣化しやすく施された早期劣化部を設ける、早期劣化部配置ステップと、
     前記早期劣化部における樹脂コーティングの劣化を検知する、劣化検知ステップと、
     該劣化検知ステップによる検知結果に基づいて、検査対象部品の劣化の程度を判定する、劣化判定ステップと、を有すること
     を特徴とする基板処理装置の部品検査方法。
  15.  前記早期劣化部配置ステップでは、前記早期劣化部を、検査対象となる部品に設けること
     を特徴とする、請求項14に記載の基板処理装置の部品検査方法。
  16.  前記劣化検知ステップでは、
     前記早期劣化部に接触する液体の金属濃度を計測し、該計測された金属濃度から前記早期劣化部における樹脂コーティングの劣化を検知すること
     を特徴とする、請求項14又は15に記載の基板処理装置の部品検査方法。
  17.  前記劣化検知ステップでは、
     前記早期劣化部の画像を撮影して、該撮影された画像データから色情報を取得し、該取得された色情報から前記早期劣化部における樹脂コーティングの劣化を検知すること
     を特徴とする、請求項14又は15に記載の基板処理装置の部品検査方法。
  18.  前記劣化検知ステップでは、
     前記早期劣化部の厚みを測定し、該測定された早期劣化部の厚みから前記早期劣化部における樹脂コーティングの劣化を検知すること
     を特徴とする、請求項14又は15に記載の基板処理装置の部品検査方法。
  19.  前記劣化判定ステップでは、
     前記劣化検知ステップにおいて検知された前記樹脂コーティングの劣化と、所定の閾値とに基づいて、前記検査対象の部品の劣化の程度を判定すること
     を特徴とする、請求項14から18のいずれか一項に記載の基板処理装置の部品検査方法。
  20.  前記劣化判定ステップにおいて判定された劣化の程度が所定の基準を超えた場合には警告信号を出力する、警告ステップをさらに有すること
     を特徴とする、請求項14から19のいずれか一項に記載の基板処理装置の部品検査方法。
PCT/JP2018/018814 2017-07-28 2018-05-15 基板処理装置、及び基板処理装置の部品検査方法 WO2019021586A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020197038603A KR102377316B1 (ko) 2017-07-28 2018-05-15 기판 처리 장치, 및 기판 처리 장치의 부품 검사 방법
CN201880043423.8A CN110809814B (zh) 2017-07-28 2018-05-15 基板处理装置及基板处理装置的部件检查方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-146461 2017-07-28
JP2017146461A JP7040871B2 (ja) 2017-07-28 2017-07-28 基板処理装置、及び基板処理装置の部品検査方法

Publications (1)

Publication Number Publication Date
WO2019021586A1 true WO2019021586A1 (ja) 2019-01-31

Family

ID=65040076

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/018814 WO2019021586A1 (ja) 2017-07-28 2018-05-15 基板処理装置、及び基板処理装置の部品検査方法

Country Status (5)

Country Link
JP (1) JP7040871B2 (ja)
KR (1) KR102377316B1 (ja)
CN (1) CN110809814B (ja)
TW (1) TWI696499B (ja)
WO (1) WO2019021586A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI711103B (zh) * 2019-03-29 2020-11-21 日商芝浦機械電子裝置股份有限公司 基板處理裝置
WO2024069933A1 (ja) * 2022-09-30 2024-04-04 株式会社Subaru 樹脂製部品の劣化診断方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022134835A (ja) 2021-03-04 2022-09-15 東京エレクトロン株式会社 基板処理装置、研磨パッド検査装置、及び研磨パッド検査方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06109545A (ja) * 1992-09-30 1994-04-19 Idemitsu Petrochem Co Ltd 色調検査方法
JPH08316182A (ja) * 1995-05-12 1996-11-29 Tokyo Electron Ltd 処理装置
JPH10217109A (ja) * 1997-02-04 1998-08-18 Nippon Steel Corp 研磨装置の被研磨材保持装置
JP2001053018A (ja) * 1999-08-05 2001-02-23 Sumitomo Eaton Noba Kk コーティング膜の検出方法及びこれを用いるイオン注入装置
JP2010074191A (ja) * 2004-09-28 2010-04-02 Ebara Corp 基板洗浄装置及び洗浄部材の交換時期判定方法
JP2010267856A (ja) * 2009-05-15 2010-11-25 Panasonic Corp 洗浄処理装置および洗浄処理方法
JP2010267181A (ja) * 2009-05-18 2010-11-25 Sumitomo Chem Eng Kk 薬剤の希釈装置
JP2013056388A (ja) * 2011-09-08 2013-03-28 Disco Corp 加工装置
JP2014209605A (ja) * 2013-03-29 2014-11-06 芝浦メカトロニクス株式会社 基板処理装置及び基板処理方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3183098B2 (ja) * 1994-05-31 2001-07-03 大日本スクリーン製造株式会社 基板処理装置の基板保持具
JP3254520B2 (ja) * 1997-11-27 2002-02-12 東京エレクトロン株式会社 洗浄処理方法及び洗浄処理システム
JP2002096012A (ja) 2000-09-26 2002-04-02 Dainippon Screen Mfg Co Ltd 基板処理装置
JP2003092343A (ja) 2001-09-17 2003-03-28 Dainippon Screen Mfg Co Ltd 基板保持機構、ならびにそれを用いた基板処理装置および基板処理方法
JP6109545B2 (ja) 2012-11-28 2017-04-05 三菱重工業株式会社 空気調和機
US20160336149A1 (en) * 2015-05-15 2016-11-17 Applied Materials, Inc. Chamber component with wear indicator
JP2017073338A (ja) * 2015-10-09 2017-04-13 東京エレクトロン株式会社 検査装置、減圧乾燥装置および減圧乾燥装置の制御方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06109545A (ja) * 1992-09-30 1994-04-19 Idemitsu Petrochem Co Ltd 色調検査方法
JPH08316182A (ja) * 1995-05-12 1996-11-29 Tokyo Electron Ltd 処理装置
JPH10217109A (ja) * 1997-02-04 1998-08-18 Nippon Steel Corp 研磨装置の被研磨材保持装置
JP2001053018A (ja) * 1999-08-05 2001-02-23 Sumitomo Eaton Noba Kk コーティング膜の検出方法及びこれを用いるイオン注入装置
JP2010074191A (ja) * 2004-09-28 2010-04-02 Ebara Corp 基板洗浄装置及び洗浄部材の交換時期判定方法
JP2010267856A (ja) * 2009-05-15 2010-11-25 Panasonic Corp 洗浄処理装置および洗浄処理方法
JP2010267181A (ja) * 2009-05-18 2010-11-25 Sumitomo Chem Eng Kk 薬剤の希釈装置
JP2013056388A (ja) * 2011-09-08 2013-03-28 Disco Corp 加工装置
JP2014209605A (ja) * 2013-03-29 2014-11-06 芝浦メカトロニクス株式会社 基板処理装置及び基板処理方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI711103B (zh) * 2019-03-29 2020-11-21 日商芝浦機械電子裝置股份有限公司 基板處理裝置
WO2024069933A1 (ja) * 2022-09-30 2024-04-04 株式会社Subaru 樹脂製部品の劣化診断方法

Also Published As

Publication number Publication date
JP7040871B2 (ja) 2022-03-23
TW201910009A (zh) 2019-03-16
KR20200013717A (ko) 2020-02-07
JP2019029472A (ja) 2019-02-21
CN110809814B (zh) 2023-10-03
CN110809814A (zh) 2020-02-18
KR102377316B1 (ko) 2022-03-22
TWI696499B (zh) 2020-06-21

Similar Documents

Publication Publication Date Title
KR102383526B1 (ko) 기판 처리 장치, 및 기판 처리 장치의 부품 검사 방법
JP6671411B2 (ja) ウェハ保持装置上のメッキの検知
WO2019021586A1 (ja) 基板処理装置、及び基板処理装置の部品検査方法
KR20040101289A (ko) 반도체제조방법 및 그 장치
KR102499048B1 (ko) 기판 처리 장치 및 기판 처리 방법
CN1294410A (zh) 半导体制造设备
US20090316980A1 (en) Method and apparatus for matching defect distribution pattern
TW201727538A (zh) 位移檢測裝置、位移檢測方法及基板處理裝置
JP7145893B2 (ja) ウエハ保持装置上におけるめっきの遠隔検知
KR20170048784A (ko) 기판 검사 방법 및 기판 처리 장치, 캘리브레이션 보드
JP6579739B2 (ja) 検査装置および基板処理装置
JP6086731B2 (ja) 基板処理装置
KR102257429B1 (ko) 기판 처리 장치 및 기판 처리 장치의 부품 검사 방법
CN113699507B (zh) 控制工艺腔室清洁气体用量的方法及工艺处理系统
JPH11297660A (ja) 基板の評価方法
TW202335082A (zh) 基板分析系統、基板分析方法及記憶媒體
JP2010165801A (ja) 半導体基板表面の欠陥検出方法
KR20070119977A (ko) 웨이퍼의 검사 방법
KR20050056454A (ko) 기판을 세정하는 세정조 및 기판 오염도를 측정하는 방법
KR20060108073A (ko) 웨이퍼 불량 감지 수단을 갖는 반도체 장비

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18838576

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20197038603

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18838576

Country of ref document: EP

Kind code of ref document: A1