WO2019014473A1 - PROSTHETIC CARDIAC VALVES AND ASSOCIATED APPARATUS AND METHODS FOR IMPLEMENTING THE SAME - Google Patents

PROSTHETIC CARDIAC VALVES AND ASSOCIATED APPARATUS AND METHODS FOR IMPLEMENTING THE SAME Download PDF

Info

Publication number
WO2019014473A1
WO2019014473A1 PCT/US2018/041867 US2018041867W WO2019014473A1 WO 2019014473 A1 WO2019014473 A1 WO 2019014473A1 US 2018041867 W US2018041867 W US 2018041867W WO 2019014473 A1 WO2019014473 A1 WO 2019014473A1
Authority
WO
WIPO (PCT)
Prior art keywords
valve
loop
outer frame
retention member
actuation wire
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
PCT/US2018/041867
Other languages
English (en)
French (fr)
Inventor
Zachary Vidlund
Zachary Robert KOWALSKI
Son MAI
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tendyne Holdings Inc
Original Assignee
Tendyne Holdings Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tendyne Holdings Inc filed Critical Tendyne Holdings Inc
Priority to AU2018301815A priority Critical patent/AU2018301815A1/en
Priority to EP18746551.3A priority patent/EP3651695B1/en
Priority to CA3068527A priority patent/CA3068527C/en
Priority to JP2020501194A priority patent/JP7216066B2/ja
Priority to US16/615,185 priority patent/US11154399B2/en
Priority to CN201880058874.9A priority patent/CN111050702B/zh
Publication of WO2019014473A1 publication Critical patent/WO2019014473A1/en
Anticipated expiration legal-status Critical
Priority to US17/479,166 priority patent/US20220000617A1/en
Ceased legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/24Heart valves ; Vascular valves, e.g. venous valves; Heart implants, e.g. passive devices for improving the function of the native valve or the heart muscle; Transmyocardial revascularisation [TMR] devices; Valves implantable in the body
    • A61F2/2427Devices for manipulating or deploying heart valves during implantation
    • A61F2/2436Deployment by retracting a sheath
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/24Heart valves ; Vascular valves, e.g. venous valves; Heart implants, e.g. passive devices for improving the function of the native valve or the heart muscle; Transmyocardial revascularisation [TMR] devices; Valves implantable in the body
    • A61F2/2412Heart valves ; Vascular valves, e.g. venous valves; Heart implants, e.g. passive devices for improving the function of the native valve or the heart muscle; Transmyocardial revascularisation [TMR] devices; Valves implantable in the body with soft flexible valve members, e.g. tissue valves shaped like natural valves
    • A61F2/2418Scaffolds therefor, e.g. support stents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/95Instruments specially adapted for placement or removal of stents or stent-grafts
    • A61F2/962Instruments specially adapted for placement or removal of stents or stent-grafts having an outer sleeve
    • A61F2/966Instruments specially adapted for placement or removal of stents or stent-grafts having an outer sleeve with relative longitudinal movement between outer sleeve and prosthesis, e.g. using a push rod
    • A61F2002/9665Instruments specially adapted for placement or removal of stents or stent-grafts having an outer sleeve with relative longitudinal movement between outer sleeve and prosthesis, e.g. using a push rod with additional retaining means
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2210/00Particular material properties of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
    • A61F2210/0014Particular material properties of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof using shape memory or superelastic materials, e.g. nitinol

Definitions

  • Embodiments are described herein that relate to devices and methods for use in the delivery and deployment of prosthetic valves, and particularly to devices and methods for prosthetic heart valves that provide for delivery of the prosthetic heart valves to within a heart of a patient in an inverted configuration.
  • Prosthetic heart valves can pose particular challenges for delivery and deployment within a heart.
  • Valvular heart disease and specifically, aortic and mitral valve disease is a significant health issue in the United States (US); annually approximately 90,000 valve replacements are conducted in the US.
  • Traditional valve replacement surgery involving the orthotopic replacement of a heart valve is considered an "open heart" surgical procedure. Briefly, the procedure necessitates surgical opening of the thorax, the initiation of extra-corporeal circulation with a heart-lung machine, stopping and opening the heart, excision and replacement of the diseased valve, and re-starting of the heart.
  • valve replacement surgery typically carries a 1-4% mortality risk in otherwise healthy persons, a significantly higher morbidity is associated to the procedure largely due to the necessity for extra-corporeal circulation. Further, open heart surgery is often poorly tolerated in elderly patients. Thus, elimination of the extra-corporeal component of the procedure could result in reduction in morbidities and cost of valve replacement therapies could be significantly reduced.
  • Some known delivery methods include delivering a prosthetic mitral valve through an apical puncture site.
  • the valve is placed in a compressed configuration within a lumen of a delivery catheter of, for example, 34-36 Fr (i.e. an outer diameter of about 11-12 mm).
  • Delivery of a prosthetic valve to the atrium of the heart can be accomplished, for example, via a transfemoral approach, transatrially directly into the left atrium of the heart or via a jugular approach.
  • an apparatus includes a prosthetic heart valve that includes an inner frame and an outer frame coupled to the inner frame at multiple coupling joints.
  • the prosthetic valve is movable between a first configuration and a second configuration.
  • the multiple coupling joints are configured to allow the outer frame to be moved between a first position relative to the inner frame and a second position relative to inner frame in which the outer frame is inverted relative to the inner frame.
  • the prosthetic valve is in the first configuration when the outer frame is in the first position, and in the second configuration when the outer frame is in the second position.
  • an apparatus includes an outer sheath that defines a lumen, a tube member movably disposed within the lumen of the outer sheath and defining a lumen, a retention device coupled to the tube member, a valve holder movably disposed within a lumen defined by the tube member, and a prosthetic heart valve disposed at least partially within the lumen of the outer sheath.
  • the prosthetic heart valve includes an outer frame coupled to an inner frame and the inner frame is removably coupled to a distal end portion of the valve holder.
  • the outer frame is movable between a first configuration relative to the inner frame and a second configuration relative to the inner frame in which the outer frame is inverted relative to the inner frame.
  • the prosthetic heart valve is disposed within the lumen of the outer sheath and the lumen of the tubular member with the outer frame in the second configuration.
  • a first actuation wire is releasably coupled to a first portion of the outer frame and releasably coupled to the retention device at a first location on the retention device.
  • a second actuation wire is releasably coupled to a second portion of the outer frame and releasably coupled to the retention device at a second location on the retention device.
  • FIGS. 1A and IB are schematic illustrations of a portion of a prosthetic heart valve, according to an embodiment, shown in a first configuration and a second configuration, respectively.
  • FIGS. 1C and ID are schematic illustrations of the portion of the prosthetic heart valve of FIGS. 1 A and IB, respectively, shown disposed within a delivery sheath.
  • FIGS. 2A and 2B are schematic illustrations of the portion of a prosthetic heart valve of FIGS. 1 A and IB, shown in the first configuration and the second configuration, respectively.
  • FIGS. 3-5 are front, bottom, and top views of a prosthetic heart valve according to an embodiment.
  • FIG. 6 is an opened and flattened view of the inner frame of the prosthetic heart valve of FIGS. 3-5, in an unexpanded configuration.
  • FIGS. 7 and 8 are side and bottom views, respectively, of the inner frame of
  • FIG. 6 in an expanded configuration.
  • FIG. 9 is an opened and flattened view of the outer frame of the valve of
  • FIGS. 3-5 in an unexpanded configuration.
  • FIGS. 10 and 11 are side and top views, respectively, of the outer frame of
  • FIG. 9 in an expanded configuration.
  • FIGS. 12-14 are side, front, and top views of an assembly of the inner frame of
  • FIG. 15 is a side perspective view of an assembly of an inner frame and an outer frame shown in a biased expanded configuration, according to an embodiment.
  • FIG. 16 is a side perspective view of the assembly of FIG. 15 with the outer frame shown inverted.
  • FIG. 17 is side view of the assembly of FIG. 16 shown in a collapsed configuration within a lumen of a delivery sheath.
  • FIG. 18 is a side view of the assembly of FIG. 17 shown in a first partially deployed configuration.
  • FIG. 19 is a side view of the assembly of FIG. 17 shown in a second partially deployed configuration.
  • FIG. 20 is a side view of the assembly of FIG. 17 shown in a third partially deployed configuration in which the inverted outer frame is substantially deployed outside of the delivery sheath.
  • FIG. 21 is a side view of the assembly of FIG. 17 shown in a fourth partially deployed configuration in which the outer frame has reverted and assumed a biased expanded configuration.
  • FIGS. 22-24 illustrate steps of a portion of a method to deliver the prosthetic valve of FIGS. 15-21 to an atrium of a heart and within the native mitral annulus.
  • FIG. 25 is a schematic illustration of a delivery device and prosthetic heart valve, according to an embodiment.
  • FIG. 26A is a side view of a portion of the prosthetic heart valve of FIG. 25 shown within a delivery sheath and coupled to a valve holder.
  • FIG. 26B is a side view of an attachment member of the prosthetic valve of
  • FIG. 26A is a diagrammatic representation of FIG. 26A.
  • FIG. 26C is an end view of the valve holder of FIG. 26A.
  • FIG. 27 is a partial cross-sectional side view of a delivery system and prosthetic heart valve, according to an embodiment.
  • FIG. 28 is a cross-sectional view taken along line 28-28 in FIG. 27 showing the actuation wires coupled to a tube member of the delivery system.
  • FIG. 29 is a proximal end view of a tube member of the delivery system of
  • FIG. 30A is a side view of a portion of the tube member of FIG. 29.
  • FIG. 30B is a side view of a portion of a multi-lumen tube member according to another embodiment and a distal retention element according to an embodiment.
  • FIG. 30C view of a portion of the multi-lumen tube member of FIG. 30B and a distal retention element, according to another embodiment.
  • FIGS. 31A-31D are each a side view of a different embodiment of an actuation wire.
  • FIG. 32 is a partial cross-sectional side view of the delivery system and prosthetic heart valve of FIG. 27, shown in a first partially deployed configuration.
  • FIG. 33 is a partial cross-sectional side view of the delivery system and prosthetic heart valve of FIG. 27, shown in a second partially deployed configuration.
  • FIG. 34 is a partial cross-sectional side view of the delivery system and prosthetic heart valve of FIG. 27, shown in a third partially deployed configuration.
  • FIG. 35 is a cross-sectional view taken along line A-A in FIG. 27 showing the actuation wires in a partially released position.
  • FIG. 36A is a schematic illustration of a side view of a delivery system according to another embodiment, shown in a first configuration.
  • FIG. 36B is a schematic illustration of a side view of the delivery of FIG. 36A, shown with actuation wires coupled thereto.
  • FIG. 36C is a schematic illustration of a side view of the delivery system and actuation wires of FIG. 36 A, shown in a second configuration.
  • FIG. 36D is a schematic illustration of a side view of the delivery system and actuation wires of FIG. 36 A, shown in a third configuration.
  • FIG. 37 is a schematic illustration of a side view of the delivery system of
  • FIG. 36A showing a prosthetic valve disposed within a lumen of the delivery sheath.
  • FIG. 38 is a schematic illustration of a side view of the delivery system of
  • FIG. 39 is a schematic illustration of a side view of a delivery system according to another embodiment, with a different pin configuration than the delivery system of FIGS. 36A-38.
  • FIG. 40 is a top view of an actuation wire according to an embodiment.
  • FIG. 41 A is an end view of a portion of the delivery system of FIGS. 36A-38 illustrating the pinning of the center loops of the actuation wires to the proximal retention member of the retention device.
  • FIG. 41B is an end view of a portion of the delivery system of FIGS. 36A-38 illustrating the pinning of the end loops of the actuation wires to the center retention member of the retention device.
  • FIG. 42 is a side view of a portion of a delivery system, according to an embodiment and shown in a first configuration.
  • FIG. 43 is a side view of a portion of the delivery system of FIG. 42 shown in the first configuration and with actuation wires coupled thereto.
  • FIG. 44 is a side view of a portion of the delivery system of FIG. 42 shown in a second configuration and with actuation wires coupled thereto.
  • FIG. 45 is a side view of a portion of the delivery system of FIG. 42 shown in a third configuration and with actuation wires coupled thereto.
  • FIG. 46 is a side view of a portion of the delivery system of FIG. 42 shown with a prosthetic valve coupled to the actuation wires in an inverted configuration and partially expanded configuration.
  • FIG. 47 is an enlarged view of a portion of the delivery system of FIG. 46.
  • FIG. 48 is a side view of the prosthetic valve of FIG. 46 shown in an expanded configuration.
  • FIGS. 49A-49D illustrates stages in a procedure to reposition a partially deployed prosthetic valve using the delivery device of FIG. 42.
  • FIG. 50 is a top view of an actuation wire according to another embodiment.
  • FIG. 51 is a perspective view of a portion of the actuation wire of FIG. 50.
  • FIG. 52 is a perspective view of a portion of the actuation wire of FIG. 50.
  • FIG. 53 is a perspective view of an actuation wire according to another embodiment.
  • FIG. 54 is a perspective view of a portion of the actuation wire of FIG. 53.
  • FIG. 55 is a perspective view of a portion of the actuation wire of FIG. 53.
  • FIGS. 56-58 each illustrate a portion of an actuation wire according to another embodiment.
  • FIG. 59A is a perspective distal end view of a retention device, according to an embodiment
  • FIG. 59B is a perspective distal end view of the retention device shown partially transparent for illustration purposes.
  • FIG. 60 is an exploded perspective view of the retention device of FIG. 59, shown partially transparent.
  • FIG. 61 is a side view of the retention device of FIG. 59.
  • FIG. 62A is a perspective proximal end view and FIG. 62B is a perspective distal end view of a distal retention member of the retention device of FIG. 59.
  • FIG. 63A is a perspective distal end view
  • FIG. 63B is a perspective proximal end view
  • FIG. 63C is a proximal end view of a proximal retention member of the retention device of FIG. 59.
  • FIG. 64A is a perspective distal end view and FIG. 64B is a perspective proximal end view of a center retention member of the retention device of FIG. 59.
  • FIG. 65 is a distal end perspective view of a valve holder, according to an embodiment.
  • FIG. 66 is a side view of the valve holder of FIG. 65.
  • FIG. 67A is a distal end view and FIG. 67Bis a proximal end view of the valve holder of FIG. 65.
  • FIG. 68 is an exploded perspective view of the valve holder of FIG. 59.
  • FIG. 69A and 69B illustrate force vectors associated with reverting a prosthetic valve.
  • FIG. 70 is a top view of a prosthetic heart valve, according to another embodiment.
  • FIG. 71 is a cross-sectional view of the prosthetic heart valve of FIG. 70 the taken along line-A-A in FIG. 70.
  • FIG. 72 is a cross-sectional view of the prosthetic heart valve of FIG. 70 the taken along line-B-B in FIG. 70.
  • FIG. 73 is a side view of the prosthetic heart valve of FIGS. 70-72 shown inverted and disposed within a delivery device.
  • FIG. 74 is a side perspective view of a portion of a prosthetic heart valve delivery device, according to an embodiment.
  • FIG. 75 is an enlarged side perspective view of the valve holder of the prosthetic heart valve delivery device of FIG. 74.
  • FIG. 76 is enlarged side perspective view of the retention device of the prosthetic heart valve delivery device of FIG. 74.
  • FIG. 77 is a schematic illustration of a retention device, according to another embodiment.
  • FIG. 78 is a flowchart illustrating a method of preparing a delivery device with a prosthetic valve to be delivered to a heart of a patient.
  • FIG. 79 is a flowchart illustrating a method of delivering a prosthetic heart valve to a heart of a patient. Detailed Description
  • a prosthetic valve includes an outer frame that can be inverted relative to an inner frame when the prosthetic valve is in a biased expanded configuration.
  • the prosthetic mitral valve can be formed with, for example, a shape-memory material. After inverting the outer frame, the prosthetic valve can be inserted into a lumen of a delivery sheath such that the prosthetic valve is moved to a collapsed configuration.
  • the delivery sheath can be used to deliver the prosthetic valve to within a patient's heart using a variety of different delivery approaches for delivering a prosthetic heart valve (e.g., prosthetic mitral valve) where the inverted prosthetic valve would enter the heart through the atrium of the heart.
  • a prosthetic heart valve e.g., prosthetic mitral valve
  • the prosthetic valves described herein can be delivered using a transfemoral delivery approach as described in PCT International Application No. PCT/US 15/14572 (the "'572 PCT application") and/or in PCT International Application No. PCT/US16/12305 (the "'305 PCT application”), each disclosure of which is incorporated by reference in its entirety herein, or via a transatrial approach, such as described in U.S. Provisional Patent Application Serial No.
  • prosthetic valves described herein could be delivered via a transjugular approach, e.g., via the right atrium and through the atrial septum and into the left atrium, as described in U.S. Provisional Patent Application Serial No. 62/305,678, entitled “Apparatus and Methods for Delivery of Prosthetic Mitral Valve,” (the “'678 provisional application”) and in U.S. Patent Application Pub. No.
  • the prosthetic valves described herein can also be delivered apically if desired. With a transapical approach, after the delivery sheath has been disposed within the left atrium of the heart, the prosthetic mitral valve is moved distally out of the delivery sheath such that the inverted outer frame reverts and the prosthetic valve assumes its biased expanded configuration. The prosthetic mitral valve can then be positioned within a mitral annulus of the heart.
  • an apparatus includes a prosthetic valve that includes an inner frame and an outer frame coupled to the inner frame at multiple coupling joints.
  • the multiple coupling joints are configured to allow the outer frame to be moved relative to inner frame such that the prosthetic valve can be moved between a first configuration and a second configuration.
  • the outer frame and the inner frame collectively define a first length of the prosthetic valve when the prosthetic valve is in the first configuration and a second length of the prosthetic valve when the prosthetic valve is in the second configuration and the second length is greater than the first length.
  • the inner frame has a length that is the same when the prosthetic valve is in both the first configuration and the second configuration.
  • an apparatus includes a prosthetic heart valve that includes an inner frame and an outer frame coupled to the inner frame at multiple coupling joints.
  • the prosthetic valve is movable between a first configuration and a second configuration.
  • the multiple coupling joints are configured to allow the outer frame to be moved between a first position relative to the inner frame and a second position relative to inner frame in which the outer frame is inverted relative to the inner frame.
  • the prosthetic valve is in the first configuration when the outer frame is in the first position, and in the second configuration when the outer frame is in the second position.
  • an apparatus includes a prosthetic heart valve that includes an inner frame, and an outer frame coupled to the inner frame at multiple coupling joints.
  • the multiple coupling joints are configured to allow the outer frame to be moved relative to inner frame such that the prosthetic valve can be moved between a first configuration and a second configuration.
  • the outer frame has an outer frame coupling portion coupled to the inner frame at multiple coupling joints and an outer frame free end portion.
  • the inner frame has an inner frame coupling portion coupled to the outer frame at the multiple coupling joints. A first end portion and an inner frame free end portion are on an opposite end of the inner frame from the first end portion.
  • the multiple coupling joints are disposed between the outer frame free end portion and the first end portion of the inner frame when the prosthetic valve is in the first configuration.
  • the multiple coupling joints are disposed between the inner frame free end portion and the outer frame free end portion when the prosthetic valve is in the second configuration.
  • an apparatus includes a prosthetic heart valve that includes an inner frame coupled to an outer frame at multiple coupling joints.
  • the multiple coupling joints are configured to allow the outer frame to be moved relative to the inner frame such that the prosthetic valve can be moved between a first configuration and a second configuration.
  • the outer frame has an outer frame coupling portion coupled to the inner frame at the multiple coupling joints and an outer frame free end portion.
  • the inner frame has an inner frame coupling portion coupled to the outer frame at the multiple coupling joints and an inner frame free end portion.
  • the outer frame free end portion and the inner frame free end portion each open in the same direction when the prosthetic valve is in the first configuration.
  • the outer frame free end portion and the inner frame free end portion open in opposite directions when the prosthetic valve is in the second configuration.
  • an apparatus includes a delivery sheath that defines a lumen, a valve holder movably disposable within the lumen of the delivery sheath and a prosthetic heart valve disposed at least partially within the lumen of the delivery sheath in a collapsed configuration.
  • the prosthetic heart valve includes an outer frame coupled to an inner frame and the inner frame is removably coupled to a distal end portion of the valve holder.
  • the outer frame is movable between a first configuration relative to the inner frame and a second configuration relative to the inner frame in which the outer frame is inverted relative to the inner frame.
  • the prosthetic heart valve is disposed within the lumen of the delivery sheath with the outer frame in the second configuration.
  • a first actuation wire is releasably coupled to a first portion of the outer frame and a second actuation wire is releasably coupled to a second portion of the outer frame.
  • Each of the first actuation wire and the second actuation wire have a first portion extending proximally from the outer frame and a second portion extending proximally from the outer frame.
  • the first portion and the second portion of each of the first actuation wire and the second actuation wire are configured to be pulled proximally to urge the outer frame from the second configuration towards the first configuration relative to the inner frame.
  • an apparatus includes an outer sheath that defines a lumen, a tube member movably disposed within the lumen of the outer sheath and defining a lumen, a retention device coupled to the tube member, a valve holder movably disposed within the lumen of the outer sheath and within a lumen defined by the tube member, and a prosthetic heart valve disposed at least partially within the lumen of the outer sheath.
  • the prosthetic heart valve includes an outer frame coupled to an inner frame and the inner frame is removably coupled to a distal end portion of the valve holder.
  • the outer frame is movable between a first configuration relative to the inner frame and a second configuration relative to the inner frame in which the outer frame is inverted relative to the inner frame.
  • the prosthetic heart valve is disposed within the lumen of the outer sheath and the lumen of the inner sheath with the outer frame in the second configuration.
  • a first actuation wire is releasably coupled to a first portion of the outer frame and releasably coupled to the retention device at a first location on the retention device.
  • a second actuation wire is releasably coupled to a second portion of the outer frame and releasably coupled to the retention device at a second location on the retention device.
  • a method includes inserting a distal end portion of a delivery sheath into a left atrium of a heart.
  • the delivery sheath having a prosthetic mitral valve disposed within a lumen of the delivery sheath and the prosthetic mitral valve has an outer frame coupled to an inner frame such that the outer frame can be moved between a first position relative to the inner frame and a second position relative to the inner frame in which the outer frame is inverted relative to the inner frame.
  • the prosthetic valve is disposed within the lumen of the delivery sheath with the outer frame in the second position relative to the inner frame.
  • the prosthetic mitral valve is moved distally out of the delivery sheath causing the outer frame of the prosthetic mitral valve to revert back to the first position relative to the inner frame such that the prosthetic mitral valve at least partially assumes a biased expanded configuration.
  • the prosthetic mitral valve is positioned within a mitral annulus of the heart.
  • an apparatus includes an outer sheath that defines a first lumen and is configured to receive a prosthetic heart valve in a compressed configuration and a tube member movably disposed within the first lumen of the outer sheath and defining a second lumen.
  • a valve holder having at least a portion of which movably disposed within the second lumen of the tube member. The valve holder is configured to be releasably coupled to a prosthetic heart valve during delivery of the prosthetic heart valve to a heart.
  • a retention device is coupled to a distal end portion of the tube member and includes a proximal retention member defining a first opening, a center retention member including a first pin and defining a second opening, and a distal retention member including a second pin.
  • the proximal retention member is fixedly coupled to the tube member and the center retention member is axially movable relative to the proximal retention member between a first position in which the first pin is spaced from the proximal retention member and a second position in which the first pin is disposed within the first opening of the proximal retention member.
  • the distal retention member is axially movable relative to the center retention member between a first position in which the second pin is disposed at a spaced distance from the center retention member and a second position in which the second pin is disposed within the second opening.
  • the retention device can be actuated to secure an actuation wire releasably coupled to a prosthetic heart valve to the retention device when at least one of the center retention member is moved to its second positon and the first pin secures a first loop of the actuation wire to the retention member or the distal retention member is moved to its second position and the second pin secures a second loop of the actuation wire to the retention device.
  • a method includes placing a first loop of an actuation wire over a first pin of a retention device of a prosthetic heart valve delivery device.
  • the retention device includes a proximal retention member that defines a first opening, a center retention member that includes the first pin and defines a second opening, and a distal retention member that includes a second pin.
  • a first portion of the actuation wire is passed through a first loop on an outer frame of a prosthetic heart valve and a second portion of the actuation wire is passed through a second loop on the outer frame of the prosthetic heart valve.
  • the first portion of the actuation wire has a second loop disposed on a first end of the actuation wire and the second portion of the actuation wire has a third loop on a second end of the actuation wire.
  • the second loop and the third loop of the actuation wire are placed over the second pin of the retention device.
  • the retention device is actuated to move one of the center retention member and the proximal retention member axially such that the first pin is disposed in the first opening and the first loop of the actuation wire is secured to the retention device.
  • the retention member is actuated again to move the distal retention member axially such that the second pin is disposed in the second opening and the second loop and the third loop of the actuation wire are secured to the retention device.
  • the prosthetic valve is placed within a lumen of a sheath of the delivery device.
  • a method includes inserting a distal end portion of a delivery sheath of a valve delivery device into a left atrium of a heart, when the delivery sheath has a prosthetic mitral valve disposed within a lumen of the delivery sheath.
  • the prosthetic mitral valve has an outer frame coupled to an inner frame and the outer frame is inverted relative to the inner frame.
  • the prosthetic heart valve is releasably coupled to a retention device that includes a proximal retention member defining a first opening, a center retention member including a first pin and defining a second opening, and a distal retention member including a second pin.
  • An actuation wire is coupled to the prosthetic heart valve and includes a first loop secured to the retention device with the first pin and a second loop secured to the retention device with the second pin.
  • the prosthetic mitral valve is moved distally out the distal end portion of the delivery sheath.
  • the retention device is moved proximally such that the actuation wire pulls the outer frame of the prosthetic heart valve proximally and the outer frame is reverted relative to the inner frame.
  • the retention device is actuated such that the distal retention member moves axially relative to the center retention member and the second pin releases the second loop of the actuation wire.
  • the retention device After actuating the retention device, the retention device is moved proximally such that the actuation wire is pulled proximally and is uncoupled from the prosthetic heart valve, allowing the outer frame of the prosthetic heart valve to move to a biased expanded configuration.
  • the prosthetic heart valve is then positioned within a mitral valve annulus of the heart.
  • an apparatus includes a prosthetic heart valve that includes an inner frame and an outer frame coupled to the inner frame.
  • the outer frame includes a body portion and a cuff portion and is configured to be moved relative to the inner frame such that the prosthetic valve can be moved between a first biased expanded configuration in which the outer frame is disposed substantially surrounding the inner frame and a second configuration in which the outer frame is inverted relative to the inner frame such that a free end portion of the outer frame opens in an opposite direction than a free end portion of the inner frame.
  • the cuff portion includes a first portion disposed at a transverse angle relative to the body portion and a second portion extending at a transverse angle relative to the first portion of the cuff portion when the prosthetic heart valve is in the biased expanded configuration.
  • an actuation wire for use in delivery of a prosthetic heart valve to a heart of a subject includes a first elongate strand having a first end and a second end, a second elongate strand having a first end and a second end.
  • a first loop is disposed at the first end of the first elongate strand
  • a second loop is disposed at a first end of the second elongate strand
  • a third loop is disposed between the second end of the first elongate strand and the second end of the second elongate strand.
  • the first loop, the second loop and the third loop are each configured to be releasably pinned to a delivery device and the first elongate strand and the second elongate strand are each configured to be releasably coupled to the prosthetic heart valve.
  • FIGS. 1A and IB are schematic illustrations of a portion of a prosthetic heart valve 100, according to an embodiment, shown in a first configuration and a second configuration respectively, and FIGS. 1C and ID illustrate the portions of the prosthetic heart valve 100 of FIGS. 1A and IB, respectively, shown disposed within a lumen of a delivery sheath 126.
  • FIGS. 2A and 2B illustrate a portion of the prosthetic heart valve 100 of FIGS. 1 A and IB, respectively, and show length dimensions for the prosthetic heart valve in each of the first configuration and the second configuration.
  • the prosthetic heart valve 100 (also referred to herein as "prosthetic valve” or "valve”) can be, for example, a prosthetic mitral valve.
  • the valve 100 includes an outer frame 120 and an inner frame 150.
  • the outer frame 120 and the inner frame 150 are each formed as a tubular structure as described in more detail below with reference to FIGS. 3-15.
  • the outer frame 120 and the inner frame 150 can be coupled together at multiple coupling joints 146 disposed about a perimeter of the inner frame 150 and a perimeter of the outer frame 120 as described in more detail below.
  • the valve 100 can also include other features, such as those described with respect to FIGS. 3-15 below. For illustration purposes, only the inner frame 150 and the outer frame 120 are discussed with respect to FIGS. 1 A-2B. The various characteristics and features of valve 100 described with respect to FIGS. 1A-2B can apply to any of the prosthetic valves described here.
  • the outer frame 120 is configured to have a biased expanded or undeformed shape and can be manipulated and/or deformed (e.g., compressed or constrained) and, when released, return to its original (expanded or undeformed) shape.
  • the outer frame 120 can be formed of materials, such as metals or plastics, which have shape memory properties.
  • metals Nitinol ® has been found to be especially useful since it can be processed to be austenitic, martensitic or super elastic.
  • Other shape memory alloys such as Cu-Zn-Al-Ni alloys, and Cu-Al-Ni alloys, may also be used.
  • the inner frame 150 can be formed from a laser-cut tube of Nitinol ® .
  • the inner frame 150 can also have a biased expanded or undeformed shape and can be manipulated and/or deformed (e.g., compressed and/or constrained) and, when released, return to its original (expanded or undeformed) shape. Further details regarding the inner frame 150 and the outer frame 120 are described below with respect to valve 200 and FIGS. 3-15.
  • the valve 100 can be delivered and deployed within a left atrium of a heart using a variety of different delivery approaches including, for example, a transfemoral delivery approach, as described in the '572 PCT application, or a transatrial approach, as described in the '704 provisional application.
  • the size of the prosthetic valve during delivery should be sized accordingly.
  • a prosthetic valve that can be reconfigured between a biased expanded configuration for implantation in the heart (e.g., within a native mitral annulus) and a delivery configuration that has a smaller outer perimeter or profile to allow for delivery within the lumen of the delivery sheath.
  • the prosthetic valve 100 and the embodiments of a prosthetic valve described herein can be constructed and formed to achieve these desired functions and characteristics.
  • the valve 100 can have a biased expanded configuration (as shown in FIGS. 1 A and 2A), an inverted configuration (as shown in FIGS. IB and 2B), and a compressed or collapsed configuration (as shown in FIGS. 1C and ID).
  • the expanded configuration allows the valve 100 to function when implanted within the heart.
  • the valve 100 can be moved to the inverted configuration and the compressed or collapsed configuration for delivery of the valve 100 to the heart of a patient.
  • the outer frame 120 can be coupled to the inner frame 150 in such a manner to allow the outer frame 120 to move relative to the inner frame 150.
  • the coupling joints 146 can couple the outer frame 120 to the inner frame 150 in such a manner to allow the outer frame 120 to be moved relative to the inner frame 150.
  • the coupling joints 146 can be configured to allow the outer frame 120 to rotate about the coupling joint 146 relative to the inner frame 150.
  • coupling joints can provide a pivotal coupling between the outer frame 120 and the inner frame 150.
  • the coupling joints can provide a flexible attachment between the outer frame 120 and the inner frame 150.
  • the coupling joints 146 can be a variety of different types and configurations as described herein with reference to the various embodiments of a prosthetic valve.
  • the coupling joints 146 can include a living hinge, a flexible member, sutures, a suture wrapped through an opening, a pin or tab inserted through an opening or any combinations thereof.
  • the outer frame 120 is moved to a prolapsed or inverted configuration relative to the inner frame 150, as shown in FIGS. IB, ID and 2B, by moving (e.g., rotating, pivoting, flexing) the outer frame 120 about the coupling joints 146.
  • outer frame 120 of valve 100 also allows the outer frame 120 to be moved to, and disposed in, the prolapsed or inverted configuration relative to the inner frame 150.
  • the outer frame 120 is folded or inverted distally (to the right in FIG. IB) relative to the inner frame 150 via the coupling joints 146. As shown in FIGS.
  • the outer frame 120 is in a first position relative to the inner frame 150 prior to being inverted in which an open or free end portion 116 (also referred to the atrium portion 116 of the outer frame 120) is disposed proximally or to the left of the coupling joints 146 and in the same direction as a free end portion 147 (also referred to as a second end portion of the inner frame) of the inner frame 150.
  • an open or free end portion 116 also referred to the atrium portion 116 of the outer frame 120
  • the free end portion 116 is disposed distally of the coupling joints 146 (or to the right in FIGS. IB and 2B) and in an opposite direction as the free end portion 147 of the inner frame 150.
  • the coupling joints 146 are disposed between a first end portion 144 (also referred to as a tether coupling portion) of the inner frame 150 and the free end portion 116 of the outer frame 120.
  • a first end portion 144 also referred to as a tether coupling portion
  • the coupling joints 146 are disposed between the free end portion or second end portion 147 of the inner frame 150 and the free end portion 116 of the outer frame 120.
  • an overall length of the valve 100 is increased, but a length of the inner frame 150 and a length of the outer frame 120 remains the same (or substantially the same).
  • an overall length LI of the valve 100 in the biased expanded configuration is less than the overall length L2 of the valve 100 when in the inverted configuration (FIG. 2B).
  • a length Li of the inner frame 150 and a length Lo of the outer frame 120 is substantially the same (or the same) when the valve 100 is in both the biased expanded configuration and the inverted configuration.
  • an overall outer perimeter or outer diameter of the valve 100 can be smaller when the valve 100 is in the inverted configuration.
  • valve 100 With the valve 100 in the inverted configuration, the valve 100 can be placed within a lumen of the delivery sheath 126 for delivery of the valve 100 to the left atrium of the heart, as shown in FIG. ID. When placed within the lumen of the delivery sheath 126, the valve 100 is moved to the collapsed or compressed configuration in which the outer diameter or outer perimeter of the valve 100 is reduced. Because the valve 100 is in the inverted configuration, the valve 100 is able to be placed within a smaller delivery sheath 126 than would otherwise be possible. For example, for comparison purposes, FIG.
  • FIG. 1C illustrates the valve 100 placed within a lumen of a delivery sheath 126' where the valve 100 has not been moved to an inverted configuration prior to being disposed within the delivery sheath 126' .
  • an outer diameter of the valve 100 is reduced, but not to as small of a diameter as for the valve 100 when placed in a delivery sheath 126 when in the inverted configuration.
  • the valve 100 has an overall outer perimeter or outer diameter Dl and in FIG. ID, the valve 100 has an overall outer perimeter or outer diameter D2, which is less than Dl .
  • the valve 100 can be collapsed into a smaller overall diameter, i.e. placed in a smaller diameter delivery sheath 126, than would be possible if the valve 100 were merely collapsed radially.
  • the inner frame 150 is nested within an interior of the outer frame 120, and thus the outer frame 120 must be collapsed around the inner frame 150.
  • the inner frame 150 and the outer frame are disposed concentrically.
  • the inner frame 150 and the outer frame 120 are arranged axially with respect to each other (i.e., the inner frame is not nested within the outer frame 150), such that the outer frame 120 can be collapsed without needing to accommodate all of the structure of the inner frame 150 inside it.
  • FIGS. 3-14 illustrate another embodiment of a prosthetic heart valve that can be delivered and deployed within a left atrium of a heart using a variety of different delivery approaches including, for example, a transfemoral delivery approach or a transatrial delivery approach.
  • FIGS. 3-14 illustrate another embodiment of a prosthetic heart valve that can be delivered and deployed within a left atrium of a heart using a variety of different delivery approaches including, for example, a transfemoral delivery approach or a transatrial delivery approach.
  • FIG. 3-5 are front, bottom, and top views, respectively, of a prosthetic heart valve 200 according to an embodiment.
  • Prosthetic heart valve 200 (also referred to herein as “valve” or “prosthetic valve”) is designed to replace a damaged or diseased native heart valve such as a mitral valve.
  • Valve 200 includes an outer frame assembly 210 and an inner valve assembly 240 coupled to the outer frame assembly 210.
  • outer frame assembly 210 includes an outer frame 220, covered on all or a portion of its outer face with an outer covering 230, and covered on all or a portion of its inner face by an inner covering 232.
  • Outer frame 220 can provide several functions for prosthetic heart valve 200, including serving as the primary structure, as an anchoring mechanism and/or an attachment point for a separate anchoring mechanism to anchor the valve to the native heart valve apparatus, a support to carry inner valve assembly 240, and/or a seal to inhibit paravalvular leakage between prosthetic heart valve 200 and the native heart valve apparatus.
  • Outer frame 220 has a biased expanded configuration and can be manipulated and/or deformed (e.g., compressed and/or constrained) and, when released, return to its original unconstrained shape.
  • outer frame 220 can be formed of materials, such as metals or plastics that have shape memory properties.
  • metals Nitinol ® has been found to be especially useful since it can be processed to be austenitic, martensitic or super elastic.
  • Other shape memory alloys such as Cu-Zn-Al-Ni alloys, and Cu-Al-Ni alloys, may also be used.
  • outer frame assembly 210 has an upper end (e.g., at the atrium portion 216), a lower end (e.g., at the ventricle portion 212), and a medial portion (e.g., at the annulus portion 214) therebetween.
  • the upper end or atrium portion 216 (also referred to as "outer free end portion") defines an open end portion of the outer frame assembly 210.
  • the medial or annulus portion 214 of the outer frame assembly 210 has a perimeter that is configured (e.g., sized, shaped) to fit into an annulus of a native atrioventricular valve.
  • the upper end of the outer frame assembly 210 has a perimeter that is larger than the perimeter of the medial portion.
  • the perimeter of the upper end of the outer frame assembly 210 has a perimeter that is substantially larger than the perimeter of the medial portion. As shown best in FIG. 5, the upper end and the medial portion of the outer frame assembly 210 has a D-shaped cross-section. In this manner, the outer frame assembly 210 promotes a suitable fit into the annulus of the native atrioventricular valve.
  • Inner valve assembly 240 includes an inner frame 250, an outer covering (not shown), and leaflets 270. As shown, the inner valve assembly 240 includes an upper portion having a periphery formed with multiple arches.
  • the inner frame 250 includes six axial posts or frame members that support the outer covering of the inner valve assembly and leaflets 270.
  • Leaflets 270 are attached along three of the posts, shown as commissure posts 252 (best illustrated in FIG. 4), and the outer covering of the inner valve assembly 240 is attached to the other three posts, 254 (best illustrated in FIG. 4), and optionally to commissure posts 252.
  • Each of the outer covering of the inner valve assembly 240 and leaflets 270 are formed of approximately rectangular sheets of material, which are joined together at their upper, or atrium end.
  • the lower, ventricle end of the outer covering may be joined to inner covering 232 of outer frame assembly 210, and the lower, ventricle end of leaflets 270 may form free edges 275, though coupled to the lower ends of commissure posts 252.
  • inner valve assembly 240 is shown as having three leaflets, in other embodiments, an inner valve assembly can include any suitable number of leaflets.
  • the leaflets 270 are movable between an open configuration and a closed configuration in which the leaflets 270 coapt, or meet in a sealing abutment.
  • Outer covering 230 of the outer frame assembly 210 and inner covering 232 of outer frame assembly 210, outer covering of the inner valve assembly 240 and leaflets 270 of the inner valve assembly 240 may be formed of any suitable material, or combination of materials, such as those discussed above.
  • the inner covering 232 of the outer frame assembly 210, the outer covering of the inner valve assembly 240, and the leaflets 270 of the inner valve assembly 240 are formed, at least in part, of porcine pericardium.
  • the outer covering 230 of the outer frame assembly 210 is formed, at least in part, of polyester.
  • FIGS. 6-8 show inner frame 250 in more detail in FIGS. 6-8. Specifically, FIGS. 6-8 show inner frame 250 in an undeformed, initial state (FIG. 6), a side view of the inner frame 250 in an expanded configuration (FIG. 7), and a bottom view of the inner frame 250 in the expanded configuration (FIG. 8), respectively, according to an embodiment.
  • inner frame 250 is formed from a laser-cut tube of
  • Inner frame 250 is illustrated in FIG. 6 in an undeformed, initial state, i.e. as laser- cut, but cut and unrolled into a flat sheet for ease of illustration.
  • Inner frame 250 can be divided into four portions, corresponding to functionally different portions of the inner frame 250 in final form: atrial portion 247, body portion 242, strut portion 243, and tether clamp or connecting portion 244.
  • Strut portion 243 includes six struts, such as strut 243A, which connect body portion 242 to tether connecting portion 244.
  • Tether connecting portion 244 (also referred to as first end portion of inner frame) includes longitudinal extensions of the struts, connected circumferentially by pairs of opposed, slightly V-shaped connecting members (or "micro- Vs"). Tether connecting portion 244 is configured to be radially collapsed by application of a compressive force, which causes the micro- Vs to become more deeply V-shaped, with the vertices moving closer together longitudinally and the open ends of the V shapes moving closer together circumferentially.
  • tether connecting portion 244 can be configured to compressively clamp or grip one end of a tether, either connecting directly onto a tether line (e.g. braided filament line) or onto an intermediate structure, such as a polymer or metal piece that is in turn firmly fixed to the tether line.
  • Atrial portion 247 also referred to as “inner frame free end portion”
  • body portion 242 are configured to be expanded radially.
  • Strut portion 243 forms a longitudinal connection and radial transition between the expanded body portion and the compressed tether connecting portion 244.
  • Body portion 242 provides an inner frame coupling portion 245 that includes six longitudinal posts, such as post 242A.
  • the inner frame coupling portion 245 can be used to attach leaflets 270 to inner frame 240, and/or can be used to attach inner assembly 240 to outer assembly 210, such as by connecting inner frame 250 to outer frame 220.
  • the posts include openings through which connecting members (such as suture filaments and/or wires) can be passed to couple the posts to other structures.
  • Inner frame 250 is shown in a fully deformed, i.e. the final, deployed configuration, in side view and bottom view in FIGS. 7 and 8, respectively.
  • Outer frame 220 of valve 200 is shown in more detail in FIGS. 9-11.
  • outer frame 220 is also formed from a laser-cut tube of Nitinol ® .
  • Outer frame 220 is illustrated in FIG. 9 in an undeformed, initial state, i.e. as laser-cut, but cut and unrolled into a flat sheet for ease of illustration.
  • Outer frame 220 can be divided into an outer frame coupling portion 271, a body portion 272, and a cuff portion 273 (which includes the atrium or free end portion 216), as shown in FIG. 9.
  • Outer frame coupling portion 271 includes multiple openings or apertures, such as 271 A, by which outer frame 220 can be coupled to inner frame 250, as discussed in more detail below.
  • Outer frame 220 is shown in a fully deformed, i.e. the final, deployed configuration, in side view and top view in FIGS. 10 and 11, respectively.
  • the lower end of outer frame coupling portion 271 forms a roughly circular opening (identified by "O" in FIG. 11).
  • the diameter of this opening preferably corresponds approximately to the diameter of body portion 242 of inner frame 250, to facilitate coupling of the two components of valve 200.
  • the two frames collectively form a structural support for a prosthetic valve such as valve 200.
  • the frames support the valve leaflet structure (e.g., leaflets 270) in the desired relationship to the native valve annulus, support the coverings (e.g., outer covering 230, inner covering 232, outer covering of inner valve assembly 240) for the two frames to provide a barrier to blood leakage between the atrium and ventricle, and couple to the tether (e.g., tether assembly 290) (by the inner frame 250) to aid in holding the prosthetic valve 200 in place in the native valve annulus by the tether connection to the ventricle wall.
  • the valve leaflet structure e.g., leaflets 270
  • the coverings e.g., outer covering 230, inner covering 232, outer covering of inner valve assembly 240
  • the tether e.g., tether assembly 290
  • the outer frame 220 and the inner frame 250 are connected at six coupling points (representative points are identified as "C").
  • the coupling points are implemented with a mechanical fastener, such as a short length of wire, passed through an aperture (such as aperture 271 A) in outer frame coupling portion 271 and corresponding openings in inner frame coupling portion 245 (e.g., longitudinal posts, such as post 242A) in body portion 242 of inner frame 250.
  • Inner frame 250 is thus disposed within the outer frame 220 and securely coupled to it.
  • FIGS. 15-21 illustrate a method of reconfiguring a prosthetic heart valve 300
  • prosthetic mitral valve prior to inserting the prosthetic heart valve 300 into a delivery sheath 326 (see, e.g., FIGS. 17-21) for delivery into the atrium of the heart.
  • the prosthetic heart valve 300 (also referred to herein as "valve”) can be constructed the same as or similar to, and function the same as or similar to the valves 100 and 200 described above. Thus, some details regarding the valve 300 are not described below. It should be understood that for features and functions not specifically discussed, those features and functions can be the same as or similar to the valve 200.
  • the valve 300 has an outer frame 320 and an inner frame
  • the outer frame 320 and the inner frame 350 of valve 300 can each be formed with a shape-memory material and have a biased expanded configuration.
  • the outer frame 320 and the inner frame 350 can be moved to a collapsed configuration for delivery of the valve 300 to the heart.
  • the outer frame 320 of the valve 300 is first disposed in a prolapsed or inverted configuration as shown in FIG. 16.
  • the elastic or superelastic structure of outer frame 320 of valve 300 allows the outer frame 320 to be disposed in the prolapsed or inverted configuration prior to the valve 300 being inserted into the lumen of the delivery sheath 326. As shown in FIG.
  • the outer frame 320 is folded or inverted distally (to the right in FIG. 16) such that an open free end 316 of the outer frame 320 is pointed away from an open free end 347 of the inner frame 350.
  • the overall outer perimeter or outer diameter of the valve 300 is reduced and the overall length is increased.
  • the diameter Dl shown in FIG. 15 is greater than the diameter D2 shown in FIG. 16, and the length LI (shown in FIG. 12 for valve 200) is less than the length L2 shown in FIG. 16 for valve 300.
  • the valve 300 With the outer frame 320 in the inverted configuration relative to the inner frame 350, the valve 300 can be placed within a lumen of a delivery sheath 326 as shown in FIG. 17 for delivery of the valve 300 to the left atrium of the heart.
  • the valve 300 can be collapsed into a smaller overall diameter, i.e. when placed in a smaller diameter delivery sheath, than would be possible if the valve 300 in the configuration shown in FIG. 15 were collapsed radially without being inverted. This is because in the configuration shown in FIG. 15, the two frames are concentric or nested, and thus the outer frame 320 must be collapsed around the inner frame 350, whereas in the configuration shown in FIG.
  • the two frames are substantially coaxial but not concentric or nested.
  • the outer frame 320 can be collapsed without the need to accommodate the inner frame 350 inside of it.
  • the layers or bulk of the frame structures cannot be compressed to as small a diameter.
  • the structure is less flexible, and therefore, more force is needed to bend the valve, e.g. to pass through tortuous vasculature or to make tight turns in the left atrium after passing through the atrial septum to be properly oriented for insertion into the mitral valve annulus.
  • FIGS. 22-24 illustrate a portion of a procedure to deliver the valve 300 to the heart.
  • the valve 300 is shown being delivered via a transfemoral delivery approach as described, for example, in the '572 PCT application incorporated by reference above.
  • the delivery sheath 326, with the valve 300 disposed within a lumen of the delivery sheath 326 and in an inverted configuration as shown in FIG. 17, can be inserted into a femoral puncture, through the femoral vein, through the inferior vena cava, into the right atrium, through the septum Sp and into the left atrium LA of the heart.
  • the valve 300 can be deployed outside a distal end of the delivery sheath 326.
  • a pusher device 338 can be used to move or push the valve 300 out the distal end of the delivery sheath 326.
  • a tether 336 can be attached to the valve 300, and extend though the mitral annulus, through the left ventricle LV, and out a puncture site at the apex Ap.
  • the valve 300 can be moved out of the delivery sheath 326 by pulling proximally on the tether 336.
  • the valve 300 can be deployed by pushing with the pusher device and pulling with the tether.
  • the outer frame assembly 310 exits first in its inverted configuration as shown in the progression of FIGS. 18- 20 (see also FIG. 22).
  • the outer frame 320 can revert to its expanded or deployed configuration as shown in FIG. 21, 23 and 24.
  • the outer frame 320 can revert automatically after fully exiting the lumen of the delivery sheath due to its shape-memory properties.
  • a component of the delivery sheath or another device can be used to aid in the reversion of the outer frame assembly 310.
  • the pusher device and/or the tether can be used to aid in the reversion of the outer frame assembly 310.
  • the valve 300 can continue to be deployed until the inner frame 350 is fully deployed with the left atrium and the valve 300 is in the expanded or deployed configuration (as shown, e.g., in FIG. 15 and 24).
  • the valve 300 and the tether 336 can then be secured to the apex of the heart with an epicardial pad device 339 as shown in FIG. 24 and as described in more detail in the '572 PCT application and the '305 PCT application incorporated by reference above.
  • FIG. 25 illustrates schematically an embodiment of a delivery system (also referred to as a "delivery device”) that can be used to deliver and deploy a prosthetic heart valve within a heart of a patient with, for example, a transvascular approach.
  • a delivery system 405 includes a delivery sheath 426, a valve holder 438 (also referred to as a "pusher"), and one or more actuation wires 474 and 476.
  • actuation wires 474 and 476 In this schematic illustration, only two actuation wires are illustrated, but in other embodiments, only one actuation wire or more than two actuation wires can be used.
  • the actuation wires 474, 476 can be, for example, a flexible tension member / tether, made of monofilament or multiple filaments woven, knit, or braided, polymer, metal, natural fiber, etc.
  • the actuation wires 474, 476 can be, for example, a suture.
  • the delivery sheath 426 can be used to deliver a valve 400 that includes an inner valve assembly 440 including an inner frame (not labeled in FIG. 25) and an outer frame assembly 410 including an outer frame (not labeled in FIG. 25).
  • the valve 400 can be constructed the same as or similar to, and function the same as or similar to, for example, any of the prosthetic valves described herein and/or in the '305 PCT application, and can be moved between a deployed or expanded configuration and a delivery configuration in which the outer frame is disposed in an inverted position relative to the inner frame as described herein and/or in the '305 PCT application. As shown in FIG.
  • the valve 400 can be disposed within a lumen of the delivery sheath 426 when the valve is in the delivery configuration (i.e., the outer frame is inverted relative to the inner frame).
  • the outer frame assembly 410 when in the delivery configuration and placed within a delivery sheath, the outer frame assembly 410 is disposed distal of the inner valve assembly 440.
  • the valve holder 438 is coupled to the inner valve assembly 440 and the actuation wires are coupled to the outer fame assembly 410.
  • the valve holder 438 can be releasably coupled to the inner frame assembly 440 via couplers 406 that are attached to the inner frame assembly 440 as shown in FIGS. 26A-26C.
  • the couplers 406 are in the form of a T-bar or hammer shape. It should be understood that couplers with other configurations and shapes can be used. [00134] As shown in FIG. 26A, the couplers 406 are received within the recesses 404 and the valve 400 and the valve holder 438 can be disposed within the lumen of the delivery sheath 426. The inner diameter of the delivery sheath 426 can be sized such that when the valve holder 438 and valve 400 are disposed therein, the couplers 406 are unable to exit the recesses 404. In other words, the inner walls of the delivery sheath 426 maintain the couplers 406 within the recesses 404. When the valve 400 is moved outside of the delivery sheath 426, the couplers 406 will be able to freely exit the recesses 404 releasing the inner frame 450 from the valve holder 438.
  • valve holder 438 can be removably coupled to the valve 400 (e.g., the inner frame 450 of the valve 400) via wires or sutures that can be cut after delivery of the valve 400 to the heart.
  • the valve holder 438 can be decoupled from the valve 400 when the valve is still disposed within the delivery sheath 426, while in other instances the valve holder 438 can be decoupled from the valve 400 after the valve 400 exits the delivery sheath 426 within the heart.
  • the actuation wires 474 and 476 can be coupled to the outer frame of the outer frame assembly 410 with a variety of different coupling methods.
  • the outer frame 410 can include loops (as described below, for example, with respect to outer frame 510, and in the '305 PCT application) through which the actuation wires 474 and 476 can be received or threaded.
  • the number of loops on the outer frame can vary and the number of loops through which each actuation wire is connected can vary.
  • the outer frame includes 12 loops and a first actuation wire is threaded through 6 of the loops and a second actuation wire is threaded through 6 of the loops.
  • the outer frame can include 12 loops and there can be 4 actuation wires, each coupled to 3 of the loops.
  • a single actuation wire is coupled through all of the loops of the outer frame.
  • the delivery sheath 426 can be used to deliver the valve 400 to the left atrium of the heart using a transvascular approach (e.g., transfemoral, transatrial, transjugular).
  • a transvascular approach e.g., transfemoral, transatrial, transjugular.
  • the valve 400 is moved out of the lumen of the delivery sheath 426 using the actuation wires 474, 476 to assist in pulling the valve 400 out of the delivery sheath 426.
  • the valve holder 438 can also be used to push the valve 400 out of the delivery sheath 426.
  • the actuation wires 474 and 476 can extend from the outer frame assembly 410 out a distal end of the delivery sheath and extend proximally.
  • the actuation wires 474, 476 extend proximally outside the delivery sheath 426, then pass back into the lumen of the delivery sheath 426 through side apertures or holes (not shown) and then out a proximal end of the delivery sheath 426.
  • a user e.g., physician
  • the actuation wires 474, 476 extend proximally from the outer frame assembly 410, back through the distal end of the delivery sheath 426 (e.g., rather than through side apertures or holes of the delivery sheath) and within the lumen of the delivery sheath, and then out a proximal end of the delivery sheath 426.
  • the actuation wires 474, 476 extend proximally from the outer frame assembly 410, back through the distal end of the delivery sheath 426 (e.g., rather than through side apertures or holes of the delivery sheath) and within the lumen of the delivery sheath, and then out a proximal end of the delivery sheath 426.
  • the outer frame assembly 410 As the outer frame assembly 410 exits the delivery sheath 426 it will still be in an inverted configuration relative to the inner frame assembly 440. After the outer frame assembly 410 is at least partially outside of the lumen of the delivery sheath 426, the outer frame assembly 410 can begin to revert to its expanded or deployed configuration (not shown in FIG. 25). In this embodiment, however, the actuation wires 474 and 476 can function to selectively (e.g., by an operator) assist and/or control the expansion, deployment and/or articulation of the valve 400 as the valve 400 is delivered to the heart.
  • the proximal end portions of the actuation wires 474, 476 can be pulled distally to manipulate the outer frame assembly 410 to assist and control the transition of the outer frame assembly 410 from its inverted configuration relative to the inner frame assembly 440 to its expanded or deployed configuration (not shown).
  • the actuation wires 474, 476 can be manually grasped by a user to pull the actuation wires proximally.
  • the actuation wires 474, 476 can be operatively coupled to the delivery system 405 such that the user does not have to manually handle the actuation wires.
  • the actuation wires can be coupled to a delivery sheath and/or to a handle assembly (not shown) of the delivery system 405.
  • a delivery sheath and/or to a handle assembly (not shown) of the delivery system 405.
  • FIGS. 27-35 illustrate a delivery system 505 for delivering and deploying a prosthetic heart valve, such as, prosthetic heart valve 500, within a heart, according to another embodiment.
  • the prosthetic heart valve 500 (also referred to herein as "valve") can be constructed the same as or similar to, and function the same as or similar to any of the valves described herein. Thus, some details regarding the valve 500 are not described herein.
  • the valve 500 has an outer frame assembly 510 with an outer frame 520 and an inner valve assembly 540 with an inner frame 550, and a tether 536 coupled to the inner frame 550.
  • the outer frame 520 and the inner frame 550 of valve the 500 can each be formed with a shape-memory material and have a biased, expanded or deployed configuration.
  • the outer frame 520 and the inner frame 550 can be moved to a collapsed or undeployed configuration for delivery of the valve 500 to the heart in which the outer frame 520 is inverted relative to the inner frame 550.
  • the outer frame 520 of the valve 500 is first disposed in a prolapsed or inverted configuration as shown in FIG. 27.
  • the elastic or superelastic structure of outer frame 520 of valve 500 allows the outer frame 520 to be disposed in the prolapsed or inverted configuration relative to the inner frame 550 as described above, for example with respect to valve 100.
  • the outer frame 520 is folded or inverted distally such that the outer frame 520 is pointed away from the inner frame 550.
  • the valve 500 can be placed within a lumen of the delivery system 505 as shown in FIG. 27 for delivery of the valve 500 to the left atrium of the heart.
  • valve 500 can be collapsed into a smaller overall diameter, i.e., placed in a smaller diameter delivery sheath, than would be possible if the valve 500 were collapsed radially when the inner frame 550 and the outer frame 520 are disposed concentric to one another.
  • the delivery system 505 includes an outer delivery sheath
  • an inner sheath 508 an inner sheath 508, a valve holder 538 (also referred to as a "pusher") and a multilumen elongate tube member 503 (also referred to as “tube” or “tube member” or “multilumen elongate member”).
  • the tube member 503 is movably disposed within a lumen 582 defined by the outer delivery sheath 526.
  • the inner sheath 508 is movably disposed within the lumen 582 and within a lumen 580 defined by the tube member 503.
  • the valve holder 538 is movably disposed within a first lumen 583 and a second lumen 585 defined by the inner sheath 508 that are in fluid communication with each other.
  • the outer frame 520 of the valve 500 is first moved or placed in its inverted configuration relative to the inner frame 550. As shown in FIG. 27, a portion of the valve 500 is placed within the lumen 582 of the outer sheath and a portion of the valve 500 is placed within the lumen 583 of the inner sheath 508. As described above for previous embodiments, when the valve 500 is placed within the delivery system (e.g., outer sheath 526 and inner sheath 508) the valve 500 can be compressed or collapsed to a smaller configuration (e.g., a smaller outer perimeter).
  • the inner frame 550 can be releasably coupled to the valve holder 538 via couplers 506 that are received within corresponding recesses 504 defined by the valve holder 538 in the same manner as described above for delivery system 405 (see, e.g., FIGS. 26A- 26C).
  • the valve holder 538 can be used to hold the valve 500 to aid in the control and manipulation of the valve 500 as it is being deployed within a heart.
  • the valve holder 538 can limit radial expansion of the inner frame 550 as the valve 500 is moved within the lumen of the delivery sheath 526 and during deployment outside of the delivery sheath 526.
  • an inner diameter 582 of the inner sheath 508 can be sized such that when the valve holder 538 and valve 500 are disposed therein, the couplers 506 are unable to exit the recesses 504. In other words, the inner walls of the inner sheath 508 maintain the couplers 506 within the recesses 504. When the valve 500 is moved outside of the inner sheath 508, the couplers 506 will be able to freely exit the recesses 504, releasing the inner frame 550 from the valve holder 538.
  • valve holder 538 can be removably coupled to the valve 500 (e.g., the inner frame 550 of the valve 500) via wires or sutures that can be cut after delivery of the valve 500 to the heart.
  • valve 500 e.g., the inner frame 550 of the valve 500
  • the valve holder 538 can be decoupled from the valve 500 when the valve is still disposed within the outer delivery sheath 526, while in other instances the valve holder 538 can be decoupled from the valve 500 after the valve 500 exits the delivery sheath 526 within the heart.
  • valve holder 538 can merely contact and push the valve 500 during deployment, as described for previous embodiments, without securing the inner frame 550 to the valve holder 538. In such embodiments, in some instances, radial expansion of the inner frame 550 can be restricted by the inner sheath 508 when the inner frame 550 is disposed therein.
  • a first actuation wire 576, a second actuation wire 574, a third actuation wire 576 and a fourth actuation wire 577 are each coupled to the outer frame assembly 510.
  • the outer frame 550 of the outer frame assembly 510 includes loops 562 through which the actuation wires 574-577 can be threaded or received therethrough.
  • the outer frame 520 includes 12 loops 562 and each actuation wire 574-577 is threaded through 3 of the loops 562.
  • each actuation wire can be threaded or received through a different number of loops than shown for this embodiment.
  • the actuation wires 574-577 each extend from the outer frame 520 proximally within the lumen 582 of the outer sheath and along an outside wall of the inner sheath 508, are tucked or placed behind one or more seals 581 or other holding device, and pinned by an elongate pinning member 578-1, 578-2, 578-3, 578-4 (collectively referred to as pinning members 578) to the tube member 503.
  • the seal 581 can be configured such that the actuation wires 574-577 can slide relative to the seal 581 during actuation and deployment of the valve 500 as described in more detail below.
  • a first end of the actuation wire 574 and a first end of the actuation wire 575 are pinned by a pinning member 578-2, and a first end of the actuation wire 576 and a first end of the actuation wire 577 are pinned by a pinning member 578-1.
  • a second end of the actuation wire 574 and a second end of the actuation wire 576 are pinned by a pinning member 578-4 (not shown in the partial cross-sectional views of FIGS.
  • FIGS. 27 and 32-34 a second end of the actuation wire 575 and a second end of the actuation wire 577 are pinned by a pinning member 578-3 (not shown in the partial cross-sectional views of FIGS. 27 and 32-34).
  • the second ends of the actuation wires are shown detached in FIGS. 27 and 32-34 for ease of illustration.
  • FIG. 28 is a cross-sectional view taken along line 28-28 in FIG. 27 and illustrates the pinning of the actuation wires 574-577.
  • the actuation wires 574-577 are shown unattached to the outer frame for illustration purposes.
  • FIG. 31A illustrates the actuation wire 574 and is representative of the other actuation wires 575-577.
  • FIGS. 3 IB, 3 IB and 31C illustrate alternative embodiments for the actuation wires labeled 574', 574" and 574" ' .
  • the actuation wires 574-577 each include a loop on both ends of the actuation wire, which is pinned by the pinning members 578.
  • FIG. 31 A the actuation wires 574-577 each include a loop on both ends of the actuation wire, which is pinned by the pinning members 578.
  • the pinning members can pin the smaller loop on one end of the actuation wire 574' and the end of the larger loop on the opposite end of the actuation wire 574'.
  • the actuation wire 575" is in the form of a closed loop and each end of the loop can be pinned by a pinning member.
  • the actuation wire 574" ' includes two elongate loops and a center smaller loop.
  • the actuation wire 574" ' can be pinned by three pinning members, a first pinning member can pin an end of one of the larger loops, a second pinning member can pin an end of the other larger loop, and the small loop can be pinned by a third pinning member.
  • a double layer of the actuation wire would be passed or threaded through the loops of the outer frame of the valve.
  • Other alternative configurations can also be used.
  • the multi-lumen tube member 503 defines four pinning member lumens 579-1, 579-2, 579-3, 579-4 (collectively referred to as pinning member lumens 579).
  • the end portions of the actuation wires 574-577 are placed within the circumferential recess or groove 584 defined by the tube member 503, where the pinning members 578 are received through the loops on the ends of the actuation wires 574-577, pinning the actuation wires 574-577 to the tube member 503.
  • a user e.g., physician
  • the tube member 503 to which the actuation wires 574-577 are coupled, to control and/or manipulate movement of the valve 500 as described in more detail below.
  • FIGS. 30B and 30C illustrate an alternative embodiment of a multi-lumen tube member 603 that can be used with a distal retention element 686 as shown in FIG. 30B, or a distal retention element 786 as shown in FIG. 30C.
  • the distal retention elements 686 and 786 can be disposed abutting a distal end of the multi-lumen tube member 603 and can define at least in part a recess area to receive the loop ends of the actuation wires, and can provide increased overall strength and durability to the multi-lumen tube member 603 during delivery and deployment of the prosthetic valve.
  • the distal retention element 686, 786 can be formed with the same or a different material as the multi -lumen tube member 603.
  • the distal retention element 686, 786 may be formed of a material having greater strength characteristics than the multi-lumen tube member 603.
  • the distal retention element 686, 786 can be formed with a metal or rigid plastic.
  • the multi-lumen tube member 603 (also referred to herein as "tube member”) can define a center lumen 680 and multiple pinning member lumens, including pinning member lumens 679-3 and 679-4 (collectively referred to as 679) shown in FIGS. 30B and 30C that can receive therein pinning members, such as pinning members 578-3 and 578-4, respectively.
  • the tube member 603 can also define pinning member lumens that can receive pinning members 578-1 and 578-2 as shown for tube member 503 in FIG. 29.
  • the distal retention element 686 can be received within the lumen 680 and can define a lumen 687 through which the valve holder 538 can be slidably received.
  • the distal retention element 686 can be coupled to the tube member 603 using various different coupling methods.
  • the distal retention element 686 can be bonded to the tube member 603.
  • the distal retention element 686 can include a feature(s), such as barbs, that allow it to be inserted into the tube member 603, but not removed.
  • the distal retention element 686 can include notches that interlock with a corresponding feature of the tube member 603 and/or the tube member 603 can be reflowed or molded over the retention element 686.
  • Various other coupling methods and/or combinations of securement strategies could be used to couple the distal retention element 686 to the tube member 603.
  • the distal retention element 686 can extend proximally within the lumen 680 of the tube member 603 and be coupled at a proximal end portion of the tube member 603.
  • the distal retention element 686 also defines pinning member lumens 669 that align with the pinning member lumens 679 of the multi-lumen tube member2603 such that the pinning members 578 can be received therein.
  • a proximal shoulder 688 can be disposed abutting a distal end of the multi-lumen tube member 603.
  • the distal retention element 686 also defines a circumferential recess area 684 defined between the proximal shoulder 688 and a distal end portion of the distal retention element 686. As shown in FIG. 30B, the loop ends of the actuation wires 574-577 can be received within the recess area 684 and pinned by the pinning members 578 as described above for multi-lumen tube member 503.
  • FIG. 30C illustrates a distal retention element 786 disposed abutting the distal end of the multi -lumen tube member 603.
  • the distal retention element 786 can be received within the lumen 680 and can define a lumen 787 through which the valve holder 538 can be slidably received.
  • the distal retention element 786 can be coupled to the tube member 603 in the same manner as described above for distal retention element 686.
  • the distal retention element 786 also includes a proximal shoulder 788 configured to abut the distal end of the multi-lumen tube member 603.
  • the distal retention element 786 also defines a circumferential recess area 784 that can receive the loop ends of actuation wires 574" -577", which can be pinned by the pinning members 578 (578-3 and 578-4 shown in FIG. 30C).
  • the actuation wires are configured as a closed loop as shown for actuation wire 574" in FIG. 31C.
  • the procedure to deliver the valve 500 to the heart can be the same as or similar to any of the procedures described herein, in '572 PCT application or in the '305 PCT application incorporated by reference above.
  • the valve 500 disposed within the delivery system 505 in an inverted configuration, can be delivered to the left atrium of the heart in the same or similar manner as described above with reference to FIGS. 43-48 in the '305 PCT application.
  • the valve 500 With the distal end portion of the delivery sheath 526 disposed within the left atrium of the heart, the valve 500 can be deployed outside of the delivery sheath 526. For example, as shown in FIG.
  • the inner sheath 508, valve holder 538 and tube member 503 can be moved distally relative to the outer sheath 526, moving or pushing the valve 500 outside the lumen 582 of the outer sheath 526.
  • the outer sheath 526 can be moved or pulled proximally, leaving at least a portion of the valve 500 disposed within the heart.
  • the tether 536 coupled to the valve 500 can be used to help pull the valve 500 out of the lumen of the outer sheath 526.
  • the outer frame 520 can begin to revert to its expanded or uninverted configuration.
  • the actuation wires 575-577 can be used to control the reversion of the outer frame 520. More specifically, the tube member 503 can be pulled proximally such that the actuation wires (pinned to the tube member 503) pull the distally disposed portion of the outer frame 520 proximally (as shown in FIG. 33) in a controlled manner and such that the reversion of the outer frame 520 from its inverted configuration relative to the inner frame 550 can be controlled.
  • the actuation wires 574-577 can assist in the articulation and placement of the valve 500 into its destination (e.g., a native annulus of an atrioventricular valve of a heart).
  • the actuation wires 574- 577 can also be used to constrain, collapse, or otherwise move the valve 500 (e.g., radially compress the outer frame 520 of the valve 500) after the valve 500 exits the outer sheath 526 and is in its reverted, expanded or partially expanded configuration.
  • the tube member 503 with the actuation wires 574-577 pinned thereto can be manipulated by a user to move or urge the outer frame to a more compressed configuration (as shown in FIG. 34) by pulling or moving the tube member 503 proximally. This may be desirable, for example, to reposition the valve 500 within the heart before fully deploying the valve 500.
  • the inner frame 550 can be deployed.
  • the valve holder 538 can be moved distally and/or the inner sheath 208 can be moved proximally such that the valve holder 238 is disposed outside of the lumen 583 of the inner sheath 508.
  • the couplers 506 can be released from the recesses 504 releasing or decoupling the inner frame 550 from the valve holder 538.
  • the tether 536 can be pulled to help move the inner frame 550 outside of the inner sheath 508.
  • the inner frame 550 can assume its biased expanded configuration.
  • the actuation wires 574-577 can also be released or decoupled from the outer frame 520 before or after the inner frame 550 is released from the valve holder 538.
  • one end of each of the actuation wires 574-577 can be unpinned or decoupled from the tubular member 503.
  • the pinning member 578-3 See FIG. 28
  • the pinning member 578-3 can be withdrawn proximally from groove 584 such that the second end of the actuation wire 577 and the second end of the actuation wire 575 are each released or unpinned from the tube member 503, but remain pinned by pinning members 578-2 and 578-1, respectively.
  • the pinning member 578-4 (see FIG. 28) can be withdrawn proximally from groove 584 such that the second end of the actuation wire 574 and the second end of actuation wire 576 can each be released or unpinned from the tube member 503, but remain pinned by pinning members 578-2 and 578-1, respectively.
  • the tube member 503 With one end of each of the actuation wires 575-577 coupled to the tube member 503 (via pinning members 578-1 and 578-2 in this example), the tube member 503 can be pulled proximally, which in turn will pull the opposite ends of the actuation wires 574-577 out of the loops 562 of outer frame 520.
  • the outer frame can assume a biased expanded or partially expanded configuration.
  • the pinning members 578-3 and 578-4 are shown withdrawn to release the ends of the actuation wires 574-577, alternatively, the pinning members 578-1 and 578-2 can be withdrawn leaving the actuation wires 574-577 pinned by pinning members 578-3 and 578-4.
  • the actuation wires 574-577 can be decoupled from the outer frame 520 at any suitable sequence or time period within the procedure. For example, in some instances it may be desirable for the actuation wires 574- 577 to be released after the valve 500 has at least partially exited the delivery sheath 526 but before the valve 500 is seated within the native annulus of the atrioventricular valve. In other instances, for example, the actuation wires 574-577 can be released after the valve 500 has at least partially exited the outer delivery sheath 526 and after the valve 500 is seated within the native annulus of the atrioventricular valve.
  • FIGS. 36A-38 illustrate another embodiment of a delivery system 805 (also referred to as a "delivery device") that can be used to deliver and deploy a prosthetic heart valve 800 (shown schematically in FIG. 37) within a heart in a procedure similar to or the same as the procedures described with respect to other embodiments described herein and embodiments described in the '305 PCT application. Thus, some details regarding the valve and procedures performed therewith are not described herein. It should be understood that for features and functions not specifically discussed, those features and functions can be the same as or similar to the valves described herein (e.g., the valve 500) and/or in the '305 PCT application.
  • the valve 800 can be constructed the same as or similar to, and function the same as or similar to any of the valves described herein and/or in the '305 PCT application.
  • the valve can include an outer frame assembly 810 that has an outer frame, an inner valve assembly 840 that has an inner frame, and a tether (not shown) coupled to the inner valve assembly.
  • the delivery system 805 can include the same or similar components as delivery system 505 described above.
  • the delivery system 805 can include an outer delivery sheath 826 and a valve holder 838 (also referred to as a "pusher").
  • the delivery system 805 includes an elongate tube member 815 (also referred to as “tube” or “tube member”) which can be slidably disposed within a lumen 882 of the delivery sheath 826 and can be coupled to a retention device (described below) that can be used to secure and release actuation wires 874, 875 and 876 (875 only shown in FIGS. 41 A and 4 IB) as described in more detail below.
  • the valve holder 838 can be coupled to an elongate member 837 that can be movably disposed within a lumen 880 defined by the elongate tube member 815 and a lumen defined by a retention device 860 described below.
  • the delivery system 805 can be used to deliver the valve 800, which can be moved from a biased expanded configuration to an inverted configuration for delivery of the valve to the heart.
  • the outer frame of the valve 800 can be moved to an inverted configuration relative to the inner frame as described above for previous embodiments and placed within a distal end portion of the lumen 882 of the delivery sheath 826 and/or a lumen of an inner sheath (not shown) that can be movably disposed within the lumen 882 of the outer delivery sheath 826, such that the valve 800 is compressed or collapsed within the delivery sheath 826 as shown schematically in FIG. 36C.
  • the inner frame of the valve 800 can be releasably coupled to the valve holder 838 via couplers (not shown) that are received within corresponding recesses (not shown) defined by the valve holder 838 in the same or similar manner as described above for delivery system 405 (see, e.g., FIGS. 26A-26C).
  • the valve holder 838 can be used to hold the valve to aid in the control and manipulation of the valve as it is delivered and deployed.
  • an inner diameter of the outer delivery inner sheath 826 or an inner diameter of an inner sheath (not shown) in which the valve is disposed for delivery can be sized such that when the valve holder 838 and valve are disposed therein, the couplers are unable to exit the recesses.
  • the inner walls of the inner sheath or delivery sheath maintain the couplers within the recesses.
  • the valve holder 838 can include an inner member that can be used to maintain the couplers within the recesses of the valve holder 838, rather than a component on the outer surface of the valve holder 838 as described for delivery systems 405 and 505.
  • the inner member of the valve holder 838 can be moved distally outside of the valve holder 838 to release the couplers from the recesses and moved back proximally within the valve holder 838 to secure the couplers in the recesses.
  • the elongate tube member 815 is coupled to a retention device 860 that includes retention components or members that are coupled together coaxially and can be actuated to secure and release actuation wires coupled to the delivery system 805.
  • FIGS. 36A-38 illustrate three retention components or members, but in other embodiments, more or less than three retention components can be included. More specifically, the retention device 860 includes a first or proximal retention member 864 that is fixedly coupled to a distal end portion of the tube member 815, a second or center retention member 866 that is movably coupled to the proximal retention member 864 and a third or distal retention member 868 that is movably coupled to the center retention member 866 and movably coupled to the proximal retention member 864.
  • the center retention member 866 can be coupled to the proximal retention member 864 via a first actuation rod or rods 865, and the distal retention member 868 can be coupled to the center retention member 866 and to the proximal retention member 864 via a second actuation rod or rods 867.
  • the actuation rods 865 and 867 can extend to a proximal end of the delivery device 805 and be operably coupled to a handle assembly 818 (see FIG. 38). Although two actuation rods 865 and two actuation rods 867 are shown in FIGS.
  • the delivery system can include a single actuation rod 865 and a single actuation rod 867 or more than two actuation rods 865, 867.
  • two actuation rods 867 are fixedly attached to the distal retention member 868, and a single actuation rod 865 is fixedly attached to the center retention member 866.
  • the actuation rods 867 are attached to the distal retention member 868, extend through lumens/passageways defined by the center retention member 866 and through lumens defined by the proximal retention member 864 such that the distal retention member 868 can be moved relative to the center retention member 866 and the proximal retention member 864.
  • the actuation rod 865 is fixedly attached to the center retention member 864, and extends through a lumen/passageway defined in the proximal retention member 864 such that the center retention member 866 can be moved relative to the proximal retention member 864.
  • the proximal retention member 864 can be fixedly attached to the tube member 815 with a connecting rod (not shown) such that the proximal retention member 864 can move with the tube member 815.
  • the retention device 860 also defines a lumen through which the valve holder 838 can be movably disposed.
  • each of the proximal retention member 864, the center retention member 866 and the distal retention member 868 can define a lumen and the valve holder 838 and elongate member 837 can be movably disposed within each lumen.
  • Multiple pins 898 are fixedly attached to the center retention member 866 and include a proximal portion 878 (also referred to as "pin” or “pin portion”) that extends proximally from the center retention member 866 and a distal portion 888 (also referred to as "pin” or “pin portion”) that extends distally from the center retention member 866.
  • the pins 898 extend through lumens (not shown in FIGS. 36A-38) defined by the center retention member 866.
  • the proximal and distal pin portions 878 and 888 can be used to releasably hold actuation wires 874, 875 and 876 to the delivery device 805 in a similar manner as described above for delivery system 505 and pins 578.
  • the pins 878 can be received within apertures or lumens 863 defined by the proximal retention member 864 and the pins 888 can be received within apertures or lumens 861 defined by the distal retention member 868.
  • Pins 878 and pins 888 can be formed as separate pins and attached to the center retention member 866 or can be formed as a single component with the pins 878 extending proximally from the center retention member 866 and the pins 888 extending distally from the center retention member 866.
  • the pins 878, 888 can be a single component that extends through an opening in the center retention member 866 and is attached (e.g., welded) to the center retention member 866, or is otherwise attached to the center retention member 866 (without passing through an opening).
  • the pins 878, 888 can be for example, welded to the center retention member 866. Only two pins 878 and two pins 888 are shown in FIGS.
  • a third pin 878 and a third pin 888 are also included to pin the actuation wires 874, 875, 876.
  • multiple actuation wires can be coupled to the outer frame assembly of the prosthetic valve and used to help revert and manipulate the prosthetic valve into a desired position within the heart, and then can be released from the valve when the desired positioning has been achieved.
  • the outer frame of the valve can include loops through which the actuation wires 874-877 can be threaded or received therethrough in the same or similar manner as described herein (e.g., with respect to valve 500) and/or in the '305 PCT application. For example, if the outer frame includes 12 loops, each actuation wire 874, 875 and 876 can be threaded through 4 of the loops.
  • each actuation wire can be threaded or received through a different number of loops than shown for this embodiment.
  • the actuation wires can be coupled to (e.g., threaded through) the outer frame at a second set of loops disposed at a location between the free end of the outer frame and where the outer frame is attached to the inner frame. An example of such an embodiment is shown in FIG. 48.
  • FIG. 40 illustrates an embodiment of an actuation wire 874 that can be used with delivery device 805. It should be understood that this is just one example of a configuration of an actuation wire that can be used. Other alternative embodiments can be used, such as, for example, those described above with reference to FIGS. 31A-31D and described below with reference to FIGS. 46 and 53-57.
  • the actuation wire 874 includes a center loop 809 and two end loops 807 and 811.
  • the center loop 809 is connected to the end loop 807 by a strand 817 and the center loop 809 is connected to the end loop 811 by a strand 813.
  • Actuation wires 875 and 876 can be constructed the same as actuation wire 874 or have a different construction.
  • FIGS. 36B-38 show the end loops 807 and 811 pinned by pins 878 between the center retention member 866 and the distal retention member 868 and the center loops 809 can be pinned by pins 888 between the center retention member 866 and the proximal retention member 864 More specifically, FIGS. 36B-38 show the center loop 809 of actuation wire 874 pinned by a pin 878 and the end loops 807 and 811 pinned by a pin 888, and the center loop 809 of the actuation wire 876 pinned by a pin 878 and the end loops 807 and 811 pinned by pins 888.
  • the actuation wires 874-876 are also routed through apertures (not shown in FIGS. 36A-38) defined by the valve holder 838. This helps maintain the actuation wires 874-876 close to the valve holder 838 and within the lumen of the delivery sheath 826 during delivery.
  • FIGS. 41A and 41B illustrate the pinning of the loops of the actuation wires
  • FIG. 41A An end view of the proximal retention member 864 is shown in FIG. 41A and an end view of the center retention member 866 (distal retention member 868 is not shown in FIGS. 41A and 41B) to help illustrate how the loops and actuation wires are routed/pinned to the retention device 860.
  • the routing of the actuation wires through the prosthetic valve is not shown in FIGS. 41 A and 41B for ease of illustration. As shown in FIG.
  • the center loop 809 of actuation wire 874 is pinned by a pin 878 at A
  • the center loop 809 of actuation wire 875 is pinned by a pin 878 at B
  • the center loop 809 of the actuation wire 876 is pinned by a pin 878 at C.
  • the end loop 807 and the end loop 811 of actuation wire 874 are both pinned by a pin 888 at D
  • the end loop 807 and the end loop 811 of actuation wire 875 are both pinned by a pin 888 at E
  • the end loop 807 and the end loop 811 of actuation wire 876 are both pinned by a pin 888 at F.
  • the loops 809 of the actuation wires 874-876 are placed over the pins 878 (as shown in FIG. 36B).
  • the retention device 860 is actuated to move the center retention member 866 proximally such that the pins 878 are received in the apertures 863 of the proximal retention member 864, pinning the loops 809 (i.e., middle loop) of actuation wires 874-876 by pins 878 (as shown in FIG. 36C).
  • the loops 807, 811 of the actuation wires 874-876 are placed over the pins 888 (as shown in FIG.
  • the distal retention member 868 is actuated to move the distal retention member 868 proximally toward the center retention member 866 such that the pins 888 are received in the apertures 861 of the distal retention member 868, pinning the loops 807, 811 (i.e., end loops) of the actuation wires 874-876 by pins 888 (as shown in FIG. 36D).
  • the actuation of the distal retention member 868 can be done either sequentially or simultaneously with the actuation of the center retention member 866. In other embodiments, the movement of the various retention members can be varied.
  • the distal retention member 868 can be fixedly attached to the tube member 815 and the proximal retention member 864 can be moved relative to the center retention member 866. Further, the order of placing the loops on the pins can be varied and the order of actuating the distal retention member 868 and the center retention member 866 can be varied.
  • a user e.g., physician
  • the tube member 815 can be used to control and/or manipulate movement of the valve (to which the actuation wires are coupled) as described in more detail below.
  • the procedure to deliver the valve to the heart can be the same as or similar to any of the procedures described herein, in the '572 PCT application or in the '305 PCT application incorporated by reference above.
  • a valve, disposed within the delivery system 805 in an inverted configuration can be delivered to the left atrium of the heart in the same or similar manner as described with reference to FIGS. 43-48 in the '305 PCT application.
  • the valve 800 With the distal end portion of the delivery sheath 826 disposed within the left atrium of the heart, the valve 800 can be deployed outside of the delivery sheath 826.
  • the valve holder 838 and tube member 815 can be moved distally relative to the outer sheath 826, moving or pushing the valve 800 outside the lumen 882 of the outer sheath 826.
  • the outer sheath 826 can be moved or pulled proximally, leaving at least a portion of the valve 800 disposed within the heart.
  • a tether coupled to the valve 800 can be used to help pull the valve out of the lumen 882 of the outer sheath 826.
  • the outer frame of the valve becomes unconstrained by the outer sheath 826, the outer frame can begin to revert to its expanded or uninverted configuration.
  • the actuation wires 874-876 can be used to control the reversion of the outer frame. More specifically, the tube member 815 can be pulled proximally such that the actuation wires (pinned to the tube member 815) pull the distally disposed portion of the outer frame proximally in a controlled manner and such that the reversion of the outer frame from its inverted configuration relative to the inner frame of the valve can be controlled.
  • the actuation wires 874-876 can assist in the articulation and placement of the valve into its destination (e.g., a native annulus of an atrioventricular valve of a heart).
  • the actuation wires 874-876 can also be used to constrain, collapse, or otherwise move the valve (e.g., radially compress the outer frame of the valve) after the valve exits the outer sheath 826 and is in its reverted, expanded or partially expanded configuration.
  • the tube member 815 with the actuation wires 874-876 pinned thereto can be manipulated by a user to move or urge the outer frame to a more compressed configuration by pulling or moving the tube member 815 proximally. This may be desirable, for example, to reposition the valve within the heart before fully deploying the valve.
  • An example repositioning procedure is shown in FIGS. 49A-49D and described below.
  • the inner frame When the outer frame of the valve is disposed in its non-inverted and at least partially expanded configuration, and is in a desired position within the heart, the inner frame can be deployed.
  • the valve holder 838 can be moved distally and/or an inner sheath (not shown) can be moved proximally such that the valve holder 838 is disposed outside of the lumen of the inner sheath.
  • the couplers e.g., 406, 506
  • the couplers can be released from the recesses (404, 504) releasing or decoupling the inner frame from the valve holder 838.
  • valve holder 838 includes an inner member that holds the couplers within the valve holder 838
  • the inner member can be moved distally to release the couplers from the valve holder 838.
  • the inner frame can assume its biased expanded configuration.
  • the actuation wires 874-876 can also be released or decoupled from the outer frame before or after the inner frame is released from the valve holder 838.
  • the end loops 807, 811 of the actuation wires 874-876 can be unpinned or decoupled from the tubular member 815 by actuating the distal retention member 868 to release the loops 807, 811 from the pins 888.
  • the center loops 809 of the actuation wires 874-876 remain pinned by the pins 878 and thus the actuation wires 874-876 remain coupled to the tube member 815.
  • each of the actuation wires 874-876 coupled to the tube member 815 (via pinning members 878 in this example), the tube member 815 can be pulled proximally, which in turn will pull the ends of the actuation wires 874-876 out of the loops of outer frame of the valve.
  • the outer frame can assume a biased expanded or partially expanded configuration.
  • the actuation wires 874-876 can be decoupled from the outer frame at any suitable sequence or time period within the procedure. For example, in some instances it may be desirable for the actuation wires 874- 876 to be released after the valve has at least partially exited the delivery sheath 826 but before the valve is seated within the native annulus of the atrioventricular valve. In other instances, for example, the actuation wires 874-876 can be released after the valve has at least partially exited the outer delivery sheath 826 and after the valve is seated within the native annulus of the atrioventricular valve.
  • the pins 898 of the retention device 860 can have different lengths resulting in different lengths for the pin portions 878 and 888 (see, e.g., pins 1298 in FIG. 60).
  • the pins 898 may have the same length but are disposed such that the pin portions 878 and 888 have different lengths.
  • the delivery device 805' is shown with pin portions 878' having different lengths and pin portions 888' having different lengths.
  • the pins 878' extending on the proximal side of the center retention member 866 each have different lengths
  • the pins 888' extending on the distal side of the center retention member 866 each have a different length.
  • additional control over the release of the actuation wires can be achieved.
  • a slight amount of movement of the distal retention member 866 could release the loop of an actuation wire retained by the shorter pin 888', while the loop pinned by the longer pin 888' would remain pinned.
  • a slight movement of the center retention member 866 could release the loop pinned by the shorter pin 878', while the loop pinned by the longer pin 878' would remain pinned.
  • FIGS. 42-48 illustrate another embodiment of a delivery system 905 (also referred to as a "delivery device") that can be used to deliver and deploy a prosthetic heart valve 900 (see FIGS. 46-48) within a heart in a procedure similar to or the same as the procedures described with respect to other embodiments described herein and embodiments described in the '305 PCT application. Thus, some details regarding the valve and procedures performed therewith are not described herein. It should be understood that for features and functions not specifically discussed, those features and functions can be the same as or similar to the valves described herein (e.g., the valve 200, 500) and/or in the '305 PCT application.
  • the valve 900 can be constructed the same as or similar to, and function the same as or similar to any of the valves described herein (e.g., valves 100, 200, 400, 500) and/or in the '305 PCT application.
  • the valve 900 includes an outer frame assembly 910 that has an outer frame 920, an inner valve assembly 940 that has an inner frame 950, and a tether (not shown) coupled to the inner valve assembly 940.
  • the delivery system 905 can include the same or similar components as delivery systems 505 or 805 described above.
  • the delivery system 905 includes an outer delivery sheath 926, a valve holder 938 (also referred to as a "pusher"), and an elongate tube member 915 (also referred to as “tube” or “tube member”) which can be slidably disposed within a lumen 982 of the delivery sheath 926 and can be coupled to retention components that can be used to secure and release actuation wires 974, 975 and 976 in the same or similar manner as described above for delivery system 805.
  • the valve holder 938 can be coupled to an elongate member 937 (see, e.g., FIG. 47) that can be movably disposed within a lumen (not shown) defined by the elongate tube member 915 and a lumen defined by a retention device 960 described below.
  • the delivery system 905 can be used to deliver a valve that can be moved from a biased expanded configuration to an inverted configuration for delivery of the valve to the heart.
  • the outer frame 920 of the valve 900 can be moved to an inverted configuration (as shown in FIG. 46) relative to the inner frame 950 as described above for previous embodiments and placed within a distal end portion of the lumen 982 of the delivery sheath 926.
  • the inner frame 950 of the valve 900 can be releasably coupled to the valve holder 938 via couplers (not shown) that are received within corresponding recesses (not shown) defined by the valve holder 938 in the same or similar manner as described above for delivery system 405 (see, e.g., FIGS. 26A-26C).
  • the valve holder 938 can be used to hold the valve 900 to aid in the control and manipulation of the valve 900 as it is delivered and deployed.
  • the valve holder 938 includes an inner member (not shown) that is movably disposed within an interior of the valve holder 938.
  • the inner member can be moved to the interior of the valve holder 938 to retain the couplers within the recesses of the valve holder 938. To release the valve 900 from the valve holder 938, the inner member is moved distally to release the couplers from the recesses and in turn, release the valve 900 from the valve holder 938.
  • the elongate tube member 915 is coupled to a retention device 960 that includes retention components or members that are coupled together coaxially and can be actuated to secure and release actuation wires coupled to the delivery system 905.
  • the retention device 960 includes a first or proximal retention member 964 fixedly coupled to a distal end portion of the tube member 915, a second or center retention member 966 movably coupled to the proximal retention member 964 and a third or distal retention member 968 movably coupled to the center retention member 966.
  • the center retention member 966 can be coupled to the proximal retention member 964 via an actuation rod 965 (FIGS.
  • the distal retention member 968 can be coupled to the center retention member 966 and to the proximal retention member 964 via a second actuation rod (not shown).
  • the actuation rods can extend to a proximal end of the delivery device 905 and be operably coupled to a handle assembly (not shown).
  • Multiple pins 998 are fixedly attached to the center retention member 966 that include multiple proximal pins 978 (see e.g., FIGS. 42-43) that extend proximally and multiple distal pins 988 (see e.g., FIG. 44) that extend distally.
  • the pins 978 and 988 can be used to releasably hold actuation wires 974, 975 and 976 to the delivery device 905 in the same or similar manner as described above delivery system 905.
  • the pins 978 can be received within apertures/lumens (not shown) defined by the proximal retention member 964 and the pins 988 can be received within apertures/lumens (not shown) defined by the distal retention member 968.
  • multiple actuation wires can be coupled to the outer frame assembly 910 of the prosthetic valve 900 and used to help revert and manipulate the prosthetic valve 900 into a desired position within the heart, and then can be released from the valve when the desired positioning has been achieved.
  • the outer frame 920 of the valve 900 includes loops 962 (see FIG. 48) at a free end portion of the outer frame 920 through which the actuation wires 974-976 can be threaded or received therethrough in the same or similar manner as described herein (e.g., with respect to valve 500) and/or in the '305 PCT application.
  • the outer frame 920 also includes a second row of loops 958 through which the actuation wires can also be threaded. Having two rows of loops on the outer frame 920 to receive the actuation wires can help assist with the flipping or reverting of the outer frame 920 during delivery. The two rows of loops on the outer frame 920 can also help reduce tension on the cuff or free end portion of the outer frame when the actuation wires are pulled during the reverting.
  • FIGS. 69A and 69B illustrate force vectors associated with forces applied to the outer frame 920 when being pulled by the actuation wires to revert/flip the outer frame 920 during delivery of the prosthetic valve.
  • FIG. 69A illustrates the force vectors associated with the outer frame when the outer frame is initially being reverted/flipped.
  • the force vectors associated with the loops e.g., 962
  • the force vectors associated with the loops e.g., 962
  • the force vectors associated with the loops e.g., 962
  • the force vectors associated with the loops e.g., 962
  • the force vectors associated with the loops e.g., 958
  • the middle portion of the outer frame where the actuation wire are coupled to the outer frame.
  • the routing of the actuation wires through two rows of loops on the outer frame helps reduce the profile of the outer frame during the reverting/flipping.
  • the outer frame has been reverted and the inner frame is released from the valve holder, and when tension is applied to the actuation wires they can function as purse strings at both the cuff tips of the outer frame and the middle portion of the outer frame to pull in or reduce the outer profile of the outer frame and the valve overall.
  • the reduced profile helps during the positioning of the valve within an annulus (e.g., mitral valve annulus) of the heart.
  • actuation wires 974, 975, 976 are also routed through apertures 935 (see
  • FIG. 47 defined by the valve holder 938 as shown in FIGS. 46 and 47. This helps maintain the actuation wires 974-976 close to the valve holder 938 and within the lumen of the delivery sheath 926 during delivery.
  • FIGS. 50-52 illustrate an embodiment of an actuation wire 974 that can be used with delivery device 905. Further details regarding the construction of the actuation wires 974 are described below with respect to FIGS. 50-52. Other configurations of an actuation wire can alternatively be used as described above.
  • the actuation wire 974 can be the same as or similar to the actuation wire 874 and includes a center loop 909 and two end loops 907 and 911 and two strands 913 and 917.
  • Actuation wires 975 and 976 can be constructed the same as actuation wire 974 or have a different construction. As shown, for example, in FIGS.
  • the actuation wires 974-976 can be pinned to the retention device 960 in the same manner as described above for delivery system 805, and therefore, some details are not described with respect to this embodiment. More specifically, the end loops 907 and 911 can be pinned by pins 988 between the center retention member 966 and the distal retention member 968 and the center loops 909 can be pinned by pins 978 between the center retention member 966 and the proximal retention member 964. As described above, the outer frame 920 has two rows of loops 962 and 958. As shown in FIG. 48, in this embodiment, each actuation wire 974, 975, 976 is routed through four outer loops 962 and four loops 958 of the outer frame 920.
  • actuation wire 974 is pinned to the proximal retention member 964 and strands 913 and 917 of actuation wire 974 are each routed through two outer loops 962 and two loops 958 of the outer frame 920. Actuation wires 975 and 976 are similarly routed.
  • the loops 909 of the actuation wires 974-876 are placed over the pins 978 (as shown in FIG. 43) and the retention device 960 is actuated to move the center retention member 966 proximally such that the pins 978 are received in the apertures of the proximal retention member 964, pinning the loops 909 (i.e., middle loop) of actuation wires 974-976 by pins 978 (as shown in FIG. 44).
  • the loops 907, 911 of the actuation wires 974- 976 are placed over the pins 988 and the distal retention member 968 is actuated to move the distal retention member 968 proximally toward the center retention member 966 such that the pins 988 are received in the apertures of the center retention member 966, pinning the loops 907, 911 (i.e., end loops) of the actuation wires 974-976 by pins 988 (as shown in FIG. 45).
  • the actuation of the distal retention member 968 can be done either sequentially or simultaneously with the actuation of the center retention member 966. In other embodiments, the movement of the various retention members can be varied.
  • the distal retention member 968 can be fixedly attached to the tube member 915 and the proximal retention member 964 can be moved relative to the center retention member 966. Further, the order of placing the loops on the pins can be varied and the order of actuating the distal retention member 968 and the center retention member 964 can be varied.
  • a user e.g., physician
  • the tube member 915 can be used to control and/or manipulate movement of the valve (to which the actuation wires are coupled) as described in more detail below.
  • the procedure to deliver the valve 900 to the heart can be the same as or similar to any of the procedures described herein, in '572 PCT application or in the '305 PCT application incorporated by reference above.
  • the valve 900, disposed within the delivery system 905 in an inverted configuration can be delivered to the left atrium of the heart in the same or similar manner as described with reference to FIGS. 43-48 in the '305 PCT application.
  • FIG. 46 illustrates the valve 900 still in the inverted configuration, but unconstrained by the delivery sheath 926.
  • the valve holder 938 and tube member 915 can be moved distally relative to the outer sheath 926, moving or pushing the valve 900 outside the lumen 982 of the outer sheath 926.
  • the outer sheath 926 can be moved or pulled proximally, leaving at least a portion of the valve 900 disposed within the heart.
  • a tether coupled to the valve can be used to help pull the valve out of the lumen 982 of the outer sheath 926.
  • the tube member 915 can be pulled proximally such that the actuation wires (pinned to the tube member 915) pull the distally disposed portion of the outer frame 920 proximally in a controlled manner and such that the reversion of the outer frame 920 from its inverted configuration (FIG. 46) relative to the inner frame 950 of the valve 900 can be controlled.
  • FIG. 48 illustrates the valve 900 when the outer frame 920 has reverted from its inverted delivery configuration and has assumed its biased expanded configuration.
  • the actuation wires 974-976 can assist in the articulation and placement of the valve into its destination (e.g., a native annulus of an atrioventricular valve of a heart).
  • the actuation wires 974-976 can also be used to constrain, collapse, or otherwise move the valve (e.g., radially compress the outer frame of the valve) after the valve exits the outer sheath 926 and is in its reverted, expanded or partially expanded configuration.
  • the tube member 915 with the actuation wires 974-976 pinned thereto can be manipulated by a user to move or urge the outer frame to a more compressed configuration by pulling or moving the tube member 915 proximally.
  • This may be desirable, for example, to reposition the valve within the heart before fully deploying the valve.
  • Such a repositioning procedure is shown and described with respect to FIGS. 49A-49D.
  • the inner frame 950 can be deployed.
  • the inner member (not shown) of the valve holder 938 can be moved distally to release the couplers (e.g., 406, 506) from the recesses (404, 504) of the valve holder 938, releasing or decoupling the inner frame 950 from the valve holder 938.
  • the inner frame 950 is released from the valve holder 938 and disposed outside the delivery sheath 926, the inner frame can assume its biased expanded configuration.
  • the actuation wires 974-976 can be released or decoupled from the outer frame 920 before or after the inner frame 950 is released from the valve holder 938.
  • the end loops 907, 911 of the actuation wires 974-976 can be unpinned or decoupled from the tubular member 915 by actuating the distal retention member 968 to release the loops 907, 911 from the pins 988.
  • the center loops 909 of the actuation wires 974-976 remain pinned by the pins 978 and thus the actuation wires 974-976 remain coupled to the tube member 915.
  • each of the actuation wires 974-976 coupled to the tube member 915 (via pinning members 978 in this example), the tube member 915 can be pulled proximally, which in turn will pull the ends of the actuation wires 974-976 out of the loops 962, 958 of outer frame 920 of the valve 900.
  • the outer frame 920 can assume a biased expanded or partially expanded configuration.
  • the actuation wires 974-976 can be decoupled from the outer frame 920 at any suitable sequence or time period within the procedure. For example, in some instances it may be desirable for the actuation wires 974- 976 to be released after the valve 900 has at least partially exited the delivery sheath 926 but before the valve 900 is seated within the native annulus of the atrioventricular valve. In other instances, for example, the actuation wires 974-976 can be released after the valve 900 has at least partially exited the outer delivery sheath 926 and after the valve is seated within the native annulus of the atrioventricular valve.
  • FIGS. 49A-49D illustrate use of the delivery device 905 to position the valve
  • the configuration and operation of the retention device 960 and delivery device 905 provides the ability to add tension to the actuation wires 974-976 by moving the retention device 960 proximally within the lumen 982 of the delivery sheath 926 as shown in FIG. 49A. This pulls the cuff tips or outer free end portions of the outer frame assembly 910 toward the valve holder 920 and reduces the overall profile of the valve 900.
  • the actuation wires are formed of, for example a fiber (e.g., a suture material)
  • the valve 900 is able to hinge freely at the valve holder 938, allowing the valve 900 to turn into the mitral annulus under a minimal turn radius.
  • the tension on the actuation wires can be released as shown in FIGS. 49B and 49C.
  • tension on the actuation wires can be reapplied as shown in FIG. 49D.
  • the valve 900 can be axially or radially repositioned by moving the valve holder 938 forward or backward, or by rotating/turning the valve holder 938. Because the actuation wires are nested or coupled within the valve holder 938, the motion of the valve holder 938 is transferred to the valve 900.
  • the actuation wires can be released from the valve 900 as described above by actuating the retention device 960 to release the end loops of the actuation wires (maintaining the center loops coupled to the retention device 960).
  • the valve holder 938 and tube member 915 can then be moved proximally to pull the end loops out of the loops of the outer frame 920.
  • the valve holder 938 can be maintained in its position, while the tube member 915 is pulled proximally to pull the end loops of the actuation wires out of the outer frame 920.
  • the valve holder 938 can help maintain the valve in a desired position with the annulus. This may be desirable for example, to prevent or limit the cuff of the outer frame assembly 910 from pulling in as the end loops are being pulled through the loops 962 and 958 on the outer frame 920.
  • the configurations of the actuation wires described herein and used with the delivery devices to deploy a prosthetic valve are constructed such that the loops can be easily released from the delivery system when needed, and can smoothly route through the valve to disengage after deployment of the valve.
  • the loops of the actuation wires can be constructed by various processes including a bifurcation process, a sewing process or both.
  • the actuation wires can be formed with, for example a fiber material or a braided material, such as used with sutures.
  • the delivery devices described herein can also be used with actuation wires formed and constructed by different methods and have various configurations, such as, for example, the actuation wires described above with reference to FIGS. 31 A-3 ID.
  • FIGS. 50-52 illustrate an actuation wire 974 that can be used with the delivery devices described herein.
  • the actuation wire 974 can be configured the same as actuator wire 874 and includes a center loop 909 (also labeled A) and two end loops 907 (also labeled C) and 911 (also labeled B).
  • the center loop 909 is connected to the end loop 907 by a strand 917 (also labeled E) and the center loop 909 is connected to the end loop 911 by a strand 913 (also labeled D).
  • FIGS. 51-52 illustrate a braiding and sewing process to form the loops 909
  • FIG. 51 is an enlarged view of loop C.
  • Loop C can be formed by braiding half the files (i.e., filers or filaments) of the material that forms strand E and loop C around a mandrel, and then recombining the files and braiding them together to form loop C. For example, if strand E is a 16 file braid, then loop C will be formed of an 8 file braid. Thus, there is no increase in the profile or thickness when transitioning from strand E to loop C.
  • loop A (the center loop)
  • the non-looped end of the first section (C and E) is doubled back on itself and sewn to itself to form loop A as shown in FIG. 52.
  • strand E can also be sewn to strand D of the second section (strand D and loop B).
  • Loop B can be formed in the same manner as loop C.
  • FIGS. 53-55 illustrate an actuation wire 1074 that can be used with the delivery devices described herein.
  • the actuation wire 1074 can be configured the same as actuator wires 874 and 974 in that it includes a center loop 1009 (also labeled F) and two end loops 1007 (also labeled G) and 1011 (also labeled H).
  • the center loop 1009 is connected to the end loop 1007 by a strand 1017 (also labeled J) and the center loop 1009 is connected to the end loop 1011 by a strand 1013 (also labeled I).
  • FIGS. 53-55 illustrate a bifurcation process to form the loops 1009, 1007,
  • Actuation wire 1074 is formed from a single strand (e.g., braided filament) with three bifurcations/unifications to create the loops F, G and H.
  • FIG. 54 is an enlarged view of loop H (loop G is the same) and
  • FIG. 55 is an enlarged view of the loop F. As shown in FIGS. 53- 55, the bifurcation process results in a small tail portion on loops G and H.
  • actuation wire 1074 can result in no increase in the profile or thickness of the strand where it transitions from strand portions to the loops (e.g., strand I to loop H or strands I and J to loop F). There are also no raised portions or steps between the strands and the loops.
  • FIGS. 56-58 illustrate a portion of another actuation wire 1174 that can be used with the delivery devices described herein.
  • the actuation wire 1174 can be configured the same as actuator wires 874, 974 and 1074 in that it includes a center loop (not shown) and two end loops (only end loop 1107 is shown).
  • the center loop of actuation wire 1174 can be formed in the same manner as described above for either actuation wire 974 or actuation wire 1074.
  • FIGS. 56-58 illustrate another method to form the end loops. Only end loop 1107 is described, but it should be understood that the end loop on the other end of the actuation wire can be constructed the same.
  • a guide rod 1119 is glued or otherwise affixed to the end of the strand 1117.
  • the guide rod 1119 is then inserted back into the material of the strand 1117 to lead the strand 1117 into itself for approximately 2 inches, effectively make a loop 1107 with a "Chinese finger" method of securement, as shown in FIGS. 57 and 58.
  • the guide rod 1119 is pulled back out through a side of the strand 1117 and then removed (e.g., cut) from the strand 1117.
  • FIGS. 59A-64B illustrate a retention device 1260 that can be included with any of the delivery devices described herein, and used to retain and release actuation wires coupled to a prosthetic valve during delivery of the prosthetic valve to a heart of a patient.
  • the function and operation of the retention device 1260 can be the same as or similar to the previous embodiments, and therefore, some details are not described with respect to this embodiment.
  • the retention device 1260 includes a first or proximal retention member 1264 that is fixedly coupled to a distal end portion of the tube member (not shown) as described above for previous embodiments, a second or center retention member 1266 that is movably coupled to the proximal retention member 1264 and a third or distal retention member 1268 that is movably coupled to the center retention member 1266 and the proximal retention member 1264.
  • the center retention member 1266 can be coupled to the proximal retention member 1264 via a first actuation rod (not shown), and the distal retention member 1268 can be coupled to the center retention member 1266 and to the proximal retention member 1264 via two second actuation rods (not shown) in the same or similar manner as described above for previous embodiments.
  • the actuation rods can extend to a proximal end of the delivery device to which the retention member 1260 is attached and be operably coupled to a handle assembly (not shown).
  • the second actuation rods can extend into apertures/lumens 1241 defined by the distal retention member 1268 and be fixedly attached to the distal retention member 1268, slidably extend through apertures/lumens 1248 defined by the center retention member 1266 and through apertures/lumens 1249 defined by the proximal retention member 1264 such that the distal retention member 1268 can be slidably moved relative to the center retention member 1266 and the proximal retention member 1264.
  • the first actuation rod can extend within an aperture 1248 of the center retention member 1266 and be fixedly attached thereto, and slidably extend through an aperture 1249 of the proximal retention member 1264 such that the center retention member 1266 can be slidably moved relative to the proximal retention member 1264.
  • the proximal retention member 1264 can be fixedly attached to the tube member (not shown) with a connecting rod (not shown).
  • the connecting rod can extend into an aperture 1257 defined at the proximal end of the proximal retention member 1264 and be fixedly attached thereto such that the proximal retention member 1264 can move with the tube member.
  • the retention device 1260 defines a lumen through which a valve holder (as described herein) can be movably disposed.
  • a valve holder as described herein
  • each of the distal retention members 1268 defines a lumen 1251
  • the center retention member 1266 defines a lumen 1253
  • the proximal retention member 1264 defines a lumen 1255.
  • a valve holder and elongate member coupled thereto can be movably disposed within each lumen of the retention device 1260.
  • the retention device 1260 includes three pins 1298 that are fixedly attached to the center retention member 1266 and that can be used to releasably hold actuation wires to a delivery device in the same or similar manner as described above for previous embodiments.
  • the pins 1298 can be, for example, welded to the center retention member 1266.
  • the pins 1298 extend through apertures/lumens 1272 defined by the center retention member 1266 and are fixedly attached thereto.
  • the pins 1298 include a proximal pin portion 1278 that extends between the center retention member 1266 and the proximal retention member 1264, and a distal pin portion that extends between the center retention member 1266 and the distal retention member 1268. As shown in FIG.
  • FIGS. 65-68 illustrate an embodiment of a valve holder 1338 that can be used or included with a delivery system as described herein.
  • the valve holder 1338 can be attached to an elongate member (no shown) such as elongate member 837 and 937 described above.
  • the valve holder 1338 and elongate member can be movably disposed within a lumen (not shown) defined by an elongate tube member (e.g., 815, 915) and a lumen(s) defined by a retention device (e.g., 860, 960, 1260) of a delivery system described herein.
  • the valve holder 1338 includes an insert or inner member 1322 that can be movably disposed within an interior region 1328 defined by an outer capsule 1324.
  • the insert 1322 of the valve holder 1338 can be operably coupled to a handle assembly via an actuation rod that extends through a lumen of the elongate member (e.g., 837, 937) that can be actuated to move the insert 1322 proximally and distally relative to the outer capsule 1324.
  • the capsule 1324 of the valve holder 1338 can be operably coupled to a handle assembly via an actuation rod that extends through a lumen of the elongate member (e.g., 837, 937) that can be actuated to move the capsule 1324 proximally and distally relative to the inner insert 1322.
  • the insert 1322 defines recesses 1304 to which corresponding couplers (e.g., couplers 406) of the inner frame (not shown) of a prosthetic valve (not shown) can be releasably coupled in the same or similar manner as described above for delivery system 405 (see, e.g., FIGS. 26A-26C).
  • the valve holder 1338 can be used to hold the prosthetic valve to aid in the control and manipulation of the prosthetic valve as it is delivered and deployed.
  • the insert 1322 is movably disposed within the interior region 1328 (see FIG. 68) of the capsule 1324.
  • the insert 1322 can be moved distally relative to the capsule 1324 such that the recesses 1304 are disposed outside the capsule 1324 (as shown in FIGS. 65 and 66) and the couplers on the valve can be inserted/placed within the recesses 1304.
  • the insert 1322 can then be moved proximally relative to the capsule 1324 such that the insert 1322, along with the attached couplers, are moved to a position inside the interior region 1328 of the capsule 1324 and the couplers are unable to be removed from the valve holder 1338.
  • the insert 1322 is moved distally relative to the capsule 1324 such that the recesses 1304 are again disposed distally outside of the interior of the capsule 1324, which in turn, allows the couplers of the valve to be released from the insert 1322 and valve holder 1338.
  • the capsule 1324 can be moved proximally relative to the insert 1322 such that the recesses 1304 are disposed outside the capsule 1324 (as shown in FIGS. 65 and 66) and the couplers on the valve can be inserted/placed within the recesses 1304.
  • the capsule 1324 can then be moved distally relative to the insert 1322 such that the insert 1322, and the attached couplers, are disposed inside the interior region 1328 of the capsule 1324 and the couplers are unable to be removed from the valve holder 1338.
  • the capsule 1324 is moved proximally relative to the insert 1322 such that the recesses 1304 are again disposed distally outside of the interior 1328 of the capsule 1324, which in turn, allows the couplers of the valve to be released from the insert 1322 and valve holder 1338.
  • the capsule 1324 defines apertures 1335 through which actuation wires can be routed as described above for previous embodiments.
  • each strand (e.g., 913, 917) of an actuation wire (e.g., 974) can be pinned by the retention device (e.g., 960) and routed through an aperture 1335 of the capsule 1324, pass through a loop or loops of the prosthetic valve and then pass back through the aperture 1335 and be pinned by the retention device.
  • the capsule 1324 can include six apertures 1335.
  • FIGS. 70-73 illustrate another embodiment of a prosthetic valve that can be inverted for delivery of the prosthetic valve to a heart of a patient and reverted when being deployed in the heart.
  • a prosthetic heart valve 1400 e.g., a prosthetic mitral valve
  • the prosthetic heart valve 1400 can include the same or similar features as the prosthetic heart valves described herein, and therefore, some features are not described with respect to valve 1400.
  • the prosthetic valve 1400 can include an inner valve assembly that includes the inner frame 1450 and an outer frame assembly that includes the outer frame 1450 and include the same or similar features as described above.
  • the prosthetic valve 1400 is shown in a biased expanded configuration in FIGS. 70-72, and shown in an inverted configuration disposed within a delivery sheath 1426 of a delivery device or system 1405, in which the outer frame 1420 is inverted relative to the inner frame 1450, in FIG. 73.
  • the outer frame 1420 can include two rows of loops 1462 and 1458 (shown in FIG. 73) to which actuation wires 1474 and 1475 can be routed through in the same manner as described above, for example, with respect to valve 900.
  • the actuation wires 1474, 1475 can be coupled to the delivery device 1405 as shown in FIG. 73, in the same manner as described above for previous embodiments.
  • the delivery device 1405 can include the same or similar features and function in the same or similar manner as descried above for previous embodiments (e.g., 805, 905).
  • the delivery device 1405 can include a valve holder 1438 to which the inner frame 1450 can be releasably coupled during delivery of the prosthetic valve 1400 as described above (e.g., 838, 938, 1338).
  • the delivery device 1405 can also include a retention device (not shown) as described above (e.g., 860, 960, 1260).
  • the outer frame 1420 includes a cuff portion 1472 and a body portion 1473 as described above, for example, with respect to valve 200 and outer frame 220.
  • the cuff portion 1472 has a shape and length that can assist the reverting process during delivery of the prosthetic valve 1400. More specifically, as shown in FIGS. 71 and 72, in this embodiment, the cuff portion 1472 includes an added segment 1434 that has a length L and is disposed at an angle P relative to the coincident or remaining cuff portion 1472. In other words, the added segment 1434 is disposed at a transverse angle relative to the remaining cuff portion 1472.
  • the added segment 1434 can be, for example, formed integrally with the remaining portion of the cuff portion 1472 and extend therefrom.
  • the angle P can be, for example, 90 degrees or perpendicular (or substantially perpendicular) to the remaining cuff portion 1472.
  • the cuff portion 1472 having an additional segment 1434 disposed perpendicular or near perpendicular to the remaining cuff portion 1472, during delivery of the valve 1400, the cuff portion 1472 of the outer frame 1420 will "roll outward" from delivery sheath 1426, as shown in FIG. 73.
  • the angled cuff portion 1472 i.e., angle P between the segment 1434 and the remaining portion of the cuff portion 1472 helps pull the cuff tips away from the walls of the atrium as the outer frame 1420 is reverting, which is more atraumatic to the atrium.
  • FIG. 73 illustrates the valve 1400 disposed within a lumen of the delivery sheath 1426 in an inverted configuration, and the valve 1400 advanced partially outside of a distal end of the delivery sheath 1426, slightly past the segment 1434. Due to the shape of the cuff portion 1472 (with the segment 1434), the segment 1434 has exited the delivery sheath 1426 substantially perpendicular to the coincident remaining cuff portion 1472. Because the coincident cuff portion 1472 is still substantially linear or straight within the delivery sheath 1426, or just beginning to exit the delivery sheath 1426, the segment 1434 exits the delivery sheath 1426 at about a 90 degree angle relative to the delivery sheath 1426. Furthermore, because the outer frame 1420 rolls outward during the flipping/reverting, the segment 1434 has already began that process of reverting.
  • the shape and configuration the outer frame also changes the force vectors F associated with the reverting/flipping of the outer frame 1420.
  • the force vectors F go from the tip of the cuff portion 1472 (e.g., at loops 1462) and extend at an angle back toward the outside of the delivery sheath 1426, which is in the direction the cuff portion 1472 needs to travel to roll outward and fully revert/flip.
  • FIGS 74-76 illustrate another embodiment of a delivery system 1505 (also referred to as "delivery device") that can be used to deliver and deploy a prosthetic heart valve within a heart in a procedure similar to or the same as the procedures described with respect to other embodiments described herein and embodiments described in the '305 PCT application incorporated herein by reference. Thus, some details regarding the valve and procedures performed therewith are not described with respect to this embodiment. It should be understood that for features and functions not specifically discussed, those features and functions can be the same as or similar to the valves described herein (e.g., the valve 200, 500) and/or in the '305 PCT application.
  • the delivery system 1505 can include the same or similar components as delivery systems 505 or 805 described above.
  • the delivery system 1505 can include an outer delivery sheath (not shown) and an elongate tubular member, which can be slidably disposed within a lumen of the delivery sheath. In some embodiments, the delivery system 1505 may not include such an elongate member.
  • the delivery system 1505 includes a valve holder 1538 and a retention device 1560 as described in more detail below.
  • the delivery system 1505 can be used to deliver a valve that can be moved from a biased expanded configuration to an inverted configuration for delivery of the valve to the heart.
  • the outer frame of the valve can be moved to an inverted configuration relative to the inner frame as described above for previous embodiments and placed within a distal end portion of the lumen of the delivery sheath.
  • the valve holder 1538 can be coupled to an elongate member 1537 that can be movably disposed within the lumen of the delivery sheath and/or a lumen of an elongate tubular member as described above for previous embodiments.
  • the valve holder 1538 includes an insert or inner member 1522 that can be movably disposed within an interior region 1528 defined by an outer capsule 1524.
  • the insert 1522 of the valve holder 1538 can be operably coupled to a handle assembly (not shown) via an actuation rod that extends through a lumen of the elongate member 1537 that can be actuated to move the insert 1522 proximally and distally relative to the outer capsule 1524.
  • the capsule 1524 of the valve holder 1538 can be actuated to move proximally and distally relative to the inner insert 1522.
  • the insert 1522 defines recesses 1504 to which corresponding couplers (e.g., couplers 406 described above) of the inner frame (not shown) of a prosthetic valve (not shown) can be releasably coupled in the same or similar manner as described above for delivery system 405 (see, e.g., FIGS. 26A-26C).
  • the valve holder 1538 can be used to hold the prosthetic valve to aid in the control and manipulation of the prosthetic valve as it is delivered and deployed.
  • the insert 1522 can be moved distally relative to the capsule 1524 such that the recesses 1504 are disposed outside the capsule 1524 (as shown in FIGS.
  • the insert 1522 can then be moved proximally relative to the capsule 1524 such that the insert 1522, along with the attached couplers, are moved to a position inside the interior region 1528 of the capsule 1524 and the couplers are unable to be removed from the valve holder 1538.
  • the insert 1522 is moved distally relative to the capsule 1524 such that the recesses 1504 are again disposed distally outside of the interior of the capsule 1524, which in turn, allows the couplers of the valve to be released from the insert 1522 and valve holder 1538.
  • the capsule 1524 defines apertures 1535 through which actuation wires can be routed as described above for previous embodiments. For example, as shown and described above for valve holder 938, each strand of an actuation wire can be pinned by the retention device 1560 and routed through an aperture 1535 of the capsule 1524, pass through a loop or loops of the prosthetic valve and then pass back through the aperture 1535 and be pinned by the retention device 1560.
  • the capsule 1524 can include six apertures 1535.
  • the capsule 1524 also includes a ring 1559 that can provide a radiused, smooth surface / contact point for actuation wires routed through the apertures 1535.
  • the delivery system 1505 also includes a retention device 1560 that defines a lumen through which the elongate member 1537 can be slidably disposed.
  • the retention device 1560 can be used to secure and release actuation wires (not shown) in the same or similar manner as described above for delivery system 805 and 905.
  • the retention device 1560 includes retention components or members that are coupled together coaxially and can be actuated to secure and release actuation wires (not shown) coupled to the delivery system 1505. More specifically, the retention device 1560 includes a first or proximal retention member 1564, a second or center retention member and a third or distal retention member 1568.
  • the center retention member 1566 is fixedly coupled to a proximal portion of the delivery device 1505 such as a handle assembly (not shown). For example, as shown in FIGS. 74 and 75, a rod
  • a rod 1565 can be fixedly coupled (e.g., welded) to the proximal retention member 1564 and can be operatively coupled to an actuation device (not shown) at the proximal end portion of the delivery device 1505 such that it can be actuated to move relative to the center retention member 1566.
  • the distal retention member 1568 can be coupled to an actuation device at the proximal end portion of the delivery device with a rod (not shown) such that the distal retention member
  • the actuation devices can each be, for example a lead screw that can be rotated to move the rod 1565 or 1567 proximally and distally, which in turn moves the proximal and distal retention members 1564 and 1568 proximally and distally.
  • the actuation rod 1565 extends through an opening defined by the proximal retention member 1564 such that the rod 1565 can slidably move relative to the proximal retention member 1564.
  • the rod (not shown) coupled to the distal retention member 1568 can extend through openings in the proximal retention member 1564 and openings in the center retention member 1566 such that the rod can slidably move relative to the proximal retention member 1564 and the center retention member 1566.
  • An axial wire 1555 is attached to the elongate member 1537 and each of the proximal retention member 1564, the center retention member 1566 and the distal retention member 1568 include a cutout 1531 keyed to ride along the axial wire 1555.
  • the keyed coupling of the retention members 1564, 1566, 1568 allows them to slide along the axial wire 1555, and thus the elongate member 1537, in an axial direction (proximal an distal), but prevents them from rotating relative to the elongate member 1537.
  • Multiple cutouts 1531 can be included, as shown in FIGS. 74 and 76 such that more than one axial wire can be included and/or the retention device 1560 (retention members 1564, 1566, 1568) can be positioned at different radial positions along the elongate member 1537.
  • Three pins 1598 are fixedly attached to the center retention member 1566 and extend through openings in the center retention member 1566 such that proximal pins or pin portions 1578 extend proximally from the center retention member 1566, and distal pins or pin portions 1588 extend distally from the center retention member 1566.
  • the pins 1578 and 1588 can be used to releasably hold actuation wires to the delivery device 1505 in the same or similar manner as described above for delivery system 805 or 905.
  • the actuation wires can be any of the actuation wires described herein.
  • the pins 1578 can be received within apertures/lumens defined by the proximal retention member 1564 and the pins 1588 can be received within apertures/lumens defined by the distal retention member 1568.
  • the pins 1578 each extend proximally at different lengths from the center retention member 1566, and the pins 1588 each extend distally at different lengths from the center retention member 1566.
  • the center retention member 1566 also includes one or more spacers 1533 on each side (proximal and distal) of the center retention member 1566 (only one spacer 1533 is shown in FIG. 76).
  • the spacers 1533 can prevent the retention members 1564, 1566, 1568 from contacting one another when actuated to secure actuation wires thereto and thus prevent any possible damage to the actuation wires.
  • Spacers can alternatively be included on the proximal side of the distal retention member 1568 and on the distal side of the proximal retention member 1564.
  • multiple actuation wires can be coupled to the outer frame assembly of the prosthetic valve to be delivered to a heart and used to help revert and manipulate the prosthetic valve into a desired position within the heart, and then can be released from the valve when the desired positioning has been achieved.
  • the outer frame of the valve can include loops at a free end portion of the outer frame and/or at a second location on the outer frame as described above for valve 900, through which the actuation wires can be threaded or received therethrough in the same or similar manner as described herein (e.g., with respect to valve 500) and/or in the '305 PCT application.
  • the actuation wires can be coupled to the valve as described above, and loops of the actuation wires can be secured to the retention device 1560 in a similar manner as described above for delivery devices 805 and 905.
  • the proximal retention member 1564 is actuated to move distally toward the center retention member such that the pins 1578 are received within apertures 1563 (see, e.g., FIG. 76) of the proximal retention member 1564.
  • the distal retention member 1568 can be actuated such that the pins 1588 are received in apertures (not shown) in the distal retention member 1568.
  • FIG. 77 is a schematic illustration of a retention device 1660, according to another embodiment.
  • the retention device 1660 includes a proximal retention member 1664, a center retention member 1666 and distal retention device 1668.
  • the retention device 1660 can include pins and other features (not shown) as described above for previous embodiments that can be used to secure actuation wires to the retention device 1660.
  • the retention members 1664, 1666, 1668 are each attached to a tube that extends to a proximal end portion of the delivery device (e.g., to a handle assemble).
  • the tubes can be actuated proximally and distally to move two of the retention members to secure loops of actuation wires (not shown) to the retention device 1660. More specifically, the proximal retention device 1664 is attached to a tube 1621, the retention member 1666 is attached to a tube 1623 and the distal retention member 1668 is attached to a tube 1625.
  • the tubes 1621, 1623, 1625 are disposed concentrically with the tube 1623 movably disposable within a lumen defined by the proximal retention member 1664 and the tube 1621, and the tube 1625 movably disposable within a lumen defined by the retention member 1666 and the tube 1623.
  • the distal retention member 1668 and the tube 1625 each also define a lumen such that an elongate member (e.g., 837, 837, 1537) coupled to a valve holder (e.g., (838, 938, 1538) can be slidably received through the lumens of the retention members and tubes.
  • an elongate member e.g., 837, 837, 1537
  • a valve holder e.g., (838, 938, 1538
  • FIG. 78 is a flowchart of a method of preparing a delivery device with a prosthetic valve to be delivered to a heart of a patient as described herein.
  • a first loop of an actuation wire is placed over a first pin of a retention device of a prosthetic heart valve delivery device.
  • the retention device includes a proximal retention member defining a first opening, a center retention member including the first pin and defining a second opening, and a distal retention member including a second pin.
  • a first portion of the second portion of the actuation wire is passed through a second loop on the outer frame of the prosthetic heart valve.
  • the first portion of the actuation wire has a second loop disposed on a first end of the actuation wire and the second portion of the actuation wire has a third loop on a second end of the actuation wire.
  • the second loop and the third loop of the actuation wire are placed over the second pin of the retention device.
  • the retention member is actuated to move one of the center retention member and the proximal retention member axially such that the first pin is disposed in the first opening and the first loop of the actuation wire is secured to the retention device.
  • the retention member is actuated to move the distal retention member axially such that the second pin is disposed in the second opening and the second loop and the third loop of the actuation wire are secured to the retention device.
  • the prosthetic valve is placed within a lumen of a sheath of the delivery device.
  • FIG. 79 is a flowchart of a method of delivering a prosthetic heart valve to a heart of a patient using a delivery device as described herein.
  • a distal end portion of a delivery sheath of a valve delivery device is inserted into a left atrium of a heart.
  • the delivery sheath has a prosthetic mitral valve disposed within a lumen of the delivery sheath, and the prosthetic mitral valve has an outer frame coupled to an inner frame, with the outer frame being inverted relative to the inner frame.
  • the prosthetic heart valve being releasably coupled to a retention device that includes a proximal retention member defining a first opening, a center retention member including a first pin and defining a second opening, and a distal retention member including a second pin.
  • An actuation wire is coupled to the prosthetic heart valve and includes a first loop secured to the retention device with the first pin and a second loop secured to the retention device with the second pin.
  • the prosthetic mitral valve is moved distally out the distal end portion of the delivery sheath.
  • the retention device is moved proximally such that the actuation wire pulls the outer frame of the prosthetic heart valve proximally and the outer frame is reverted relative to the inner frame.
  • the retention device is actuated such that the distal retention member moves axially relative to the center retention member and the second pin releases the second loop of the actuation wire.
  • the retention device is moved proximally such that the actuation wire is pulled proximally and is uncoupled from the prosthetic heart valve allowing the outer frame of the prosthetic heart valve to move to a biased expanded configuration.
  • the prosthetic heart valve is positioned within a mitral valve annulus of the heart.
  • a delivery system described herein can include a dilator device or member (not shown).
  • the dilator can be, for example, a balloon dilator and can be configured to expand an opening or passage, for example, during delivery of the prosthetic valve.
  • the dilator device can be the same as or similar to and used in the same or similar manner as dilator device 1711 described in the '305 PCT application with respect to FIGS. 43-48 and the method of delivery of FIG. 72.
  • the prosthetic heart valves described herein can be secured to a heart using an epicardial pad device as described with respect to FIGS. 43-48 and 72 of the '305 PCT application.
  • any of the embodiments of a delivery device or system can include a handle or handle assembly to which the various delivery sheaths and components can be operatively coupled and which a user (e.g., physician) can grasp and use to manipulate the delivery device or system.
  • the handle or handle assembly can include actuators to actuate the various components of the delivery system.
  • a procedural catheter can be inserted into the right ventricle of the heart, and the delivery sheath delivered to the right atrium of the heart either directly (transaxial), or via the jugular or femoral vein.

Landscapes

  • Health & Medical Sciences (AREA)
  • Cardiology (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Transplantation (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Vascular Medicine (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Prostheses (AREA)
  • Media Introduction/Drainage Providing Device (AREA)
PCT/US2018/041867 2017-07-13 2018-07-12 PROSTHETIC CARDIAC VALVES AND ASSOCIATED APPARATUS AND METHODS FOR IMPLEMENTING THE SAME Ceased WO2019014473A1 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
AU2018301815A AU2018301815A1 (en) 2017-07-13 2018-07-12 Prosthetic heart valves and apparatus and methods for delivery of same
EP18746551.3A EP3651695B1 (en) 2017-07-13 2018-07-12 Prosthetic heart valves and apparatus for delivery of same
CA3068527A CA3068527C (en) 2017-07-13 2018-07-12 Prosthetic heart valves and apparatus and methods for delivery of same
JP2020501194A JP7216066B2 (ja) 2017-07-13 2018-07-12 人工心臓弁とその送達のための装置および方法
US16/615,185 US11154399B2 (en) 2017-07-13 2018-07-12 Prosthetic heart valves and apparatus and methods for delivery of same
CN201880058874.9A CN111050702B (zh) 2017-07-13 2018-07-12 人工心脏瓣膜及用于递送人工心脏瓣膜的设备和方法
US17/479,166 US20220000617A1 (en) 2017-07-13 2021-09-20 Prosthetic Heart Valves And Apparatus And Methods For Delivery Of Same

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US201762532152P 2017-07-13 2017-07-13
US62/532,152 2017-07-13
US201762532659P 2017-07-14 2017-07-14
US62/532,659 2017-07-14

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US16/615,185 A-371-Of-International US11154399B2 (en) 2017-07-13 2018-07-12 Prosthetic heart valves and apparatus and methods for delivery of same
US17/479,166 Division US20220000617A1 (en) 2017-07-13 2021-09-20 Prosthetic Heart Valves And Apparatus And Methods For Delivery Of Same

Publications (1)

Publication Number Publication Date
WO2019014473A1 true WO2019014473A1 (en) 2019-01-17

Family

ID=63036523

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2018/041867 Ceased WO2019014473A1 (en) 2017-07-13 2018-07-12 PROSTHETIC CARDIAC VALVES AND ASSOCIATED APPARATUS AND METHODS FOR IMPLEMENTING THE SAME

Country Status (7)

Country Link
US (2) US11154399B2 (enExample)
EP (1) EP3651695B1 (enExample)
JP (1) JP7216066B2 (enExample)
CN (1) CN111050702B (enExample)
AU (1) AU2018301815A1 (enExample)
CA (1) CA3068527C (enExample)
WO (1) WO2019014473A1 (enExample)

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10595994B1 (en) 2018-09-20 2020-03-24 Vdyne, Llc Side-delivered transcatheter heart valve replacement
WO2020198101A1 (en) * 2019-03-27 2020-10-01 Edwards Lifesciences Corporation Delivery apparatus for a prosthetic valve
WO2020206012A1 (en) * 2019-04-01 2020-10-08 Neovasc Tiara Inc. Controllably deployable prosthetic valve
US11071627B2 (en) 2018-10-18 2021-07-27 Vdyne, Inc. Orthogonally delivered transcatheter heart valve frame for valve in valve prosthesis
US11076956B2 (en) 2019-03-14 2021-08-03 Vdyne, Inc. Proximal, distal, and anterior anchoring tabs for side-delivered transcatheter mitral valve prosthesis
US11109969B2 (en) 2018-10-22 2021-09-07 Vdyne, Inc. Guidewire delivery of transcatheter heart valve
US11166814B2 (en) 2019-08-20 2021-11-09 Vdyne, Inc. Delivery and retrieval devices and methods for side-deliverable transcatheter prosthetic valves
US11173027B2 (en) 2019-03-14 2021-11-16 Vdyne, Inc. Side-deliverable transcatheter prosthetic valves and methods for delivering and anchoring the same
US11185409B2 (en) 2019-01-26 2021-11-30 Vdyne, Inc. Collapsible inner flow control component for side-delivered transcatheter heart valve prosthesis
US11202706B2 (en) 2019-05-04 2021-12-21 Vdyne, Inc. Cinch device and method for deployment of a side-delivered prosthetic heart valve in a native annulus
US11234813B2 (en) 2020-01-17 2022-02-01 Vdyne, Inc. Ventricular stability elements for side-deliverable prosthetic heart valves and methods of delivery
US11253359B2 (en) 2018-12-20 2022-02-22 Vdyne, Inc. Proximal tab for side-delivered transcatheter heart valves and methods of delivery
US11273033B2 (en) 2018-09-20 2022-03-15 Vdyne, Inc. Side-delivered transcatheter heart valve replacement
US11273032B2 (en) 2019-01-26 2022-03-15 Vdyne, Inc. Collapsible inner flow control component for side-deliverable transcatheter heart valve prosthesis
US11278437B2 (en) 2018-12-08 2022-03-22 Vdyne, Inc. Compression capable annular frames for side delivery of transcatheter heart valve replacement
US11298227B2 (en) 2019-03-05 2022-04-12 Vdyne, Inc. Tricuspid regurgitation control devices for orthogonal transcatheter heart valve prosthesis
US11331186B2 (en) 2019-08-26 2022-05-17 Vdyne, Inc. Side-deliverable transcatheter prosthetic valves and methods for delivering and anchoring the same
US11344413B2 (en) 2018-09-20 2022-05-31 Vdyne, Inc. Transcatheter deliverable prosthetic heart valves and methods of delivery
WO2023144671A1 (en) * 2022-01-28 2023-08-03 Medtronic, Inc. Systems for transcatheter valve replacement and methods
US11786366B2 (en) 2018-04-04 2023-10-17 Vdyne, Inc. Devices and methods for anchoring transcatheter heart valve
US12186187B2 (en) 2018-09-20 2025-01-07 Vdyne, Inc. Transcatheter deliverable prosthetic heart valves and methods of delivery
US12343256B2 (en) 2019-01-10 2025-07-01 Vdyne, Inc. Anchor hook for side-delivery transcatheter heart valve prosthesis

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210008337A1 (en) * 2019-07-11 2021-01-14 John Bradley Warden Pistoning Prevention System (PPS) of Indwelling Foley Catheters

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016112085A2 (en) * 2015-01-07 2016-07-14 Mark Christianson Prosthetic mitral valves and apparatus and methods for delivery of same
US20170079790A1 (en) 2015-09-18 2017-03-23 Tendyne Holdings, Inc. Apparatus and methods for delivery of prosthetic mitral valve

Family Cites Families (689)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2697008A (en) 1953-10-09 1954-12-14 Globe Automatic Sprinkler Co Sprinkler head
GB1127325A (en) 1965-08-23 1968-09-18 Henry Berry Improved instrument for inserting artificial heart valves
US3587115A (en) 1966-05-04 1971-06-28 Donald P Shiley Prosthetic sutureless heart valves and implant tools therefor
US3472230A (en) 1966-12-19 1969-10-14 Fogarty T J Umbrella catheter
US3548417A (en) 1967-09-05 1970-12-22 Ronnie G Kischer Heart valve having a flexible wall which rotates between open and closed positions
US3476101A (en) 1967-12-28 1969-11-04 Texas Instruments Inc Gas-fired oven
US3671979A (en) 1969-09-23 1972-06-27 Univ Utah Catheter mounted artificial heart valve for implanting in close proximity to a defective natural heart valve
US3657744A (en) 1970-05-08 1972-04-25 Univ Minnesota Method for fixing prosthetic implants in a living body
US3714671A (en) 1970-11-30 1973-02-06 Cutter Lab Tissue-type heart valve with a graft support ring or stent
US3755823A (en) 1971-04-23 1973-09-04 Hancock Laboratories Inc Flexible stent for heart valve
GB1402255A (en) 1971-09-24 1975-08-06 Smiths Industries Ltd Medical or surgical devices of the kind having an inflatable balloon
US3976079A (en) 1974-08-01 1976-08-24 Samuels Peter B Securing devices for sutures
US4003382A (en) 1975-07-25 1977-01-18 Ethicon, Inc. Retention catheter and method of manufacture
US4035849A (en) 1975-11-17 1977-07-19 William W. Angell Heart valve stent and process for preparing a stented heart valve prosthesis
CA1069652A (en) 1976-01-09 1980-01-15 Alain F. Carpentier Supported bioprosthetic heart valve with compliant orifice ring
US4073438A (en) 1976-09-03 1978-02-14 Nelson Irrigation Corporation Sprinkler head
US4056854A (en) 1976-09-28 1977-11-08 The United States Of America As Represented By The Department Of Health, Education And Welfare Aortic heart valve catheter
US4297749A (en) 1977-04-25 1981-11-03 Albany International Corp. Heart valve prosthesis
US4265694A (en) 1978-12-14 1981-05-05 The United States Of America As Represented By The Department Of Health, Education And Welfare Method of making unitized three leaflet heart valve
US4222126A (en) 1978-12-14 1980-09-16 The United States Of America As Represented By The Secretary Of The Department Of Health, Education & Welfare Unitized three leaflet heart valve
US4574803A (en) 1979-01-19 1986-03-11 Karl Storz Tissue cutter
GB2056023B (en) 1979-08-06 1983-08-10 Ross D N Bodnar E Stent for a cardiac valve
US4373216A (en) 1980-10-27 1983-02-15 Hemex, Inc. Heart valves having edge-guided occluders
US4339831A (en) 1981-03-27 1982-07-20 Medtronic, Inc. Dynamic annulus heart valve and reconstruction ring
US4470157A (en) 1981-04-27 1984-09-11 Love Jack W Tricuspid prosthetic tissue heart valve
US4345340A (en) 1981-05-07 1982-08-24 Vascor, Inc. Stent for mitral/tricuspid heart valve
US4406022A (en) 1981-11-16 1983-09-27 Kathryn Roy Prosthetic valve means for cardiovascular surgery
DE3365190D1 (en) 1982-01-20 1986-09-18 Martin Morris Black Artificial heart valves
SE445884B (sv) 1982-04-30 1986-07-28 Medinvent Sa Anordning for implantation av en rorformig protes
IT1212547B (it) 1982-08-09 1989-11-30 Iorio Domenico Strumento di impiego chirurgico destinato a rendere piu' facili e piu' sicuri gli interventi per l'impianto di bioprotesi in organi umani
GB8300636D0 (en) 1983-01-11 1983-02-09 Black M M Heart valve replacements
US4535483A (en) 1983-01-17 1985-08-20 Hemex, Inc. Suture rings for heart valves
US4612011A (en) 1983-07-22 1986-09-16 Hans Kautzky Central occluder semi-biological heart valve
US4626255A (en) 1983-09-23 1986-12-02 Christian Weinhold Heart valve bioprothesis
US4585705A (en) 1983-11-09 1986-04-29 Dow Corning Corporation Hard organopolysiloxane release coating
US4787899A (en) 1983-12-09 1988-11-29 Lazarus Harrison M Intraluminal graft device, system and method
US4627436A (en) 1984-03-01 1986-12-09 Innoventions Biomedical Inc. Angioplasty catheter and method for use thereof
US4592340A (en) 1984-05-02 1986-06-03 Boyles Paul W Artificial catheter means
US4883458A (en) 1987-02-24 1989-11-28 Surgical Systems & Instruments, Inc. Atherectomy system and method of using the same
US5007896A (en) 1988-12-19 1991-04-16 Surgical Systems & Instruments, Inc. Rotary-catheter for atherectomy
US4979939A (en) 1984-05-14 1990-12-25 Surgical Systems & Instruments, Inc. Atherectomy system with a guide wire
DE3426300A1 (de) 1984-07-17 1986-01-30 Doguhan Dr.med. 6000 Frankfurt Baykut Zweiwegeventil und seine verwendung als herzklappenprothese
DE3442088A1 (de) 1984-11-17 1986-05-28 Beiersdorf Ag, 2000 Hamburg Herzklappenprothese
SU1271508A1 (ru) 1984-11-29 1986-11-23 Горьковский государственный медицинский институт им.С.М.Кирова Искусственный клапан сердца
US4759758A (en) 1984-12-07 1988-07-26 Shlomo Gabbay Prosthetic heart valve
US4638886A (en) 1985-10-21 1987-01-27 Sta-Rite Industries, Inc. Apparatus for disabling an obstructed lift mechanism
US4733665C2 (en) 1985-11-07 2002-01-29 Expandable Grafts Partnership Expandable intraluminal graft and method and apparatus for implanting an expandable intraluminal graft
DE3640745A1 (de) 1985-11-30 1987-06-04 Ernst Peter Prof Dr M Strecker Katheter zum herstellen oder erweitern von verbindungen zu oder zwischen koerperhohlraeumen
CH672247A5 (enExample) 1986-03-06 1989-11-15 Mo Vysshee Tekhnicheskoe Uchil
US4878906A (en) 1986-03-25 1989-11-07 Servetus Partnership Endoprosthesis for repairing a damaged vessel
US4777951A (en) 1986-09-19 1988-10-18 Mansfield Scientific, Inc. Procedure and catheter instrument for treating patients for aortic stenosis
US4762128A (en) 1986-12-09 1988-08-09 Advanced Surgical Intervention, Inc. Method and apparatus for treating hypertrophy of the prostate gland
FR2611628B1 (fr) 1987-02-26 1990-11-30 Bendix France Correcteur de freinage asservi a la charge d'un vehicule
US4878495A (en) 1987-05-15 1989-11-07 Joseph Grayzel Valvuloplasty device with satellite expansion means
US4796629A (en) 1987-06-03 1989-01-10 Joseph Grayzel Stiffened dilation balloon catheter device
US4829990A (en) 1987-06-25 1989-05-16 Thueroff Joachim Implantable hydraulic penile erector
US4851001A (en) 1987-09-17 1989-07-25 Taheri Syde A Prosthetic valve for a blood vein and an associated method of implantation of the valve
JPH0624755Y2 (ja) 1987-10-19 1994-06-29 日産自動車株式会社 座金型圧力センサ
US5266073A (en) 1987-12-08 1993-11-30 Wall W Henry Angioplasty stent
US4830117A (en) 1987-12-24 1989-05-16 Fire Sprinkler Specialties, Inc. Shut-off device for an automatic sprinkler
US4960424A (en) 1988-06-30 1990-10-02 Grooters Ronald K Method of replacing a defective atrio-ventricular valve with a total atrio-ventricular valve bioprosthesis
US5032128A (en) 1988-07-07 1991-07-16 Medtronic, Inc. Heart valve prosthesis
DE8815082U1 (de) 1988-11-29 1989-05-18 Biotronik Meß- und Therapiegeräte GmbH & Co Ingenieurbüro Berlin, 1000 Berlin Herzklappenprothese
US4856516A (en) 1989-01-09 1989-08-15 Cordis Corporation Endovascular stent apparatus and method
US4966604A (en) 1989-01-23 1990-10-30 Interventional Technologies Inc. Expandable atherectomy cutter with flexibly bowed blades
US4994077A (en) 1989-04-21 1991-02-19 Dobben Richard L Artificial heart valve for implantation in a blood vessel
US5609626A (en) 1989-05-31 1997-03-11 Baxter International Inc. Stent devices and support/restrictor assemblies for use in conjunction with prosthetic vascular grafts
DK0474748T3 (da) 1989-05-31 1995-05-01 Baxter Int Biologisk klapprotese
US4923013A (en) 1989-08-14 1990-05-08 Gennaro Sergio K De Fire sprinkler system and automatic shut-off valve therefor
US5047041A (en) 1989-08-22 1991-09-10 Samuels Peter B Surgical apparatus for the excision of vein valves in situ
US4986830A (en) 1989-09-22 1991-01-22 Schneider (U.S.A.) Inc. Valvuloplasty catheter with balloon which remains stable during inflation
US5035706A (en) 1989-10-17 1991-07-30 Cook Incorporated Percutaneous stent and method for retrieval thereof
US5089015A (en) 1989-11-28 1992-02-18 Promedica International Method for implanting unstented xenografts and allografts
US5591185A (en) 1989-12-14 1997-01-07 Corneal Contouring Development L.L.C. Method and apparatus for reprofiling or smoothing the anterior or stromal cornea by scraping
US5037434A (en) 1990-04-11 1991-08-06 Carbomedics, Inc. Bioprosthetic heart valve with elastic commissures
US5059177A (en) 1990-04-19 1991-10-22 Cordis Corporation Triple lumen balloon catheter
US5085635A (en) 1990-05-18 1992-02-04 Cragg Andrew H Valved-tip angiographic catheter
US5411552A (en) 1990-05-18 1995-05-02 Andersen; Henning R. Valve prothesis for implantation in the body and a catheter for implanting such valve prothesis
DK124690D0 (da) 1990-05-18 1990-05-18 Henning Rud Andersen Klapprotes til implantering i kroppen for erstatning af naturlig klap samt kateter til brug ved implantering af en saadan klapprotese
GB9012716D0 (en) 1990-06-07 1990-08-01 Frater Robert W M Mitral heart valve replacements
US5064435A (en) 1990-06-28 1991-11-12 Schneider (Usa) Inc. Self-expanding prosthesis having stable axial length
US5336616A (en) 1990-09-12 1994-08-09 Lifecell Corporation Method for processing and preserving collagen-based tissues for transplantation
US5152771A (en) 1990-12-31 1992-10-06 The Board Of Supervisors Of Louisiana State University Valve cutter for arterial by-pass surgery
US5282847A (en) 1991-02-28 1994-02-01 Medtronic, Inc. Prosthetic vascular grafts with a pleated structure
JPH05184611A (ja) 1991-03-19 1993-07-27 Kenji Kusuhara 弁輪支持器具及びその取り付け方法
US5295958A (en) 1991-04-04 1994-03-22 Shturman Cardiology Systems, Inc. Method and apparatus for in vivo heart valve decalcification
US5167628A (en) 1991-05-02 1992-12-01 Boyles Paul W Aortic balloon catheter assembly for indirect infusion of the coronary arteries
US5397351A (en) 1991-05-13 1995-03-14 Pavcnik; Dusan Prosthetic valve for percutaneous insertion
WO1992020303A1 (en) 1991-05-16 1992-11-26 Mures Cardiovascular Research, Inc. Cardiac valve
US5769812A (en) 1991-07-16 1998-06-23 Heartport, Inc. System for cardiac procedures
US5584803A (en) 1991-07-16 1996-12-17 Heartport, Inc. System for cardiac procedures
US5370685A (en) 1991-07-16 1994-12-06 Stanford Surgical Technologies, Inc. Endovascular aortic valve replacement
US5192297A (en) 1991-12-31 1993-03-09 Medtronic, Inc. Apparatus and method for placement and implantation of a stent
US5756476A (en) 1992-01-14 1998-05-26 The United States Of America As Represented By The Department Of Health And Human Services Inhibition of cell proliferation using antisense oligonucleotides
US5201880A (en) 1992-01-27 1993-04-13 Pioneering Technologies, Inc. Mitral and tricuspid annuloplasty rings
US5306296A (en) 1992-08-21 1994-04-26 Medtronic, Inc. Annuloplasty and suture rings
AU670934B2 (en) 1992-01-27 1996-08-08 Medtronic, Inc. Annuloplasty and suture rings
US5163953A (en) 1992-02-10 1992-11-17 Vince Dennis J Toroidal artificial heart valve stent
US5683448A (en) 1992-02-21 1997-11-04 Boston Scientific Technology, Inc. Intraluminal stent and graft
US5332402A (en) 1992-05-12 1994-07-26 Teitelbaum George P Percutaneously-inserted cardiac valve
DE4327825C2 (de) 1992-11-24 1996-10-02 Mannesmann Ag Drosselrückschlagelement
US5797960A (en) 1993-02-22 1998-08-25 Stevens; John H. Method and apparatus for thoracoscopic intracardiac procedures
US5682906A (en) 1993-02-22 1997-11-04 Heartport, Inc. Methods of performing intracardiac procedures on an arrested heart
US5972030A (en) 1993-02-22 1999-10-26 Heartport, Inc. Less-invasive devices and methods for treatment of cardiac valves
GB9312666D0 (en) 1993-06-18 1993-08-04 Vesely Ivan Bioprostetic heart valve
US5607462A (en) 1993-09-24 1997-03-04 Cardiac Pathways Corporation Catheter assembly, catheter and multi-catheter introducer for use therewith
US5545209A (en) 1993-09-30 1996-08-13 Texas Petrodet, Inc. Controlled deployment of a medical device
US5480424A (en) 1993-11-01 1996-01-02 Cox; James L. Heart valve replacement using flexible tubes
US5609627A (en) 1994-02-09 1997-03-11 Boston Scientific Technology, Inc. Method for delivering a bifurcated endoluminal prosthesis
US5364407A (en) 1994-03-21 1994-11-15 Poll Wayne L Laparoscopic suturing system
US5728068A (en) 1994-06-14 1998-03-17 Cordis Corporation Multi-purpose balloon catheter
US5554185A (en) 1994-07-18 1996-09-10 Block; Peter C. Inflatable prosthetic cardiovascular valve for percutaneous transluminal implantation of same
US5554184A (en) 1994-07-27 1996-09-10 Machiraju; Venkat R. Heart valve
US5833673A (en) 1994-11-02 1998-11-10 Daig Corporation Guiding introducer system for use in the treatment of left ventricular tachycardia
US5683449A (en) 1995-02-24 1997-11-04 Marcade; Jean Paul Modular bifurcated intraluminal grafts and methods for delivering and assembling same
US5904697A (en) 1995-02-24 1999-05-18 Heartport, Inc. Devices and methods for performing a vascular anastomosis
BE1009278A3 (fr) 1995-04-12 1997-01-07 Corvita Europ Tuteur auto-expansible pour dispositif medical a introduire dans une cavite d'un corps, et dispositif medical muni d'un tel tuteur.
US5639274A (en) 1995-06-02 1997-06-17 Fischell; Robert E. Integrated catheter system for balloon angioplasty and stent delivery
US5716417A (en) 1995-06-07 1998-02-10 St. Jude Medical, Inc. Integral supporting structure for bioprosthetic heart valve
US5571175A (en) 1995-06-07 1996-11-05 St. Jude Medical, Inc. Suture guard for prosthetic heart valve
US5697905A (en) 1995-06-19 1997-12-16 Leo T. d'Ambrosio Triple-lumen intra-aortic catheter
US5882341A (en) 1995-07-07 1999-03-16 Bousquet; Gerald G. Method of providing a long-lived window through the skin to subcutaneous tissue
DE19532846A1 (de) 1995-09-06 1997-03-13 Georg Dr Berg Ventileinrichtung
US5735842A (en) 1995-09-11 1998-04-07 St. Jude Medical, Inc. Low profile manipulators for heart valve prostheses
US5662704A (en) 1995-12-01 1997-09-02 Medtronic, Inc. Physiologic mitral valve bioprosthesis
DE19546692C2 (de) 1995-12-14 2002-11-07 Hans-Reiner Figulla Selbstexpandierende Herzklappenprothese zur Implantation im menschlichen Körper über ein Kathetersystem
FR2742994B1 (fr) 1995-12-28 1998-04-03 Sgro Jean-Claude Ensemble de traitement chirurgical d'une lumiere intracorporelle
US5855602A (en) 1996-09-09 1999-01-05 Shelhigh, Inc. Heart valve prosthesis
US5716370A (en) 1996-02-23 1998-02-10 Williamson, Iv; Warren Means for replacing a heart valve in a minimally invasive manner
US6402780B2 (en) 1996-02-23 2002-06-11 Cardiovascular Technologies, L.L.C. Means and method of replacing a heart valve in a minimally invasive manner
EP1331885B1 (en) 2000-11-07 2009-03-11 Carag AG A device for plugging an opening such as in a wall of a hollow or tubular organ
EP0808614B1 (en) 1996-05-23 2003-02-26 Samsung Electronics Co., Ltd. Flexible self-expandable stent and method for making the same
US5855601A (en) 1996-06-21 1999-01-05 The Trustees Of Columbia University In The City Of New York Artificial heart valve and method and device for implanting the same
US5792179A (en) 1996-07-16 1998-08-11 Sideris; Eleftherios B. Retrievable cardiac balloon placement
US6217585B1 (en) 1996-08-16 2001-04-17 Converge Medical, Inc. Mechanical stent and graft delivery system
CA2263492C (en) 1996-08-23 2006-10-17 Scimed Life Systems, Inc. Stent delivery system having stent securement apparatus
US5968068A (en) 1996-09-12 1999-10-19 Baxter International Inc. Endovascular delivery system
US5968052A (en) 1996-11-27 1999-10-19 Scimed Life Systems Inc. Pull back stent delivery system with pistol grip retraction handle
US5749890A (en) 1996-12-03 1998-05-12 Shaknovich; Alexander Method and system for stent placement in ostial lesions
NL1004827C2 (nl) 1996-12-18 1998-06-19 Surgical Innovations Vof Inrichting voor het reguleren van de bloedsomloop.
EP0850607A1 (en) 1996-12-31 1998-07-01 Cordis Corporation Valve prosthesis for implantation in body channels
US6077214A (en) 1998-07-29 2000-06-20 Myocor, Inc. Stress reduction apparatus and method
US6183411B1 (en) 1998-09-21 2001-02-06 Myocor, Inc. External stress reduction device and method
US6045497A (en) 1997-01-02 2000-04-04 Myocor, Inc. Heart wall tension reduction apparatus and method
US6406420B1 (en) 1997-01-02 2002-06-18 Myocor, Inc. Methods and devices for improving cardiac function in hearts
US5906594A (en) 1997-01-08 1999-05-25 Symbiosis Corporation Endoscopic infusion needle having dual distal stops
GB9701479D0 (en) 1997-01-24 1997-03-12 Aortech Europ Ltd Heart valve
US5957949A (en) 1997-05-01 1999-09-28 World Medical Manufacturing Corp. Percutaneous placement valve stent
US6206917B1 (en) 1997-05-02 2001-03-27 St. Jude Medical, Inc. Differential treatment of prosthetic devices
US5855597A (en) 1997-05-07 1999-01-05 Iowa-India Investments Co. Limited Stent valve and stent graft for percutaneous surgery
US6245102B1 (en) 1997-05-07 2001-06-12 Iowa-India Investments Company Ltd. Stent, stent graft and stent valve
US5971983A (en) 1997-05-09 1999-10-26 The Regents Of The University Of California Tissue ablation device and method of use
US6123725A (en) 1997-07-11 2000-09-26 A-Med Systems, Inc. Single port cardiac support apparatus
AU9225598A (en) 1997-09-04 1999-03-22 Endocore, Inc. Artificial chordae replacement
US6468300B1 (en) 1997-09-23 2002-10-22 Diseno Y Desarrollo Medico, S.A. De C.V. Stent covered heterologous tissue
US5925063A (en) 1997-09-26 1999-07-20 Khosravi; Farhad Coiled sheet valve, filter or occlusive device and methods of use
US6332893B1 (en) 1997-12-17 2001-12-25 Myocor, Inc. Valve to myocardium tension members device and method
WO1999033414A1 (en) 1997-12-29 1999-07-08 Ivan Vesely System for minimally invasive insertion of a bioprosthetic heart valve
US6530952B2 (en) 1997-12-29 2003-03-11 The Cleveland Clinic Foundation Bioprosthetic cardiovascular valve system
EP0935978A1 (en) 1998-02-16 1999-08-18 Medicorp S.A. Angioplasty and stent delivery catheter
US6540693B2 (en) 1998-03-03 2003-04-01 Senorx, Inc. Methods and apparatus for securing medical instruments to desired locations in a patients body
US6174327B1 (en) 1998-02-27 2001-01-16 Scimed Life Systems, Inc. Stent deployment apparatus and method
EP0943300A1 (en) 1998-03-17 1999-09-22 Medicorp S.A. Reversible action endoprosthesis delivery device.
US6547821B1 (en) 1998-07-16 2003-04-15 Cardiothoracic Systems, Inc. Surgical procedures and devices for increasing cardiac output of the heart
US7060021B1 (en) 1998-07-23 2006-06-13 Wilk Patent Development Corporation Method and device for improving cardiac function
EP2111800B1 (en) 1998-07-29 2016-06-15 Edwards Lifesciences AG Transventricular implant tools and devices
US6260552B1 (en) 1998-07-29 2001-07-17 Myocor, Inc. Transventricular implant tools and devices
US6334873B1 (en) 1998-09-28 2002-01-01 Autogenics Heart valve having tissue retention with anchors and an outer sheath
US7128073B1 (en) 1998-11-06 2006-10-31 Ev3 Endovascular, Inc. Method and device for left atrial appendage occlusion
US6066160A (en) 1998-11-23 2000-05-23 Quickie Llc Passive knotless suture terminator for use in minimally invasive surgery and to facilitate standard tissue securing
DE19857887B4 (de) 1998-12-15 2005-05-04 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Verankerungsstütze für eine Herzklappenprothese
FR2788217A1 (fr) 1999-01-12 2000-07-13 Brice Letac Valvule prothetique implantable par catheterisme, ou chirurgicalement
US6350277B1 (en) 1999-01-15 2002-02-26 Scimed Life Systems, Inc. Stents with temporary retaining bands
US6896690B1 (en) 2000-01-27 2005-05-24 Viacor, Inc. Cardiac valve procedure methods and devices
US6425916B1 (en) 1999-02-10 2002-07-30 Michi E. Garrison Methods and devices for implanting cardiac valves
DE19907646A1 (de) 1999-02-23 2000-08-24 Georg Berg Ventileinrichtung zum Einsetzen in ein Hohlorgan
US6210408B1 (en) 1999-02-24 2001-04-03 Scimed Life Systems, Inc. Guide wire system for RF recanalization of vascular blockages
US6752813B2 (en) 1999-04-09 2004-06-22 Evalve, Inc. Methods and devices for capturing and fixing leaflets in valve repair
CA2620783C (en) 1999-04-09 2011-04-05 Evalve, Inc. Methods and apparatus for cardiac valve repair
US6231602B1 (en) 1999-04-16 2001-05-15 Edwards Lifesciences Corporation Aortic annuloplasty ring
US6790229B1 (en) 1999-05-25 2004-09-14 Eric Berreklouw Fixing device, in particular for fixing to vascular wall tissue
US6287339B1 (en) 1999-05-27 2001-09-11 Sulzer Carbomedics Inc. Sutureless heart valve prosthesis
EP1057460A1 (en) 1999-06-01 2000-12-06 Numed, Inc. Replacement valve assembly and method of implanting same
US7416554B2 (en) 2002-12-11 2008-08-26 Usgi Medical Inc Apparatus and methods for forming and securing gastrointestinal tissue folds
US7192442B2 (en) 1999-06-30 2007-03-20 Edwards Lifesciences Ag Method and device for treatment of mitral insufficiency
US6312465B1 (en) 1999-07-23 2001-11-06 Sulzer Carbomedics Inc. Heart valve prosthesis with a resiliently deformable retaining member
US7674222B2 (en) 1999-08-09 2010-03-09 Cardiokinetix, Inc. Cardiac device and methods of use thereof
US6299637B1 (en) 1999-08-20 2001-10-09 Samuel M. Shaolian Transluminally implantable venous valve
IT1307268B1 (it) 1999-09-30 2001-10-30 Sorin Biomedica Cardio Spa Dispositivo per interventi di riparazione o sostituzione valvolarecardiaca.
US6371983B1 (en) 1999-10-04 2002-04-16 Ernest Lane Bioprosthetic heart valve
US8632590B2 (en) 1999-10-20 2014-01-21 Anulex Technologies, Inc. Apparatus and methods for the treatment of the intervertebral disc
US6440164B1 (en) 1999-10-21 2002-08-27 Scimed Life Systems, Inc. Implantable prosthetic valve
FR2800984B1 (fr) 1999-11-17 2001-12-14 Jacques Seguin Dispositif de remplacement d'une valve cardiaque par voie percutanee
US8579966B2 (en) 1999-11-17 2013-11-12 Medtronic Corevalve Llc Prosthetic valve for transluminal delivery
FR2815844B1 (fr) 2000-10-31 2003-01-17 Jacques Seguin Support tubulaire de mise en place, par voie percutanee, d'une valve cardiaque de remplacement
US8016877B2 (en) 1999-11-17 2011-09-13 Medtronic Corevalve Llc Prosthetic valve for transluminal delivery
US7018406B2 (en) 1999-11-17 2006-03-28 Corevalve Sa Prosthetic valve for transluminal delivery
DE19955490A1 (de) 1999-11-18 2001-06-13 Thermamed Gmbh Medizintechnische Wärmevorrichtung
US6458153B1 (en) 1999-12-31 2002-10-01 Abps Venture One, Ltd. Endoluminal cardiac and venous valve prostheses and methods of manufacture and delivery thereof
US7195641B2 (en) 1999-11-19 2007-03-27 Advanced Bio Prosthetic Surfaces, Ltd. Valvular prostheses having metal or pseudometallic construction and methods of manufacture
US8241274B2 (en) 2000-01-19 2012-08-14 Medtronic, Inc. Method for guiding a medical device
ATE399513T1 (de) 2000-01-27 2008-07-15 3F Therapeutics Inc Herzklappenprothese
US6989028B2 (en) 2000-01-31 2006-01-24 Edwards Lifesciences Ag Medical system and method for remodeling an extravascular tissue structure
DE20122916U1 (de) 2000-01-31 2009-12-10 Cook Biotech, Inc., West Lafayette Stentventil
US6402781B1 (en) 2000-01-31 2002-06-11 Mitralife Percutaneous mitral annuloplasty and cardiac reinforcement
AU2001233227A1 (en) 2000-02-02 2001-08-14 Robert V. Snyders Artificial heart valve
US6797002B2 (en) 2000-02-02 2004-09-28 Paul A. Spence Heart valve repair apparatus and methods
DE10007701C2 (de) 2000-02-19 2002-01-31 Sartorius Gmbh Anzeige- und Bedieneinheit für eine Waage
DE10010073B4 (de) 2000-02-28 2005-12-22 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Verankerung für implantierbare Herzklappenprothesen
DE10010074B4 (de) 2000-02-28 2005-04-14 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Vorrichtung zur Befestigung und Verankerung von Herzklappenprothesen
US7399304B2 (en) 2000-03-03 2008-07-15 C.R. Bard, Inc. Endoscopic tissue apposition device with multiple suction ports
ATE346563T1 (de) 2000-03-10 2006-12-15 Paracor Medical Inc Expandierbarer herzbeutel zur behandlung von kongestiven herzversagens
US6537198B1 (en) 2000-03-21 2003-03-25 Myocor, Inc. Splint assembly for improving cardiac function in hearts, and method for implanting the splint assembly
US6454799B1 (en) 2000-04-06 2002-09-24 Edwards Lifesciences Corporation Minimally-invasive heart valves and methods of use
US6610088B1 (en) 2000-05-03 2003-08-26 Shlomo Gabbay Biologically covered heart valve prosthesis
US6951534B2 (en) 2000-06-13 2005-10-04 Acorn Cardiovascular, Inc. Cardiac support device
US6358277B1 (en) 2000-06-21 2002-03-19 The International Heart Institute Of Montana Foundation Atrio-ventricular valvular device
GB2365881A (en) 2000-07-06 2002-02-27 David Paul Aviram Interlocking structural panel set
US20050113798A1 (en) 2000-07-21 2005-05-26 Slater Charles R. Methods and apparatus for treating the interior of a blood vessel
WO2002022054A1 (en) 2000-09-12 2002-03-21 Gabbay S Valvular prosthesis and method of using same
US7510572B2 (en) 2000-09-12 2009-03-31 Shlomo Gabbay Implantation system for delivery of a heart valve prosthesis
US20080091264A1 (en) 2002-11-26 2008-04-17 Ample Medical, Inc. Devices, systems, and methods for reshaping a heart valve annulus, including the use of magnetic tools
US8956407B2 (en) 2000-09-20 2015-02-17 Mvrx, Inc. Methods for reshaping a heart valve annulus using a tensioning implant
US6461382B1 (en) 2000-09-22 2002-10-08 Edwards Lifesciences Corporation Flexible heart valve having moveable commissures
US6602288B1 (en) 2000-10-05 2003-08-05 Edwards Lifesciences Corporation Minimally-invasive annuloplasty repair segment delivery template, system and method of use
US6616684B1 (en) 2000-10-06 2003-09-09 Myocor, Inc. Endovascular splinting devices and methods
US6723038B1 (en) 2000-10-06 2004-04-20 Myocor, Inc. Methods and devices for improving mitral valve function
DE10049812B4 (de) 2000-10-09 2004-06-03 Universitätsklinikum Freiburg Vorrichtung zum Ausfiltern makroskopischer Teilchen aus der Blutbahn beim lokalen Abtrag einer Aortenklappe am menschlichen oder tierischen Herz
DE10049813C1 (de) 2000-10-09 2002-04-18 Universitaetsklinikum Freiburg Vorrichtung zum lokalen Abtrag einer Aortenklappe am menschlichen oder tierischen Herz
DE10049815B4 (de) 2000-10-09 2005-10-13 Universitätsklinikum Freiburg Vorrichtung zum lokalen Abtrag einer Aortenklappe am menschlichen oder tierischen Herz
DE10049814B4 (de) 2000-10-09 2006-10-19 Universitätsklinikum Freiburg Vorrichtung zur Unterstützung chirurgischer Maßnahmen innerhalb eines Gefäßes, insbesondere zur minimalinvasiven Explantation und Implantation von Herzklappen
US6482228B1 (en) 2000-11-14 2002-11-19 Troy R. Norred Percutaneous aortic valve replacement
US6974476B2 (en) 2003-05-05 2005-12-13 Rex Medical, L.P. Percutaneous aortic valve
EP1335683B1 (en) 2000-11-21 2005-08-10 Rex Medical, LP Percutaneous aortic valve
US6976543B1 (en) 2000-11-22 2005-12-20 Grinnell Corporation Low pressure, extended coverage, upright fire protection sprinkler
US6494909B2 (en) 2000-12-01 2002-12-17 Prodesco, Inc. Endovascular valve
US20040093075A1 (en) 2000-12-15 2004-05-13 Titus Kuehne Stent with valve and method of use thereof
US6468660B2 (en) 2000-12-29 2002-10-22 St. Jude Medical, Inc. Biocompatible adhesives
US6810882B2 (en) 2001-01-30 2004-11-02 Ev3 Santa Rosa, Inc. Transluminal mitral annuloplasty
NL1017275C2 (nl) 2001-02-02 2002-08-05 Univ Eindhoven Tech Hartklep.
US8038708B2 (en) 2001-02-05 2011-10-18 Cook Medical Technologies Llc Implantable device with remodelable material and covering material
US7326564B2 (en) 2001-02-20 2008-02-05 St. Jude Medical, Inc. Flow system for medical device evaluation and production
US20020139056A1 (en) 2001-03-05 2002-10-03 Finnell Lee M. Fire protection system
US6488704B1 (en) 2001-05-07 2002-12-03 Biomed Solutions, Llc Implantable particle measuring apparatus
US6890353B2 (en) 2001-03-23 2005-05-10 Viacor, Inc. Method and apparatus for reducing mitral regurgitation
US7556646B2 (en) 2001-09-13 2009-07-07 Edwards Lifesciences Corporation Methods and apparatuses for deploying minimally-invasive heart valves
US6733525B2 (en) 2001-03-23 2004-05-11 Edwards Lifesciences Corporation Rolled minimally-invasive heart valves and methods of use
US7374571B2 (en) 2001-03-23 2008-05-20 Edwards Lifesciences Corporation Rolled minimally-invasive heart valves and methods of manufacture
US6622730B2 (en) 2001-03-30 2003-09-23 Myocor, Inc. Device for marking and aligning positions on the heart
US20050113810A1 (en) 2001-04-24 2005-05-26 Houser Russell A. Shaping suture for treating congestive heart failure
US20050113811A1 (en) 2001-04-24 2005-05-26 Houser Russell A. Method and devices for treating ischemic congestive heart failure
US20050096498A1 (en) 2001-04-24 2005-05-05 Houser Russell A. Sizing and shaping device for treating congestive heart failure
US6676692B2 (en) 2001-04-27 2004-01-13 Intek Technology L.L.C. Apparatus for delivering, repositioning and/or retrieving self-expanding stents
US20020188170A1 (en) 2001-04-27 2002-12-12 Santamore William P. Prevention of myocardial infarction induced ventricular expansion and remodeling
GB0110551D0 (en) 2001-04-30 2001-06-20 Angiomed Ag Self-expanding stent delivery service
ITMI20011012A1 (it) 2001-05-17 2002-11-17 Ottavio Alfieri Protesi anulare per valvola mitrale
US6936067B2 (en) 2001-05-17 2005-08-30 St. Jude Medical Inc. Prosthetic heart valve with slit stent
US6575252B2 (en) 2001-05-29 2003-06-10 Jeffrey Paul Reed Sprinkler head deactivating tool
US20040064014A1 (en) 2001-05-31 2004-04-01 Melvin David B. Devices and methods for assisting natural heart function
US6926732B2 (en) 2001-06-01 2005-08-09 Ams Research Corporation Stent delivery device and method
KR100393548B1 (ko) 2001-06-05 2003-08-02 주식회사 엠아이텍 의료용 스텐트
FR2826863B1 (fr) 2001-07-04 2003-09-26 Jacques Seguin Ensemble permettant la mise en place d'une valve prothetique dans un conduit corporel
US6648077B2 (en) 2001-07-12 2003-11-18 Bryan K. Hoffman Fire extinguishing system
FR2828263B1 (fr) 2001-08-03 2007-05-11 Philipp Bonhoeffer Dispositif d'implantation d'un implant et procede d'implantation du dispositif
US20030036698A1 (en) 2001-08-16 2003-02-20 Robert Kohler Interventional diagnostic catheter and a method for using a catheter to access artificial cardiac shunts
US7125421B2 (en) 2001-08-31 2006-10-24 Mitral Interventions, Inc. Method and apparatus for valve repair
US6648921B2 (en) 2001-10-03 2003-11-18 Ams Research Corporation Implantable article
US6893460B2 (en) 2001-10-11 2005-05-17 Percutaneous Valve Technologies Inc. Implantable prosthetic valve
US6726715B2 (en) 2001-10-23 2004-04-27 Childrens Medical Center Corporation Fiber-reinforced heart valve prosthesis
GB0125925D0 (en) 2001-10-29 2001-12-19 Univ Glasgow Mitral valve prosthesis
US7143834B2 (en) 2001-11-01 2006-12-05 Kevin Michael Dolan Sprinkler assembly
AU2002347579A1 (en) 2001-11-23 2003-06-10 Mindguard Ltd. Expandable delivery appliance particularly for delivering intravascular devices
US20050177180A1 (en) 2001-11-28 2005-08-11 Aptus Endosystems, Inc. Devices, systems, and methods for supporting tissue and/or structures within a hollow body organ
US7182779B2 (en) 2001-12-03 2007-02-27 Xtent, Inc. Apparatus and methods for positioning prostheses for deployment from a catheter
US6908478B2 (en) 2001-12-05 2005-06-21 Cardiac Dimensions, Inc. Anchor and pull mitral valve device and method
US6793673B2 (en) 2002-12-26 2004-09-21 Cardiac Dimensions, Inc. System and method to effect mitral valve annulus of a heart
US7094246B2 (en) 2001-12-07 2006-08-22 Abbott Laboratories Suture trimmer
US6978176B2 (en) 2001-12-08 2005-12-20 Lattouf Omar M Treatment for patient with congestive heart failure
US20030120340A1 (en) 2001-12-26 2003-06-26 Jan Liska Mitral and tricuspid valve repair
US6764510B2 (en) 2002-01-09 2004-07-20 Myocor, Inc. Devices and methods for heart valve treatment
US6854668B2 (en) 2002-04-29 2005-02-15 Victaulic Company Of America Extended coverage ordinary hazard sprinkler system
US6746401B2 (en) 2002-05-06 2004-06-08 Scimed Life Systems, Inc. Tissue ablation visualization
US7141064B2 (en) 2002-05-08 2006-11-28 Edwards Lifesciences Corporation Compressed tissue for heart valve leaflets
US7101395B2 (en) 2002-06-12 2006-09-05 Mitral Interventions, Inc. Method and apparatus for tissue connection
US20050107811A1 (en) 2002-06-13 2005-05-19 Guided Delivery Systems, Inc. Delivery devices and methods for heart valve repair
JP2005534361A (ja) 2002-06-27 2005-11-17 リーバイン,ロバート,エイ. 房室弁逆流及び心室リモデリング逆転のためのシステム及び方法
US20050125012A1 (en) 2002-06-28 2005-06-09 Houser Russell A. Hemostatic patch for treating congestive heart failure
DE10362367B3 (de) 2002-08-13 2022-02-24 Jenavalve Technology Inc. Vorrichtung zur Verankerung und Ausrichtung von Herzklappenprothesen
CA2503258C (en) 2002-08-28 2011-08-16 Heart Leaflet Technologies, Inc. Method and device for treating diseased valve
US6875231B2 (en) 2002-09-11 2005-04-05 3F Therapeutics, Inc. Percutaneously deliverable heart valve
US7137184B2 (en) 2002-09-20 2006-11-21 Edwards Lifesciences Corporation Continuous heart valve support frame and method of manufacture
EP1549257A4 (en) 2002-10-10 2006-09-06 Cleveland Clinic Foundation METHOD AND DEVICE FOR REPLACING A MITRAL FLAP WITH A STAINLESS BIOPROTHETIC FLAP
US7087064B1 (en) 2002-10-15 2006-08-08 Advanced Cardiovascular Systems, Inc. Apparatuses and methods for heart valve repair
US7025285B2 (en) 2002-10-22 2006-04-11 University Of Florida Research Foundation, Inc. Fire sprinkler flow control device
US7247134B2 (en) 2002-11-12 2007-07-24 Myocor, Inc. Devices and methods for heart valve treatment
US7112219B2 (en) 2002-11-12 2006-09-26 Myocor, Inc. Devices and methods for heart valve treatment
US7335213B1 (en) 2002-11-15 2008-02-26 Abbott Cardiovascular Systems Inc. Apparatus and methods for heart valve repair
US7404824B1 (en) 2002-11-15 2008-07-29 Advanced Cardiovascular Systems, Inc. Valve aptation assist device
US6997950B2 (en) 2003-01-16 2006-02-14 Chawla Surendra K Valve repair device
US8157810B2 (en) 2003-02-26 2012-04-17 Cook Medical Technologies Llc Prosthesis adapted for placement under external imaging
US7381210B2 (en) 2003-03-14 2008-06-03 Edwards Lifesciences Corporation Mitral valve repair system and method for use
EP1608297A2 (en) 2003-03-18 2005-12-28 St. Jude Medical, Inc. Body tissue remodeling apparatus
US7175656B2 (en) 2003-04-18 2007-02-13 Alexander Khairkhahan Percutaneous transcatheter heart valve replacement
US6945996B2 (en) 2003-04-18 2005-09-20 Sedransk Kyra L Replacement mitral valve
DE602004023708D1 (de) 2003-04-24 2009-12-03 Cook Inc Künstliche klappe für blutgefäss mit verbessertem fliessverhalten
US7625399B2 (en) 2003-04-24 2009-12-01 Cook Incorporated Intralumenally-implantable frames
EP1635736A2 (en) 2003-06-05 2006-03-22 FlowMedica, Inc. Systems and methods for performing bi-lateral interventions or diagnosis in branched body lumens
US7316706B2 (en) 2003-06-20 2008-01-08 Medtronic Vascular, Inc. Tensioning device, system, and method for treating mitral valve regurgitation
US20060282161A1 (en) 2003-06-20 2006-12-14 Medtronic Vascular, Inc. Valve annulus reduction system
WO2005002424A2 (en) 2003-07-02 2005-01-13 Flexcor, Inc. Annuloplasty rings and methods for repairing cardiac valves
US7201772B2 (en) 2003-07-08 2007-04-10 Ventor Technologies, Ltd. Fluid flow prosthetic device
US7429269B2 (en) 2003-07-08 2008-09-30 Ventor Technologies Ltd. Aortic prosthetic devices
US7513867B2 (en) 2003-07-16 2009-04-07 Kardium, Inc. Methods and devices for altering blood flow through the left ventricle
DE602004023095D1 (de) 2003-07-21 2009-10-22 Univ Pennsylvania Perkutane herzklappe
WO2005011535A2 (en) 2003-07-31 2005-02-10 Cook Incorporated Prosthetic valve for implantation in a body vessel
US10219899B2 (en) 2004-04-23 2019-03-05 Medtronic 3F Therapeutics, Inc. Cardiac valve replacement systems
US20060259137A1 (en) 2003-10-06 2006-11-16 Jason Artof Minimally invasive valve replacement system
US7258698B2 (en) * 2003-10-17 2007-08-21 Medtronic, Inc. Prosthetic heart valve sizer assembly with flexible sizer body
US8182528B2 (en) 2003-12-23 2012-05-22 Sadra Medical, Inc. Locking heart valve anchor
US8840663B2 (en) 2003-12-23 2014-09-23 Sadra Medical, Inc. Repositionable heart valve method
US20050137686A1 (en) 2003-12-23 2005-06-23 Sadra Medical, A Delaware Corporation Externally expandable heart valve anchor and method
US7959666B2 (en) 2003-12-23 2011-06-14 Sadra Medical, Inc. Methods and apparatus for endovascularly replacing a heart valve
US7326236B2 (en) 2003-12-23 2008-02-05 Xtent, Inc. Devices and methods for controlling and indicating the length of an interventional element
US7780725B2 (en) 2004-06-16 2010-08-24 Sadra Medical, Inc. Everting heart valve
US7748389B2 (en) 2003-12-23 2010-07-06 Sadra Medical, Inc. Leaflet engagement elements and methods for use thereof
US8052749B2 (en) 2003-12-23 2011-11-08 Sadra Medical, Inc. Methods and apparatus for endovascular heart valve replacement comprising tissue grasping elements
US7445631B2 (en) 2003-12-23 2008-11-04 Sadra Medical, Inc. Methods and apparatus for endovascularly replacing a patient's heart valve
WO2005076973A2 (en) 2004-02-05 2005-08-25 Children's Medical Center Corporation Transcatheter delivery of a replacement heart valve
US8206439B2 (en) 2004-02-23 2012-06-26 International Heart Institute Of Montana Foundation Internal prosthesis for reconstruction of cardiac geometry
US20090132035A1 (en) 2004-02-27 2009-05-21 Roth Alex T Prosthetic Heart Valves, Support Structures and Systems and Methods for Implanting the Same
EP1722711A4 (en) 2004-02-27 2009-12-02 Aortx Inc SYSTEMS AND METHOD FOR STORING ARTIFICIAL HEART FLAPS
US20070073387A1 (en) 2004-02-27 2007-03-29 Forster David C Prosthetic Heart Valves, Support Structures And Systems And Methods For Implanting The Same
ITTO20040135A1 (it) 2004-03-03 2004-06-03 Sorin Biomedica Cardio Spa Protesi valvolare cardiaca
EP3308744B2 (en) 2004-03-11 2023-08-02 Percutaneous Cardiovascular Solutions Pty Limited Percutaneous heart valve prosthesis
NL1025830C2 (nl) 2004-03-26 2005-02-22 Eric Berreklouw Samenstel omvattende een ring voor bevestiging in een door lichaamsweefsel omgeven doorgang alsmede een applicator voor het in de doorgang plaatsen van de ring.
US20060004323A1 (en) 2004-04-21 2006-01-05 Exploramed Nc1, Inc. Apparatus and methods for dilating and modifying ostia of paranasal sinuses and other intranasal or paranasal structures
CN101052359A (zh) 2004-04-23 2007-10-10 3F医疗有限公司 可植入的人工瓣膜
US7445630B2 (en) 2004-05-05 2008-11-04 Direct Flow Medical, Inc. Method of in situ formation of translumenally deployable heart valve support
US8257394B2 (en) 2004-05-07 2012-09-04 Usgi Medical, Inc. Apparatus and methods for positioning and securing anchors
US7938856B2 (en) 2004-05-14 2011-05-10 St. Jude Medical, Inc. Heart valve annuloplasty prosthesis sewing cuffs and methods of making same
US20050288766A1 (en) 2004-06-28 2005-12-29 Xtent, Inc. Devices and methods for controlling expandable prostheses during deployment
US20050288783A1 (en) 2004-06-29 2005-12-29 Emanuel Shaoulian Methods for treating cardiac valves using magnetic fields
US7276078B2 (en) 2004-06-30 2007-10-02 Edwards Lifesciences Pvt Paravalvular leak detection, sealing, and prevention
US7462191B2 (en) 2004-06-30 2008-12-09 Edwards Lifesciences Pvt, Inc. Device and method for assisting in the implantation of a prosthetic valve
EP1781179A1 (en) 2004-07-06 2007-05-09 Baker Medical Research Institute Treating valvular insufficiency
US20060042803A1 (en) 2004-08-31 2006-03-02 Jeanette M. Gallaher Sprinkler head shut-off tool
US7566343B2 (en) 2004-09-02 2009-07-28 Boston Scientific Scimed, Inc. Cardiac valve, system, and method
US20060052867A1 (en) 2004-09-07 2006-03-09 Medtronic, Inc Replacement prosthetic heart valve, system and method of implant
US8182530B2 (en) 2004-10-02 2012-05-22 Christoph Hans Huber Methods and devices for repair or replacement of heart valves or adjacent tissue without the need for full cardiopulmonary support
US20070162100A1 (en) 2006-01-10 2007-07-12 Shlomo Gabbay System and method for loading implanter with prosthesis
WO2006055982A2 (en) 2004-11-22 2006-05-26 Avvrx Ring-shaped valve prosthesis attachment device
KR101300640B1 (ko) 2004-11-29 2013-08-28 피닉스 화이어화이팅 테크놀로지스 에스에이 밸브들을 구비한 소방 시스템에 적합한 시스템
WO2006063199A2 (en) 2004-12-09 2006-06-15 The Foundry, Inc. Aortic valve repair
US7211110B2 (en) 2004-12-09 2007-05-01 Edwards Lifesciences Corporation Diagnostic kit to assist with heart valve annulus adjustment
WO2006064490A1 (en) 2004-12-15 2006-06-22 Mednua Limited A medical device suitable for use in treatment of a valve
US20060142784A1 (en) 2004-12-28 2006-06-29 Stavros Kontos Device and method for suturing internal structures puncture wounds
DE102005003632A1 (de) 2005-01-20 2006-08-17 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Katheter für die transvaskuläre Implantation von Herzklappenprothesen
US8262695B2 (en) 2005-01-25 2012-09-11 Tyco Healthcare Group Lp Structures for permanent occlusion of a hollow anatomical structure
EP3967269A3 (en) 2005-02-07 2022-07-13 Evalve, Inc. Systems and devices for cardiac valve repair
WO2011034628A1 (en) 2005-02-07 2011-03-24 Evalve, Inc. Methods, systems and devices for cardiac valve repair
US20060195183A1 (en) 2005-02-18 2006-08-31 The Cleveland Clinic Foundation Apparatus and methods for replacing a cardiac valve
US7331991B2 (en) 2005-02-25 2008-02-19 California Institute Of Technology Implantable small percutaneous valve and methods of delivery
US7955385B2 (en) 2005-02-28 2011-06-07 Medtronic Vascular, Inc. Device, system, and method for aiding valve annuloplasty
US7717955B2 (en) 2005-02-28 2010-05-18 Medtronic, Inc. Conformable prosthesis for implanting two-piece heart valves and methods for using them
WO2006105008A1 (en) 2005-03-25 2006-10-05 Ample Medical, Inc. Device, systems, and methods for reshaping a heart valve annulus
US7579381B2 (en) 2005-03-25 2009-08-25 Edwards Lifesciences Corporation Treatment of bioprosthetic tissues to mitigate post implantation calcification
US8062359B2 (en) 2005-04-06 2011-11-22 Edwards Lifesciences Corporation Highly flexible heart valve connecting band
US20060259135A1 (en) 2005-04-20 2006-11-16 The Cleveland Clinic Foundation Apparatus and method for replacing a cardiac valve
SE531468C2 (sv) 2005-04-21 2009-04-14 Edwards Lifesciences Ag En anordning för styrning av blodflöde
US8333777B2 (en) 2005-04-22 2012-12-18 Benvenue Medical, Inc. Catheter-based tissue remodeling devices and methods
US20060247491A1 (en) 2005-04-27 2006-11-02 Vidlund Robert M Devices and methods for heart valve treatment
US7914569B2 (en) 2005-05-13 2011-03-29 Medtronics Corevalve Llc Heart valve prosthesis and methods of manufacture and use
WO2006127509A2 (en) 2005-05-20 2006-11-30 Mayo Foundation For Medical Education And Research Devices and methods for reducing cardiac valve regurgitation
CA2607744C (en) 2005-05-24 2015-11-24 Edwards Lifesciences Corporation Rapid deployment prosthetic heart valve
US8663312B2 (en) 2005-05-27 2014-03-04 Hlt, Inc. Intravascular cuff
US7500989B2 (en) 2005-06-03 2009-03-10 Edwards Lifesciences Corp. Devices and methods for percutaneous repair of the mitral valve via the coronary sinus
US20060287716A1 (en) 2005-06-08 2006-12-21 The Cleveland Clinic Foundation Artificial chordae
US20090099410A1 (en) 2005-06-09 2009-04-16 De Marchena Eduardo Papillary Muscle Attachment for Left Ventricular Reduction
US20090082619A1 (en) 2005-06-09 2009-03-26 De Marchena Eduardo Method of treating cardiomyopathy
US7780723B2 (en) 2005-06-13 2010-08-24 Edwards Lifesciences Corporation Heart valve delivery system
US20080058856A1 (en) 2005-06-28 2008-03-06 Venkatesh Ramaiah Non-occluding dilation device
JP2007011557A (ja) 2005-06-29 2007-01-18 Nissan Motor Co Ltd 渋滞検出システム、車載情報端末、および情報センター、および渋滞検出方法
US7931630B2 (en) 2005-07-05 2011-04-26 C. R. Bard, Inc. Multi-functional and modular urine collection system
WO2007009117A1 (en) 2005-07-13 2007-01-18 Arbor Surgical Technologies, Inc. Two-piece percutaneous prosthetic heart valves and methods for making and using them
US7927371B2 (en) 2005-07-15 2011-04-19 The Cleveland Clinic Foundation Apparatus and method for reducing cardiac valve regurgitation
US20090112309A1 (en) 2005-07-21 2009-04-30 The Florida International University Board Of Trustees Collapsible Heart Valve with Polymer Leaflets
WO2007016251A2 (en) 2005-07-28 2007-02-08 Cook Incorporated Implantable thromboresistant valve
EP1933756B1 (en) 2005-08-19 2016-07-20 CHF Technologies Inc. Steerable lesion excluding heart implants for congestive heart failure
US20070078297A1 (en) 2005-08-31 2007-04-05 Medtronic Vascular, Inc. Device for Treating Mitral Valve Regurgitation
US7632304B2 (en) 2005-09-07 2009-12-15 Rbkpark Llc Coronary stent
US20070061010A1 (en) 2005-09-09 2007-03-15 Hauser David L Device and method for reshaping mitral valve annulus
US20080188928A1 (en) 2005-09-16 2008-08-07 Amr Salahieh Medical device delivery sheath
US7695510B2 (en) 2005-10-11 2010-04-13 Medtronic Vascular, Inc. Annuloplasty device having shape-adjusting tension filaments
US7275604B1 (en) 2005-10-12 2007-10-02 Wall Terry M Multi-zone firewall detection system
US8167932B2 (en) 2005-10-18 2012-05-01 Edwards Lifesciences Corporation Heart valve delivery system with valve catheter
US9259317B2 (en) 2008-06-13 2016-02-16 Cardiosolutions, Inc. System and method for implanting a heart implant
US8216302B2 (en) 2005-10-26 2012-07-10 Cardiosolutions, Inc. Implant delivery and deployment system and method
US7785366B2 (en) 2005-10-26 2010-08-31 Maurer Christopher W Mitral spacer
US8092525B2 (en) 2005-10-26 2012-01-10 Cardiosolutions, Inc. Heart valve implant
US20070100439A1 (en) 2005-10-31 2007-05-03 Medtronic Vascular, Inc. Chordae tendinae restraining ring
DE102005052628B4 (de) 2005-11-04 2014-06-05 Jenavalve Technology Inc. Selbstexpandierendes, flexibles Drahtgeflecht mit integrierter Klappenprothese für den transvaskulären Herzklappenersatz und ein System mit einer solchen Vorrichtung und einem Einführkatheter
CN2902226Y (zh) 2005-11-09 2007-05-23 王蓉珍 人工心脏支架瓣膜
CN100584292C (zh) 2005-11-09 2010-01-27 温宁 人工心脏支架瓣膜
US8764820B2 (en) 2005-11-16 2014-07-01 Edwards Lifesciences Corporation Transapical heart valve delivery system and method
US20070118210A1 (en) 2005-11-18 2007-05-24 Leonard Pinchuk Trileaflet Heart Valve
WO2007062054A2 (en) 2005-11-21 2007-05-31 The Brigham And Women's Hospital, Inc. Percutaneous cardiac valve repair with adjustable artificial chordae
US7632308B2 (en) 2005-11-23 2009-12-15 Didier Loulmet Methods, devices, and kits for treating mitral valve prolapse
US8043368B2 (en) 2005-11-23 2011-10-25 Traves Dean Crabtree Methods and apparatus for atrioventricular valve repair
US9034006B2 (en) 2005-12-01 2015-05-19 Atritech, Inc. Method and apparatus for retrieving an embolized implant
US9125742B2 (en) 2005-12-15 2015-09-08 Georgia Tech Research Foundation Papillary muscle position control devices, systems, and methods
EP1959865B1 (en) 2005-12-15 2014-12-10 The Cleveland Clinic Foundation Apparatus for treating a regurgitant valve
US20070213813A1 (en) 2005-12-22 2007-09-13 Symetis Sa Stent-valves for valve replacement and associated methods and systems for surgery
EP1986735A4 (en) 2006-02-06 2011-06-29 Northwind Ventures SYSTEMS AND METHODS FOR VOLUME REDUCTION
US20070185571A1 (en) 2006-02-06 2007-08-09 The Cleveland Clinic Foundation Apparatus and method for treating a regurgitant valve
EP1991168B1 (en) 2006-02-16 2016-01-27 Transcatheter Technologies GmbH Minimally invasive heart valve replacement
US8147541B2 (en) * 2006-02-27 2012-04-03 Aortx, Inc. Methods and devices for delivery of prosthetic heart valves and other prosthetics
US7635386B1 (en) 2006-03-07 2009-12-22 University Of Maryland, Baltimore Methods and devices for performing cardiac valve repair
GB0604952D0 (en) 2006-03-13 2006-04-19 Renishaw Plc A fluid connector for fluid delivery apparatus
US20070215362A1 (en) 2006-03-20 2007-09-20 Fire Sprinkler System, Inc. Fire sprinkler system
AU2007227116B2 (en) 2006-03-22 2011-09-08 Lubrizol Advanced Materials, Inc. Fire suppression system
US20110224678A1 (en) 2006-03-23 2011-09-15 Shlomo Gabbay Method and implantation system for implanting a cardiovascular prosthesis
US7524331B2 (en) 2006-04-06 2009-04-28 Medtronic Vascular, Inc. Catheter delivered valve having a barrier to provide an enhanced seal
EP2023860A2 (en) 2006-04-29 2009-02-18 Arbor Surgical Technologies, Inc. Multiple component prosthetic heart valve assemblies and apparatus and methods for delivering them
US7343980B2 (en) 2006-05-04 2008-03-18 The Reliable Automatic Sprinkler Co., Inc. Enhanced protection extended coverage pendent fire protection sprinkler
US20070265658A1 (en) 2006-05-12 2007-11-15 Aga Medical Corporation Anchoring and tethering system
US8142495B2 (en) 2006-05-15 2012-03-27 Edwards Lifesciences Ag System and a method for altering the geometry of the heart
US8932348B2 (en) 2006-05-18 2015-01-13 Edwards Lifesciences Corporation Device and method for improving heart valve function
US8535368B2 (en) 2006-05-19 2013-09-17 Boston Scientific Scimed, Inc. Apparatus for loading and delivering a stent
US8500799B2 (en) 2006-06-20 2013-08-06 Cardiacmd, Inc. Prosthetic heart valves, support structures and systems and methods for implanting same
GB0614445D0 (en) 2006-07-20 2006-08-30 Ricardo Uk Ltd Control of selective catalytic reduction
WO2008031103A2 (en) 2006-09-08 2008-03-13 Edwards Lifesciences Corporation Integrated heart valve delivery system
US8876894B2 (en) 2006-09-19 2014-11-04 Medtronic Ventor Technologies Ltd. Leaflet-sensitive valve fixation member
FR2906454B1 (fr) 2006-09-28 2009-04-10 Perouse Soc Par Actions Simpli Implant destine a etre place dans un conduit de circulation du sang.
US7578842B2 (en) 2006-10-03 2009-08-25 St. Jude Medical, Inc. Prosthetic heart valves
US8029556B2 (en) 2006-10-04 2011-10-04 Edwards Lifesciences Corporation Method and apparatus for reshaping a ventricle
US7422072B2 (en) 2006-10-06 2008-09-09 Kent Demond Dade Sprinkler wedge
US8388680B2 (en) 2006-10-18 2013-03-05 Guided Delivery Systems, Inc. Methods and devices for catheter advancement and delivery of substances therethrough
CA2666485C (en) 2006-10-27 2015-10-06 Edwards Lifesciences Corporation Biological tissue for surgical implantation
DE102006052564B3 (de) 2006-11-06 2007-12-13 Georg Lutter Mitralklappenstent
JP2010508093A (ja) 2006-11-07 2010-03-18 セラマジャー,デイヴィッド,スティーヴン 心不全を治療するための装置及び方法
US8460372B2 (en) 2006-11-07 2013-06-11 Dc Devices, Inc. Prosthesis for reducing intra-cardiac pressure having an embolic filter
US20080109069A1 (en) 2006-11-07 2008-05-08 Coleman James E Blood perfusion graft
DE102006052710A1 (de) 2006-11-08 2008-05-29 Siemens Ag Vorrichtung zur Untersuchung und zur Durchführung von Interventionen, Punktionen und Injektionen
US7655034B2 (en) 2006-11-14 2010-02-02 Medtronic Vascular, Inc. Stent-graft with anchoring pins
WO2008070797A2 (en) 2006-12-06 2008-06-12 Medtronic Corevalve, Inc. System and method for transapical delivery of an annulus anchored self-expanding valve
CA2672899C (en) 2006-12-19 2014-08-05 St. Jude Medical, Inc. Prosthetic heart valve including stent structure and tissue leaflets, and related methods
US8236045B2 (en) 2006-12-22 2012-08-07 Edwards Lifesciences Corporation Implantable prosthetic valve assembly and method of making the same
CA2674485A1 (en) 2007-01-03 2008-07-17 Mitralsolutions, Inc. Implantable devices for controlling the size and shape of an anatomical structure or lumen
WO2008089365A2 (en) 2007-01-19 2008-07-24 The Cleveland Clinic Foundation Method for implanting a cardiovascular valve
EP2111190B1 (en) 2007-01-19 2013-10-09 Medtronic, Inc. Stented heart valve devices for atrioventricular valve replacement
WO2008091991A2 (en) 2007-01-25 2008-07-31 Trinity Health-Michigan Blood vessel occluder and method of use
JP5313928B2 (ja) 2007-02-05 2013-10-09 ボストン サイエンティフィック リミテッド 経皮的な弁およびシステム
EP3345572A1 (en) 2007-02-14 2018-07-11 Edwards Lifesciences Corporation Suture and method for repairing heart
WO2008100599A1 (en) 2007-02-15 2008-08-21 Medtronic, Inc. Multi-layered stents and methods of implanting
US8070802B2 (en) 2007-02-23 2011-12-06 The Trustees Of The University Of Pennsylvania Mitral valve system
US20080208328A1 (en) 2007-02-23 2008-08-28 Endovalve, Inc. Systems and Methods For Placement of Valve Prosthesis System
WO2008121888A1 (en) 2007-03-30 2008-10-09 Onset Medical Corporation Expandable trans-septal sheath
US9295551B2 (en) 2007-04-13 2016-03-29 Jenavalve Technology Gmbh Methods of implanting an endoprosthesis
US9138315B2 (en) 2007-04-13 2015-09-22 Jenavalve Technology Gmbh Medical device for treating a heart valve insufficiency or stenosis
US7896915B2 (en) 2007-04-13 2011-03-01 Jenavalve Technology, Inc. Medical device for treating a heart valve insufficiency
US8480730B2 (en) 2007-05-14 2013-07-09 Cardiosolutions, Inc. Solid construct mitral spacer
US20080294247A1 (en) 2007-05-25 2008-11-27 Medical Entrepreneurs Ii, Inc. Prosthetic Heart Valve
WO2008150529A1 (en) 2007-06-04 2008-12-11 St. Jude Medical, Inc. Prosthetic heart valves
WO2009002548A1 (en) 2007-06-26 2008-12-31 St. Jude Medical, Inc. Apparatus and methods for implanting collapsible/expandable prosthetic heart valves
MX2010000907A (es) 2007-07-23 2010-03-26 Daido Ind Metodo para secar material impreso y aparato para lo mismo.
AU2008282204B2 (en) 2007-07-30 2014-04-10 Boston Scientific Scimed, Inc. Apparatus and method for the treatment of stress urinary incontinence
US20090216322A1 (en) 2007-08-10 2009-08-27 Le Le Adjustable annuloplasty ring and activation system
CA2696055C (en) 2007-08-21 2013-12-10 Valvexchange Inc. Method and apparatus for prosthetic valve removal
ES2586121T3 (es) 2007-08-21 2016-10-11 Symetis Sa Válvula de reemplazo
EP3075355A1 (en) 2007-08-23 2016-10-05 Direct Flow Medical, Inc. Translumenally implantable heart valve with formed in place support
AU2008294012B2 (en) 2007-08-24 2013-04-18 St. Jude Medical, Inc. Prosthetic aortic heart valves
WO2009044082A2 (fr) 2007-09-11 2009-04-09 Laboratoires Perouse Dispositif de traitement d'un conduit de circulation du sang
DE102007043831B4 (de) 2007-09-13 2009-07-02 Lozonschi, Lucian, Madison Katheter
DE102007043830A1 (de) 2007-09-13 2009-04-02 Lozonschi, Lucian, Madison Herzklappenstent
EP2572676B1 (en) 2007-09-26 2016-04-13 St. Jude Medical, Inc. Collapsible prosthetic heart valves
US8784481B2 (en) 2007-09-28 2014-07-22 St. Jude Medical, Inc. Collapsible/expandable prosthetic heart valves with native calcified leaflet retention features
US9532868B2 (en) 2007-09-28 2017-01-03 St. Jude Medical, Inc. Collapsible-expandable prosthetic heart valves with structures for clamping native tissue
US20090138079A1 (en) 2007-10-10 2009-05-28 Vector Technologies Ltd. Prosthetic heart valve for transfemoral delivery
US8043301B2 (en) 2007-10-12 2011-10-25 Spiration, Inc. Valve loader method, system, and apparatus
CA2702615C (en) 2007-10-19 2017-06-06 Guided Delivery Systems, Inc. Systems and methods for cardiac remodeling
US8597347B2 (en) 2007-11-15 2013-12-03 Cardiosolutions, Inc. Heart regurgitation method and apparatus
DK3494930T3 (da) 2007-12-14 2020-03-02 Edwards Lifesciences Corp Bladfastgørelsesramme til en proteseklap
US8357387B2 (en) 2007-12-21 2013-01-22 Edwards Lifesciences Corporation Capping bioprosthetic tissue to reduce calcification
US20090171456A1 (en) 2007-12-28 2009-07-02 Kveen Graig L Percutaneous heart valve, system, and method
US9180004B2 (en) 2008-01-16 2015-11-10 St. Jude Medical, Inc. Delivery and retrieval systems for collapsible/expandable prosthetic heart valves
EP2254514B1 (en) 2008-01-24 2018-10-03 Medtronic, Inc Stents for prosthetic heart valves
WO2009094500A1 (en) 2008-01-24 2009-07-30 Medtronic Vascular Inc. Infundibular reducer device delivery system and related methods
US7833265B2 (en) 2008-03-13 2010-11-16 Pacesetter, Inc. Vascular anchoring system and method
US8313525B2 (en) 2008-03-18 2012-11-20 Medtronic Ventor Technologies, Ltd. Valve suturing and implantation procedures
US20100131057A1 (en) 2008-04-16 2010-05-27 Cardiovascular Technologies, Llc Transvalvular intraannular band for aortic valve repair
US20100121435A1 (en) 2008-04-16 2010-05-13 Cardiovascular Technologies, Llc Percutaneous transvalvular intrannular band for mitral valve repair
US20100121437A1 (en) 2008-04-16 2010-05-13 Cardiovascular Technologies, Llc Transvalvular intraannular band and chordae cutting for ischemic and dilated cardiomyopathy
US9173737B2 (en) 2008-04-23 2015-11-03 Medtronic, Inc. Stented heart valve devices
US20090276040A1 (en) 2008-05-01 2009-11-05 Edwards Lifesciences Corporation Device and method for replacing mitral valve
US9061119B2 (en) 2008-05-09 2015-06-23 Edwards Lifesciences Corporation Low profile delivery system for transcatheter heart valve
CA3063780C (en) 2008-06-06 2021-12-14 Edwards Lifesciences Corporation Low profile transcatheter heart valve
US8323335B2 (en) 2008-06-20 2012-12-04 Edwards Lifesciences Corporation Retaining mechanisms for prosthetic valves and methods for using
WO2010008451A2 (en) 2008-06-23 2010-01-21 Lumen Biomedical, Inc. Embolic protection during percutaneous heart valve replacement and similar procedures
CA2641297A1 (en) 2008-07-11 2010-01-11 Richard B. Dorshow Pyrazine derivatives, methods of use, and methods for preparing same
US8652202B2 (en) 2008-08-22 2014-02-18 Edwards Lifesciences Corporation Prosthetic heart valve and delivery apparatus
US20110224655A1 (en) 2008-09-11 2011-09-15 Asirvatham Samuel J Central core multifunctional cardiac devices
EP4541320A3 (en) 2008-09-29 2025-07-09 Edwards Lifesciences CardiAQ LLC Heart valve
EP4321134A3 (en) 2008-11-21 2024-05-01 Percutaneous Cardiovascular Solutions Pty Limited Heart valve prosthesis and method
US8591573B2 (en) 2008-12-08 2013-11-26 Hector Daniel Barone Prosthetic valve for intraluminal implantation
US8545553B2 (en) 2009-05-04 2013-10-01 Valtech Cardio, Ltd. Over-wire rotation tool
US8147542B2 (en) 2008-12-22 2012-04-03 Valtech Cardio, Ltd. Adjustable repair chords and spool mechanism therefor
CN102341063B (zh) 2008-12-22 2015-11-25 瓦尔泰克卡迪欧有限公司 可调瓣环成形装置及其调节机构
CA2768797A1 (en) 2009-01-21 2010-08-12 Tendyne Medical, Inc. Apical papillary muscle attachment for left ventricular reduction
US20100210899A1 (en) 2009-01-21 2010-08-19 Tendyne Medical, Inc. Method for percutaneous lateral access to the left ventricle for treatment of mitral insufficiency by papillary muscle alignment
US20110288637A1 (en) 2009-02-11 2011-11-24 De Marchena Eduardo Percutaneous Mitral Annular Stitch to Decrease Mitral Regurgitation
WO2010091653A1 (de) 2009-02-11 2010-08-19 Georg Lutter Katheter
US20100217382A1 (en) 2009-02-25 2010-08-26 Edwards Lifesciences Mitral valve replacement with atrial anchoring
WO2010098857A1 (en) 2009-02-27 2010-09-02 St. Jude Medical, Inc. Stent features for collapsible prosthetic heart valves
US20100249489A1 (en) 2009-03-27 2010-09-30 Robert Jarvik Intraventricular blood pumps anchored by expandable mounting devices
US9011522B2 (en) 2009-04-10 2015-04-21 Lon Sutherland ANNEST Device and method for temporary or permanent suspension of an implantable scaffolding containing an orifice for placement of a prosthetic or bio-prosthetic valve
JP2012523894A (ja) 2009-04-15 2012-10-11 カルディアック バルブ テクノロジーズ,インコーポレーテッド 血管インプラント及びその配設システム
US8348998B2 (en) 2009-06-26 2013-01-08 Edwards Lifesciences Corporation Unitary quick connect prosthetic heart valve and deployment system and methods
WO2011002996A2 (en) 2009-07-02 2011-01-06 The Cleveland Clinic Foundation Apparatus and method for replacing a diseased cardiac valve
FR2947716B1 (fr) 2009-07-10 2011-09-02 Cormove Implant prothetique ameliore
US8475522B2 (en) 2009-07-14 2013-07-02 Edwards Lifesciences Corporation Transapical delivery system for heart valves
US8845722B2 (en) 2009-08-03 2014-09-30 Shlomo Gabbay Heart valve prosthesis and method of implantation thereof
US8979933B2 (en) 2009-08-06 2015-03-17 Alphatec Spine, Inc. Stand-alone interbody fixation system
US20120130391A1 (en) 2009-08-06 2012-05-24 Mayo Foundation For Medical Education And Research Implanting organ ports
WO2011022658A1 (en) 2009-08-20 2011-02-24 Cook Incorporated Loading apparatus and system for expandable intraluminal medical devices
EP2633821B1 (en) 2009-09-15 2016-04-06 Evalve, Inc. Device for cardiac valve repair
US9730790B2 (en) 2009-09-29 2017-08-15 Edwards Lifesciences Cardiaq Llc Replacement valve and method
US9539081B2 (en) 2009-12-02 2017-01-10 Surefire Medical, Inc. Method of operating a microvalve protection device
US8449599B2 (en) 2009-12-04 2013-05-28 Edwards Lifesciences Corporation Prosthetic valve for replacing mitral valve
US20130190861A1 (en) 2012-01-23 2013-07-25 Tendyne Holdings, Inc. Prosthetic Valve for Replacing Mitral Valve
EP4643824A2 (en) 2009-12-08 2025-11-05 Avalon Medical Ltd. Device and system for transcatheter mitral valve replacement
EP2519161B1 (en) 2009-12-30 2020-04-29 Vivasure Medical Limited Closure system
US8475525B2 (en) 2010-01-22 2013-07-02 4Tech Inc. Tricuspid valve repair using tension
US9522062B2 (en) 2010-02-24 2016-12-20 Medtronic Ventor Technologies, Ltd. Mitral prosthesis and methods for implantation
WO2011106547A2 (en) 2010-02-26 2011-09-01 Silk Road Medical, Inc. Systems and methods for transcatheter aortic valve treatment
WO2011106735A1 (en) 2010-02-26 2011-09-01 The Board Of Trustees Of The Leland Stanford Junior University Systems and methods for endoluminal valve creation
US8795354B2 (en) 2010-03-05 2014-08-05 Edwards Lifesciences Corporation Low-profile heart valve and delivery system
PL3335670T3 (pl) 2010-03-05 2022-09-05 Edwards Lifesciences Corporation Mechanizmy ustalające do zastawek protetycznych
SE535140C2 (sv) 2010-03-25 2012-04-24 Jan Otto Solem En implanterbar anordning, kit och system för förbättring av hjärtfunktionen, innefattande medel för generering av longitudinell rörelse av mitralisklaffen
US9480557B2 (en) 2010-03-25 2016-11-01 Medtronic, Inc. Stents for prosthetic heart valves
US8652204B2 (en) 2010-04-01 2014-02-18 Medtronic, Inc. Transcatheter valve with torsion spring fixation and related systems and methods
US8512401B2 (en) 2010-04-12 2013-08-20 Medtronic, Inc. Transcatheter prosthetic heart valve delivery system with funnel recapturing feature and method
EP4494608A3 (en) 2010-04-21 2025-04-02 Medtronic, Inc. Prosthetic valve with sealing members
EP3384879B1 (en) 2010-04-23 2020-09-30 Medtronic, Inc. Delivery systems for prosthetic heart valves
US8579964B2 (en) 2010-05-05 2013-11-12 Neovasc Inc. Transcatheter mitral valve prosthesis
US9603708B2 (en) 2010-05-19 2017-03-28 Dfm, Llc Low crossing profile delivery catheter for cardiovascular prosthetic implant
US8790394B2 (en) 2010-05-24 2014-07-29 Valtech Cardio, Ltd. Adjustable artificial chordeae tendineae with suture loops
WO2011159779A2 (en) 2010-06-15 2011-12-22 Mayo Foundation For Medical Education And Research Percutaneously deliverable valves
US20130030522A1 (en) 2010-06-16 2013-01-31 Rowe Stanton J Devices and methods for heart treatments
US9795476B2 (en) 2010-06-17 2017-10-24 St. Jude Medical, Llc Collapsible heart valve with angled frame
EP2582326B2 (en) 2010-06-21 2024-07-03 Edwards Lifesciences CardiAQ LLC Replacement heart valve
US8408214B2 (en) 2010-07-08 2013-04-02 Benjamin Spenser Method for implanting prosthetic valve
US8992604B2 (en) 2010-07-21 2015-03-31 Mitraltech Ltd. Techniques for percutaneous mitral valve replacement and sealing
EP2598086B1 (en) 2010-07-30 2016-09-21 Cook Medical Technologies LLC Controlled release and recapture prosthetic deployment device
US9095430B2 (en) 2010-08-24 2015-08-04 Southern Lights Ventures (2002) Limited Biomaterials with enhanced properties and devices made therefrom
US9039759B2 (en) 2010-08-24 2015-05-26 St. Jude Medical, Cardiology Division, Inc. Repositioning of prosthetic heart valve and deployment
IN2013MN00452A (enExample) 2010-08-25 2015-05-29 Cardiapex Ltd
US10105224B2 (en) 2010-09-01 2018-10-23 Mvalve Technologies Ltd. Cardiac valve support structure
EP2616008B1 (en) 2010-09-17 2018-10-24 St. Jude Medical, Cardiology Division, Inc. Assembly for loading a self-expanding collapsible heart valve
US10321998B2 (en) 2010-09-23 2019-06-18 Transmural Systems Llc Methods and systems for delivering prostheses using rail techniques
EP3459500B1 (en) 2010-09-23 2020-09-16 Edwards Lifesciences CardiAQ LLC Replacement heart valves and delivery devices
RS60677B1 (sr) 2010-10-05 2020-09-30 Edwards Lifesciences Corp Protetski srčani zalistak
EP2624765A2 (en) 2010-10-07 2013-08-14 Boston Scientific Scimed, Inc. Biodegradable adhesive film for vascular closure
CN103153232B (zh) 2010-10-21 2016-09-21 美敦力公司 具有低心室型面的二尖瓣假体
US9072872B2 (en) 2010-10-29 2015-07-07 Medtronic, Inc. Telescoping catheter delivery system for left heart endocardial device placement
WO2012068541A2 (en) 2010-11-18 2012-05-24 Pavilion Medical Innovations Tissue restraining devices and methods of use
CN101972177B (zh) * 2010-11-30 2016-02-03 孔祥清 带瓣膜定位功能的经皮主动脉瓣置换手术用输送装置
US9579197B2 (en) 2010-12-15 2017-02-28 Medtronic Vascular, Inc. Systems and methods for positioning a heart valve using visual markers
CN103491900B (zh) 2010-12-23 2017-03-01 托尔福公司 用于二尖瓣修复和替换的系统
US20130274874A1 (en) 2010-12-29 2013-10-17 Children's Medical Center Corporation Curved fiber arrangement for prosthetic heart valves
WO2012095116A1 (de) 2011-01-11 2012-07-19 Hans Reiner Figulla Klappenprothese zum ersatz einer atrioventricularklappe des herzens
US8888843B2 (en) 2011-01-28 2014-11-18 Middle Peak Medical, Inc. Device, system, and method for transcatheter treatment of valve regurgitation
US8845717B2 (en) 2011-01-28 2014-09-30 Middle Park Medical, Inc. Coaptation enhancement implant, system, and method
GB2488107B (en) 2011-02-11 2013-03-06 Cook Medical Technologies Llc Drive assembly for facilitating deployment of an implantable medical device
US8454656B2 (en) 2011-03-01 2013-06-04 Medtronic Ventor Technologies Ltd. Self-suturing anchors
US9039713B2 (en) 2011-05-13 2015-05-26 Merit Medical Systems, Inc. Releasably attached snare loop retrieval device and method of using the same
EP4623867A3 (en) 2011-06-21 2025-11-05 Twelve, Inc. Prosthetic heart valve devices
EP2734157B1 (en) 2011-07-21 2018-09-05 4Tech Inc. Apparatus for tricuspid valve repair using tension
US9161837B2 (en) 2011-07-27 2015-10-20 The Cleveland Clinic Foundation Apparatus, system, and method for treating a regurgitant heart valve
US20140324164A1 (en) 2011-08-05 2014-10-30 Mitraltech Ltd. Techniques for percutaneous mitral valve replacement and sealing
CA3091387C (en) 2011-08-11 2023-01-03 Tendyne Holdings, Inc. Improvements for prosthetic valves and related inventions
US9216076B2 (en) 2011-09-09 2015-12-22 Endoluminal Sciences Pty. Ltd. Means for controlled sealing of endovascular devices
US9011468B2 (en) 2011-09-13 2015-04-21 Abbott Cardiovascular Systems Inc. Independent gripper
US8900295B2 (en) 2011-09-26 2014-12-02 Edwards Lifesciences Corporation Prosthetic valve with ventricular tethers
WO2013045262A1 (en) 2011-09-30 2013-04-04 Jenavalve Technology Inc. System and method for loading a stent into a medical delivery system
WO2013059747A1 (en) 2011-10-19 2013-04-25 Foundry Newco Xii, Inc. Prosthetic heart valve devices, prosthetic mitral valves and associated systems and methods
US9763780B2 (en) 2011-10-19 2017-09-19 Twelve, Inc. Devices, systems and methods for heart valve replacement
US9039757B2 (en) 2011-10-19 2015-05-26 Twelve, Inc. Prosthetic heart valve devices, prosthetic mitral valves and associated systems and methods
US8858623B2 (en) 2011-11-04 2014-10-14 Valtech Cardio, Ltd. Implant having multiple rotational assemblies
EP2591754B1 (en) 2011-11-10 2015-02-25 Medtentia International Ltd Oy A device and a method for improving the function of a heart valve
US9827092B2 (en) 2011-12-16 2017-11-28 Tendyne Holdings, Inc. Tethers for prosthetic mitral valve
US9078645B2 (en) 2011-12-19 2015-07-14 Edwards Lifesciences Corporation Knotless suture anchoring devices and tools for implants
US9078747B2 (en) 2011-12-21 2015-07-14 Edwards Lifesciences Corporation Anchoring device for replacing or repairing a heart valve
EP2793751B1 (en) 2011-12-21 2019-08-07 The Trustees of The University of Pennsylvania Platforms for mitral valve replacement
WO2013096757A1 (en) 2011-12-21 2013-06-27 The Trustees Of The University Of Pennsylvania Mechanical myocardial restraint device
WO2013103612A1 (en) 2012-01-04 2013-07-11 Tendyne Holdings, Inc. Improved multi-component cuff designs for transcatheter mitral valve replacement, subvalvular sealing apparatus for transcatheter mitral valves and wire framed leaflet assembly
US20130184811A1 (en) 2012-01-13 2013-07-18 Tendyne Holdings, Inc. Device and Method for Replacing Mitral Valve
CN104540473B (zh) 2012-02-01 2017-06-23 Hlt 公司 可翻转的组织瓣膜和方法
EP2814427B1 (en) 2012-02-15 2018-12-12 Children's Hospital Boston Right ventricular papillary approximation
US20150094802A1 (en) 2012-02-28 2015-04-02 Mvalve Technologies Ltd. Single-ring cardiac valve support
US9180008B2 (en) 2012-02-29 2015-11-10 Valcare, Inc. Methods, devices, and systems for percutaneously anchoring annuloplasty rings
US9579198B2 (en) 2012-03-01 2017-02-28 Twelve, Inc. Hydraulic delivery systems for prosthetic heart valve devices and associated methods
CA2866315C (en) 2012-03-12 2021-03-02 Colorado State University Research Foundation Glycosaminoglycan and synthetic polymer materials for blood-contacting applications
CA2872611C (en) 2012-05-16 2020-09-15 Edwards Lifesciences Corporation Systems and methods for placing a coapting member between valvular leaflets
LT2852354T (lt) 2012-05-20 2020-09-25 Tel Hashomer Medical Research Infrastructure And Services Ltd. Mitralinio vožtuvo protezas
US9345573B2 (en) 2012-05-30 2016-05-24 Neovasc Tiara Inc. Methods and apparatus for loading a prosthesis onto a delivery system
US9233015B2 (en) 2012-06-15 2016-01-12 Trivascular, Inc. Endovascular delivery system with an improved radiopaque marker scheme
US9883941B2 (en) 2012-06-19 2018-02-06 Boston Scientific Scimed, Inc. Replacement heart valve
WO2014022124A1 (en) 2012-07-28 2014-02-06 Tendyne Holdings, Inc. Improved multi-component designs for heart valve retrieval device, sealing structures and stent assembly
WO2014021905A1 (en) 2012-07-30 2014-02-06 Tendyne Holdings, Inc. Improved delivery systems and methods for transcatheter prosthetic valves
US9468525B2 (en) 2012-08-13 2016-10-18 Medtronic, Inc. Heart valve prosthesis
US9232995B2 (en) 2013-01-08 2016-01-12 Medtronic, Inc. Valve prosthesis and method for delivery
US10206775B2 (en) 2012-08-13 2019-02-19 Medtronic, Inc. Heart valve prosthesis
DE102012107465A1 (de) 2012-08-15 2014-05-22 Pfm Medical Ag Implantierbare Einrichtung zur Verwendung im menschlichen und/oder tierischen Körper zum Ersatz einer Organklappe
US20140067048A1 (en) 2012-09-06 2014-03-06 Edwards Lifesciences Corporation Heart Valve Sealing Devices
EP2895111B1 (en) 2012-09-14 2023-08-09 Boston Scientific Scimed, Inc. Mitral valve inversion prostheses
US9138221B2 (en) 2012-09-20 2015-09-22 Medos International Sarl Anti-backup suture anchor
US9023099B2 (en) 2012-10-31 2015-05-05 Medtronic Vascular Galway Limited Prosthetic mitral valve and delivery method
EP2732796A1 (en) 2012-11-20 2014-05-21 Nakostech Sarl Mitral valve replacement system
FR3000193B1 (fr) 2012-12-20 2015-01-16 Msc & Sgcc Procede et dispositif de mesure de la verticalite sur un recipient
US9066801B2 (en) 2013-01-08 2015-06-30 Medtronic, Inc. Valve prosthesis and method for delivery
US9132007B2 (en) 2013-01-10 2015-09-15 Medtronic CV Luxembourg S.a.r.l. Anti-paravalvular leakage components for a transcatheter valve prosthesis
WO2014115149A2 (en) 2013-01-24 2014-07-31 Mitraltech Ltd. Ventricularly-anchored prosthetic valves
US9675451B2 (en) 2013-02-01 2017-06-13 Medtronic CV Luxembourg S.a.r.l. Anti-paravalvular leakage component for a transcatheter valve prosthesis
CN109938877B (zh) 2013-02-04 2021-08-31 托尔福公司 用于人工心脏瓣膜装置的液压输送系统及相关方法
WO2014138284A1 (en) 2013-03-07 2014-09-12 Cedars-Sinai Medical Center Catheter based apical approach heart prostheses delivery system
US9119713B2 (en) 2013-03-11 2015-09-01 St. Jude Medical, Cardiology Division, Inc. Transcatheter valve replacement
US8986375B2 (en) 2013-03-12 2015-03-24 Medtronic, Inc. Anti-paravalvular leakage component for a transcatheter valve prosthesis
CN107518960B (zh) 2013-03-14 2020-01-03 苏州杰成医疗科技有限公司 无缝线瓣膜假体递送装置及其使用方法
US9232998B2 (en) 2013-03-15 2016-01-12 Cardiosolutions Inc. Trans-apical implant systems, implants and methods
AU2014227955A1 (en) 2013-03-15 2015-11-12 Hlt, Inc. Low-profile prosthetic valve structure
US9289297B2 (en) 2013-03-15 2016-03-22 Cardiosolutions, Inc. Mitral valve spacer and system and method for implanting the same
CN105101911B (zh) 2013-03-15 2018-10-26 托尔福公司 人造心瓣装置、人造二尖瓣以及相关系统和方法
WO2014145811A1 (en) 2013-03-15 2014-09-18 Edwards Lifesciences Corporation Valved aortic conduits
US20140296970A1 (en) 2013-04-02 2014-10-02 Tendyne Holdings, Inc. Positioning Tool for Transcatheter Valve Delivery
US20140296972A1 (en) 2013-04-02 2014-10-02 Tendyne Holdings Deployment Compensator for Transcatheter Valve Delivery
US20140296969A1 (en) 2013-04-02 2014-10-02 Tendyne Holdlings, Inc. Anterior Leaflet Clip Device for Prosthetic Mitral Valve
WO2014162306A2 (en) 2013-04-02 2014-10-09 Tendyne Holdings, Inc. Improved devices and methods for transcatheter prosthetic heart valves
US9486306B2 (en) 2013-04-02 2016-11-08 Tendyne Holdings, Inc. Inflatable annular sealing device for prosthetic mitral valve
US20140296971A1 (en) 2013-04-02 2014-10-02 Tendyne Holdings Alignment Device for Asymmetric Transcatheter Valve
US10463489B2 (en) 2013-04-02 2019-11-05 Tendyne Holdings, Inc. Prosthetic heart valve and systems and methods for delivering the same
US10478293B2 (en) 2013-04-04 2019-11-19 Tendyne Holdings, Inc. Retrieval and repositioning system for prosthetic heart valve
US20140303718A1 (en) 2013-04-04 2014-10-09 Tendyne Holdings, Inc. Retrieval and repositioning system for prosthetic heart valve
US10188515B2 (en) 2013-05-13 2019-01-29 Medtronic Vascular Inc. Devices and methods for crimping a medical device
ES2699785T3 (es) * 2013-05-20 2019-02-12 Edwards Lifesciences Corp Dispositivo para la administración de válvula protésica cardiaca
CN105246431B (zh) 2013-05-20 2018-04-06 托尔福公司 可植入心脏瓣膜装置、二尖瓣修复装置以及相关系统和方法
US9610159B2 (en) 2013-05-30 2017-04-04 Tendyne Holdings, Inc. Structural members for prosthetic mitral valves
US20140358224A1 (en) 2013-05-30 2014-12-04 Tendyne Holdlings, Inc. Six cell inner stent device for prosthetic mitral valves
CA2919221C (en) 2013-06-17 2021-09-21 Alan HELDMAN Prosthetic heart valve with linking element and methods for implanting same
US20140379076A1 (en) 2013-06-25 2014-12-25 Tendyne Holdings, Inc. Halo Wire Fluid Seal Device for Prosthetic Mitral Valves
AU2014302505B2 (en) 2013-06-25 2019-11-28 Tendyne Holdings, Inc. Thrombus management and structural compliance features for prosthetic heart valves
US20150005874A1 (en) 2013-06-27 2015-01-01 Tendyne Holdings, Inc. Atrial Thrombogenic Sealing Pockets for Prosthetic Mitral Valves
US20150057705A1 (en) 2013-08-01 2015-02-26 Tendyne Holdings, Inc. Pursestring Epicardial Pad Device
CN105555231B (zh) 2013-08-01 2018-02-09 坦迪尼控股股份有限公司 心外膜锚固装置和方法
US10195028B2 (en) 2013-09-10 2019-02-05 Edwards Lifesciences Corporation Magnetic retaining mechanisms for prosthetic valves
US10117742B2 (en) 2013-09-12 2018-11-06 St. Jude Medical, Cardiology Division, Inc. Stent designs for prosthetic heart valves
WO2015051430A1 (pt) 2013-10-10 2015-04-16 Neves Filho Antonio Francisco Disposição introduzida em suporte para plastia ou troca de válvula cardíaca
WO2015058039A1 (en) 2013-10-17 2015-04-23 Robert Vidlund Apparatus and methods for alignment and deployment of intracardiac devices
AU2014342935B2 (en) 2013-10-28 2019-05-16 Tendyne Holdings, Inc. Prosthetic heart valve and systems and methods for delivering the same
US9526611B2 (en) 2013-10-29 2016-12-27 Tendyne Holdings, Inc. Apparatus and methods for delivery of transcatheter prosthetic valves
EP3062709A2 (en) 2013-10-30 2016-09-07 4Tech Inc. Multiple anchoring-point tension system
US10022114B2 (en) 2013-10-30 2018-07-17 4Tech Inc. Percutaneous tether locking
CN106562840B (zh) 2013-10-31 2018-06-22 上海微创心通医疗科技有限公司 一种将植入体装载到输送系统中的导引盖和装载系统
WO2015077274A1 (en) 2013-11-19 2015-05-28 St. Jude Medical, Cardiology Division, Inc. Sealing structures for paravalvular leak protection
US9848880B2 (en) 2013-11-20 2017-12-26 James E. Coleman Adjustable heart valve implant
US10098734B2 (en) * 2013-12-05 2018-10-16 Edwards Lifesciences Corporation Prosthetic heart valve and delivery apparatus
WO2015120122A2 (en) 2014-02-05 2015-08-13 Robert Vidlund Apparatus and methods for transfemoral delivery of prosthetic mitral valve
US10292711B2 (en) 2014-02-07 2019-05-21 St. Jude Medical, Cardiology Division, Inc. Mitral valve treatment device having left atrial appendage closure
US9986993B2 (en) 2014-02-11 2018-06-05 Tendyne Holdings, Inc. Adjustable tether and epicardial pad system for prosthetic heart valve
US20150238729A1 (en) 2014-02-24 2015-08-27 Mark Lynn Jenson Cardiac Access Catheter, System, and Method
CN110338911B (zh) 2014-03-10 2022-12-23 坦迪尼控股股份有限公司 用于定位和监测假体二尖瓣的系绳负荷的装置和方法
EP2918248A1 (en) 2014-03-11 2015-09-16 Epygon Sasu An expandable stent-valve and a delivery device
US10149758B2 (en) 2014-04-01 2018-12-11 Medtronic, Inc. System and method of stepped deployment of prosthetic heart valve
WO2015153174A1 (en) * 2014-04-02 2015-10-08 Intuitive Surgical Operations, Inc. Devices, systems, and methods using a steerable stylet and flexible needle
US10321987B2 (en) 2014-04-23 2019-06-18 Medtronic, Inc. Paravalvular leak resistant prosthetic heart valve system
ES2665673T3 (es) 2014-05-14 2018-04-26 Sorin Group Italia S.R.L. Dispositivo de implante y kit de implantación
US9668858B2 (en) 2014-05-16 2017-06-06 St. Jude Medical, Cardiology Division, Inc. Transcatheter valve with paravalvular leak sealing ring
US20150342717A1 (en) 2014-05-30 2015-12-03 Michael J. O'Donnell Temporary valve and filter on guide catheter
US10111749B2 (en) 2014-06-11 2018-10-30 Medtronic Vascular, Inc. Prosthetic valve with flow director
EP3028668B1 (en) * 2014-12-05 2024-10-30 Nvt Ag Prosthetic heart valve system and delivery system therefor
CA2975294A1 (en) 2015-02-05 2016-08-11 Tendyne Holdings, Inc. Expandable epicardial pads and devices and methods for delivery of same
ES2818128T3 (es) 2015-04-16 2021-04-09 Tendyne Holdings Inc Aparato para el suministro y el reposicionamiento de válvulas protésicas transcatéter
EP3302363A1 (en) 2015-06-05 2018-04-11 Tendyne Holdings, Inc. Apical control of transvascular delivery of prosthetic mitral valve
JP2018535754A (ja) 2015-12-03 2018-12-06 テンダイン ホールディングス,インコーポレイテッド 人工僧帽弁用のフレーム特徴
US20170209268A1 (en) 2016-01-27 2017-07-27 Medtronic, Inc. Systems and methods for repositioning a fully deployed valve assembly
US10470877B2 (en) 2016-05-03 2019-11-12 Tendyne Holdings, Inc. Apparatus and methods for anterior valve leaflet management
WO2017218375A1 (en) 2016-06-13 2017-12-21 Tendyne Holdings, Inc. Sequential delivery of two-part prosthetic mitral valve
WO2018005779A1 (en) 2016-06-30 2018-01-04 Tegels Zachary J Prosthetic heart valves and apparatus and methods for delivery of same
US11065116B2 (en) 2016-07-12 2021-07-20 Tendyne Holdings, Inc. Apparatus and methods for trans-septal retrieval of prosthetic heart valves
US10959846B2 (en) * 2017-05-10 2021-03-30 Edwards Lifesciences Corporation Mitral valve spacer device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016112085A2 (en) * 2015-01-07 2016-07-14 Mark Christianson Prosthetic mitral valves and apparatus and methods for delivery of same
US20170079790A1 (en) 2015-09-18 2017-03-23 Tendyne Holdings, Inc. Apparatus and methods for delivery of prosthetic mitral valve

Cited By (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11786366B2 (en) 2018-04-04 2023-10-17 Vdyne, Inc. Devices and methods for anchoring transcatheter heart valve
US11344413B2 (en) 2018-09-20 2022-05-31 Vdyne, Inc. Transcatheter deliverable prosthetic heart valves and methods of delivery
US11273033B2 (en) 2018-09-20 2022-03-15 Vdyne, Inc. Side-delivered transcatheter heart valve replacement
US12186187B2 (en) 2018-09-20 2025-01-07 Vdyne, Inc. Transcatheter deliverable prosthetic heart valves and methods of delivery
US10595994B1 (en) 2018-09-20 2020-03-24 Vdyne, Llc Side-delivered transcatheter heart valve replacement
US11071627B2 (en) 2018-10-18 2021-07-27 Vdyne, Inc. Orthogonally delivered transcatheter heart valve frame for valve in valve prosthesis
US11109969B2 (en) 2018-10-22 2021-09-07 Vdyne, Inc. Guidewire delivery of transcatheter heart valve
US11278437B2 (en) 2018-12-08 2022-03-22 Vdyne, Inc. Compression capable annular frames for side delivery of transcatheter heart valve replacement
US11253359B2 (en) 2018-12-20 2022-02-22 Vdyne, Inc. Proximal tab for side-delivered transcatheter heart valves and methods of delivery
US12343256B2 (en) 2019-01-10 2025-07-01 Vdyne, Inc. Anchor hook for side-delivery transcatheter heart valve prosthesis
US11185409B2 (en) 2019-01-26 2021-11-30 Vdyne, Inc. Collapsible inner flow control component for side-delivered transcatheter heart valve prosthesis
US11273032B2 (en) 2019-01-26 2022-03-15 Vdyne, Inc. Collapsible inner flow control component for side-deliverable transcatheter heart valve prosthesis
US11298227B2 (en) 2019-03-05 2022-04-12 Vdyne, Inc. Tricuspid regurgitation control devices for orthogonal transcatheter heart valve prosthesis
US11173027B2 (en) 2019-03-14 2021-11-16 Vdyne, Inc. Side-deliverable transcatheter prosthetic valves and methods for delivering and anchoring the same
US11076956B2 (en) 2019-03-14 2021-08-03 Vdyne, Inc. Proximal, distal, and anterior anchoring tabs for side-delivered transcatheter mitral valve prosthesis
US12440334B2 (en) 2019-03-27 2025-10-14 Edwards Lifesciences Corporation Delivery apparatus for a prosthetic valve
CN113825472A (zh) * 2019-03-27 2021-12-21 爱德华兹生命科学公司 用于假体瓣膜的递送设备
WO2020198101A1 (en) * 2019-03-27 2020-10-01 Edwards Lifesciences Corporation Delivery apparatus for a prosthetic valve
CN113825472B (zh) * 2019-03-27 2024-07-16 爱德华兹生命科学公司 用于假体瓣膜的递送设备
US11602429B2 (en) 2019-04-01 2023-03-14 Neovasc Tiara Inc. Controllably deployable prosthetic valve
WO2020206012A1 (en) * 2019-04-01 2020-10-08 Neovasc Tiara Inc. Controllably deployable prosthetic valve
US11202706B2 (en) 2019-05-04 2021-12-21 Vdyne, Inc. Cinch device and method for deployment of a side-delivered prosthetic heart valve in a native annulus
US11179239B2 (en) 2019-08-20 2021-11-23 Vdyne, Inc. Delivery and retrieval devices and methods for side-deliverable transcatheter prosthetic valves
US11166814B2 (en) 2019-08-20 2021-11-09 Vdyne, Inc. Delivery and retrieval devices and methods for side-deliverable transcatheter prosthetic valves
US11331186B2 (en) 2019-08-26 2022-05-17 Vdyne, Inc. Side-deliverable transcatheter prosthetic valves and methods for delivering and anchoring the same
US11234813B2 (en) 2020-01-17 2022-02-01 Vdyne, Inc. Ventricular stability elements for side-deliverable prosthetic heart valves and methods of delivery
WO2023144671A1 (en) * 2022-01-28 2023-08-03 Medtronic, Inc. Systems for transcatheter valve replacement and methods

Also Published As

Publication number Publication date
EP3651695B1 (en) 2023-04-19
JP7216066B2 (ja) 2023-01-31
CN111050702A (zh) 2020-04-21
US20200155311A1 (en) 2020-05-21
AU2018301815A1 (en) 2020-01-23
CA3068527A1 (en) 2019-01-17
US11154399B2 (en) 2021-10-26
CA3068527C (en) 2022-07-05
CN111050702B (zh) 2022-07-05
JP2020526329A (ja) 2020-08-31
EP3651695A1 (en) 2020-05-20
US20220000617A1 (en) 2022-01-06

Similar Documents

Publication Publication Date Title
EP3651695B1 (en) Prosthetic heart valves and apparatus for delivery of same
US11701226B2 (en) Prosthetic heart valves and apparatus and methods for delivery of same
JP7047044B2 (ja) 人工僧帽弁、並びにその送達のための装置及び方法
CN110013357B (zh) 心脏瓣膜假体
CN108495602B (zh) 用于再定位完全部署的瓣膜组件的系统
EP3468480B1 (en) Sequential delivery of two-part prosthetic mitral valve
US20200205968A1 (en) Prosthetic Heart Valves With Tether Coupling Features
WO2022221370A1 (en) Method and apparatus for collapsing a prosthetic heart valve

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18746551

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 3068527

Country of ref document: CA

ENP Entry into the national phase

Ref document number: 2020501194

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018301815

Country of ref document: AU

Date of ref document: 20180712

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2018746551

Country of ref document: EP

Effective date: 20200213